Science.gov

Sample records for adaptive optics retinal

  1. Retinal Imaging: Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Goncharov, A. S.; Iroshnikov, N. G.; Larichev, Andrey V.

    This chapter describes several factors influencing the performance of ophthalmic diagnostic systems with adaptive optics compensation of human eye aberration. Particular attention is paid to speckle modulation, temporal behavior of aberrations, and anisoplanatic effects. The implementation of a fundus camera with adaptive optics is considered.

  2. Retinal imaging using adaptive optics technology☆

    PubMed Central

    Kozak, Igor

    2014-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started. PMID:24843304

  3. Retinal imaging using adaptive optics technology.

    PubMed

    Kozak, Igor

    2014-04-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started.

  4. Adaptive optics retinal imaging: emerging clinical applications.

    PubMed

    Godara, Pooja; Dubis, Adam M; Roorda, Austin; Duncan, Jacque L; Carroll, Joseph

    2010-12-01

    The human retina is a uniquely accessible tissue. Tools like scanning laser ophthalmoscopy and spectral domain-optical coherence tomography provide clinicians with remarkably clear pictures of the living retina. Although the anterior optics of the eye permit such non-invasive visualization of the retina and associated pathology, the same optics induce significant aberrations that obviate cellular-resolution imaging in most cases. Adaptive optics (AO) imaging systems use active optical elements to compensate for aberrations in the optical path between the object and the camera. When applied to the human eye, AO allows direct visualization of individual rod and cone photoreceptor cells, retinal pigment epithelium cells, and white blood cells. AO imaging has changed the way vision scientists and ophthalmologists see the retina, helping to clarify our understanding of retinal structure, function, and the etiology of various retinal pathologies. Here, we review some of the advances that were made possible with AO imaging of the human retina and discuss applications and future prospects for clinical imaging.

  5. Adaptive optics technology for high-resolution retinal imaging.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2012-12-27

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  6. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  7. Adaptive optics optical coherence tomography with dynamic retinal tracking

    PubMed Central

    Kocaoglu, Omer P.; Ferguson, R. Daniel; Jonnal, Ravi S.; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X.; Miller, Donald T.

    2014-01-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  8. Adaptive optics optical coherence tomography with dynamic retinal tracking.

    PubMed

    Kocaoglu, Omer P; Ferguson, R Daniel; Jonnal, Ravi S; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X; Miller, Donald T

    2014-07-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies.

  9. An adaptive optics biomicroscope for mouse retinal imaging

    NASA Astrophysics Data System (ADS)

    Biss, David P.; Webb, Robert H.; Zhou, Yaopeng; Bifano, Thomas G.; Zamiri, Parisa; Lin, Charles P.

    2007-02-01

    In studying retinal disease on a microscopic level, in vivo imaging has allowed researchers to track disease progression in a single animal over time without sacrificing large numbers of animals for statistical studies. Historically, a drawback of in vivo retinal imaging, when compared to ex vivo imaging, is decreased image resolution due to aberrations present in the mouse eye. Adaptive optics has successfully corrected phase aberrations introduced the eye in ophthalmic imaging in humans. We are using adaptive optics to correct for aberrations introduced by the mouse eye in hopes of achieving cellular resolution retinal images of mice in vivo. In addition to using a wavefront sensor to drive the adaptive optic element, we explore the using image data to correct for wavefront aberrations introduced by the mouse eye. Image data, in the form of the confocal detection pinhole intensity are used as the feedback mechanism to control the MEMS deformable mirror in the adaptive optics system. Correction for wavefront sensing and sensor-less adaptive optics systems are presented.

  10. Multiwavelength adaptive optical fundus camera and continuous retinal imaging

    NASA Astrophysics Data System (ADS)

    Yang, Han-sheng; Li, Min; Dai, Yun; Zhang, Yu-dong

    2009-08-01

    We have constructed a new version of retinal imaging system with chromatic aberration concerned and the correlated optical design presented in this article is based on the adaptive optics fundus camera modality. In our system, three typical wavelengths of 550nm, 650nm and 480nm were selected. Longitude chromatic aberration (LCA) was traded off to a minimum using ZEMAX program. The whole setup was actually evaluated on human subjects and retinal imaging was performed at continuous frame rates up to 20 Hz. Raw videos at parafovea locations were collected, and cone mosaics as well as retinal vasculature were clearly observed in one single clip. In addition, comparisons under different illumination conditions were also made to confirm our design. Image contrast and the Strehl ratio were effectively increased after dynamic correction of high order aberrations. This system is expected to bring new applications in functional imaging of human retina.

  11. A dual-modal retinal imaging system with adaptive optics

    PubMed Central

    Meadway, Alexander; Girkin, Christopher A.; Zhang, Yuhua

    2013-01-01

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated. PMID:24514529

  12. Adaptive optics with pupil tracking for high resolution retinal imaging.

    PubMed

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  13. Adaptive optics with pupil tracking for high resolution retinal imaging

    PubMed Central

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-01-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics. PMID:22312577

  14. Imaging of retinal vasculature using adaptive optics SLO/OCT

    PubMed Central

    Felberer, Franz; Rechenmacher, Matthias; Haindl, Richard; Baumann, Bernhard; Hitzenberger, Christoph K.; Pircher, Michael

    2015-01-01

    We use our previously developed adaptive optics (AO) scanning laser ophthalmoscope (SLO)/ optical coherence tomography (OCT) instrument to investigate its capability for imaging retinal vasculature. The system records SLO and OCT images simultaneously with a pixel to pixel correspondence which allows a direct comparison between those imaging modalities. Different field of views ranging from 0.8°x0.8° up to 4°x4° are supported by the instrument. In addition a dynamic focus scheme was developed for the AO-SLO/OCT system in order to maintain the high transverse resolution throughout imaging depth. The active axial eye tracking that is implemented in the OCT channel allows time resolved measurements of the retinal vasculature in the en-face imaging plane. Vessel walls and structures that we believe correspond to individual erythrocytes could be visualized with the system. PMID:25909024

  15. Imaging of retinal vasculature using adaptive optics SLO/OCT.

    PubMed

    Felberer, Franz; Rechenmacher, Matthias; Haindl, Richard; Baumann, Bernhard; Hitzenberger, Christoph K; Pircher, Michael

    2015-04-01

    We use our previously developed adaptive optics (AO) scanning laser ophthalmoscope (SLO)/ optical coherence tomography (OCT) instrument to investigate its capability for imaging retinal vasculature. The system records SLO and OCT images simultaneously with a pixel to pixel correspondence which allows a direct comparison between those imaging modalities. Different field of views ranging from 0.8°x0.8° up to 4°x4° are supported by the instrument. In addition a dynamic focus scheme was developed for the AO-SLO/OCT system in order to maintain the high transverse resolution throughout imaging depth. The active axial eye tracking that is implemented in the OCT channel allows time resolved measurements of the retinal vasculature in the en-face imaging plane. Vessel walls and structures that we believe correspond to individual erythrocytes could be visualized with the system.

  16. Adaptive optics for improved retinal surgery and diagnostics

    SciTech Connect

    Humayun, M S; Sadda, S R; Thompson, C A; Olivier, S S; Kartz, M W

    2000-08-21

    It is now possible to field a compact adaptive optics (AO) system on a surgical microscope for use in retinal diagnostics and surgery. Recent developments in integrated circuit technology and optical photonics have led to the capability of building an AO system that is compact and significantly less expensive than traditional AO systems. It is foreseen that such an AO system can be integrated into a surgical microscope while maintaining a package size of a lunchbox. A prototype device can be developed in a manner that lends itself well to large-scale manufacturing.

  17. Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics - optical coherence tomography

    PubMed Central

    Lee, Sang-Hyuck; Werner, John S.; Zawadzki, Robert J.

    2013-01-01

    We present an aberration cancelling optical design for a reflective adaptive optics - optical coherence tomography (AO-OCT) retinal imaging system. The optical performance of this instrument is compared to our previous multimodal AO-OCT/AO-SLO retinal imaging system. The feasibility of new instrumentation for improved visualization of microscopic retinal structures is discussed. Examples of images acquired with this new AO-OCT instrument are presented. PMID:24298411

  18. Adaptive Optics Retinal Imaging – Clinical Opportunities and Challenges

    PubMed Central

    Carroll, Joseph; Kay, David B.; Scoles, Drew; Dubra, Alfredo; Lombardo, Marco

    2014-01-01

    The array of therapeutic options available to clinicians for treating retinal disease is expanding. With these advances comes the need for better understanding of the etiology of these diseases on a cellular level as well as improved non-invasive tools for identifying the best candidates for given therapies and monitoring the efficacy of those therapies. While spectral domain optical coherence tomography (SD-OCT) offers a widely available tool for clinicians to assay the living retina, it suffers from poor lateral resolution due to the eye’s monochromatic aberrations. Adaptive optics (AO) is a technique to compensate for the eye’s aberrations and provide nearly diffraction-limited resolution. The result is the ability to visualize the living retina with cellular resolution. While AO is unquestionably a powerful research tool, many clinicians remain undecided on the clinical potential of AO imaging – putting many at a crossroads with respect to adoption of this technology. This review will briefly summarize the current state of AO retinal imaging, discuss current as well as future clinical applications of AO retinal imaging, and finally provide some discussion of research needs to facilitate more widespread clinical use. PMID:23621343

  19. Contrast-based sensorless adaptive optics for retinal imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  20. Contrast-based sensorless adaptive optics for retinal imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T.O.; He, Zheng; Metha, Andrew

    2015-01-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  1. Retinal imaging system with adaptive optics enhanced with pupil tracking

    NASA Astrophysics Data System (ADS)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Vabre, Laurent; Dainty, Chris

    2011-03-01

    A compact retinal camera with adaptive optics which was designed for clinical practice was used to test a new adaptive optics control algorithm to correct for the angular ray deviations of a model eye. The new control algorithm is based on pupil movements rather than the measurement of the slopes of the wavefront with an optoelectronic sensor. The method for the control algorithm was based on the hypothesis that majority of the changes of the aberrations of the eye are due to head and eye movements and it is possible to correct for the aberrations of the eye by shifting the paraxial correction according to the new position of the pupil. Since the fixational eye movements are very small, the eye movements are assumed to be translational rather than rotational. Using the new control algorithm it was possible to simulate the aberrations of the moving model eye based on pupil tracking. The RMS of the residual wavefront error of the simulation had a magnitude similar to the RMS of the residual wavefront error of the adaptive optics correction based on optoelectronic sensor for angular ray deviations. If our hypothesis is true and other factors such as the tear film or the crystalline lens fluctuations do not cause changes in the aberrations of the eye as much as motion does, the method is expected to work in vivo as it did for a model eye which had no intrinsic factors that cause aberration changes.

  2. Multi-modal automatic montaging of adaptive optics retinal images

    PubMed Central

    Chen, Min; Cooper, Robert F.; Han, Grace K.; Gee, James; Brainard, David H.; Morgan, Jessica I. W.

    2016-01-01

    We present a fully automated adaptive optics (AO) retinal image montaging algorithm using classic scale invariant feature transform with random sample consensus for outlier removal. Our approach is capable of using information from multiple AO modalities (confocal, split detection, and dark field) and can accurately detect discontinuities in the montage. The algorithm output is compared to manual montaging by evaluating the similarity of the overlapping regions after montaging, and calculating the detection rate of discontinuities in the montage. Our results show that the proposed algorithm has high alignment accuracy and a discontinuity detection rate that is comparable (and often superior) to manual montaging. In addition, we analyze and show the benefits of using multiple modalities in the montaging process. We provide the algorithm presented in this paper as open-source and freely available to download. PMID:28018714

  3. Multi-modal automatic montaging of adaptive optics retinal images.

    PubMed

    Chen, Min; Cooper, Robert F; Han, Grace K; Gee, James; Brainard, David H; Morgan, Jessica I W

    2016-12-01

    We present a fully automated adaptive optics (AO) retinal image montaging algorithm using classic scale invariant feature transform with random sample consensus for outlier removal. Our approach is capable of using information from multiple AO modalities (confocal, split detection, and dark field) and can accurately detect discontinuities in the montage. The algorithm output is compared to manual montaging by evaluating the similarity of the overlapping regions after montaging, and calculating the detection rate of discontinuities in the montage. Our results show that the proposed algorithm has high alignment accuracy and a discontinuity detection rate that is comparable (and often superior) to manual montaging. In addition, we analyze and show the benefits of using multiple modalities in the montaging process. We provide the algorithm presented in this paper as open-source and freely available to download.

  4. Adaptive optics retinal imaging in the living mouse eye.

    PubMed

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H; Sharma, Robin; Libby, Richard T; Williams, David R

    2012-04-01

    Correction of the eye's monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo.

  5. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    PubMed Central

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347

  6. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice.

    PubMed

    Jian, Yifan; Xu, Jing; Gradowski, Martin A; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2014-02-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo.

  7. Optical properties of retinal tissue and the potential of adaptive optics to visualize retinal ganglion cells in vivo.

    PubMed

    Prasse, Martina; Rauscher, Franziska Georgia; Wiedemann, Peter; Reichenbach, Andreas; Francke, Mike

    2013-08-01

    Many efforts have been made to improve the diagnostic tools used to identify and to estimate the progress of ganglion cell and nerve fibre degeneration in glaucoma. Imaging by optical coherence tomography and measurements of the dimensions of the optic nerve head and the nerve fibre layer in central retinal areas is currently used to estimate the grade of pathological changes. The visualization and quantification of ganglion cells and nerve fibres directly in patients would dramatically improve glaucoma diagnostics. We have investigated the optical properties of cellular structures of retinal tissue in order to establish a means of visualizing and quantifying ganglion cells in the living retina without staining. We have characterized the optical properties of retinal tissue in several species including humans. Nerve fibres, blood vessels, ganglion cells and their cell processes have been visualized at high image resolution by means of the reflection mode of a confocal laser scanning microscope. The potential of adaptive optics in current imaging systems and the possibilities of imaging single ganglion cells non-invasively in patients are discussed.

  8. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging

    PubMed Central

    Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-01-01

    Abstract. Small animal models of retinal diseases are important to vision research, and noninvasive high resolution in vivo rodent retinal imaging is becoming an increasingly important tool used in this field. We present a custom Fourier domain optical coherence tomography (FD-OCT) instrument for high resolution imaging of mouse retina. In order to overcome aberrations in the mouse eye, we incorporated a commercial adaptive optics system into the sample arm of the refractive FD-OCT system. Additionally, a commercially available refraction canceling lens was used to reduce lower order aberrations and specular back-reflection from the cornea. Performance of the adaptive optics (AO) system for correcting residual wavefront aberration in the mice eyes is presented. Results of AO FD-OCT images of mouse retina acquired in vivo with and without AO correction are shown as well. PMID:23644903

  9. High-speed adaptive optics line scan confocal retinal imaging for human eye

    PubMed Central

    Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Purpose Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. Methods A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye’s optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. Results The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. Conclusions We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss. PMID:28257458

  10. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  11. An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure

    NASA Astrophysics Data System (ADS)

    Alt, Clemens; Biss, David P.; Tajouri, Nadja; Jakobs, Tatjana C.; Lin, Charles P.

    2010-02-01

    In vivo retinal imaging is an outstanding tool to observe biological processes unfold in real-time. The ability to image microstructure in vivo can greatly enhance our understanding of function in retinal microanatomy under normal conditions and in disease. Transgenic mice are frequently used for mouse models of retinal diseases. However, commercially available retinal imaging instruments lack the optical resolution and spectral flexibility necessary to visualize detail comprehensively. We developed an adaptive optics scanning laser ophthalmoscope (AO-SLO) specifically for mouse eyes. Our SLO is a sensor-less adaptive optics system (no Shack Hartmann sensor) that employs a stochastic parallel gradient descent algorithm to modulate a deformable mirror, ultimately aiming to correct wavefront aberrations by optimizing confocal image sharpness. The resulting resolution allows detailed observation of retinal microstructure. The AO-SLO can resolve retinal microglia and their moving processes, demonstrating that microglia processes are highly motile, constantly probing their immediate environment. Similarly, retinal ganglion cells are imaged along with their axons and sprouting dendrites. Retinal blood vessels are imaged both using evans blue fluorescence and backscattering contrast.

  12. Adaptive optics imaging of the outer retinal tubules in Bietti's crystalline dystrophy.

    PubMed

    Battu, R; Akkali, M C; Bhanushali, D; Srinivasan, P; Shetty, R; Berendschot, T T J M; Schouten, J S A G; Webers, C A

    2016-05-01

    PurposeTo study the outer retinal tubules using spectral domain optical coherence tomography and adaptive optics and in patients with Bietti's crystalline dystrophy.MethodsTen eyes of five subjects from five independent families with Bietti's crystalline Dystrophy (BCD) were characterized with best-corrected visual acuity (BCVA), full-field electroretinography, and fundus autofluorescence (FAF). High-resolution images were obtained with the spectral domain optical coherence tomography (SD-OCT) and adaptive optics (AO).ResultsSD-OCT showed prominent outer retinal layer loss and outer retinal tubulations at the margin of outer retinal loss. AO images displayed prominent macrotubules and microtubules with characteristic features in eight out of the 10 eyes. Crystals were present in all ten eyes. There was a reduction in the cone count in all eyes in the area outside the outer retinal tubules (ORT).ConclusionsThis study describes the morphology of the outer retinal tubules when imaged enface on the adaptive optics in patients with BCD. These findings provide insight into the macular structure of these patients. This may have prognostic implications and refine the study on the pathogenesis of BCD.

