Science.gov

Sample records for adaptive optics managed

  1. Adaptive Management

    EPA Science Inventory

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive managem...

  2. Adaptive management

    USGS Publications Warehouse

    Allen, Craig R.; Garmestani, Ahjond S.

    2015-01-01

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive management has explicit structure, including a careful elucidation of goals, identification of alternative management objectives and hypotheses of causation, and procedures for the collection of data followed by evaluation and reiteration. The process is iterative, and serves to reduce uncertainty, build knowledge and improve management over time in a goal-oriented and structured process.

  3. Telescope Adaptive Optics Code

    SciTech Connect

    Phillion, D.

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST

  4. [Adaptive optics for ophthalmology].

    PubMed

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy.

  5. Retinal Imaging: Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Goncharov, A. S.; Iroshnikov, N. G.; Larichev, Andrey V.

    This chapter describes several factors influencing the performance of ophthalmic diagnostic systems with adaptive optics compensation of human eye aberration. Particular attention is paid to speckle modulation, temporal behavior of aberrations, and anisoplanatic effects. The implementation of a fundus camera with adaptive optics is considered.

  6. Adaptation of adaptive optics systems.

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Zhao, Dazun; Li, Chen

    1997-10-01

    In the paper, a concept of an adaptation of adaptive optical system (AAOS) is proposed. The AAOS has certain real time optimization ability against the variation of the brightness of detected objects m, atmospheric coherence length rO and atmospheric time constant τ by means of changing subaperture number and diameter, dynamic range, and system's temporal response. The necessity of AAOS using a Hartmann-Shack wavefront sensor and some technical approaches are discussed. Scheme and simulation of an AAOS with variable subaperture ability by use of both hardware and software are presented as an example of the system.

  7. Adaptive optics ophthalmoscopy.

    PubMed

    Roorda, A

    2000-01-01

    Retinal images in the human eye are normally degraded because we are forced to use the optical system of the human eye--which is fraught with aberrations--as the objective lens. The recent application of adaptive optics technology to measure and compensate for these aberrations has produced retinal images in human eyes with unprecedented resolution. The adaptive optics ophthalmoscope is used to take pictures of photoreceptors and capillaries and to study spectral and angular tuning properties of individual photoreceptors. Application of adaptive optics technology for ophthalmoscopy promises continued progress toward understanding the basic properties of the living human retina and also for clinical applications.

  8. Solar tomography adaptive optics.

    PubMed

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  9. Solar Adaptive Optics.

    PubMed

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given.

  10. Adaptive Management of Ecosystems

    EPA Science Inventory

    Adaptive management is an approach to natural resource management that emphasizes learning through management. As such, management may be treated as experiment, with replication, or management may be conducted in an iterative manner. Although the concept has resonated with many...

  11. Advanced Adaptive Optics Control Techniques

    DTIC Science & Technology

    1979-01-01

    Optimal estimation and control methods for high energy laser adaptive optics systems are described. Three system types are examined: Active...the adaptive optics approaches and potential system implementations are recommended.

  12. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  13. Adaptive optics ophthalmoscopy.

    PubMed

    Roorda, Austin; Duncan, Jacque L

    2015-11-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye.

  14. Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to <10 kHz due to large computing overhead and limited photon efficiencies. Moreover most use zonal wavefront sensors which cannot easily handle extreme scintillation or unexpected obscuration of a pre-set aperture. Here we present a compact, lightweight adaptive optics system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be

  15. Optical Beam Control Using Adaptive Optics

    DTIC Science & Technology

    2005-12-01

    30 1. Principles of Operation......................................................................31 VI. USING ZERNIKE POLYNOMIALS TO...help patience in helping me to understand the underlying principles of optics. xiv THIS PAGE INTENTIONALLY...correct this using adaptive optics. Adaptive Optics first got its start in 215 AD with the destruction of the Roman Fleet by Archimedes (Lamberson

  16. Adaptive Optical Scanning Holography

    PubMed Central

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  17. Adaptive Optical Scanning Holography

    NASA Astrophysics Data System (ADS)

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-02-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably.

  18. Adaptive management: Chapter 1

    USGS Publications Warehouse

    Allen, Craig R.; Garmestani, Ahjond S.; Allen, Craig R.; Garmestani, Ahjond S.

    2015-01-01

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive management has explicit structure, including a careful elucidation of goals, identification of alternative management objectives and hypotheses of causation, and procedures for the collection of data followed by evaluation and reiteration. The process is iterative, and serves to reduce uncertainty, build knowledge and improve management over time in a goal-oriented and structured process.

  19. Adaptive optics optical coherence tomography in glaucoma.

    PubMed

    Dong, Zachary M; Wollstein, Gadi; Wang, Bo; Schuman, Joel S

    2017-03-01

    Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior segment of the eye. Although OCT previously captured in-vivo cross-sectional images with unparalleled high resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and retina in three-dimensions, increasing resolution down to a theoretical 3 μm(3). It is now possible to visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its limitations and barriers to widespread commercialization, the expanding role of AO in OCT is propelling this technology into clinical trials and onto becoming an invaluable modality in the clinician's arsenal.

  20. Extreme Adaptive Optics Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Graham, J. R.; Ghez, A.; Kalas, P.; Lloyd, J.; Makidon, R.; Olivier, S.; Patience, J.; Perrin, M.; Poyneer, L.; Severson, S.; Sheinis, A.; Sivaramakrishnan, A.; Troy, M.; Wallace, J.; Wilhelmsen, J.

    2002-12-01

    Direct detection of photons emitted or reflected by extrasolar planets is the next major step in extrasolar planet studies. Current adaptive optics (AO) systems, with <300 subapertures and Strehl ratio 0.4-0.7, can achieve contrast levels of 106 at 2" separations; this is sufficient to see very young planets in wide orbits but insufficient to detect solar systems more like our own. Contrast levels of 107 - 108 in the near-IR are needed to probe a significant part of the extrasolar planet phase space. The NSF Center for Adaptive Optics is carrying out a design study for a dedicated ultra-high-contrast "Extreme" adaptive optics system for an 8-10m telescope. With 3000 controlled subapertures it should achieve Strehl ratios > 0.9 in the near-IR. Using a spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused static errors. We predict that it will achieve contrast levels of 107-108 around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. The system will be capable of a variety of high-contrast science including studying circumstellar dust disks at densities a factor of 10-100 lower than currently feasible and a systematic inventory of other solar systems on 10-100 AU scale. This work was supported by the NSF Science and Technology Center for Adaptive Optics, managed by UC Santa Cruz under AST-9876783. Portions of this work was performed under the auspices of the U.S. Department of Energy, under contract No. W-7405-Eng-48.

  1. New Adaptive Optics Technique Demonstrated

    NASA Astrophysics Data System (ADS)

    2007-03-01

    Enrico Marchetti, the MAD Project Manager. "The system behaviour was very stable and the acquisition and closed loop operations were fast and smooth." ESO PR Photo 19d/07 ESO PR Photo 19d/07 AO Strehl Maps After routine checks on the closed loop stability and preliminary scans of the system parameters, the telescope was pointed to Omega Centauri, a very crowded area in the sky, and an optimal test case for extracting accurate measurements on AO correction performance with good spatial resolution on the FoV. Three 11 magnitude stars within a circle of ~1.5 arcmin diameter were selected as the baseline for wavefront sensing and the MCAO loop was closed successfully. Omega Centauri will be observed for several nights more, in order to test the AO correction in different seeing conditions. "This is a tremendous achievement that opens new perspectives in the era of extremely large telescopes," said Catherine Cesarsky, ESO's Director General. " "I am very proud of the ESO staff and wish to congratulate all involved for their prowess," she added. The MAD images perfectly show the validity of the concept. The image quality was almost uniform over the whole field of view and beautifully corrected for some of the atmospheric turbulence. More Information The Multi-Conjugate Adaptive Optics (MCAO) Demonstrator MAD was built by ESO in collaboration with the Astronomical Observatories of Arcetri and Padova (Italy) and the Faculdade de Ciencias da Universidade de Lisboa (Portugal), as a pathfinder for 2nd generation VLT instrumentation and the European Extremely Large Telescope project. The MCAO technique is based on probing the atmospheric turbulence on a large volume of atmosphere by means of several wavefront sensors (WFS), which point at different locations in the observed field of view, and by means of several deformable mirrors - optically conjugated at different altitudes on the atmosphere above the telescope - which correct for the atmospheric disturbance. The signals provided

  2. Adaptive optical zoom sensor.

    SciTech Connect

    Sweatt, William C.; Bagwell, Brett E.; Wick, David Victor

    2005-11-01

    In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

  3. Adaptation and risk management

    SciTech Connect

    Preston, Benjamin L

    2011-01-01

    Adaptation assessment methods are compatible with the international risk management standard ISO:31000. Risk management approaches are increasingly being recommended for adaptation assessments at both national and local levels. Two orientations to assessments can commonly be identified: top-down and bottom-up, and prescriptive and diagnostic. Combinations of these orientations favor different types of assessments. The choice of orientation can be related to uncertainties in prediction and taking action, in the type of adaptation and in the degree of system stress. Adopting multiple viewpoints is to be encouraged, especially in complex situations. The bulk of current guidance material is consistent with top-down and predictive approaches, thus is most suitable for risk scoping and identification. Abroad range ofmaterial fromwithin and beyond the climate change literature can be used to select methods to be used in assessing and implementing adaptation. The framing of risk, correct formulation of the questions being investigated and assessment methodology are critical aspects of the scoping phase. Only when these issues have been addressed should be issue of specific methods and tools be addressed. The reorientation of adaptation from an assessment focused solely on anthropogenic climate change to broader issues of vulnerability/resilience, sustainable development and disaster risk, especially through a risk management framework, can draw from existing policy and management understanding in communities, professions and agencies, incorporating existing agendas, knowledge, risks, and issues they already face.

  4. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  5. Coherent Digital Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng

    A new type of adaptive optics (AO) based on the principles of digital holography (DH) is proposed and developed for the use in wide-field and confocal retinal imaging. Digital holographic adaptive optics (DHAO) dispenses with the wavefront sensor and wavefront corrector of the conventional AO system. DH is an emergent imaging technology that gives direct numerical access to the phase of the optical field, thus allowing precise control and manipulation of the optical field. Incorporation of DH in an ophthalmic imaging system can lead to versatile imaging capabilities at substantially reduced complexity and cost of the instrument. A typical conventional AO system includes several critical hardware pieces: spatial light modulator, lenslet array, and a second CCD camera in addition to the camera for imaging. The proposed DHAO system replaces these hardware components with numerical processing for wavefront measurement and compensation of aberration through the principles of DH. (Abstract shortened by UMI.).

  6. Intelligent Optical Systems Using Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  7. Exploiting Adaptive Optics with Deformable Secondary Mirrors

    DTIC Science & Technology

    2007-03-08

    progress in tomographic wavefront sensing and altitude conjugated adaptive correction, and is a critical step forward for adaptive optics for future large...geostationary satellites, captured at the 6.5 m MMT telescope, using the deformable secondary adaptive optics system....new technology to the unique development of deformable secondary mirrors pioneered at the University of Arizona’s Center for Astronomical Adaptive

  8. Sparse-aperture adaptive optics

    NASA Astrophysics Data System (ADS)

    Tuthill, Peter; Lloyd, James; Ireland, Michael; Martinache, Frantz; Monnier, John; Woodruff, Henry; ten Brummelaar, Theo; Turner, Nils; Townes, Charles

    2006-06-01

    Aperture masking interferometry and Adaptive Optics (AO) are two of the competing technologies attempting to recover diffraction-limited performance from ground-based telescopes. However, there are good arguments that these techniques should be viewed as complementary, not competitive. Masking has been shown to deliver superior PSF calibration, rejection of atmospheric noise and robust recovery of phase information through the use of closure phases. However, this comes at the penalty of loss of flux at the mask, restricting the technique to bright targets. Adaptive optics, on the other hand, can reach a fainter class of objects but suffers from the difficulty of calibration of the PSF which can vary with observational parameters such as seeing, airmass and source brightness. Here we present results from a fusion of these two techniques: placing an aperture mask downstream of an AO system. The precision characterization of the PSF enabled by sparse-aperture interferometry can now be applied to deconvolution of AO images, recovering structure from the traditionally-difficult regime within the core of the AO-corrected transfer function. Results of this program from the Palomar and Keck adaptive optical systems are presented.

  9. Driver Code for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Rao, Shanti

    2007-01-01

    A special-purpose computer code for a deformable-mirror adaptive-optics control system transmits pixel-registered control from (1) a personal computer running software that generates the control data to (2) a circuit board with 128 digital-to-analog converters (DACs) that generate voltages to drive the deformable-mirror actuators. This program reads control-voltage codes from a text file, then sends them, via the computer s parallel port, to a circuit board with four AD5535 (or equivalent) chips. Whereas a similar prior computer program was capable of transmitting data to only one chip at a time, this program can send data to four chips simultaneously. This program is in the form of C-language code that can be compiled and linked into an adaptive-optics software system. The program as supplied includes source code for integration into the adaptive-optics software, documentation, and a component that provides a demonstration of loading DAC codes from a text file. On a standard Windows desktop computer, the software can update 128 channels in 10 ms. On Real-Time Linux with a digital I/O card, the software can update 1024 channels (8 boards in parallel) every 8 ms.

  10. Acousto-Optic Adaptive Processing (AOAP).

    DTIC Science & Technology

    1983-12-01

    I ~.sls Phe Report December 1963 •- ACOUSTO - OPTIC ADAPTIVE <PROCESSING (AOAP) General Electric Company W. A. Penn, D. R. Morgan, A. Aridgides and M. L...numnber) Optical signal processing Acousto - optical modulators Adaptive signal processing - Adaptive sidelobe cancellation 20. ABSTRACT (Contnue an...required operations of multiplication and time delay are provided by acousto - optical (AO) delay lines. The required time integraticO is provided by

  11. Test Target for Adaptive Optics.

    DTIC Science & Technology

    adaptive optics comprising, in the preferred embodiment, a plurality of nine adjacent, stacked, and aligned rows of a multiplicity of alternate opaque sections and transparent sections in a repeating bar pattern, with all sections being positioned on a flat transparent medium (such as film or glass), and with each opaque section being an opaque bar and with each transparent section being a transparent bar. Each row has a different spatial frequency than any other of the nine rows, with the spatial frequency of any one row being of a different multiple of the row having the

  12. The ERIS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Fedrigo, Enrico; Le Louarn, Miska; Madec, Pierre-Yves; Soenke, Christian; Brast, Roland; Conzelmann, Ralf; Delabre, Bernard; Duchateau, Michel; Frank, Christoph; Klein, Barbara; Amico, Paola; Hubin, Norbert; Esposito, Simone; Antichi, Jacopo; Carbonaro, Luca; Puglisi, Alfio; Quirós-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the new Adaptive Optics based instrument for ESO's VLT aiming at replacing NACO and SINFONI to form a single compact facility with AO fed imaging and integral field unit spectroscopic scientific channels. ERIS completes the instrument suite at the VLT adaptive telescope. In particular it is equipped with a versatile AO system that delivers up to 95% Strehl correction in K band for science observations up to 5 micron It comprises high order NGS and LGS correction enabling the observation from exoplanets to distant galaxies with a large sky coverage thanks to the coupling of the LGS WFS with the high sensitivity of its visible WFS and the capability to observe in dust embedded environment thanks to its IR low order WFS. ERIS will be installed at the Cassegrain focus of the VLT unit hosting the Adaptive Optics Facility (AOF). The wavefront correction is provided by the AOF deformable secondary mirror while the Laser Guide Star is provided by one of the four launch units of the 4 Laser Guide Star Facility for the AOF. The overall layout of the ERIS AO system is extremely compact and highly optimized: the SPIFFI spectrograph is fed directly by the Cassegrain focus and both the NIX's (IR imager) and SPIFFI's entrance windows work as visible/infrared dichroics. In this paper we describe the concept of the ERIS AO system in detail, starting from the requirements and going through the estimated performance, the opto-mechanical design and the Real-Time Computer design.

  13. ERIS adaptive optics system design

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Le Louarn, Miska; Soenke, Christian; Fedrigo, Enrico; Madec, Pierre-Yves; Hubin, Norbert

    2012-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation instrument planned for the Very Large Telescope (VLT) and the Adaptive Optics facility (AOF). It is an AO assisted instrument that will make use of the Deformable Secondary Mirror and the new Laser Guide Star Facility (4LGSF), and it is planned for the Cassegrain focus of the telescope UT4. The project is currently in its Phase A awaiting for approval to continue to the next phases. The Adaptive Optics system of ERIS will include two wavefront sensors (WFS) to maximize the coverage of the proposed sciences cases. The first is a high order 40x40 Pyramid WFS (PWFS) for on axis Natural Guide Star (NGS) observations. The second is a high order 40x40 Shack-Hartmann WFS for single Laser Guide Stars (LGS) observations. The PWFS, with appropriate sub-aperture binning, will serve also as low order NGS WFS in support to the LGS mode with a field of view patrolling capability of 2 arcmin diameter. Both WFSs will be equipped with the very low read-out noise CCD220 based camera developed for the AOF. The real-time reconstruction and control is provided by a SPARTA real-time platform adapted to support both WFS modes. In this paper we will present the ERIS AO system in all its main aspects: opto-mechanical design, real-time computer design, control and calibrations strategy. Particular emphasis will be given to the system performance obtained via dedicated numerical simulations.

  14. Further Studies on Nonlinear Adaptive Optics,

    DTIC Science & Technology

    1981-04-01

    AD-A9 167 SCIENCE APPLICATIONS INC LA JOLLA CA F/9 20/6 A-A*9 16 FURTHER STUDIES ON NONLINEAR ADAPTIVE OPTICS , 1W _ ASFE APR SI A ELCI. J1 NAGEL. D...FURTHER STUDIES ON NONLINEAR ADAPTIVE OPTICS Apr 8l 7 Submitted to: Director of Physics Air Force Office of Scientific Research ATTN: NP Bldg. 410...1 I STATEMENT OF WORK ...... .. .................... I-I II NONLINEAR ADAPTIVE OPTICS SUMMARY

  15. Keck adaptive optics: control subsystem

    SciTech Connect

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval for the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.

  16. Adaptive optics research at Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Greenwood, Darryl P.; Primmerman, Charles A.

    A development history is presented for adaptive-optics methods of optical aberration measurement and correction in real time, which are applicable to the thermal blooming of high-energy laser beams, the compensation of a laser beam propagating from ground to space, and compensation by means of a synthetic beacon. Attention is given to schematics of the various adaptive optics system types, which cover the cases of cooperative and uncooperative targets. Representative research projects encompassed by the high-energy propagation range in West Palm Beach are the 'Everlaser' instrumented target vehicle, the OCULAR multidither system installation, and the Atmospheric Compensation Experiment Adaptive Optics System.

  17. A holistic strategy for adaptive land management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adaptive management is widely applied to natural resources management. Adaptive management can be generally defined as an iterative decision-making process that incorporates formulation of management objectives, actions designed to address these objectives, monitoring of results, and repeated adapta...

  18. Adaptive optics imaging of the retina

    PubMed Central

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha

    2014-01-01

    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified. PMID:24492503

  19. Adaptive optics imaging of the retina.

    PubMed

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha

    2014-01-01

    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified.

  20. Hydropower, Adaptive Management, and Biodiversity

    PubMed

    WIERINGA; MORTON

    1996-11-01

    / Adaptive management is a policy framework within which an iterative process of decision making is followed based on the observed responses to and effectiveness of previous decisions. The use of adaptive management allows science-based research and monitoring of natural resource and ecological community responses, in conjunction with societal values and goals, to guide decisions concerning man's activities. The adaptive management process has been proposed for application to hydropower operations at Glen Canyon Dam on the Colorado River, a situation that requires complex balancing of natural resources requirements and competing human uses. This example is representative of the general increase in public interest in the operation of hydropower facilities and possible effects on downstream natural resources and of the growing conflicts between uses and users of river-based resources. This paper describes the adaptive management process, using the Glen Canyon Dam example, and discusses ways to make the process work effectively in managing downstream natural resources and biodiversity. KEY WORDS: Adaptive management; Biodiversity; Hydropower; Glen Canyon Dam; Ecology

  1. Binocular adaptive optics visual simulator.

    PubMed

    Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo

    2009-09-01

    A binocular adaptive optics visual simulator is presented. The instrument allows for measuring and manipulating ocular aberrations of the two eyes simultaneously, while the subject performs visual testing under binocular vision. An important feature of the apparatus consists on the use of a single correcting device and wavefront sensor. Aberrations are controlled by means of a liquid-crystal-on-silicon spatial light modulator, where the two pupils of the subject are projected. Aberrations from the two eyes are measured with a single Hartmann-Shack sensor. As an example of the potential of the apparatus for the study of the impact of the eye's aberrations on binocular vision, results of contrast sensitivity after addition of spherical aberration are presented for one subject. Different binocular combinations of spherical aberration were explored. Results suggest complex binocular interactions in the presence of monochromatic aberrations. The technique and the instrument might contribute to the better understanding of binocular vision and to the search for optimized ophthalmic corrections.

  2. Progress on the VLT Adaptive Optics Facility

    NASA Astrophysics Data System (ADS)

    Arsenault, R.; Madec, P.-Y.; Paufique, J.; Ströbele, S.; Pirard, J.-F.; Vernet, É.; Hackenberg, W.; Hubin, N.; Jochum, L.; Kuntschner, H.; Glindemann, A.; Amico, P.; Lelouarn, M.; Kolb, J.; Tordo, S.; Donaldson, R.; Sã¶Nke, C.; Bonaccini Calia, D.; Conzelmann, R.; Delabre, B.; Kiekebusch, M.; Duhoux, P.; Guidolin, I.; Quattri, M.; Guzman, R.; Buzzoni, B.; Comin, M.; Dupuy, C.; Quentin, J.; Lizon, J.-L.; Silber, A.; Jolly, P.; Manescau, A.; Hammersley, P.; Reyes, J.; Jost, A.; Duchateau, M.; Heinz, V.; Bechet, C.; Stuik, R.

    2010-12-01

    The Very Large Telescope (VLT) Adaptive Optics Facility is a project that will transform one of the VLT's Unit Telescopes into an adaptive telescope that includes a deformable mirror in its optical train. For this purpose the secondary mirror is to be replaced by a thin shell deformable mirror; it will be possible to launch four laser guide stars from the centrepiece and two adaptive optics modules are being developed to feed the instruments HAWK-I and MUSE. These modules implement innovative correction modes for seeing improvement through ground layer adaptive optics and, for high Strehl ratio performance, laser tomography adaptive correction. The performance of these modes will be tested in Europe with a custom test bench called ASSIST. The project has completed its final design phase and concluded an intense phase of procurement; the year 2011 will see the beginning of assembly, integration and tests.

  3. Adaptive optics program at TMT

    NASA Astrophysics Data System (ADS)

    Boyer, C.; Adkins, Sean; Andersen, David R.; Atwood, Jenny; Bo, Yong; Byrnes, Peter; Caputa, Kris; Cavaco, Jeff; Ellerbroek, Brent; Gilles, Luc; Gregory, James; Herriot, Glen; Hickson, Paul; Ljusic, Zoran; Manter, Darren; Marois, Christian; Otárola, Angel; Pagès, Hubert; Schoeck, Matthias; Sinquin, Jean-Christophe; Smith, Malcolm; Spano, Paolo; Szeto, Kei; Tang, Jinlong; Travouillon, Tony; Véran, Jean-Pierre; Wang, Lianqi; Wei, Kai

    2014-07-01

    The TMT first light Adaptive Optics (AO) facility consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). NFIRAOS is a 60 × 60 laser guide star (LGS) multi-conjugate AO (MCAO) system, which provides uniform, diffraction-limited performance in the J, H, and K bands over 17-30 arc sec diameter fields with 50 per cent sky coverage at the galactic pole, as required to support the TMT science cases. NFIRAOS includes two deformable mirrors, six laser guide star wavefront sensors, and three low-order, infrared, natural guide star wavefront sensors within each client instrument. The first light LGSF system includes six sodium lasers required to generate the NFIRAOS laser guide stars. In this paper, we will provide an update on the progress in designing, modeling and validating the TMT first light AO systems and their components over the last two years. This will include pre-final design and prototyping activities for NFIRAOS, preliminary design and prototyping activities for the LGSF, design and prototyping for the deformable mirrors, fabrication and tests for the visible detectors, benchmarking and comparison of different algorithms and processing architecture for the Real Time Controller (RTC) and development and tests of prototype candidate lasers. Comprehensive and detailed AO modeling is continuing to support the design and development of the first light AO facility. Main modeling topics studied during the last two years include further studies in the area of wavefront error budget, sky coverage, high precision astrometry for the galactic center and other observations, high contrast imaging with NFIRAOS and its first light instruments, Point Spread Function (PSF) reconstruction for LGS MCAO, LGS photon return and sophisticated low order mode temporal filtering.

  4. Adaptive optical interconnects: the ADDAPT project

    NASA Astrophysics Data System (ADS)

    Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter

    2015-09-01

    Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.

  5. Adaptive management of urban watersheds

    NASA Astrophysics Data System (ADS)

    Garmestani, A.; Shuster, W.; Green, O. O.

    2013-12-01

    Consent decree settlements for violations of the Clean Water Act (1972) increasingly include provisions for redress of combined sewer overflow activity through hybrid approaches that incorporate the best of both gray (e.g., storage tunnels) and green infrastructure (e.g., rain gardens). Adaptive management is an environmental management strategy that uses an iterative process of decision-making to improve environmental management via system monitoring. A central tenet of adaptive management is that management involves a learning process that can help regulated communities achieve environmental quality objectives. We are using an adaptive management approach to guide a green infrastructure retrofit of a neighborhood in the Slavic Village Development Corporation area (Cleveland, Ohio). We are in the process of gathering hydrologic and ecosystem services data and will use this data as a basis for collaboration with area citizens on a plan to use green infrastructure to contain stormflows. Monitoring data provides researchers with feedback on the impact of green infrastructure implementation and suggest where improvements can be made.

  6. Adaptive-optics performance of Antarctic telescopes.

    PubMed

    Lawrence, Jon S

    2004-02-20

    The performance of natural guide star adaptive-optics systems for telescopes located on the Antarctic plateau is evaluated and compared with adaptive-optics systems operated with the characteristic mid-latitude atmosphere found at Mauna Kea. A 2-m telescope with tip-tilt correction and an 8-m telescope equipped with a high-order adaptive-optics system are considered. Because of the large isoplanatic angle of the South Pole atmosphere, the anisoplanatic error associated with an adaptive-optics correction is negligible, and the achievable resolution is determined only by the fitting error associated with the number of corrected wave-front modes, which depends on the number of actuators on the deformable mirror. The usable field of view of an adaptive-optics equipped Antarctic telescope is thus orders of magnitude larger than for a similar telescope located at a mid-latitude site; this large field of view obviates the necessity for multiconjugate adaptive-optics systems that use multiple laser guide stars. These results, combined with the low infrared sky backgrounds, indicate that the Antarctic plateau is the best site on Earth at which to perform high-resolution imaging with large telescopes, either over large fields of view or with appreciable sky coverage. Preliminary site-testing results obtained recently from the Dome Concordia station indicate that this site is far superior to even the South Pole.

  7. Small scale adaptive optics experiment systems engineering

    NASA Technical Reports Server (NTRS)

    Boykin, William H.

    1993-01-01

    Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.

  8. Optical Profilometers Using Adaptive Signal Processing

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Youngquist, Robert; Mikhael, Wasfy

    2006-01-01

    A method of adaptive signal processing has been proposed as the basis of a new generation of interferometric optical profilometers for measuring surfaces. The proposed profilometers would be portable, hand-held units. Sizes could be thus reduced because the adaptive-signal-processing method would make it possible to substitute lower-power coherent light sources (e.g., laser diodes) for white light sources and would eliminate the need for most of the optical components of current white-light profilometers. The adaptive-signal-processing method would make it possible to attain scanning ranges of the order of decimeters in the proposed profilometers.

  9. Toward Adaptive Optic Mitigation of Aero-Optic Effects

    DTIC Science & Technology

    2009-02-27

    photography .[43] Tyson developed expressions for the "gain" of a deformable mirror removing Zernike modes within an aperture. [35] The following...R.K., Principles of Adaptive Optics, Academic Press, Inc., San Diego, 1991. 9. Tyson, R.K., The status of astronomical adaptive optics systems...pin-hole photography The London, Edinburg and Dublin philosophical magazine and journal of science 31 87-99 44. Siegenthaler, J., Guidelines for

  10. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead

  11. Multimodel inference and adaptive management

    USGS Publications Warehouse

    Rehme, S.E.; Powell, L.A.; Allen, C.R.

    2011-01-01

    Ecology is an inherently complex science coping with correlated variables, nonlinear interactions and multiple scales of pattern and process, making it difficult for experiments to result in clear, strong inference. Natural resource managers, policy makers, and stakeholders rely on science to provide timely and accurate management recommendations. However, the time necessary to untangle the complexities of interactions within ecosystems is often far greater than the time available to make management decisions. One method of coping with this problem is multimodel inference. Multimodel inference assesses uncertainty by calculating likelihoods among multiple competing hypotheses, but multimodel inference results are often equivocal. Despite this, there may be pressure for ecologists to provide management recommendations regardless of the strength of their study’s inference. We reviewed papers in the Journal of Wildlife Management (JWM) and the journal Conservation Biology (CB) to quantify the prevalence of multimodel inference approaches, the resulting inference (weak versus strong), and how authors dealt with the uncertainty. Thirty-eight percent and 14%, respectively, of articles in the JWM and CB used multimodel inference approaches. Strong inference was rarely observed, with only 7% of JWM and 20% of CB articles resulting in strong inference. We found the majority of weak inference papers in both journals (59%) gave specific management recommendations. Model selection uncertainty was ignored in most recommendations for management. We suggest that adaptive management is an ideal method to resolve uncertainty when research results in weak inference.

  12. Liquid lens: advances in adaptive optics

    NASA Astrophysics Data System (ADS)

    Casey, Shawn Patrick

    2010-12-01

    'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.

  13. Adaptive Optics at Lawrence Livermore National Laboratory

    SciTech Connect

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media and must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.

  14. Robust Wiener filtering for Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2004-06-17

    In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.

  15. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  16. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  17. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  18. Adaptive Optics Applications in Vision Science

    SciTech Connect

    Olivier, S S

    2003-03-17

    Adaptive optics can be used to correct the aberrations in the human eye caused by imperfections in the cornea and the lens and thereby, improve image quality both looking into and out of the eye. Under the auspices of the NSF Center for Adaptive Optics and the DOE Biomedical Engineering Program, Lawrence Livermore National Laboratory has joined together with leading vision science researchers around the country to develop and test new ophthalmic imaging systems using novel wavefront corrector technologies. Results of preliminary comparative evaluations of these technologies in initial system tests show promise for future clinical utility.

  19. Adaptive optics requirements definition for TMT

    NASA Astrophysics Data System (ADS)

    Dekany, Richard G.; Britton, Matthew C.; Gavel, Don T.; Ellerbroek, Brent L.; Herriot, Glen; Max, Claire E.; Veran, Jean-Pierre

    2004-10-01

    The scientific return on adaptive optics on large telescopes has generated a new vocabulary of different adaptive optics (AO) modalities. Multiobject AO (MOAO), multiconjugate AO (MCAO), ground-layer AO (GLAO), and extreme contrast AO (ExAO) each require complex new extensions in functional requirements beyond the experience gained with systems operational on large telescopes today. Because of this potential for increased complexity, a more formal requirements development process is recommended. We describe a methodology for requirements definition under consideration and summarize the current scientific prioritization of TMT AO capabilities.

  20. Adaptive management of watersheds and related resources

    USGS Publications Warehouse

    Williams, Byron K.

    2009-01-01

    The concept of learning about natural resources through the practice of management has been around for several decades and by now is associated with the term adaptive management. The objectives of this paper are to offer a framework for adaptive management that includes an operational definition, a description of conditions in which it can be usefully applied, and a systematic approach to its application. Adaptive decisionmaking is described as iterative, learning-based management in two phases, each with its own mechanisms for feedback and adaptation. The linkages between traditional experimental science and adaptive management are discussed.

  1. Adaptive optical antennas: design and evaluation

    NASA Astrophysics Data System (ADS)

    Weyrauch, Thomas; Vorontsov, Mikhail A.; Carhart, Gary W.; Simonova, Galina V.; Beresnev, Leonid A.; Polnau, Ernst E.

    2007-09-01

    We present the design and evaluation of compact adaptive optical antennas with apertures diameters of 16 mm and 100 mm for 5Gbit/s-class free-space optical communication systems. The antennas provide a bi-directional optically transparent link between fiber-optical wavelength-division multiplex systems and allow for mitigation of atmospheric-turbulence induced wavefront phase distortions with adaptive optics components. Beam steering is implemented in the antennas either with mirrors on novel tip/tilt platforms or a fiber-tip positioning system, both enabling operation bandwidths of more than 1 kHz. Bimorph piezoelectric actuated deformable mirrors are used for low-order phase-distortion compensation. An imaging system is integrated in the antennas for coarse pointing and tracking. Beam steering and wavefront control is based on blind maximization of the received signal level using a stochastic parallel gradient descent algorithm. The adaptive optics control architecture allowed the use of feedback signals provided locally within each transceiver system and remotely by the opposite transceiver system via an RF link. First atmospheric compensation results from communication experiments over a 250 m near-ground propagation path are presented.

  2. Pulse front control with adaptive optics

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  3. Implementations of adaptive associative optical computing elements

    NASA Astrophysics Data System (ADS)

    Fisher, Arthur D.; Lee, John N.; Fukuda, Robert C.

    1986-01-01

    The present optical implementations for heteroassociative memory modules, which are capable of real time adaptive learning, are pertinent to the eventual construction of large, multimodule associative/neural network architectures that can consider problems in the acquisition, transformation, matching/recognition, and manipulation of large amounts of data in parallel. These modules offer such performance features as convergence to the least-squares-optimum pseudoinverse association, accumulative and gated learning, forgetfulness of unused associations, resistance to dynamic-range saturation, and compensation of optical system aberrations. Optics uniquely furnish the massive parallel interconnection paths required to cascade and interconnect a number of modules to form the more sophisticated multiple module architectures.

  4. Adaptive Optics at the World’s Biggest Optical Telescope

    DTIC Science & Technology

    2010-09-01

    bottom up. The reflective, and deformable, component of each of the LBT’s mirrors is a concave Zerodur shell, 1.6 mm in average thickness and 911 mm in...Physik, 85748 Garching, Germany ABSTRACT The Large Binocular Telescope (LBT) on Mt. Graham, Arizona, comprises two 8.4 m primary mirrors on a...adaptive optics (AO) was incorporated into the design through two adaptive secondary mirrors (ASM), each 91 cm in diameter with 672 actuators, which feed

  5. Free Space Optical Communications Utilizing MEMS Adaptive Optics Correction

    SciTech Connect

    Thompson, C A; Kartz, M W; Flath, L M; Wilks, S C; Young, R A; Johnson, G W; Ruggiero, A J

    2002-07-09

    Free space optical communications (FSO) are beginning to provide attractive alternatives to fiber-based solutions in many situations. Currently, a handful of companies provide fiberless alternatives specifically aimed at corporate intranet and sporting event video applications. These solutions are geared toward solving the ''last mile'' connectivity issues. There exists a potential need to extend this pathlength to distances much greater than a 1 km, particularly for government and military applications. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method to improve signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal and slant path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors, as well as improved communication and computational components.

  6. Demonstration of portable solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Dong, Bing

    2012-10-01

    Solar-adaptive optics (AO) are more challenging than night-time AO, in some aspects. A portable solar adaptive optics (PSAO) system featuring compact physical size, low cost, and good performance has been proposed and developed. PSAO can serve as a visiting instrument for any existing ground-based solar telescope to improve solar image quality by replacing just a few optical components. High-level programming language, LabVIEW, is used to develop the wavefront sensing and control software, and general purpose computers are used to drive the whole system. During October 2011, the feasibility and good performance of PSAO was demonstrated with the 61-cm solar telescope at San Fernando Observatory. The image contrast and resolution are noticeably improved after AO correction.

  7. A holistic strategy for adaptive land management

    USGS Publications Warehouse

    Herrick, Jeffrey E.; Duniway, Michael C.; Pyke, David A.; Bestelmeyer, Brandon T.; Wills, Skye A.; Brown, Joel R.; Karl, Jason W.; Havstad, Kris M.

    2012-01-01

    Adaptive management is widely applied to natural resources management (Holling 1973; Walters and Holling 1990). Adaptive management can be generally defined as an iterative decision-making process that incorporates formulation of management objectives, actions designed to address these objectives, monitoring of results, and repeated adaptation of management until desired results are achieved (Brown and MacLeod 1996; Savory and Butterfield 1999). However, adaptive management is often criticized because very few projects ever complete more than one cycle, resulting in little adaptation and little knowledge gain (Lee 1999; Walters 2007). One significant criticism is that adaptive management is often used as a justification for undertaking actions with uncertain outcomes or as a surrogate for the development of specific, measurable indicators and monitoring programs (Lee 1999; Ruhl 2007).

  8. Melanoma associated retinopathy: A new dimension using adaptive optics.

    PubMed

    Dabir, Supriya; Mangalesh, Shwetha; Govindraj, Indu; Mallipatna, Ashwin; Battu, Rajani; Shetty, Rohit

    2015-01-01

    We report a 56-year-old male patient, complaining of metamorphopsia in his left eye nevertheless visual acuity, slit lamp, and fundus examinations were within normal limits. Microperimetry (MAIA, Centervue, Italy) revealed central field loss and spectral domain optical coherence tomography (Spectralis, Heidelberg, Germany) showed disrupted cone outer segment tip layer. The patient had a diagnosis of cutaneous melanoma in his foot for which an excision biopsy with lymph node dissection was performed 5 months earlier. Our clinical diagnosis was melanoma-associated retinopathy. Electrophysiology confirmed the diagnosis. Adaptive optics retinal imaging (Imagine eyes, Orsay) was performed to assess the cone mosaic integrity across the central retina. This is the first report on the investigation of autoimmune retinopathy using adaptive optics ophthalmoscopy. This case highlights the viability of innovative diagnostic modalities that aid early detection and subsequent management of vision threatening retinal.

  9. Adaptive holography for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Residori, S.; Bortolozzo, U.; Peigné, A.; Molin, S.; Nouchi, P.; Dolfi, D.; Huignard, J. P.

    2016-03-01

    Adaptive holography is a promising method for high sensitivity phase modulation measurements in the presence of slow perturbations from the environment. The technique is based on the use of a nonlinear recombining medium, here an optically addressed spatial light modulator specifically realized to operate at 1.55 μm. Owing to the physical mechanisms involved, the interferometer adapts to slow phase variations within a range of 5-10 Hz, thus filtering out low frequency noise while transmitting higher frequency phase modulations. We present the basic principles of the adaptive interferometer and show that it can be used in association with a sensing fiber in order to detect phase modulations. Finally, a phase-OTDR architecture using the adaptive holographic interferometer is presented and shown to allows the detection of localized perturbations along the sensing fiber.

  10. Development of large aperture composite adaptive optics

    NASA Astrophysics Data System (ADS)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  11. Adaptive optics assisted reconfigurable liquid-driven optical switch

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Huang, Wei-Chi

    2013-07-01

    This study demonstrates a mechanical-based, liquid-driven optical switch integrated with adaptive optics and a reconfigurable black liquid (dye-doped liquid). The device aperture can be continuously tuned between 0.6 and 6.9 mm, precisely achieved by a syringe pump for volume control. Adaptive optics (AO) capability and possible enhancement of the lost power intensity of the ink-polluted glass plate have also been experimentally investigated. While measuring power intensity with/without AO indicates only a marginal difference of ˜1%, a significant difference of 3 s in the response characteristic of "switching on" time can be observed. An extremely high contrast ratio of ˜105 for a red-colored light is achieved.

  12. Applications of Adaptive Optics Scanning Laser Ophthalmoscopy

    PubMed Central

    Roorda, Austin

    2010-01-01

    Adaptive optics (AO) describes a set of tools to correct or control aberrations in any optical system. In the eye, AO allows for precise control of the ocular aberrations. If used to correct aberrations over a large pupil, for example, cellular level resolution in retinal images can be achieved. AO systems have been demonstrated for advanced ophthalmoscopy as well as for testing and/or improving vision. In fact, AO can be integrated to any ophthalmic instrument where the optics of the eye is involved, with a scope of applications ranging from phoropters to optical coherence tomography systems. In this paper, I discuss the applications and advantages of using AO in a specific system, the adaptive optics scanning laser ophthalmoscope, or AOSLO. Since the Borish award was, in part, awarded to me because of this effort, I felt it appropriate to select this as the topic for this paper. Furthermore, users of AOSLO continue to appreciate the benefits of the technology, some of which were not anticipated at the time of development, and so it is time to revisit this topic and summarize them in a single paper. PMID:20160657

  13. Lens based adaptive optics scanning laser ophthalmoscope.

    PubMed

    Felberer, Franz; Kroisamer, Julia-Sophie; Hitzenberger, Christoph K; Pircher, Michael

    2012-07-30

    We present an alternative approach for an adaptive optics scanning laser ophthalmoscope (AO-SLO). In contrast to other commonly used AO-SLO instruments, the imaging optics consist of lenses. Images of the fovea region of 5 healthy volunteers are recorded. The system is capable to resolve human foveal cones in 3 out of 5 healthy volunteers. Additionally, we investigated the capability of the system to support larger scanning angles (up to 5°) on the retina. Finally, in order to demonstrate the performance of the instrument images of rod photoreceptors are presented.

  14. [Technical principles of adaptive optics in ophthalmology].

    PubMed

    Reiniger, J L; Domdei, N; Holz, F G; Harmening, W M

    2017-03-01

    During the last 25 years ophthalmic imaging has undergone a revolution. This review gives an overview of the possibilities of adaptive optics (AO) for ophthalmic imaging technologies and their development and illustrates that the role of ophthalmic imaging changed from the documentation of obvious abnormalities to the detection of microscopic yet significant conspicuities. This enables earlier and more precise diagnoses. The implementation of AO for imaging systems like fundus cameras, scanning laser ophthalmoscopy and optical coherence tomography has gained in importance. In recent years a couple of companies started developing commercially available AO systems, thus, indicating a future use in clinical routine.

  15. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1997-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1 sec. The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have been using adaptive optics (AO) on a 4-m class telescope to obtain 0.1 sec resolution images solar system objects at far red and near infrared wavelengths (0.7-2.5 micron) which best discriminate their spectral signatures. Our efforts has been put into areas of research for which high angular resolution is essential, such as the mapping of Titan and of large asteroids, the dynamics and composition of Neptune stratospheric clouds, the infrared photometry of Pluto, Charon, and close satellites previously undetected from the ground.

  16. Adaptive optics without guide stars (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mertz, Jerome; Li, Jiang; Beaulieu, Devin; Paudel, Hari P.; Barankov, Roman; Bifano, Thomas G.

    2016-03-01

    Adaptive optics is a strategy to compensate for sample-induced aberrations in microscopy applications. Generally, it requires the presence of "guide stars" in the sample to serve as localized reference targets. We describe an implementation of conjugate adaptive optics that is amenable to widefield (i.e. non-scanning) microscopy, and can provide aberration corrections over potentially large fields of view without the use of guide stars. A unique feature of our implementation is that it is based on wavefront sensing with a single-shot partitioned-aperture sensor that provides large dynamic range compatible with extended samples. Combined information provided by this sensor and the imaging camera enable robust image de-blurring based on a rapid estimation of sample and aberrations obtained by closed-loop feedback. We present the theoretical principle of our technique and experimental demonstrations using both trans-illumination and fluorescence microscopes. Finally, we apply our technique to mouse brain imaging.

  17. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  18. High-efficiency Autonomous Laser Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A. N.; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2014-07-01

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  19. Geometric view of adaptive optics control

    NASA Astrophysics Data System (ADS)

    Wiberg, Donald M.; Max, Claire E.; Gavel, Donald T.