  13. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-09-07

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  14. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  15. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-09-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  16. High resolution retinal imaging with a compact adaptive optics spectral domain optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Iftimia, Nicusor V.; Bigelow, Chad E.; Ustun, Teoman E.; Bloom, Benjamin; Ferguson, R. Daniel; Burns, Stephen A.

    2007-02-01

    Adaptive optics (AO) is used to correct ocular aberrations primarily in the cornea, lens, and tear film of every eye. Among other applications, AO allows high lateral resolution images to be acquired with scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT). Spectral domain optical coherence tomography (SDOCT) is a high-speed imaging technique that can acquire cross-sectional scans with micron-scale axial resolution at tens to hundreds of kHz line rates. We present a compact clinical AO-SDOCT system that achieves micron-scale axial and lateral resolution of retinal structures. The system includes a line scanning laser ophthalmscope (LSLO) for simultaneous wide-field retinal viewing and selection of regions-of-interest. OCT and LSLO imaging and AO correction performance are characterized. We present a case study of a single subject with hyper-reflective lesions associated with stable, resolved central serous retinopathy to compare and contrast AO as applied to scanning laser ophthalmoscopy and optical coherence tomography. The two imaging modes are found to be complementary in terms of information on structure morphology. Both provide additional information lacking in the other. This preliminary finding points to the power of combining SLO and SDOCT in a single research instrument for exploration of disease mechanisms, retinal cellular architecture, and visual psychophysics.

  17. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  18. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.

    PubMed

    Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T

    2011-08-15

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye.

  19. Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope.

    PubMed

    Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong

    2011-11-01

    We have used an adaptive optics confocal scanning laser ophthalmoscope to assess oxygen saturation in small retinal vessels. Images of the vessels with a diameter smaller than 50 μm are recorded at oxygen sensitive and isosbestic wavelengths (680 and 796 nm, respectively). The vessel optical densities (ODs) are determined by a computer algorithm. Then, OD ratios (ODRs), which are inversely proportional to oxygen saturation, are calculated. The results show that arterial ODRs are significantly smaller than venous ODRs, indicating that oxygen saturation in the artery is higher than that in the vein. To the best of our knowledge, this is the first noninvasive measurement of oxygen saturation in small retinal vessels.

  20. Retinal cell imaging in myopic chickens using adaptive optics multiphoton microscopy

    PubMed Central

    Bueno, Juan M.; Palacios, Raquel; Giakoumaki, Anastasia; Gualda, Emilio J.; Schaeffel, Frank; Artal, Pablo

    2014-01-01

    Abnormal eye growth induced by visual deprivation can modify the structure and density of the retinal cells. We have used an adaptive optics multiphoton microscope to image photoreceptors (PRs) and ganglion cells (GCs) at different retinal locations in unstained retinas of chicken eyes with about 10D of myopia and their normal-sighted fellow eyes. In all samples, the local averaged inter-PR distance increased with eccentricity. No significant differences in PR density were found between control and myopic eyes. GC density declined in myopic eyes compared to control eyes and the inter-cell distance increased. In normal eyes, the size of the GC cell bodies increased approximately two-fold between the area centralis and the peripheral retina. In myopic eyes, this trend was preserved but the GC bodies were larger at each retinal location, compared to control eyes. Obviously, GC morphology is changing when the retinal area is enlarged in myopic eyes. PMID:24688804

  1. Statistical evaluation of the performance of an optimized adaptive optics arm for retinal imaging flood system

    NASA Astrophysics Data System (ADS)

    Magaña Chávez, J. L.; Medina-Márquez, J.; Valdivieso-González, L. G.; Balderas-Mata, S. E.

    2016-09-01

    In the last decade, Adaptive Optics has been used to compensate the aberrations of the eye in order to acquire high resolution retinal images. The use of high speed deformable mirrors (DMs) to accomplish this compensation in real time is of great importance. But, sometimes DMs are overused, compensating the aberrations inherent in the optical systems. In this work the evaluation of the performance of an adaptive optics system together with the imaging system will be evaluated in order to know in advance the aberrations inherent in them in order to compensate them prior the use of a DM.

  2. High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics

    PubMed Central

    Zou, Weiyao; Burns, Stephen A.

    2010-01-01

    We present an iterative technique for improving adaptive optics (AO) wavefront correction for retinal imaging, called the Adaptive-Influence-Matrix (AIM) method. This method is based on the fact that the deflection-to-voltage relation of common deformable mirrors used in AO are nonlinear, and the fact that in general the wavefront errors of the eye can be considered to be composed of a static, non-zero wavefront error (such as the defocus and astigmatism), and a time-varying wavefront error. The aberrated wavefront is first corrected with a generic influence matrix, providing a mirror compensation figure for the static wavefront error. Then a new influence matrix that is more accurate for the specific static wavefront error is calibrated based on the mirror compensation figure. Experimental results show that with the AIM method the AO wavefront correction accuracy can be improved significantly in comparison to the generic AO correction. The AIM method is most useful in AO modalities where there are large static contributions to the wavefront aberrations. PMID:19997241

  3. Research on the liquid crystal adaptive optics system for human retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tong, Shoufeng; Song, Yansong; Zhao, Xin

    2013-12-01

    The blood vessels only in Human eye retinal can be observed directly. Many diseases that are not obvious in their early symptom can be diagnosed through observing the changes of distal micro blood vessel. In order to obtain the high resolution human retinal images,an adaptive optical system for correcting the aberration of the human eye was designed by using the Shack-Hartmann wavefront sensor and the Liquid Crystal Spatial Light Modulator(LCLSM) .For a subject eye with 8m-1 (8D)myopia, the wavefront error is reduced to 0.084 λ PV and 0.12 λRMS after adaptive optics(AO) correction ,which has reached diffraction limit.The results show that the LCLSM based AO system has the ability of correcting the aberration of the human eye efficiently,and making the blurred photoreceptor cell to clearly image on a CCD camera.

  4. Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera

    NASA Astrophysics Data System (ADS)

    Xue, Bai; Choi, Stacey S.; Doble, Nathan; Werner, John S.

    2007-05-01

    A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a montaging algorithm that joins retinal images with overlapping common features without edge effects and (2) a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy of the cone density measurement algorithm is high, with >97% agreement for a simulated retinal image (of known density, with low contrast) and for AO images from normal eyes when compared with previously reported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore, useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt's macular dystrophy and retinitis pigmentosa.

  5. SD-OCT and Adaptive Optics Imaging of Outer Retinal Tubulation

    PubMed Central

    King, Brett J.; Sapoznik, Kaitlyn A.; Elsner, Ann E.; Gast, Thomas J.; Papay, Joel A.; Clark, Christopher A.; Burns, Stephen A.

    2017-01-01

    ABSTRACT Purpose To investigate outer retinal tubulation (ORT) using spectral domain optical coherence tomography (SD-OCT) and an adaptive optics scanning laser ophthalmoscope (AOSLO). To document the frequency of ORT in atrophic retinal conditions and quantify ORT dimensions versus adjacent retinal layers. Methods SD-OCT images were reviewed for the presence of retinal atrophy, scarring, and/or exudation. The greatest width of each ORT was quantified. Inner and outer retinal thicknesses adjacent to and within the area of ORT were measured for 18 patients. AOSLO imaged ORTs in five subjects with direct and scattered light imaging. Results ORT was identified in 47 of 76 subjects (61.8%) and in 65 eyes via SD-OCT in a wide range of conditions and ages, and in peripapillary atrophy. ORTs appeared as finger-like projections in atrophy, seen in the en face images. AOSLO showed some ORTs with bright cones that guide light within atrophic areas. Multiply scattered light mode AOSLO visualized variegated lines (18–35 μm) radiating from ORTs. The ORTs’ width on OCT b-scan images varied from 70 to 509 μm. The inner retina at the ORT was significantly thinner than the adjacent retina, 135 vs.170 μm (P = .004), whereas the outer retina was significantly thicker, 115 vs. 80 μm (P = .03). Conclusions ORTs are quite common in eyes with retinal atrophy in various disorders. ORTs demonstrate surviving photoreceptors in tubular structures found within otherwise nonsupportive atrophic areas that lack retinal pigment epithelium and choriocapillaris. PMID:27984506

  6. Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics

    PubMed Central

    Cense, Barry; Gao, Weihua; Brown, Jeffrey M.; Jones, Steven M.; Jonnal, Ravi S.; Mujat, Mircea; Park, B. Hyle; de Boer, Johannes F.; Miller, Donald T.

    2011-01-01

    Various layers of the retina are well known to alter the polarization state of light. Such changes in polarization may be a sensitive indicator of tissue structure and function, and as such have gained increased clinical attention. Here we demonstrate a polarization-sensitive optical coherence tomography (PS-OCT) system that incorporates adaptive optics (AO) in the sample arm and a single line scan camera in the detection arm. We quantify the benefit of AO for PS-OCT in terms of signal-to-noise, lateral resolution, and speckle size. Double pass phase retardation per unit depth values ranging from 0.25°/µm to 0.65°/µm were found in the birefringent nerve fiber layer at 6° eccentricity, superior to the fovea, with the highest values being noticeably higher than previously reported with PS-OCT around the optic nerve head. Moreover, fast axis orientation and degree of polarization uniformity measurements made with AO-PS-OCT demonstrate polarization scrambling in the retinal pigment epithelium at the highest resolution reported to date. PMID:19997405

  7. Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2016-03-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, but are often compromised in ageing and major ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, and while biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. We present a novel method based on optical coherence tomography (OCT) equipped with adaptive optics (AO) that overcomes the associated technical obstacles. The method takes advantage of the 3D resolution of AO-OCT, but more critically sub-cellular segmentation and registration that permit organelle motility to be used as a novel contrast mechanism. With this method, we successfully visualized RPE cells and characterized their 3D reflectance profile in every subject and retinal location (3° and 7° temporal to the fovea) imaged to date. We have quantified RPE packing geometry in terms of cell density, cone-to-RPE ratio, and number of nearest neighbors using Voronoi and power spectra analyses. RPE cell density (cells/mm2) showed no significant difference between 3° (4,892+/-691) and 7° (4,780+/-354). In contrast, cone-to- RPE ratio was significantly higher at 3° (3.88+/-0.52:1) than 7° (2.31+/- 0.23:1). Voronoi analysis also showed most RPE cells have six nearest neighbors, which was significantly larger than the next two most prevalent associations: five and seven. Averaged across the five subjects, prevalence of cells with six neighbors was 51.4+/-3.58% at 3°, and 54.58+/-3.01% at 7°. These results are consistent with histology and in vivo studies using other imaging modalities.

  8. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging.

    PubMed

    Zawadzki, Robert J; Jones, Steven M; Pilli, Suman; Balderas-Mata, Sandra; Kim, Dae Yu; Olivier, Scot S; Werner, John S

    2011-06-01

    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented.

  9. Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking.

    PubMed

    Ferguson, R Daniel; Zhong, Zhangyi; Hammer, Daniel X; Mujat, Mircea; Patel, Ankit H; Deng, Cong; Zou, Weiyao; Burns, Stephen A

    2010-11-01

    We have developed a new, unified implementation of the adaptive optics scanning laser ophthalmoscope (AOSLO) incorporating a wide-field line-scanning ophthalmoscope (LSO) and a closed-loop optical retinal tracker. AOSLO raster scans are deflected by the integrated tracking mirrors so that direct AOSLO stabilization is automatic during tracking. The wide-field imager and large-spherical-mirror optical interface design, as well as a large-stroke deformable mirror (DM), enable the AOSLO image field to be corrected at any retinal coordinates of interest in a field of >25 deg. AO performance was assessed by imaging individuals with a range of refractive errors. In most subjects, image contrast was measurable at spatial frequencies close to the diffraction limit. Closed-loop optical (hardware) tracking performance was assessed by comparing sequential image series with and without stabilization. Though usually better than 10 μm rms, or 0.03 deg, tracking does not yet stabilize to single cone precision but significantly improves average image quality and increases the number of frames that can be successfully aligned by software-based post-processing methods. The new optical interface allows the high-resolution imaging field to be placed anywhere within the wide field without requiring the subject to re-fixate, enabling easier retinal navigation and faster, more efficient AOSLO montage capture and stitching.

  10. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system

    NASA Astrophysics Data System (ADS)

    Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li

    2012-02-01

    An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.

  11. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system.

    PubMed

    Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li

    2012-02-01

    An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.

  12. Influence of wave-front sampling in adaptive optics retinal imaging

    PubMed Central

    Laslandes, Marie; Salas, Matthias; Hitzenberger, Christoph K.; Pircher, Michael

    2017-01-01

    A wide range of sampling densities of the wave-front has been used in retinal adaptive optics (AO) instruments, compared to the number of corrector elements. We developed a model in order to characterize the link between number of actuators, number of wave-front sampling points and AO correction performance. Based on available data from aberration measurements in the human eye, 1000 wave-fronts were generated for the simulations. The AO correction performance in the presence of these representative aberrations was simulated for different deformable mirror and Shack Hartmann wave-front sensor combinations. Predictions of the model were experimentally tested through in vivo measurements in 10 eyes including retinal imaging with an AO scanning laser ophthalmoscope. According to our study, a ratio between wavefront sampling points and actuator elements of 2 is sufficient to achieve high resolution in vivo images of photoreceptors. PMID:28271004

  13. Dual-Conjugate Adaptive Optics Instrument for Wide-Field Retinal Imaging - Oral Paper

    NASA Astrophysics Data System (ADS)

    Thaung, Jörgen; Owner-Petersen, Mette; Popovic, Zoran

    2008-01-01

    To date only conventional single-conjugate adaptive optics (SCAO) systems are used to correct ocular aberrations. A major shortcoming of SCAO is the severely restricted corrected field of view. This can be solved with multi-conjugate adaptive optics (MCAO), a solution that is costly and gives bulky instruments. Another problem, especially in the study of the human eye, is unwanted light from parasitic source reflections and light from unwanted object regions. We present a dual-conjugate adaptive optics (DCAO) demonstrator that will enable wide field high resolution imaging of the human retina in vivo, implementing five retinal guide stars, two OKO micromachined membrane deformable mirrors; a 15 mm 37 channel pupil conjugate mirror, and a 40 mm 79 channel mirror conjugated to a plane in the vitreous body approximately 3 mm in front of the retina. The AO system runs with a closed-loop measurement wavelength of 835 nm. It incorporates an array of collimator lenses to spatially filter the light from all guide stars using only one adjustable iris, and a single camera to image the Hartmann patterns of multiple reference sources. Optical simulations in Zemax indicate an increase of the retinal isoplanatic patch from a radius of 0.5 degrees using SCAO to approximately 3.5 degrees or more using DCAO. The advantage of this is a clinically useful imaging area that is approximately 50 times the size of an SCAO system. This is corroborated by measurements on a model eye while performing SCAO, ground layer adaptive optics (GLAO), and DCAO correction.

  14. An optimized adaptive optics experimental setup for in vivo retinal imaging

    NASA Astrophysics Data System (ADS)

    Balderas-Mata, S. E.; Valdivieso González, L. G.; Ramírez Zavaleta, G.; López Olazagasti, E.; Tepichin Rodriguez, E.

    2012-10-01

    The use of Adaptive Optics (AO) in ophthalmologic instruments to image human retinas has been probed to improve the imaging lateral resolution, by correcting both static and dynamic aberrations inherent in human eyes. Typically, the configuration of the AO arm uses an infrared beam from a superluminescent diode (SLD), which is focused on the retina, acting as a point source. The back reflected light emerges through the eye optical system bringing with it the aberrations of the cornea. The aberrated wavefront is measured with a Shack - Hartmann wavefront sensor (SHWFS). However, the aberrations in the optical imaging system can reduced the performance of the wave front correction. The aim of this work is to present an optimized first stage AO experimental setup for in vivo retinal imaging. In our proposal, the imaging optical system has been designed in order to reduce spherical aberrations due to the lenses. The ANSI Standard is followed assuring the safety power levels. The performance of the system will be compared with a commercial aberrometer. This system will be used as the AO arm of a flood-illuminated fundus camera system for retinal imaging. We present preliminary experimental results showing the enhancement.