    2005-05-01

    The objective of an astronomical adaptive optics control system is to minimize the residual wave-front error remaining on the science-object wave fronts after being compensated for atmospheric turbulence and telescope aberrations. Minimizing the mean square wave-front residual maximizes the Strehl ratio and the encircled energy in pointlike images and maximizes the contrast and resolution of extended images. We prove the separation principle of optimal control for application to adaptive optics so as to minimize the mean square wave-front residual. This shows that the residual wave-front error attributable to the control system can be decomposed into three independent terms that can be treated separately in design. The first term depends on the geometry of the wave-front sensor(s), the second term depends on the geometry of the deformable mirror(s), and the third term is a stochastic term that depends on the signal-to-noise ratio. The geometric view comes from understanding that the underlying quantity of interest, the wave-front phase surface, is really an infinite-dimensional vector within a Hilbert space and that this vector space is projected into subspaces we can control and measure by the deformable mirrors and wave-front sensors, respectively. When the control and estimation algorithms are optimal, the residual wave front is in a subspace that is the union of subspaces orthogonal to both of these projections. The method is general in that it applies both to conventional (on-axis, ground-layer conjugate) adaptive optics architectures and to more complicated multi-guide-star- and multiconjugate-layer architectures envisaged for future giant telescopes. We illustrate the approach by using a simple example that has been worked out previously [J. Opt. Soc. Am. A73, 1171 (1983)] for a single-conjugate, static atmosphere case and follow up with a discussion of how it is extendable to general adaptive optics architectures.

  20. Extragalactic Fields Optimized for Adaptive Optics

    DTIC Science & Technology

    2011-03-01

    observatories (including those on Mauna Kea ). Before proceeding with a detailed analysis, it is instructive to note that many positions in the sky likely...4Gemini Observatory , Southern Operations Center, c/o AURA, Casilla 603,La Serena, Chile. sObservatories of the Carnegie Institution of Washington...United States Naval Observatory , 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420. 348 galaxies in these fields require adaptive optics (AO

  1. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  2. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  3. Robotic visible-light laser adaptive optics

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas; Ramaprakash, A. N.; Tendulkar, Shriharsh; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2013-12-01

    Robo-AO is the first autonomous laser adaptive optics system and science instrument operating on sky. With minimal human oversight, the system robotically executes large scale surveys, monitors long-term astrophysical dynamics and characterizes newly discovered transients, all at the visible diffraction limit. The adaptive optics setup time, from the end of the telescope slew to the beginning of an observation, is a mere ~50-60 s, enabling over 200 observations per night. The first of many envisioned systems has finished 58 nights of science observing at the Palomar Observatory 60-inch (1.5 m) telescope, with over 6,400 robotic observations executed thus far. The system will be augmented in late 2013 with a low-noise wide field infrared camera, which doubles as a tip-tilt sensor, to widen the spectral bandwidth of observations and increase available sky coverage while also enabling deeper visible imaging using adaptive-optics sharpened infrared tip-tilt guide sources. Techniques applicable to larger telescope systems will also be tested: the infrared camera will be used to demonstrate advanced multiple region-of-interest tip-tilt guiding methods, and a visitor instrument port will be used for evaluation of other instrumentation, e.g. single-mode and photonic fibers to feed compact spectrographs.

  4. Adaptive optics retinal imaging: emerging clinical applications.

    PubMed

    Godara, Pooja; Dubis, Adam M; Roorda, Austin; Duncan, Jacque L; Carroll, Joseph

    2010-12-01

    The human retina is a uniquely accessible tissue. Tools like scanning laser ophthalmoscopy and spectral domain-optical coherence tomography provide clinicians with remarkably clear pictures of the living retina. Although the anterior optics of the eye permit such non-invasive visualization of the retina and associated pathology, the same optics induce significant aberrations that obviate cellular-resolution imaging in most cases. Adaptive optics (AO) imaging systems use active optical elements to compensate for aberrations in the optical path between the object and the camera. When applied to the human eye, AO allows direct visualization of individual rod and cone photoreceptor cells, retinal pigment epithelium cells, and white blood cells. AO imaging has changed the way vision scientists and ophthalmologists see the retina, helping to clarify our understanding of retinal structure, function, and the etiology of various retinal pathologies. Here, we review some of the advances that were made possible with AO imaging of the human retina and discuss applications and future prospects for clinical imaging.

  5. Specialized wavefront sensors for adaptive optics

    NASA Astrophysics Data System (ADS)

    Neal, Daniel R.; Mansell, J. D.; Gruetzner, James K.; Morgan, R.; Warren, Mial E.

    1995-08-01

    The performance of an adaptive optical system is strongly dependent upon correctly measuring the wavefront of the arriving light. The most common wavefront measurement techniques used to date are the shearing interferometer and the Shack-Hartmann sensor. Shack-Hartmann sensors rely on the use of lenslet arrays to sample the aperture appropriately. These have traditionally been constructed using MLM or step and repeat technology, and more recently with binary optics technology. Diffractive optics fabrication methodology can be used to remove some of the limitations of the previous technologies and can allow for low-cost production of sophisticated elements. We have investigated several different specialized wavefront sensor configurations using both Shack-Hartmann and shearing interferometer principles. We have taken advantage of the arbitrary nature of these elements to match pupil shapes of detector and telescope aperture and to introduce magnification between the lenslet array and the detector. We have fabricated elements that facilitate matching the sampling to the current atmospheric conditions. The sensors were designed using a far-field diffraction model and a photolithography layout program. They were fabricated using photolithography and RIE etching. Several different designs are presented with some experimental results from a small-scale adaptive optics brass-board.

  6. Adaptive Management for a Turbulent Future

    USGS Publications Warehouse

    Allen, Craig R.; Fontaine, Joseph J.; Pope, Kevin L.; Garmestani, Ahjond S.

    2011-01-01

    The challenges that face humanity today differ from the past because as the scale of human influence has increased, our biggest challenges have become global in nature, and formerly local problems that could be addressed by shifting populations or switching resources, now aggregate (i.e., "scale up") limiting potential management options. Adaptive management is an approach to natural resource management that emphasizes learning through management based on the philosophy that knowledge is incomplete and much of what we think we know is actually wrong. Adaptive management has explicit structure, including careful elucidation of goals, identification of alternative management objectives and hypotheses of causation, and procedures for the collection of data followed by evaluation and reiteration. It is evident that adaptive management has matured, but it has also reached a crossroads. Practitioners and scientists have developed adaptive management and structured decision making techniques, and mathematicians have developed methods to reduce the uncertainties encountered in resource management, yet there continues to be misapplication of the method and misunderstanding of its purpose. Ironically, the confusion over the term "adaptive management" may stem from the flexibility inherent in the approach, which has resulted in multiple interpretations of "adaptive management" that fall along a continuum of complexity and a priori design. Adaptive management is not a panacea for the navigation of 'wicked problems' as it does not produce easy answers, and is only appropriate in a subset of natural resource management problems where both uncertainty and controllability are high. Nonetheless, the conceptual underpinnings of adaptive management are simple; there will always be inherent uncertainty and unpredictability in the dynamics and behavior of complex social-ecological systems, but management decisions must still be made, and whenever possible, we should incorporate

  7. Adaptive management for a turbulent future

    USGS Publications Warehouse

    Allen, C.R.; Fontaine, J.J.; Pope, K.L.; Garmestani, A.S.

    2011-01-01

    The challenges that face humanity today differ from the past because as the scale of human influence has increased, our biggest challenges have become global in nature, and formerly local problems that could be addressed by shifting populations or switching resources, now aggregate (i.e., "scale up") limiting potential management options. Adaptive management is an approach to natural resource management that emphasizes learning through management based on the philosophy that knowledge is incomplete and much of what we think we know is actually wrong. Adaptive management has explicit structure, including careful elucidation of goals, identification of alternative management objectives and hypotheses of causation, and procedures for the collection of data followed by evaluation and reiteration. It is evident that adaptive management has matured, but it has also reached a crossroads. Practitioners and scientists have developed adaptive management and structured decision making techniques, and mathematicians have developed methods to reduce the uncertainties encountered in resource management, yet there continues to be misapplication of the method and misunderstanding of its purpose. Ironically, the confusion over the term "adaptive management" may stem from the flexibility inherent in the approach, which has resulted in multiple interpretations of "adaptive management" that fall along a continuum of complexity and a priori design. Adaptive management is not a panacea for the navigation of 'wicked problems' as it does not produce easy answers, and is only appropriate in a subset of natural resource management problems where both uncertainty and controllability are high. Nonetheless, the conceptual underpinnings of adaptive management are simple; there will always be inherent uncertainty and unpredictability in the dynamics and behavior of complex social-ecological systems, but management decisions must still be made, and whenever possible, we should incorporate

  8. Adaptive optics on a shoe string

    NASA Astrophysics Data System (ADS)

    Restaino, Sergio R.; Payne, Don M.

    1998-12-01

    There are two main ways to mitigate the effects of atmospheric turbulence on an imaging system. A post factor approach, where data are opportunely acquired and processed in order to increase the overall resolution attainable by the optical system, speckle imaging is an example of such technique. The other approach is to use an adaptive optics system that will compensate for atmospheric effects before the data are recorded. Of course, the situation is not sharply distinct. Hybrid approaches have been proposed and demonstrated. Other approaches that are a mid-way between the two are also possible. The basic idea of static and dynamic pupil masking will be presented. Experimental results based on point sources and extended objects will be presented. Advantages and limitations of such technique will be discussed. Finally some new ideas involving fiber optics and liquid crystals will be presented.

  9. Hybrid adaptive-optics visual simulator.

    PubMed

    Cánovas, Carmen; Prieto, Pedro M; Manzanera, Silvestre; Mira, Alejandro; Artal, Pablo

    2010-01-15

    We have developed a hybrid adaptive-optics visual simulator (HAOVS), combining two different phase-manipulation technologies: an optically addressed liquid-crystal phase modulator, relatively slow but capable of producing abrupt or discontinuous phase profiles; and a membrane deformable mirror, restricted to smooth profiles but with a temporal response allowing compensation of the eye's aberration fluctuations. As proof of concept, a phase element structured as discontinuous radial sectors was objectively tested as a function of defocus, and a correction loop was closed in a real eye. To further illustrate the capabilities of the device for visual simulation, we recorded extended images of different stimuli through the system by means of an external camera replacing the subject's eye. The HAOVS is specially intended as a tool for developing new ophthalmic optics elements, where it opens the possibility to explore designs with irregularities and/or discontinuities.

  10. Electron density measurements for plasma adaptive optics

    NASA Astrophysics Data System (ADS)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  11. Optical Techniques for Space Environment Management

    NASA Astrophysics Data System (ADS)

    Greene, B.; Bennett, J.; Smith, C.

    2016-09-01

    The Space Environment Research Centre (SERC) is a fully-funded multi-national research collaboration for the management and mitigation of space debris using optical technologies. SERC is tasked with developing mitigation strategies for the many debris objects not amenable to space-based interventions. SERC research leverages very accurate information from a new optical space tracking network to develop viable near-term strategies to manage debris using only ground-based infrastructure. SERC has sufficient resources to conduct full-scale on-orbit testing of candidate approaches. We report on SERC progress in astrodynamics, precision catalogs, conjunction processing, adaptive optics and high power lasers as well as the architecture of the research effort.

  12. Adaptive optics scanning ophthalmoscopy with annular pupils.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2012-07-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections.

  13. Imaging Radio Galaxies with Adaptive Optics

    NASA Astrophysics Data System (ADS)

    de Vries, W. H.; van Breugel, W. J. M.; Quirrenbach, A.; Roberts, J.; Fidkowski, K.

    2000-12-01

    We present 42 milli-arcsecond resolution Adaptive Optics near-infrared images of 3C 452 and 3C 294, two powerful radio galaxies at z=0.081 and z=1.79 respectively, obtained with the NIRSPEC/SCAM+AO instrument on the Keck telescope. The observations provide unprecedented morphological detail of radio galaxy components like nuclear dust-lanes, off-centered or binary nuclei, and merger induced starforming structures; all of which are key features in understanding galaxy formation and the onset of powerful radio emission. Complementary optical HST imaging data are used to construct high resolution color images, which, for the first time, have matching optical and near-IR resolutions. Based on these maps, the extra-nuclear structural morphologies and compositions of both galaxies are discussed. Furthermore, detailed brightness profile analysis of 3C 452 allows a direct comparison to a large literature sample of nearby ellipticals, all of which have been observed in the optical and near-IR by HST. Both the imaging data and the profile information on 3C 452 are consistent with it being a relative diminutive and well-evolved elliptical, in stark contrast to 3C 294 which seems to be in its initial formation throes with an active AGN off-centered from the main body of the galaxy. These results are discussed further within the framework of radio galaxy triggering and the formation of massive ellipticals. The work of WdV and WvB was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. The work at UCSD has been supported by the NSF Science and Technology Center for Adaptive Optics, under agreement No. AST-98-76783.

  14. The Adaptive Optics Summer School Laboratory Activities

    NASA Astrophysics Data System (ADS)

    Ammons, S. M.; Severson, S.; Armstrong, J. D.; Crossfield, I.; Do, T.; Fitzgerald, M.; Harrington, D.; Hickenbotham, A.; Hunter, J.; Johnson, J.; Johnson, L.; Li, K.; Lu, J.; Maness, H.; Morzinski, K.; Norton, A.; Putnam, N.; Roorda, A.; Rossi, E.; Yelda, S.

    2010-12-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO systems as a research tool. The activities are divided into three stations: Vision Science, Fourier Optics, and the AO Demonstrator. We briefly overview these activities, which are described fully in other articles in these conference proceedings (Putnam et al., Do et al., and Harrington et al., respectively). We devote attention to the unique challenges encountered in the design of these activities, including the marriage of inquiry-like investigation techniques with complex content and the need to tune depth to a graduate- and PhD-level audience. According to before-after surveys conducted in 2008, the vast majority of participants found that all activities were valuable to their careers, although direct experience with integrated, functional AO systems was particularly beneficial.

  15. The CHARA Array Adaptive Optics Program

    NASA Astrophysics Data System (ADS)

    Ten Brummelaar, Theo; Che, Xiao; McAlister, Harold A.; Ireland, Michael; Monnier, John D.; Mourard, Denis; Ridgway, Stephen T.; sturmann, judit; Sturmann, Laszlo; Turner, Nils H.; Tuthill, Peter

    2016-01-01

    The CHARA array is an optical/near infrared interferometer consisting of six 1-meter diameter telescopes the longest baseline of which is 331 meters. With sub-millisecond angular resolution, the CHARA array is able to spatially resolve nearby stellar systems to reveal the detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011, and by NSF-MRI in 2015, for an upgrade of adaptive optics (AO) systems to all six telescopes. The initial grant covers Phase I of the adaptive optics system, which includes an on-telescope Wavefront Sensor and non-common-path (NCP) error correction. The WFS use a fairly standard Shack-Hartman design and will initially close the tip tilt servo and log wavefront errors for use in data reduction and calibration. The second grant provides the funding for deformable mirrors for each telescope which will be used closed loop to remove atmospheric aberrations from the beams. There are then over twenty reflections after the WFS at the telescopes that bring the light several hundred meters into the beam combining laboratory. Some of these, including the delay line and beam reducing optics, are powered elements, and some of them, in particular the delay lines and telescope Coude optics, are continually moving. This means that the NCP problems in an interferometer are much greater than those found in more standard telescope systems. A second, slow AO system is required in the laboratory to correct for these NCP errors. We will breifly describe the AO system, and it's current status, as well as discuss the new science enabled by the system with a focus on our YSO program.

  16. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    PubMed

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.].

  17. The ESO Adaptive Optics Facility under Test

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-François; Hackenberg, Wolfgang; Kuntschner, Harald; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Rob; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andrea; Duchateau, Michel; Downing, Mark; Moreno, Javier; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Max; Pfrommer, Thomas; Garcia-Rissmann, Aurea; Biasi, Roberto; Gallieni, Daniele; Stuik, Remko

    2013-12-01

    The Adaptive Optics Facility project has received most of its subsystems in Garching and the ESO Integration Hall has become the central operation location for the next phase of the project. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM will now undergo a series of tests on ASSIST to qualify its optical performance which launches the System Test Phase of the AOF. The tests will validate the AO modules operation with the DSM: first the GRAAL adaptive optics module for Hawk-I in natural guide star AO mode on-axis and then its Ground Layer AO mode. This will be followed by the GALACSI (for MUSE) Wide-Field-Mode (GLAO) and then the more challenging Narrow-Field-Mode (LTAO). We will report on the status of the subsystems at the time of the conference but also on the performance of the delivered ASSIST test bench, the DSM and the 20 Watt Sodium fiber Laser pre-production unit which has validated all specifications before final manufacturing of the serial units. We will also present some considerations and tools to ensure an efficient operation of the Facility in Paranal.

  18. Adaptive Optics for Ground-based Hypertelescopes

    NASA Astrophysics Data System (ADS)

    Labeyrie, Antoine; Borkowski, Virginie; Martinache, Franz; Arnold, Luc; Dejonghe, Julien; Riaud, Pierre; Lardière, Olivier; Gillet, Sophie

    Hypertelescopes, which may be considered as "exploded" versions of an OWL or other ELT, can in principle reach aperture sizes exceeding 1-10 kilometers. They utilize a multi-aperture diluted array and produce direct images through a densified exit pupil. Variants with a flat (the hypertelescope version of the Optical Very Large Array) or spherical (Arecibo-like CARLINA concept) site are studied. Adaptive optics is a major requirement for obtaining direct snapshot images at high resolution. Ways of adapting the Shack-Hartmann and curvature sensing methods for diluted apertures have been proposed. We explore the feasibility of applying 3D Fourier transforms to the dispersed images for extracting the path difference and phase information. With a spherical site, the numerous stars observable simultaneously at large angles can presumably help in the way of atmospheric tomography. Similar optics, equipped with a coronagraph, is proposed to NASA for the Terrestrial Planet Finder. The 3D Fourier transform algorithm also appears applicable in this case for fringe acquisition and π/100 phasing.

  19. Multifocal multiphoton microscopy with adaptive optical correction

    NASA Astrophysics Data System (ADS)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  20. Adaptive Quality of Transmission Control in Elastic Optical Network

    NASA Astrophysics Data System (ADS)

    Cai, Xinran

    Optical fiber communication is becoming increasingly important due to the burgeoning demand in the internet capacity. However, traditional wavelength division multiplexing (WDM) technique fails to address such demand because of its inefficient spectral utilization. As a result, elastic optical networking (EON) has been under extensive investigation recently. Such network allows sub-wavelength and super-wavelength channel accommodation, and mitigates the stranded bandwidth problem in the WDM network. In addition, elastic optical network is also able to dynamically allocate the spectral resources of the network based on channel conditions and impairments, and adaptively control the quality of transmission of a channel. This application requires two aspects to be investigated: an efficient optical performance monitoring scheme and networking control and management algorithms to reconfigure the network in a dynamic fashion. This thesis focuses on the two aspects discussed above about adaptive QoT control. We demonstrated a supervisory channel method for optical signal to noise ratio (OSNR) and chromatic dispersion (CD) monitoring. In addition, our proof-of-principle testbed experiments show successful impairment aware reconfiguration of the network with modulation format switching (MFS) only and MFS combined with lightpath rerouting (LR) for hundred-GHz QPSK superchannels undergoing time-varying OSNR impairment.

  1. Progress with the lick adaptive optics system

    SciTech Connect

    Gavel, D T; Olivier, S S; Bauman, B; Max, C E; Macintosh, B

    2000-03-01

    Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1-2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.

  2. Progress with the Lick adaptive optics system

    NASA Astrophysics Data System (ADS)

    Gavel, Donald T.; Olivier, Scot S.; Bauman, Brian J.; Max, Claire E.; Macintosh, Bruce A.

    2000-07-01

    Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1 - 2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.

  3. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    SciTech Connect

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  4. Adaptive optics and laser guide stars at Lick observatory

    SciTech Connect

    Brase, J.M.

    1994-11-15

    For the past several years LLNL has been developing adaptive optics systems for correction of both atmospheric turbulence effects and thermal distortions in optics for high-power lasers. Our early work focused on adaptive optics for beam control in laser isotope separation and ground-based free electron lasers. We are currently developing innovative adaptive optics and laser systems for sodium laser guide star applications at the University of California`s Lick and Keck Observeratories. This talk will describe our adaptive optics technology and some of its applications in high-resolution imaging and beam control.

  5. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    SciTech Connect

    Bauman, Brian J.

    2003-01-01

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro-electromechanical system (MEMS) to track the LGS light subaperture by

  6. Kalman filter based control for Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry

    2004-12-01

    Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.

  7. Performance of adaptive optics at Lick Observatory

    SciTech Connect

    Olivier, S.S.; An, J.; Avicola, K.

    1994-03-01

    A prototype adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use at Lick Observatory. This system is based on an ITEX 69-actuator continuous-surface deformable mirror, a Kodak fast-framing intensified CCD camera, and a Mercury VME board containing four Intel i860 processors. The system has been tested using natural reference stars on the 40-inch Nickel telescope at Lick Observatory yielding up to a factor of 10 increase in image peak intensity and a factor of 6 reduction in image full width at half maximum (FWHM). These results are consistent with theoretical expectations. In order to improve performance, the intensified CCD camera will be replaced by a high-quantum-efficiency low-noise fast CCD camera built for LLNL by Adaptive Optics Associates using a chip developed by Lincoln Laboratory, and the 69-actuator deformable mirror will be replaced by a 127-actuator deformable mirror developed at LLNL. With these upgrades, the system should perform well in median seeing conditions on the 120-inch Shane telescope for observing wavelengths longer than {approximately}1 {mu}m and using natural reference stars brighter than m{sub R} {approximately} 10 or using the laser currently being developed at LLNL for use at Lick Observatory to generate a sodium-layer reference star.

  8. Extreme Adaptive Optics Planet Imager: XAOPI

    SciTech Connect

    Macintosh, B A; Graham, J; Poyneer, L; Sommargren, G; Wilhelmsen, J; Gavel, D; Jones, S; Kalas, P; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Patience, J; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Troy, M; Wallace, K

    2003-09-17

    Ground based adaptive optics is a potentially powerful technique for direct imaging detection of extrasolar planets. Turbulence in the Earth's atmosphere imposes some fundamental limits, but the large size of ground-based telescopes compared to spacecraft can work to mitigate this. We are carrying out a design study for a dedicated ultra-high-contrast system, the eXtreme Adaptive Optics Planet Imager (XAOPI), which could be deployed on an 8-10m telescope in 2007. With a 4096-actuator MEMS deformable mirror it should achieve Strehl >0.9 in the near-IR. Using an innovative spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused by static errors. We predict that it will achieve contrast levels of 10{sup 7}-10{sup 8} at angular separations of 0.2-0.8 inches around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. We are constructing a high-contrast AO testbed to verify key concepts of our system, and present preliminary results here, showing an RMS wavefront error of <1.3 nm with a flat mirror.

  9. Large aperture adaptive optics for intense lasers

    NASA Astrophysics Data System (ADS)

    Deneuville, François; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-05-01

    ISP SYSTEM has developed a range of large aperture electro-mechanical deformable mirrors (DM) suitable for ultra short pulsed intense lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations thanks to electromechanical actuators driven by stepper motors. DM design and assembly method have been adapted to large aperture beams and the performances were evaluated on a first application for a beam with a diameter of 250mm at 45° angle of incidence. A Strehl ratio above 0.9 was reached for this application. Simulations were correlated with measurements on optical bench and the design has been validated by calculation for very large aperture (up to Ø550mm). Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for actual MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The MD-AME mirrors can be adapted to circular, square or elliptical beams and they are compatible with all dielectric or metallic coatings.

  10. Optical design of the adaptive optics laser guide star system

    SciTech Connect

    Bissinger, H.

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  11. Manufacturing of the ESO adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Arsenault, R.,; Madec, P.-Y.; Hubin, N.; Stroebele, S.; Paufique, J.; Vernet, E.; Hackenberg, W.; Pirard, J.-F.; Jochum, L.; Glindemann, A.; Jost, A.; Conzelmann, R.; Kiekebusch, M.; Tordo, S.; Lizon, J.-L.; Donaldson, R.; Fedrigo, E.; Soenke, C.; Duchateau, M.; Bruton, A.; Delabre, B.; Downing, M.; Reyes, J.; Kolb, J.; Bechet, C.; Lelouarn, M.; Bonaccini Calia, D.; Quattri, M.; Guidolin, I.; Buzzoni, B.; Dupuy, C.; Guzman, R.; Comin, M.; Silber, A.; Quentin, J.; La Penna, P.; Manescau, A.; Jolley, P.; Heinz, V.; Duhoux, P.; Argomedo, J.; Gallieni, D.; Lazzarini, P.; Biasi, R.; Andrighettoni, M.; Angerer, G.; Pescoller, D.; Stuik, R.,; Deep, A.

    2010-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train, in this case the secondary 1.1m mirror, and four Laser Guide Stars (LGSs). This evolution implements many challenging technologies like the Deformable Secondary Mirror (DSM) including a thin shell mirror (1.1 m diameter and 2mm thin), the high power Na lasers (20W), the low Read-Out Noise (RON) WaveFront Sensor (WFS) camera (< 1e-) and SPARTA the new generation of Real Time Computers (RTC) for adaptive control. It also faces many problematic similar to any Extremely Large Telescope (ELT) and as such, will validate many technologies and solutions needed for the European ELT (E-ELT) 42m telescope. The AOF will offer a very large (7 arcmin) Field Of View (FOV) GLAO correction in J, H and K bands (GRAAL+Hawk-I), a visible integral field spectrograph with a 1 arcmin GLAO corrected FOV (GALACSI-MUSE WFM) and finally a LTAO 7.5" FOV (GALACSI-MUSE NFM). Most systems of the AOF have completed final design and are in manufacturing phase. Specific activities are linked to the modification of the 8m telescope in order to accommodate the new DSM and the 4 LGS Units assembled on its Center-Piece. A one year test period in Europe is planned to test and validate all modes and their performance followed by a commissioning phase in Paranal scheduled for 2014.

  12. Daytime adaptive optics for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.

    2003-01-01

    The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.

  13. Object-oriented Matlab adaptive optics toolbox

    NASA Astrophysics Data System (ADS)

    Conan, R.; Correia, C.

    2014-08-01

    Object-Oriented Matlab Adaptive Optics (OOMAO) is a Matlab toolbox dedicated to Adaptive Optics (AO) systems. OOMAO is based on a small set of classes representing the source, atmosphere, telescope, wavefront sensor, Deformable Mirror (DM) and an imager of an AO system. This simple set of classes allows simulating Natural Guide Star (NGS) and Laser Guide Star (LGS) Single Conjugate AO (SCAO) and tomography AO systems on telescopes up to the size of the Extremely Large Telescopes (ELT). The discrete phase screens that make the atmosphere model can be of infinite size, useful for modeling system performance on large time scales. OOMAO comes with its own parametric influence function model to emulate different types of DMs. The cone effect, altitude thickness and intensity profile of LGSs are also reproduced. Both modal and zonal modeling approach are implemented. OOMAO has also an extensive library of theoretical expressions to evaluate the statistical properties of turbulence wavefronts. The main design characteristics of the OOMAO toolbox are object-oriented modularity, vectorized code and transparent parallel computing. OOMAO has been used to simulate and to design the Multi-Object AO prototype Raven at the Subaru telescope and the Laser Tomography AO system of the Giant Magellan Telescope. In this paper, a Laser Tomography AO system on an ELT is simulated with OOMAO. In the first part, we set-up the class parameters and we link the instantiated objects to create the source optical path. Then we build the tomographic reconstructor and write the script for the pseudo-open-loop controller.

  14. Adaptive grazing management experiment: The new frontier of grazing management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Adaptive Grazing Management experiment at the USDA-ARS Central Plains Experimental Range addresses important gaps in our current understanding of grazing management including: 1) lack of management-science partnerships to more fully understand the effect of management decisions, 2) need for mana...

  15. Retinal imaging using adaptive optics technology☆

    PubMed Central

    Kozak, Igor

    2014-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started. PMID:24843304

  16. Retinal imaging using adaptive optics technology.

    PubMed

    Kozak, Igor

    2014-04-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started.

  17. The Tesat transportable adaptive optical ground station

    NASA Astrophysics Data System (ADS)

    Saucke, Karen; Seiter, Christoph; Heine, Frank; Gregory, Mark; Tröndle, Daniel; Fischer, Edgar; Berkefeld, Thomas; Feriencik, Mikael; Feriencik, Marco; Richter, Ines; Meyer, Rolf

    2016-03-01

    Tesat together with Synopta have built a Transportable Adaptive Optical Ground Station (TAOGS) under contract of German Aerospace Center DLR for communication with the 1st and 2nd generation of Tesat's spaceborne Laser Communication Terminals (LCTs), which employ coherent homodyne optical communication with 1064 nm and binary phase shift keying (BPSK) modulation. The TAOGS is able to communicate with space segments on low earth orbit (LEO, high pointing and tracking dynamics, 5.625 Gbps), and with space segments on geostationary orbit (GEO, low pointing dynamics, up to 40,000 km distance, optical data rate of 2.8125 Gbps and user data rate of 1.8 Gbps). After an alignment and testing phase at the location of Izana, Tenerife, using the TDP1 LCT on geostationary Alphasat as counter terminal, the TAOGS is now fully functioning. Several up-links, down-links and bi-directional links have been performed. Experimental results of some of these links are presented. An outlook to further activities is given.

  18. 50 CFR 218.241 - Adaptive management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Low Frequency Active (SURTASS LFA) Sonar § 218.241 Adaptive management. NMFS may modify (including...) Results from the Navy's monitoring from the previous year's operation of SURTASS LFA sonar. (b)...

  19. 50 CFR 218.241 - Adaptive management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Low Frequency Active (SURTASS LFA) Sonar § 218.241 Adaptive management. NMFS may modify (including...) Results from the Navy's monitoring from the previous year's operation of SURTASS LFA sonar. (b)...

  20. Limitations of science and adaptive management

    SciTech Connect

    Narasimhan, T.N.

    2001-12-20

    Adaptive management consists in patterning human sustenancewithin the constraints of Earth and biological systems whose behavior isinherently uncertain and difficult to control. For successful adaptivemanagement, a mind-set recognizing the limitations of science isneeded.

  1. Rethinking Social Barriers to Effective Adaptive Management

    NASA Astrophysics Data System (ADS)

    West, Simon; Schultz, Lisen; Bekessy, Sarah

    2016-09-01

    Adaptive management is an approach to environmental management based on learning-by-doing, where complexity, uncertainty, and incomplete knowledge are acknowledged and management actions are treated as experiments. However, while adaptive management has received significant uptake in theory, it remains elusively difficult to enact in practice. Proponents have blamed social barriers and have called for social science contributions. We address this gap by adopting a qualitative approach to explore the development of an ecological monitoring program within an adaptive management framework in a public land management organization in Australia. We ask what practices are used to enact the monitoring program and how do they shape learning? We elicit a rich narrative through extensive interviews with a key individual, and analyze the narrative using thematic analysis. We discuss our results in relation to the concept of `knowledge work' and Westley's 2002) framework for interpreting the strategies of adaptive managers—`managing through, in, out and up.' We find that enacting the program is conditioned by distinct and sometimes competing logics—scientific logics prioritizing experimentation and learning, public logics emphasizing accountability and legitimacy, and corporate logics demanding efficiency and effectiveness. In this context, implementing adaptive management entails practices of translation to negotiate tensions between objective and situated knowledge, external experts and organizational staff, and collegiate and hierarchical norms. Our contribution embraces the `doing' of learning-by-doing and marks a shift from conceptualizing the social as an external barrier to adaptive management to be removed to an approach that situates adaptive management as social knowledge practice.

  2. The Coming of Age of Adaptive Optics

    NASA Astrophysics Data System (ADS)

    1995-10-01

    How Ground-Based Astronomers Beat the Atmosphere Adaptive Optics (AO) is the new ``wonder-weapon'' in ground-based astronomy. By means of advanced electro-optical devices at their telescopes, astronomers are now able to ``neutralize'' the image-smearing turbulence of the terrestrial atmosphere (seen by the unaided eye as the twinkling of stars) so that much sharper images can be obtained than before. In practice, this is done with computer-controlled, flexible mirrors which refocus the blurred images up to 100 times per second, i.e. at a rate that is faster than the changes in the atmospheric turbulence. This means that finer details in astronomical objects can be studied and also - because of the improved concentration of light in the telescope's focal plane - that fainter objects can be observed. At the moment, Adaptive Optics work best in the infrared part of spectrum, but at some later time it may also significantly improve observations at the shorter wavelengths of visible light. The many-sided aspects of this new technology and its impact on astronomical instrumentation was the subject of a recent AO conference [1] with over 150 participants from about 30 countries, presenting a total of more than 100 papers. The Introduction of AO Techniques into Astronomy The scope of this meeting was the design, fabrication and testing of AO systems, characterisation of the sources of atmospheric disturbance, modelling of compensation systems, individual components, astronomical AO results, non-astronomical applications, laser guide star systems, non-linear optical phase conjugation, performance evaluation, and other areas of this wide and complex field, in which front-line science and high technology come together in a new and powerful symbiosis. One of the specific goals of the meeting was to develop contacts between AO scientists and engineers in the western world and their colleagues in Russia and Asia. For the first time at a conference of this type, nine Russian

  3. Dual-thread parallel control strategy for ophthalmic adaptive optics.

    PubMed

    Yu, Yongxin; Zhang, Yuhua

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope.

  4. Adaptive interferometric null testing for unknown freeform optics metrology.

    PubMed

    Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan R; Kim, Dae Wook

    2016-12-01

    We report an adaptive interferometric null testing method for overcoming the dynamic range limitations of conventional null testing approaches during unknown freeform optics metrology or optics manufacturing processes that require not-yet-completed surface measurements to guide the next fabrication process. In the presented adaptive method, a deformable mirror functions as an adaptable null component for an unknown optical surface. The optimal deformable mirror's shape is determined by the stochastic parallel gradient descent algorithm and controlled by a deflectometry system. An adaptive interferometric null testing setup was constructed, and its metrology data successfully demonstrated superb adaptive capability in measuring an unknown surface.

  5. Adaptive Optics at the World's Biggest Optical Telescope

    NASA Astrophysics Data System (ADS)

    Hart, M.; Esposito, S.; Rabien, S.

    2010-09-01

    The Large Binocular Telescope (LBT) on Mt. Graham, Arizona, comprises two 8.4 m primary mirrors on a common mount. The two apertures will be co-phased to create a single telescope with 110 m2 of collecting area and 22.7 m baseline. From the outset, adaptive optics (AO) was incorporated into the design through two adaptive secondary mirrors (ASM), each 91 cm in diameter with 672 actuators, which feed all of the instruments mounted at the telescope's four pairs of Gregorian foci. The first ASM has now seen first light on sky with natural guide stars. Strehl ratios at 1.6 μm under average seeing are estimated to be ~80%, and diffraction-limited performance is maintained for stars down to magnitude 15. At the same time, pioneering work at the 6.5 m MMT telescope has for the first time shown the compelling benefits of ground-layer AO compensation. This technique relies on the signals from multiple laser beacons to sense and correct aberration arising close to the telescope with the result that near IR seeing is reduced by a factor of 2-3 over a field of many arc minutes. Building on these efforts at both telescopes, a project is underway to enhance the LBT's AO capability by the addition of wavefront sensing with multiple laser guide stars. The Advanced Rayleigh Ground-layer adaptive Optics System (ARGOS) is now in the construction phase. We provide an overview of ARGOS and how it foreshadows AO systems destined for the 30 m class telescopes of tomorrow.

  6. Wavefront control for extreme adaptive optics

    NASA Astrophysics Data System (ADS)

    Poyneer, Lisa A.; Macintosh, Bruce A.

    2003-12-01

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  7. Wavefront Control for Extreme Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2003-07-16

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  8. Fast, compact, autonomous holographic adaptive optics.

    PubMed

    Andersen, Geoff; Gelsinger-Austin, Paul; Gaddipati, Ravi; Gaddipati, Phani; Ghebremichael, Fassil

    2014-04-21

    We present a closed-loop adaptive optics system based on a holographic sensing method. The system uses a multiplexed holographic recording of the response functions of each actuator in a deformable mirror. By comparing the output intensity measured in a pair of photodiodes, the absolute phase can be measured over each actuator location. From this a feedback correction signal is applied to the input beam without need for a computer. The sensing and correction is applied to each actuator in parallel, so the bandwidth is independent of the number of actuator. We demonstrate a breadboard system using a 32-actuator MEMS deformable mirror capable of operating at over 10 kHz without a computer in the loop.

  9. Adaptive Optics Imaging and Spectroscopy of Neptune

    NASA Technical Reports Server (NTRS)

    Johnson, Lindley (Technical Monitor); Sromovsky, Lawrence A.

    2005-01-01

    OBJECTIVES: We proposed to use high spectral resolution imaging and spectroscopy of Neptune in visible and near-IR spectral ranges to advance our understanding of Neptune s cloud structure. We intended to use the adaptive optics (AO) system at Mt. Wilson at visible wavelengths to try to obtain the first groundbased observations of dark spots on Neptune; we intended to use A 0 observations at the IRTF to obtain near-IR R=2000 spatially resolved spectra and near-IR A0 observations at the Keck observatory to obtain the highest spatial resolution studies of cloud feature dynamics and atmospheric motions. Vertical structure of cloud features was to be inferred from the wavelength dependent absorption of methane and hydrogen,

  10. Adaptive optics optical coherence tomography at 1 MHz

    PubMed Central

    Kocaoglu, Omer P.; Turner, Timothy L.; Liu, Zhuolin; Miller, Donald T.

    2014-01-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (−0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band. PMID:25574431

  11. Optical Design and Optimization of Translational Reflective Adaptive Optics Ophthalmoscopes

    NASA Astrophysics Data System (ADS)

    Sulai, Yusufu N. B.

    The retina serves as the primary detector for the biological camera that is the eye. It is composed of numerous classes of neurons and support cells that work together to capture and process an image formed by the eye's optics, which is then transmitted to the brain. Loss of sight due to retinal or neuro-ophthalmic disease can prove devastating to one's quality of life, and the ability to examine the retina in vivo is invaluable in the early detection and monitoring of such diseases. Adaptive optics (AO) ophthalmoscopy is a promising diagnostic tool in early stages of development, still facing significant challenges before it can become a clinical tool. The work in this thesis is a collection of projects with the overarching goal of broadening the scope and applicability of this technology. We begin by providing an optical design approach for AO ophthalmoscopes that reduces the aberrations that degrade the performance of the AO correction. Next, we demonstrate how to further improve image resolution through the use of amplitude pupil apodization and non-common path aberration correction. This is followed by the development of a viewfinder which provides a larger field of view for retinal navigation. Finally, we conclude with the development of an innovative non-confocal light detection scheme which improves the non-invasive visualization of retinal vasculature and reveals the cone photoreceptor inner segments in healthy and diseased eyes.

  12. Adaptive optics optical coherence tomography at 1 MHz.

    PubMed

    Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Miller, Donald T

    2014-12-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (-0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band.

  13. ESO adaptive optics facility progress report

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-Francois; Hackenberg, Wolfgang; Kuntschner, Harald; Jochum, Lieselotte; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose A.; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Robert; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andreas; Duchateau, Michel; Downing, Mark; Moreno, Javier R.; Dorn, Reinhold; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan M.; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Maximilian; Pfrommer, Thomas; Biasi, Roberto; Gallieni, Daniele; Bechet, Clementine; Stuik, Remko

    2012-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train. The project has completed the procurement phase and several large structures have been delivered to Garching (Germany) and are being integrated (the AO modules GRAAL and GALACSI and the ASSIST test bench). The 4LGSF Laser (TOPTICA) has undergone final design review and a pre-production unit has been built and successfully tested. The Deformable Secondary Mirror is fully integrated and system tests have started with the first science grade thin shell mirror delivered by SAGEM. The integrated modules will be tested in stand-alone mode in 2012 and upon delivery of the DSM in late 2012, the system test phase will start. A commissioning strategy has been developed and will be updated before delivery to Paranal. A substantial effort has been spent in 2011-2012 to prepare the unit telescope to receive the AOF by preparing the mechanical interfaces and upgrading the cooling and electrical network. This preparation will also simplify the final installation of the facility on the telescope. A lot of attention is given to the system calibration, how to record and correct any misalignment and control the whole facility. A plan is being developed to efficiently operate the AOF after commissioning. This includes monitoring a relevant set of atmospheric parameters for scheduling and a Laser Traffic control system to assist the operator during the night and help/support the observing block preparation.

  14. FPGA-accelerated adaptive optics wavefront control

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.

    2014-03-01

    The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.

  15. Vision science and adaptive optics, the state of the field.

    PubMed

    Marcos, Susana; Werner, John S; Burns, Stephen A; Merigan, William H; Artal, Pablo; Atchison, David A; Hampson, Karen M; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S; Doble, Nathan; Dubis, Adam M; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T; Paques, Michel; Smithson, Hannah E; Young, Laura K; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C

    2017-03-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system.

  16. Adaptive optics without altering visual perception.

    PubMed

    Koenig, D E; Hart, N W; Hofer, H J

    2014-04-01

    Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer et al., 2012). Here we describe a simple strategy employing a longer wavelength (980nm) beacon that, in conjunction with appropriate restriction on timing and placement, allowed us to perform psychophysics when dark adapted without altering visual perception. The method was verified by comparing detection and color appearance of foveally presented small spot stimuli with and without the wavefront beacon present in 5 subjects. As an important caution, we found that significant perceptual interference can occur even with a subliminal beacon when additional measures are not taken to limit exposure. Consequently, the lack of perceptual interference should be verified for a given system, and not assumed based on invisibility of the beacon.

  17. Everglades Collaborative Adaptive Management Program Progress

    EPA Science Inventory

    When the Comprehensive Everglades Restoration Plan (CERP) was authorized in 2000, adaptive management (AM) was recognized as a necessary tool to address uncertainty in achieving the broad goals and objectives for restoring a highly managed system. The Everglades covers18,000 squ...

  18. Adaptive optics for the CHARA array

    NASA Astrophysics Data System (ADS)

    ten Brummelaar, Theo A.; Sturmann, Laszlo; Sturmann, Judit; Ridgway, Stephen T.; Monnier, John D.; Ireland, Michael J.; Che, Xiao; McAlister, Harold A.; Turner, Nils H.; Tuthill, P. G.

    2012-07-01

    The CHARA Array is a six telescope optical/IR interferometer run by the Center for High Angular Resolution Astronomy of Georgia State University and is located at Mount Wilson Observatory just to the north of Los Angeles California. The CHARA Array has the largest operational baselines in the world and has been in regular use for scientific observations since 2004. In 2011 we received funding from the NSF to begin work on Adaptive Optics for our six telescopes. Phase I of this project, fully funded by the NSF grant, consists of designing and building wavefront sensors for each telescope that will also serve as tip/tilt detectors. Having tip/tilt at the telescopes, instead of in the laboratory, will add several magnitudes of sensitivity to this system. Phase I also includes a slow wavefront sensor in the laboratory to measure non-common path errors and small deformable mirrors in the laboratory to remove static and slowly changing aberrations. Phase II of the project will allow us to place high-speed deformable mirrors at the telescopes thereby enabling full closed loop operation. We are currently seeking funding for Phase II. This paper will describe the scientific rational and design of the system and give the current status of the project.

  19. Adaptive Detector Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    2000-01-01

    The structure of an optimal adaptive array receiver for ground-based optical communications is described and its performance investigated. Kolmogorov phase screen simulations are used to model the sample functions of the focal-plane signal distribution due to turbulence and to generate realistic spatial distributions of the received optical field. This novel array detector concept reduces interference from background radiation by effectively assigning higher confidence levels at each instant of time to those detector elements that contain significant signal energy and suppressing those that do not. A simpler suboptimum structure that replaces the continuous weighting function of the optimal receiver by a hard decision on the selection of the signal detector elements also is described and evaluated. Approximations and bounds to the error probability are derived and compared with the exact calculations and receiver simulation results. It is shown that, for photon-counting receivers observing Poisson-distributed signals, performance improvements of approximately 5 dB can be obtained over conventional single-detector photon-counting receivers, when operating in high background environments.

  20. Adaptive Management Implementation: Glen Canyon Dam Adaptive Management Program Trinity River Restoration Program

    USGS Publications Warehouse

    Wittler, R.; McBain, S.; Stalnaker, C.; Bizier, P.; DeBarry, P.

    2003-01-01

    Two adaptive management programs, the Glen Canyon Dam Adaptive Management Program (GCDAMP) and the Trinity River Restoration Program (TRRP) are examined. In both cases, the focus is on managing the aquatic and riparian systems downstream of a large dam and water supply project. The status of the two programs, lessons learned by the program managers and the Adaptive Environmental Assessment and Management (AEAM) evolution of the TRRP are discussed. The Trinity River illustrates some of the scientific uncertainities that a program faces and the ways the program evolves from concept through implementation.

  1. Proposed Multiconjugate Adaptive Optics Experiment at Lick Observatory

    SciTech Connect

    Bauman, B J; Gavel, D T; Flath, L M; Hurd, R L; Max, C E; Olivier, S S

    2001-08-15

    While the theory behind design of multiconjugate adaptive optics (MCAO) systems is growing, there is still a paucity of experience building and testing such instruments. We propose using the Lick adaptive optics (AO) system as a basis for demonstrating the feasibility/workability of MCAO systems, testing underlying assumptions, and experimenting with different approaches to solving MCAO system issues.

  2. Proposed multiconjugate adaptive optics experiment at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Bauman, Brian J.; Gavel, Donald T.; Flath, Laurence M.; Hurd, Randall L.; Max, Claire E.; Olivier, Scot S.

    2002-02-01

    While the theory behind design of multiconjugate adaptive optics (MCAO) systems is growing, there is still a paucity of experience building and testing such instruments. We propose using the Lick adaptive optics (AO) system as a basis for demonstrating the feasibility/workability of MCAO systems, testing underlying assumptions, and experimenting with different approaches to solving MCAO system issues.

  3. Adaptive optics optical coherence tomography with dynamic retinal tracking

    PubMed Central

    Kocaoglu, Omer P.; Ferguson, R. Daniel; Jonnal, Ravi S.; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X.; Miller, Donald T.

    2014-01-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  4. Adaptive optics optical coherence tomography with dynamic retinal tracking.

    PubMed

    Kocaoglu, Omer P; Ferguson, R Daniel; Jonnal, Ravi S; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X; Miller, Donald T

    2014-07-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies.

  5. The research and development of the adaptive optics in ophthalmology

    NASA Astrophysics Data System (ADS)

    Wu, Chuhan; Zhang, Xiaofang; Chen, Weilin

    2015-08-01

    Recently the combination of adaptive optics and ophthalmology has made great progress and become highly effective. The retina disease is diagnosed by retina imaging technique based on scanning optical system, so the scanning of eye requires optical system characterized by great ability of anti-moving and optical aberration correction. The adaptive optics possesses high level of adaptability and is available for real time imaging, which meets the requirement of medical retina detection with accurate images. Now the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are widely used, which are the core techniques in the area of medical retina detection. Based on the above techniques, in China, a few adaptive optics systems used for eye medical scanning have been designed by some researchers from The Institute of Optics And Electronics of CAS(The Chinese Academy of Sciences); some foreign research institutions have adopted other methods to eliminate the interference of eye moving and optical aberration; there are many relevant patents at home and abroad. In this paper, the principles and relevant technique details of the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are described. And the recent development and progress of adaptive optics in the field of eye retina imaging are analyzed and summarized.

  6. Optimized micromirror arrays for adaptive optics

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Comtois, John H.; Hetherington, Dale L.

    1999-01-01

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 μm minimum feature sizes and 0.1 μm mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces can be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2-3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98% or better. Combining the process planarization with a ``planarized-by-design'' approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics.

  7. Consortium for Adaptive Optics and Image Post-Processing

    DTIC Science & Technology

    2008-06-12

    optics bench laboratory is located in Kula , Maui, and is called “The Space Surveillance Simulator” (S-Cube). S-Cube is designed to simulate both the...Wheeler, Trex Maui Personnel from the Center for Adaptive Optics Contributed DURIP Maui Adaptive Optics Laboratory (S-Cube), Kula Setup Meeting (26...for Astronomy’s buildings in Kula , Maui. The move also caused a change in the scientists directly involved in the simulator as well as a change in

  8. Design optimization of system level adaptive optical performance

    NASA Astrophysics Data System (ADS)

    Michels, Gregory J.; Genberg, Victor L.; Doyle, Keith B.; Bisson, Gary R.

    2005-09-01

    By linking predictive methods from multiple engineering disciplines, engineers are able to compute more meaningful predictions of a product's performance. By coupling mechanical and optical predictive techniques mechanical design can be performed to optimize optical performance. This paper demonstrates how mechanical design optimization using system level optical performance can be used in the development of the design of a high precision adaptive optical telescope. While mechanical design parameters are treated as the design variables, the objective function is taken to be the adaptively corrected optical imaging performance of an orbiting two-mirror telescope.

  9. Adaptive optics and phase diversity imaging for responsive space applications.

    SciTech Connect

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  10. Turbulence profiling for adaptive optics tomographic reconstructors

    NASA Astrophysics Data System (ADS)

    Laidlaw, Douglas J.; Osborn, James; Wilson, Richard W.; Morris, Timothy J.; Butterley, Timothy; Reeves, Andrew P.; Townson, Matthew J.; Gendron, Éric; Vidal, Fabrice; Morel, Carine

    2016-07-01

    To approach optimal performance advanced Adaptive Optics (AO) systems deployed on ground-based telescopes must have accurate knowledge of atmospheric turbulence as a function of altitude. Stereo-SCIDAR is a high-resolution stereoscopic instrument dedicated to this measure. Here, its profiles are directly compared to internal AO telemetry atmospheric profiling techniques for CANARY (Vidal et al. 20141), a Multi-Object AO (MOAO) pathfinder on the William Herschel Telescope (WHT), La Palma. In total twenty datasets are analysed across July and October of 2014. Levenberg-Marquardt fitting algorithms dubbed Direct Fitting and Learn 2 Step (L2S; Martin 20142) are used in the recovery of profile information via covariance matrices - respectively attaining average Pearson product-moment correlation coefficients with stereo-SCIDAR of 0.2 and 0.74. By excluding the measure of covariance between orthogonal Wavefront Sensor (WFS) slopes these results have revised values of 0.65 and 0.2. A data analysis technique that combines L2S and SLODAR is subsequently introduced that achieves a correlation coefficient of 0.76.

  11. KAPAO: A Pomona College Adaptive Optics Instrument

    NASA Astrophysics Data System (ADS)

    Choi, Philip I.; Severson, S. A.; Rudy, A. R.; Gilbreth, B. N.; Contreras, D. S.; McGonigle, L. P.; Chin, R. M.; Horn, B.; Hoidn, O.; Spjut, E.; Baranec, C.; Riddle, R.

    2011-01-01

    We describe our project (KAPAO) to develop and deploy a low-cost, remote-access, natural guide star adaptive optics system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. The system will offer simultaneous dual-band, diffraction-limited imaging at visible and near-infrared wavelengths and will deliver an order-of-magnitude improvement in point source sensitivity and angular resolution relative to the current TMO seeing limits. In order to ensure reliability, minimize costs and encourage replication efforts, off-the-shelf components that include a MEMS deformable mirror, a Shack-Hartmann wavefront sensor and a piezo-electric tip-tilt mirror are being adopted for the core hardware elements. We present: the instrument design; performance predictions based on AO simulations; and the current status of the testbed instrument and high-speed control system. Beyond the expanded scientific capabilities enabled by AO-enhanced resolution and sensitivity, the interdisciplinary nature of the instrument development effort provides an exceptional opportunity to train a broad range of undergraduate STEM students in AO technologies and techniques. The breadth of our collaboration, which includes both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges) undergraduate institutions has enabled us to engage students ranging from physics, astronomy, engineering and computer science in the early stages of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  12. Simulation of DKIST solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Carlisle, Elizabeth; Schmidt, Dirk

    2016-07-01

    Solar adaptive optics (AO) simulations are a valuable tool to guide the design and optimization process of current and future solar AO and multi-conjugate AO (MCAO) systems. Solar AO and MCAO systems rely on extended object cross-correlating Shack-Hartmann wavefront sensors to measure the wavefront. Accurate solar AO simulations require computationally intensive operations, which have until recently presented a prohibitive computational cost. We present an update on the status of a solar AO and MCAO simulation tool being developed at the National Solar Observatory. The simulation tool is a multi-threaded application written in the C++ language that takes advantage of current large multi-core CPU computer systems and fast ethernet connections to provide accurate full simulation of solar AO and MCAO systems. It interfaces with KAOS, a state of the art solar AO control software developed by the Kiepenheuer-Institut fuer Sonnenphysik, that provides reliable AO control. We report on the latest results produced by the solar AO simulation tool.

  13. 77 FR 74203 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  14. 75 FR 51284 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  15. 75 FR 10501 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  16. 77 FR 50155 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  17. 77 FR 30314 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  18. 76 FR 14044 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  19. 76 FR 23621 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  20. 75 FR 17158 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  1. 76 FR 34248 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  2. 77 FR 10766 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  3. 75 FR 70947 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  4. 75 FR 27814 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ...-W4] Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity River...

  5. Adaptive management for soil ecosystem services

    USGS Publications Warehouse

    Birge, Hannah E.; Bevans, Rebecca A.; Allen, Craig R.; Angeler, David G.; Baer, Sara G.; Wall, Diana H.

    2016-01-01

    Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services.

  6. Adaptive optics observations of the core of Cygnus A

    NASA Astrophysics Data System (ADS)

    Max, C. E.; Whysong, D.; Antonucci, R.; Canalizo, G.; Macintosh, B. A.; Stockton, A.

    2001-12-01

    We report on near-infrared imaging and spectroscopy of the core of Cygnus A, using adaptive optics systems at the Lick and Keck Observatories. In our images, a V-shaped ionization cone structure is seen to the south-east of the nucleus, as in previous HST NICMOS observations. To the north-west of the nucleus are two diffuse emission regions. We have obtained K-band spectra of these regions and of the nucleus. Paschen alpha spectra show emission near the nucleus with FWHM 1000 km/s. The diffuse emission regions to the north-west and south-east have narrower linewidths. We interpret these data in terms of models for the core of Cygnus A. This work was performed under the auspices of the U.S. Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48, and was supported in part by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST - 9876783.

  7. Managing adaptively for multifunctionality in agricultural systems.

    PubMed

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig; Magda, Danièle

    2016-12-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase

  8. Testing the Apodized Pupil Lyot Coronagraph on the Laboratory for Adaptive Optics Extreme Adaptive Optics Testbed

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine J.; Soummer, Rémi; Dillon, Daren; Macintosh, Bruce; Gavel, Donald; Sivaramakrishnan, Anand

    2011-10-01

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  9. TESTING THE APODIZED PUPIL LYOT CORONAGRAPH ON THE LABORATORY FOR ADAPTIVE OPTICS EXTREME ADAPTIVE OPTICS TESTBED

    SciTech Connect

    Thomas, Sandrine J.; Dillon, Daren; Gavel, Donald; Macintosh, Bruce; Sivaramakrishnan, Anand E-mail: dillon@ucolick.org E-mail: soummer@stsci.edu E-mail: anand@amnh.org

    2011-10-15

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  10. Adaptive governance, ecosystem management, and natural capital.

    PubMed

    Schultz, Lisen; Folke, Carl; Österblom, Henrik; Olsson, Per

    2015-06-16

    To gain insights into the effects of adaptive governance on natural capital, we compare three well-studied initiatives; a landscape in Southern Sweden, the Great Barrier Reef in Australia, and fisheries in the Southern Ocean. We assess changes in natural capital and ecosystem services related to these social-ecological governance approaches to ecosystem management and investigate their capacity to respond to change and new challenges. The adaptive governance initiatives are compared with other efforts aimed at conservation and sustainable use of natural capital: Natura 2000 in Europe, lobster fisheries in the Gulf of Maine, North America, and fisheries in Europe. In contrast to these efforts, we found that the adaptive governance cases developed capacity to perform ecosystem management, manage multiple ecosystem services, and monitor, communicate, and respond to ecosystem-wide changes at landscape and seascape levels with visible effects on natural capital. They enabled actors to collaborate across diverse interests, sectors, and institutional arrangements and detect opportunities and problems as they developed while nurturing adaptive capacity to deal with them. They all spanned local to international levels of decision making, thus representing multilevel governance systems for managing natural capital. As with any governance system, internal changes and external drivers of global impacts and demands will continue to challenge the long-term success of such initiatives.

  11. Adaptable Learning Assistant for Item Bank Management

    ERIC Educational Resources Information Center

    Nuntiyagul, Atorn; Naruedomkul, Kanlaya; Cercone, Nick; Wongsawang, Damras

    2008-01-01

    We present PKIP, an adaptable learning assistant tool for managing question items in item banks. PKIP is not only able to automatically assist educational users to categorize the question items into predefined categories by their contents but also to correctly retrieve the items by specifying the category and/or the difficulty level. PKIP adapts…

  12. Adaptive governance, ecosystem management, and natural capital

    PubMed Central

    Schultz, Lisen; Folke, Carl; Österblom, Henrik; Olsson, Per

    2015-01-01

    To gain insights into the effects of adaptive governance on natural capital, we compare three well-studied initiatives; a landscape in Southern Sweden, the Great Barrier Reef in Australia, and fisheries in the Southern Ocean. We assess changes in natural capital and ecosystem services related to these social–ecological governance approaches to ecosystem management and investigate their capacity to respond to change and new challenges. The adaptive governance initiatives are compared with other efforts aimed at conservation and sustainable use of natural capital: Natura 2000 in Europe, lobster fisheries in the Gulf of Maine, North America, and fisheries in Europe. In contrast to these efforts, we found that the adaptive governance cases developed capacity to perform ecosystem management, manage multiple ecosystem services, and monitor, communicate, and respond to ecosystem-wide changes at landscape and seascape levels with visible effects on natural capital. They enabled actors to collaborate across diverse interests, sectors, and institutional arrangements and detect opportunities and problems as they developed while nurturing adaptive capacity to deal with them. They all spanned local to international levels of decision making, thus representing multilevel governance systems for managing natural capital. As with any governance system, internal changes and external drivers of global impacts and demands will continue to challenge the long-term success of such initiatives. PMID:26082542

  13. Adaptive management for drought on rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adaptive management for drought on rangelands encompasses 1) enterprise flexibility – herd structure where the proportion of cow-calf pairs and yearlings provides plasticity to match forage availability with forage demand, with advantages to economic returns and increased resiliency of plant communi...

  14. Adaptive optics parallel near-confocal scanning ophthalmoscopy.

    PubMed

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2016-08-15

    We present an adaptive optics parallel near-confocal scanning ophthalmoscope (AOPCSO) using a digital micromirror device (DMD). The imaging light is modulated to be a line of point sources by the DMD, illuminating the retina simultaneously. By using a high-speed line camera to acquire the image and using adaptive optics to compensate the ocular wave aberration, the AOPCSO can image the living human eye with cellular level resolution at the frame rate of 100 Hz. AOPCSO has been demonstrated with improved spatial resolution in imaging of the living human retina compared with adaptive optics line scan ophthalmoscopy.

  15. Pulse front adaptive optics in two-photon microscopy.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-11-01

    Adaptive optics has been extensively studied for the correction of phase front aberrations in optical systems. In systems using ultrafast lasers, distortions can also exist in the pulse front (contour of constant intensity in space and time), but until now their correction has been mostly unexplored due to technological limitations. In this Letter, we apply newly developed pulse front adaptive optics, for the first time to our knowledge, to practical compensation of a two-photon fluorescence microscope. With adaptive correction of the system-induced pulse front distortion, improvements beyond conventional phase correction are demonstrated.

  16. Isoplanatism in a multiconjugate adaptive optics system.

    PubMed

    Tokovinin, A; Le Louarn, M; Sarazin, M

    2000-10-01

    Turbulence correction in a large field of view by use of an adaptive optics imaging system with several deformable mirrors (DM's) conjugated to various heights is considered. The residual phase variance is computed for an optimized linear algorithm in which a correction of each turbulent layer is achieved by applying a combination of suitably smoothed and scaled input phase screens to all DM's. Finite turbulence outer scale and finite spatial resolution of the DM's are taken into account. A general expression for the isoplanatic angle thetaM of a system with M mirrors is derived in the limiting case of infinitely large apertures and Kolmogorov turbulence. Like Fried's isoplanatic angle theta0,thetaM is a function only of the turbulence vertical profile, is scalable with wavelength, and is independent of the telescope diameter. Use of angle thetaM permits the gain in the field of view due to the increased number of DM's to be quantified and their optimal conjugate heights to be found. Calculations with real turbulence profiles show that with three DM's a gain of 7-10x is possible, giving the typical and best isoplanatic field-of-view radii of 16 and 30 arcseconds, respectively, at lambda = 0.5 microm. It is shown that in the actual systems the isoplanatic field will be somewhat larger than thetaM owing to the combined effects of finite aperture diameter, finite outer scale, and optimized wave-front spatial filtering. However, this additional gain is not dramatic; it is less than 1.5x for large-aperture telescopes.

  17. Simulating Astronomical Adaptive Optics Systems Using Yao

    NASA Astrophysics Data System (ADS)

    Rigaut, François; Van Dam, Marcos

    2013-12-01

    Adaptive Optics systems are at the heart of the coming Extremely Large Telescopes generation. Given the importance, complexity and required advances of these systems, being able to simulate them faithfully is key to their success, and thus to the success of the ELTs. The type of systems envisioned to be built for the ELTs cover most of the AO breeds, from NGS AO to multiple guide star Ground Layer, Laser Tomography and Multi-Conjugate AO systems, with typically a few thousand actuators. This represents a large step up from the current generation of AO systems, and accordingly a challenge for existing AO simulation packages. This is especially true as, in the past years, computer power has not been following Moore's law in its most common understanding; CPU clocks are hovering at about 3GHz. Although the use of super computers is a possible solution to run these simulations, being able to use smaller machines has obvious advantages: cost, access, environmental issues. By using optimised code in an already proven AO simulation platform, we were able to run complex ELT AO simulations on very modest machines, including laptops. The platform is YAO. In this paper, we describe YAO, its architecture, its capabilities, the ELT-specific challenges and optimisations, and finally its performance. As an example, execution speed ranges from 5 iterations per second for a 6 LGS 60x60 subapertures Shack-Hartmann Wavefront sensor Laser Tomography AO system (including full physical image formation and detector characteristics) up to over 30 iterations/s for a single NGS AO system.

  18. Curvature adaptive optics and low light imaging

    NASA Astrophysics Data System (ADS)

    Ftaclas, C.; Chun, M.; Kuhn, J.; Ritter, J.

    We review the basic approach of curvature adaptive optics (AO) and show how its many advantages arise. A curvature wave front sensor (WFS) measures exactly what a curvature deformable mirror (DM) generates. This leads to the computational and operational simplicity of a nearly diagonal control matrix. The DM automatically reconstructs the wave front based on WFS curvature measurements. Thus, there is no formal wave front reconstruction. This poses an interesting challenge to post-processing of AO images. Physical continuity of the DM and the reconstruction of phase from wave front curvature data assure that each actuated region of the DM corrects local phase, tip-tilt and focus. This gain in per-channel correction efficiency, combined with the need for only one pixel per channel detector reads in the WFS allows the use of photon counting detectors for wave front sensing. We note that the use of photon counting detectors implies penalty-free combination of correction channels either in the WFS or on the DM. This effectively decouples bright and faint source performance in that one no longer predicts the other. The application of curvature AO to the low light moving target detection problem, and explore the resulting challenges to components and control systems. Rapidly moving targets impose high-speed operation posing new requirements unique to curvature components. On the plus side, curvature wave front sensors, unlike their Shack-Hartmann counterparts, are tunable for optimum sensitivity to seeing and we are examining autonomous optimization of the WFS to respond to rapid changes in seeing.

  19. Adaptive Resource Management Technology for Satellite Constellations

    NASA Technical Reports Server (NTRS)

    Welch, Lonnie; Tjaden, Brett; Pfarr, Barbara B.; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    This manuscript describes the Sensor Web Adaptive Resource Manager (SWARM) project. The primary focus of the project is on the design and prototyping of middleware for managing computing and network resources in a way that enables the information systems of satellite constellations to provide realtime performance within dynamic environments. The middleware has been prototyped, and it has been evaluated by employing it to manage a pool of distributed resources for the ITOS (Integrated Test and Operations System) satellite command and control software system. The design of the middleware is discussed and a summary of the evaluation effort is provided.

  20. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain

    NASA Astrophysics Data System (ADS)

    Pedrazzani, Mélanie; Loriette, Vincent; Tchenio, Paul; Benrezzak, Sakina; Nutarelli, Daniele; Fragola, Alexandra

    2016-03-01

    We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain. We present a detailed characterization of the system performances. We prove that the gain brought to optical sectioning by realizing structured illumination microscopy with adaptive optics down to 50 μm deep inside living Drosophila brain.

  1. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain.

    PubMed

    Pedrazzani, Mélanie; Loriette, Vincent; Tchenio, Paul; Benrezzak, Sakina; Nutarelli, Daniele; Fragola, Alexandra

    2016-03-01

    We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain. We present a detailed characterization of the system performances. We prove that the gain brought to optical sectioning by realizing structured illumination microscopy with adaptive optics down to 50 μm deep inside living Drosophila brain.

  2. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-09-07

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  3. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  4. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-09-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  5. Solar adaptive optics: specificities, lessons learned, and open alternatives

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Marino, J.; Asensio Ramos, A.; Collados, M.; Montoya, L.; Tallon, M.

    2016-07-01

    First on sky adaptive optics experiments were performed on the Dunn Solar Telescope on 1979, with a shearing interferometer and limited success. Those early solar adaptive optics efforts forced to custom-develop many components, such as Deformable Mirrors and WaveFront Sensors, which were not available at that time. Later on, the development of the correlation Shack-Hartmann marked a breakthrough in solar adaptive optics. Since then, successful Single Conjugate Adaptive Optics instruments have been developed for many solar telescopes, i.e. the National Solar Observatory, the Vacuum Tower Telescope and the Swedish Solar Telescope. Success with the Multi Conjugate Adaptive Optics systems for GREGOR and the New Solar Telescope has proved to be more difficult to attain. Such systems have a complexity not only related to the number of degrees of freedom, but also related to the specificities of the Sun, used as reference, and the sensing method. The wavefront sensing is performed using correlations on images with a field of view of 10", averaging wavefront information from different sky directions, affecting the sensing and sampling of high altitude turbulence. Also due to the low elevation at which solar observations are performed we have to include generalized fitting error and anisoplanatism, as described by Ragazzoni and Rigaut, as non-negligible error sources in the Multi Conjugate Adaptive Optics error budget. For the development of the next generation Multi Conjugate Adaptive Optics systems for the Daniel K. Inouye Solar Telescope and the European Solar Telescope we still need to study and understand these issues, to predict realistically the quality of the achievable reconstruction. To improve their designs other open issues have to be assessed, i.e. possible alternative sensing methods to avoid the intrinsic anisoplanatism of the wide field correlation Shack-Hartmann, new parameters to estimate the performance of an adaptive optics solar system, alternatives to

  6. Role of adaptive management for watershed councils.

    PubMed

    Habron, Geoffrey

    2003-01-01

    Recent findings in the Umpqua River Basin in southwestern Oregon illustrate a tension in the rise of both community-based and watershed-based approaches to aquatic resource management. While community-based institutions such as watershed councils offer relief from the government control landowners dislike, community-based approaches impinge on landowners' strong belief in independence and private property rights. Watershed councils do offer the local control landowners advocate; however, institutional success hinges on watershed councils' ability to reduce bureaucracy, foster productive discussion and understanding among stakeholders, and provide financial, technical, and coordination support. Yet, to accomplish these tasks current watershed councils rely on the fiscal and technical capital of the very governmental entities that landowners distrust. Adaptive management provides a basis for addressing the apparent tension by incorporating landowners' belief in environmental resilience and acceptance of experimentation that rejects "one size fits all solutions." Therefore community-based adaptive watershed management provides watershed councils a framework that balances landowners' independence and fear of government intrusion, acknowledges the benefits of community cooperation through watershed councils, and enables ecological assessment of landowner-preferred practices. Community-based adaptive management integrates social and ecological suitability to achieve conservation outcomes by providing landowners the flexibility to use a diverse set of conservation practices to achieve desired ecological outcomes, instead of imposing regulations or specific practices.

  7. Astronomy Applications of Adaptive Optics at Lawrence Livermore National Laboratory

    SciTech Connect

    Bauman, B J; Gavel, D T

    2003-04-23

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  8. Laser guide star adaptive optics: Present and future

    SciTech Connect

    Olivier, S.S.; Max, C.E.

    1993-03-01

    Feasibility demonstrations using one to two meter telescopes have confirmed the utility of laser beacons as wavefront references for adaptive optics systems. Laser beacon architectures suitable for the new generation of eight and ten meter telescopes are presently under study. This paper reviews the concept of laser guide star adaptive optics and the progress that has been made by groups around the world implementing such systems. A description of the laser guide star program at LLNL and some experimental results is also presented.

  9. How adaptive optics may have won the Cold War

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    2013-05-01

    While there are many theories and studies concerning the end of the Cold War, circa 1990, I postulate that one of the contributors to the result was the development of adaptive optics. The emergence of directed energy weapons, specifically space-based and ground-based high energy lasers made practicable with adaptive optics, showed that a successful defense against inter-continental ballistic missiles was not only possible, but achievable in a reasonable period of time.

  10. Solar adaptive optics at the Observatorio del Teide, Tenerife

    NASA Astrophysics Data System (ADS)

    Soltau, Dirk; Berkefeld, Thomas; Schmidt, Dirk; von der Lühe, Oskar

    2013-10-01

    Observing the Sun with high angular resolution is difficult because the turbulence in the atmosphere is strongest during day time. In this paper we describe the principles of solar adaptive optics exemplified by the two German solar telescopes VTT and GREGOR at the Observatorio del Teide. With theses systems we obtain near diffraction limited images of the Sun. Ways to overcome the limits of conventional AO by applying multiconjugate adaptive optics (MCAO) are shown.

  11. Guide star lasers for adaptive optics

    NASA Astrophysics Data System (ADS)

    Roberts, William Thomas, Jr.

    Exploitation of the imaging capabilities of the new generation of ground-based astronomical telescopes relies heavily on Adaptive Optics (AO). Current AO system designs call for sodium guide star lasers capable of producing at least eight Watts of power tuned to the peak of the sodium D2 line, with a high duty cycle to avoid saturation, and with 0.5-1.0 GHz spectral broadening. This work comprises development and testing of six candidate laser systems and materials which may afford a path to achieving these goals. An end-pumped CW dye laser producing 4.0 Watts of tuned output power was developed and used to obtain the first accurate measurement of sodium layer scattering efficiency. Methods of optimizing the laser output through improving pump overlap efficiency and reducing the number of intracavity scattering surfaces are covered. The 1181 nm fluorescence peak of Mn5+ ion in Ba5 (PO4)3Cl could be tuned and doubled to reach 589 nm. While efforts to grow this crystal were under way, the Mn5+ ion in natural apatite (Ca5(PO4)3F) was studied as a potential laser material. Fluorescence saturation measurements and transmission saturation are presented, as well as efforts to obtain CW lasing in natural apatite. A Q-switched laser color-center laser in LiF : F-2 was developed and successfully tuned and doubled to the sodium D 2 line. Broad-band lasing of 80 mW and tuned narrow-band lasing of 35 mW at 1178 nm were obtained with 275 mW of input pump power at 1064 nm. The measured thermal properties of this material indicate its potential for scaling to much higher power. A Q-switched intracavity Raman laser was developed in which CaWO 4 was used to shift a Nd:YAG laser, the frequency-doubled output of which was centered at 589.3 nm. To obtain light at 589.0 nm, a compositionally tuned pump laser of Nd : Y3Ga1.1Al3.9O 12 was produced which generated the desired shift, but was inhomogeneous broadened, limiting the tunable power of the material. Finally, temperature tuning of

  12. Adaptive optics in digital micromirror based confocal microscopy

    NASA Astrophysics Data System (ADS)

    Pozzi, P.; Wilding, D.; Soloviev, O.; Vdovin, G.; Verhaegen, M.

    2016-03-01

    This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light propagates. In its most classical form, mostly used in astronomical imaging, adaptive optics is achieved through a closed loop in which the actuators of a deformable mirror are driven by a wavefront sensor. This approach is severely limited in fluorescence microscopy, as the use of a wavefront sensor requires the presence of a bright, point like source in the field of view, a condition rarely satisfied in microscopy samples. Previously reported approaches to adaptive optics in fluorescence microscopy are therefore limited to the inclusion of fluorescent microspheres in the sample, to use as bright stars for wavefront sensors, or time consuming sensorless optimization procedures, requiring several seconds of optimization before the acquisition of a single image. We propose an alternative approach to the problem, implementing sensorless adaptive optics in a Programmable array microscope. A programmable array microscope is a microscope based on a digital micromirror device, in which the single elements of the micromirror act both as point sources and pinholes.

  13. Optical and control modeling for adaptive beam-combining experiments

    SciTech Connect

    Gruetzner, J.K.; Tucker, S.D.; Neal, D.R.; Bentley, A.E.; Simmons-Potter, K.

    1995-08-01

    The development of modeling algorithms for adaptive optics systems is important for evaluating both performance and design parameters prior to system construction. Two of the most critical subsystems to be modeled are the binary optic design and the adaptive control system. Since these two are intimately related, it is beneficial to model them simultaneously. Optic modeling techniques have some significant limitations. Diffraction effects directly limit the utility of geometrical ray-tracing models, and transform techniques such as the fast fourier transform can be both cumbersome and memory intensive. The authors have developed a hybrid system incorporating elements of both ray-tracing and fourier transform techniques. In this paper they present an analytical model of wavefront propagation through a binary optic lens system developed and implemented at Sandia. This model is unique in that it solves the transfer function for each portion of a diffractive optic analytically. The overall performance is obtained by a linear superposition of each result. The model has been successfully used in the design of a wide range of binary optics, including an adaptive optic for a beam combining system consisting of an array of rectangular mirrors, each controllable in tip/tilt and piston. Wavefront sensing and the control models for a beam combining system have been integrated and used to predict overall systems performance. Applicability of the model for design purposes is demonstrated with several lens designs through a comparison of model predictions with actual adaptive optics results.

  14. Adaptable data management for systems biology investigations

    PubMed Central

    Boyle, John; Rovira, Hector; Cavnor, Chris; Burdick, David; Killcoyne, Sarah; Shmulevich, Ilya

    2009-01-01

    Background Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage. Results The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry). We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents. Conclusion Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community. PMID:19265554

  15. Adaptive optics at the University of Hawaii II: control system with real-time diagnostics

    NASA Astrophysics Data System (ADS)

    Anuskiewicz, Jim; Northcott, Malcolm J.; Graves, J. Elon

    1994-05-01

    The University of Hawaii experimental adaptive optics system is controlled by dual SPARC single board computers on a VME backplane. One processor is dedicated to the feedback loop. The second processor manages loop data flow to a workstation and transfers new control parameters to the loop processor without stopping the loop. This system facilitates cause-effect analysis of the various system parameters.

  16. Adaptive Management for Urban Watersheds: The Slavic Village Pilot Project

    EPA Science Inventory

    Adaptive management is an environmental management strategy that uses an iterative process of decision-making to reduce the uncertainty in environmental management via system monitoring. A central tenet of adaptive management is that management involves a learning process that ca...

  17. 75 FR 34476 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Interior (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide recommendations to the...

  18. 71 FR 44042 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-08-03

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and provide recommendations to the Secretary...

  19. 73 FR 45070 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2008-08-01

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Interior (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide recommendations to the...

  20. Airport Characterization for the Adaptation of Surface Congestion Management Approaches

    DTIC Science & Technology

    2013-02-01

    1 of 2 Airport Characterization for the Adaptation of Surface Congestion Management Approaches Melanie Sandberg, Tom Reynolds...TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Airport Characterization for the Adaptation of Surface Congestion Management...1 Airport Characterization for the Adaptation of Surface Congestion Management Approaches* Melanie

  1. A dual-modal retinal imaging system with adaptive optics

    PubMed Central

    Meadway, Alexander; Girkin, Christopher A.; Zhang, Yuhua

    2013-01-01

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated. PMID:24514529

  2. Amplitude variations on the Extreme Adaptive Optics testbed

    SciTech Connect

    Evans, J; Thomas, S; Dillon, D; Gavel, D; Phillion, D; Macintosh, B

    2007-08-14

    High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. At the Laboratory for Adaptive Optics on the Extreme Adaptive Optics testbed, we have already demonstrated wavefront control of better than 1 nm rms within controllable spatial frequencies. Corresponding contrast measurements, however, are limited by amplitude variations, including those introduced by the micro-electrical-mechanical-systems (MEMS) deformable mirror. Results from experimental measurements and wave optic simulations of amplitude variations on the ExAO testbed are presented. We find systematic intensity variations of about 2% rms, and intensity variations with the MEMS to be 6%. Some errors are introduced by phase and amplitude mixing because the MEMS is not conjugate to the pupil, but independent measurements of MEMS reflectivity suggest that some error is introduced by small non-uniformities in the reflectivity.

  3. The Atmosphere of Uranus as Imaged with Keck Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Hammel, H. B.; de Pater, I.; Gibbard, S. G.; Lockwood, G. W.; Rages, K.

    2004-12-01

    Adaptive optics imaging of Uranus was obtained with NIRC2 on the Keck II 10-meter telescope in October 2003 and July 2004 through J, H, and K' filters. Dozens of discrete features were detected in the atmosphere of Uranus. We report the first measurements of winds northward of +43 deg, the first direct measurement of equatorial winds, and the highest wind velocity seen yet on Uranus. At northern mid-latitudes, the winds may have accelerated when compared to earlier HST and Keck observations; southern wind speeds have not changed since Voyager measurements in 1986. The equator of Uranus exhibits a subtle wave structure, with diffuse patches roughly every 30 degs in longitude. There is no sign of a northern "polar collar" as is seen in the south, but a number of discrete features seen at the "expected" latitudes may signal its early stages of development. The largest cloud features on Uranus show complex structure extending over tens of degrees. On 4 July 2004, we detected a southern hemispheric cloud feature on Uranus at K', the first detection of a southern feature at or longward of 2 microns. H images showed an extended structure whose condensed core was co-located with the K'-bright feature. The core exhibited marked brightness variation, fading within just a few days. The initial brightness at K' indicates that the core's scattering particles reached altitudes above the 1-bar level, with the extended H feature residing below 1.1 bars. The core's rapid disappearance at K' indicates dynamical processes in the local vertical aerosol structure. HBH acknowledges support from NASA grants NAG5-11961 and NAG5-10451. IdP acknowledges support from NSF and the Technology Center for Adaptive Optics, managed by UCSC under cooperative agreement No. AST-9876783. SGG's work was performed under the auspices of the U.S. DoE National Nuclear Security Administration by the UC, LLNL under contract No. W-7405-Eng-48.

  4. Adaptive Management as an Effective Strategy: Interdisciplinary Perceptions for Natural Resources Management

    NASA Astrophysics Data System (ADS)

    Dreiss, Lindsay M.; Hessenauer, Jan-Michael; Nathan, Lucas R.; O'Connor, Kelly M.; Liberati, Marjorie R.; Kloster, Danielle P.; Barclay, Janet R.; Vokoun, Jason C.; Morzillo, Anita T.

    2017-02-01

    Adaptive management is a well-established approach to managing natural resources, but there is little evidence demonstrating effectiveness of adaptive management over traditional management techniques. Peer-reviewed literature attempts to draw conclusions about adaptive management effectiveness using social perceptions, but those studies are largely restricted to employees of US federal organizations. To gain a more comprehensive insight into perceived adaptive management effectiveness, this study aimed to broaden the suite of disciplines, professional affiliations, and geographic backgrounds represented by both practitioners and scholars. A questionnaire contained a series of questions concerning factors that lead to or inhibit effective management, followed by another set of questions focused on adaptive management. Using a continuum representing strategies of both adaptive management and traditional management, respondents selected those strategies that they perceived as being effective. Overall, characteristics (i.e., strategies, stakeholders, and barriers) identified by respondents as contributing to effective management closely aligned with adaptive management. Responses were correlated to the type of adaptive management experience rather than an individual's discipline, occupational, or regional affiliation. In particular, perceptions of characteristics contributing to adaptive management effectiveness varied between respondents who identified as adaptive management scholars (i.e., no implementation experience) and adaptive management practitioners. Together, these results supported two concepts that make adaptive management effective: practitioners emphasized adaptive management's value as a long-term approach and scholars noted the importance of stakeholder involvement. Even so, more communication between practitioners and scholars regarding adaptive management effectiveness could promote interdisciplinary learning and problem solving for improved

  5. Horizontal Path Laser Communications Employing MEMS Adaptive Optics Correction

    SciTech Connect

    Thompson, C A; Wilks, S C; Brase, J M; Young, R A; Johnson, G W; Ruggiero, A J

    2001-09-05

    Horizontal path laser communications are beginning to provide attractive alternatives for high-speed optical communications, In particular, companies are beginning to sell fiberless alternatives for intranet and sporting event video. These applications are primarily aimed at short distance applications (on the order of 1 km pathlength). There exists a potential need to extend this pathlength to distances much greater than a 1km. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method of improved signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors as well as improved communication and computational components. In this paper we detail two Adaptive Optics approaches for improved through-put, the first is the compensated receiver (the traditional Adaptive Optics approach), the second is the compensated transmitter/receiver. The second approach allows for correction of the optical wavefront before transmission from the transmitter and prior to detection at the receiver.

  6. Adaptive management of natural resources-framework and issues

    USGS Publications Warehouse

    Williams, B.K.

    2011-01-01

    Adaptive management, an approach for simultaneously managing and learning about natural resources, has been around for several decades. Interest in adaptive decision making has grown steadily over that time, and by now many in natural resources conservation claim that adaptive management is the approach they use in meeting their resource management responsibilities. Yet there remains considerable ambiguity about what adaptive management actually is, and how it is to be implemented by practitioners. The objective of this paper is to present a framework and conditions for adaptive decision making, and discuss some important challenges in its application. Adaptive management is described as a two-phase process of deliberative and iterative phases, which are implemented sequentially over the timeframe of an application. Key elements, processes, and issues in adaptive decision making are highlighted in terms of this framework. Special emphasis is given to the question of geographic scale, the difficulties presented by non-stationarity, and organizational challenges in implementing adaptive management. ?? 2010.

  7. Adaptive management of social-ecological systems: the path forward

    USGS Publications Warehouse

    Allen, Craig R.

    2015-01-01

    Adaptive management remains at the forefront of environmental management nearly 40 years after its original conception, largely because we have yet to develop other methodologies that offer the same promise. Despite the criticisms of adaptive management and the numerous failed attempts to implement it, adaptive management has yet to be replaced with a better alternative. The concept persists because it is simple, allows action despite uncertainty, and fosters learning. Moving forward, adaptive management of social-ecological systems provides policymakers, managers and scientists a powerful tool for managing for resilience in the face of uncertainty.

  8. Digital adaptive optics line-scanning confocal imaging system.

    PubMed

    Liu, Changgeng; Kim, Myung K

    2015-01-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  9. Digital adaptive optics line-scanning confocal imaging system

    PubMed Central

    Liu, Changgeng; Kim, Myung K.

    2015-01-01

    Abstract. A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea. PMID:26140334

  10. Satellite Imaging with Adaptive Optics on a 1 M Telescope

    NASA Astrophysics Data System (ADS)

    Bennet, F.; Price, I.; Rigaut, F.; Copeland, M.

    2016-09-01

    The Research School of Astronomy and Astrophysics at the Mount Stromlo Observatory in Canberra, Australia, have been developing adaptive optic (AO) systems for space situational awareness applications. We report on the development and demonstration of an AO system for satellite imaging using a 1 m telescope. The system uses the orbiting object as a natural guide star to measure atmospheric turbulence, and a deformable mirror to provide an optical correction. The AO system utilised modern, high speed and low noise EMCCD technology on both the wavefront sensor and imaging camera to achieve high performance, achieving a Strehl ratio in excess of 30% at 870 nm. Images are post processed with lucky imaging algorithms to further improve the final image quality. We demonstrate the AO system on stellar targets and Iridium satellites, achieving a near diffraction limited full width at half maximum. A specialised realtime controller allows our system to achieve a bandwidth above 100 Hz, with the wavefront sensor and control loop running at 2 kHz. The AO systems we are developing show how ground-based optical sensors can be used to manage the space environment. AO imaging systems can be used for satellite surveillance, while laser ranging can be used to determine precise orbital data used in the critical conjunction analysis required to maintain a safe space environment. We have focused on making this system compact, expandable, and versatile. We are continuing to develop this platform for other space situational awareness applications such as geosynchronous satellite astrometry, space debris characterisation, satellite imaging, and ground-to-space laser communication.

  11. An adaptive optics biomicroscope for mouse retinal imaging

    NASA Astrophysics Data System (ADS)

    Biss, David P.; Webb, Robert H.; Zhou, Yaopeng; Bifano, Thomas G.; Zamiri, Parisa; Lin, Charles P.

    2007-02-01

    In studying retinal disease on a microscopic level, in vivo imaging has allowed researchers to track disease progression in a single animal over time without sacrificing large numbers of animals for statistical studies. Historically, a drawback of in vivo retinal imaging, when compared to ex vivo imaging, is decreased image resolution due to aberrations present in the mouse eye. Adaptive optics has successfully corrected phase aberrations introduced the eye in ophthalmic imaging in humans. We are using adaptive optics to correct for aberrations introduced by the mouse eye in hopes of achieving cellular resolution retinal images of mice in vivo. In addition to using a wavefront sensor to drive the adaptive optic element, we explore the using image data to correct for wavefront aberrations introduced by the mouse eye. Image data, in the form of the confocal detection pinhole intensity are used as the feedback mechanism to control the MEMS deformable mirror in the adaptive optics system. Correction for wavefront sensing and sensor-less adaptive optics systems are presented.

  12. SPECKLE NOISE SUBTRACTION AND SUPPRESSION WITH ADAPTIVE OPTICS CORONAGRAPHIC IMAGING

    SciTech Connect

    Ren Deqing; Dou Jiangpei; Zhang Xi; Zhu Yongtian

    2012-07-10

    Future ground-based direct imaging of exoplanets depends critically on high-contrast coronagraph and wave-front manipulation. A coronagraph is designed to remove most of the unaberrated starlight. Because of the wave-front error, which is inherit from the atmospheric turbulence from ground observations, a coronagraph cannot deliver its theoretical performance, and speckle noise will limit the high-contrast imaging performance. Recently, extreme adaptive optics, which can deliver an extremely high Strehl ratio, is being developed for such a challenging mission. In this publication, we show that barely taking a long-exposure image does not provide much gain for coronagraphic imaging with adaptive optics. We further discuss a speckle subtraction and suppression technique that fully takes advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics. This technique works well for coronagraphic imaging with conventional adaptive optics with a moderate Strehl ratio, as well as for extreme adaptive optics with a high Strehl ratio. We show how to substrate and suppress speckle noise efficiently up to the third order, which is critical for future ground-based high-contrast imaging. Numerical simulations are conducted to fully demonstrate this technique.

  13. An adaptive interferometer for optical testing .

    NASA Astrophysics Data System (ADS)

    Pariani, G.; Colella, L.; Bertarelli, C.; Aliverti, M.; Riva, M.; Bianco, A.

    Interferometry is a well-established technique to test optical elements. However, its use is challenging in the case of free-form and aspheric elements, due to the lack of the reference optics. The proposed idea concerns the development of a versatile interferometer, where its reference arm is equipped with a reprogrammable Computer Generated Hologram. This principle takes advantage from our study on photochromic materials for optical applications, which shows a strong and reversible modulation of transparency in the visible region. The encoding of the desired hologram can be done off-line, or directly into the interferometer, and different patterns may be realized sequentially after the erasing of the previous hologram. We report on the present state of the research and on the future perspectives. skip=5pt

  14. Managing Climate Change Refugia for Climate Adaptation ...

    EPA Pesticide Factsheets

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, locations that may be unusually buffered from climate change effects so as to increase persistence of valued resources. Here we distinguish between paleoecological and contemporary viewpoints, characterize physical and ecological processes that create and maintain climate change refugia, summarize the process of identifying and mapping them, and delineate how refugia can fit into the existing framework of natural resource management. We also suggest three primary courses of action at these sites: prioritization, protection, and propagation. Although not a panacea, managing climate change refugia can be an important adaptation option for conserving valuable resources in the face of ongoing and future climate change. “In a nutshell” (100 words) • Climate change refugia are defined as areas relatively buffered from contemporary climate change, enabling persistence of valued physical, ecological, and cultural resources. • Refugia can be incorporated as key components of a climate adaptation strategy because their prioritization by management may enable their associated resources to persist locally and eventually spread to future suitable habitat. • Steps for

  15. Very Large Telescope Adaptive Optics Community Days Report on the ESO Workshop

    NASA Astrophysics Data System (ADS)

    Leibundgut, B.; Kasper, M.; Kuntschner, H.