  15. Eye-pupil displacement and prediction: effects on residual wavefront in adaptive optics retinal imaging

    PubMed Central

    Kulcsár, Caroline; Raynaud, Henri-François; Garcia-Rissmann, Aurea

    2016-01-01

    This paper studies the effect of pupil displacements on the best achievable performance of retinal imaging adaptive optics (AO) systems, using 52 trajectories of horizontal and vertical displacements sampled at 80 Hz by a pupil tracker (PT) device on 13 different subjects. This effect is quantified in the form of minimal root mean square (rms) of the residual phase affecting image formation, as a function of the delay between PT measurement and wavefront correction. It is shown that simple dynamic models identified from data can be used to predict horizontal and vertical pupil displacements with greater accuracy (in terms of average rms) over short-term time horizons. The potential impact of these improvements on residual wavefront rms is investigated. These results allow to quantify the part of disturbances corrected by retinal imaging systems that are caused by relative displacements of an otherwise fixed or slowy-varying subject-dependent aberration. They also suggest that prediction has a limited impact on wavefront rms and that taking into account PT measurements in real time improves the performance of AO retinal imaging systems. PMID:27231607

  16. Eye-pupil displacement and prediction: effects on residual wavefront in adaptive optics retinal imaging.

    PubMed

    Kulcsár, Caroline; Raynaud, Henri-François; Garcia-Rissmann, Aurea

    2016-03-01

    This paper studies the effect of pupil displacements on the best achievable performance of retinal imaging adaptive optics (AO) systems, using 52 trajectories of horizontal and vertical displacements sampled at 80 Hz by a pupil tracker (PT) device on 13 different subjects. This effect is quantified in the form of minimal root mean square (rms) of the residual phase affecting image formation, as a function of the delay between PT measurement and wavefront correction. It is shown that simple dynamic models identified from data can be used to predict horizontal and vertical pupil displacements with greater accuracy (in terms of average rms) over short-term time horizons. The potential impact of these improvements on residual wavefront rms is investigated. These results allow to quantify the part of disturbances corrected by retinal imaging systems that are caused by relative displacements of an otherwise fixed or slowy-varying subject-dependent aberration. They also suggest that prediction has a limited impact on wavefront rms and that taking into account PT measurements in real time improves the performance of AO retinal imaging systems.

  17. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice.

    PubMed

    Wahl, Daniel J; Jian, Yifan; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2016-01-01

    Cellular-resolution in vivo fluorescence imaging is a valuable tool for longitudinal studies of retinal function in vision research. Wavefront sensorless adaptive optics (WSAO) is a developing technology that enables high-resolution imaging of the mouse retina. In place of the conventional method of using a Shack-Hartmann wavefront sensor to measure the aberrations directly, WSAO uses an image quality metric and a search algorithm to drive the shape of the adaptive element (i.e. deformable mirror). WSAO is a robust approach to AO and it is compatible with a compact, low-cost lens-based system. In this report, we demonstrated a hill-climbing algorithm for WSAO with a variable focus lens and deformable mirror for non-invasive in vivo imaging of EGFP (enhanced green fluorescent protein) labelled ganglion cells and microglia cells in the mouse retina.

  18. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice

    PubMed Central

    Wahl, Daniel J.; Jian, Yifan; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Cellular-resolution in vivo fluorescence imaging is a valuable tool for longitudinal studies of retinal function in vision research. Wavefront sensorless adaptive optics (WSAO) is a developing technology that enables high-resolution imaging of the mouse retina. In place of the conventional method of using a Shack-Hartmann wavefront sensor to measure the aberrations directly, WSAO uses an image quality metric and a search algorithm to drive the shape of the adaptive element (i.e. deformable mirror). WSAO is a robust approach to AO and it is compatible with a compact, low-cost lens-based system. In this report, we demonstrated a hill-climbing algorithm for WSAO with a variable focus lens and deformable mirror for non-invasive in vivo imaging of EGFP (enhanced green fluorescent protein) labelled ganglion cells and microglia cells in the mouse retina. PMID:26819812

  19. Interpretation of Flood-Illuminated Adaptive Optics Images in Subjects with Retinitis Pigmentosa.

    PubMed

    Gale, Michael J; Feng, Shu; Titus, Hope E; Smith, Travis B; Pennesi, Mark E

    2016-01-01

    The purpose of this study was to correlate features on flood-illuminated adaptive optics (AO) images with color fundus, fundus autofluorescence (FAF) and spectral domain optical coherence tomography (SD-OCT) images in patients with retinitis pigmentosa (RP). We imaged 39 subjects diagnosed with RP using the rtx1™ flood-illuminated AO camera from Imagine Eyes (Orsay, France). We observed a correlation between hyper-autofluoresence changes on FAF, disruption of the interdigitation zone (IZ) on SD-OCT and loss of reflective cone profiles on AO. Four main patterns of cone-reflectivity were seen on AO: presumed healthy cone mosaics, hypo-reflective blurred cone-like structures, higher frequency disorganized hyper-reflective spots, and lower frequency hypo-reflective spots. These regions were correlated to progressive phases of cone photoreceptor degeneration observed using SD-OCT and FAF. These results help provide interpretation of en face images obtained by flood-illuminated AO in subjects with RP. However, significant ambiguity remains as to what truly constitutes a cone, especially in areas of degeneration. With further refinements in technology, flood illuminated AO imaging has the potential to provide rapid, standardized, longitudinal and lower cost imaging in patients with retinal degeneration.

  20. Performance assessment of a pupil tracking system for adaptive optics retinal imaging

    NASA Astrophysics Data System (ADS)

    Sahin, Betul; Harms, Fabrice; Lamory, Barbara

    2008-09-01

    Adaptive Optics (AO) is particularly suitable for correction of aberrations that change over time - a necessity for high resolution imaging of the retina. The rapidly changing aberrations originating from eye movements require wavefront sensors (WFS) with high repetition rates. Our approach is enhancing aberration correction by integrating a Pupil Tracking System (PTS) into the AO loop of the retinal imaging system. In this study we assessed the performance of the PTS developed for this purpose. Tests have demonstrated that the device achieves an accuracy of <15 μm in a +/-2 mm range of eye movements with a standard deviation <10 μm. PTS can tolerate +/-5 mm defocus with an increase of 4 μm in mean standard deviation. In vivo measurements done with temporarily paralyzed pupils have resulted in a precision of approximately 13 μm.

  1. Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images

    PubMed Central

    Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas

    2014-01-01

    Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM). PMID:24940551

  2. Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency

    NASA Astrophysics Data System (ADS)

    Baraas, Rigmor C.; Carroll, Joseph; Gunther, Karen L.; Chung, Mina; Williams, David R.; Foster, David H.; Neitz, Maureen

    2007-05-01

    Tritan color-vision deficiency is an autosomal dominant disorder associated with mutations in the short-wavelength-sensitive- (S-) cone-pigment gene. An unexplained feature of the disorder is that individuals with the same mutation manifest different degrees of deficiency. To date, it has not been possible to examine whether any loss of S-cone function is accompanied by physical disruption in the cone mosaic. Two related tritan subjects with the same novel mutation in their S-cone-opsin gene, but different degrees of deficiency, were examined. Adaptive optics was used to obtain high-resolution retinal images, which revealed distinctly different S-cone mosaics consistent with their discrepant phenotypes. In addition, a significant disruption in the regularity of the overall cone mosaic was observed in the subject completely lacking S-cone function. These results taken together with other recent findings from molecular genetics indicate that, with rare exceptions, tritan deficiency is progressive in nature.

  3. Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images.

    PubMed

    Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas

    2014-06-01

    Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM).

  4. Understanding the changes of cone reflectance in adaptive optics flood illumination retinal images over three years.

    PubMed

    Mariotti, Letizia; Devaney, Nicholas; Lombardo, Giuseppe; Lombardo, Marco

    2016-07-01

    Although there is increasing interest in the investigation of cone reflectance variability, little is understood about its characteristics over long time scales. Cone detection and its automation is now becoming a fundamental step in the assessment and monitoring of the health of the retina and in the understanding of the photoreceptor physiology. In this work we provide an insight into the cone reflectance variability over time scales ranging from minutes to three years on the same eye, and for large areas of the retina (≥ 2.0 × 2.0 degrees) at two different retinal eccentricities using a commercial adaptive optics (AO) flood illumination retinal camera. We observed that the difference in reflectance observed in the cones increases with the time separation between the data acquisitions and this may have a negative impact on algorithms attempting to track cones over time. In addition, we determined that displacements of the light source within 0.35 mm of the pupil center, which is the farthest location from the pupil center used by operators of the AO camera to acquire high-quality images of the cone mosaic in clinical studies, does not significantly affect the cone detection and density estimation.

  5. Understanding the changes of cone reflectance in adaptive optics flood illumination retinal images over three years

    PubMed Central

    Mariotti, Letizia; Devaney, Nicholas; Lombardo, Giuseppe; Lombardo, Marco

    2016-01-01

    Although there is increasing interest in the investigation of cone reflectance variability, little is understood about its characteristics over long time scales. Cone detection and its automation is now becoming a fundamental step in the assessment and monitoring of the health of the retina and in the understanding of the photoreceptor physiology. In this work we provide an insight into the cone reflectance variability over time scales ranging from minutes to three years on the same eye, and for large areas of the retina (≥ 2.0 × 2.0 degrees) at two different retinal eccentricities using a commercial adaptive optics (AO) flood illumination retinal camera. We observed that the difference in reflectance observed in the cones increases with the time separation between the data acquisitions and this may have a negative impact on algorithms attempting to track cones over time. In addition, we determined that displacements of the light source within 0.35 mm of the pupil center, which is the farthest location from the pupil center used by operators of the AO camera to acquire high-quality images of the cone mosaic in clinical studies, does not significantly affect the cone detection and density estimation. PMID:27446708

  6. Determining the imaging plane of a retinal capillary layer in adaptive optical imaging

    NASA Astrophysics Data System (ADS)

    Yang, Le-Bao; Hu, Li-Fa; Li, Da-Yu; Cao, Zhao-Liang; Mu, Quan-Quan; Ma, Ji; Xuan, Li

    2016-09-01

    Even in the early stage, endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm. However, the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter. The human retina is a thin and multiple layer tissue, and the layer of capillaries less than 10 μm in diameter only exists in the inner nuclear layer. The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers, which varies from person to person. Therefore, determining reasonable capillary layer (CL) position in different human eyes is very difficult. In this paper, we propose a method to determine the position of retinal CL based on the rod&cone cell layer. The public positions of CL are recognized with 15 subjects from 40 to 59 years old, and the imaging planes of CL are calculated by the effective focal length of the human eye. High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system (LCAOS) validate our method. All of the subjects’ CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer, which is influenced by the depth of focus. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194).

  7. Retinal Arterioles in Hypo-, Normo-, and Hypertensive Subjects Measured Using Adaptive Optics

    PubMed Central

    Hillard, Jacob G.; Gast, Thomas J.; Chui, Toco Y.P.; Sapir, Dan; Burns, Stephen A.

    2016-01-01

    Purpose Small artery and arteriolar walls thicken due to elevated blood pressure. Vascular wall thickness show a correlation with hypertensive subject history and risk for stroke and cardiovascular events. Methods The inner and outer diameter of retinal arterioles from less than 10 to over 150 μm were measured using a multiply scattered light adaptive optics scanning laser ophthalmoscope (AOSLO). These measurements were made on three populations, one with habitual blood pressures less than 100/70 mm Hg, one with normal blood pressures without medication, and one with managed essential hypertension. Results The wall to lumen ratio was largest for the smallest arterioles for all three populations. Data from the hypotensive group had a linear relationship between outer and inner diameters (r2 = 0.99) suggesting a similar wall structure in individuals prior to elevated blood pressures. Hypertensive subjects fell below the 95% confidence limits for the hypotensive relationship and had larger wall to lumen ratios and the normotensive group results fell between the other two groups. Conclusion High-resolution retinal imaging of subjects with essential hypertension showed a significant decrease in vessel inner diameter for a given outer diameter, and increases in wall to lumen ratio and wall cross-sectional areas over the entire range of vessel diameters and suggests that correcting for vessel size may improve the ability to identify significant vascular changes. Translational Relevance High-resolution imaging allows precise measurement of vasculature and by comparing results across risk populations may allow improved identification of individuals undergoing hypertensive arterial wall remodeling. PMID:27617182

  8. Adaptive Optics with a Liquid-Crystal-on-Silicon Spatial Light Modulator and Its Behavior in Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Shirai, Tomohiro; Takeno, Kohei; Arimoto, Hidenobu; Furukawa, Hiromitsu

    2009-07-01

    An adaptive optics system with a brand-new device of a liquid-crystal-on-silicon (LCOS) spatial light modulator (SLM) and its behavior in in vivo imaging of the human retina are described. We confirmed by experiments that closed-loop correction of ocular aberrations of the subject's eye was successfully achieved at the rate of 16.7 Hz in our system to obtain a clear retinal image in real time. The result suggests that an LCOS SLM is one of the promising candidates for a wavefront corrector in a prospective commercial ophthalmic instrument with adaptive optics.

  9. High-Resolution Imaging by Adaptive Optics Scanning Laser Ophthalmoscopy Reveals Two Morphologically Distinct Types of Retinal Hard Exudates

    PubMed Central

    Yamaguchi, Muneo; Nakao, Shintaro; Kaizu, Yoshihiro; Kobayashi, Yoshiyuki; Nakama, Takahito; Arima, Mitsuru; Yoshida, Shigeo; Oshima, Yuji; Takeda, Atsunobu; Ikeda, Yasuhiro; Mukai, Shizuo; Ishibashi, Tatsuro; Sonoda, Koh-hei

    2016-01-01

    Histological studies from autopsy specimens have characterized hard exudates as a composition of lipid-laden macrophages or noncellular materials including lipid and proteinaceous substances (hyaline substances). However, the characteristics of hard exudates in living patients have not been examined due to insufficient resolution of existing equipment. In this study, we used adaptive optics scanning laser ophthalmoscopy (AO-SLO) to examine the characteristics of hard exudates in patients with retinal vascular diseases. High resolution imaging using AO-SLO enables morphological classification of retinal hard exudates into two types, which could not be distinguished either on fundus examination or by spectral domain optical coherence tomography (SD-OCT). One, termed a round type, consisted of an accumulation of spherical particles (average diameter of particles: 26.9 ± 4.4 μm). The other, termed an irregular type, comprised an irregularly shaped hyper-reflective deposition. The retinal thickness in regions with round hard exudates was significantly greater than the thickness in regions with irregular hard exudates (P = 0.01 →0.02). This differentiation of retinal hard exudates in patients by AO-SLO may help in understanding the pathogenesis and clinical prognosis of retinal vascular diseases. PMID:27641223

  10. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy

    PubMed Central

    Tam, Johnny; Liu, Jianfei; Dubra, Alfredo; Fariss, Robert

    2016-01-01

    Purpose The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. Methods A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. Results The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. Conclusions Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells. PMID:27564519

  11. Retinal Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in

  12. Macular Cone Abnormalities in Retinitis Pigmentosa with Preserved Central Vision Using Adaptive Optics Scanning Laser Ophthalmoscopy

    PubMed Central

    Makiyama, Yukiko; Ooto, Sotaro; Hangai, Masanori; Takayama, Kohei; Uji, Akihito; Oishi, Akio; Ogino, Ken; Nakagawa, Satoko; Yoshimura, Nagahisa

    2013-01-01

    Purpose To assess macular photoreceptor abnormalities in eyes with retinitis pigmentosa (RP) with preserved central vision using adaptive optics scanning laser ophthalmoscopy (AO-SLO). Methods Fourteen eyes of 14 patients with RP (best-corrected visual acuity 20/20 or better) and 12 eyes of 12 volunteers underwent a full ophthalmologic examination, fundus autofluorescence, spectral-domain optical coherence tomography (SD-OCT), and imaging with a prototype AO-SLO system. Cone density and spatial organization of the cone mosaic were assessed using AO-SLO images. Results In 3 eyes with RP and preserved central vision, cones formed a mostly regular mosaic pattern with small patchy dark areas, and in 10 eyes, the cone mosaic patterns were less regular, and large dark regions with missing cones were apparent. Only one eye with RP demonstrated a normal, regular cone mosaic pattern. In eyes with RP, cone density was significantly lower at 0.5 mm and 1.0 mm from the center of the fovea compared to normal eyes (P<0.001 and 0.021, respectively). At 0.5 mm and 1.0 mm from the center of the fovea, a decreased number of cones had 6 neighbors in eyes with RP (P = 0.002 for both). Greater decrease in cone density was related to disruption of the photoreceptor inner segment (IS) ellipsoid band on SD-OCT images (P = 0.044); however, dark regions were seen on AO-SLO even in areas of continuous IS ellipsoid on SD-OCT. Decreased cone density correlated thinner outer nuclear layer (P = 0.029) and thinner inner segment and outer segment thickness (P = 0.011) on SD-OCT. Conclusions Cone density is decreased and the regularity of the cone mosaic spatial arrangement is disrupted in eyes with RP, even when visual acuity and foveal sensitivity are good. AO-SLO imaging is a sensitive quantitative tool for detecting photoreceptor abnormalities in eyes with RP. PMID:24260224

  13. Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Tam, Johnny; Tiruveedhula, Pavan; Roorda, Austin

    2011-01-01

    Adaptive Optics Scanning Laser Ophthalmoscopy was used to noninvasively acquire videos of single-file flow through live human retinal parafoveal capillaries. Videos were analyzed offline to investigate capillary flow dynamics. Certain capillaries accounted for a clear majority of leukocyte traffic (Leukocyte-Preferred-Paths, LPPs), while other capillaries primarily featured plasma gap flow (Plasma-Gap-Capillaries, PGCs). LPPs may serve as a protective mechanism to prevent inactivated leukocytes from entering exchange capillaries, and PGCs may serve as relief valves to minimize flow disruption due to the presence of a leukocyte in a neighboring LPP. PMID:21483603

  14. Progress on Developing Adaptive Optics-Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts.

    PubMed

    Zawadzki, Robert J; Capps, Arlie G; Kim, Dae Yu; Panorgias, Athanasios; Stevenson, Scott B; Hamann, Bernd; Werner, John S

    2014-03-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the human retina. Here, we present a short review of progress on developing AO-OCT instruments. Despite significant progress in imaging speed and resolution, eye movements present during acquisition of a retinal image with OCT introduce motion artifacts into the image, complicating analysis and registration. This effect is especially pronounced in high-resolution datasets acquired with AO-OCT instruments. Several retinal tracking systems have been introduced to correct retinal motion during data acquisition. We present a method for correcting motion artifacts in AO-OCT volume data after acquisition using simultaneously captured adaptive optics-scanning laser ophthalmoscope (AO-SLO) images. We extract transverse eye motion data from the AO-SLO images, assign a motion adjustment vector to each AO-OCT A-scan, and re-sample from the scattered data back onto a regular grid. The corrected volume data improve the accuracy of quantitative analyses of microscopic structures.