    2016-12-01

    The future of adaptive optics (AO) instruments at the VLT was discussed during a two-day workshop. Three major directions emerged from these discussions: adaptive optics in the optical; multi-object adaptive optics (MOAO); and extreme adaptive optics (XAO). The science cases for these three options were presented and the discussions are summarised. ESO is now planning to provide detailed science cases for an optical AO system and to prepare upgrade plans for XAO and MOAO.

  16. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  17. Beaconless adaptive-optics technique for HEL beam control

    NASA Astrophysics Data System (ADS)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  18. The Surface of Titan from Adaptive Optics Observations

    NASA Astrophysics Data System (ADS)

    Gibbard, S. G.; Macintosh, B.; Max, C.; Roe, H.; de Pater, I.; Young, E. F.; McKay, C. P.

    Saturn's largest moon Titan is the only satellite in the solar system with a substantial atmosphere. Photolysis of methane creates a hydrocarbon haze in Titan's atmosphere that is opaque to visible light. The new adaptive optics system on the 10-meter W.M. Keck Telescope enables us to observe Titan with a resolution of 0.04 arcseconds, or 20 resolution elements across the disk. By observing at near-infrared wavelengths that are methane band windows we can see through Titan's hydrocarbon haze to the surface beneath. Recent adaptive optics images of Titan both in broadband (J, H, and K) filters and in narrowband filters that selectively probe Titan's surface and atmosphere allow us to determine surface albedo and properties of the hydrocarbon haze layer. Future observations will include high-resolution spectroscopy coupled with adaptive optics to obtain spectra of individual surface features.

  19. Wavelet methods in multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Helin, T.; Yudytskiy, M.

    2013-08-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.

  20. TOPICAL REVIEW: Inverse problems in astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Ellerbroek, B. L.; Vogel, C. R.

    2009-06-01

    Adaptive optics (AO) is a technology used in ground-based astronomy to correct for the wavefront aberrations and loss of image quality caused by atmospheric turbulence. Provided some difficult technical problems can be overcome, AO will enable future astronomers to achieve nearly diffraction-limited performance with the extremely large telescopes that are currently under development, thereby greatly improving spatial resolution, spectral resolution and observing efficiency which will be achieved. The goal of this topical review is to present to the inverse problems community a representative sample of these problems. In this review, we first present a tutorial overview of the mathematical models and techniques used in current AO systems. We then examine in detail the following topics: laser guidestar adaptive optics, multi-conjugate and multi-object adaptive optics, high-contrast imaging and deformable mirror modeling and parameter identification.

  1. Managing climate change refugia for climate adaptation

    USGS Publications Warehouse

    Morelli, Toni; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  2. Adaptive momentum management for large space structures

    NASA Technical Reports Server (NTRS)

    Hahn, E.

    1987-01-01

    Momentum management is discussed for a Large Space Structure (LSS) with the structure selected configuration being the Initial Orbital Configuration (IOC) of the dual keel space station. The external forces considered were gravity gradient and aerodynamic torques. The goal of the momentum management scheme developed is to remove the bias components of the external torques and center the cyclic components of the stored angular momentum. The scheme investigated is adaptive to uncertainties of the inertia tensor and requires only approximate knowledge of principle moments of inertia. Computational requirements are minimal and should present no implementation problem in a flight type computer and the method proposed is shown to be effective in the presence of attitude control bandwidths as low as .01 radian/sec.

  3. Managing Climate Change Refugia for Climate Adaptation

    PubMed Central

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  4. Managing Climate Change Refugia for Climate Adaptation.

    PubMed

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  5. Adaptive interferometry for high sensitivity optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Peigné, A.; Bortolozzo, U.; Residori, S.; Molin, S.; Dolfi, D.; Huignard, J.-P.

    2015-09-01

    We report on the use of an adaptive holographic interferometer, based on a liquid crystal light valve, to achieve phase shift measurements in an optical fiber. Owing to the physical mechanisms involved, the interferometer adapts itself to slow phase variations. As a consequence, it is possible to use a multimode fiber for sensing, which improves the sensitivity. Moreover, a distributed architecture relying on phase-OTDR principle is presented and a localization experiment is performed.

  6. Adaptive optics technology for high-resolution retinal imaging.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2012-12-27

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  7. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  8. A geometric view of adaptive optics control: boiling atmosphere model

    NASA Astrophysics Data System (ADS)

    Wiberg, Donald M.; Max, Claire E.; Gavel, Donald T.

    2004-10-01

    The separation principle of optimal adaptive optics control is derived, and definitions of controllability and observability are introduced. An exact finite dimensional state space representation of the control system dynamics is obtained without the need for truncation in modes such as Zernikes. The uncertainty of sensing uncontrollable modes confuses present adaptive optics controllers. This uncertainty can be modeled by a Kalman filter. Reducing this uncertainty permits increased gain, increasing the Strehl, which is done by an optimal control law derived here. A general model of the atmosphere is considered, including boiling.

  9. PSF halo reduction in adaptive optics using dynamic pupil masking.

    PubMed

    Osborn, James; Myers, Richard M; Love, Gordon D

    2009-09-28

    We describe a method to reduce residual speckles in an adaptive optics system which add to the halo of the point spread function (PSF). The halo is particularly problematic in astronomical applications involving the detection of faint companions. Areas of the pupil are selected where the residual wavefront aberrations are large and these are masked using a spatial light modulator. The method is also suitable for smaller telescopes without adaptive optics as a relatively simple method to increase the resolution of the telescope. We describe the principle of the technique and show simulation results.

  10. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems.

    PubMed

    Downie, J D; Goodman, J W

    1989-10-15

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by measuring and correcting for atmospherically induced wavefront aberrations. The necessary control computations during each cycle will take a finite amount of time, which adds to the residual error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper investigates this possibility by studying the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for adaptive optics use.

  11. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    PubMed

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  12. Characterization and Operation of Liquid Crystal Adaptive Optics Phoropter

    SciTech Connect

    Awwal, A; Bauman, B; Gavel, D; Olivier, S; Jones, S; Hardy, J L; Barnes, T; Werner, J S

    2003-02-05

    Adaptive optics (AO), a mature technology developed for astronomy to compensate for the effects of atmospheric turbulence, can also be used to correct the aberrations of the eye. The classic phoropter is used by ophthalmologists and optometrists to estimate and correct the lower-order aberrations of the eye, defocus and astigmatism, in order to derive a vision correction prescription for their patients. An adaptive optics phoropter measures and corrects the aberrations in the human eye using adaptive optics techniques, which are capable of dealing with both the standard low-order aberrations and higher-order aberrations, including coma and spherical aberration. High-order aberrations have been shown to degrade visual performance for clinical subjects in initial investigations. An adaptive optics phoropter has been designed and constructed based on a Shack-Hartmann sensor to measure the aberrations of the eye, and a liquid crystal spatial light modulator to compensate for them. This system should produce near diffraction-limited optical image quality at the retina, which will enable investigation of the psychophysical limits of human vision. This paper describes the characterization and operation of the AO phoropter with results from human subject testing.

  13. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  14. Solar multi-conjugate adaptive optics based on high order ground layer adaptive optics and low order high altitude correction.

    PubMed

    Zhang, Lanqiang; Guo, Youming; Rao, Changhui

    2017-02-20

    Multi-conjugate adaptive optics (MCAO) is the most promising technique currently developed to enlarge the corrected field of view of adaptive optics for astronomy. In this paper, we propose a new configuration of solar MCAO based on high order ground layer adaptive optics and low order high altitude correction, which result in a homogeneous correction effect in the whole field of view. An individual high order multiple direction Shack-Hartmann wavefront sensor is employed in the configuration to detect the ground layer turbulence for low altitude correction. Furthermore, the other low order multiple direction Shack-Hartmann wavefront sensor supplies the wavefront information caused by high layers' turbulence through atmospheric tomography for high altitude correction. Simulation results based on the system design at the 1-meter New Vacuum Solar Telescope show that the correction uniform of the new scheme is obviously improved compared to conventional solar MCAO configuration.

  15. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.

    2015-03-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  16. Public access management as an adaptive wildlife management tool

    USGS Publications Warehouse

    Ouren, Douglas S.; Watts, Raymond D.

    2005-01-01

    One key issue in the Black Mesa – Black Canyon area is the interaction between motorized vehicles and. The working hypothesis for this study is that early season elk movement onto private lands and the National Park is precipitated by increased use of Off Highway Vehicles (OHV’s). Data on intensity of motorized use is extremely limited. In this study, we monitor intensity of motorized vehicle and trail use on elk movements and habitat usage and analyze interactions. If management agencies decide to alter accessibility, we will monitor wildlife responses to changes in the human-use regime. This provides a unique opportunity for adaptive management experimentation based on coordinated research and monitoring. The products from this project will provide natural resource managers across the nation with tools and information to better meet these resource challenges.

  17. Adaptive subwavelength control of nano-optical fields.

    PubMed

    Aeschlimann, Martin; Bauer, Michael; Bayer, Daniela; Brixner, Tobias; García de Abajo, F Javier; Pfeiffer, Walter; Rohmer, Martin; Spindler, Christian; Steeb, Felix

    2007-03-15

    Adaptive shaping of the phase and amplitude of femtosecond laser pulses has been developed into an efficient tool for the directed manipulation of interference phenomena, thus providing coherent control over various quantum-mechanical systems. Temporal resolution in the femtosecond or even attosecond range has been demonstrated, but spatial resolution is limited by diffraction to approximately half the wavelength of the light field (that is, several hundred nanometres). Theory has indicated that the spatial limitation to coherent control can be overcome with the illumination of nanostructures: the spatial near-field distribution was shown to depend on the linear chirp of an irradiating laser pulse. An extension of this idea to adaptive control, combining multiparameter pulse shaping with a learning algorithm, demonstrated the generation of user-specified optical near-field distributions in an optimal and flexible fashion. Shaping of the polarization of the laser pulse provides a particularly efficient and versatile nano-optical manipulation method. Here we demonstrate the feasibility of this concept experimentally, by tailoring the optical near field in the vicinity of silver nanostructures through adaptive polarization shaping of femtosecond laser pulses and then probing the lateral field distribution by two-photon photoemission electron microscopy. In this combination of adaptive control and nano-optics, we achieve subwavelength dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics. This experimental realization of theoretical suggestions opens a number of perspectives in coherent control, nano-optics, nonlinear spectroscopy, and other research fields in which optical investigations are carried out with spatial or temporal resolution.

  18. Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics - optical coherence tomography

    PubMed Central

    Lee, Sang-Hyuck; Werner, John S.; Zawadzki, Robert J.

    2013-01-01

    We present an aberration cancelling optical design for a reflective adaptive optics - optical coherence tomography (AO-OCT) retinal imaging system. The optical performance of this instrument is compared to our previous multimodal AO-OCT/AO-SLO retinal imaging system. The feasibility of new instrumentation for improved visualization of microscopic retinal structures is discussed. Examples of images acquired with this new AO-OCT instrument are presented. PMID:24298411

  19. Adapting inland fisheries management to a changing climate

    USGS Publications Warehouse

    Paukert, Craig; Glazer, Bob A.; Hansen, Gretchen J. A.; Irwin, Brian J.; Jacobson, Peter C.; Kershner, Jeffrey L.; Shuter, Brian J.; Whitney, James E.; Lynch, Abigail J.

    2016-01-01

    Natural resource decision makers are challenged to adapt management to a changing climate while balancing short-term management goals with long-term changes in aquatic systems. Adaptation will require developing resilient ecosystems and resilient management systems. Decision makers already have tools to develop or ensure resilient aquatic systems and fisheries such as managing harvest and riparian zones. Because fisheries management often interacts with multiple stakeholders, adaptation strategies involving fisheries managers and other partners focused on land use, policy, and human systems, coupled with long-term monitoring, are necessary for resilient systems. We show how agencies and organizations are adapting to a changing climate in Minnesota and Ontario lakes and Montana streams. We also present how the Florida Fish and Wildlife Commission created a management structure to develop adaptation strategies. These examples demonstrate how organizations and agencies can cope with climate change effects on fishes and fisheries through creating resilient management and ecological systems.

  20. 62 FR 66384 - Glen Canyon Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-12-18

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group AGENCY: Bureau of Reclamation, DOI. ACTION: Notice of public meeting. ] SUMMARY: The Glen Canyon Adaptive Management Work Group (AMWG) will... Work Group (1999 program, management objectives, approach to beach/habitat building flow...

  1. Adaptive Management of Social-Ecological Systems: The Path Forward

    EPA Science Inventory

    Adaptive management remains at the forefront of environmental management nearly 40 years after its original conception, largely because we have yet to develop other methodologies that offer the same promise. Despite the criticisms of adaptive management and the numerous failed at...

  2. Wavefront Control for Space Telescope Applications Using Adaptive Optics

    DTIC Science & Technology

    2007-12-01

    SPACE TELESCOPE APPLICATIONS USING ADAPTIVE OPTICS by Matthew R. Allen December 2007 Thesis Advisor: Brij Agrawal Second Reader...ASTRONAUTICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL December 2007 Author: Matthew R. Allen Approved by: Dr, Brij Agrawal...34 3. Direct Iterative Zonal Feedback Control ........................................ 35 4. Direct Iterative

  3. Laser guide stars and adaptive optics for astronomy

    SciTech Connect

    Max, C.E.

    1992-07-15

    Five papers are included: feasibility experiment for sodium-alyer laser guide stars at LLNL; system design for a high power sodium beacon laser; sodium guide star adaptive optics system for astronomical imaging in the visible and near-infrared; high frame-rate, large field wavefront sensor; and resolution limits for ground-based astronomical imaging. Figs, tabs, refs.

  4. eXtreme Adaptive Optics Planet Imager: Overview and status

    SciTech Connect

    Macintosh, B A; Bauman, B; Evans, J W; Graham, J; Lockwood, C; Poyneer, L; Dillon, D; Gavel, D; Green, J; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Sommargren, G; Soumer, R; Troy, M; Wallace, K; Wishnow, E

    2004-08-18

    As adaptive optics (AO) matures, it becomes possible to envision AO systems oriented towards specific important scientific goals rather than general-purpose systems. One such goal for the next decade is the direct imaging detection of extrasolar planets. An 'extreme' adaptive optics (ExAO) system optimized for extrasolar planet detection will have very high actuator counts and rapid update rates - designed for observations of bright stars - and will require exquisite internal calibration at the nanometer level. In addition to extrasolar planet detection, such a system will be capable of characterizing dust disks around young or mature stars, outflows from evolved stars, and high Strehl ratio imaging even at visible wavelengths. The NSF Center for Adaptive Optics has carried out a detailed conceptual design study for such an instrument, dubbed the eXtreme Adaptive Optics Planet Imager or XAOPI. XAOPI is a 4096-actuator AO system, notionally for the Keck telescope, capable of achieving contrast ratios >10{sup 7} at angular separations of 0.2-1'. ExAO system performance analysis is quite different than conventional AO systems - the spatial and temporal frequency content of wavefront error sources is as critical as their magnitude. We present here an overview of the XAOPI project, and an error budget highlighting the key areas determining achievable contrast. The most challenging requirement is for residual static errors to be less than 2 nm over the controlled range of spatial frequencies. If this can be achieved, direct imaging of extrasolar planets will be feasible within this decade.

  5. Alternative Optical Architectures for Multichannel Adaptive Optical Processing

    DTIC Science & Technology

    1993-04-01

    performance of the system can also be improved if we note that the input of EdO ) need not be centered at 9a but could be cenitred at -AO+A4La so that...characterization of a multichannel adaptive system that can perform cancellation of multiple wideband (In r!ll) interference sources in the presence...development of a single-loop electronic canceller for improved phase stability after the AO tapped delay line system . 14. SUBJECT TERMS ,I PANUI OF PACES

  6. Adaptive beam shaping by controlled thermal lensing in optical elements.

    PubMed

    Arain, Muzammil A; Quetschke, Volker; Gleason, Joseph; Williams, Luke F; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J; Mueller, Guido; Tanner, D B; Reitze, David H

    2007-04-20

    We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO(2) laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

  7. ARGOS - the Laser Star Adaptive Optics for LBT

    NASA Astrophysics Data System (ADS)

    Rabien, S.; Barl, L.; Beckmann, U.; Blümchen, T.; Bonaglia, M.; Borelli, J. L.; Brynnel, J.; Busoni, L.; Carbonaro, L.; Conot, C.; Davies, R.; Deysenroth, M.; Durney, O.; Elberich, M.; Esposito, S.; Gasho, V.; Gässler, W.; Gemperlein, H.; Genzel, R.; Green, R.; Haug, M.; Lloyd Hart, M.; Hubbard, P.; Kanneganti, S.; Kulas, M.; Noenickx, J.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Rix, H. W.; Salinari, P.; Schwab, C.; Storm, J.; Strüder, L.; Thiel, M.; Weigelt, G.; Ziegleder, J.; de Xivry, G. Orban

    2011-09-01

    We will present the design and status of ARGOS - the Laser Guide Star adaptive optics facility for the Large Binocular Telescope. By projecting a constellation of multiple laser guide stars above each of the 8.4m primary mirrors of the LBT, ARGOS in its ground layer mode will enable a wide field adaptive optics correction for multi object spectroscopy. ARGOS implements high power pulsed green lasers and makes use of Rayleigh scattering for the guide star creation. The geometric relations of this setup in guide star height vs. primary diameter are quite comparable to an ELT with sodium guide stars. The use of LBT's adaptive secondary mirror, gated wavefront sensors, a prime focus calibration system and the laser constellation shows several aspects that may be used as pathfinding technology for the planned ELTs. In already planned upgrade steps with a hybrid Sodium-Rayleigh combination ARGOS will enable MCAO and MOAO implementations at LBT allowing unique astronomical observations.

  8. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation

    PubMed Central

    Anthony Eikema, Diderik Jan A.; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A.; Scott-Pandorf, Melissa M.; Bloomberg, Jacob J.; Mukherjee, Mukul

    2015-01-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, is believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study we therefore investigated the effect of optic flow on tactile stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices, and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetry were

  9. Adaptive optics at Lick Observatory: System architecture and operations

    SciTech Connect

    Brase, J.M.; An, J.; Avicola, K.

    1994-03-01

    We will describe an adaptive optics system developed for the 1 meter Nickel and 3 meter Shane telescopes at Lick Observatory. Observing wavelengths will be in the visible for the 1 meter telescope and in the near IR on the 3 meter. The adaptive optics system design is based on a 69 actuator continuous surface deformable mirror and a Hartmann wavefront sensor equipped with an intensified CCD framing camera. The system has been tested at the Cassegrain focus of the 1 meter telescope where the subaperture size is 12.5 cm. The wavefront control calculations are performed on a four processor single board computer controlled by a Unix-based system. We will describe the optical system and give details of the wavefront control system design. We will present predictions of the system performance and initial test results.

  10. Modeling for deformable mirrors and the adaptive optics optimization program

    SciTech Connect

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.

    1997-03-18

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language.

  11. Adaptive optics at Lick Observatory: system architecture and operations

    NASA Astrophysics Data System (ADS)

    Brase, James M.; An, Jong; Avicola, Kenneth; Bissinger, Horst D.; Friedman, Herbert W.; Gavel, Donald T.; Johnston, Brooks; Max, Claire E.; Olivier, Scot S.; Presta, Robert W.; Rapp, David A.; Salmon, J. Thaddeus; Waltjen, Kenneth E.; Fisher, William A.

    1994-05-01

    We will describe an adaptive optics system developed for the 1 meter Nickel and 3 meter Shane telescopes at Lick Observatory. Observing wavelengths will be in the visible for the 1 meter telescope and in the near IR on the 3 meter. The adaptive optics system design is based on a 69 actuator continuous surface deformable mirror and a Hartmann wavefront sensor equipped with an intensified CCD framing camera. The system has been tested at the Cassegrain focus of the 1 meter telescope where the subaperture size is 12.5 cm. The wavefront control calculations are performed on a four processor single board computer controlled by a Unix-based system. We will describe the optical system and give details of the wavefront control system design. We will present predictions of the system performance and initial test results.

  12. The AVES adaptive optics spectrograph for the VLT: status report

    NASA Astrophysics Data System (ADS)

    Pallavicini, Roberto; Delabre, Bernard; Pasquini, Luca; Zerbi, Filippo M.; Bonanno, Giovanni; Comari, Maurizio; Conconi, Paolo; Mazzoleni, Ruben; Santin, Paolo; Damiani, Francesco; Di Marcantonio, Paolo; Franchini, Mariagrazia; Spano, Paolo; Bonifacio, P.; Catalano, Santo; Molaro, Paolo P.; Randich, S.; Rodono, Marcello

    2003-03-01

    We report on the status of AVES, the Adaptive-optics Visual Echelle Spectrograph proposed for the secondary port of the Nasmyth Adaptive Optics System (NAOS) recently installed at the VLT. AVES is an intermediate resolution (R ≍ 16,000) high-efficiency fixed- format echelle spectrograph which operates in the spectral band 500 - 1,000 nm. In addition to a high intrinsic efficiency, comparable to that of ESI at Keck II, it takes advantage of the adaptive optics correction provided by NAOS to reduce the sky and detector contribution in background-limited observations of weak sources, thus allowing a further magnitude gain with respect to comparable non-adaptive optics spectrographs. Simulations show that the instrument will be capable of reaching a magnitude V = 22.5 at S/N > 10 in two hours, two magnitudes weaker than GIRAFFE at the same resolution and 3 magnitudes weaker than the higher resolution UVES spectrograph. Imaging and coronographic functions have also been implemented in the design. We present the results of the final design study and we dicuss the technical and operational issues related to its implementation at the VLT as a visitor instrument. We also discuss the possibility of using a scaled-up non-adaptive optics version of the same design as an element of a double- or triple-arm intermediate-resolution spectrograph for the VLT. Such an option looks attractive in the context of a high-efficiency large-bandwidth (320 - 1,500 nm) spectrograph ("fast-shooter") being considered by ESO as a 2nd-generation VLT instrument.

  13. Adaptive wide-field optical tomography

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek; Intes, Xavier

    2013-03-01

    We describe a wide-field optical tomography technique, which allows the measurement-guided optimization of illumination patterns for enhanced reconstruction performances. The iterative optimization of the excitation pattern aims at reducing the dynamic range in photons transmitted through biological tissue. It increases the number of measurements collected with high photon counts resulting in a dataset with improved tomographic information. Herein, this imaging technique is applied to time-resolved fluorescence molecular tomography for preclinical studies. First, the merit of this approach is tested by in silico studies in a synthetic small animal model for typical illumination patterns. Second, the applicability of this approach in tomographic imaging is validated in vitro using a small animal phantom with two fluorescent capillaries occluded by a highly absorbing inclusion. The simulation study demonstrates an improvement of signal transmitted (˜2 orders of magnitude) through the central portion of the small animal model for all patterns considered. A corresponding improvement in the signal at the emission wavelength by 1.6 orders of magnitude demonstrates the applicability of this technique for fluorescence molecular tomography. The successful discrimination and localization (˜1 mm error) of the two objects with higher resolution using the optimized patterns compared with nonoptimized illumination establishes the improvement in reconstruction performance when using this technique.

  14. Adaptive Optics for Satellite Imaging and Space Debris Ranging

    NASA Astrophysics Data System (ADS)

    Bennet, F.; D'Orgeville, C.; Price, I.; Rigaut, F.; Ritchie, I.; Smith, C.

    Earth's space environment is becoming crowded and at risk of a Kessler syndrome, and will require careful management for the future. Modern low noise high speed detectors allow for wavefront sensing and adaptive optics (AO) in extreme circumstances such as imaging small orbiting bodies in Low Earth Orbit (LEO). The Research School of Astronomy and Astrophysics (RSAA) at the Australian National University have been developing AO systems for telescopes between 1 and 2.5m diameter to image and range orbiting satellites and space debris. Strehl ratios in excess of 30% can be achieved for targets in LEO with an AO loop running at 2kHz, allowing the resolution of small features (<30cm) and the capability to determine object shape and spin characteristics. The AO system developed at RSAA consists of a high speed EMCCD Shack-Hartmann wavefront sensor, a deformable mirror (DM), and realtime computer (RTC), and an imaging camera. The system works best as a laser guide star system but will also function as a natural guide star AO system, with the target itself being the guide star. In both circumstances tip-tilt is provided by the target on the imaging camera. The fast tip-tilt modes are not corrected optically, and are instead removed by taking images at a moderate speed (>30Hz) and using a shift and add algorithm. This algorithm can also incorporate lucky imaging to further improve the final image quality. A similar AO system for space debris ranging is also in development in collaboration with Electro Optic Systems (EOS) and the Space Environment Management Cooperative Research Centre (SERC), at the Mount Stromlo Observatory in Canberra, Australia. The system is designed for an AO corrected upward propagated 1064nm pulsed laser beam, from which time of flight information is used to precisely range the target. A 1.8m telescope is used for both propagation and collection of laser light. A laser guide star, Shack-Hartmann wavefront sensor, and DM are used for high order

  15. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  16. Adaptive optics high resolution spectroscopy: present status and future direction

    SciTech Connect

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  17. Enhanced link availability for free space optical time-frequency transfer using adaptive optic terminals

    NASA Astrophysics Data System (ADS)

    Petrillo, Keith G.; Dennis, Michael L.; Juarez, Juan C.; Souza, Katherine T.; Baumann, Esther; Bergeron, Hugo; Coddington, Ian; Deschenes, Jean-Daniel; Giorgetta, Fabrizio R.; Newbury, Nathan R.; Sinclair, Laura C.; Swann, William C.

    2016-05-01

    Optical time and frequency transfer offers extremely high precision wireless synchronization across multiple platforms for untethered distributed systems. While large apertures provide antenna gain for wireless systems which leads to robust link budgets and operation over increased distance, turbulence disrupts the beam and limits the full realization of the antenna gain. Adaptive optics can correct for phase distortions due to turbulence which potentially increases the total gain of the aperture to that for diffraction-limited operation. Here, we explore the use of adaptive optics terminals for free-space time and frequency transfer. We find that the requirement of reciprocity in a two-way time and frequency transfer link is maintained during the phase compensation of adaptive optics, and that the enhanced link budget due to aperture gain allows for potential system operation over ranges of at least tens of kilometers.

  18. The Management Role In Optical Programs

    NASA Astrophysics Data System (ADS)

    Galat, Edmund J.

    1981-03-01

    Throughout the 1960's and 1970's, numerous optical system programs have been carried from conception to operational status. Industry responsibilities include definition of and resolution of critical technology problems, development of conceptual designs for operational and support hardware, and finally, development and production of the operational hardware. This paper will discuss the role and the contributions of the management team in the evolution of three typical high technology optical programs. The first case study to be discussed is the role of management in a high-risk/high-payoff technology program, exemplified by the DARPA High Altitude Large Optics (HALO) Program. The second case study is based on Itek's involvement in the definition phases of the Space Tele-scope Program. The last case to be examined is the role of management in a major optical program directed at producing operational hardware in a timely, cost-effective manner.

  19. Laser beacon adaptive optics for power beaming applications

    SciTech Connect

    Fugate, R.Q.

    1994-12-31

    This paper discusses the laser beam control system requirements for power beaming applications. Power beaming applications include electric and thermal engine propulsion for orbit transfer, station changing, and recharging batteries. Beam control includes satellite acquisition, high accuracy tracking, higher order atmospheric compensation using adaptive optics, and precision point-ahead. Beam control may also include local laser beam clean-up with a low order adaptive optics system. This paper also presents results of tracking and higher-order correction experiments on astronomical objects. The results were obtained with a laser beacon adaptive optics system at Phillips Laboratory`s Starfire Optical Range near Albuquerque, NM. At a wavelength of 0.85 {mu}m, the author has achieved Strehl ratios of {approximately}0.50 using laser beacons and {approximately}0.65 using natural stars for exposures longer than one minute on objects of {approximately}8{sup th} magnitude. The resulting point spread function has a full width half maximum (FWHM) of 0.13 arcsec.

  20. Adaptive Optics System Design and Operation at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Olivier, S. S.; Max, C. E.; Avicola, K.; Bissinger, H. D.; Brase, J. M.; Friedman, H. W.; Gavel, D. T.; Salmon, J. T.; Waltjen, K. E.

    1993-12-01

    An adaptive optics system developed for the 40 inch Nickel and 120 inch Shane telescopes at Lick Observatory is described. The adaptive optics system design is based on a 69 actuator continuous-surface deformable mirror and a Hartmann wavefront sensor equipped with a commercial intensified CCD fast-framing camera. The system has been tested at the Cassegrain focus of the 40 inch Nickel telescope where the subaperture diameter is 12 cm. The subaperture slope and mirror control calculations are performed on a four processor single board computer controlled by a Unix workstation. This configuration is capable of up to 1 KHz frame rates. The optical configuration of the system and its interface to the telescope is described. Details of the control system design, operation, and user interface are given. Initial test results emphasizing control system operations of this adaptive optics system using natural reference stars on the 40 inch Nickel telescope are presented. The initial test results are compared to predictions from analyses and simulations. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  1. Lessons Learned from the Everglades Collaborative Adaptive Management Program

    EPA Science Inventory

    Recent technical papers explore whether adaptive management (AM) is useful for environmental management and restoration efforts and discuss the many challenges to overcome for successful implementation, especially for large-scale restoration programs (McLain and Lee 1996; Levine ...

  2. Deploying the testbed for the VLT adaptive optics facility: ASSIST

    NASA Astrophysics Data System (ADS)

    Stuik, Remko; La Penna, Paolo; Dupuy, Christophe; de Haan, Menno; Arsenault, Robin; Boland, Wilfried; Elswijk, Eddy; ter Horst, Rik; Hubin, Norbert; Madec, Pierre-Yves; Molster, Frank; Wiegers, Emiel

    2012-07-01

    The ESO Very Large Telescope Adaptive Optics Facility (VLT-AOF) will transform the VLT Unit Telescope 4 to an Adaptive Telescope. In absence of an intermediate focus before the Adaptive Secondary in this Ritchey-Chrétien type telescope and in order to reduce the testing and calibration of the system on-sky, ASSIST, The Adaptive Secondary Setup and Instrument STimulator, was developed. It provides an off-sky testing facility for the ESO AOF and will provide a full testing environment for three elements of the VLT Adaptive Optics Facility: the Deformable Secondary Mirror (DSM) and the AO modules for MUSE and HAWK-I (GALACSI and GRAAL). ASSIST was delivered to ESO Garching, where it was assembled and tested. Currently ASSIST is being integrated with the Deformable Secondary Mirror, the first step in the full system testing of the two AO systems for the VLT AOF on ASSIST. This paper briefly reviews the design and properties of ASSIST and reports on the first results of ASSIST in stand-alone mode.

  3. Adaptive Optics Correction in Real-Time for Dynamic Wavefront Errors

    DTIC Science & Technology

    1990-03-15

    This paper reports on the principles for the use of, and the experimental results obtained from, an adaptive optics system for correcting dynamic...control system. Keywords: Adaptive optics ; Wavefront sensing; Deformable mirror; Chinese translations.

  4. Adaptive optics capabilities at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Christou, J. C.; Brusa, G.; Conrad, A.; Esposito, S.; Herbst, T.; Hinz, P.; Hill, J. M.; Miller, D. L.; Rabien, S.; Rahmer, G.; Taylor, G. E.; Veillet, C.; Zhang, X.

    2016-07-01

    We present an overview of the current and future adaptive optics systems at the LBTO along with the current and planned science instruments they feed. All the AO systems make use of the two 672 actuator adaptive secondary mirrors. They are (1) FLAO (NGS/SCAO) feeding the LUCI NIR imagers/spectrographs; (2) LBTI/AO (NGS/SCAO) feeding the NIR/MIR imagers and LBTI beam combiner; (3) the ARGOS LGS GLAO system feeding LUCIs; and (4) LINC-NIRVANA - an NGS/MCAO imager and interferometer system. AO performance of the current systems is presented along with proposed performances for the newer systems taking into account the future instrumentation.

  5. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  6. Adaptive optics operations at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Miller, Douglas L.; Taylor, Gregory; Christou, Julian C.; Zhang, Xianyu; Brusa Zappellini, Guido; Rahmer, Gustavo; Lefebvre, Michael; Puglisi, Alfio; Pinna, Enrico; Esposito, Simone

    2016-07-01

    The goal for the adaptive optics systems at the Large Binocular Telescope Observatory (LBTO) is for them to operate fully automatically, without the need for an AO Scientist, and to be run by the observers and/or the telescope operator. This has been built into their design. Initially, the AO systems would close the loop using optimal parameters based on the observing conditions and guide star brightness, without adapting to changing conditions. We present the current status of AO operations as well as recent updates that improve the operational efficiency and minimize downtime. Onsky efficiency and performance will also be presented, along with calibrations required for AO closed loop operation.

  7. Pixelized Device Control Actuators for Large Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  8. Adaptive Delta Management: cultural aspects of dealing with uncertainty

    NASA Astrophysics Data System (ADS)

    Timmermans, Jos; Haasnoot, Marjolijn; Hermans, Leon; Kwakkel, Jan

    2016-04-01

    Deltas are generally recognized as vulnerable to climate change and therefore a salient topic in adaptation science. Deltas are also highly dynamic systems viewed from physical (erosion, sedimentation, subsidence), social (demographic), economic (trade), infrastructures (transport, energy, metropolization) and cultural (multi-ethnic) perspectives. This multi-faceted dynamic character of delta areas warrants the emergence of a branch of applied adaptation science, Adaptive Delta Management, which explicitly focuses on climate adaptation of such highly dynamic and deeply uncertain systems. The application of Adaptive Delta Management in the Dutch Delta Program and its active international dissemination by Dutch professionals results in the rapid dissemination of Adaptive Delta Management to deltas worldwide. This global dissemination raises concerns among professionals in delta management on its applicability in deltas with cultural conditions and historical developments quite different from those found in the Netherlands and the United Kingdom where the practices now labelled as Adaptive Delta Management first emerged. This research develops an approach and gives a first analysis of the interaction between the characteristics of different approaches in Adaptive Delta Management and their alignment with the cultural conditions encountered in various delta's globally. In this analysis, first different management theories underlying approaches to Adaptive Delta Management as encountered in both scientific and professional publications are identified and characterized on three dimensions: The characteristics dimensions used are: orientation on today, orientation on the future, and decision making (Timmermans, 2015). The different underlying management theories encountered are policy analysis, strategic management, transition management, and adaptive management. These four management theories underlying different approaches in Adaptive Delta Management are connected to

  9. Bimorph mirrors for adaptive optics in space telescopes

    NASA Astrophysics Data System (ADS)

    Alaluf, D.; Bastaits, R.; Wang, K.; Horodinca, M.; Burda, I.; Martic, G.; Preumont, A.

    2016-07-01

    This paper discusses a concept of bimorph deformable mirror used in adaptive optics to compensate for manufacturing errors, gravity release and thermal distortion affecting large lightweight mirrors in space telescopes. The mirror consists of a single-crystal Silicon wafer (D=75 mm t=500μm) covered with an optical coating on the front side and an array of 25 independent PZT actuators acting in d31 mode on the back side. The mirror is mounted on an isostatic support with three linear PZT actuators controlling the rigid-body motion. The paper presents the experimental results obtained with this design and a new, more compact alternative.

  10. Adaptive optics for improved retinal surgery and diagnostics

    SciTech Connect

    Humayun, M S; Sadda, S R; Thompson, C A; Olivier, S S; Kartz, M W

    2000-08-21

    It is now possible to field a compact adaptive optics (AO) system on a surgical microscope for use in retinal diagnostics and surgery. Recent developments in integrated circuit technology and optical photonics have led to the capability of building an AO system that is compact and significantly less expensive than traditional AO systems. It is foreseen that such an AO system can be integrated into a surgical microscope while maintaining a package size of a lunchbox. A prototype device can be developed in a manner that lends itself well to large-scale manufacturing.

  11. Adaptive mobility management scheme in hierarchical mobile IPv6

    NASA Astrophysics Data System (ADS)

    Fang, Bo; Song, Junde

    2004-04-01

    Hierarchical mobile IPv6 makes the mobility management localized. Registration with HA is only needed while MN moving between MAP domains. This paper proposed an adaptive mobility management scheme based on the hierarchical mobile IPv6. The scheme focuses on the MN operation as well as MAP operation during the handoff. Adaptive MAP selection algorithm can be used to select a suitable MAP to register with once MN moves into a new subnet while MAP can thus adaptively changing his management domain. Furthermore, MAP can also adaptively changes its level in the hierarchical referring on the service load or other related information. Detailed handoff algorithm is also discussed in this paper.

  12. Adapting natural resource management to climate change: The South Central Oregon and Northern Rockies Adaptation Partnerships

    NASA Astrophysics Data System (ADS)

    Halofsky, J.; Peterson, D. L.

    2015-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and one national park in south central Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  13. Adapting Natural Resource Management to Climate Change: The Blue Mountains and Northern Rockies Adaptation Partnerships

    NASA Astrophysics Data System (ADS)

    Halofsky, J.; Peterson, D. L.

    2014-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and other key stakeholders in the Blue Mountains region of northeastern Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  14. FPGA-accelerated adaptive optics wavefront control part II

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Barth, A.; Reger, J.; Reinlein, C.; Appelfelder, M.; Beckert, E.

    2015-03-01

    We present progressive work that is based on our recently developed rapid control prototyping system (RCP), designed for the implementation of high-performance adaptive optical control algorithms using a continuous de-formable mirror (DM). The RCP system, presented in 2014, is resorting to a Xilinx Kintex-7 Field Programmable Gate Array (FPGA), placed on a self-developed PCIe card, and installed on a high-performance computer that runs a hard real-time Linux operating system. For this purpose, algorithms for the efficient evaluation of data from a Shack-Hartmann wavefront sensor (SHWFS) on an FPGA have been developed. The corresponding analog input and output cards are designed for exploiting the maximum possible performance while not being constrained to a specific DM and control algorithm due to the RCP approach. In this second part of our contribution, we focus on recent results that we achieved with this novel experimental setup. By presenting results which are far superior to the former ones, we further justify the deployment of the RCP system and its required time and resources. We conducted various experiments for revealing the effective performance, i.e. the maximum manageable complexity in the controller design that may be achieved in real-time without performance losses. A detailed analysis of the hidden latencies is carried out, showing that these latencies have been drastically reduced. In addition, a series of concepts relating the evaluation of the wavefront as well as designing and synthesizing a wavefront are thoroughly investigated with the goal to overcome some of the prevalent limitations. Furthermore, principal results regarding the closed-loop performance of the low-speed dynamics of the integrated heater in a DM concept are illustrated in detail; to be combined with the piezo-electric high-speed actuators in the next step

  15. Passive and active adaptive management: approaches and an example.

    PubMed

    Williams, Byron K

    2011-05-01

    Adaptive management is a framework for resource conservation that promotes iterative learning-based decision making. Yet there remains considerable confusion about what adaptive management entails, and how to actually make resource decisions adaptively. A key but somewhat ambiguous distinction in adaptive management is between active and passive forms of adaptive decision making. The objective of this paper is to illustrate some approaches to active and passive adaptive management with a simple example involving the drawdown of water impoundments on a wildlife refuge. The approaches are illustrated for the drawdown example, and contrasted in terms of objectives, costs, and potential learning rates. Some key challenges to the actual practice of AM are discussed, and tradeoffs between implementation costs and long-term benefits are highlighted.

  16. Passive and active adaptive management: Approaches and an example

    USGS Publications Warehouse

    Williams, B.K.

    2011-01-01

    Adaptive management is a framework for resource conservation that promotes iterative learning-based decision making. Yet there remains considerable confusion about what adaptive management entails, and how to actually make resource decisions adaptively. A key but somewhat ambiguous distinction in adaptive management is between active and passive forms of adaptive decision making. The objective of this paper is to illustrate some approaches to active and passive adaptive management with a simple example involving the drawdown of water impoundments on a wildlife refuge. The approaches are illustrated for the drawdown example, and contrasted in terms of objectives, costs, and potential learning rates. Some key challenges to the actual practice of AM are discussed, and tradeoffs between implementation costs and long-term benefits are highlighted. ?? 2010 Elsevier Ltd.

  17. 76 FR 24516 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group...-575) of 1992. The AMP includes a Federal advisory committee, the AMWG, a technical work group (TWG),...

  18. 77 FR 9265 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... Federal advisory committee, the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and...

  19. 78 FR 21415 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group..., the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and...

  20. 77 FR 43117 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... Federal advisory committee, the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and...

  1. 78 FR 7810 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group.... L. 102-575) of 1992. The AMP includes a Federal advisory committee, the AMWG, a technical work...

  2. 79 FR 3873 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2014-01-23

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group...-575) of 1992. The GCDAMP includes a Federal advisory committee, the AMWG, a technical work group...

  3. 79 FR 24748 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2014-05-01

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group..., the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and...

  4. 80 FR 21261 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2015-04-17

    ....05940913.7000000] Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG... committee, the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and...

  5. Contrast-based sensorless adaptive optics for retinal imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  6. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    SciTech Connect

    Max, C.E.; Macintosh, B.A.; Gibbard, S.; Gavel, D.T.; Roe, H.; De Pater, I.; Ghez, A.M.; Acton, S.; Wizinowich, P.L.; Lai, O.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  7. MEMS-based extreme adaptive optics for planet detection

    SciTech Connect

    Macintosh, B A; Graham, J R; Oppenheimer, B; Poyneer, L; Sivaramakrishnan, A; Veran, J

    2005-11-18

    The next major step in the study of extrasolar planets will be the direct detection, resolved from their parent star, of a significant sample of Jupiter-like extrasolar giant planets. Such detection will open up new parts of the extrasolar planet distribution and allow spectroscopic characterization of the planets themselves. Detecting Jovian planets at 5-50 AU scale orbiting nearby stars requires adaptive optics systems and coronagraphs an order of magnitude more powerful than those available today--the realm of ''Extreme'' adaptive optics. We present the basic requirements and design for such a system, the Gemini Planet Imager (GPI.) GPI will require a MEMS-based deformable mirror with good surface quality, 2-4 micron stroke (operated in tandem with a conventional low-order ''woofer'' mirror), and a fully-functional 48-actuator-diameter aperture.

  8. Adaptive Optics Performance at Lick and Keck Observatory

    NASA Astrophysics Data System (ADS)

    Max, C. E.; Olivier, S. S.; Avicola, K.; Bissinger, H. D.; Brase, J. M.; Friedman, H. W.; Gavel, D. T.; Salmon, J. T.; Waltjen, K. E.

    1993-12-01

    The performance of an adaptive optics system developed for the 40 inch Nickel and 120 inch Shane telescopes at Lick Observatory is discussed. The system is based on a 69 actuator continuous-surface deformable mirror and a Hartmann wavefront sensor equipped with a commercial intensified CCD fast-framing camera. Results from tests of this adaptive optics system using natural reference stars on the 40 inch Nickel telescope are presented. These results are compared to the performance predicted by simulations and analyses. Predictions for the system performance on the 120 inch Shane telescope and on the 10 meter Keck telescope using both natural and laser reference stars are also presented. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  9. Next generation high resolution adaptive optics fundus imager

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Erry, G. R. G.; Otten, L. J.; Larichev, A.; Irochnikov, N.

    2005-12-01

    The spatial resolution of retinal images is limited by the presence of static and time-varying aberrations present within the eye. An updated High Resolution Adaptive Optics Fundus Imager (HRAOFI) has been built based on the development from the first prototype unit. This entirely new unit was designed and fabricated to increase opto-mechanical integration and ease-of-use through a new user interface. Improved camera systems for the Shack-Hartmann sensor and for the scene image were implemented to enhance the image quality and the frequency of the Adaptive Optics (AO) control loop. An optimized illumination system that uses specific wavelength bands was applied to increase the specificity of the images. Sample images of clinical trials of retinas, taken with and without the system, are shown. Data on the performance of this system will be presented, demonstrating the ability to calculate near diffraction-limited images.

  10. Neptune and Titan observed with Keck Telescope adaptive optics

    NASA Astrophysics Data System (ADS)

    Max, Claire E.; Macintosh, Bruce A.; Gibbard, Seran; Gavel, Donald T.; Roe, Henry; de Pater, Imke; Ghez, Andrea M.; Acton, Scott; Wizinowich, Peter L.; Lai, Olivier

    2000-07-01

    We report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. We observed Neptune and Titan at near- infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. We have observed infrared-bright 'storms' on Neptune, and very low- albedo surface regions on Titan, Saturn's largest moon. Spatial resolution on Neptune and Titan was 0.05 - 0.06 and 0.04 - 0.05 arc sec, respectively.

  11. Contrast-based sensorless adaptive optics for retinal imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T.O.; He, Zheng; Metha, Andrew

    2015-01-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  12. Nanolubrication of sliding components in adaptive optics used in microprojectors

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Lee, Hyungoo; Chaparala, Satish C.; Bhatia, Vikram

    2010-10-01

    Integrated microprojectors are being developed to project a large image on any surface chosen by the users. For a laser-based microprojector, a piezo-electric based adaptive optics unit is adopted in the green laser architecture. The operation of this unit depends on stick-slip motion between the sliding components. Nanolubrication of adaptive optics sliding components is needed to reduce wear and for smooth operation. In this study, a methodology to measure lubricant thickness distribution with a nanoscale resolution is developed. Friction, adhesion, and wear mechanisms of lubricant on the sliding components are studied. Effect of actual composite components, scan direction, scale effect, temperature, and humidity to correlate AFM data with the microscale device performance is studied.

  13. Leadership Behaviors of Management for Complex Adaptive Systems

    DTIC Science & Technology

    2010-04-01

    2010 Northrop Grumman 14 Manager Leadership Behaviors of Managers Visionary Leadership Motivates and Encourages Promotes Organizational Learning Behaviors...most © Copyright 2009 Northrop GrummanCopyright 2010 Northrop Grumman 19 vulnerable? The Manager: Promotes Organizational Learning • Promotes...emphasize collaboration, team empowerment, trust, and organizational learning • Train managers in the practices that works best in adaptive environments

  14. Complex Adaptive Systems as Metaphors for Organizational Management

    ERIC Educational Resources Information Center

    Palmberg, Klara

    2009-01-01

    Purpose: The purpose of this paper is to explore the concept of complex adaptive systems (CAS) from the perspective of managing organizations, to describe and explore the management principles in a case study of an organization with unconventional ways of management and to present a tentative model for managing organizations as CAS--system…

  15. Limits of spherical blur determined with an adaptive optics mirror.

    PubMed

    Atchison, David A; Guo, Huanqing; Fisher, Scott W

    2009-05-01

    We extended an earlier study (Vision Research, 45, 1967-1974, 2005) in which we investigated limits at which induced blur of letter targets becomes noticeable, troublesome and objectionable. Here we used a deformable adaptive optics mirror to vary spherical defocus for conditions of a white background with correction of astigmatism; a white background with reduction of all aberrations other than defocus; and a monochromatic background with reduction of all aberrations other than defocus. We used seven cyclopleged subjects, lines of three high-contrast letters as targets, 3-6 mm artificial pupils, and 0.1-0.6 logMAR letter sizes. Subjects used a method of adjustment to control the defocus component of the mirror to set the 'just noticeable', 'just troublesome' and 'just objectionable' defocus levels. For the white-no adaptive optics condition combined with 0.1 logMAR letter size, mean 'noticeable' blur limits were +/-0.30, +/-0.24 and +/-0.23 D at 3, 4 and 6 mm pupils, respectively. White-adaptive optics and monochromatic-adaptive optics conditions reduced blur limits by 8% and 20%, respectively. Increasing pupil size from 3-6 mm decreased blur limits by 29%, and increasing letter size increased blur limits by 79%. Ratios of troublesome to noticeable, and of objectionable to noticeable, blur limits were 1.9 and 2.7 times, respectively. The study shows that the deformable mirror can be used to vary defocus in vision experiments. Overall, the results of noticeable, troublesome and objectionable blur agreed well with those of the previous study. Attempting to reduce higher-order aberrations or chromatic aberrations, reduced blur limits to only a small extent.

  16. Precision Targeting With a Tracking Adaptive Optics Scanning Laser Ophthalmoscope

    DTIC Science & Technology

    2006-01-01

    galvanometers placed at appropriate conjugates within the path of the adaptive optics scanning laser ophthalmoscope. The input to the “master” control loop is...loop is the scaled position signals from the master galvanometers . The slave tracking mirrors are placed at conjugates to the center of rotation of the...slave systems), and analog-to-digital and digital-to- analog converters (ADC and DACs) to receive reflectometer signals and drive galvanometers . The

  17. High-resolution adaptive optics findings in talc retinopathy.

    PubMed

    Soliman, Mohamed K; Sarwar, Salman; Hanout, Mostafa; Sadiq, Mohammad A; Agarwal, Aniruddha; Gulati, Vikas; Nguyen, Quan Dong; Sepah, Yasir J

    2015-01-01

    Talc retinopathy is a recognized ocular condition characterized by the presence of small, yellow, glistening crystals found inside small retinal vessels and within different retinal layers. These crystals can be associated with retinal vascular occlusion and ischemia. Different diagnostic modalities have been used previously to characterize the retinal lesions in talc retinopathy. Adaptive optics, a high resolution imaging technique, is used to evaluate the location, appearance and distribution of talc crystals in a case of talc retinopathy.

  18. Performance of a MEMS-base Adaptive Optics Optical Coherency Tomography System

    SciTech Connect

    Evans, J; Zadwadzki, R J; Jones, S; Olivier, S; Opkpodu, S; Werner, J S

    2008-01-16

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  19. Adaptive optics with pupil tracking for high resolution retinal imaging.

    PubMed

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  20. Performance of laser guide star adaptive optics at Lick Observatory

    SciTech Connect

    Olivier, S.S.; An, J.; Avicola, K.

    1995-07-19

    A sodium-layer laser guide star adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use on the 3-meter Shane telescope at Lick Observatory. The system is based on a 127-actuator continuous-surface deformable mirror, a Hartmann wavefront sensor equipped with a fast-framing low-noise CCD camera, and a pulsed solid-state-pumped dye laser tuned to the atomic sodium resonance line at 589 nm. The adaptive optics system has been tested on the Shane telescope using natural reference stars yielding up to a factor of 12 increase in image peak intensity and a factor of 6.5 reduction in image full width at half maximum (FWHM). The results are consistent with theoretical expectations. The laser guide star system has been installed and operated on the Shane telescope yielding a beam with 22 W average power at 589 nm. Based on experimental data, this laser should generate an 8th magnitude guide star at this site, and the integrated laser guide star adaptive optics system should produce images with Strehl ratios of 0.4 at 2.2 {mu}m in median seeing and 0.7 at 2.2 {mu}m in good seeing.

  1. Adaptive optics with pupil tracking for high resolution retinal imaging

    PubMed Central

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-01-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics. PMID:22312577

  2. Coronagraphy with the AEOS High Order Adaptive Optics System

    NASA Astrophysics Data System (ADS)

    Lloyd, J. P.; Graham, J. R.; Kalas, P.; Oppenheimer, B. R.; Sivaramakrishnan, A.; Makidon, R. B.; Macintosh, B. A.; Max, C. E.; Baudoz, P.; Kuhn, J. R.; Potter, D.

    2001-05-01

    Adaptive Optics has recently become a widely used technique to acquire sensitive, diffraction limited images in the near infrared with large ground based telescopes. Most astronomical targets are faint; driving astronomical AO systems towards large subapertures; resulting in a compromise between guide star brightness, observing wavelength, resolution and Strehl ratio. Space surveilance systems have recently been developed that exploit high order adaptive optics systems to take diffraction limited images in visible light on 4 meter class telescopes on bright (V<8) targets. There is, however, a particular niche that can be exploited by turning these visible light space surveillance systems to astronomical use at infrared wavelengths. At the longer wavelengths, the strehl ratio rises dramatically, thus placing more light into the diffracted Airy pattern at the expense of the atmospheric halo. A coronagraph can be used to suppress the diffracted light, and observe faint companions and debris disks around nearby, bright stars. Observations of these very high contrast objects benefit greatly from much higher order adaptive optics systems than are presently available to the astronomical commnunity. The National Science Foundation and Air Force Office of Scientific Research is sponsoring a program to conduct astronomical observations at the AEOS facility. We are presently developing an astronomical coronagraph to be deployed at the Air Force AEOS facility. We describe the coronagraph, and discuss the advantages and limitations of ground based high order AO for high contrast imaging.

  3. Astronomical coronagraphy with high-order adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Lloyd, James P.; Graham, James R.; Kalas, Paul; Oppenheimer, Ben R.; Sivaramakrishnan, Anand; Makidon, Russell B.; Macintosh, Bruce A.; Max, Claire E.; Baudoz, Pierre; Kuhn, Jeff R.; Potter, Dan

    2001-12-01

    Space surveillance systems have recently been developed that exploit high order adaptive optics systems to take diffraction limited images in visible light on 4 meter class telescopes. Most astronomical targets are faint, thus driving astronomical AO systems towards larger subapertures, and thus longer observing wavelengths for diffraction limited imaging at moderate Strehl ratio. There is, however, a particular niche that can be exploited by turning these visible light space surveillance systems to astronomical use at infrared wavelengths. At the longer wavelengths, the Strehl ratio rises dramatically, thus placing more light into the diffracted Airy pattern compared to the atmospheric halo. A Lyot coronagraph can be used to suppress the diffracted light from an on axis star, and observe faint companions and debris disks around nearby, bright stars. These very high contrast objects can only be observed with much higher order adaptive optics systems than are presently available to the astronomical community. We describe simulations of high order adaptive optics coronagraphs, and outline a project to deploy an astronomical coronagraph at the Air Force AEOS facility at the Maui Space Surveillance System.

  4. Retinal imaging system with adaptive optics enhanced with pupil tracking

    NASA Astrophysics Data System (ADS)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Vabre, Laurent; Dainty, Chris

    2011-03-01

    A compact retinal camera with adaptive optics which was designed for clinical practice was used to test a new adaptive optics control algorithm to correct for the angular ray deviations of a model eye. The new control algorithm is based on pupil movements rather than the measurement of the slopes of the wavefront with an optoelectronic sensor. The method for the control algorithm was based on the hypothesis that majority of the changes of the aberrations of the eye are due to head and eye movements and it is possible to correct for the aberrations of the eye by shifting the paraxial correction according to the new position of the pupil. Since the fixational eye movements are very small, the eye movements are assumed to be translational rather than rotational. Using the new control algorithm it was possible to simulate the aberrations of the moving model eye based on pupil tracking. The RMS of the residual wavefront error of the simulation had a magnitude similar to the RMS of the residual wavefront error of the adaptive optics correction based on optoelectronic sensor for angular ray deviations. If our hypothesis is true and other factors such as the tear film or the crystalline lens fluctuations do not cause changes in the aberrations of the eye as much as motion does, the method is expected to work in vivo as it did for a model eye which had no intrinsic factors that cause aberration changes.

  5. Enhancing image quality in cleared tissue with adaptive optics

    NASA Astrophysics Data System (ADS)

    Reinig, Marc R.; Novak, Samuel W.; Tao, Xiaodong; Bentolila, Laurent A.; Roberts, Dustin G.; MacKenzie-Graham, Allan; Godshalk, Sirie E.; Raven, Mary A.; Knowles, David W.; Kubby, Joel

    2016-12-01

    Our ability to see fine detail at depth in tissues is limited by scattering and other refractive characteristics of the tissue. For fixed tissue, we can limit scattering with a variety of clearing protocols. This allows us to see deeper but not necessarily clearer. Refractive aberrations caused by the bulk index of refraction of the tissue and its variations continue to limit our ability to see fine detail. Refractive aberrations are made up of spherical and other Zernike modes, which can be significant at depth. Spherical aberration that is common across the imaging field can be corrected using an objective correcting collar, although this can require manual intervention. Other aberrations may vary across the imaging field and can only be effectively corrected using adaptive optics. Adaptive optics can also correct other aberrations simultaneously with the spherical aberration, eliminating manual intervention and speeding imaging. We use an adaptive optics two-photon microscope to examine the impact of the spherical and higher order aberrations on imaging and contrast the effect of compensating only for spherical aberration against compensating for the first 22 Zernike aberrations in two tissue types. Increase in image intensity by 1.6× and reduction of root mean square error by 3× are demonstrated.

  6. An Adaptive Watershed Management Assessment Based on Watershed Investigation Data

    NASA Astrophysics Data System (ADS)

    Kang, Min Goo; Park, Seung Woo

    2015-05-01

    The aim of this study was to assess the states of watersheds in South Korea and to formulate new measures to improve identified inadequacies. The study focused on the watersheds of the Han River basin and adopted an adaptive watershed management framework. Using data collected during watershed investigation projects, we analyzed the management context of the study basin and identified weaknesses in water use management, flood management, and environmental and ecosystems management in the watersheds. In addition, we conducted an interview survey to obtain experts' opinions on the possible management of watersheds in the future. The results of the assessment show that effective management of the Han River basin requires adaptive watershed management, which includes stakeholders' participation and social learning. Urbanization was the key variable in watershed management of the study basin. The results provide strong guidance for future watershed management and suggest that nonstructural measures are preferred to improve the states of the watersheds and that consistent implementation of the measures can lead to successful watershed management. The results also reveal that governance is essential for adaptive watershed management in the study basin. A special ordinance is necessary to establish governance and aid social learning. Based on the findings, a management process is proposed to support new watershed management practices. The results will be of use to policy makers and practitioners who can implement the measures recommended here in the early stages of adaptive watershed management in the Han River basin. The measures can also be applied to other river basins.

  7. An adaptive watershed management assessment based on watershed investigation data.

    PubMed

    Kang, Min Goo; Park, Seung Woo

    2015-05-01

    The aim of this study was to assess the states of watersheds in South Korea and to formulate new measures to improve identified inadequacies. The study focused on the watersheds of the Han River basin and adopted an adaptive watershed management framework. Using data collected during watershed investigation projects, we analyzed the management context of the study basin and identified weaknesses in water use management, flood management, and environmental and ecosystems management in the watersheds. In addition, we conducted an interview survey to obtain experts' opinions on the possible management of watersheds in the future. The results of the assessment show that effective management of the Han River basin requires adaptive watershed management, which includes stakeholders' participation and social learning. Urbanization was the key variable in watershed management of the study basin. The results provide strong guidance for future watershed management and suggest that nonstructural measures are preferred to improve the states of the watersheds and that consistent implementation of the measures can lead to successful watershed management. The results also reveal that governance is essential for adaptive watershed management in the study basin. A special ordinance is necessary to establish governance and aid social learning. Based on the findings, a management process is proposed to support new watershed management practices. The results will be of use to policy makers and practitioners who can implement the measures recommended here in the early stages of adaptive watershed management in the Han River basin. The measures can also be applied to other river basins.

  8. Thermally tuneable optical modulator adapted for differential signaling

    DOEpatents

    Zortman, William A.

    2016-01-12

    An apparatus for optical modulation is provided. The apparatus includes a modulator structure and a heater structure. The modulator structure comprises a ring or disk optical resonator having a closed curvilinear periphery and a pair of oppositely doped semiconductor regions within and/or adjacent to the optical resonator and conformed to modify the optical length of the optical resonator upon application of a bias voltage. The heater structure comprises a relatively resistive annulus of semiconductor material enclosed between an inner disk and an outer annulus of relatively conductive semiconductor material. The inner disk and the outer annulus are adapted as contact regions for a heater activation current. The heater structure is situated within the periphery of the optical resonator such that in operation, at least a portion of the resonator is heated by radial conductive heat flow from the heater structure. The apparatus further includes a substantially annular isolation region of dielectric or relatively resistive semiconductor material interposed between the heater structure and the modulator structure. The isolation region is effective to electrically isolate the bias voltage from the heater activation current.

  9. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  10. Adaptive Optics Educational Outreach and the Giant Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Sparks, R. T.; Pompea, S. M.; Walker, C. E.

    2008-06-01

    One of the limiting factors in telescope performance is atmospheric seeing. Atmospheric seeing limits the resolution of ground based optical telescopes. Even telescopes in good locations on top of mountains cannot achieve diffraction-limited resolution. Until recently, the only way to overcome this limitation was to use space-based telescopes. Adaptive Optics (AO) is a collection of technologies that measure the turbulence of Earth's atmosphere and compensate for the turbulence, resulting in high-resolution images without the expense and complexity of space based telescopes. Our Hands-On Optics program has developed activities that teach students how telescopes form images and make observations about the resolution of a telescope. We are developing materials for high school students to use in the study of adaptive optics. These activities include various ways to illustrate atmospheric distortion by using everyday materials such as bubble wrap and mineral oil. We will also illustrate how to demonstrate the workings of a Shack-Hartman sensor to measure atmospheric distortion through the use of a unique model. We will also show activities illustrating two techniques astronomers use to improve the image: tip-tilt mirrors and deformable mirrors. We are developing an activity where students learn how to use a tip-tilt mirror to keep an image focused at one point on a screen. The culminating activity has students learn to use a deformable mirror to correct a distorted wavefront. These activities are being developed in conjunction with the Education program for the Giant Segmented Mirror Telescope (GSMT).

  11. Lens-based wavefront sensorless adaptive optics swept source OCT

    PubMed Central

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-01-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects. PMID:27278853

  12. The Role of Adaptive Photorefractive Power Limiting on Acousto-Optic Radio Frequency (RF) Signal Excision

    DTIC Science & Technology

    2001-12-01

    Adaptive RF interference reduction for broadband communication systems continues to be problematic. The acousto - optic RF signal excision system...novel photorefractive optical power limiting device to achieve adaptive notch filtering, and multi- channel acousto - optic deflection to achieve angle...of-arrival signal discrimination at the notch filter. This dissertation describes basic principles of acousto - optic RF signal excision, including

  13. A beam halo monitor based on adaptive optics

    NASA Astrophysics Data System (ADS)

    Welsch, C. P.; Bravin, E.; Lefèvre, T.

    2007-06-01

    In future high intensity, high energy accelerators, beam losses have to be minimized to maximize performance and reduce activation of accelerator components. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Measurements based on optical transition radiation (OTR) provide an interesting opportunity for high resolution measurements of the transverse beam profile. An imaging system based on a beam core-suppression technique, in which the core of the beam is deflected by means of a micro mirror array, to allow for direct observation of the halo has been developed. In this contribution, a possible layout of a novel diagnostic system based on adaptive optics is presented and the results of first tests carried out in our optical lab are summarized.

  14. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  15. A roadmap for climate change adaptation in Sweden's forests: addressing wicked problems using adaptive management

    NASA Astrophysics Data System (ADS)

    Rist, L.; Felton, A.; Samuelsson, L.; Marald, E.; Karlsson, B.; Johansson, U.; Rosvall, O.

    2013-12-01

    Climate change is expected to have significant direct and indirect effects on forest ecosystems. Forests will have to adapt not only to changes in mean climate variables but also to increased climatic variability and altered disturbance regimes. Rates of change will likely exceed many forests capabilities to naturally adapt and many of today's trees will be exposed to the climates of 2090. In Sweden the effects are already being seen and more severe impacts are expected in the future. Exacerbating the challenge posed by climate change, a large proportion of Sweden's forests are, as a consequence of dominant production goals, greatly simplified and thus potentially more vulnerable to the uncertainties and risks associated with climate change. This simplification also confers reduced adaptive capacity to respond to potential impacts. Furthermore, many adaptation measures themselves carry uncertainties and risks. Future changes and effects are thus uncertain, yet forest managers, policymakers, scientists and other stakeholders must act. Strategies that build social and ecological resilience in the face of multiple interacting unknowns and surprises are needed. Adaptive management aims to collect and integrate knowledge about how a managed system is likely to respond to alternative management schemes and changing environmental conditions within a continuous decision process. There have been suggestions that adaptive management is not well suited to the large complex uncertainties associated with climate change and associated adaptation measures. However, more recently it has been suggested that adaptive management can handle such wicked problems, given adequate resources and a suitable breakdown of the targeted uncertainties. Here we test this hypothesis by evaluating how an adaptive management process could be used to manage the uncertainties and risks associated with securing resilient, biodiverse and productive forests in Sweden in the face of climate change. We

  16. Integrated modeling of the GMT laser tomography adaptive optics system

    NASA Astrophysics Data System (ADS)

    Piatrou, Piotr

    2014-08-01

    Laser Tomography Adaptive Optics (LTAO) is one of adaptive optics systems planned for the Giant Magellan Telescope (GMT). End-to-end simulation tools that are able to cope with the complexity and computational burden of the AO systems to be installed on the extremely large telescopes such as GMT prove to be an integral part of the GMT LTAO system development endeavors. SL95, the Fortran 95 Simulation Library, is one of the software tools successfully used for the LTAO system end-to-end simulations. The goal of SL95 project is to provide a complete set of generic, richly parameterized mathematical models for key elements of the segmented telescope wavefront control systems including both active and adaptive optics as well as the models for atmospheric turbulence, extended light sources like Laser Guide Stars (LGS), light propagation engines and closed-loop controllers. The library is implemented as a hierarchical collection of classes capable of mutual interaction, which allows one to assemble complex wavefront control system configurations with multiple interacting control channels. In this paper we demonstrate the SL95 capabilities by building an integrated end-to-end model of the GMT LTAO system with 7 control channels: LGS tomography with Adaptive Secondary and on-instrument deformable mirrors, tip-tilt and vibration control, LGS stabilization, LGS focus control, truth sensor-based dynamic noncommon path aberration rejection, pupil position control, SLODAR-like embedded turbulence profiler. The rich parameterization of the SL95 classes allows to build detailed error budgets propagating through the system multiple errors and perturbations such as turbulence-, telescope-, telescope misalignment-, segment phasing error-, non-common path-induced aberrations, sensor noises, deformable mirror-to-sensor mis-registration, vibration, temporal errors, etc. We will present a short description of the SL95 architecture, as well as the sample GMT LTAO system simulation

  17. Adaptive optics at the Subaru telescope: current capabilities and development

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben

    2014-08-01

    Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.

  18. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.

    PubMed

    Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T

    2011-08-15

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye.

  19. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  20. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication.

    PubMed

    Jian, Huang; Ke, Deng; Chao, Liu; Peng, Zhang; Dagang, Jiang; Zhoushi, Yao

    2014-06-30

    Adaptive optics (AO) systems can suppress the signal fade induced by atmospheric turbulence in satellite-to-ground coherent optical communication. The lower bound of the signal fade under AO compensation was investigated by analyzing the pattern of aberration modes for a one-stage imaging AO system. The distribution of the root mean square of the residual aberration is discussed on the basis of the spatial and temporal characteristics of the residual aberration of the AO system. The effectiveness of the AO system for improving the performance of coherent optical communication is presented in terms of the bit error rate and system availability.

  1. Reducing uncertainty about objective functions in adaptive management

    USGS Publications Warehouse

    Williams, B.K.

    2012-01-01

    This paper extends the uncertainty framework of adaptive management to include uncertainty about the objectives to be used in guiding decisions. Adaptive decision making typically assumes explicit and agreed-upon objectives for management, but allows for uncertainty as to the structure of the decision process that generates change through time. Yet it is not unusual for there to be uncertainty (or disagreement) about objectives, with different stakeholders expressing different views not only about resource responses to management but also about the appropriate management objectives. In this paper I extend the treatment of uncertainty in adaptive management, and describe a stochastic structure for the joint occurrence of uncertainty about objectives as well as models, and show how adaptive decision making and the assessment of post-decision monitoring data can be used to reduce uncertainties of both kinds. Different degrees of association between model and objective uncertainty lead to different patterns of learning about objectives. ?? 2011.

  2. Graphite/Cyanate Ester Face Sheets for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bennett, Harold; Shaffer, Joseph; Romeo, Robert

    2008-01-01

    It has been proposed that thin face sheets of wide-aperture deformable mirrors in adaptive-optics systems be made from a composite material consisting of cyanate ester filled with graphite. This composite material appears to offer an attractive alternative to low-thermal-expansion glasses that are used in some conventional optics and have been considered for adaptive-optics face sheets. Adaptive-optics face sheets are required to have maximum linear dimensions of the order of meters or even tens of meters for some astronomical applications. If the face sheets were to be made from low-thermal-expansion glasses, then they would also be required to have thicknesses of the order of a millimeter so as to obtain the optimum compromise between the stiffness needed for support and the flexibility needed to enable deformation to controlled shapes by use of actuators. It is difficult to make large glass sheets having thicknesses less than 3 mm, and 3-mm-thick glass sheets are too stiff to be deformable to the shapes typically required for correction of wavefronts of light that has traversed the terrestrial atmosphere. Moreover, the primary commercially produced candidate low-thermal-expansion glass is easily fractured when in the form of thin face sheets. Graphite-filled cyanate ester has relevant properties similar to those of the low-expansion glasses. These properties include a coefficient of thermal expansion (CTE) of the order of a hundredth of the CTEs of other typical mirror materials. The Young s modulus (which quantifies stiffness in tension and compression) of graphite-filled cyanate ester is also similar to the Young's moduli of low-thermal-expansion glasses. However, the fracture toughness of graphite-filled cyanate ester is much greater than that of the primary candidate low-thermal-expansion glass. Therefore, graphite-filled cyanate ester could be made into nearly unbreakable face sheets, having maximum linear dimensions greater than a meter and thicknesses of

  3. Adapting smartphones for low-cost optical medical imaging

    NASA Astrophysics Data System (ADS)

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  4. Beam shaping for laser-based adaptive optics in astronomy.

    PubMed

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-06-02

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%.

  5. Layer-oriented adaptive optics for solar telescopes.

    PubMed

    Kellerer, Aglaé

    2012-08-10

    First multiconjugate adaptive-optical (MCAO) systems are currently being installed on solar telescopes. The aim of these systems is to increase the corrected field of view with respect to conventional adaptive optics. However, this first generation is based on a star-oriented approach, and it is then difficult to increase the size of the field of view beyond 60-80 arc sec in diameter. We propose to implement the layer-oriented approach in solar MCAO systems by use of wide-field Shack-Hartmann wavefront sensors conjugated to the strongest turbulent layers. The wavefront distortions are averaged over a wide field: the signal from distant turbulence is attenuated and the tomographic reconstruction is thus done optically. The system consists of independent correction loops, which only need to account for local turbulence: the subapertures can be enlarged and the correction frequency reduced. Most importantly, a star-oriented MCAO system becomes more complex with increasing field size, while the layer-oriented approach benefits from larger fields and will therefore be an attractive solution for the future generation of solar MCAO systems.

  6. Implementing Adaptive Performance Management in Server Applications

    SciTech Connect

    Liu, Yan; Gorton, Ian

    2007-06-11

    Performance and scalability are critical quality attributes for server applications in Internet-facing business systems. These applications operate in dynamic environments with rapidly fluctuating user loads and resource levels, and unpredictable system faults. Adaptive (autonomic) systems research aims to augment such server applications with intelligent control logic that can detect and react to sudden environmental changes. However, developing this adaptive logic is complex in itself. In addition, executing the adaptive logic consumes processing resources, and hence may (paradoxically) adversely affect application performance. In this paper we describe an approach for developing high-performance adaptive server applications and the supporting technology. The Adaptive Server Framework (ASF) is built on standard middleware services, and can be used to augment legacy systems with adaptive behavior without needing to change the application business logic. Crucially, ASF provides built-in control loop components to optimize the overall application performance, which comprises both the business and adaptive logic. The control loop is based on performance models and allows systems designers to tune the performance levels simply by modifying high level declarative policies. We demonstrate the use of ASF in a case study.

  7. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging

    PubMed Central

    Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-01-01

    Abstract. Small animal models of retinal diseases are important to vision research, and noninvasive high resolution in vivo rodent retinal imaging is becoming an increasingly important tool used in this field. We present a custom Fourier domain optical coherence tomography (FD-OCT) instrument for high resolution imaging of mouse retina. In order to overcome aberrations in the mouse eye, we incorporated a commercial adaptive optics system into the sample arm of the refractive FD-OCT system. Additionally, a commercially available refraction canceling lens was used to reduce lower order aberrations and specular back-reflection from the cornea. Performance of the adaptive optics (AO) system for correcting residual wavefront aberration in the mice eyes is presented. Results of AO FD-OCT images of mouse retina acquired in vivo with and without AO correction are shown as well. PMID:23644903

  8. Objective assessment of image quality. IV. Application to adaptive optics

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher

    2008-01-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed. PMID:17106464

  9. Objective assessment of image quality. IV. Application to adaptive optics.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Devaney, Nicholas; Dainty, Christopher

    2006-12-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed.

  10. Objective assessment of image quality. IV. Application to adaptive optics

    NASA Astrophysics Data System (ADS)

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher

    2006-12-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed.

  11. Adaptive spectral window sizes for feature extraction from optical spectra

    NASA Astrophysics Data System (ADS)

    Kan, Chih-Wen; Lee, Andy Y.; Pham, Nhi; Nieman, Linda T.; Sokolov, Konstantin; Markey, Mia K.

    2008-02-01

    We propose an approach to adaptively adjust the spectral window size used to extract features from optical spectra. Previous studies have employed spectral features extracted by dividing the spectra into several spectral windows of a fixed width. However, the choice of spectral window size was arbitrary. We hypothesize that by adaptively adjusting the spectral window sizes, the trends in the data will be captured more accurately. Our method was tested on a diffuse reflectance spectroscopy dataset obtained in a study of oblique polarization reflectance spectroscopy of oral mucosa lesions. The diagnostic task is to classify lesions into one of four histopathology groups: normal, benign, mild dysplasia, or severe dysplasia (including carcinoma). Nine features were extracted from each of the spectral windows. We computed the area (AUC) under Receiver Operating Characteristic curve to select the most discriminatory wavelength intervals. We performed pairwise classifications using Linear Discriminant Analysis (LDA) with leave-one-out cross validation. The results showed that for discriminating benign lesions from mild or severe dysplasia, the adaptive spectral window size features achieved AUC of 0.84, while a fixed spectral window size of 20 nm had AUC of 0.71, and an AUC of 0.64 is achieved with a large window size containing all wavelengths. The AUCs of all feature combinations were also calculated. These results suggest that the new adaptive spectral window size method effectively extracts features that enable accurate classification of oral mucosa lesions.

  12. Night Myopia Studied with an Adaptive Optics Visual Analyzer

    PubMed Central

    Artal, Pablo; Schwarz, Christina; Cánovas, Carmen; Mira-Agudelo, Alejandro

    2012-01-01

    Purpose Eyes with distant objects in focus in daylight are thought to become myopic in dim light. This phenomenon, often called “night myopia” has been studied extensively for several decades. However, despite its general acceptance, its magnitude and causes are still controversial. A series of experiments were performed to understand night myopia in greater detail. Methods We used an adaptive optics instrument operating in invisible infrared light to elucidate the actual magnitude of night myopia and its main causes. The experimental setup allowed the manipulation of the eye's aberrations (and particularly spherical aberration) as well as the use of monochromatic and polychromatic stimuli. Eight subjects with normal vision monocularly determined their best focus position subjectively for a Maltese cross stimulus at different levels of luminance, from the baseline condition of 20 cd/m2 to the lowest luminance of 22×10−6 cd/m2. While subjects performed the focusing tasks, their eye's defocus and aberrations were continuously measured with the 1050-nm Hartmann-Shack sensor incorporated in the adaptive optics instrument. The experiment was repeated for a variety of controlled conditions incorporating specific aberrations of the eye and chromatic content of the stimuli. Results We found large inter-subject variability and an average of −0.8 D myopic shift for low light conditions. The main cause responsible for night myopia was the accommodation shift occurring at low light levels. Other factors, traditionally suggested to explain night myopia, such as chromatic and spherical aberrations, have a much smaller effect in this mechanism. Conclusions An adaptive optics visual analyzer was applied to study the phenomenon of night myopia. We found that the defocus shift occurring in dim light is mainly due to accommodation errors. PMID:22768343

  13. Performance of keck adaptive optics with sodium laser guide star

    SciTech Connect

    Gavel, D.T.; Olivier, S.; Brase, J.

    1996-03-08

    The Keck telescope adaptive optics system is designed to optimize performance in he 1 to 3 micron region of observation wavelengths (J, H, and K astronomical bands). The system uses a 249 degree of freedom deformable mirror, so that the interactuator spacing is 56 cm as mapped onto the 10 meter aperture. 56 cm is roughly equal to r0 at 1.4 microns, which implies the wavefront fitting error is 0.52 ({lambda}/2{pi})({ital d}/{ital r}{sub 0}){sup 5/6} = 118 nm rms. This is sufficient to produce a system Strehl of 0.74 at 1.4 microns if all other sources of error are negligible, which would be the case with a bright natural guidestar and very high control bandwidth. Other errors associated with the adaptive optics will however contribute to Strehl degradation, namely, servo bandwidth error due to inability to reject all temporal frequencies of the aberrated wavefront, wavefront measurement error due to finite signal-to-noise ratio in the wavefront sensor, and, in the case of a laser guidestar, the so-called cone effect where rays from the guidestar beacon fail to sample some of the upper atmosphere turbulence. Cone effect is mitigated considerably by the use of the very high altitude sodium laser guidestar (90 km altitude), as opposed to Rayleigh beacons at 20 km. However, considering the Keck telescope`s large aperture, this is still the dominating wavefront error contributor in the current adaptive optics system design.

  14. An introduction to adaptive management for threatened and endangered species

    USGS Publications Warehouse

    Runge, Michael C.

    2011-01-01

    Management of threatened and endangered species would seem to be a perfect context for adaptive management. Many of the decisions are recurrent and plagued by uncertainty, exactly the conditions that warrant an adaptive approach. But although the potential of adaptive management in these settings has been extolled, there are limited applications in practice. The impediments to practical implementation are manifold and include semantic confusion, institutional inertia, misperceptions about the suitability and utility, and a lack of guiding examples. In this special section of the Journal of Fish and Wildlife Management, we hope to reinvigorate the appropriate application of adaptive management for threatened and endangered species by framing such management in a decision-analytical context, clarifying misperceptions, classifying the types of decisions that might be amenable to an adaptive approach, and providing three fully developed case studies. In this overview paper, I define terms, review the past application of adaptive management, challenge perceived hurdles, and set the stage for the case studies which follow.

  15. Aberrations and adaptive optics in super-resolution microscopy.

    PubMed

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-08-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy - or rather nanoscopy - to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem.

  16. Multiwavelength adaptive optical fundus camera and continuous retinal imaging

    NASA Astrophysics Data System (ADS)

    Yang, Han-sheng; Li, Min; Dai, Yun; Zhang, Yu-dong

    2009-08-01

    We have constructed a new version of retinal imaging system with chromatic aberration concerned and the correlated optical design presented in this article is based on the adaptive optics fundus camera modality. In our system, three typical wavelengths of 550nm, 650nm and 480nm were selected. Longitude chromatic aberration (LCA) was traded off to a minimum using ZEMAX program. The whole setup was actually evaluated on human subjects and retinal imaging was performed at continuous frame rates up to 20 Hz. Raw videos at parafovea locations were collected, and cone mosaics as well as retinal vasculature were clearly observed in one single clip. In addition, comparisons under different illumination conditions were also made to confirm our design. Image contrast and the Strehl ratio were effectively increased after dynamic correction of high order aberrations. This system is expected to bring new applications in functional imaging of human retina.

  17. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.

    PubMed

    Antonello, Jacopo; van Werkhoven, Tim; Verhaegen, Michel; Truong, Hoa H; Keller, Christoph U; Gerritsen, Hans C

    2014-06-01

    Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration.

  18. Imaging of retinal vasculature using adaptive optics SLO/OCT

    PubMed Central

    Felberer, Franz; Rechenmacher, Matthias; Haindl, Richard; Baumann, Bernhard; Hitzenberger, Christoph K.; Pircher, Michael

    2015-01-01

    We use our previously developed adaptive optics (AO) scanning laser ophthalmoscope (SLO)/ optical coherence tomography (OCT) instrument to investigate its capability for imaging retinal vasculature. The system records SLO and OCT images simultaneously with a pixel to pixel correspondence which allows a direct comparison between those imaging modalities. Different field of views ranging from 0.8°x0.8° up to 4°x4° are supported by the instrument. In addition a dynamic focus scheme was developed for the AO-SLO/OCT system in order to maintain the high transverse resolution throughout imaging depth. The active axial eye tracking that is implemented in the OCT channel allows time resolved measurements of the retinal vasculature in the en-face imaging plane. Vessel walls and structures that we believe correspond to individual erythrocytes could be visualized with the system. PMID:25909024

  19. Limits on Lyot coronagraphy with AEOS adaptive optics telescope

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, A.; Makidon, R. B.; Lloyd, J. P.; Oppenheimer, B. R.; Graham, J. R.; Kalas, P. G.; Macintosh, B. A.; Max, C. E.; Baudoz, P.; Kuhn, J.; Potter, D.

    2001-05-01

    The 3.6m Air Force Electo-Optical System telescope is the most advanced adaptive optics (AO) system available to the astronomical community. Its 941-channel AO system feeds several stable instrument platforms at a very slow Cassegrain focus. Its small secondary obscuration makes it ideal for AO coronagraphy. We present estimates of current and theoretical limits on dynamic range using a diffraction-limited Lyot coronagraph optimized for the 3.6m AEOS telescope. We incorporate both the effects of imperfect AO correction of the wavefront and telescope guiding errors in our simulations. We calculate limits on faint companion detection (in the H-band) for this system at separations between 0.36 and 1.3 arcseconds.

  20. Fourier transform digital holographic adaptive optics imaging system

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  1. Speckle statistics in adaptive optics images at visible wavelengths

    NASA Astrophysics Data System (ADS)

    Stangalini, Marco; Pedichini, Fernando; Ambrosino, Filippo; Centrone, Mauro; Del Moro, Dario

    2016-07-01

    Residual speckles in adaptive optics (AO) images represent a well known limitation to the achievement of the contrast needed for faint stellar companions detection. Speckles in AO imagery can be the result of either residual atmospheric aberrations, not corrected by the AO, or slowly evolving aberrations induced by the optical system. In this work we take advantage of new high temporal cadence (1 ms) data acquired by the SHARK forerunner experiment at the Large Binocular Telescope (LBT), to characterize the AO residual speckles at visible waveleghts. By means of an automatic identification of speckles, we study the main statistical properties of AO residuals. In addition, we also study the memory of the process, and thus the clearance time of the atmospheric aberrations, by using information Theory. These information are useful for increasing the realism of numerical simulations aimed at assessing the instrumental performances, and for the application of post-processing techniques on AO imagery.

  2. Imaging of retinal vasculature using adaptive optics SLO/OCT.

    PubMed

    Felberer, Franz; Rechenmacher, Matthias; Haindl, Richard; Baumann, Bernhard; Hitzenberger, Christoph K; Pircher, Michael

    2015-04-01

    We use our previously developed adaptive optics (AO) scanning laser ophthalmoscope (SLO)/ optical coherence tomography (OCT) instrument to investigate its capability for imaging retinal vasculature. The system records SLO and OCT images simultaneously with a pixel to pixel correspondence which allows a direct comparison between those imaging modalities. Different field of views ranging from 0.8°x0.8° up to 4°x4° are supported by the instrument. In addition a dynamic focus scheme was developed for the AO-SLO/OCT system in order to maintain the high transverse resolution throughout imaging depth. The active axial eye tracking that is implemented in the OCT channel allows time resolved measurements of the retinal vasculature in the en-face imaging plane. Vessel walls and structures that we believe correspond to individual erythrocytes could be visualized with the system.

  3. Six-channel adaptive fibre-optic interferometer

    SciTech Connect

    Romashko, R V; Bezruk, M N; Kamshilin, A A; Kulchin, Yurii N

    2012-06-30

    We have proposed and analysed a scheme for the multiplexing of orthogonal dynamic holograms in photorefractive crystals which ensures almost zero cross talk between the holographic channels upon phase demodulation. A six-channel adaptive fibre-optic interferometer was built, and the detection limit for small phase fluctuations in the channels of the interferometer was determined to be 2.1 Multiplication-Sign 10{sup -8} rad W{sup 1/2} Hz{sup -1/2}. The channel multiplexing capacity of the interferometer was estimated. The formation of 70 channels such that their optical fields completely overlap in the crystal reduces the relative detection limit in the working channel by just 10 %. We found conditions under which the maximum cross talk between the channels was within the intrinsic noise level in the channels (-47 dB).

  4. Deformable mirrors for open-loop adaptive optics

    NASA Astrophysics Data System (ADS)

    Kellerer, A.; Vidal, F.; Gendron, E.; Hubert, Z.; Perret, D.; Rousset, G.

    2012-07-01

    We characterize the performance of deformable mirrors for use in open-loop regimes. This is especially relevant for Multi Object Adaptive Optics (MOAO), or for closed-loop schemes that require improved accuracies. Deformable mirrors are usually characterized by standard parameters, such as influence functions, linearity, hysteresis, etc. We show that these parameters are insufficient for characterizing open-loop performance and that a deeper analysis of the mirror's behavior is then required. The measurements on the deformable mirrors were performed in 2007 on the AO test bench of the Meudon observatory, SESAME.

  5. Self-characterization of linear and nonlinear adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Hampton, Peter J.; Conan, Rodolphe; Keskin, Onur; Bradley, Colin; Agathoklis, Pan

    2008-01-01

    We present methods used to determine the linear or nonlinear static response and the linear dynamic response of an adaptive optics (AO) system. This AO system consists of a nonlinear microelectromechanical systems deformable mirror (DM), a linear tip-tilt mirror (TTM), a control computer, and a Shack-Hartmann wavefront sensor. The system is modeled using a single-input-single-output structure to determine the one-dimensional transfer function of the dynamic response of the chain of system hardware. An AO system has been shown to be able to characterize its own response without additional instrumentation. Experimentally determined models are given for a TTM and a DM.

  6. Precision Targeting with a Tracking adaptive Optics Scanning Laser Ophthalmoscope

    DTIC Science & Technology

    2006-02-01

    in Figure 2) but drives two galvanometers placed at appropriate conjugates within the path of the adaptive optics scanning laser ophthalmoscope...reflectometer. The input to the "slave" control loop is the scaled position signals from the master galvanometers . The slave tracking mirrors are placed at...signals and drive galvanometers . The DSP has a loop rate of 62.5 kHz (compared to 16 kHz in the previously-used real-time processing board) for a

  7. Closed-Loop Adaptive Optics Control in Strong Atmospheric Turbulence

    DTIC Science & Technology

    2008-09-01

    Atmospheric Turbulence Todd M. Venema, B.S.E., M.S.E.E. Lieutenant Colonel, USAF Approved: Dr. Juan Vasquez , (Chairman) Date Maj. Jason Schmidt, PhD (Member...to acknowledge the help of Jason Schmidt and Juan Vasquez , my Air Force Institute of Technology advisors. I would also like to acknowledge the help of...Darryl Sanchez and Denis Oesch from the Air Force’s Starfire Optical Range in helping me study my designs in their Atmospheric Simulation and Adaptive

  8. Performance of the Gemini Planet Imager's adaptive optics system.

    PubMed

    Poyneer, Lisa A; Palmer, David W; Macintosh, Bruce; Savransky, Dmitry; Sadakuni, Naru; Thomas, Sandrine; Véran, Jean-Pierre; Follette, Katherine B; Greenbaum, Alexandra Z; Ammons, S Mark; Bailey, Vanessa P; Bauman, Brian; Cardwell, Andrew; Dillon, Daren; Gavel, Donald; Hartung, Markus; Hibon, Pascale; Perrin, Marshall D; Rantakyrö, Fredrik T; Sivaramakrishnan, Anand; Wang, Jason J

    2016-01-10

    The Gemini Planet Imager's adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. A definitive description of the system's algorithms and technologies as built is given. 564 AO telemetry measurements from the Gemini Planet Imager Exoplanet Survey campaign are analyzed. The modal gain optimizer tracks changes in atmospheric conditions. Science observations show that image quality can be improved with the use of both the spatially filtered wavefront sensor and linear-quadratic-Gaussian control of vibration. The error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term.

  9. Performance predictions for the Keck telescope adaptive optics system

    SciTech Connect

    Gavel, D.T.; Olivier, S.S.

    1995-08-07

    The second Keck ten meter telescope (Keck-11) is slated to have an infrared-optimized adaptive optics system in the 1997--1998 time frame. This system will provide diffraction-limited images in the 1--3 micron region and the ability to use a diffraction-limited spectroscopy slit. The AO system is currently in the preliminary design phase and considerable analysis has been performed in order to predict its performance under various seeing conditions. In particular we have investigated the point-spread function, energy through a spectroscopy slit, crowded field contrast, object limiting magnitude, field of view, and sky coverage with natural and laser guide stars.

  10. An adaptive optics imaging system designed for clinical use.

    PubMed

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R; Rossi, Ethan A

    2015-06-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2-3 arc minutes, (arcmin) 2) ~0.5-0.8 arcmin and, 3) ~0.05-0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3-5 arcmin, 2) ~0.7-1.1 arcmin and 3) ~0.07-0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing.

  11. An adaptive optics imaging system designed for clinical use

    PubMed Central

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R.; Rossi, Ethan A.