  15. Perceptual Fading without Retinal Adaptation

    ERIC Educational Resources Information Center

    Hsieh, Po-Jang; Colas, Jaron T.

    2012-01-01

    A retinally stabilized object readily undergoes perceptual fading and disappears from consciousness. This startling phenomenon is commonly believed to arise from local bottom-up sensory adaptation to edge information that occurs early in the visual pathway, such as in the lateral geniculate nucleus of the thalamus or retinal ganglion cells. Here…

  16. Adaptive Optics Imaging of Healthy and Abnormal Regions of Retinal Nerve Fiber Bundles of Patients With Glaucoma

    PubMed Central

    Chen, Monica F.; Chui, Toco Y. P.; Alhadeff, Paula; Rosen, Richard B.; Ritch, Robert; Dubra, Alfredo; Hood, Donald C.

    2015-01-01

    Purpose. To better understand the nature of glaucomatous damage of the macula, especially the structural changes seen between relatively healthy and clearly abnormal (AB) retinal regions, using an adaptive optics scanning light ophthalmoscope (AO-SLO). Methods. Adaptive optics SLO images and optical coherence tomography (OCT) vertical line scans were obtained on one eye of seven glaucoma patients, with relatively deep local arcuate defects on the 10-2 visual field test in one (six eyes) or both hemifields (one eye). Based on the OCT images, the retinal nerve fiber (RNF) layer was divided into two regions: (1) within normal limits (WNL), relative RNF layer thickness within mean control values ±2 SD; and (2) AB, relative thickness less than −2 SD value. Results. As seen on AO-SLO, the pattern of AB RNF bundles near the border of the WNL and AB regions differed across eyes. There were normal-appearing bundles in the WNL region of all eyes and AB-appearing bundles near the border with the AB region. This region with AB bundles ranged in extent from a few bundles to the entire AB region in the case of one eye. All other eyes had a large AB region without bundles. However, in two of these eyes, a few bundles were seen within this region of otherwise missing bundles. Conclusions. The AO-SLO images revealed details of glaucomatous damage that are difficult, if not impossible, to see with current OCT technology. Adaptive optics SLO may prove useful in following progression in clinical trials, or in disease management, if AO-SLO becomes widely available and easy to use. PMID:25574048

  17. Adaptive optics ophthalmoscopy.

    PubMed

    Roorda, A

    2000-01-01

    Retinal images in the human eye are normally degraded because we are forced to use the optical system of the human eye--which is fraught with aberrations--as the objective lens. The recent application of adaptive optics technology to measure and compensate for these aberrations has produced retinal images in human eyes with unprecedented resolution. The adaptive optics ophthalmoscope is used to take pictures of photoreceptors and capillaries and to study spectral and angular tuning properties of individual photoreceptors. Application of adaptive optics technology for ophthalmoscopy promises continued progress toward understanding the basic properties of the living human retina and also for clinical applications.

  18. Retinal damage in chloroquine maculopathy, revealed by high resolution imaging: a case report utilizing adaptive optics scanning laser ophthalmoscopy.

    PubMed

    Bae, Eun Jin; Kim, Kyoung Rae; Tsang, Stephen H; Park, Sung Pyo; Chang, Stanley

    2014-02-01

    A 53-year-old Asian woman was treated with hydroxychloroquine and chloroquine for lupus erythematosus. Within a few years, she noticed circle-shaped shadows in her central vision. Upon examination, the patient's visual acuity was 20 / 25 in both eyes. Humphrey visual field (HVF) testing revealed a central visual defect, and fundoscopy showed a ring-shaped area of parafoveal retinal pigment epithelium depigmentation. Fundus autofluorescence imaging showed a hypofluorescent lesion consistent with bull's eye retinopathy. Adaptive optics scanning laser ophthalmoscope (AO-SLO) revealed patch cone mosaic lesions, in which cones were missing or lost. In addition, the remaining cones consisted of asymmetrical shapes and sizes that varied in brightness. Unlike previous studies employing deformable mirrors for wavefront aberration correction, our AO-SLO approach utilized dual liquid crystal on silicon spatial light modulators. Thus, by using AO-SLO, we were able to create a photographic montage consisting of high quality images. Disrupted cone AO-SLO images were matched with visual field test results and functional deficits were associated with a precise location on the montage, which allowed correlation of histological findings with functional changes determined by HVF. We also investigated whether adaptive optics imaging was more sensitive to anatomical changes compared with spectral-domain optical coherence tomography.

  19. Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning

    NASA Astrophysics Data System (ADS)

    Matthias, Ben; Brockmann, Dorothee; Hansen, Anja; Horke, Konstanze; Knoop, Gesche; Gewohn, Timo; Zabic, Miroslav; Krüger, Alexander; Ripken, Tammo

    2015-03-01

    Fs-lasers are well established in ophthalmic surgery as high precision tools for corneal flap cutting during laser in situ keratomileusis (LASIK) and increasingly utilized for cutting the crystalline lens, e.g. in assisting cataract surgery. For addressing eye structures beyond the cornea, an intraoperative depth resolved imaging is crucial to the safety and success of the surgical procedure due to interindividual anatomical disparities. Extending the field of application even deeper to the posterior eye segment, individual eye aberrations cannot be neglected anymore and surgery with fs-laser is impaired by focus degradation. Our demonstrated concept for image-guided vitreo-retinal fs-laser surgery combines adaptive optics (AO) for spatial beam shaping and optical coherence tomography (OCT) for focus positioning guidance. The laboratory setup comprises an adaptive optics assisted 800 nm fs-laser system and is extended by a Fourier domain optical coherence tomography system. Phantom structures are targeted, which mimic tractional epiretinal membranes in front of excised porcine retina within an eye model. AO and OCT are set up to share the same scanning and focusing optics. A Hartmann-Shack sensor is employed for aberration measurement and a deformable mirror for aberration correction. By means of adaptive optics the threshold energy for laser induced optical breakdown is lowered and cutting precision is increased. 3D OCT imaging of typical ocular tissue structures is achieved with sufficient resolution and the images can be used for orientation of the fs-laser beam. We present targeted dissection of the phantom structures and its evaluation regarding retinal damage.

  20. Effects of age and blood pressure on the retinal arterial wall, analyzed using adaptive optics scanning laser ophthalmoscopy.

    PubMed

    Arichika, Shigeta; Uji, Akihito; Ooto, Sotaro; Muraoka, Yuki; Yoshimura, Nagahisa

    2015-07-20

    The wall-to-lumen ratio (WLR) of the vasculature is a promising early marker of retinal microvascular changes. Recently, adaptive optics scanning laser ophthalmoscopy (AOSLO) enabled direct and noninvasive visualization of the arterial wall. Using AOSLO, we analyzed the correlation between age and WLR in 51 normal subjects. In addition, correlations between blood pressure and WLR were analyzed in 73 subjects (51 normal subjects and 22 hypertensive patients). WLR showed a strong correlation with age (r = 0.68, P < 0.0001), while outer diameter and inner diameter did not show significant correlation with age in the normal group (r = 0.13, P = 0.36 and r = -0.12, P =  .41, respectively). In the normal and hypertensive groups, WLR showed a strong correlation with systolic and diastolic blood pressure (r = 0.60, P < 0.0001 and r = 0.65, P < 0.0001, respectively). In conclusion, AOSLO provided noninvasive and reproducible arterial measurements. WLR is an early marker of morphological changes in the retinal arteries due to age and blood pressure.

  1. High-resolution retinal imaging through open-loop adaptive optics.

    PubMed

    Li, Chao; Xia, Mingliang; Li, Dayu; Mu, Quanquan; Xuan, Li

    2010-01-01

    Using the liquid crystal spatial light modulator (LC-SLM) as the wavefront corrector, an open-loop adaptive optics (AO) system for fundus imaging in vivo is constructed. Compared with the LC-SLM closed-loop AO system, the light energy efficiency is increased by a factor of 2, which is helpful for the safety of fundus illumination in vivo. In our experiment, the subjective accommodation method is used to precorrect the defocus aberration, and three subjects with different myopia 0, -3, and -5 D are tested. Although the residual wavefront error after correction cannot to detected, the fundus images adequately demonstrate that the imaging system reaches the resolution of a single photoreceptor cell through the open-loop correction. Without dilating and cyclopleging the eye, the continuous imaging for 8 s is recorded for one of the subjects.

  2. High-resolution retinal imaging through open-loop adaptive optics

    NASA Astrophysics Data System (ADS)

    Li, Chao; Xia, Mingliang; Li, Dayu; Mu, Quanquan; Xuan, Li

    2010-07-01

    Using the liquid crystal spatial light modulator (LC-SLM) as the wavefront corrector, an open-loop adaptive optics (AO) system for fundus imaging in vivo is constructed. Compared with the LC-SLM closed-loop AO system, the light energy efficiency is increased by a factor of 2, which is helpful for the safety of fundus illumination in vivo. In our experiment, the subjective accommodation method is used to precorrect the defocus aberration, and three subjects with different myopia 0, -3, and -5 D are tested. Although the residual wavefront error after correction cannot to detected, the fundus images adequately demonstrate that the imaging system reaches the resolution of a single photoreceptor cell through the open-loop correction. Without dilating and cyclopleging the eye, the continuous imaging for 8 s is recorded for one of the subjects.

  3. [Adaptive optics for ophthalmology].

    PubMed

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy.

  4. Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts

    PubMed Central

    Zawadzki, Robert J.; Capps, Arlie G.; Kim, Dae Yu; Panorgias, Athanasios; Stevenson, Scott B.; Hamann, Bernd; Werner, John S.

    2014-01-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the human retina. Here, we present a short review of progress on developing AO-OCT instruments. Despite significant progress in imaging speed and resolution, eye movements present during acquisition of a retinal image with OCT introduce motion artifacts into the image, complicating analysis and registration. This effect is especially pronounced in high-resolution datasets acquired with AO-OCT instruments. Several retinal tracking systems have been introduced to correct retinal motion during data acquisition. We present a method for correcting motion artifacts in AO-OCT volume data after acquisition using simultaneously captured adaptive optics-scanning laser ophthalmoscope (AO-SLO) images. We extract transverse eye motion data from the AO-SLO images, assign a motion adjustment vector to each AO-OCT A-scan, and re-sample from the scattered data back onto a regular grid. The corrected volume data improve the accuracy of quantitative analyses of microscopic structures. PMID:25544826

  5. Outer retinal abnormalities associated with inner retinal pathology in nonglaucomatous and glaucomatous optic neuropathies

    PubMed Central

    Werner, J S; Keltner, J L; Zawadzki, R J; Choi, S S

    2011-01-01

    Inner and outer retinal morphology were quantified in vivo for 6 nonglaucomatous and 10 glaucomatous optic neuropathy patients. Custom, ultrahigh-resolution imaging modalities were used to evaluate segmented retinal layer thickness in 3D volumes (Fourier-domain optical coherence tomography), cone photoreceptor density (adaptive optics fundus camera), and the length of inner and outer segments of cone photoreceptors (adaptive optics–optical coherence tomography). Quantitative comparisons were made with age-matched controls, or by comparing affected and nonaffected retinal areas defined by changes in visual fields. The integrity of outer retinal layers on optical coherence tomography B-scans and density of cone photoreceptors were correlated with visual field sensitivity at corresponding retinal locations following reductions in inner retinal thickness. The photoreceptor outer segments were shorter and exhibited greater variability in retinal areas associated with visual field losses compared with normal or less affected areas of the same patient's visual field. These results demonstrate that nonglaucomatous and glaucomatous optic neuropathies are associated with outer retinal changes following long-term inner retinal pathology. PMID:21293495

  6. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions

    PubMed Central

    Polans, James; Keller, Brenton; Carrasco-Zevallos, Oscar M.; LaRocca, Francesco; Cole, Elijah; Whitson, Heather E.; Lad, Eleonora M.; Farsiu, Sina; Izatt, Joseph A.

    2016-01-01

    The peripheral retina of the human eye offers a unique opportunity for assessment and monitoring of ocular diseases. We have developed a novel wide-field (>70°) optical coherence tomography system (WF-OCT) equipped with wavefront sensorless adaptive optics (WSAO) for enhancing the visualization of smaller (<25°) targeted regions in the peripheral retina. We iterated the WSAO algorithm at the speed of individual OCT B-scans (~20 ms) by using raw spectral interferograms to calculate the optimization metric. Our WSAO approach with a 3 mm beam diameter permitted primarily low- but also high- order peripheral wavefront correction in less than 10 seconds. In preliminary imaging studies in five normal human subjects, we quantified statistically significant changes with WSAO correction, corresponding to a 10.4% improvement in average pixel brightness (signal) and 7.0% improvement in high frequency content (resolution) when visualizing 1 mm (~3.5°) B-scans of the peripheral (>23°) retina. We demonstrated the ability of our WF-OCT system to acquire non wavefront-corrected wide-field images rapidly, which could then be used to locate regions of interest, zoom into targeted features, and visualize the same region at different time points. A pilot clinical study was conducted on seven healthy volunteers and two subjects with prodromal Alzheimer’s disease which illustrated the capability to image Drusen-like pathologies as far as 32.5° from the fovea in un-averaged volume scans. This work suggests that the proposed combination of WF-OCT and WSAO may find applications in the diagnosis and treatment of ocular, and potentially neurodegenerative, diseases of the peripheral retina, including diabetes and Alzheimer’s disease. PMID:28101398

  7. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions.

    PubMed

    Polans, James; Keller, Brenton; Carrasco-Zevallos, Oscar M; LaRocca, Francesco; Cole, Elijah; Whitson, Heather E; Lad, Eleonora M; Farsiu, Sina; Izatt, Joseph A

    2017-01-01

    The peripheral retina of the human eye offers a unique opportunity for assessment and monitoring of ocular diseases. We have developed a novel wide-field (>70°) optical coherence tomography system (WF-OCT) equipped with wavefront sensorless adaptive optics (WSAO) for enhancing the visualization of smaller (<25°) targeted regions in the peripheral retina. We iterated the WSAO algorithm at the speed of individual OCT B-scans (~20 ms) by using raw spectral interferograms to calculate the optimization metric. Our WSAO approach with a 3 mm beam diameter permitted primarily low- but also high- order peripheral wavefront correction in less than 10 seconds. In preliminary imaging studies in five normal human subjects, we quantified statistically significant changes with WSAO correction, corresponding to a 10.4% improvement in average pixel brightness (signal) and 7.0% improvement in high frequency content (resolution) when visualizing 1 mm (~3.5°) B-scans of the peripheral (>23°) retina. We demonstrated the ability of our WF-OCT system to acquire non wavefront-corrected wide-field images rapidly, which could then be used to locate regions of interest, zoom into targeted features, and visualize the same region at different time points. A pilot clinical study was conducted on seven healthy volunteers and two subjects with prodromal Alzheimer's disease which illustrated the capability to image Drusen-like pathologies as far as 32.5° from the fovea in un-averaged volume scans. This work suggests that the proposed combination of WF-OCT and WSAO may find applications in the diagnosis and treatment of ocular, and potentially neurodegenerative, diseases of the peripheral retina, including diabetes and Alzheimer's disease.

  8. Hessian-LoG filtering for enhancement and detection of photoreceptor cells in adaptive optics retinal images.

    PubMed

    Lazareva, Anfisa; Liatsis, Panos; Rauscher, Franziska G

    2016-01-01

    Automated analysis of retinal images plays a vital role in the examination, diagnosis, and prognosis of healthy and pathological retinas. Retinal disorders and the associated visual loss can be interpreted via quantitative correlations, based on measurements of photoreceptor loss. Therefore, it is important to develop reliable tools for identification of photoreceptor cells. In this paper, an automated algorithm is proposed, based on the use of the Hessian-Laplacian of Gaussian filter, which allows enhancement and detection of photoreceptor cells. The performance of the proposed technique is evaluated on both synthetic and high-resolution retinal images, in terms of packing density. The results on the synthetic data were compared against ground truth as well as cone counts obtained by the Li and Roorda algorithm. For the synthetic datasets, our method showed an average detection accuracy of 98.8%, compared to 93.9% for the Li and Roorda approach. The packing density estimates calculated on the retinal datasets were validated against manual counts and the results obtained by a proprietary software from Imagine Eyes and the Li and Roorda algorithm. Among the tested methods, the proposed approach showed the closest agreement with manual counting.

  9. Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets

    PubMed Central

    Zawadzki, Robert J.; Fuller, Alfred R.; Wiley, David F.; Hamann, Bernd; Choi, Stacey S.; Werner, John S.

    2008-01-01

    Recent developments in Fourier domain—optical coherence tomography (Fd-OCT) have increased the acquisition speed of current ophthalmic Fd-OCT instruments sufficiently to allow the acquisition of volumetric data sets of human retinas in a clinical setting. The large size and three-dimensional (3D) nature of these data sets require that intelligent data processing, visualization, and analysis tools are used to take full advantage of the available information. Therefore, we have combined methods from volume visualization, and data analysis in support of better visualization and diagnosis of Fd-OCT retinal volumes. Custom-designed 3D visualization and analysis software is used to view retinal volumes reconstructed from registered B-scans. We use a support vector machine (SVM) to perform semiautomatic segmentation of retinal layers and structures for subsequent analysis including a comparison of measured layer thicknesses. We have modified the SVM to gracefully handle OCT speckle noise by treating it as a characteristic of the volumetric data. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases. PMID:17867795

  10. Methods for investigating the local spatial anisotropy and the preferred orientation of cones in adaptive optics retinal images

    PubMed Central

    Cooper, Robert F.; Lombardo, Marco; Carroll, Joseph; Sloan, Kenneth R.; Lombardo, Giuseppe

    2016-01-01

    The ability to non-invasively image the cone photoreceptor mosaic holds significant potential as a diagnostic for retinal disease. Central to the realization of this potential is the development of sensitive metrics for characterizing the organization of the mosaic. Here we evaluated previously-described (Pum et al., 1990) and newly-developed (Fourier- and Radon-based) methods of measuring cone orientation in both simulated and real images of the parafoveal cone mosaic. The proposed algorithms correlated well across both simulated and real mosaics, suggesting that each algorithm would provide an accurate description of individual photoreceptor orientation. Despite the high agreement between algorithms, each performed differently in response to image intensity variation and cone coordinate jitter. The integration property of the Fourier transform allowed the Fourier-based method to be resistant to cone coordinate jitter and perform the most robustly of all three algorithms. Conversely, when there is good image quality but unreliable cone identification, the Radon algorithm performed best. Finally, in cases where both the image and cone coordinate reliability was excellent, the method of Pum et al. (1990) performed best. These descriptors are complementary to conventional descriptive metrics of the cone mosaic, such as cell density and spacing, and have the potential to aid in the detection of photoreceptor pathology. PMID:27484961

  11. Retinal ganglion cell adaptation to small luminance fluctuations.

    PubMed

    Freeman, Daniel K; Graña, Gilberto; Passaglia, Christopher L

    2010-08-01

    To accommodate the wide input range over which the visual system operates within the narrow output range of spiking neurons, the retina adjusts its sensitivity to the mean light level so that retinal ganglion cells can faithfully signal contrast, or relative deviations from the mean luminance. Given the large operating range of the visual system, the majority of work on luminance adaptation has involved logarithmic changes in light level. We report that luminance gain controls are recruited for remarkably small fluctuations in luminance as well. Using spike recordings from the rat optic tract, we show that ganglion cell responses to a brief flash of light are modulated in amplitude by local background fluctuations as little as 15% contrast. The time scale of the gain control is rapid (<125 ms), at least for on cells. The retinal locus of adaptation precedes the ganglion cell spike generator because response gain changes of on cells were uncorrelated with firing rate. The mechanism seems to reside within the inner retinal network and not in the photoreceptors, because the adaptation profiles of on and off cells differed markedly. The response gain changes follow Weber's law, suggesting that network mechanisms of luminance adaptation described in previous work modulates retinal ganglion cell sensitivity, not just when we move between different lighting environments, but also as our eyes scan a visual scene. Finally, we show that response amplitude is uniformly reduced for flashes on a modulated background that has spatial contrast, indicating that another gain control that integrates luminance signals nonlinearly over space operates within the receptive field center of rat ganglion cells.

  12. Adaptive optics imaging of the retina

    PubMed Central

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha

    2014-01-01

    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified. PMID:24492503

  13. Adaptive optics imaging of the retina.

    PubMed

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha

    2014-01-01

    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified.

  14. High-resolution adaptive optics findings in talc retinopathy.

    PubMed

    Soliman, Mohamed K; Sarwar, Salman; Hanout, Mostafa; Sadiq, Mohammad A; Agarwal, Aniruddha; Gulati, Vikas; Nguyen, Quan Dong; Sepah, Yasir J

    2015-01-01

    Talc retinopathy is a recognized ocular condition characterized by the presence of small, yellow, glistening crystals found inside small retinal vessels and within different retinal layers. These crystals can be associated with retinal vascular occlusion and ischemia. Different diagnostic modalities have been used previously to characterize the retinal lesions in talc retinopathy. Adaptive optics, a high resolution imaging technique, is used to evaluate the location, appearance and distribution of talc crystals in a case of talc retinopathy.

  15. Coherent Digital Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng

    A new type of adaptive optics (AO) based on the principles of digital holography (DH) is proposed and developed for the use in wide-field and confocal retinal imaging. Digital holographic adaptive optics (DHAO) dispenses with the wavefront sensor and wavefront corrector of the conventional AO system. DH is an emergent imaging technology that gives direct numerical access to the phase of the optical field, thus allowing precise control and manipulation of the optical field. Incorporation of DH in an ophthalmic imaging system can lead to versatile imaging capabilities at substantially reduced complexity and cost of the instrument. A typical conventional AO system includes several critical hardware pieces: spatial light modulator, lenslet array, and a second CCD camera in addition to the camera for imaging. The proposed DHAO system replaces these hardware components with numerical processing for wavefront measurement and compensation of aberration through the principles of DH. (Abstract shortened by UMI.).

  16. Adaptive optics optical coherence tomography in glaucoma.

    PubMed

    Dong, Zachary M; Wollstein, Gadi; Wang, Bo; Schuman, Joel S

    2017-03-01

    Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior segment of the eye. Although OCT previously captured in-vivo cross-sectional images with unparalleled high resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and retina in three-dimensions, increasing resolution down to a theoretical 3 μm(3). It is now possible to visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its limitations and barriers to widespread commercialization, the expanding role of AO in OCT is propelling this technology into clinical trials and onto becoming an invaluable modality in the clinician's arsenal.

  17. Optical advantages in retinal scanning displays

    NASA Astrophysics Data System (ADS)

    Urey, Hakan

    2000-06-01

    Virtual Retinal DisplayTM technology is a retinal scanning display (RSD) technology being developed at Microvision, Inc., for a variety of applications including microdisplays. An RSD scans a modulated light beam onto a viewer's retina to produce a perceived image. Red, green and blue light sources, such as lasers, laser diodes or LEDs combine with Microvision's proprietary miniaturized scanner designs to make the RSD very well suited for head-worn and helmet-mounted displays (HMD). This paper compares the features of RSD technology to other display technologies such as the cathode ray tubes or matrix-based displays for HMD and other wearable display applications, and notes important performance advantages due to the number of pixel- generating elements. Also discussed are some fundamental optical limitations for virtual displays used in the HMD applications.

  18. Telescope Adaptive Optics Code

    SciTech Connect

    Phillion, D.

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST

  19. Adaptation of adaptive optics systems.

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Zhao, Dazun; Li, Chen

    1997-10-01

    In the paper, a concept of an adaptation of adaptive optical system (AAOS) is proposed. The AAOS has certain real time optimization ability against the variation of the brightness of detected objects m, atmospheric coherence length rO and atmospheric time constant τ by means of changing subaperture number and diameter, dynamic range, and system's temporal response. The necessity of AAOS using a Hartmann-Shack wavefront sensor and some technical approaches are discussed. Scheme and simulation of an AAOS with variable subaperture ability by use of both hardware and software are presented as an example of the system.

  20. Adaptive colour transformation of retinal images for stroke prediction.

    PubMed

    Unnikrishnan, Premith; Aliahmad, Behzad; Kawasaki, Ryo; Kumar, Dinesh

    2013-01-01

    Identifying lesions in the retinal vasculature using Retinal imaging is most often done on the green channel. However, the effect of colour and single channel analysis on feature extraction has not yet been studied. In this paper an adaptive colour transformation has been investigated and validated on retinal images associated with 10-year stroke prediction, using principle component analysis (PCA). Histogram analysis indicated that while each colour channel image had a uni-modal distribution, the second component of the PCA had a bimodal distribution, and showed significantly improved separation between the retinal vasculature and the background. The experiments showed that using adaptive colour transformation, the sensitivity and specificity were both higher (AUC 0.73) compared with when single green channel was used (AUC 0.63) for the same database and image features.

  1. Adaptive multispectral illumination for retinal microsurgery.

    PubMed

    Sznitman, Raphael; Rother, Diego; Handa, Jim; Gehlbach, Peter; Hager, Gregory D; Taylor, Russell

    2010-01-01

    It has been shown that excessive white light exposure during retinal microsurgery can induce retinal damage. To address this problem, one can illuminate the retina with a device that alternates between white, and less damaging limited-spectrum light. The surgeon is then presented with a fully colored video by recoloring the limited-spectrum light frames, using information from the white-light frames. To obtain accurately colored images, while reducing phototoxicity, we have developed a novel algorithm that monitors the quality of the recolored images and determines when white light may be substituted by limited-spectrum light. We show qualitatively and quantitatively that our system can provide reliable images using a significantly smaller light dose as compared to other state-of-the-art coloring schemes.

  2. Fluorescent scanning laser ophthalmoscopy for cellular resolution in vivo mouse retinal imaging: benefits and drawbacks of implementing adaptive optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Goswami, Mayank; Pugh, Edward N.; Zawadzki, Robert J.

    2016-03-01

    Scanning Laser Ophthalmoscopy (SLO) is a very important imaging tool in ophthalmology research. By combing with Adaptive Optics (AO) technique, AO-SLO can correct for ocular aberrations resulting in cellular level resolution, allowing longitudinal studies of single cells morphology in the living eyes. The numerical aperture (NA) sets the optical resolution that can be achieve in the "classical" imaging systems. Mouse eye has more than twice NA of the human eye, thus offering theoretically higher resolution. However, in most SLO based imaging systems the imaging beam size at mouse pupil sets the NA of that instrument, while most of the AO-SLO systems use almost the full NA of the mouse eye. In this report, we first simulated the theoretical resolution that can be achieved in vivo for different imaging beam sizes (different NA), assumingtwo cases: no aberrations and aberrations based on published mouse ocular wavefront data. Then we imaged mouse retinas with our custom build SLO system using different beam sizes to compare these results with theory. Further experiments include comparison of the SLO and AO-SLO systems for imaging different type of fluorescently labeled cells (microglia, ganglion, photoreceptors, etc.). By comparing those results and taking into account systems complexity and ease of use, the benefits and drawbacks of two imaging systems will be discussed.

  3. Optical imaging device of retinal function

    NASA Astrophysics Data System (ADS)

    Kardon, Randy H.; Kwon, Young; Truitt, Paul; Nemeth, Sheila C.; T'so, Dan; Soliz, Peter

    2002-06-01

    An optical imaging device of retina function (OID-RF) has been constructed to record changes in reflected 700-nm light from the fundus caused by retinal activation in response to a visual 535-nm stimulus. The resulting images reveal areas of the retina activated by visual stimulation. This device is a modified fundus camera designed to provide a patterned, moving visual stimulus over a 45-degree field of view to the subject in the green wavelength portion of the visual spectrum while simultaneously imaging the fundus in another, longer wavelength range. Data was collected from 3 normal subjects and recorded for 13 seconds at 4 Hz; 3 seconds were recorded during pre-stimulus baseline, 5 seconds during the stimulus, and 5 seconds post-stimulus. This procedure was repeated several times and, after image registration, the images were averaged to improve signal to noise. The change in reflected intensity from the retina due to the stimulus was then calculated by comparison to the pre-stimulus state. Reflected intensity from areas of stimulated retina began to increase steadily within 1 second after stimulus onset and decayed after stimulus offset. These results indicated that a functional optical signal can be recorded from the human eye.

  4. Solar tomography adaptive optics.

    PubMed

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  5. Solar Adaptive Optics.

    PubMed

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given.

  6. Evaluation of Retinal Nerve Fiber Layer in Patients with Idiopathic Optic Perineuritis using Optical Coherence Tomography

    PubMed Central

    Byon, Ik Soo; Jung, Jae Ho; Choi, Jae-Hwan; Seo, Je Hyun; Lee, Ji Eun; Choi, Hee-Young

    2015-01-01

    Abstract The aim of this study was to assess the effect of idiopathic Optic perineuritis on the retinal nerve fiber layer, and determine the ability of optical coherence tomography to evaluate retinal nerve fiber loss after idiopathic Optic perineuritis. Four patients were assessed in this study. In all cases, average retinal nerve fiber layer was significantly thinner in the affected eye in comparison with the normal reference value and with the value for the contralateral normal eye at 12 months after the onset of optic perineuritis. Our study revealed that retinal nerve fiber layer loss occurs in idiopathic optic nerve sheath inflammation. PMID:27928329

  7. Relationship Between Retinal Perfusion and Retinal Thickness in Healthy Subjects: An Optical Coherence Tomography Angiography Study

    PubMed Central

    Yu, Jian; Gu, Ruiping; Zong, Yuan; Xu, Huan; Wang, Xiaolei; Sun, Xinghuai; Jiang, Chunhui; Xie, Bing; Jia, Yali; Huang, David

    2016-01-01

    Purpose To investigate the relationship between retinal perfusion and retinal thickness in the peripapillary and macular areas of healthy subjects. Methods Using spectral-domain optic coherence tomography and split-spectrum amplitude decorrelation angiography (SSADA) algorithm, retinal perfusion and retinal thicknesses in the macular and peripapillary areas were measured in healthy volunteers, and correlations among these variables were analyzed. Results Overall, 64 subjects (121 eyes) including 28 males and 36 females with a mean ± SD age of 38 ± 13 years participated. Linear mixed-models showed that vessel area density was significantly correlated with the inner retinal thickness (from the inner limiting membrane to the outer border of the inner nucleus layer; P < 0.05), but not with the thickness of the full retina (P > 0.05) in the parafoveal area. The area of the foveal capillary-free zone was negatively correlated with the inner and full foveal thicknesses (all P < 0.001). In the peripapillary area, the vessel area density was positively correlated with the thickness of the retinal nerve fiber layer (P < 0.001). Conclusions In healthy subjects, retinal perfusion in small vessels was closely correlated with the thickness of the inner retinal layers in both the macular and peripapillary areas. PMID:27409474

  8. A synaptic mechanism for retinal adaptation to luminance and contrast

    PubMed Central

    Jarsky, Tim; Cembrowski, Mark; Logan, Stephen M.; Kath, William L.; Riecke, Hermann; Demb, Jonathan B.; Singer, Joshua H.

    2011-01-01

    The gain of signaling in primary sensory circuits is matched to the stimulus intensity by the process of adaptation. Retinal neural circuits adapt to visual scene statistics, including the mean (background adaptation) and the temporal variance (contrast adaptation) of the light stimulus. The intrinsic properties of retinal bipolar cells and synapses contribute to background and contrast adaptation, but it is unclear whether both forms of adaptation depend on the same cellular mechanisms. Studies of bipolar cell synapses identified synaptic mechanisms of gain control, but the relevance of these mechanisms to visual processing is uncertain owing to the historical focus on fast, phasic transmission rather than the tonic transmission evoked by ambient light. Here, we studied use-dependent regulation of bipolar cell synaptic transmission evoked by small, ongoing modulations of membrane potential (VM) in the physiological range. We made paired whole-cell recordings from rod bipolar (RB) and AII amacrine cells in a mouse retinal slice preparation. Quasi-white noise voltage commands modulated RB VM and evoked EPSCs in the AII. We mimicked changes in background luminance or contrast, respectively, by depolarizing the VM or increasing its variance. A linear systems analysis of synaptic transmission showed that increasing either the mean or the variance of the presynaptic VM reduced gain. Further electrophysiological and computational analyses demonstrated that adaptation to mean potential resulted from both Ca channel inactivation and vesicle depletion, whereas adaptation to variance resulted from vesicle depletion alone. Thus, background and contrast adaptation apparently depend in part on a common synaptic mechanism. PMID:21795549

  9. Optical Coherence Tomography Angiography to Estimate Retinal Blood Flow in Eyes with Retinitis Pigmentosa.

    PubMed

    Sugahara, Masako; Miyata, Manabu; Ishihara, Kenji; Gotoh, Norimoto; Morooka, Satoshi; Ogino, Ken; Hasegawa, Tomoko; Hirashima, Takako; Yoshikawa, Munemitsu; Hata, Masayuki; Muraoka, Yuki; Ooto, Sotaro; Yamashiro, Kenji; Yoshimura, Nagahisa

    2017-04-13

    Ophthalmologists sometimes face difficulties in identifying the origin of visual acuity (VA) loss in a retinitis pigmentosa (RP) patient, particularly before cataract surgery: cataract or the retinal disease state. Therefore, it is important to identify the significant factors correlating with VA. Nowadays, retinal blood flow in superficial and deep layers can be estimated non-invasively using optical coherence tomography angiography (OCTA). We estimated blood flow per retinal layer by using OCTA; investigated the correlation between VA and other parameters including blood flow and retinal thickness; and identified the most associated factor with VA in patients with RP. OCTA images in 68 of consecutive 110 Japanese RP patients were analysable (analysable RP group). Thirty-two age- and axial length-matched healthy eyes (control group) were studied. In the analysable RP group, the parafoveal flow density in superficial and deep layers was 47.0 ± 4.9% and 52.4 ± 5.5%, respectively, which was significantly lower than that in controls. Using multivariate analysis, we found that the parafoveal flow density in the deep layer and superficial foveal avascular area were the factors associated with VA. Non-invasive estimation of retinal blood flow per retinal layer using OCTA is useful for predicting VA in RP patients.