    2015-01-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2–3 arc minutes, (arcmin) 2) ~0.5–0.8 arcmin and, 3) ~0.05–0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3–5 arcmin, 2) ~0.7–1.1 arcmin and 3) ~0.07–0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  12. Harnessing Adaptive Optics for Space Debris Collision Mitigation

    NASA Astrophysics Data System (ADS)

    Zovaro, A.; Bennet, F.; Copeland, M.; Rigaut, F.; d'Orgeville, C.; Grosse, D.

    2016-09-01

    Human kind's continued use of space depends upon minimising the build-up of debris in low Earth-orbit (LEO). Preventing collisions between satellites and debris is essential given that a single collision can generate thousands of new debris objects. However, in-orbit manoeuvring of satellites is extremely expensive and shortens their operational life. Adjusting the orbits of debris objects instead of satellites would shift the responsibility of collision avoidance away from satellite operators altogether, thereby offering a superior solution. The Research School of Astronomy and Astrophysics at the Australian National University, partnered with Electro Optic Systems (EOS) Space Systems, Lockheed Martin Corporation and the Space Environment Research Centre (SERC) Limited, are developing the Adaptive Optics Tracking and Pushing (AOTP) system. AOTP will be used to perturb the orbits of debris objects using photon pressure from a 10 kW IR laser beam launched from the 1.8 m telescope at Mount. Stromlo Observatory, Australia. Initial simulations predict that AOTP will be able to displace debris objects 10 cm in size by up to 100 m with several overhead passes. An operational demonstrator is planned for 2019. Turbulence will distort the laser beam as it propagates through the atmosphere, resulting in a lower photon flux on the target and reduced pointing accuracy. To mitigate these effects, adaptive optics (AO) will be used to apply wavefront correction to the beam prior to launch. A unique challenge in designing the AO system arises from the high slew rate needed to track objects in LEO, which in turn requires laser guide star AO for satisfactory wavefront correction. The optical design and results from simulations of estimated performance of AOTP will be presented. In particular, design considerations associated with the high-power laser will be detailed.

  13. Design of the Dual Conjugate Adaptive Optics Test-bed

    NASA Astrophysics Data System (ADS)

    Sharf, Inna; Bell, K.; Crampton, D.; Fitzsimmons, J.; Herriot, Glen; Jolissaint, Laurent; Lee, B.; Richardson, H.; van der Kamp, D.; Veran, Jean-Pierre

    In this paper, we describe the Multi-Conjugate Adaptive Optics laboratory test-bed presently under construction at the University of Victoria, Canada. The test-bench will be used to support research in the performance of multi-conjugate adaptive optics, turbulence simulators, laser guide stars and miniaturizing adaptive optics. The main components of the test-bed include two micro-machined deformable mirrors, a tip-tilt mirror, four wavefront sensors, a source simulator, a dual-layer turbulence simulator, as well as computational and control hardware. The paper will describe in detail the opto-mechanical design of the adaptive optics module, the design of the hot-air turbulence generator and the configuration chosen for the source simulator. Below, we present a summary of these aspects of the bench. The optical and mechanical design of the test-bed has been largely driven by the particular choice of the deformable mirrors. These are continuous micro-machined mirrors manufactured by Boston Micromachines Corporation. They have a clear aperture of 3.3 mm and are deformed with 140 actuators arranged in a square grid. Although the mirrors have an open-loop bandwidth of 6.6 KHz, their shape can be updated at a sampling rate of 100 Hz. In our optical design, the mirrors are conjugated at 0km and 10 km in the atmosphere. A planar optical layout was achieved by using four off-axis paraboloids and several folding mirrors. These optics will be mounted on two solid blocks which can be aligned with respect to each other. The wavefront path design accommodates 3 monochromatic guide stars that can be placed at either 90 km or at infinity. The design relies on the natural separation of the beam into 3 parts because of differences in locations of the guide stars in the field of view. In total four wavefront sensors will be procured from Adaptive Optics Associates (AOA) or built in-house: three for the guide stars and the fourth to collect data from the science source output in

  14. Phase aberration correction by correlation in digital holographic adaptive optics

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    We present a phase aberration correction method based on the correlation between the complex full-field and guide-star holograms in the context of digital holographic adaptive optics (DHAO). Removal of a global quadratic phase term before the correlation operation plays an important role in the correction. Correlation operation can remove the phase aberration at the entrance pupil plane and automatically refocus the corrected optical field. Except for the assumption that most aberrations lie at or close to the entrance pupil, the presented method does not impose any other constraints on the optical systems. Thus, it greatly enhances the flexibility of the optical design for DHAO systems in vision science and microscopy. Theoretical studies show that the previously proposed Fourier transform DHAO (FTDHAO) is just a special case of this general correction method, where the global quadratic phase term and a defocus term disappear. Hence, this correction method realizes the generalization of FTDHAO into arbitrary DHAO systems. The effectiveness and robustness of this method are demonstrated by simulations and experiments. PMID:23669707

  15. Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination.

    PubMed

    Milkie, Daniel E; Betzig, Eric; Ji, Na

    2011-11-01

    Optical aberrations deteriorate the performance of microscopes. Adaptive optics can be used to improve imaging performance via wavefront shaping. Here, we demonstrate a pupil-segmentation based adaptive optical approach with full-pupil illumination. When implemented in a two-photon fluorescence microscope, it recovers diffraction-limited performance and improves imaging signal and resolution.

  16. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    PubMed

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  17. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography

    PubMed Central

    Wong, Kevin S. K.; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation. PMID:25780747

  18. Adaptive management of ecosystem services across different land use regimes.

    PubMed

    Ruhl, J B

    2016-12-01

    Using adaptive management to manage desired flows of ecosystem services may seem on the surface to be a good fit, but many social, economic, environmental, legal, and political factors influence how good a fit. One strongly influential factor is the land use regime within which the profile of ecosystem services is being managed. Shaped largely by legal mandates, market forces, and social and cultural practices, different land use regimes present different opportunities for and constraints on goals for ecosystem services and pose different decision making environments. Even where all other conditions appear amenable to using adaptive management, therefore, it is essential to consider the constraining (or liberating) effects of different land use regimes when deciding whether to adopt adaptive management to achieve those goals and, if so, how to implement it.

  19. Turbulence profiling methods applied to ESO's adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Valenzuela, Javier; Béchet, Clémentine; Garcia-Rissmann, Aurea; Gonté, Frédéric; Kolb, Johann; Le Louarn, Miska; Neichel, Benoît; Madec, Pierre-Yves; Guesalaga, Andrés.

    2014-07-01

    Two algorithms were recently studied for C2n profiling from wide-field Adaptive Optics (AO) measurements on GeMS (Gemini Multi-Conjugate AO system). They both rely on the Slope Detection and Ranging (SLODAR) approach, using spatial covariances of the measurements issued from various wavefront sensors. The first algorithm estimates the C2n profile by applying the truncated least-squares inverse of a matrix modeling the response of slopes covariances to various turbulent layer heights. In the second method, the profile is estimated by deconvolution of these spatial cross-covariances of slopes. We compare these methods in the new configuration of ESO Adaptive Optics Facility (AOF), a high-order multiple laser system under integration. For this, we use measurements simulated by the AO cluster of ESO. The impact of the measurement noise and of the outer scale of the atmospheric turbulence is analyzed. The important influence of the outer scale on the results leads to the development of a new step for outer scale fitting included in each algorithm. This increases the reliability and robustness of the turbulence strength and profile estimations.

  20. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    PubMed Central

    Buchhold, Niels; Baumgartner, Christian

    2017-01-01

    This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD). The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels), the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates) and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force). This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability. PMID:28134824

  1. AVES: an adaptive optics visual echelle spectrograph for the VLT

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca; Delabre, Bernard; Avila, Gerardo; Bonaccini, Domenico

    1998-07-01

    We present the preliminary study of a low cost, high performance spectrograph for the VLT, for observations in the V, R and I bands. This spectrograph is meant for intermediate (R equals 16,000) resolution spectroscopy of faint (sky and/or detector limited) sources, with particular emphasis on the study of solar-type (F-G) stars belonging to the nearest galaxies and to distant (or highly reddened) galactic clusters. The spectrograph is designed to use the adaptive optics (AO) systems at the VLT Telescope. Even if these AO systems will not provide diffraction limited images in the V, R and I bands, the photon concentration will still be above approximately 60% of the flux in an 0.3 arcsecond aperture for typical Paranal conditions. This makes the construction of a compact, cheap and efficient echelle spectrograph possible. AVES will outperform comparable non adaptive optic instruments by more than one magnitude for sky- and/or detector-limited observations, and it will be very suitable for observations in crowded fields.

  2. Optimal control law for classical and multiconjugate adaptive optics.

    PubMed

    Le Roux, Brice; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Mugnier, Laurent M; Fusco, Thierry

    2004-07-01

    Classical adaptive optics (AO) is now a widespread technique for high-resolution imaging with astronomical ground-based telescopes. It generally uses simple and efficient control algorithms. Multiconjugate adaptive optics (MCAO) is a more recent and very promising technique that should extend the corrected field of view. This technique has not yet been experimentally validated, but simulations already show its high potential. The importance for MCAO of an optimal reconstruction using turbulence spatial statistics has already been demonstrated through open-loop simulations. We propose an optimal closed-loop control law that accounts for both spatial and temporal statistics. The prior information on the turbulence, as well as on the wave-front sensing noise, is expressed in a state-space model. The optimal phase estimation is then given by a Kalman filter. The equations describing the system are given and the underlying assumptions explained. The control law is then derived. The gain brought by this approach is demonstrated through MCAO numerical simulations representative of astronomical observation on a 8-m-class telescope in the near infrared. We also discuss the application of this control approach to classical AO. Even in classical AO, the technique could be relevant especially for future extreme AO systems.

  3. Non-iterative adaptive optical microscopy using wavefront sensing

    NASA Astrophysics Data System (ADS)

    Tao, X.; Azucena, O.; Kubby, J.

    2016-03-01

    This paper will review the development of wide-field and confocal microscopes with wavefront sensing and adaptive optics for correcting refractive aberrations and compensating scattering when imaging through thick tissues (Drosophila embryos and mouse brain tissue). To make wavefront measurements in biological specimens we have modified the laser guide-star techniques used in astronomy for measuring wavefront aberrations that occur as star light passes through Earth's turbulent atmosphere. Here sodium atoms in Earth's mesosphere, at an altitude of 95 km, are excited to fluoresce at resonance by a high-power sodium laser. The fluorescent light creates a guide-star reference beacon at the top of the atmosphere that can be used for measuring wavefront aberrations that occur as the light passes through the atmosphere. We have developed a related approach for making wavefront measurements in biological specimens using cellular structures labeled with fluorescent proteins as laser guide-stars. An example is a fluorescently labeled centrosome in a fruit fly embryo or neurons and dendrites in mouse brains. Using adaptive optical microscopy we show that the Strehl ratio, the ratio of the peak intensity of an aberrated point source relative to the diffraction limited image, can be improved by an order of magnitude when imaging deeply into live dynamic specimens, enabling near diffraction limited deep tissue imaging.

  4. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

    SciTech Connect

    Laag, E A; Canalizo, G; van Breugel, W; Gates, E L; de Vries, W; Stanford, S A

    2006-03-13

    We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.

  5. Distributed control in adaptive optics: deformable mirror and turbulence modeling

    NASA Astrophysics Data System (ADS)

    Ellenbroek, Rogier; Verhaegen, Michel; Doelman, Niek; Hamelinck, Roger; Rosielle, Nick; Steinbuch, Maarten

    2006-06-01

    Future large optical telescopes require adaptive optics (AO) systems whose deformable mirrors (DM) have ever more degrees of freedom. This paper describes advances that are made in a project aimed to design a new AO system that is extendible to meet tomorrow's specifications. Advances on the mechanical design are reported in a companion paper [6272-75], whereas this paper discusses the controller design aspects. The numerical complexity of controller designs often used for AO scales with the fourth power in the diameter of the telescope's primary mirror. For future large telescopes this will undoubtedly become a critical aspect. This paper demonstrates the feasibility of solving this issue with a distributed controller design. A distributed framework will be introduced in which each actuator has a separate processor that can communicate with a few direct neighbors. First, the DM will be modeled and shown to be compatible with the framework. Then, adaptive turbulence models that fit the framework will be shown to adequately capture the spatio-temporal behavior of the atmospheric disturbance, constituting a first step towards a distributed optimal control. Finally, the wavefront reconstruction step is fitted into the distributed framework such that the computational complexity for each processor increases only linearly with the telescope diameter.

  6. Overview of deformable mirror technologies for adaptive optics and astronomy

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  7. Cloud Structures on Neptune Observed with Keck Telescope Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Max, C. E.; Macintosh, B. A.; Gibbard, S. G.; Gavel, D. T.; Roe, H. G.; de Pater, I.; Ghez, A. M.; Acton, D. S.; Lai, O.; Stomski, P.; Wizinowich, P. L.

    2003-01-01

    We report on observations obtained with the adaptive optics system at the 10 m Keck II Telescope during engineering validation and early science observing time for the adaptive optics system. We observed Neptune at near-infrared wavelengths. Angular resolution was 0.05"-0.06", corresponding to a spatial scale of approximately 1000 km at Neptune. We discuss the latitudinal structure of circumferential cloud bands and of compact infrared-bright features seen in the southern hemisphere, as well as their variation with wavelength. We determine the values of I/F (proportional to the ratio of reflected intensity to incident solar flux) in the J and H infrared-wavelength bands, including narrowband filters where there is strong methane absorption. We use the I/F values inside and outside of methane bands to estimate the altitude of clouds responsible for the brightest compact features in the infrared. Our data show that, on two of our four observing dates, the brightest region on Neptune contained highly reflective haze layers located below the tropopause but not deeper than a few bars.

  8. A New, Adaptable, Optical High-Resolution 3-Axis Sensor.

    PubMed

    Buchhold, Niels; Baumgartner, Christian

    2017-01-27

    This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD). The downstream microcontroller's software identifies the geometric shape's center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels), the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates) and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user's range of motion (stroke and force). This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  9. Photometric Calibration of the Gemini South Adaptive Optics Imager

    NASA Astrophysics Data System (ADS)

    Stevenson, Sarah Anne; Rodrigo Carrasco Damele, Eleazar; Thomas-Osip, Joanna

    2017-01-01

    The Gemini South Adaptive Optics Imager (GSAOI) is an instrument available on the Gemini South telescope at Cerro Pachon, Chile, utilizing the Gemini Multi-Conjugate Adaptive Optics System (GeMS). In order to allow users to easily perform photometry with this instrument and to monitor any changes in the instrument in the future, we seek to set up a process for performing photometric calibration with standard star observations taken across the time of the instrument’s operation. We construct a Python-based pipeline that includes IRAF wrappers for reduction and combines the AstroPy photutils package and original Python scripts with the IRAF apphot and photcal packages to carry out photometry and linear regression fitting. Using the pipeline, we examine standard star observations made with GSAOI on 68 nights between 2013 and 2015 in order to determine the nightly photometric zero points in the J, H, Kshort, and K bands. This work is based on observations obtained at the Gemini Observatory, processed using the Gemini IRAF and gemini_python packages, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  10. Comparison of wavefront sensor models for simulation of adaptive optics.

    PubMed

    Wu, Zhiwen; Enmark, Anita; Owner-Petersen, Mette; Andersen, Torben

    2009-10-26

    The new generation of extremely large telescopes will have adaptive optics. Due to the complexity and cost of such systems, it is important to simulate their performance before construction. Most systems planned will have Shack-Hartmann wavefront sensors. Different mathematical models are available for simulation of such wavefront sensors. The choice of wavefront sensor model strongly influences computation time and simulation accuracy. We have studied the influence of three wavefront sensor models on performance calculations for a generic, adaptive optics (AO) system designed for K-band operation of a 42 m telescope. The performance of this AO system has been investigated both for reduced wavelengths and for reduced r(0) in the K band. The telescope AO system was designed for K-band operation, that is both the subaperture size and the actuator pitch were matched to a fixed value of r(0) in the K-band. We find that under certain conditions, such as investigating limiting guide star magnitude for large Strehl-ratios, a full model based on Fraunhofer propagation to the subimages is significantly more accurate. It does however require long computation times. The shortcomings of simpler models based on either direct use of average wavefront tilt over the subapertures for actuator control, or use of the average tilt to move a precalculated point spread function in the subimages are most pronounced for studies of system limitations to operating parameter variations. In the long run, efficient parallelization techniques may be developed to overcome the problem.

  11. Direct detection of extrasolar planets with the eXtreme Adaptive Optics Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, B. A.; Graham, J. R.; Duchene, G.; Jones, S.; Kalas, P.; Lloyd, J.; Makidon, R. B.; Olivier, S.; Palmer, D.; Perrin, M.; Poyneer, L.; Sheinis, A.; Sivaramakrishnan, A.; Severson, S.; Sommargren, G.; Troy, M.; Wallace, J. K.

    2003-05-01

    Current radial-velocity searches for extrasolar planets, though powerful, are fundamentally constrained in the range of orbits they can access by the need for a near-complete orbital period: the largest detectable semi-major axis only grows with time to the 2/3 power. In the next several decades, radial velocity detection will barely reach planets with orbits comparable to Saturn. However, planets in our solar system exist at wider separations and dusty disks frequently exceed 100 AU, some with evidence for perturbing planets in wide orbits. To probe the 5-100 AU range different techniques are needed. Direct detection of photons emitted by extrasolar planets is one such technique, but requires contrast levels of 107-109 at near-infrared wavelengths. We have designed an adaptive optics (AO) system capable of reaching these contrasts. XAOPI, the eXtreme Adaptive Optics Planet Imager, is a proposed 4096-actuator adaptive optics system for an 8-10m telescope. It will achieve Strehl ratios >0.9, and is optimized to remove scattered light from 0.2-1 arcseconds, even light scattered by errors in a segmented primary mirror. Simulations predict that it will achieve contrast ratios of 107 -108 for target stars with R<7. Monte Carlo analysis of target samples shows that this allows detection of near-IR emission from warm extrasolar planets younger and/or more massive than Jupiter around a significant sample of target stars. We will examine the scientific rationale for, and capabilities of, this proposed instrument. This work has been supported by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST - 987 Portions of this work were also performed under the auspices of the U.S. Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  12. LEO-to-ground optical communications link using adaptive optics correction on the OPALS downlink

    NASA Astrophysics Data System (ADS)

    Wright, Malcolm W.; Kovalik, Joseph; Morris, Jeff; Abrahamson, Matthew; Biswas, Abhijit

    2016-03-01

    The Optical PAyload for Lasercomm Science (OPALS) experiment on the International Space Station (ISS) recently demonstrated successful optical downlinks to the NASA/JPL 1-m aperture telescope at the Optical Communication Telescope Laboratory (OCTL) located near Wrightwood, CA. A large area (200 μm diameter) free space coupled avalanche photodiode (APD) detector was used to receive video and a bit patterns at 50 Mb/s. We report on a recent experiment that used an adaptive optics system at OCTL to correct for atmospherically-induced refractive index fluctuations so that the downlink from the ISS could be coupled into a single mode fiber receiver. Stable fiber coupled power was achieved over an entire pass using a self-referencing interferometer based adaptive optics system that was provided and operated by Boeing Co. and integrated to OCTL. End-to-end transmission and reconstruction of an HD video signal verified the communication performance as in the original OPALS demonstration. Coupling the signal into a single mode fiber opens the possibility for higher bandwidth and efficiency modulation schemes and serves as a pilot experiment for future implementations.

  13. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  14. Adaptive optics image restoration algorithm based on wavefront reconstruction and adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen

    2016-11-01

    To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.

  15. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    PubMed

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information.

  16. MEMS segmented-based adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Manzanera, Silvestre; Helmbrecht, Michael A.; Kempf, Carl J.; Roorda, Austin

    2011-01-01

    The performance of a MEMS (micro-electro-mechanical-system) segmented deformable mirror was evaluated in an adaptive optics (AO) scanning laser ophthalmoscope. The tested AO mirror (Iris AO, Inc, Berkeley, CA) is composed of 37 hexagonal segments that allow piston/tip/tilt motion up to 5 μm stroke and ±5 mrad angle over a 3.5 mm optical aperture. The control system that implements the closed-loop operation employs a 1:1 matched 37-lenslet Shack-Hartmann wavefront sensor whose measurements are used to apply modal corrections to the deformable mirror. After a preliminary evaluation of the AO mirror optical performance, retinal images from 4 normal subjects over a 0.9°x0.9° field size were acquired through a 6.4 mm ocular pupil, showing resolved retinal features at the cellular level. Cone photoreceptors were observed as close as 0.25 degrees from the foveal center. In general, the quality of these images is comparable to that obtained using deformable mirrors based on different technologies. PMID:21559132

  17. Protocol and practice in the adaptive management of waterfowl harvests

    USGS Publications Warehouse

    Johnson, F.; Williams, K.

    1999-01-01

    Waterfowl harvest management in North America, for all its success, historically has had several shortcomings, including a lack of well-defined objectives, a failure to account for uncertain management outcomes, and inefficient use of harvest regulations to understand the effects of management. To address these and other concerns, the U.S. Fish and Wildlife Service began implementation of adaptive harvest management in 1995. Harvest policies are now developed using a Markov decision process in which there is an explicit accounting for uncontrolled environmental variation, partial controllability of harvest, and structural uncertainty in waterfowl population dynamics. Current policies are passively adaptive, in the sense that any reduction in structural uncertainty is an unplanned by-product of the regulatory process. A generalization of the Markov decision process permits the calculation of optimal actively adaptive policies, but it is not yet clear how state-specific harvest actions differ between passive and active approaches. The Markov decision process also provides managers the ability to explore optimal levels of aggregation or "management scale" for regulating harvests in a system that exhibits high temporal, spatial, and organizational variability. Progress in institutionalizing adaptive harvest management has been remarkable, but some managers still perceive the process as a panacea, while failing to appreciate the challenges presented by this more explicit and methodical approach to harvest regulation. Technical hurdles include the need to develop better linkages between population processes and the dynamics of landscapes, and to model the dynamics of structural uncertainty in a more comprehensive fashion. From an institutional perspective, agreement on how to value and allocate harvests continues to be elusive, and there is some evidence that waterfowl managers have overestimated the importance of achievement-oriented factors in setting hunting

  18. 77 FR 22801 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Management Work Group (AMWG) makes recommendations to the Secretary of the Interior concerning Glen Canyon... AMP includes a Federal advisory committee, the AMWG, a technical work group, a Grand Canyon...

  19. Managing Adaptive Challenges: Learning with Principals in Bermuda and Florida

    ERIC Educational Resources Information Center

    Drago-Severson, Eleanor; Maslin-Ostrowski, Patricia; Hoffman, Alexander M.; Barbaro, Justin

    2014-01-01

    We interviewed eight principals from Bermuda and Florida about how they identify and manage their most pressing challenges. Their challenges are composed of both adaptive and technical work, requiring leaders to learn to diagnose and manage them. Challenges focused on change and were traced to accountability contexts, yet accountability was not…

  20. The Value of Adaptive Regret Management in Retirement

    ERIC Educational Resources Information Center

    Farquhar, Jamie C.; Wrosch, Carsten; Pushkar, Dolores; Li, Karen Z. H.

    2013-01-01

    This 3-year longitudinal study examined the associations between regret management, everyday activities, and retirement satisfaction among recent retirees. We hypothesized that the regulation of a severe life regret can facilitate activity engagement and retirement satisfaction, but only if retirees manage their regrets adaptively by either…

  1. Engaging stakeholders for adaptive management using structured decision analysis

    USGS Publications Warehouse

    Irwin, Elise R.; Kathryn, D.; Kennedy, Mickett

    2009-01-01

    Adaptive management is different from other types of management in that it includes all stakeholders (versus only policy makers) in the process, uses resource optimization techniques to evaluate competing objectives, and recognizes and attempts to reduce uncertainty inherent in natural resource systems. Management actions are negotiated by stakeholders, monitored results are compared to predictions of how the system should respond, and management strategies are adjusted in a “monitor-compare-adjust” iterative routine. Many adaptive management projects fail because of the lack of stakeholder identification, engagement, and continued involvement. Primary reasons for this vary but are usually related to either stakeholders not having ownership (or representation) in decision processes or disenfranchisement of stakeholders after adaptive management begins. We present an example in which stakeholders participated fully in adaptive management of a southeastern regulated river. Structured decision analysis was used to define management objectives and stakeholder values and to determine initial flow prescriptions. The process was transparent, and the visual nature of the modeling software allowed stakeholders to see how their interests and values were represented in the decision process. The development of a stakeholder governance structure and communication mechanism has been critical to the success of the project.

  2. Rich Water World an adaptive water management tool

    NASA Astrophysics Data System (ADS)

    van Rheenen, Hans; van den Berg, Wim

    2015-04-01

    Rich Water World an adaptive water management tool based on weather forecasting, sensor data and hydrological modelling. Climate change will cause periods of more extreme rainfall relieved by periods of drought. Water systems have to become more robust and self supporting in order to prevent damage by flooding and drought. For climate proof water management, it is important to anticipate on extreme events by using excellent weather forecast data, sensor data on soil and water, and hydrologic model data. The Rich Water World project has created an Adaptive Water Management Tool that integrates all these data.

  3. Adapting environmental management to uncertain but inevitable change

    PubMed Central

    Nicol, Sam; Fuller, Richard A.; Iwamura, Takuya; Chadès, Iadine

    2015-01-01

    Implementation of adaptation actions to protect biodiversity is limited by uncertainty about the future. One reason for this is the fear of making the wrong decisions caused by the myriad future scenarios presented to decision-makers. We propose an adaptive management (AM) method for optimally managing a population under uncertain and changing habitat conditions. Our approach incorporates multiple future scenarios and continually learns the best management strategy from observations, even as conditions change. We demonstrate the performance of our AM approach by applying it to the spatial management of migratory shorebird habitats on the East Asian–Australasian flyway, predicted to be severely impacted by future sea-level rise. By accounting for non-stationary dynamics, our solution protects 25 000 more birds per year than the current best stationary approach. Our approach can be applied to many ecological systems that require efficient adaptation strategies for an uncertain future. PMID:25972463

  4. Adapting livestock behaviour to achieve management goals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using livestock to efficiently achieve management goals requires melding animal behavior with mechanical and electronic equipment. Practices such as autonomously obtaining individual animal liveweight when combined with individual animal electronic identification can produce numerous cost saving ad...

  5. Improving Voluntary Environmental Management Programs: Facilitating Learning and Adaptation

    NASA Astrophysics Data System (ADS)

    Genskow, Kenneth D.; Wood, Danielle M.

    2011-05-01

    Environmental planners and managers face unique challenges understanding and documenting the effectiveness of programs that rely on voluntary actions by private landowners. Programs, such as those aimed at reducing nonpoint source pollution or improving habitat, intend to reach those goals by persuading landowners to adopt behaviors and management practices consistent with environmental restoration and protection. Our purpose with this paper is to identify barriers for improving voluntary environmental management programs and ways to overcome them. We first draw upon insights regarding data, learning, and adaptation from the adaptive management and performance management literatures, describing three key issues: overcoming information constraints, structural limitations, and organizational culture. Although these lessons are applicable to a variety of voluntary environmental management programs, we then present the issues in the context of on-going research for nonpoint source water quality pollution. We end the discussion by highlighting important elements for advancing voluntary program efforts.

  6. Hyperspectral Remote Sensing of the Coastal Ocean: Adaptive Sampling and Forecasting of In situ Optical Properties

    DTIC Science & Technology

    2002-09-30

    integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to develop hyperspectral remote sensing techniques in optically complex nearshore coastal waters.

  7. Soft systems thinking and social learning for adaptive management.

    PubMed

    Cundill, G; Cumming, G S; Biggs, D; Fabricius, C

    2012-02-01

    The success of adaptive management in conservation has been questioned and the objective-based management paradigm on which it is based has been heavily criticized. Soft systems thinking and social-learning theory expose errors in the assumption that complex systems can be dispassionately managed by objective observers and highlight the fact that conservation is a social process in which objectives are contested and learning is context dependent. We used these insights to rethink adaptive management in a way that focuses on the social processes involved in management and decision making. Our approach to adaptive management is based on the following assumptions: action toward a common goal is an emergent property of complex social relationships; the introduction of new knowledge, alternative values, and new ways of understanding the world can become a stimulating force for learning, creativity, and change; learning is contextual and is fundamentally about practice; and defining the goal to be addressed is continuous and in principle never ends. We believe five key activities are crucial to defining the goal that is to be addressed in an adaptive-management context and to determining the objectives that are desirable and feasible to the participants: situate the problem in its social and ecological context; raise awareness about alternative views of a problem and encourage enquiry and deconstruction of frames of reference; undertake collaborative actions; and reflect on learning.

  8. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy.

    PubMed

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R; Roorda, Austin; Rossi, Ethan A

    2014-09-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10-15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66-2.56 μm or ~0.34-0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20-0.25 μm or ~0.04-0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported.

  9. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy

    PubMed Central

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R.; Roorda, Austin; Rossi, Ethan A.

    2014-01-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported. PMID:25401030

  10. Postural adaptations to repeated optic flow stimulation in older adults.

    PubMed

    O'Connor, Kathryn W; Loughlin, Patrick J; Redfern, Mark S; Sparto, Patrick J

    2008-10-01

    The purpose of this study is to understand the processes of adaptation (changes in within-trial postural responses) and habituation (reductions in between-trial postural responses) to visual cues in older and young adults. Of particular interest were responses to sudden increases in optic flow magnitude. The postural sway of 25 healthy young adults and 24 healthy older adults was measured while subjects viewed anterior-posterior 0.4 Hz sinusoidal optic flow for 45 s. Three trials for each of three conditions were performed: (1) constant 12 cm optic flow amplitude (24 cm peak-to-peak), (2) constant 4 cm amplitude (8 cm p-t-p), and (3) a transition in amplitude from 4 to 12 cm. The average power of head sway velocity (P(vel)) was calculated for consecutive 5s intervals during the trial to examine the changes in sway within and between trials. A mixed factor repeated measures ANOVA was performed to examine the effects of subject Group, Trial, and Interval on the P(vel). P(vel) was greater in older adults in all conditions (p<0.001). During the 12 cm constant amplitude trials, within-trial adaptation occurred for all subjects, but there were differences in the between-trial habituation. P(vel) of the older adults decreased significantly between all 3 trials, but decreased only between Trials 1 and 2 in young adults. While the responses of the young adults to the transition in optic flow from 4 to 12 cm did not significantly change, older adults had an increase in P(vel) following the transition, ranging from 6.5 dB for the first trial to 3.4 dB for the third trial. These results show that older adults can habituate to repeated visual perturbation exposures; however, this habituation requires a greater number of exposures than young adults. This suggests aging impacts the ability to quickly modify the relative weighting of the sensory feedback for postural stabilization.

  11. Adaptive management for ecosystem services.

    PubMed

    Birgé, Hannah E; Allen, Craig R; Garmestani, Ahjond S; Pope, Kevin L

    2016-12-01

    Management of natural resources for the production of ecosystem services, which are vital for human well-being, is necessary even when there is uncertainty regarding system response to management action. This uncertainty is the result of incomplete controllability, complex internal feedbacks, and non-linearity that often interferes with desired management outcomes, and insufficient understanding of nature and people. Adaptive management was developed to reduce such uncertainty. We present a framework for the application of adaptive management for ecosystem services that explicitly accounts for cross-scale tradeoffs in the production of ecosystem services. Our framework focuses on identifying key spatiotemporal scales (plot, patch, ecosystem, landscape, and region) that encompass dominant structures and processes in the system, and includes within- and cross-scale dynamics, ecosystem service tradeoffs, and management controllability within and across scales. Resilience theory recognizes that a limited set of ecological processes in a given system regulate ecosystem services, yet our understanding of these processes is poorly understood. If management actions erode or remove these processes, the system may shift into an alternative state unlikely to support the production of desired services. Adaptive management provides a process to assess the underlying within and cross-scale tradeoffs associated with production of ecosystem services while proceeding with management designed to meet the demands of a growing human population.

  12. Adaptive management for ecosystem services (j/a) | Science ...

    EPA Pesticide Factsheets

    Management of natural resources for the production of ecosystem services, which are vital for human well-being, is necessary even when there is uncertainty regarding system response to management action. This uncertainty is the result of incomplete controllability, complex internal feedbacks, and non-linearity that often interferes with desired management outcomes, and insufficient understanding of nature and people. Adaptive management was developed to reduce such uncertainty. We present a framework for the application of adaptive management for ecosystem services that explicitly accounts for cross-scale tradeoffs in the production of ecosystem services. Our framework focuses on identifying key spatiotemporal scales (plot, patch, ecosystem, landscape, and region) that encompass dominant structures and processes in the system, and includes within- and cross-scale dynamics, ecosystem service tradeoffs, and management controllability within and across scales. Resilience theory recognizes that a limited set of ecological processes in a given system regulate ecosystem services, yet our understanding of these processes is poorly understood. If management actions erode or remove these processes, the system may shift into an alternative state unlikely to support the production of desired services. Adaptive management provides a process to assess the underlying within and cross-scale tradeoffs associated with production of ecosystem services while proceeding with manage

  13. Health information management using optical storage technology: case studies.

    PubMed

    Kohn, D

    1992-05-01

    All the health care facilities examined in the case studies addressed several important organizational issues before and during the installation of their systems. All the facilities examined employee commitment. The prudent managers considered how easily their employees adapt to changes in their jobs and work environment. They considered how enthusiastic cooperation can be fostered in the creation of a liberated and reengineered office. This was determined not only by each individual's reaction to change, but also by the health care facility's track record with other system installations. For example, document image, diagnostic image, and coded data processing systems allow the integration of divergent health care information systems within complex institutions. Unfortunately, many institutions are currently struggling with how to create an information management architecture that will integrate their mature systems, such as their patient care and financial systems. Information managers must realize that if optical storage technology-based systems are used in a strategic and planned fashion, these systems can act as focal points for systems integration, not as promises to further confuse the issue. Another issue that needed attention in all the examples was the work environment. The managers considered how the work environment was going to affect the ability to integrate optical image and data systems into the institution. For example, many of these medical centers have created alliances with clinics, HMOs, and large corporate users of medical services. This created a demand for all or part of the health information outside the confines of the original institution. Since the work environment is composed of a handful of factors such as merged medical services, as many work environment factors as possible were addressed before application of the optical storage technology solution in the institutions. And finally, the third critical issue was the organization of work

  14. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    PubMed Central

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347

  15. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice.

    PubMed

    Jian, Yifan; Xu, Jing; Gradowski, Martin A; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2014-02-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo.

  16. Binary stars observed with adaptive optics at the starfire optical range

    SciTech Connect

    Drummond, Jack D.

    2014-03-01

    In reviewing observations taken of binary stars used as calibration objects for non-astronomical purposes with adaptive optics on the 3.5 m Starfire Optical Range telescope over the past 2 years, one-fifth of them were found to be off-orbit. In order to understand such a high number of discrepant position angles and separations, all previous observations in the Washington Double Star Catalog for these rogue binaries were obtained from the Naval Observatory. Adding our observations to these yields new orbits for all, resolving the discrepancies. We have detected both components of γ Gem for the first time, and we have shown that 7 Cam is an optical pair, not physically bound.

  17. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    SciTech Connect

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  18. A Climate Change Adaptation Strategy for Management of ...

    EPA Pesticide Factsheets

    Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including species of concern, such as the saltmarsh sparrow (Ammodramus caudacutus). We present a climate change adaptation strategy (CCAS) adopted by scientific, management, and policy stakeholders for managing coastal marshes and enhancing system resiliency. A common adaptive management approach previously used for restoration projects was modified to identify climate-related vulnerabilities and plan climate change adaptive actions. As an example of implementation of the CCAS, we describe the stakeholder plans and management actions the US Fish and Wildlife Service and partners developed to build coastal resiliency in the Narrow River Estuary, RI, in the aftermath of Superstorm Sandy. When possible, an experimental BACI (before-after, control-impact) design, described as pre- and post-sampling at the impact site and one or more control sites, was incorporated into the climate change adaptation and implementation plans. Specific climate change adaptive actions and monitoring plans are described and include shoreline stabilization, restoring marsh drainage, increasing marsh elevation, and enabling upland marsh migration. The CCAS provides a framework and methodology for successfully managing coa

  19. Develop techniques for ion implantation of PLZT for adaptive optics

    NASA Astrophysics Data System (ADS)

    Craig, R. A.; Batishko, C. R.; Brimhall, J. L.; Pawlewicz, W. T.; Stahl, K. A.

    1989-11-01

    Battelle Pacific Northwest Laboratory (PNL) conducted research into the preparation and characterization of ion-implanted adaptive optic elements based on lead-lanthanum-zirconate-titanate (PLZT). Over the 4-yr effort beginning FY 1985, the ability to increase the photosensitivity of PLZT and extend it to longer wavelengths was developed. The emphasis during the last two years was to develop a model to provide a basis for choosing implantation species and parameters. Experiments which probe the electronic structure were performed on virgin and implanted PLZT samples. Also performed were experiments designed to connect the developing conceptual model with the experimental results. The emphasis in FY 1988 was to extend the photosensitivity out to diode laser wavelengths. The experiments and modelling effort indicate that manganese will form appropriate intermediate energy states to achieve the longer wavelength photosensitivity. Preliminary experiments were also conducted to deposit thin film PLZT.

  20. Adaptive optics for confocal laser scanning microscopy with adjustable pinhole

    NASA Astrophysics Data System (ADS)

    Yoo, Han Woong; van Royen, Martin E.; van Cappellen, Wiggert A.; Houtsmuller, Adriaan B.; Verhaegen, Michel; Schitter, Georg

    2016-04-01

    The pinhole plays an important role in confocal laser scanning microscopy (CLSM) for adaptive optics (AO) as well as in imaging, where the size of the pinhole denotes a trade-off between out-of-focus rejection and wavefront distortion. This contribution proposes an AO system for a commercial CLSM with an adjustable square pinhole to cope with such a trade-off. The proposed adjustable pinhole enables to calibrate the AO system and to evaluate the imaging performance. Experimental results with fluorescence beads on the coverslip and at a depth of 40 μm in the human hepatocellular carcinoma cell spheroid demonstrate that the proposed AO system can improve the image quality by the proposed calibration method. The proposed pinhole intensity ratio also indicates the image improvement by the AO correction in intensity as well as resolution.

  1. Multi-modal automatic montaging of adaptive optics retinal images

    PubMed Central

    Chen, Min; Cooper, Robert F.; Han, Grace K.; Gee, James; Brainard, David H.; Morgan, Jessica I. W.

    2016-01-01

    We present a fully automated adaptive optics (AO) retinal image montaging algorithm using classic scale invariant feature transform with random sample consensus for outlier removal. Our approach is capable of using information from multiple AO modalities (confocal, split detection, and dark field) and can accurately detect discontinuities in the montage. The algorithm output is compared to manual montaging by evaluating the similarity of the overlapping regions after montaging, and calculating the detection rate of discontinuities in the montage. Our results show that the proposed algorithm has high alignment accuracy and a discontinuity detection rate that is comparable (and often superior) to manual montaging. In addition, we analyze and show the benefits of using multiple modalities in the montaging process. We provide the algorithm presented in this paper as open-source and freely available to download. PMID:28018714

  2. Speckle image reconstruction of the adaptive optics solar images.

    PubMed

    Zhong, Libo; Tian, Yu; Rao, Changhui

    2014-11-17

    Speckle image reconstruction, in which the speckle transfer function (STF) is modeled as annular distribution according to the angular dependence of adaptive optics (AO) compensation and the individual STF in each annulus is obtained by the corresponding Fried parameter calculated from the traditional spectral ratio method, is used to restore the solar images corrected by AO system in this paper. The reconstructions of the solar images acquired by a 37-element AO system validate this method and the image quality is improved evidently. Moreover, we found the photometric accuracy of the reconstruction is field dependent due to the influence of AO correction. With the increase of angular separation of the object from the AO lockpoint, the relative improvement becomes approximately more and more effective and tends to identical in the regions far away the central field of view. The simulation results show this phenomenon is mainly due to the disparity of the calculated STF from the real AO STF with the angular dependence.

  3. Measurements of contrast sensitivity by an adaptive optics visual simulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Ucikawa, Keiji

    2015-08-01

    We developed an adaptive optics visual simulator (AOVS) to study the relationship between the contrast sensitivity and higher-order wavefront aberrations of human eyes. A desired synthetic aberration was virtually generated on a subject eye by the AOVS, and red laser light was used to measure the aberrations. The contrast sensitivity was measured in a psychophysical experiment using visual stimulus patterns provided by a large-contrast-range imaging system, which included two liquid crystal displays illuminated by red light emitting diodes from the backside. The diameter of the pupil was set to 4 mm by an artificial aperture, and the retinal illuminance of the stimulus image was controlled to 10 Td. Experiments conducted with four normal subjects revealed that their contrast sensitivity to a high-spatial-frequency vertical sinusoidal grating pattern was lower in the presence of a horizontal coma aberration than in the presence of a vertical coma or no aberrations ( p < 0.02, Nagai method).

  4. Kalman filtering to suppress spurious signals in adaptive optics control.

    PubMed

    Poyneer, Lisa A; Véran, Jean-Pierre

    2010-11-01

    In many scenarios, an adaptive optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common-path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  5. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-06-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved.

  6. Performance of the Keck Observatory adaptive optics system

    SciTech Connect

    van Dam, M A; Mignant, D L; Macintosh, B A

    2004-01-19

    In this paper, the adaptive optics (AO) system at the W.M. Keck Observatory is characterized. The authors calculate the error budget of the Keck AO system operating in natural guide star mode with a near infrared imaging camera. By modeling the control loops and recording residual centroids, the measurement noise and band-width errors are obtained. The error budget is consistent with the images obtained. Results of sky performance tests are presented: the AO system is shown to deliver images with average Strehl ratios of up to 0.37 at 1.58 {micro}m using a bright guide star and 0.19 for a magnitude 12 star.

  7. Adaptive target detection with a polarization-sensitive optical system.

    PubMed

    Meng, Lingfei; Kerekes, John P

    2011-05-01

    We developed an adaptive polarimetric target detector (APTD) to determine the optimum combination strategy for a multichannel polarization-sensitive optical system. The proposed algorithm is based on scene-derived polarization properties of the target and background, and it seeks to find an optimum multichannel combination of linear polarizing filters that maximizes the signal-to-clutter ratio (SCR) in intensity and Stokes parameter images. The algorithm is validated by performing RX anomaly detection and a generalized likelihood ratio test on both synthetic and real imagery. The experimental results are analyzed through calculated SCR and receiver operating characteristic curves. Compared with several conventional operation methods, we find that better target detection performance is achieved with the APTD algorithm.

  8. Kalman filtering to suppress spurious signals in Adaptive Optics control

    SciTech Connect

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  9. Experiment of space laser communication based on adaptive optics system

    NASA Astrophysics Data System (ADS)

    Xiong, Zhun; Ai, Yong; Chen, Jin; Chen, Erhu; Wu, Yunyun

    2011-11-01

    The adaptive optics(AO) technology is adopted in the demo experiment of indoor space laser communication system. In transmit terminal, 650nm beacon and 1550nm signal beam with OOK modulation propagate through atmosphere turbulence simulator which simulate the laser's propagation in real atmosphere conditions. The AO system corrects real time wave-front information. In received terminal, signal intensity is collected and the bit error rate(BER) is recorded. Experiment data is obtained in different status of the AO system. Combined with signal beam wave-front reconstructed and image quality of far-field laser spot, results show that the received average power of communication system increases when using the AO system to correct low-order aberration. Also it rejects signal fading and makes the BER lower.

  10. Experiment of space laser communication based on adaptive optics system

    NASA Astrophysics Data System (ADS)

    Xiong, Zhun; Ai, Yong; Chen, Jin; Chen, Erhu; Wu, Yunyun

    2012-02-01

    The adaptive optics(AO) technology is adopted in the demo experiment of indoor space laser communication system. In transmit terminal, 650nm beacon and 1550nm signal beam with OOK modulation propagate through atmosphere turbulence simulator which simulate the laser's propagation in real atmosphere conditions. The AO system corrects real time wave-front information. In received terminal, signal intensity is collected and the bit error rate(BER) is recorded. Experiment data is obtained in different status of the AO system. Combined with signal beam wave-front reconstructed and image quality of far-field laser spot, results show that the received average power of communication system increases when using the AO system to correct low-order aberration. Also it rejects signal fading and makes the BER lower.