  10. Visible-light optical coherence tomography for retinal oximetry.

    PubMed

    Yi, Ji; Wei, Qing; Liu, Wenzhong; Backman, Vadim; Zhang, Hao F

    2013-06-01

    We applied a visible-light spectroscopic optical coherence tomography (vis-OCT) for in vivo retinal oximetry. To extract hemoglobin oxygen saturation (sO(2)) in individual retinal vessels, we established a comprehensive analytical model to describe optical absorption, optical scattering, and blood cell packing factor in the whole blood and fit the acquired vis-OCT signals from the bottom of each imaged vessel. We found that averaged sO(2) values in arterial and venous bloods were 95% and 72%, respectively.

  11. Advanced Adaptive Optics Control Techniques

    DTIC Science & Technology

    1979-01-01

    Optimal estimation and control methods for high energy laser adaptive optics systems are described. Three system types are examined: Active...the adaptive optics approaches and potential system implementations are recommended.

  12. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  13. Adaptive optics ophthalmoscopy.

    PubMed

    Roorda, Austin; Duncan, Jacque L

    2015-11-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye.

  14. Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to <10 kHz due to large computing overhead and limited photon efficiencies. Moreover most use zonal wavefront sensors which cannot easily handle extreme scintillation or unexpected obscuration of a pre-set aperture. Here we present a compact, lightweight adaptive optics system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be

  15. Adaptive optics optical coherence tomography at 1 MHz

    PubMed Central

    Kocaoglu, Omer P.; Turner, Timothy L.; Liu, Zhuolin; Miller, Donald T.

    2014-01-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (−0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band. PMID:25574431

  16. Optical Design and Optimization of Translational Reflective Adaptive Optics Ophthalmoscopes

    NASA Astrophysics Data System (ADS)

    Sulai, Yusufu N. B.

    The retina serves as the primary detector for the biological camera that is the eye. It is composed of numerous classes of neurons and support cells that work together to capture and process an image formed by the eye's optics, which is then transmitted to the brain. Loss of sight due to retinal or neuro-ophthalmic disease can prove devastating to one's quality of life, and the ability to examine the retina in vivo is invaluable in the early detection and monitoring of such diseases. Adaptive optics (AO) ophthalmoscopy is a promising diagnostic tool in early stages of development, still facing significant challenges before it can become a clinical tool. The work in this thesis is a collection of projects with the overarching goal of broadening the scope and applicability of this technology. We begin by providing an optical design approach for AO ophthalmoscopes that reduces the aberrations that degrade the performance of the AO correction. Next, we demonstrate how to further improve image resolution through the use of amplitude pupil apodization and non-common path aberration correction. This is followed by the development of a viewfinder which provides a larger field of view for retinal navigation. Finally, we conclude with the development of an innovative non-confocal light detection scheme which improves the non-invasive visualization of retinal vasculature and reveals the cone photoreceptor inner segments in healthy and diseased eyes.

  17. Adaptive optics optical coherence tomography at 1 MHz.

    PubMed

    Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Miller, Donald T

    2014-12-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (-0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band.

  18. Optical Beam Control Using Adaptive Optics

    DTIC Science & Technology

    2005-12-01

    30 1. Principles of Operation......................................................................31 VI. USING ZERNIKE POLYNOMIALS TO...help patience in helping me to understand the underlying principles of optics. xiv THIS PAGE INTENTIONALLY...correct this using adaptive optics. Adaptive Optics first got its start in 215 AD with the destruction of the Roman Fleet by Archimedes (Lamberson

  19. Functional Optical Coherence Tomography Enables In Vivo Physiological Assessment of Retinal Rod and Cone Photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng

    2015-04-01

    Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage.

  20. Vision science and adaptive optics, the state of the field.

    PubMed

    Marcos, Susana; Werner, John S; Burns, Stephen A; Merigan, William H; Artal, Pablo; Atchison, David A; Hampson, Karen M; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S; Doble, Nathan; Dubis, Adam M; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T; Paques, Michel; Smithson, Hannah E; Young, Laura K; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C

    2017-03-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system.

  1. Spectral domain optical coherence tomography imaging of subretinal bands associated with chronic retinal detachments

    PubMed Central

    Kothari, Nikisha; Kuriyan, Ajay E; Flynn, Harry W

    2016-01-01

    We report three patients with subretinal bands associated with retinal detachment in chronic retinal detachments who underwent successful retinal reattachment. Subretinal bands before and after surgery can be identified on clinical examination and spectral domain optical coherence tomography. Removal of subretinal bands is not mandatory to achieve retinal reattachment. PMID:27099457

  2. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  3. Lens-based wavefront sensorless adaptive optics swept source OCT

    PubMed Central

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-01-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects. PMID:27278853

  4. Adaptive Optical Scanning Holography

    PubMed Central

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  5. Adaptive Optical Scanning Holography

    NASA Astrophysics Data System (ADS)

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-02-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably.

  6. Automatic segmentation of canine retinal OCT using adaptive gradient enhancement and region growing

    NASA Astrophysics Data System (ADS)

    He, Yufan; Sun, Yankui; Chen, Min; Zheng, Yuanjie; Liu, Hui; Leon, Cecilia; Beltran, William; Gee, James C.

    2016-03-01

    In recent years, several studies have shown that the canine retina model offers important insight for our understanding of human retinal diseases. Several therapies developed to treat blindness in such models have already moved onto human clinical trials, with more currently under development [1]. Optical coherence tomography (OCT) offers a high resolution imaging modality for performing in-vivo analysis of the retinal layers. However, existing algorithms for automatically segmenting and analyzing such data have been mostly focused on the human retina. As a result, canine retinal images are often still being analyzed using manual segmentations, which is a slow and laborious task. In this work, we propose a method for automatically segmenting 5 boundaries in canine retinal OCT. The algorithm employs the position relationships between different boundaries to adaptively enhance the gradient map. A region growing algorithm is then used on the enhanced gradient maps to find the five boundaries separately. The automatic segmentation was compared against manual segmentations showing an average absolute error of 5.82 +/- 4.02 microns.

  7. Retinal Structure and Function in Eyes with Optic Nerve Hypoplasia

    PubMed Central

    Katagiri, Satoshi; Nishina, Sachiko; Yokoi, Tadashi; Mikami, Masashi; Nakayama, Yuri; Tanaka, Michiko; Azuma, Noriyuki

    2017-01-01

    We investigated retinal structure and function in eyes with optic nerve hypoplasia (ONH). Twenty-nine eyes of 18 patients with ONH and 21 eyes of 21 control patients were analyzed. Spectral-domain optical coherence tomography (SD-OCT), full-field electroretinography (FF-ERG), and focal macular ERG (FM-ERG) were performed. SD-OCT analysis of the macular region showed significant ganglion cells complex (GCC) thinning nasally and temporally (P < 0.05), but the thickness from the inner nuclear layer (INL) to the retinal pigment epithelium (RPE) became thinner only nasally (P < 0.05). SD-OCT analysis of the circumpapillary region showed significant thinning in the retinal nerve fiber layer and from the INL to the RPE (P < 0.05). The horizontal SD-OCT images showed variable foveal abnormalities. FF-ERG analysis showed significantly reduced amplitudes (P < 0.05) and preserved implicit time in the photopic negative response. The amplitudes and implicit times of the other FF-ERG components did not differ significantly. FM-ERG analysis showed significantly reduced amplitudes (P < 0.05) but preserved implicit times in all components. The current study showed the change of retinal structure and function in eyes with ONH compared with those with control, representing by decreased retinal ganglion cells (RGCs) and their axons, foveal abnormalities, and preserved peripheral retina except for the RGCs and their axons. PMID:28205530

  8. Monte Carlo Investigation of Optical Coherence Tomography Retinal Oximetry.

    PubMed

    Chen, Siyu; Yi, Ji; Liu, Wenzhong; Backman, Vadim; Zhang, Hao F

    2015-09-01

    Optical coherence tomography (OCT) oximetry explores the possibility to measure retinal hemoglobin oxygen saturation level (sO2). We investigated the accuracy of OCT retinal oximetry using Monte Carlo simulation in a commonly used four-layer retinal model. After we determined the appropriate number of simulated photon packets, we studied the effects of blood vessel diameter, signal sampling position, physiological sO2 level, and the blood packing factor on the accuracy of sO2 estimation in OCT retinal oximetry. The simulation results showed that a packing factor between 0.2 and 0.4 yields a reasonably accurate estimation of sO2 within a 5% error tolerance, which is independent of vessel diameter and sampling position, when visible-light illumination is used in OCT. We further explored the optimal optical spectral range for OCT retinal oximetry. The simulation results suggest that visible spectral range around 560 nm is better suited than near-infrared spectral range around 800 nm for OCT oximetry to warrant accurate measurements.

  9. Spontaneous resolution of optic nerve coloboma-associated retinal detachment.

    PubMed

    Ying, Michelle S; Fuller, Jeff; Young, Joshua; Marcus, Dennis M

    2004-01-01

    We report a congenital neurosensory retinal detachment associated with an optic nerve coloboma with subsequent spontaneous reattachment. This represents the earliest reported case of such a clinical situation. An observation period is recommended for infants with this clinical course to allow for the opportunity of spontaneous reattachment.

  10. Applications of Adaptive Optics Scanning Laser Ophthalmoscopy

    PubMed Central

    Roorda, Austin

    2010-01-01

    Adaptive optics (AO) describes a set of tools to correct or control aberrations in any optical system. In the eye, AO allows for precise control of the ocular aberrations. If used to correct aberrations over a large pupil, for example, cellular level resolution in retinal images can be achieved. AO systems have been demonstrated for advanced ophthalmoscopy as well as for testing and/or improving vision. In fact, AO can be integrated to any ophthalmic instrument where the optics of the eye is involved, with a scope of applications ranging from phoropters to optical coherence tomography systems. In this paper, I discuss the applications and advantages of using AO in a specific system, the adaptive optics scanning laser ophthalmoscope, or AOSLO. Since the Borish award was, in part, awarded to me because of this effort, I felt it appropriate to select this as the topic for this paper. Furthermore, users of AOSLO continue to appreciate the benefits of the technology, some of which were not anticipated at the time of development, and so it is time to revisit this topic and summarize them in a single paper. PMID:20160657

  11. Melanoma associated retinopathy: A new dimension using adaptive optics.

    PubMed

    Dabir, Supriya; Mangalesh, Shwetha; Govindraj, Indu; Mallipatna, Ashwin; Battu, Rajani; Shetty, Rohit

    2015-01-01

    We report a 56-year-old male patient, complaining of metamorphopsia in his left eye nevertheless visual acuity, slit lamp, and fundus examinations were within normal limits. Microperimetry (MAIA, Centervue, Italy) revealed central field loss and spectral domain optical coherence tomography (Spectralis, Heidelberg, Germany) showed disrupted cone outer segment tip layer. The patient had a diagnosis of cutaneous melanoma in his foot for which an excision biopsy with lymph node dissection was performed 5 months earlier. Our clinical diagnosis was melanoma-associated retinopathy. Electrophysiology confirmed the diagnosis. Adaptive optics retinal imaging (Imagine eyes, Orsay) was performed to assess the cone mosaic integrity across the central retina. This is the first report on the investigation of autoimmune retinopathy using adaptive optics ophthalmoscopy. This case highlights the viability of innovative diagnostic modalities that aid early detection and subsequent management of vision threatening retinal.

  12. Automated retinal fovea type distinction in spectral-domain optical coherence tomography of retinal vein occlusion

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Waldstein, Sebastian M.; Gerendas, Bianca S.; Langs, Georg; Simader, Christian; Schmidt-Erfurth, Ursula

    2015-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high- resolution, three-dimensional (3D) cross-sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD), glaucoma and retinal vein occlusion (RVO). Disease diagnosis, assessment, and treatment will require a patient to undergo multiple OCT scans, possibly using multiple scanners, to accurately and precisely gauge disease activity, progression and treatment success. However, cross-vendor imaging and patient movement may result in poor scan spatial correlation potentially leading to incorrect diagnosis or treatment analysis. The retinal fovea is the location of the highest visual acuity and is present in all patients, thus it is critical to vision and highly suitable for use as a primary landmark for cross-vendor/cross-patient registration for precise comparison of disease states. However, the location of the fovea in diseased eyes is extremely challenging to locate due to varying appearance and the presence of retinal layer destroying pathology. Thus categorising and detecting the fovea type is an important prior stage to automatically computing the fovea position. Presented here is an automated cross-vendor method for fovea distinction in 3D SD-OCT scans of patients suffering from RVO, categorising scans into three distinct types. OCT scans are preprocessed by motion correction and noise filing followed by segmentation using a kernel graph-cut approach. A statistically derived mask is applied to the resulting scan creating an ROI around the probable fovea location from which the uppermost retinal surface is delineated. For a normal appearance retina, minimisation to zero thickness is computed using the top two retinal surfaces. 3D local minima detection and layer thickness analysis are used

  13. Towards quantitative analysis of retinal features in optical coherence tomography.

    PubMed

    Baroni, Maurizio; Fortunato, Pina; La Torre, Agostino

    2007-05-01

    The purpose of this paper was to propose a new computer method for quantitative evaluation of representative features of the retina using optical coherence tomography (OCT). A multi-step approach was devised and positively tested for segmentation of the three main retinal layers: the vitreo-retinal interface and the inner and outer retina. Following a preprocessing step, three regions of interest were delimited. Significant peaks corresponding to high and low intensity strips were located along the OCT A-scan lines and accurate boundaries between different layers were obtained by maximizing an edge likelihood function. For a quantitative description, thickness measurement, densitometry, texture and curvature analyses were performed. As a first application, the effect of intravitreal injection of triamcinolone acetonide (IVTA) for the treatment of vitreo-retinal interface syndrome was evaluated. Almost all the parameters, measured on a set of 16 pathologic OCT images, were statistically different before and after IVTA injection (p<0.05). Shape analysis of the internal limiting membrane confirmed the reduction of the pathological traction state. Other significant parameters, such as reflectivity and texture contrast, exhibited relevant changes both at the vitreo-retinal interface and in the inner retinal layers. Texture parameters in the inner and outer retinal layers significantly correlated with the visual acuity restoration. According to these findings an IVTA injection might be considered a possible alternative to surgery for selected patients. In conclusion, the proposed approach appeared to be a promising tool for the investigation of tissue changes produced by pathology and/or therapy.

  14. The Effect of Retinal Melanin on Optical Coherence Tomography Images

    PubMed Central

    Wilk, Melissa A.; Huckenpahler, Alison L.; Collery, Ross F.; Link, Brian A.; Carroll, Joseph

    2017-01-01

    Purpose We assessed the effect of melanin on the appearance of hyperreflective outer retinal bands in optical coherence tomography (OCT) images. Methods A total of 23 normal subjects and 51 patients with albinism were imaged using the Bioptigen high-resolution spectral-domain OCT. In addition, three wild type, three albino (slc45a2b4/b4), and eight tyrosinase mosaic zebrafish were imaged with the hand-held Bioptigen Envisu R2200 OCT. To identify pigmented versus nonpigmented regions in the tyrosinase mosaic zebrafish, en face summed volume projections of the retinal pigment epithelium (RPE) were created from volume scans. Longitudinal reflectivity profiles were generated from B-scans to assess the width and maximum intensity of the RPE band in fish, or the presence of one or two RPE/Bruch's membrane (BrM) bands in humans. Results The foveal RPE/BrM appeared as two bands in 71% of locations in patients with albinism and 45% of locations in normal subjects (P = 0.0003). Pigmented zebrafish retinas had significantly greater RPE reflectance, and pigmented regions of mosaic zebrafish also had significantly broader RPE bands than all other groups. Conclusions The hyperreflective outer retinal bands in OCT images are highly variable in appearance. We showed that melanin is a major contributor to the intensity and width of the RPE band on OCT. One should use caution in extrapolating findings from OCT images of one or even a few individuals to define the absolute anatomic correlates of the hyperreflective outer retinal bands in OCT images. Translational Relevance Melanin affects the appearance of the outer retinal bands in OCT images. Use of animal models may help dissect the anatomic correlates of the complex reflective signals in OCT retinal images. PMID:28392975

  15. Optical modulation of transgene expression in retinal pigment epithelium

    NASA Astrophysics Data System (ADS)

    Palanker, D.; Lavinsky, D.; Chalberg, T.; Mandel, Y.; Huie, P.; Dalal, R.; Marmor, M.