  11. Multi-modal automatic montaging of adaptive optics retinal images.

    PubMed

    Chen, Min; Cooper, Robert F; Han, Grace K; Gee, James; Brainard, David H; Morgan, Jessica I W

    2016-12-01

    We present a fully automated adaptive optics (AO) retinal image montaging algorithm using classic scale invariant feature transform with random sample consensus for outlier removal. Our approach is capable of using information from multiple AO modalities (confocal, split detection, and dark field) and can accurately detect discontinuities in the montage. The algorithm output is compared to manual montaging by evaluating the similarity of the overlapping regions after montaging, and calculating the detection rate of discontinuities in the montage. Our results show that the proposed algorithm has high alignment accuracy and a discontinuity detection rate that is comparable (and often superior) to manual montaging. In addition, we analyze and show the benefits of using multiple modalities in the montaging process. We provide the algorithm presented in this paper as open-source and freely available to download.

  12. Performance evaluation of a sensorless adaptive optics multiphoton microscope.

    PubMed

    Skorsetz, Martin; Artal, Pablo; Bueno, Juan M

    2016-03-01

    A wavefront sensorless adaptive optics technique was combined with a custom-made multiphoton microscope to correct for specimen-induced aberrations. A liquid-crystal-on-silicon (LCoS) modulator was used to systematically generate Zernike modes during image recording. The performance of the instrument was evaluated in samples providing different nonlinear signals and the benefit of correcting higher order aberrations was always noticeable (in both contrast and resolution). The optimum aberration pattern was stable in time for the samples here involved. For a particular depth location within the sample, the wavefront to be precompensated was independent on the size of the imaged area (up to ∼ 360 × 360 μm(2)). The mode combination optimizing the recorded image depended on the Zernike correction control sequence; however, the final images hardly differed. At deeper locations, a noticeable dominance of spherical aberration was found. The influence of other aberration terms was also compared to the effect of the spherical aberration.

  13. Adaptive fiber optics collimator based on flexible hinges.

    PubMed

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  14. Bridging the management-science partnership gap: Adaptive grazing management experiment in shortgrass steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Adaptive Grazing Management experiment (2013-2023) in shortgrass steppe of Colorado addresses a critical gap in grazing management: lack of management-science partnerships to more fully understand the effect of management decisions for multiple ecosystem goods and services at ranch-scales. A Sta...

  15. 78 FR 54482 - Charter Renewal, Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... Bureau of Reclamation Charter Renewal, Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of... the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group... Canyon Dam Adaptive Management Work Group is in the public interest in connection with the performance...

  16. 76 FR 54487 - Charter Renewal, Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Bureau of Reclamation Charter Renewal, Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of... the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group... of the Glen Canyon Dam Adaptive Management Work Group is in the public interest in connection...

  17. Adaptive optics retinal imaging in the living mouse eye.

    PubMed

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H; Sharma, Robin; Libby, Richard T; Williams, David R

    2012-04-01

    Correction of the eye's monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo.

  18. An adaptive optics search for young extrasolar planets

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Zuckerman, B.; Becklin, E. E.; Kaisler, D.; Lowrance, P.; Max, C. E.; Olivier, S.

    2000-10-01

    In the past five years, many extrasolar planets have been detected indirectly, through radial velocity variations induced in their parent stars. Advances in technology now open up the possibility of directly detecting extrasolar planets through the photons they emit. Direct detection would allow determination of the temperature, radius, and composition of a planet, particularly one in a wide orbit - an important complement to radial velocity techniques. Seeing a planet against the halo of scattered light from its parent star is extremely challenging, but adaptive optics (AO) on 8-10 m telescopes can make this possible. The first such large-telescope AO system is now operational on the 10-m W.M. Keck II telescope. Its current performance is sufficient to detect objects at contrast ratios of 105 at separations of 1" and 106 at 2". This is insufficient to detect the reflected light from a mature Jupiter-like planet, but we can easily detect the near-infrared thermal emission from young (<10-50 MYr) planets, or older brown dwarfs. We are carrying out a search for such planetary companions to young nearby stars, including the TW Hydrae association. We present preliminary results from this survey, including sensitivity limits and follow-up of candidate companions originally detected by NICMOS. We have also imaged the Epsilon Eridani system, and present upper limits on the brightness of the planet detected via radial velocity variations by Cochran et al. This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48, and also supported in part by the Center for Adaptive Optics under the STC Program of the National Science Foundation under Agreement No. AST-9876783

  19. Bayesian adaptive survey protocols for resource management

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Coates, Peter S.; Casazza, Michael L.

    2011-01-01

    Transparency in resource management decisions requires a proper accounting of uncertainty at multiple stages of the decision-making process. As information becomes available, periodic review and updating of resource management protocols reduces uncertainty and improves management decisions. One of the most basic steps to mitigating anthropogenic effects on populations is determining if a population of a species occurs in an area that will be affected by human activity. Species are rarely detected with certainty, however, and falsely declaring a species absent can cause improper conservation decisions or even extirpation of populations. We propose a method to design survey protocols for imperfectly detected species that accounts for multiple sources of uncertainty in the detection process, is capable of quantitatively incorporating expert opinion into the decision-making process, allows periodic updates to the protocol, and permits resource managers to weigh the severity of consequences if the species is falsely declared absent. We developed our method using the giant gartersnake (Thamnophis gigas), a threatened species precinctive to the Central Valley of California, as a case study. Survey date was negatively related to the probability of detecting the giant gartersnake, and water temperature was positively related to the probability of detecting the giant gartersnake at a sampled location. Reporting sampling effort, timing and duration of surveys, and water temperatures would allow resource managers to evaluate the probability that the giant gartersnake occurs at sampled sites where it is not detected. This information would also allow periodic updates and quantitative evaluation of changes to the giant gartersnake survey protocol. Because it naturally allows multiple sources of information and is predicated upon the idea of updating information, Bayesian analysis is well-suited to solving the problem of developing efficient sampling protocols for species of

  20. Status of the ARGOS ground layer adaptive optics system

    NASA Astrophysics Data System (ADS)

    Gässler, Wolfgang; Rabien, Sebastian; Esposito, Simone; Lloyd-Hart, Michael; Barl, Lothar; Beckmann, Udo; Bluemchen, Thomas; Bonaglia, Marco; Borelli, José Luis; Brusa, Guido; Brynnel, Joar; Buschkamp, Peter; Busoni, Lorenzo; Carbonaro, Luca; Connot, Claus; Davies, Richard; Deysenroth, Matthias; Durney, Olivier; Green, Richard; Gemperlein, Hans; Gasho, Victor; Haug, Marcus; Hubbard, Pete; Ihle, Sebastian; Kulas, Martin; Lederer, Reinhard; Lewis, Jason; Loose, Christina; Lehmitz, Michael; Noenickx, Jamison; Nussbaum, Edmund; Orban de Xivry, Gilles; Peter, Diethard; Quirrenbach, Andreas; Rademacher, Matt; Raab, Walfried; Storm, Jesper; Schwab, Christian; Vaitheeswaran, Vidhya; Ziegleder, Julian

    2012-07-01

    ARGOS the Advanced Rayleigh guided Ground layer adaptive Optics System for the LBT (Large Binocular Telescope) is built by a German-Italian-American consortium. It will be a seeing reducer correcting the turbulence in the lower atmosphere over a field of 2' radius. In such way we expect to improve the spatial resolution over the seeing of about a factor of two and more and to increase the throughput for spectroscopy accordingly. In its initial implementation, ARGOS will feed the two near-infrared spectrograph and imager - LUCI I and LUCI II. The system consist of six Rayleigh lasers - three per eye of the LBT. The lasers are launched from the back of the adaptive secondary mirror of the LBT. ARGOS has one wavefront sensor unit per primary mirror of the LBT, each of the units with three Shack-Hartmann sensors, which are imaged on one detector. In 2010 and 2011, we already mounted parts of the instrument at the telescope to provide an environment for the main sub-systems. The commissioning of the instrument will start in 2012 in a staged approach. We will give an overview of ARGOS and its goals and report about the status and new challenges we encountered during the building phase. Finally we will give an outlook of the upcoming work, how we will operate it and further possibilities the system enables by design.

  1. On the rejection of vibrations in adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Muradore, Riccardo; Pettazzi, Lorenzo; Fedrigo, Enrico; Clare, Richard

    2012-07-01

    In modern adaptive optics systems, lightly damped sinusoidal oscillations resulting from telescope structural vibrations have a significant deleterious impact on the quality of the image collected at the detector plane. Such oscillations are often at frequencies beyond the bandwidth of the wave-front controller that therefore is either incapable of rejecting them or might even amplify their detrimental impact on the overall AO performance. A technique for the rejection of periodic disturbances acting at the output of unknown plants, which has been recently presented in literature, has been adapted to the problem of rejecting vibrations in AO loops. The proposed methodology aims at estimating phase and amplitude of the harmonic disturbance together with the response of the unknown plant at the frequency of vibration. On the basis of such estimates, a control signal is generated to cancel out the periodic perturbation. Additionally, the algorithm can be easily extended to cope with unexpected time variations of the vibrations frequency by adding a frequency tracking module based either on a simple PLL architecture or on a classical extended Kalman filter. Oversampling can be also easily introduced to efficiently correct for vibrations approaching the sampling frequency. The approach presented in this contribution is compared against a different algorithm for vibration rejection available in literature, in order to identify drawbacks and advantages. Finally, the performance of the proposed vibration cancellation technique has been tested in realistic scenarios defined exploiting tip/tilt measurements from MACAO and NACO

  2. Experimental design for the eXtreme Adaptive Optics Planet Imager (XAOPI)

    NASA Astrophysics Data System (ADS)

    Graham, J. R.; Macintosh, B.; Ghez, A.; Kalas, P.; Lloyd, J.; Makidon, R.; Olivier, S.; Patience, J.; Perrin, M.; Poyneer, L.; Severson, S.; Sheinis, A.; Sivaramakrishnan, A.; Troy, M.; Wallace, J.; Wilhelmsen, J.

    2002-12-01

    Direct detection of the light emitted by extra-solar planets represents the next major hurdle in the study of extra-solar planets. The NSF Center for Adaptive Optics is carrying out a design study for a dedicated ultra-high-contrast "extreme" adaptive optics (ExAO) planet imager for an 8-m class telescope. The phase space for such a system is large and trade studies are required to choose optimal values of fundamental parameters such as the telescope diameter and delivered Strehl ratio. To predict the performance of hypothetical AO systems we use models based on Kolmogorov phase screens and Fourier optics. We incorporate additional noise sources such as wavefront measurement error and time-lag errors, and distinguish between the different speckle decorrelation times of each independent error source. To compute a figure of merit for a particular AO system we need to predict the distribution of contrast and angular separation on the sky for planets. There is a large and growing of sample of precision radial velocity detected planets, which can be used to constrain the orbital elements and masses of the underlying population. When combined with the star formation history of the solar neighborhood (or ages of local, young associations), cooling curves and young planet model atmospheres this information can be used to predict how many systems can be detected with different experimental designs. We present results which allow us to evaluate the impact of different AO design choices, observing wavelengths, and target selection. Our technique also allows us to compare and quantify the selection effects associated with precision radial velocity, astrometric and direct imaging searches. This work was supported by the NSF Science and Technology Center for Adaptive Optics, managed by UC Santa Cruz under AST-9876783. Portions of this work was performed under the auspices of the U.S. Department of Energy, under contract No. W-7405-Eng-48.

  3. The simulation of adaptive optical image even and pulse noise and research of image quality evaluation

    NASA Astrophysics Data System (ADS)

    Wen, Changli; Xu, Yuannan; Xu, Rong; Liu, Changhai; Men, Tao; Niu, Wei

    2013-09-01

    As optical image becomes more and more important in adaptive optics area, and adaptive optical telescopes play a more and more important role in the detection system on the ground, and the images we get are so many that we need find a suitable method to choose good quality images automatically in order to save human power, people pay more and more attention in image's evaluation methods and their characteristics. According to different image degradation model, the applicability of different image's quality evaluation method will be different. Researchers have paid most attention in how to improve or build new method to evaluate degraded images. Now we should change our way to take some research in the models of degradation of images, the reasons of image degradation, and the relations among different degraded images and different image quality evaluation methods. In this paper, we build models of even noise and pulse noise based on their definition and get degraded images using these models, and we take research in six kinds of usual image quality evaluation methods such as square error method, sum of multi-power of grey scale method, entropy method, Fisher function method, Sobel method, and sum of grads method, and we make computer software for these methods to use easily to evaluate all kinds of images input. Then we evaluate the images' qualities with different evaluation methods and analyze the results of six kinds of methods, and finally we get many important results. Such as the characteristics of every method for evaluating qualities of degraded images of even noise, the characteristics of every method for evaluating qualities of degraded images of pulse noise, and the best method to evaluate images which affected by tow kinds of noise both and the characteristics of this method. These results are important to image's choosing automatically, and this will help we to manage the images we get through adaptive optical telescopes base on the ground.

  4. Optimal mirror deformation for multi conjugate adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Raffetseder, S.; Ramlau, R.; Yudytskiy, M.

    2016-02-01

    Multi conjugate adaptive optics (MCAO) is a system planned for all future extremely large telescopes to compensate in real-time for the optical distortions caused by atmospheric turbulence over a wide field of view. The principles of MCAO are based on two inverse problems: a stable tomographic reconstruction of the turbulence profile followed by the optimal alignment of multiple deformable mirrors (DMs), conjugated to different altitudes in the atmosphere. We present a novel method to treat the optimal mirror deformation problem for MCAO. Contrary to the standard approach where the problem is formulated over a discrete set of optimization directions we focus on the solution of the continuous optimization problem. In the paper we study the existence and uniqueness of the solution and present a Tikhonov based regularization method. This approach gives us the flexibility to apply quadrature rules for a more sophisticated discretization scheme. Using numerical simulations in the context of the European extremely large telescope we show that our method leads to a significant improvement in the reconstruction quality over the standard approach and allows to reduce the numerical burden on the computer performing the computations.

  5. Architectures for parallel DSP-based adaptive optics feedback control

    NASA Astrophysics Data System (ADS)

    McCarthy, Daniel F.

    1999-11-01

    We have developed a digital image processing system for real-time digital image processing feedback control of adaptive optics systems and simulation of optical image processing algorithms. The system uses multi-computer architecture to capture data from an imaging device such as a charge coupled device camera, process the image data, and control a spatial light-modulator, typically a liquid crystal modulator or a micro-electro mechanical system. The system is a Windows NT Pentium-based system combined with a commercial off-the-shelf peripheral component interconnect bus multi-processor system. The multi-processor is based on the Analog Devices super Harvard architecture computer (SHARC) processor, and field programmable gate arrays (FPGAs). The SHARCs provide a scalable reconfigurable C language-based digital signal processing (DSP) development environment. The FPGAs are typically used as reprogrammable interface controllers designed to integrate several off-the- shelf and custom imagers and light modulators into the system. The FPGAs can also be used in concert with the SHARCs for implementation of application-specific high-speed DSP algorithms.

  6. A Bayesian regularized artificial neural network for adaptive optics forecasting

    NASA Astrophysics Data System (ADS)

    Sun, Zhi; Chen, Ying; Li, Xinyang; Qin, Xiaolin; Wang, Huiyong

    2017-01-01

    Real-time adaptive optics is a technology for enhancing the resolution of ground-based optical telescopes and overcoming the disturbance of atmospheric turbulence. The performance of the system is limited by delay errors induced by the servo system and photoelectrons noise of wavefront sensor. In order to cut these delay errors, this paper proposes a novel model to forecast the future control voltages of the deformable mirror. The predictive model is constructed by a multi-layered back propagation network with Bayesian regularization (BRBP). For the purpose of parallel computation and less disturbance, we adopt a number of sub-BP neural networks to substitute the whole network. The Bayesian regularized network assigns a probability to the network weights, allowing the network to automatically and optimally penalize excessively complex models. The simulation results show that the BRBP introduces smaller mean absolute percentage error (MAPE) and mean square errors (MSE) than other typical algorithms. Meanwhile, real data analysis results show that the BRBP model has strong generalization capability and parallelism.

  7. ESO adaptive optics facility progress and first laboratory test results

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jérome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-Francois; Hackenberg, Wolfgang; Kuntschner, Harald; Kolb, Johann; Muller, Nicolas; Garcia-Rissmann, Aurea; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Haguenauer, Pierre; Abad, Jose A.; Fischer, Gerhard; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Rob; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andrea; Duchateau, Michel; Downing, Mark; Reyes Moreno, Javier; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan M.; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Max; Pfrommer, Thomas; Biasi, Roberto; Gallieni, Daniele; Stuik, Remko; Kaenders, Wilhelm; Ernstberger, Bernhard; Friedenauer, Axel

    2014-07-01

    The Adaptive Optics Facility project is completing the integration of its systems at ESO Headquarters in Garching. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM has undergone a series of tests on ASSIST in 2013 which have validated its optical performance and launched the System Test Phase of the AOF. This has been followed by the performance evaluation of the GRAAL natural guide star mode on-axis and will continue in 2014 with its Ground Layer AO mode. The GALACSI module (for MUSE) Wide-Field-Mode (GLAO) and the more challenging Narrow-Field-Mode (LTAO) will then be tested. The AOF has also taken delivery of the second scientific thin shell mirror and the first 22 Watt Sodium laser Unit. We will report on the system tests status, the performances evaluated on the ASSIST bench and advancement of the 4Laser Guide Star Facility. We will also present the near future plans for commissioning on the telescope and some considerations on tools to ensure an efficient operation of the Facility in Paranal.

  8. Adaptive optics and the eye (super resolution OCT)

    PubMed Central

    Miller, D T; Kocaoglu, O P; Wang, Q; Lee, S

    2011-01-01

    The combination of adaptive optics (AO) and optical coherence tomography (OCT) was first reported 8 years ago and has undergone tremendous technological advances since then. The technical benefits of adding AO to OCT (increased lateral resolution, smaller speckle, and enhanced sensitivity) increase the imaging capability of OCT in ways that make it well suited for three-dimensional (3D) cellular imaging in the retina. Today, AO–OCT systems provide ultrahigh 3D resolution (3 × 3 × 3 μm3) and ultrahigh speed (up to an order of magnitude faster than commercial OCT). AO–OCT systems have been used to capture volume images of retinal structures, previously only visible with histology, and are being used for studying clinical conditions. Here, we present representative examples of cellular structures that can be visualized with AO–OCT. We overview three studies from our laboratory that used ultrahigh-resolution AO–OCT to measure the cross-sectional profiles of individual bundles in the retinal nerve fiber layer; the diameters of foveal capillaries that define the terminal rim of the foveal avascular zone; and the spacing and length of individual cone photoreceptor outer segments as close as 0.5° from the fovea center. PMID:21390066

  9. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    PubMed Central

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  10. Adaptive optics ophthalmologic systems using dual deformable mirrors

    SciTech Connect

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  11. Adaptive Optics Retinal Imaging – Clinical Opportunities and Challenges

    PubMed Central

    Carroll, Joseph; Kay, David B.; Scoles, Drew; Dubra, Alfredo; Lombardo, Marco

    2014-01-01

    The array of therapeutic options available to clinicians for treating retinal disease is expanding. With these advances comes the need for better understanding of the etiology of these diseases on a cellular level as well as improved non-invasive tools for identifying the best candidates for given therapies and monitoring the efficacy of those therapies. While spectral domain optical coherence tomography (SD-OCT) offers a widely available tool for clinicians to assay the living retina, it suffers from poor lateral resolution due to the eye’s monochromatic aberrations. Adaptive optics (AO) is a technique to compensate for the eye’s aberrations and provide nearly diffraction-limited resolution. The result is the ability to visualize the living retina with cellular resolution. While AO is unquestionably a powerful research tool, many clinicians remain undecided on the clinical potential of AO imaging – putting many at a crossroads with respect to adoption of this technology. This review will briefly summarize the current state of AO retinal imaging, discuss current as well as future clinical applications of AO retinal imaging, and finally provide some discussion of research needs to facilitate more widespread clinical use. PMID:23621343

  12. On valuing information in adaptive-management models.

    PubMed

    Moore, Alana L; McCarthy, Michael A

    2010-08-01

    Active adaptive management looks at the benefit of using strategies that may be suboptimal in the near term but may provide additional information that will facilitate better management in the future. In many adaptive-management problems that have been studied, the optimal active and passive policies (accounting for learning when designing policies and designing policy on the basis of current best information, respectively) are very similar. This seems paradoxical; when faced with uncertainty about the best course of action, managers should spend very little effort on actively designing programs to learn about the system they are managing. We considered two possible reasons why active and passive adaptive solutions are often similar. First, the benefits of learning are often confined to the particular case study in the modeled scenario, whereas in reality information gained from local studies is often applied more broadly. Second, management objectives that incorporate the variance of an estimate may place greater emphasis on learning than more commonly used objectives that aim to maximize an expected value. We explored these issues in a case study of Merri Creek, Melbourne, Australia, in which the aim was to choose between two options for revegetation. We explicitly incorporated monitoring costs in the model. The value of the terminal rewards and the choice of objective both influenced the difference between active and passive adaptive solutions. Explicitly considering the cost of monitoring provided a different perspective on how the terminal reward and management objective affected learning. The states for which it was optimal to monitor did not always coincide with the states in which active and passive adaptive management differed. Our results emphasize that spending resources on monitoring is only optimal when the expected benefits of the options being considered are similar and when the pay-off for learning about their benefits is large.

  13. Guiding Climate Change Adaptation Within Vulnerable Natural Resource Management Systems

    NASA Astrophysics Data System (ADS)

    Bardsley, Douglas K.; Sweeney, Susan M.

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  14. Climate change adaptation strategies for resource management and conservation planning.

    PubMed

    Lawler, Joshua J

    2009-04-01

    Recent rapid changes in the Earth's climate have altered ecological systems around the globe. Global warming has been linked to changes in physiology, phenology, species distributions, interspecific interactions, and disturbance regimes. Projected future climate change will undoubtedly result in even more dramatic shifts in the states of many ecosystems. These shifts will provide one of the largest challenges to natural resource managers and conservation planners. Managing natural resources and ecosystems in the face of uncertain climate requires new approaches. Here, the many adaptation strategies that have been proposed for managing natural systems in a changing climate are reviewed. Most of the recommended approaches are general principles and many are tools that managers are already using. What is new is a turning toward a more agile management perspective. To address climate change, managers will need to act over different spatial and temporal scales. The focus of restoration will need to shift from historic species assemblages to potential future ecosystem services. Active adaptive management based on potential future climate impact scenarios will need to be a part of everyday operations. And triage will likely become a critical option. Although many concepts and tools for addressing climate change have been proposed, key pieces of information are still missing. To successfully manage for climate change, a better understanding will be needed of which species and systems will likely be most affected by climate change, how to preserve and enhance the evolutionary capacity of species, how to implement effective adaptive management in new systems, and perhaps most importantly, in which situations and systems will the general adaptation strategies that have been proposed work and how can they be effectively applied.

  15. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging.

    PubMed

    Zawadzki, Robert J; Jones, Steven M; Pilli, Suman; Balderas-Mata, Sandra; Kim, Dae Yu; Olivier, Scot S; Werner, John S

    2011-06-01

    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented.

  16. Adaptive Management: From More Talk to Real Action

    NASA Astrophysics Data System (ADS)

    Williams, Byron K.; Brown, Eleanor D.

    2014-02-01

    The challenges currently facing resource managers are large-scale and complex, and demand new approaches to balance development and conservation goals. One approach that shows considerable promise for addressing these challenges is adaptive management, which by now is broadly seen as a natural, intuitive, and potentially effective way to address decision-making in the face of uncertainties. Yet the concept of adaptive management continues to evolve, and its record of success remains limited. In this article, we present an operational framework for adaptive decision-making, and describe the challenges and opportunities in applying it to real-world problems. We discuss the key elements required for adaptive decision-making, and their integration into an iterative process that highlights and distinguishes technical and social learning. We illustrate the elements and processes of the framework with some successful on-the-ground examples of natural resource management. Finally, we address some of the difficulties in applying learning-based management, and finish with a discussion of future directions and strategic challenges.

  17. An Algebraic Model of Adaptive Optics for Continuous-Wave Thermal Blooming.

    DTIC Science & Technology

    1979-01-01

    blooming. The aberrations modeled generally include those applied by an adaptive optics system to compensate the naturally occurring ones. For the...results when applied to thermal blooming. However, the analysis suggests novel remedies that will tend to optimize the corrections made, thus better realizing the full potential of adaptive optics . (Author)

  18. Adapting water allocation management to drought scenarios

    NASA Astrophysics Data System (ADS)

    Giacomelli, P.; Rossetti, A.; Brambilla, M.

    2008-04-01

    Climate change dynamics have significant consequences on water resources on a watershed scale. With water becoming scarcer and susceptible to variation, the planning and reallocation decisions in watershed management need to be reviewed. This research focuses on an in-depth understanding of the current allocation balance of water resources among competitors, placed along the course of the Adda River. In particular, during the summer period, the demand for water dramatically increases. This is due to the increase in irrigation activities in the lower part of the basin and to the highest peaks of tourist inflow, in the Como Lake and Valtellina areas. Moreover, during these months, the hydroelectric reservoirs in the upper part of the Adda River basin (the Valtellina) retain most of the volume of water coming from the snow and glacier melt. The existing allocation problem among these different competing users is exacerbated by the decreasing water supplies. The summer of 2003 testified the rise in a number of allocation problems and situations of water scarcity that brought about environmental and economical consequences. The RICLIC project is committed to the understanding of water dynamics on a regional scale, to quantify the volumes involved and offer local communities an instrument to improve a sustainable water management system, within uncertain climate change scenarios.

  19. Lessons Learned from the First Decade of Adaptive Management in Comprehensive Everglades Restoration

    EPA Science Inventory

    Although few successful examples of large-scale adaptive management applications are available to ecosystem restoration scientists and managers, examining where and how the components of an adaptive management program have been successfully implemented yields insight into what ...

  20. A Holistic Management Architecture for Large-Scale Adaptive Networks

    DTIC Science & Technology

    2007-09-01

    MANAGEMENT ARCHITECTURE FOR LARGE-SCALE ADAPTIVE NETWORKS by Michael R. Clement September 2007 Thesis Advisor: Alex Bordetsky Second Reader...TECHNOLOGY MANAGEMENT from the NAVAL POSTGRADUATE SCHOOL September 2007 Author: Michael R. Clement Approved by: Dr. Alex ...achieve in life is by His will. Ad Majorem Dei Gloriam. To my parents, my family, and Caitlin: For supporting me, listening to me when I got

  1. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for

  2. Learning and adaptation in the management of waterfowl harvests

    USGS Publications Warehouse

    Johnson, Fred A.

    2011-01-01

    A formal framework for the adaptive management of waterfowl harvests was adopted by the U.S. Fish and Wildlife Service in 1995. The process admits competing models of waterfowl population dynamics and harvest impacts, and relies on model averaging to compute optimal strategies for regulating harvest. Model weights, reflecting the relative ability of the alternative models to predict changes in population size, are used in the model averaging and are updated each year based on a comparison of model predictions and observations of population size. Since its inception the adaptive harvest program has focused principally on mallards (Anas platyrhynchos), which constitute a large portion of the U.S. waterfowl harvest. Four competing models, derived from a combination of two survival and two reproductive hypotheses, were originally assigned equal weights. In the last year of available information (2007), model weights favored the weakly density-dependent reproductive hypothesis over the strongly density-dependent one, and the additive mortality hypothesis over the compensatory one. The change in model weights led to a more conservative harvesting policy than what was in effect in the early years of the program. Adaptive harvest management has been successful in many ways, but nonetheless has exposed the difficulties in defining management objectives, in predicting and regulating harvests, and in coping with the tradeoffs inherent in managing multiple waterfowl stocks exposed to a common harvest. The key challenge now facing managers is whether adaptive harvest management as an institution can be sufficiently adaptive, and whether the knowledge and experience gained from the process can be reflected in higher-level policy decisions.

  3. Adaptive Management of Computing and Network Resources for Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.

  4. Adaptive resource management and the value of information

    USGS Publications Warehouse

    Williams, Byron K.; Eaton, Mitchell J.; Breininger, David R.

    2011-01-01

    The value of information is a general and broadly applicable concept that has been used for several decades to aid in making decisions in the face of uncertainty. Yet there are relatively few examples of its use in ecology and natural resources management, and almost none that are framed in terms of the future impacts of management decisions. In this paper we discuss the value of information in a context of adaptive management, in which actions are taken sequentially over a timeframe and both future resource conditions and residual uncertainties about resource responses are taken into account. Our objective is to derive the value of reducing or eliminating uncertainty in adaptive decision making. We describe several measures of the value of information, with each based on management objectives that are appropriate for adaptive management. We highlight some mathematical properties of these measures, discuss their geometries, and illustrate them with an example in natural resources management. Accounting for the value of information can help to inform decisions about whether and how much to monitor resource conditions through time.

  5. Judging adaptive management practices of U.S. agencies.

    PubMed

    Fischman, Robert L; Ruhl, J B

    2016-04-01

    All U.S. federal agencies administering environmental laws purport to practice adaptive management (AM), but little is known about how they actually implement this conservation tool. A gap between the theory and practice of AM is revealed in judicial decisions reviewing agency adaptive management plans. We analyzed all U.S. federal court opinions published through 1 January 2015 to identify the agency AM practices courts found most deficient. The shortcomings included lack of clear objectives and processes, monitoring thresholds, and defined actions triggered by thresholds. This trio of agency shortcuts around critical, iterative steps characterizes what we call AM-lite. Passive AM differs from active AM in its relative lack of management interventions through experimental strategies. In contrast, AM-lite is a distinctive form of passive AM that fails to provide for the iterative steps necessary to learn from management. Courts have developed a sophisticated understanding of AM and often offer instructive rather than merely critical opinions. The role of the judiciary is limited by agency discretion under U.S. administrative law. But courts have overturned some agency AM-lite practices and insisted on more rigorous analyses to ensure that the promised benefits of structured learning and fine-tuned management have a reasonable likelihood of occurring. Nonetheless, there remains a mismatch in U.S. administrative law between the flexibility demanded by adaptive management and the legal objectives of transparency, public participation, and finality.

  6. Adaptive resource management and the value of information

    USGS Publications Warehouse

    Williams, B.K.; Eaton, M.J.; Breininger, D.R.

    2011-01-01

    The value of information is a general and broadly applicable concept that has been used for several decades to aid in making decisions in the face of uncertainty. Yet there are relatively few examples of its use in ecology and natural resources management, and almost none that are framed in terms of the future impacts of management decisions. In this paper we discuss the value of information in a context of adaptive management, in which actions are taken sequentially over a timeframe and both future resource conditions and residual uncertainties about resource responses are taken into account. Our objective is to derive the value of reducing or eliminating uncertainty in adaptive decision making. We describe several measures of the value of information, with each based on management objectives that are appropriate for adaptive management. We highlight some mathematical properties of these measures, discuss their geometries, and illustrate them with an example in natural resources management. Accounting for the value of information can help to inform decisions about whether and how much to monitor resource conditions through time. ?? 2011.

  7. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography.

    PubMed

    Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott

    2016-03-10

    In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered.

  8. Update on Optical Design of Adaptive Optics System at Lick Observatory

    SciTech Connect

    Bauman, B J; Gavel, D T; Waltjen, K E; Freeze, G J; Hurd, R L; Gates, E I; Max, C E; Olivier, S S; Pennington, D M

    2001-07-31

    In 1999, we presented our plan to upgrade the adaptive optics (AO) system on the Lick Observatory Shane telescope (3m) from a prototype instrument pressed into field service to a facility instrument. This paper updates the progress of that plan and details several important improvements in the alignment and calibration of the AO bench. The paper also includes a discussion of the problems seen in the original design of the tip/tilt (t/t) sensor used in laser guide star mode, and how these problems were corrected with excellent results.

  9. Update on optical design of adaptive optics system at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Bauman, Brian J.; Gavel, Donald T.; Waltjen, Kenneth E.; Freeze, Gary J.; Hurd, Randall L.; Gates, Elinor L.; Max, Claire E.; Olivier, Scot S.; Pennington, Deanna M.

    2002-02-01

    In 1999, we presented our plan to upgrade the adaptive optics (AO) system on the Lick Observatory Shane telescope (3m) from a prototype instrument pressed into field service to a facility instrument. This paper updates the progress of that plan and details several important improvements in the alignment and calibration of the AO bench. The paper also includes a discussion of the problems seen in the original design of the tip/tilt (t/t) sensor used in laser guide star mode, and how these problems were corrected with excellent results.

  10. Subaperture correlation based digital adaptive optics for full field optical coherence tomography.

    PubMed

    Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A

    2013-05-06

    This paper proposes a sub-aperture correlation based numerical phase correction method for interferometric full field imaging systems provided the complex object field information can be extracted. This method corrects for the wavefront aberration at the pupil/ Fourier transform plane without the need of any adaptive optics, spatial light modulators (SLM) and additional cameras. We show that this method does not require the knowledge of any system parameters. In the simulation study, we consider a full field swept source OCT (FF SSOCT) system to show the working principle of the algorithm. Experimental results are presented for a technical and biological sample to demonstrate the proof of the principle.

  11. The development of an adaptive optics system and its application to biological microscope

    NASA Astrophysics Data System (ADS)

    Hattori, Masayuki; Tamada, Yosuke

    2016-10-01

    The improvement of the optical devices in this decade, such as the MEMS-SLM ( Micro Electro Mechanical Systems- Spatial Light Modulator ) and wave front sensor with micro lens device, is making adaptive optics commonly available. It also gives the new basis of the design of adaptive optics with the improved accuracy and the compactness. We have developed an adaptive optics bench from such a point of view, and the application to the optical microscope has attained effective results in the observation of the live cell samples. In this presentation, our recent results will be shown. The result includes analysis of blur by the fine structures in biological sample and result of the image correction by the adaptive optics.

  12. Noiseless imaging detector for adaptive optics with kHz frame rates

    NASA Astrophysics Data System (ADS)

    Vallerga, John V.; McPhate, Jason; Mikulec, Bettina; Tremsin, Anton; Clark, Allan; Siegmund, Oswald

    2004-10-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation AO wavefront sensors. The detector consists of a proximity focused MCP read out by four multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 512 x 512 pixels, zero readout noise (photon counting) and can be read out at 1kHz frame rates. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 nanoseconds. When used in a Shack-Hartman style wavefront sensor, it should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest. A three year development effort for this detector technology has just been funded as part of the first Adaptive Optics Development Program managed by the National Optical Astronomy Observatory.

  13. An Adaptive Optics Search for Young Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Zuckerman, B.; Kaisler, D.; Becklin, E. E.; Lowrance, P.; Webb, R.; Olivier, S.; Max, C. E.

    2000-12-01

    Several dozen extrasolar planets are now known, all detected through radial velocity variations induced in their parent stars. Though powerful, the radial velocity technique is most sensitive to objects in close orbits and measures only the mass and orbit of the planet, not its other properties. Other indirect techniques such as astrometry will have similar limitations. The direct detection of photons emitted by extrasolar planets, particularly those in wide orbits, is potentially a powerful complement to indirect techniques. The halo of scattered light that surrounds a bright star makes this extremely challenging, but adaptive optics (AO) on 8-10 m telescopes brings this possibility into reach. The first such large-telescope AO system has been operating on the 10-m W.M. Keck II telescope since 1999. Keck AO is now capable of detecting objects at contrast ratios as high as 106 at separations of 1-2 arcseconds. A mature Jupiter-like planet is approximately 109 times dimmer than its parent star, undetectable at the current time. However, a young (10 MYr) Jupiter-mass planet retains enough heat to radiate brightly in the near- infrared, making it only 105 times dimmer than a star. We are carrying out a search for such planetary companions to young nearby stars, including members of the TW Hydrae association. Initially we have been following up candidate companions discovered by NICMOS, including the brown dwarf TWA5B. Our observations of TWA5B confirm its companionship and therefore its brown dwarf nature. In addition, TWA5A is resolved as an 0.06 arcsecond double, opening up the possibility of precise mass determinations for this young system. I will discuss followup observations of other candidates and the current sensitivity limits and limitations of our search. This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48, and also supported in part by the Center for Adaptive

  14. Imaging Foveal Microvasculature: Optical Coherence Tomography Angiography Versus Adaptive Optics Scanning Light Ophthalmoscope Fluorescein Angiography

    PubMed Central

    Mo, Shelley; Krawitz, Brian; Efstathiadis, Eleni; Geyman, Lawrence; Weitz, Rishard; Chui, Toco Y. P.; Carroll, Joseph; Dubra, Alfredo; Rosen, Richard B.

    2016-01-01

    Purpose To compare the use of optical coherence tomography angiography (OCTA) and adaptive optics scanning light ophthalmoscope fluorescein angiography (AOSLO FA) for characterizing the foveal microvasculature in healthy and vasculopathic eyes. Methods Four healthy controls and 11 vasculopathic patients (4 diabetic retinopathy, 4 retinal vein occlusion, and 3 sickle cell retinopathy) were imaged with OCTA and AOSLO FA. Foveal perfusion maps were semiautomatically skeletonized for quantitative analysis, which included foveal avascular zone (FAZ) metrics (area, perimeter, acircularity index) and vessel density in three concentric annular regions of interest. On each set of OCTA and AOSLO FA images, matching vessel segments were used for lumen diameter measurement. Qualitative image comparisons were performed by visual identification of microaneurysms, vessel loops, leakage, and vessel segments. Results Adaptive optics scanning light ophthalmoscope FA and OCTA showed no statistically significant differences in FAZ perimeter, acircularity index, and vessel densities. Foveal avascular zone area, however, showed a small but statistically significant difference of 1.8% (P = 0.004). Lumen diameter was significantly larger on OCTA (mean difference 5.7 μm, P < 0.001). Microaneurysms, fine structure of vessel loops, leakage, and some vessel segments were visible on AOSLO FA but not OCTA, while blood vessels obscured by leakage were visible only on OCTA. Conclusions Optical coherence tomography angiography is comparable to AOSLO FA at imaging the foveal microvasculature except for differences in FAZ area, lumen diameter, and some qualitative features. These results, together with its ease of use, short acquisition time, and avoidance of potentially phototoxic blue light, support OCTA as a tool for monitoring ocular pathology and detecting early disease. PMID:27409463

  15. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future

    PubMed Central

    Jonnal, Ravi S.; Kocaoglu, Omer P.; Zawadzki, Robert J.; Liu, Zhuolin; Miller, Donald T.; Werner, John S.

    2016-01-01

    Purpose Optical coherence tomography (OCT) has enabled “virtual biopsy” of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. Methods We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Results Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Conclusions Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings. PMID:27409507

  16. High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics

    PubMed Central

    Zou, Weiyao; Burns, Stephen A.

    2010-01-01

    We present an iterative technique for improving adaptive optics (AO) wavefront correction for retinal imaging, called the Adaptive-Influence-Matrix (AIM) method. This method is based on the fact that the deflection-to-voltage relation of common deformable mirrors used in AO are nonlinear, and the fact that in general the wavefront errors of the eye can be considered to be composed of a static, non-zero wavefront error (such as the defocus and astigmatism), and a time-varying wavefront error. The aberrated wavefront is first corrected with a generic influence matrix, providing a mirror compensation figure for the static wavefront error. Then a new influence matrix that is more accurate for the specific static wavefront error is calibrated based on the mirror compensation figure. Experimental results show that with the AIM method the AO wavefront correction accuracy can be improved significantly in comparison to the generic AO correction. The AIM method is most useful in AO modalities where there are large static contributions to the wavefront aberrations. PMID:19997241

  17. Optical design considerations when imaging the fundus with an adaptive optics correction

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Campbell, Melanie C. W.; Kisilak, Marsha L.; Boyd, Shelley R.

    2008-06-01

    Adaptive Optics (AO) technology has been used in confocal scanning laser ophthalmoscopes (CSLO) which are analogous to confocal scanning laser microscopes (CSLM) with advantages of real-time imaging, increased image contrast, a resistance to image degradation by scattered light, and improved optical sectioning. With AO, the instrumenteye system can have low enough aberrations for the optical quality to be limited primarily by diffraction. Diffraction-limited, high resolution imaging would be beneficial in the understanding and early detection of eye diseases such as diabetic retinopathy. However, to maintain diffraction-limited imaging, sufficient pixel sampling over the field of view is required, resulting in the need for increased data acquisition rates for larger fields. Imaging over smaller fields may be a disadvantage with clinical subjects because of fixation instability and the need to examine larger areas of the retina. Reduction in field size also reduces the amount of light sampled per pixel, increasing photon noise. For these reasons, we considered an instrument design with a larger field of view. When choosing scanners to be used in an AOCSLO, the ideal frame rate should be above the flicker fusion rate for the human observer and would also allow user control of targets projected onto the retina. In our AOCSLO design, we have studied the tradeoffs between field size, frame rate and factors affecting resolution. We will outline optical approaches to overcome some of these tradeoffs and still allow detection of the earliest changes in the fundus in diabetic retinopathy.

  18. High resolution retinal imaging with a compact adaptive optics spectral domain optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Iftimia, Nicusor V.; Bigelow, Chad E.; Ustun, Teoman E.; Bloom, Benjamin; Ferguson, R. Daniel; Burns, Stephen A.

    2007-02-01

    Adaptive optics (AO) is used to correct ocular aberrations primarily in the cornea, lens, and tear film of every eye. Among other applications, AO allows high lateral resolution images to be acquired with scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT). Spectral domain optical coherence tomography (SDOCT) is a high-speed imaging technique that can acquire cross-sectional scans with micron-scale axial resolution at tens to hundreds of kHz line rates. We present a compact clinical AO-SDOCT system that achieves micron-scale axial and lateral resolution of retinal structures. The system includes a line scanning laser ophthalmscope (LSLO) for simultaneous wide-field retinal viewing and selection of regions-of-interest. OCT and LSLO imaging and AO correction performance are characterized. We present a case study of a single subject with hyper-reflective lesions associated with stable, resolved central serous retinopathy to compare and contrast AO as applied to scanning laser ophthalmoscopy and optical coherence tomography. The two imaging modes are found to be complementary in terms of information on structure morphology. Both provide additional information lacking in the other. This preliminary finding points to the power of combining SLO and SDOCT in a single research instrument for exploration of disease mechanisms, retinal cellular architecture, and visual psychophysics.

  19. 62 FR 42818 - Glen Canyon Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-08-08

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior... Work Group (AMWG) will be an open public meeting to discuss administrative and program related issues. This meeting will discuss the following agenda items: Work Group organization, technical work...

  20. Adaptive Knowledge Management of Project-Based Learning

    ERIC Educational Resources Information Center

    Tilchin, Oleg; Kittany, Mohamed

    2016-01-01

    The goal of an approach to Adaptive Knowledge Management (AKM) of project-based learning (PBL) is to intensify subject study through guiding, inducing, and facilitating development knowledge, accountability skills, and collaborative skills of students. Knowledge development is attained by knowledge acquisition, knowledge sharing, and knowledge…

  1. Adaptive Optics Reveals Photoreceptor Abnormalities in Diabetic Macular Ischemia

    PubMed Central

    Nesper, Peter L.; Scarinci, Fabio

    2017-01-01

    Diabetic macular ischemia (DMI) is a phenotype of diabetic retinopathy (DR) associated with chronic hypoxia of retinal tissue. The goal of this prospective observational study was to report evidence of photoreceptor abnormalities using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with DR in the setting of deep capillary plexus (DCP) non-perfusion. Eleven eyes from 11 patients (6 women, age 31–68), diagnosed with DR without macular edema, underwent optical coherence tomography angiography (OCTA) and AOSLO imaging. One patient without OCTA imaging underwent fluorescein angiography to characterize the enlargement of the foveal avascular zone. The parameters studied included photoreceptor heterogeneity packing index (HPi) on AOSLO, as well as DCP non-perfusion and vessel density on OCTA. Using AOSLO, OCTA and spectral domain (SD)-OCT, we observed that photoreceptor abnormalities on AOSLO and SD-OCT were found in eyes with non-perfusion of the DCP on OCTA. All eight eyes with DCP non-flow on OCTA showed photoreceptor abnormalities on AOSLO. Six of the eight eyes also had outer retinal abnormalities on SD-OCT. Three eyes with DR and robust capillary perfusion of the DCP had normal photoreceptors on SD-OCT and AOSLO. Compared to eyes with DR without DCP non-flow, the eight eyes with DCP non-flow had significantly lower HPi (P = 0.013) and parafoveal DCP vessel density (P = 0.016). We found a significant correlation between cone HPi and parafoveal DCP vessel density (r = 0.681, P = 0.030). Using a novel approach with AOSLO and OCTA, this study shows an association between capillary non-perfusion of the DCP and abnormalities in the photoreceptor layer in eyes with DR. This observation is important in confirming the significant contribution of the DCP to oxygen requirements of photoreceptors in DMI, while highlighting the ability of AOSLO to detect subtle photoreceptor changes not always visible on SD-OCT. PMID:28068435

  2. Single Cell Imaging of the Chick Retina with Adaptive Optics

    PubMed Central

    Headington, Kenneth; Choi, Stacey S.; Nickla, Debora; Doble, Nathan

    2012-01-01

    Purpose The chick eye is extensively used as a model in the study of myopia and its progression; however, analysis of the photoreceptor mosaic has required the use of excised retina due to the uncorrected optical aberrations in the lens and cornea. This study implemented high resolution adaptive optics (AO) retinal imaging to visualize the chick cone mosaic in vivo. Methods The New England College of Optometry (NECO) AO fundus camera was modified to allow high resolution in vivo imaging on 2 six-week-old White Leghorn chicks (Gallus gallus domesticus) – labeled chick A and chick B. Multiple, adjacent images, each with a 2.5° field of view, were taken and subsequently montaged together. This process was repeated at varying retinal locations measured from the tip of the pecten. Automated software was used to determine the cone spacing and density at each location. Voronoi analysis was applied to determine the packing arrangement of the cones. Results In both chicks, cone photoreceptors were clearly visible at all retinal locations imaged. Cone densities measured at 36° nasal-12° superior retina from the pecten tip for chick A and 40° nasal-12° superior retina for chick B were 21,714±543 and 26,105±653 cones/mm2 respectively. For chick B, a further 11 locations immediately surrounding the pecten were imaged, with cone densities ranging from 20,980±524 to 25,148±629 cones/mm2. Conclusion In vivo analysis of the cone density and its packing characteristics are now possible in the chick eye through AO imaging, which has important implications for future studies of myopia and ocular disease research. PMID:21950701

  3. Adaptive Sensor Optimization and Cognitive Image Processing Using Autonomous Optical Neuroprocessors

    SciTech Connect

    CAMERON, STEWART M.

    2001-10-01

    Measurement and signal intelligence demands has created new requirements for information management and interoperability as they affect surveillance and situational awareness. Integration of on-board autonomous learning and adaptive control structures within a remote sensing platform architecture would substantially improve the utility of intelligence collection by facilitating real-time optimization of measurement parameters for variable field conditions. A problem faced by conventional digital implementations of intelligent systems is the conflict between a distributed parallel structure on a sequential serial interface functionally degrading bandwidth and response time. In contrast, optically designed networks exhibit the massive parallelism and interconnect density needed to perform complex cognitive functions within a dynamic asynchronous environment. Recently, all-optical self-organizing neural networks exhibiting emergent collective behavior which mimic perception, recognition, association, and contemplative learning have been realized using photorefractive holography in combination with sensory systems for feature maps, threshold decomposition, image enhancement, and nonlinear matched filters. Such hybrid information processors depart from the classical computational paradigm based on analytic rules-based algorithms and instead utilize unsupervised generalization and perceptron-like exploratory or improvisational behaviors to evolve toward optimized solutions. These systems are robust to instrumental systematics or corrupting noise and can enrich knowledge structures by allowing competition between multiple hypotheses. This property enables them to rapidly adapt or self-compensate for dynamic or imprecise conditions which would be unstable using conventional linear control models. By incorporating an intelligent optical neuroprocessor in the back plane of an imaging sensor, a broad class of high-level cognitive image analysis problems including geometric

  4. Understanding barriers to implementation of an adaptive land management program

    USGS Publications Warehouse

    Jacobson, S.K.; Morris, J.K.; Sanders, J.S.; Wiley, E.N.; Brooks, M.; Bennetts, R.E.; Percival, H.F.; Marynowski, S.

    2006-01-01

    The Florida Fish and Wildlife Conservation Commission manages over 650,000 ha, including 26 wildlife management and environmental areas. To improve management, they developed an objective-based vegetation management (OBVM) process that focuses on desired conditions of plant communities through an adaptive management framework. Our goals were to understand potential barriers to implementing OBVM and to recommend strategies to overcome barriers. A literature review identified 47 potential barriers in six categories to implementation of adaptive and ecosystem management: logistical, communication, attitudinal, institutional, conceptual, and educational. We explored these barriers through a bureau-wide survey of 90 staff involved in OBVM and personal interviews with area managers, scientists, and administrators. The survey incorporated an organizational culture assessment instrument to gauge how institutional factors might influence OBVM implementation. The survey response rate was 69%. Logistics and communications were the greatest barriers to implementing OBVM. Respondents perceived that the agency had inadequate resources for implementing OBVM and provided inadequate information. About one-third of the respondents believed OBVM would decrease their job flexibility and perceived greater institutional barriers to the approach. The 43% of respondents who believed they would have more responsibility under OBVM also had greater attitudinal barriers. A similar percentage of respondents reported OBVM would not give enough priority to wildlife. Staff believed that current agency culture was hierarchical but preferred a culture that would provide more flexibility for adaptive management and would foster learning from land management activities. In light of the barriers to OBVM, we recommend the following: (1) mitigation of logistical barriers by addressing real and perceived constraints of staff, funds, and other resources in a participatory manner; (2) mitigation of

  5. Recent performance of the normal incident x-ray telescope with adaptive optics

    NASA Astrophysics Data System (ADS)

    Kitamoto, S.; Ishii, R.; Nukamori, S.; Imai, K.; Mochida, A.; Sato, S.; Ohgi, Y.; Yoshida, Y.; Hoshino, A.

    2016-09-01

    We report recent results of the performance measurement of our X-ray telescope with adaptive optics. The telescope is designed to use the 13.5nm EUV with the Mo/Si multilayers, making a normal incident optics. The primary mirror is 80mm in its diameter and the focal length of 2m. The deformable mirror is controlled by measuring a wave-front of an optical laser. Effects of a difference between the light paths from the reference and from an object are examined. The angular resolution is measured with optical light and we confirm almost diffraction limited resolution as well as its appropriate function as adaptive optics.

  6. Wide field of view adaptive optical system for lightweight deployable telescope technologies

    NASA Astrophysics Data System (ADS)

    McComas, Brian K.; Cermak, Michael A.; Friedman, Edward J.

    2003-02-01

    A NASA research contract (NAS1-00116) was awarded to Ball Aerospace & Technologies Corp. in January 2000 to study wide field-of-view adaptive optical systems. These systems will be required on future high resolution Earth remote sensing systems that employ large, flexible, lightweight, deployed primary mirrors. The deformations from these primary mirrors will introduce aberrations into the optical system, which must be removed by corrective optics. For economic reasons, these remote sensing systems must have a large field-of-view (a few degrees). Unlike ground-based adaptive optical systems, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct for the deformations in the primary mirror over the entire field-of-view. A new error function, which is an enhancement to conventional adaptive optics, for wide field-of-view optical systems will be introduced. This paper will present the goals of the NASA research project and its progress. The initial phase of this research project is a demonstration of the wide field-of-view adaptive optics theory. A breadboard has been designed and built for this purpose. The design and assembly of the breadboard will be presented, along with the final results for this phase of the research project. Finally, this paper will show the applicability of wide field-of-view adaptive optics to space-based astronomical systems.

  7. Status of the DKIST system for solar adaptive optics

    NASA Astrophysics Data System (ADS)

    Johnson, Luke C.; Cummings, Keith; Drobilek, Mark; Johansson, Erik; Marino, Jose; Richards, Kit; Rimmele, Thomas; Sekulic, Predrag; Wöger, Friedrich

    2016-07-01

    When the Daniel K. Inouye Solar Telescope (DKIST) achieves first light in 2019, it will deliver the highest spatial resolution images of the solar atmosphere ever recorded. Additionally, the DKIST will observe the Sun with unprecedented polarimetric sensitivity and spectral resolution, spurring a leap forward in our understanding of the physical processes occurring on the Sun. The DKIST wavefront correction system will provide active alignment control and jitter compensation for all six of the DKIST science instruments. Five of the instruments will also be fed by a conventional adaptive optics (AO) system, which corrects for high frequency jitter and atmospheric wavefront disturbances. The AO system is built around an extended-source correlating Shack-Hartmann wavefront sensor, a Physik Instrumente fast tip-tilt mirror (FTTM) and a Xinetics 1600-actuator deformable mirror (DM), which are controlled by an FPGA-based real-time system running at 1975 Hz. It is designed to achieve on-axis Strehl of 0.3 at 500 nm in median seeing (r0 = 7 cm) and Strehl of 0.6 at 630 nm in excellent seeing (r0 = 20 cm). The DKIST wavefront correction team has completed the design phase and is well into the fabrication phase. The FTTM and DM have both been delivered to the DKIST laboratory in Boulder, CO. The real-time controller has been completed and is able to read out the camera and deliver commands to the DM with a total latency of approximately 750 μs. All optics and optomechanics, including many high-precision custom optics, mounts, and stages, are completed or nearing the end of the fabrication process and will soon undergo rigorous acceptance testing. Before installing the wavefront correction system at the telescope, it will be assembled as a testbed in the laboratory. In the lab, performance tests beginning with component-level testing and continuing to full system testing will ensure that the wavefront correction system meets all performance requirements. Further work in the

  8. Optical figuring specifications for thin shells to be used in adaptive telescope mirrors

    NASA Astrophysics Data System (ADS)

    Riccardi, A.

    2006-06-01

    The present work describes the guidelines to define the optical figuring specifications for optical manufacturing of thin shells in terms of figuring error power spectrum (and related rms vs scale distributon) to be used in adaptive optics correctors with force actuators like Deformable Secondary Mirrors (DSM). In particular the numerical example for a thin shell for a VLT DSM is considered.

  9. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, Joseph Thaddeus

    1998-01-01

    A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)

  10. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, J.T.

    1998-04-28

    A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.

  11. Novel adaptive fiber-optics collimator for coherent beam combination.

    PubMed

    Zhi, Dong; Ma, Pengfei; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2014-12-15

    In this manuscript, we experimentally validate a novel design of adaptive fiber-optics collimator (AFOC), which utilizes two levers to enlarge the movable range of the fiber end cap. The enlargement of the range makes the new AFOC possible to compensate the end-cap/tilt aberration in fiber laser beam combining system. The new AFOC based on flexible hinges and levers was fabricated and the performance of the new AFOC was tested carefully, including its control range, frequency response and control accuracy. Coherent beam combination (CBC) of two 5-W fiber amplifiers array with simultaneously end-cap/tilt control and phase-locking control was implemented successfully with the novel AFOC. Experimental results show that the average normalized power in the bucket (PIB) value increases from 0.311 to 0.934 with active phasing and tilt aberration compensation simultaneously, and with both controls on, the fringe contrast improves to more than 82% from 0% for the case with both control off. This work presents a promising structure for tilt aberration control in high power CBC system.

  12. Point spread function determination for Keck adaptive optics

    NASA Astrophysics Data System (ADS)

    Ragland, S.; Jolissaint, L.; Wizinowich, P.; van Dam, M. A.; Mugnier, L.; Bouxin, A.; Chock, J.; Kwok, S.; Mader, J.; Witzel, G.; Do, Tuan; Fitzgerald, M.; Ghez, A.; Lu, J.; Martinez, G.; Morris, M. R.; Sitarski, B.

    2016-07-01

    One of the primary scientific limitations of adaptive optics (AO) has been the incomplete knowledge of the point spread function (PSF), which has made it difficult to use AO for accurate photometry and astrometry in both crowded and sparse fields, for extracting intrinsic morphologies and spatially resolved kinematics, and for detecting faint sources in the presence of brighter sources. To address this limitation, we initiated a program to determine and demonstrate PSF reconstruction for science observations obtained with Keck AO. This paper aims to give a broad view of the progress achieved in implementing a PSF reconstruction capability for Keck AO science observations. This paper describes the implementation of the algorithms, and the design and development of the prototype operational tools for automated PSF reconstruction. On-sky performance is discussed by comparing the reconstructed PSFs to the measured PSF's on the NIRC2 science camera. The importance of knowing the control loop performance, accurate mapping of the telescope pupil to the deformable mirror and the science instrument pupil, and the telescope segment piston error are highlighted. We close by discussing lessons learned and near-term future plans.

  13. Development of a novel translation micromirror for adaptive optics

    NASA Astrophysics Data System (ADS)

    He, Siyuan; Ben Mrad, Ridha

    2003-10-01

    Conventional translation micromirrors for adaptive optics use attractive electrostatic force and therefore have two limitations: 1) the stroke is limited to less than one third of the initial gap distance between the mirror plate and the substrate. Normally the stroke is in the range of submicrometers; 2) stiction happens during operation. A novel translation micromirror, which uses a repulsive electrostatic force, is presented in this paper. This novel translation micromirror completely overcomes the limitations associated with conventional translation micromirrors and its stroke is not limited by the initial gap distance between the mirror plate and the substrate and therefore is able to achieve a much larger vertical stroke to modulate lights over a wider spectrum than that achieved by conventional translation micromirrors. The novel translation micromirror has no stiction problem and is highly compatible with mature surface micromachining technology. An analytical model is derived for the novel translation micromirror and prototypes are fabricated. The prototype of the novel translation micromirror, which is deliberately not optimized so it could be fabricated using MUMPS, achieved a vertical stroke of 1.75μm using a driving voltage of 50 volts, which is three times the stroke of conventional MUMPS translation micromirrors. It is expected that if standard surface micromachining is used instead of MUMPs, the design of the novel translation micromirror can be optimized and a much larger vertical stroke can be achieved.

  14. ADAPTIVE OPTICS IMAGES OF KEPLER OBJECTS OF INTEREST

    SciTech Connect

    Adams, E. R.; Dupree, A. K.; Ciardi, D. R.; Gautier, T. N. III; Kulesa, C.; McCarthy, D.

    2012-08-15

    All transiting planets are at risk of contamination by blends with nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or produce a false-positive detection when the target star is blended with eclipsing binary stars. This paper reports on high spatial-resolution adaptive optics images of 90 Kepler planetary candidates. Companion stars are detected as close as 0.''1 from the target star. Images were taken in the near-infrared (J and Ks bands) with ARIES on the MMT and PHARO on the Palomar Hale 200 inch telescope. Most objects (60%) have at least one star within 6'' separation and a magnitude difference of 9. Eighteen objects (20%) have at least one companion within 2'' of the target star; six companions (7%) are closer than 0.''5. Most of these companions were previously unknown, and the associated planetary candidates should receive additional scrutiny. Limits are placed on the presence of additional companions for every system observed, which can be used to validate planets statistically using the BLENDER method. Validation is particularly critical for low-mass, potentially Earth-like worlds, which are not detectable with current-generation radial velocity techniques. High-resolution images are thus a crucial component of any transit follow-up program.

  15. SOUL: the Single conjugated adaptive Optics Upgrade for LBT

    NASA Astrophysics Data System (ADS)

    Pinna, E.; Esposito, S.; Hinz, P.; Agapito, G.; Bonaglia, M.; Puglisi, A.; Xompero, M.; Riccardi, A.; Briguglio, R.; Arcidiacono, C.; Carbonaro, L.; Fini, L.; Montoya, M.; Durney, O.

    2016-07-01

    We present here SOUL: the Single conjugated adaptive Optics Upgrade for LBT. Soul will upgrade the wavefront sensors replacing the existing CCD detector with an EMCCD camera and the rest of the system in order to enable the closed loop operations at a faster cycle rate and with higher number of slopes. Thanks to reduced noise, higher number of pixel and framerate, we expect a gain (for a given SR) around 1.5-2 magnitudes at all wavelengths in the range 7.5 70% in I-band and 0.6asec seeing) and the sky coverage will be multiplied by a factor 5 at all galactic latitudes. Upgrading the SCAO systems at all the 4 focal stations, SOUL will provide these benefits in 2017 to the LBTI interferometer and in 2018 to the 2 LUCI NIR spectro-imagers. In the same year the SOUL correction will be exploited also by the new generation of LBT instruments: V-SHARK, SHARK-NIR and iLocater.

  16. SOAR Adaptive Optics Observations of the Globular Cluster NGC 6496

    NASA Astrophysics Data System (ADS)

    Fraga, Luciano; Kunder, Andrea; Tokovinin, Andrei

    2013-06-01

    We present high-quality BVRI photometric data in the field of globular cluster NGC 6496 obtained with the SOAR Telescope Adaptive Module (SAM). Our observations were collected as part of the ongoing SAM commissioning. The distance modulus and cluster color excess as found from the red clump are (m - M) V = 15.71 ± 0.02 mag and E(V - I) = 0.28 ± 0.02 mag. An age of 10.5 ± 0.5 Gyr is determined from the difference in magnitude between the red clump and the subgiant branch. These parameters are in excellent agreement with the values derived from isochrone fitting. From the color-magnitude diagram we find a metallicity of [Fe/H] = -0.65 dex and hence support a disk classification for NGC 6496. The complete BVRI data set for NGC 6469 is made available in the electronic edition of the Journal. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  17. Adaptive Optics Images of Kepler Objects of Interest

    NASA Astrophysics Data System (ADS)

    Adams, E. R.; Ciardi, D. R.; Dupree, A. K.; Gautier, T. N., III; Kulesa, C.; McCarthy, D.

    2012-08-01

    All transiting planets are at risk of contamination by blends with nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or produce a false-positive detection when the target star is blended with eclipsing binary stars. This paper reports on high spatial-resolution adaptive optics images of 90 Kepler planetary candidates. Companion stars are detected as close as 0farcs1 from the target star. Images were taken in the near-infrared (J and Ks bands) with ARIES on the MMT and PHARO on the Palomar Hale 200 inch telescope. Most objects (60%) have at least one star within 6'' separation and a magnitude difference of 9. Eighteen objects (20%) have at least one companion within 2'' of the target star; six companions (7%) are closer than 0farcs5. Most of these companions were previously unknown, and the associated planetary candidates should receive additional scrutiny. Limits are placed on the presence of additional companions for every system observed, which can be used to validate planets statistically using the BLENDER method. Validation is particularly critical for low-mass, potentially Earth-like worlds, which are not detectable with current-generation radial velocity techniques. High-resolution images are thus a crucial component of any transit follow-up program. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  18. Adaptive optics fundus camera using a liquid crystal phase modulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Nakazawa, Naoki; Bessho, Kenichiro; Kitaguchi, Yoshiyuki; Maeda, Naoyuki; Fujikado, Takashi; Mihashi, Toshifumi

    2008-05-01

    We have developed an adaptive optics (AO) fundus camera to obtain high resolution retinal images of eyes. We use a liquid crystal phase modulator to compensate the aberrations of the eye for better resolution and better contrast in the images. The liquid crystal phase modulator has a wider dynamic range to compensate aberrations than most mechanical deformable mirrors and its linear phase generation makes it easy to follow eye movements. The wavefront aberration was measured in real time with a sampling rate of 10 Hz and the closed loop system was operated at around 2 Hz. We developed software tools to align consecutively obtained images. From our experiments with three eyes, the aberrations of normal eyes were reduced to less than 0.1 μm (RMS) in less than three seconds by the liquid crystal phase modulator. We confirmed that this method was adequate for measuring eyes with large aberrations including keratoconic eyes. Finally, using the liquid crystal phase modulator, high resolution images of retinas could be obtained.

  19. Adaptive optics for ultra short pulsed lasers in UHV environment

    NASA Astrophysics Data System (ADS)

    Deneuville, Francois; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-02-01

    ISP SYSTEM has developed an electro-mechanical deformable mirror compatible with Ultra High Vacuum environment, suitable for ultra short pulsed lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations. μ-AME actuators are driven by stepper motors, and their patented special design allows controlling the force with a very high accuracy. Materials and assembly method have been adapted to UHV constraints and the performances were evaluated on a first application for a beam with a diameter of 250mm. A Strehl ratio above 0.9 was reached for this application. Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for standard MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The deformable mirror design allows changing easily an actuator or even the membrane if needed, in order to improve the facility availability. They are designed for circular, square or elliptical aperture from 30mm up to 500mm or more, with incidence angle from 0° to 45°. They can be equipped with passive or active cooling for high power lasers with high repetition rate.

  20. Keck Adaptive Optics Observations of TW Hydrae Association Members

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Max, C.; Zuckerman, B.; Becklin, E. E.; Kaisler, D.; Lowrance, P.; Weinberger, A.; Christou, J.; Schneider, G.; Acton, S.

    Adaptive optics (AO) on 8-10 m telescopes is an enormously powerful tool for studying young nearby stars. It is especially useful for searching for companions. Using AO on the 10-m W.M. Keck II telescope we have measured the position of the brown dwarf companion to TWA5 and resolved the primary into an 0.055 arcsecond double. Over the next several years follow-up astrometry should permit an accurate determination of the masses of these young stars. We have also re-observed the candidate extrasolar planet TWA6B, but measurements of its motion relative to TWA6A are inconclusive. We are carrying out a search for new planetary or brown dwarf companions to TWA stars and, if current giant planet models are correct, are currently capable of detecting a 1 Jupiter-mass companion at ~1 arcsecond and a 5 Jupiter-mass companion at ~0.5 arcsecon around a typical TWA member.

  1. Keck Adaptive Optics Images of Uranus and Its Rings

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Gibbard, S. G.; Macintosh, B. A.; Roe, H. G.; Gavel, D. T.; Max, C. E.

    2002-12-01

    We present adaptive optic images of Uranus obtained with the 10-m W. M. Keck II telescope in June 2000, at wavelengths between 1 and 2.4 μm. The angular resolution of the images is ˜0.06-0.09″. We identified eight small cloud features on Uranus's disk, four of which were in the northern hemisphere. The latter features are ˜1000-2000 km in extent and located in the upper troposphere, above the methane cloud, at pressures between 0.5 and 1 bar. Our data have been combined with HST data by Hammel et al. (2001, Icarus153, 229-235); the combination of Keck and HST data allowed derivation of an accurate wind velocity profile. Our images further show Uranus's entire ring system: the asymmetric ɛ ring, as well as the three groups of inner rings (outward from Uranus): the rings 6+5+4, α+β, and the η+γ+δ rings. We derived the equivalent I/ F width and ring particle reflectivity for each group of rings. Typical particle albedos are ˜0.04-0.05, in good agreement with HST data at 0.9 μm.

  2. Adaptive optics images. III. 87 Kepler objects of interest

    SciTech Connect

    Dressing, Courtney D.; Dupree, Andrea K.; Adams, Elisabeth R.; Kulesa, Craig; McCarthy, Don

    2014-11-01

    The Kepler mission has revolutionized our understanding of exoplanets, but some of the planet candidates identified by Kepler may actually be astrophysical false positives or planets whose transit depths are diluted by the presence of another star. Adaptive optics images made with ARIES at the MMT of 87 Kepler Objects of Interest place limits on the presence of fainter stars in or near the Kepler aperture. We detected visual companions within 1'' for 5 stars, between 1'' and 2'' for 7 stars, and between 2'' and 4'' for 15 stars. For those systems, we estimate the brightness of companion stars in the Kepler bandpass and provide approximate corrections to the radii of associated planet candidates due to the extra light in the aperture. For all stars observed, we report detection limits on the presence of nearby stars. ARIES is typically sensitive to stars approximately 5.3 Ks magnitudes fainter than the target star within 1'' and approximately 5.7 Ks magnitudes fainter within 2'', but can detect stars as faint as ΔKs = 7.5 under ideal conditions.

  3. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    SciTech Connect

    Simeoni, G. G.; Valicu, R. G.; Borchert, G.; Böni, P.; Rasmussen, N. G.; Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A.

    2015-12-14

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4–10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  4. AdapTube: Adaptive Optics animations for tutorial purpose

    NASA Astrophysics Data System (ADS)

    Dima, Marco; Ragazzoni, Roberto; Bergomi, Maria; Farinato, Jacopo; Magrin, Demetrio; Marafatto, Luca; Viotto, Valentina

    2013-12-01

    As it happens in most scientific fields, many Adaptive Optics concepts and instrumental layouts are not easily understandable. Both in outreach and in the framework of addressing experts, computer graphics (CG) and, in particular, animation can aid the speaker and the auditor to simplify concept description, translating them into a more direct message. This paper presents a few examples of how some instruments, as Shack-Hartmann and Pyramid wavefront sensors, or concepts, like MCAO and MOAO, have been depicted and sometimes compared in a more intuitive way, emphasizing differences, pros and cons. Some example linking animation to the real world are also outlined, pushing the boundaries of the way a complicated concept can be illustrated embedding complex drawings into the explanation of a human. The used CG software, which is completely open source and will be presented and briefly described, turns out to be a valid communication tool to highlight what, on a piece of paper, could seem obscure. This poster aims at showing how concepts, such as Pyramid WFS, GLAO, MCAO and GMCAO, sometimes very difficult to explain on paper, can be much more easily outlined by means of dedicated animation SW. Blender is a very powerful freeware SW, used by our group since years to make tutorial videos and explanatory movies, a few examples of which are presented here.

  5. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    NASA Astrophysics Data System (ADS)

    Simeoni, G. G.; Valicu, R. G.; Borchert, G.; Böni, P.; Rasmussen, N. G.; Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A.

    2015-12-01

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4-10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  6. Issues in the design and optimization of adaptive optics and laser guide stars for the Keck Telescopes

    SciTech Connect

    Max, C.E.; Gavel, D.T.; Olivier, S.S.

    1994-03-01

    We discuss issues in optimizing the design of adaptive optics and laser guide star systems for the Keck Telescope. The initial tip-tilt system will use Keck`s chopping secondary mirror. We describe design constraints, choice of detector, and expected performance of this tip-tilt system as well as its sky coverage. The adaptive optics system is being optimized for wavelengths of I-2.2{mu}m. We are studying adaptive optics concepts which use a wavefront sensor with varying numbers of subapertures, so as to respond to changing turbulence conditions. The goal is to be able to ``gang together`` groups of deformable mirror subapertures under software control, when conditions call for larger subapertures. We present performance predictions as a function of sky coverage and the number of deformable mirror degrees of freedom. We analyze the predicted brightness several candidate laser guide star systems, as a function of laser power and pulse format. These predictions are used to examine the resulting Strehl as a function of observing wavelength and laser type. We discuss laser waste heat and thermal management issues, and conclude with an overview of instruments under design to take advantage of the Keck adaptive optics system.

  7. Accelerating adaptation of natural resource management to address climate change.

    PubMed

    Cross, Molly S; McCarthy, Patrick D; Garfin, Gregg; Gori, David; Enquist, Carolyn A F

    2013-02-01

    Natural resource managers are seeking tools to help them address current and future effects of climate change. We present a model for collaborative planning aimed at identifying ways to adapt management actions to address the effects of climate change in landscapes that cross public and private jurisdictional boundaries. The Southwest Climate Change Initiative (SWCCI) piloted the Adaptation for Conservation Targets (ACT) planning approach at workshops in 4 southwestern U.S. landscapes. This planning approach successfully increased participants' self-reported capacity to address climate change by providing them with a better understanding of potential effects and guiding the identification of solutions. The workshops fostered cross-jurisdictional and multidisciplinary dialogue on climate change through active participation of scientists and managers in assessing climate change effects, discussing the implications of those effects for determining management goals and activities, and cultivating opportunities for regional coordination on adaptation of management plans. Facilitated application of the ACT framework advanced group discussions beyond assessing effects to devising options to mitigate the effects of climate change on specific species, ecological functions, and ecosystems. Participants addressed uncertainty about future conditions by considering more than one climate-change scenario. They outlined opportunities and identified next steps for implementing several actions, and local partnerships have begun implementing actions and conducting additional planning. Continued investment in adaptation of management plans and actions to address the effects of climate change in the southwestern United States and extension of the approaches used in this project to additional landscapes are needed if biological diversity and ecosystem services are to be maintained in a rapidly changing world.

  8. Role of Science, Policy, and Society in Adaptive Watershed Management

    NASA Astrophysics Data System (ADS)

    Webb, Richard M. T.

    2009-03-01

    Planning for an Uncertain Future: Monitoring, Integration, and Adaptation; Estes Park, Colorado, 8-11 September 2008; Water managers around the world are being tasked to include potential effects of climate change in their future operations scenarios. One important water manager, the federal government, owns and manages 30% of all land in the United States, the vast majority of which is in western states and Alaska. On 9 March 2007, the Secretary of the Interior signed Order 3270, which states that adaptive management should be considered when (1) there are consequential decisions to be made; (2) there is an opportunity to apply learning; (3) the objectives of management are clear; (4) the value of reducing uncertainty is high; (5) uncertainty can be expressed as a set of competing, testable models; and (6) an experimental design and monitoring system can be put in place with a reasonable expectation of reducing uncertainty. The Third Interagency Conference on Research in the Watersheds provided an appropriate forum to discuss science-driven resource management in the context of new adaptive management strategies. The conference was organized by the U.S. Geological Survey (USGS) and cosponsored by the Consortium of Universities for the Advancement of Hydrologic Science, Inc., the U.S. Environmental Protection Agency, the U.S. Agricultural Research Service, the Natural Resources Conservation Service, the U.S. Forest Service, the National Park Service, the Bureau of Reclamation, the Bureau of Land Management, the U.S. Fish and Wildlife Service, and the U.S. National Oceanic and Atmospheric Administration.

  9. Adaptive automatic data analysis in full-field fringe-pattern-based optical metrology

    NASA Astrophysics Data System (ADS)

    Trusiak, Maciej; Patorski, Krzysztof; Sluzewski, Lukasz; Pokorski, Krzysztof; Sunderland, Zofia

    2016-12-01

    Fringe pattern processing and analysis is an important task of full-field optical measurement techniques like interferometry, digital holography, structural illumination and moiré. In this contribution we present several adaptive automatic data analysis solutions based on the notion of Hilbert-Huang transform for measurand retrieval via fringe pattern phase and amplitude demodulation. The Hilbert-Huang transform consists of 2D empirical mode decomposition algorithm and Hilbert spiral transform analysis. Empirical mode decomposition adaptively dissects a meaningful number of same-scale subimages from the analyzed pattern - it is a data-driven method. Appropriately managing this set of unique subimages results in a very powerful fringe pre-filtering tool. Phase/amplitude demodulation is performed using Hilbert spiral transform aided by the local fringe orientation estimator. We describe several optical measurement techniques for technical and biological objects characterization basing on the especially tailored Hilbert-Huang algorithm modifications for fringe pattern denoising, detrending and amplitude/phase demodulation.

  10. Development of laser guide stars and adaptive optics for large astronomical telescopes

    SciTech Connect

    Max, C.E.; Avicola, K.; Bissinger, H.; Brase, J.M.; Gavel, D.T.; Friedman, H.; Morris, J.R.; Olivier, S.S.; Rapp, D.; Salmon, J.T.; Waltjen, K.

    1992-06-29

    We describe a feasibility experiment to demonstrate high-order adaptive optics using a sodium-layer laser guide star. We use the copper-vapor-pumped dye lasers developed for LLNL`s atomic Vapor Laser Isotope Separation program to create the laser guide star. Closed-loop adaptive corrections will be accomplished using a 69-subaperture adaptive optics system on a one-meter telescope at LLNL. The laser bream is projected upwards from a beam director approximately 5 meters away from the main telescope, and is expected to form a spot 1-2 meters in diameter at the atmospheric sodium layer (95 km altitude). We describe the overall system architecture and adaptive optics components, and analyze the expected performance. Our long-term goal is to develop sodium-layer laser guide stars and adaptive optics for large astronomical telescopes. We discuss preliminary design trade-offs for the Keck Telescope at Mauna Kea.

  11. Development of laser guide stars and adaptive optics for large astronomical telescopes

    SciTech Connect

    Max, C.E.; Avicola, K.; Bissinger, H.; Brase, J.M.; Gavel, D.T.; Friedman, H.; Morris, J.R.; Olivier, S.S.; Rapp, D.; Salmon, J.T.; Waltjen, K.

    1992-06-29

    We describe a feasibility experiment to demonstrate high-order adaptive optics using a sodium-layer laser guide star. We use the copper-vapor-pumped dye lasers developed for LLNL's atomic Vapor Laser Isotope Separation program to create the laser guide star. Closed-loop adaptive corrections will be accomplished using a 69-subaperture adaptive optics system on a one-meter telescope at LLNL. The laser bream is projected upwards from a beam director approximately 5 meters away from the main telescope, and is expected to form a spot 1-2 meters in diameter at the atmospheric sodium layer (95 km altitude). We describe the overall system architecture and adaptive optics components, and analyze the expected performance. Our long-term goal is to develop sodium-layer laser guide stars and adaptive optics for large astronomical telescopes. We discuss preliminary design trade-offs for the Keck Telescope at Mauna Kea.

  12. Multiple laser guide stars (LGS) for multiple conjugate adaptive optics (MCAO)

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2012-10-01

    For wavefront sensing and control, the most extensive use of Mult-Conjugate Adaptive Optics (MCAO) systems for extended-path aberration compensation lies with the use of multiple Laser Guide Stars (LGS) for Multi-Conjugate Adaptive Optics (MCAO). Ground-based adaptive optics systems were initially developed by the Starfire Optical Range (SOR) in 1983. Both Rayleigh guide stars and Na guide stars have been developed. More recently, both laser systems, Na LGS at 93 km and Rayleigh guide stars at 20 km, are being combined in the Large Binocular Telescope (LBT) for multiple LGS for Multiple Conjugate Adaptive Optics (MCAO) (M. Hart et al, 2011). Each side of the LBT has 3 Rayleigh LGS which are projected into two triangular constellations. A sodium LGS will be added to each aperture using the same launch optics as the Rayleigh beacons. This will combine low altitude Rayleigh LGS and high altitude Na laser guide stars into a uniquely powerful tomographic wavefront sensing system for Multi-Conjugate Adaptive Optics. Other observatories have used either Rayleigh guide stars or Na guide stars. ESO VLT has 4 Na LGS. MMT has 5 Rayleigh guide stars. Gemini Multi-Conjugate Adaptive Optics System (GEMS) has 5 Na LGS. The many multiple LGS MCAO observatories will be compared for effective design and projected performance.

  13. Effect of adaptive optical system on the capability of lidar detection in atmosphere

    NASA Astrophysics Data System (ADS)

    Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu

    2009-05-01

    Since atmosphere turbulence has an effect on laser propagation, it causes wavefront error usually , changes intensity and coherence of laser, disturbs detection of lidar. The adaptive optical system has broad application in the field of laser transmission because it can adjust characters of optical system ,detect and correct the wavefront error at the same time. Adaptive optics technology uses deformable mirrors to perform dynamic phase modulation and endow optical system the ability to decrease the influence of dynamic wavefront errors. In this paper ,a correction method of the micro-miniature adaptive optical system based on Micro Electromechanical System (MEMS) technology is proposed by analyzing the working theory of the adaptive optical system. An experimental system including deformable mirror based on Micro Electromechanical System (MEMS) technology is designed to correct a factitious wavefront error.The influence function and voltage-deflection curve are researched, and the voltage control matrix is educed. By using the voltage control , the static wavefront aberration is corrected. Several important capabilities of deformable mirrors is tested. With the voltage control matrix, the corrected capability of the adaptive optical system is achieved successfully .The experimental results show that the adaptive optical system can preferably correct the wavefront error, that has small volume and steady capability, and greatly improve the capability of lidar detection.

  14. The optical design of a visible adaptive optics system for the Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Kopon, Derek

    The Magellan Adaptive Optics system will achieve first light in November of 2012. This AO system contains several subsystems including the 585-actuator concave adaptive secondary mirror, the Calibration Return Optic (CRO) alignment and calibration system, the CLIO 1-5 microm IR science camera, the movable guider camera and active optics assembly, and the W-Unit, which contains both the Pyramid Wavefront Sensor (PWFS) and the VisAO visible science camera. In this dissertation, we present details of the design, fabrication, assembly, alignment, and laboratory performance of the VisAO camera and its optical components. Many of these components required a custom design, such as the Spectral Differential Imaging Wollaston prisms and filters and the coronagraphic spots. One component, the Atmospheric Dispersion Corrector (ADC), required a unique triplet design that had until now never been fabricated and tested on sky. We present the design, laboratory, and on-sky results for our triplet ADC. We also present details of the CRO test setup and alignment. Because Magellan is a Gregorian telescope, the ASM is a concave ellipsoidal mirror. By simulating a star with a white light point source at the far conjugate, we can create a double-pass test of the whole system without the need for a real on-sky star. This allows us to test the AO system closed loop in the Arcetri test tower at its nominal design focal length and optical conjugates. The CRO test will also allow us to calibrate and verify the system off-sky at the Magellan telescope during commissioning and periodically thereafter. We present a design for a possible future upgrade path for a new visible Integral Field Spectrograph. By integrating a fiber array bundle at the VisAO focal plane, we can send light to a pre-existing facility spectrograph, such as LDSS3, which will allow 20 mas spatial sampling and R˜1,800 spectra over the band 0.6-1.05 microm. This would be the highest spatial resolution IFU to date, either

  15. Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics

    PubMed Central

    Cense, Barry; Gao, Weihua; Brown, Jeffrey M.; Jones, Steven M.; Jonnal, Ravi S.; Mujat, Mircea; Park, B. Hyle; de Boer, Johannes F.; Miller, Donald T.

    2011-01-01

    Various layers of the retina are well known to alter the polarization state of light. Such changes in polarization may be a sensitive indicator of tissue structure and function, and as such have gained increased clinical attention. Here we demonstrate a polarization-sensitive optical coherence tomography (PS-OCT) system that incorporates adaptive optics (AO) in the sample arm and a single line scan camera in the detection arm. We quantify the benefit of AO for PS-OCT in terms of signal-to-noise, lateral resolution, and speckle size. Double pass phase retardation per unit depth values ranging from 0.25°/µm to 0.65°/µm were found in the birefringent nerve fiber layer at 6° eccentricity, superior to the fovea, with the highest values being noticeably higher than previously reported with PS-OCT around the optic nerve head. Moreover, fast axis orientation and degree of polarization uniformity measurements made with AO-PS-OCT demonstrate polarization scrambling in the retinal pigment epithelium at the highest resolution reported to date. PMID:19997405

  16. Efficiency of MIMO configuration and adaptive optics corrections in free space optical fading channels

    NASA Astrophysics Data System (ADS)

    Hajjarian, Zeinab; Kavehrad, Mohsen; Fadlullah, Jarir

    2010-01-01

    Free Space Optical (FSO) communications is the only practical candidate for realizing universal network coverage between ground and airborne nodes, satellites, and even moon and other nearby planets. When atmosphere (be it the earth or Mars) is a part of the optical channel, attributes of scattering and turbulence bring about amplitude attenuation, and scintillation, as well as beam wander and phase aberrations at the receiving aperture. Phase screens are usually used in order to simulate the atmospheric fading channel and phase fluctuations. In this paper, different methods of generating phase screens are compared based on their accuracy and computational complexity, as in most computer simulations, a large ensemble of phase screens are required for averaging purposes. To combat the focal plane intensity fading, caused by amplitude and phase variations in the received wave-front, it is possible to replace the Single Input-Single Output (SISO) communications system with its Multiple Input Multiple Output (MIMO) equivalent, which has the same total transmit power and receiving aperture area. Another alternative is to equip the receiver with a state of the art Adaptive Optics (AO) correction system. Using average Bit Error Rate (BER), as a performance metric, effectiveness of these two approaches are compared and it is shown that while a MIMO configuration outperforms a basic AO system capable of only tilt corrections, an ideal AO system, which is able to remove higher orders of Zernike modes can asymptotically perform as well as an equivalent MIMO configuration.

  17. Configurable adaptive optical system for imaging of ground-based targets from space

    NASA Astrophysics Data System (ADS)

    McComas, Brian K.; Friedman, Edward J.; Hooker, R. Brian; Cermak, Michael A.

    2003-03-01

    Space-based, high resolution, Earth remote sensing systems, that employ large, flexible, lightweight primary mirrors, will require active wavefront correction, in the form of active and adaptive optics, to correct for thermally and vibrationally induced deformations in the optics. These remote sensing systems typically have a large field-of-view. Unlike the adaptive optics on ground-based astronomical telescopes, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct the wavefront over the entire field-of-view, which can be several degrees. The error functions for astronomical adaptive optics have been developed for the narrow field-of-view correction of atmospheric turbulence and do not address the needs of wide field space-based systems. To address these needs, a new wide field adaptive optics theory and a new error function are developed. Modeling and experimental results demonstrate the validity of the wide field adaptive optics theory and new error function. This new error function, which is a new extension of conventional adaptive optics, lead to the development of three new types of imaging systems: wide field-of-view, selectable field-of-view, and steerable field-of-view. These new systems can have nearly diffraction-limited performance across the entire field-of-view or a narrow movable region of high-resolution imaging. The factors limiting system performance will be shown. The range of applicability of the wide field adaptive optics theory is shown. The range of applicability is used to avoid limitations in system performance and to estimate the optical systems parameters, which will meet the system"s performance requirements.

  18. Designing Forest Adaptation Experiments through Manager-Scientist Partnerships

    NASA Astrophysics Data System (ADS)

    Nagel, L. M.; Swanston, C.; Janowiak, M.

    2014-12-01

    Three common forest adaptation options discussed in the context of an uncertain future climate are: creating resistance, promoting resilience, and enabling forests to respond to change. Though there is consensus on the broad management goals addressed by each of these options, translating these concepts into management plans specific for individual forest types that vary in structure, composition, and function remains a challenge. We will describe a decision-making framework that we employed within a manager-scientist partnership to develop a suite of adaptation treatments for two contrasting forest types as part of a long-term forest management experiment. The first, in northern Minnesota, is a red pine-dominated forest with components of white pine, aspen, paper birch, and northern red oak, with a hazel understory. The second, in southwest Colorado, is a warm-dry mixed conifer forest dominated by ponderosa pine, white fir, and Douglas-fir, with scattered aspen and an understory of Gambel oak. The current conditions at both sites are characterized by overstocking with moderate-to-high fuel loading, vulnerability to numerous forest health threats, and are generally uncharacteristic of historic structure and composition. The desired future condition articulated by managers for each site included elements of historic structure and natural range of variability, but were greatly tempered by known vulnerabilities and projected changes to climate and disturbance patterns. The resultant range of treatments we developed are distinct for each forest type, and address a wide range of management objectives.

  19. THE INNER KILOPARSEC OF Mrk 273 WITH KECK ADAPTIVE OPTICS

    SciTech Connect

    U, Vivian; Sanders, David; Kewley, Lisa; Medling, Anne; Max, Claire; Armus, Lee; Iwasawa, Kazushi; Evans, Aaron; Fazio, Giovanni

    2013-10-01

    There is X-ray, optical, and mid-infrared imaging and spectroscopic evidence that the late-stage ultraluminous infrared galaxy merger Mrk 273 hosts a powerful active galactic nucleus (AGN). However, the exact location of the AGN and the nature of the nucleus have been difficult to determine due to dust obscuration and the limited wavelength coverage of available high-resolution data. Here we present near-infrared integral-field spectra and images of the nuclear region of Mrk 273 taken with OSIRIS and NIRC2 on the Keck II Telescope with laser guide star adaptive optics. We observe three spatially resolved components, and analyze the nuclear molecular and ionized gas emission lines and their kinematics. We confirm the presence of the hard X-ray AGN in the southwest nucleus. In the north nucleus, we find a strongly rotating gas disk whose kinematics indicate a central black hole of mass 1.04 ± 0.1 × 10{sup 9} M{sub ☉}. The H{sub 2} emission line shows an increase in velocity dispersion along the minor axis in both directions, and an increased flux with negative velocities in the southeast direction; this provides direct evidence for a collimated molecular outflow along the axis of rotation of the disk. The third spatially distinct component appears to the southeast, 640 and 750 pc from the north and southwest nuclei, respectively. This component is faint in continuum emission but shows several strong emission line features, including [Si VI] 1.964 μm which traces an extended coronal-line region. The geometry of the [Si VI] emission combined with shock models and energy arguments suggest that [Si VI] in the southeast component must be at least partly ionized by the SW AGN or a putative AGN in the northern disk, either through photoionization or through shock-heating from strong AGN- and circumnuclear-starburst-driven outflows. This lends support to a scenario in which Mrk 273 may be a dual AGN system.

  20. Spatial-light-modulator-based adaptive optical system for the use of multiple phase retrieval methods.

    PubMed

    Lingel, Christian; Haist, Tobias; Osten, Wolfgang

    2016-12-20

    We propose an adaptive optical setup using a spatial light modulator (SLM), which is suitable to perform different phase retrieval methods with varying optical features and without mechanical movement. By this approach, it is possible to test many different phase retrieval methods and their parameters (optical and algorithmic) using one stable setup and without hardware adaption. We show exemplary results for the well-known transport of intensity equation (TIE) method and a new iterative adaptive phase retrieval method, where the object phase is canceled by an inverse phase written into part of the SLM. The measurement results are compared to white light interferometric measurements.