    2013-03-01

    Over a million people in US alone are visually impaired due to the neovascular form of age-related macular degeneration (AMD). The current treatment is monthly intravitreal injections of a protein which inhibits Vascular Endothelial Growth Factor, thereby slowing progression of the disease. The immense financial and logistical burden of millions of intravitreal injections signifies an urgent need to develop more long-lasting and cost-effective treatments for this and other retinal diseases. Viral transfection of ocular cells allows creation of a "biofactory" that secretes therapeutic proteins. This technique has been proven successful in non-human primates, and is now being evaluated in clinical trials for wet AMD. However, there is a critical need to down-regulate gene expression in the case of total resolution of retinal condition, or if patient has adverse reaction to the trans-gene products. The site for genetic therapy of AMD and many other retinal diseases is the retinal pigment epithelium (RPE). We developed and tested in pigmented rabbits, an optical method to down-regulate transgene expression in RPE following vector delivery, without retinal damage. Microsecond exposures produced by a rapidly scanning laser vaporize melanosomes and destroy a predetermined fraction of the RPE cells selectively. RPE continuity is restored within days by migration and proliferation of adjacent RPE, but since the transgene is not integrated into the nucleus it is not replicated. Thus, the decrease in transgene expression can be precisely determined by the laser pattern density and further reduced by repeated treatment without affecting retinal structure and function.

  16. Retinal phototoxicity: a review of standard methodology for evaluating retinal optical radiation hazards.

    PubMed

    Landry, Robert J; Bostrom, Robert G; Miller, Sharon A; Shi, Dexiu; Sliney, David H

    2011-04-01

    Optical radiation (light) safety standards can be difficult to use for the evaluation of light hazards to the retina, even for persons experienced in radiometry and photometry. This paper reviews terminology and methodology for evaluating optical radiation hazards to the retina in accordance with international standard ISO 15004-2 Ophthalmic instruments-Fundamental requirements and test methods, Part 2: Light hazard protection (2007). All optical radiation safety standards use similar methods. Specifically, this paper illustrates how to evaluate the retinal hazards from various ophthalmic instruments including the following: diffuse illumination of the cornea; incident light diverging at the cornea (direct ophthalmoscope, operation microscope, fixation lamp); and incident light converging at the cornea (indirect ophthalmoscope, fundus camera, slit lamp biomicroscope). A brief review of radiometry and the use of certified optical components by manufacturers as specified by the ISO standard is also provided. Finally, the authors provide examples of the use of photometric measurements in hazard evaluation.

  17. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    Monteiro ... [et al.]. Adaptive optics system to compensate complex-shaped wavefronts (oral paper) / Miguel Ares, and Santiago Royo. A kind of novel linear phase retrieval wavefront sensor and its application in close-loop adaptive optics system (oral paper) / Xinyang Li ... [et al.]. Ophthalmic Shack-Hatmann wavefront sensor applications (oral paper) / Daniel R. Neal. Wave front sensing of an optical vortex and its correction with the help of bimorph mirror (poster paper) / F. A. Starikov ... [et al.]. Recent advances in laser metrology and correction of high numerical aperture laser beams using quadri-wave lateral shearing-interferometry (poster paper) / Benoit Wattellier, Ivan Doudet and William Boucher. Thin film optical metrology using principles of wavefront sensing and interference (poster paper) / D. M. Faichnie, A. H. Greenaway and I. Bain. Direct diffractive image simulation (poster paper) / A. P. Maryasov, N. P. Maryasov, A. P. Layko. High speed smart CMOS sensor for adaptive optics (poster paper) / T. D. Raymond ... [et al.]. Traceable astigmatism measurements for wavefront sensors (poster paper) / S. R. G. Hall, S. D. Knox, R. F. Stevens -- pt. 3. Adaptive optics in vision science. Dual-conjugate adaptive optics instrument for wide-field retinal imaging (oral paper) / Jörgen Thaung, Mette-Owner Petersen and Zoran Popovic. Visual simulation using electromagnetic adaptive-optics (oral paper) / Laurent Vabre ... [et al.]. High-resolution field-of-view widening in human eye retina imaging (oral paper) / Alexander V. Dubinin, Tatyana Yu. Cherezova, Alexis V. Kudryashov. Psychophysical experiments on visual performance with an ocular adaptive optics system (oral paper) / E. Dalimier, J. C. Dainty and J. Barbur. Does the accommodative mechanism of the eye calibrate itself using aberration dynamics? (oral paper) / K. M. Hampson, S. S. Chin and E. A. H. Mallen. A study of field aberrations in the human eye (oral paper) / Alexander V. Goncharov ... [et al.]. Dual

  18. Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy

    PubMed Central

    Yi, Ji; Chen, Siyu; Shu, Xiao; Fawzi, Amani A.; Zhang, Hao F.

    2015-01-01

    We achieved human retinal imaging using visible-light optical coherence tomography (vis-OCT) guided by an integrated scanning laser ophthalmoscopy (SLO). We adapted a spectral domain OCT configuration and used a supercontinuum laser as the illumating source. The center wavelength was 564 nm and the bandwidth was 115 nm, which provided a 0.97 µm axial resolution measured in air. We characterized the sensitivity to be 86 dB with 226 µW incidence power on the pupil. We also integrated an SLO that shared the same optical path of the vis-OCT sample arm for alignment purposes. We demonstrated the retinal imaging from both systems centered at the fovea and optic nerve head with 20° × 20° and 10° × 10° field of view. We observed similar anatomical structures in vis-OCT and NIR-OCT. The contrast appeared different from vis-OCT to NIR-OCT, including slightly weaker signal from intra-retinal layers, and increased visibility and contrast of anatomical layers in the outer retina. PMID:26504622

  19. Adaptive optical zoom sensor.

    SciTech Connect

    Sweatt, William C.; Bagwell, Brett E.; Wick, David Victor

    2005-11-01

    In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

  20. Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion.

    PubMed

    Ebneter, Andreas; Agca, Cavit; Dysli, Chantal; Zinkernagel, Martin S

    2015-01-01

    Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001) compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001). Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.

  1. Investigation of Retinal Morphology Alterations Using Spectral Domain Optical Coherence Tomography in a Mouse Model of Retinal Branch and Central Retinal Vein Occlusion

    PubMed Central

    Ebneter, Andreas; Agca, Cavit; Dysli, Chantal; Zinkernagel, Martin S.

    2015-01-01

    Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001) compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001). Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions. PMID:25775456

  2. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    PubMed

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.].

  3. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    PubMed Central

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  4. Optical Coherence Angiographic Demonstration of Retinal Changes From Chronic Optic Neuropathies.

    PubMed

    Chen, John J; AbouChehade, Jackson E; Iezzi, Raymond; Leavitt, Jacqueline A; Kardon, Randy H

    2017-04-01

    Glaucoma causes a decrease in peripapillary perfused capillary density on optical coherence tomography (OCT) angiography. However, other chronic optic neuropathies have not been explored with OCT angiography to see if these changes were specific to glaucoma. The authors evaluated OCT angiography in 10 patients who suffered various kinds of chronic optic neuropathies, including optic neuritis and ischaemic optic neuropathy, and found that all optic neuropathies showed a decrease in peripapillary vessel density on OCT angiography, regardless of the aetiology of the optic neuropathy. The peripapillary vessel loss on OCT angiography correlated well with the areas of retinal nerve fibre layer thinning seen on OCT.

  5. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  6. Retinal Imaging of Infants on Spectral Domain Optical Coherence Tomography

    PubMed Central

    Vinekar, Anand; Mangalesh, Shwetha; Jayadev, Chaitra; Maldonado, Ramiro S.; Bauer, Noel; Toth, Cynthia A.

    2015-01-01

    Spectral domain coherence tomography (SD OCT) has become an important tool in the management of pediatric retinal diseases. It is a noncontact imaging device that provides detailed assessment of the microanatomy and pathology of the infant retina with a short acquisition time allowing office examination without the requirement of anesthesia. Our understanding of the development and maturation of the infant fovea has been enhanced by SD OCT allowing an in vivo assessment that correlates with histopathology. This has helped us understand the critical correlation of foveal development with visual potential in the first year of life and beyond. In this review, we summarize the recent literature on the clinical applications of SD OCT in studying the pathoanatomy of the infant macula, its ability to detect subclinical features, and its correlation with disease and vision. Retinopathy of prematurity and macular edema have been discussed in detail. The review also summarizes the current status of SD OCT in other infant retinal conditions, imaging the optic nerve, the choroid, and the retinal nerve fibre in infants and children, and suggests future areas of research. PMID:26221606

  7. First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes.

    PubMed

    Gómez-Vieyra, Armando; Dubra, Alfredo; Malacara-Hernández, Daniel; Williams, David R

    2009-10-12

    Expressions for minimal astigmatism in image and pupil planes in off-axis afocal reflective telescopes formed by pairs of spherical mirrors are presented. These formulae which are derived from the marginal ray fan equation can be used for designing laser cavities, spectrographs and adaptive optics retinal imaging systems. The use, range and validity of these formulae are limited by spherical aberration and coma for small and large angles respectively. This is discussed using examples from adaptive optics retinal imaging systems. The performance of the resulting optical designs are evaluated and compared against the configurations with minimal wavefront RMS, using the defocus-corrected wavefront RMS as a metric.

  8. Macular pigment optical density is related to serum lutein in retinitis pigmentosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: To determine whether macular pigment optical density (MPOD) is related to the degree of cystoid macular edema (CME) in patients with retinitis pigmentosa. Methods: We measured MPOD with heterochromatic flicker photometry and central foveal retinal thickness with optical coherence tomography...

  9. Utility of optical coherence tomography in the evaluation of monocular visual loss related to retinal ischemia.

    PubMed

    Nolan, Rachel; Narayana, Kannan; Beh, Shin C; Rucker, Janet C; Balcer, Laura J; Galetta, Steven L

    2016-04-01

    We report four patients with monocular visual loss for whom optical coherence tomography (OCT) was helpful in distinguishing the sequelae of retinal artery occlusion from those of primary optic neuropathy. Determinations of the peripapillary retinal nerve fiber layer (RNFL) thickness as well as macular retinal layer thicknesses and architecture were used. The major findings in our patients show that changes in the inner retinal layers (including ganglion cell and inner plexiform layer) with disruption of normal macular architecture supports a diagnosis of retinal artery occlusion. Our results support the use of OCT imaging for patients with monocular visual loss of uncertain etiology; macular imaging as well as peripapillary RNFL thickness measurement can be helpful in differentiating primary retinal disease or ischemia from primary disorders of the optic nerve.

  10. Optical coherence tomography-guided retinal prosthesis design: model of degenerated retinal curvature and thickness for patient-specific devices.

    PubMed

    Opie, Nicholas L; Ayton, Lauren N; Apollo, Nicholas V; Ganesan, Kumaravelu; Guymer, Robyn H; Luu, Chi D

    2014-06-01

    Retinitis pigmentosa affects over 1.5 million people worldwide and is a leading cause of vision loss and blindness. While retinal prostheses have shown some success in restoring basic levels of vision, only generic, "one-size-fits-all" devices are currently being implanted. In this study, we used optical coherence tomography scans of the degenerated retina from 88 patients with retinitis pigmentosa to generate models of retinal thickness and curvature for the design of customized implants. We found the average retinal thickness at the fovea to be 152.9 ± 61.3 μm, increasing to a maximum retinal thickness of 250.9 ± 57.5 μm at a nasal eccentricity of 5°. These measures could be used to assist the development of custom-made penetrating electrodes to enhance and optimize epiretinal prostheses. From the retinal thickness measurements, we determined that the optimal length of penetrating electrodes to selectively stimulate retinal ganglion cell bodies and interneuron axons in the ganglion cell layer should be 30-100 μm, and to preferentially stimulate interneurons in the inner nuclear layer, electrodes should be 100-200 μm long. Electrodes greater than 200 μm long had the potential to penetrate through the retina into the choroid, which could cause devastating complications to the eye and should be avoided. The two- and three-dimensional models of retinal thickness developed in this study can be used to design patient-specific epiretinal implants that will help with safety and to optimize the efficacy of neuronal stimulation, ensuring the best functional performance of the device for patients.

  11. Retinal isomer ratio in dark-adapted purple membrane and bacteriorhodopsin monomers.

    PubMed

    Scherrer, P; Mathew, M K; Sperling, W; Stoeckenius, W

    1989-01-24

    On the basis of data obtained by spectroscopic analysis and chromatography of retinal extracts, a consensus has been adopted that dark-adapted purple membrane (pm) contains 13-cis- and all-trans-retinal in equal amounts, whereas the light-adapted membrane contains all-trans-retinal only. We have developed an improved extraction technique which extracts up to 70% of the retinal in pm within 4 min. In the extracts from dark-adapted pm at room temperature, we consistently find 66-67% 13-cis-retinal and 33-34% all-trans-retinal, and more than 98.5% all-trans isomer in light-adapted samples. The spectrum obtained by reconstitution of bacterioopsin with 13-cis-retinal at 2 degrees C (to minimize isomerization) shows an absorbance maximum at 554 nm and agrees well with the spectrum for the 13-cis component calculated from the dark-adapted and light-adapted bR spectra with our extraction data. The ratio of 13-cis:all-trans isomer in dark-adapted pm is 2:1 and nearly constant between 0 and 38 degrees C but begins to decrease distinctly above 40 degrees C, and more rapidly near 70 degrees C, reaching 0.75 at 90 degrees C. The van't Hoff plot of the isomer ratio shows a nonlinear temperature dependence above 40 degrees C, indicating a more complex system than a simple thermal 13-cis/all-trans isomer equilibrium. We attribute the broadening, absorbance decrease, and blut shift of the visible absorption band with increasing temperature to the appearance of at least one and possibly two or three new chromophores which contain, mainly or exclusively, the all-trans isomer.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Optic disc detection and boundary extraction in retinal images.

    PubMed

    Basit, A; Fraz, Muhammad Moazam

    2015-04-10

    With the development of digital image processing, analysis and modeling techniques, automatic retinal image analysis is emerging as an important screening tool for early detection of ophthalmologic disorders such as diabetic retinopathy and glaucoma. In this paper, a robust method for optic disc detection and extraction of the optic disc boundary is proposed to help in the development of computer-assisted diagnosis and treatment of such ophthalmic disease. The proposed method is based on morphological operations, smoothing filters, and the marker controlled watershed transform. Internal and external markers are used to first modify the gradient magnitude image and then the watershed transformation is applied on this modified gradient magnitude image for boundary extraction. This method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc. The proposed method has optic disc detection success rate of 100%, 100%, 100% and 98.9% for the DRIVE, Shifa, CHASE_DB1, and DIARETDB1 databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 61.88%, 70.96%, 45.61%, and 54.69% for these databases, respectively, which are higher than currents methods.

  13. Intelligent Optical Systems Using Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  14. Adaptive thresholding technique for retinal vessel segmentation based on GLCM-energy information.

    PubMed

    Mapayi, Temitope; Viriri, Serestina; Tapamo, Jules-Raymond

    2015-01-01

    Although retinal vessel segmentation has been extensively researched, a robust and time efficient segmentation method is highly needed. This paper presents a local adaptive thresholding technique based on gray level cooccurrence matrix- (GLCM-) energy information for retinal vessel segmentation. Different thresholds were computed using GLCM-energy information. An experimental evaluation on DRIVE database using the grayscale intensity and Green Channel of the retinal image demonstrates the high performance of the proposed local adaptive thresholding technique. The maximum average accuracy rates of 0.9511 and 0.9510 with maximum average sensitivity rates of 0.7650 and 0.7641 were achieved on DRIVE and STARE databases, respectively. When compared to the widely previously used techniques on the databases, the proposed adaptive thresholding technique is time efficient with a higher average sensitivity and average accuracy rates in the same range of very good specificity.

  15. Extreme Adaptive Optics Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Graham, J. R.; Ghez, A.; Kalas, P.; Lloyd, J.; Makidon, R.; Olivier, S.; Patience, J.; Perrin, M.; Poyneer, L.; Severson, S.; Sheinis, A.; Sivaramakrishnan, A.; Troy, M.; Wallace, J.; Wilhelmsen, J.

    2002-12-01

    Direct detection of photons emitted or reflected by extrasolar planets is the next major step in extrasolar planet studies. Current adaptive optics (AO) systems, with <300 subapertures and Strehl ratio 0.4-0.7, can achieve contrast levels of 106 at 2" separations; this is sufficient to see very young planets in wide orbits but insufficient to detect solar systems more like our own. Contrast levels of 107 - 108 in the near-IR are needed to probe a significant part of the extrasolar planet phase space. The NSF Center for Adaptive Optics is carrying out a design study for a dedicated ultra-high-contrast "Extreme" adaptive optics system for an 8-10m telescope. With 3000 controlled subapertures it should achieve Strehl ratios > 0.9 in the near-IR. Using a spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused static errors. We predict that it will achieve contrast levels of 107-108 around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. The system will be capable of a variety of high-contrast science including studying circumstellar dust disks at densities a factor of 10-100 lower than currently feasible and a systematic inventory of other solar systems on 10-100 AU scale. This work was supported by the NSF Science and Technology Center for Adaptive Optics, managed by UC Santa Cruz under AST-9876783. Portions of this work was performed under the auspices of the U.S. Department of Energy, under contract No. W-7405-Eng-48.

  16. Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography

    PubMed Central

    Gao, Weihua; Cense, Barry; Zhang, Yan; Jonnal, Ravi S.; Miller, Donald T.

    2008-01-01

    The directional component of the retinal reflection, i.e., the optical Stiles-Crawford effect (SCE), is well established to result from the waveguiding property of photoreceptors. Considerable uncertainty, however, remains as to which retinal reflections are waveguided and thus contribute. To this end we have developed a retina camera based on spectral-domain optical coherence tomography (SD-OCT) that axially resolves (~5 μm) these reflections and permits a direct investigation of the SCE origin at near infrared wavelengths. Reflections from the photoreceptor inner/outer segments junction (IS/OS) and near the posterior tip of the outer segments (PTOS) were found highly sensitive to beam entry position in the pupil with a considerable decrease in brightness occurring with an increase in aperture eccentricity. Reflections from the retinal pigment epithelium (RPE) were largely insensitive. The average directionality (ρoct value) at 2 degree eccentricity across the four subjects for the IS/OS, PTOS, and RPE were 0.120, 0.270, and 0.016 mm−2, respectively. The directionality for the IS/OS approached typical psychophysical SCE measurements, while that for the PTOS approached conventional optical SCE measurements. Precise measurement of the optical SCE was found to require significant A-scan averaging. PMID:18516251

  17. Exploiting Adaptive Optics with Deformable Secondary Mirrors

    DTIC Science & Technology

    2007-03-08

    progress in tomographic wavefront sensing and altitude conjugated adaptive correction, and is a critical step forward for adaptive optics for future large...geostationary satellites, captured at the 6.5 m MMT telescope, using the deformable secondary adaptive optics system....new technology to the unique development of deformable secondary mirrors pioneered at the University of Arizona’s Center for Astronomical Adaptive

  18. Sparse-aperture adaptive optics

    NASA Astrophysics Data System (ADS)

    Tuthill, Peter; Lloyd, James; Ireland, Michael; Martinache, Frantz; Monnier, John; Woodruff, Henry; ten Brummelaar, Theo; Turner, Nils; Townes, Charles

    2006-06-01

    Aperture masking interferometry and Adaptive Optics (AO) are two of the competing technologies attempting to recover diffraction-limited performance from ground-based telescopes. However, there are good arguments that these techniques should be viewed as complementary, not competitive. Masking has been shown to deliver superior PSF calibration, rejection of atmospheric noise and robust recovery of phase information through the use of closure phases. However, this comes at the penalty of loss of flux at the mask, restricting the technique to bright targets. Adaptive optics, on the other hand, can reach a fainter class of objects but suffers from the difficulty of calibration of the PSF which can vary with observational parameters such as seeing, airmass and source brightness. Here we present results from a fusion of these two techniques: placing an aperture mask downstream of an AO system. The precision characterization of the PSF enabled by sparse-aperture interferometry can now be applied to deconvolution of AO images, recovering structure from the traditionally-difficult regime within the core of the AO-corrected transfer function. Results of this program from the Palomar and Keck adaptive optical systems are presented.

  19. Driver Code for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Rao, Shanti

    2007-01-01

    A special-purpose computer code for a deformable-mirror adaptive-optics control system transmits pixel-registered control from (1) a personal computer running software that generates the control data to (2) a circuit board with 128 digital-to-analog converters (DACs) that generate voltages to drive the deformable-mirror actuators. This program reads control-voltage codes from a text file, then sends them, via the computer s parallel port, to a circuit board with four AD5535 (or equivalent) chips. Whereas a similar prior computer program was capable of transmitting data to only one chip at a time, this program can send data to four chips simultaneously. This program is in the form of C-language code that can be compiled and linked into an adaptive-optics software system. The program as supplied includes source code for integration into the adaptive-optics software, documentation, and a component that provides a demonstration of loading DAC codes from a text file. On a standard Windows desktop computer, the software can update 128 channels in 10 ms. On Real-Time Linux with a digital I/O card, the software can update 1024 channels (8 boards in parallel) every 8 ms.

  20. The Cellular Origins of the Outer Retinal Bands in Optical Coherence Tomography Images

    PubMed Central

    Jonnal, Ravi S.; Kocaoglu, Omer P.; Zawadzki, Robert J.; Lee, Sang-Hyuck; Werner, John S.; Miller, Donald T.

    2014-01-01

    Purpose. To test the recently proposed hypothesis that the second outer retinal band, observed in clinical OCT images, originates from the inner segment ellipsoid, by measuring: (1) the thickness of this band within single cone photoreceptors, and (2) its respective distance from the putative external limiting membrane (band 1) and cone outer segment tips (band 3). Methods. Adaptive optics-optical coherence tomography images were acquired from four subjects without known retinal disease. Images were obtained at foveal (2°) and perifoveal (5°) locations. Cone photoreceptors (n = 9593) were identified and segmented in three dimensions using custom software. Features corresponding to bands 1, 2, and 3 were automatically identified. The thickness of band 2 was assessed in each cell by fitting the longitudinal reflectance profile of the band with a Gaussian function. Distances between bands 1 and 2, and between 2 and 3, respectively, were also measured in each cell. Two independent calibration techniques were employed to determine the depth scale (physical length per pixel) of the imaging system. Results. When resolved within single cells, the thickness of band 2 is a factor of three to four times narrower than in corresponding clinical OCT images. The distribution of band 2 thickness across subjects and eccentricities had a modal value of 4.7 μm, with 48% of the cones falling between 4.1 and 5.2 μm. No significant differences were found between cells in the fovea and perifovea. The distance separating bands 1 and 2 was found to be larger than the distance between bands 2 and 3, across subjects and eccentricities, with a significantly larger difference at 5° than 2°. Conclusions. On the basis of these findings, we suggest that ascription of the outer retinal band 2 to the inner segment ellipsoid is unjustified, because the ellipsoid is both too thick and proximally located to produce the band. PMID:25324288

  1. Unilateral Ischemic Maculopathy Associated with Cytomegalovirus Retinitis in Patients with AIDS: Optical Coherence Tomography Findings

    PubMed Central

    Arevalo, J. Fernando; Garcia, Reinaldo A.; Arevalo, Fernando A.; Fernandez, Carlos F.

    2015-01-01

    To describe the clinical and optical coherence tomography (OCT) characteristics of ischemic maculopathy in two patients with acquired immunodeficiency syndrome (AIDS). Two patients with AIDS and cytomegalovirus (CMV) retinitis developed ischemic maculopathy. Both patients presented with central visual loss and active granular CMV retinitis. The presence of opacification of the superficial retina in the macular area and intraretinal edema suggested the diagnosis. Fluorescein angiography changes were similar in the two cases with enlargement of the foveal avascular zone and late staining of juxtafoveal vessels. OCT changes were suggestive of retinal ischemia: Increased reflectivity from the inner retinal layer and decreased backscattering from the retinal photoreceptors due to fluid and retinal edema. Ischemic maculopathy may cause a severe and permanent decrease in vision in AIDS patients. Fluorescein angiography and OCT should be considered in any patient with AIDS and unexplained visual loss. The mechanism of ischemic maculopathy may be multifactorial. PMID:27051496

  2. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  3. Acousto-Optic Adaptive Processing (AOAP).

    DTIC Science & Technology

    1983-12-01

    I ~.sls Phe Report December 1963 •- ACOUSTO - OPTIC ADAPTIVE <PROCESSING (AOAP) General Electric Company W. A. Penn, D. R. Morgan, A. Aridgides and M. L...numnber) Optical signal processing Acousto - optical modulators Adaptive signal processing - Adaptive sidelobe cancellation 20. ABSTRACT (Contnue an...required operations of multiplication and time delay are provided by acousto - optical (AO) delay lines. The required time integraticO is provided by

  4. Dual-wavelength retinal image registration based on vessel segmentation and optic disc detection

    NASA Astrophysics Data System (ADS)

    Xian, Yong-li; Dai, Yun; Gao, Chun-ming; Du, Rui

    2016-09-01

    The dual-wavelength retinal image registration is one of the critical steps in the spectrophotometric measurements of oxygen saturation in the retinal vasculature. The dual-wavelength images (570 nm and 600 nm) are simultaneously captured by dual-wavelength retinal oximeter based on commercial fundus camera. The retinal oxygen saturation is finally measured after vessel segmentation, image registration and calculation of optical density ratio of the two images. Because the dual-wavelength images are acquired from different optical path, it is necessary to go through image registration before they are used to analyze the oxygen saturation. This paper presents a new approach to dual-wavelength retinal image registration based on vessel segmentation and optic disc detection. Firstly, the multi-scale segmentation algorithm based on the Hessian matrix is used to realize vessel segmentation. Secondly, after optic disc is detected by convergence index filter and the center of the optic disc is obtained by centriod algorithm, the translational difference between the images can be determined. The center of the optic disc is used as the center of rotation, and the registration based on mutual information can be achieved using contour and gray information of vessels through segmented image. So the rotational difference between the images can be determined too. The result shows that the algorithm can provide an accurate registration for the dual-wavelength retinal image.

  5. New Adaptive Optics Technique Demonstrated

    NASA Astrophysics Data System (ADS)

    2007-03-01

    First ever Multi-Conjugate Adaptive Optics at the VLT Achieves First Light On the evening of 25 March 2007, the Multi-Conjugate Adaptive Optics Demonstrator (MAD) achieved First Light at the Visitor Focus of Melipal, the third Unit Telescope of the Very Large Telescope (VLT). MAD allowed the scientists to obtain images corrected for the blurring effect of atmospheric turbulence over the full 2x2 arcminute field of view. This world premiere shows the promises of a crucial technology for Extremely Large Telescopes. ESO PR Photo 19a/07 ESO PR Photo 19a/07 The MCAO Demonstrator Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way which delights the poets but frustrates the astronomers, since it blurs the fine details of the images. However, with Adaptive Optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e., approaching space conditions. Adaptive Optics systems work by means of a computer-controlled deformable mirror (DM) that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a 'wavefront sensor' (a special camera) at very high speed, many hundreds of times each second. The concept is not new. Already in 1989, the first Adaptive Optics system ever built for Astronomy (aptly named "COME-ON") was installed on the 3.6-m telescope at the ESO La Silla Observatory, as the early fruit of a highly successful continuing collaboration between ESO and French research institutes (ONERA and Observatoire de Paris). Ten years ago, ESO initiated an Adaptive Optics program to serve the needs for its frontline VLT project. Today, the Paranal Observatory is without any doubt one of the most advanced of its kind with respect to AO with no less than 7 systems currently installed (NACO, SINFONI, CRIRES and

  6. Next generation high resolution adaptive optics fundus imager

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Erry, G. R. G.; Otten, L. J.; Larichev, A.; Irochnikov, N.

    2005-12-01

    The spatial resolution of retinal images is limited by the presence of static and time-varying aberrations present within the eye. An updated High Resolution Adaptive Optics Fundus Imager (HRAOFI) has been built based on the development from the first prototype unit. This entirely new unit was designed and fabricated to increase opto-mechanical integration and ease-of-use through a new user interface. Improved camera systems for the Shack-Hartmann sensor and for the scene image were implemented to enhance the image quality and the frequency of the Adaptive Optics (AO) control loop. An optimized illumination system that uses specific wavelength bands was applied to increase the specificity of the images. Sample images of clinical trials of retinas, taken with and without the system, are shown. Data on the performance of this system will be presented, demonstrating the ability to calculate near diffraction-limited images.

  7. Population activity changes during a trial-to-trial adaptation of bullfrog retinal ganglion cells.

    PubMed

    Ding, Wei; Xiao, Lei; Jing, Wei; Zhang, Pu-Ming; Liang, Pei-Ji

    2014-07-09

    A 'trial-to-trial adaptation' of bullfrog retinal ganglion cells in response to a repetitive light stimulus was investigated in the present study. Using the multielectrode recording technique, we studied the trial-to-trial adaptive properties of ganglion cells and explored the activity of population neurons during this adaptation process. It was found that the ganglion cells adapted with different degrees: their firing rates were decreased in different extents from early-adaptation to late-adaptation stage, and this was accompanied by a decrease in cross-correlation strength. In addition, adaptation behavior was different for ON-response and OFF-response, which implied that the mechanism of the trial-to-trial adaptation might involve bipolar cells and/or their synapses with other neurons and the stronger adaptation in the ganglion cells' OFF-responses might reflect the requirement to avoid possible saturation in the OFF circuit.

  8. Clinicopathologic correlation of retinal to choroidal venous collaterals of the optic nerve head.

    PubMed

    Schatz, H; Green, W R; Talamo, J H; Hoyt, W F; Johnson, R N; McDonald, H R

    1991-08-01

    An optic nerve meningioma developed in an elderly woman and was followed for 13 years until her death. The optic nerve was initially normal. Over time it became swollen and then atrophic and developed retinal venous to choroidal venous collaterals. Five hundred serial sections were prepared through the optic nerve and for approximately 1.5 mm superiorly and inferiorly to the optic nerve to trace the course of the collaterals that were seen ophthalmoscopically and angiographically in the optic nerve head. This clinicopathologic study shows clearly that the abnormal channels are, in fact, retinal venous to choroidal venous collaterals (bypass channels). Four collaterals extended around the end of Bruch's membrane at the optic nerve head. Two more collaterals extended through the retinal pigment epithelium to become continuous with a subretinal pigment epithelial neovascular membrane, the vessels of which connected with the choroidal vessels through a defect in Bruch's membrane.

  9. Test Target for Adaptive Optics.

    DTIC Science & Technology

    adaptive optics comprising, in the preferred embodiment, a plurality of nine adjacent, stacked, and aligned rows of a multiplicity of alternate opaque sections and transparent sections in a repeating bar pattern, with all sections being positioned on a flat transparent medium (such as film or glass), and with each opaque section being an opaque bar and with each transparent section being a transparent bar. Each row has a different spatial frequency than any other of the nine rows, with the spatial frequency of any one row being of a different multiple of the row having the

  10. Assessment of the retinal posterior pole in dominant optic atrophy by spectral-domain optical coherence tomography and microperimetry

    PubMed Central

    Cesareo, Massimo; Ciuffoletti, Elena; Martucci, Alessio; Sebastiani, Jacopo; Sorge, Roberto Pietro; Lamantea, Eleonora; Garavaglia, Barbara; Ricci, Federico; Cusumano, Andrea; Nucci, Carlo; Brancati, Francesco

    2017-01-01

    Background To assess posterior pole (PP) retinal structure in patients with genetically confirmed autosomal dominant optic atrophy (ADOA) using new spectral domain optical coherence tomography (SD-OCT) segmentation technology. To analyze retinal PP thickness in relation to retinal sensitivity data from microperimetry (MP) in ADOA patients. Methods and findings This prospective cross-sectional study included 11 patients with ADOA and 11 age-matched healthy subjects. All participants underwent both a “Posterior Pole” and “peripapillary RNFL (pRNFL)” scanning protocol using SD-OCT. Functional mapping of the PP was also performed using MP. A customized program was implemented in order to achieve accurate superimposition of MP sensitivity map onto SD-OCT map. The thickness of the PP different retinal layers and pRNFL was obtained and measured for each eye. Mean retinal sensitivity values and fixation stability were obtained and compared between ADOA patients and healthy subjects. Correlation analysis was performed on a point-to-point basis to evaluate the association between mean thickness and retinal sensitivity of each retinal layer. Total retinal thickness (TRT), Retinal Nerve Fiber Layer (RNFL), Ganglion Cell Layer (GCL), Inner Plexiform Layer (IPL), Inner Nuclear Layer (INL) and Inner Retinal Layers (IRL) at the posterior pole as well as pRNFL were significantly thinner in ADOA patients (P < 0.0001). On the contrary, the Outer Plexiform Layer (OPL) and the Outer Nuclear Layer (ONL) were significantly thicker in the ADOA group (P < 0.001). No significant differences were found in Retinal Pigment Epithelium (RPE) and Outer Retinal Layers (ORL) thickness between ADOA and controls. The average PP retinal sensitivity was significantly reduced in ADOA patients compared with controls (P < 0.001), as measured by microperimeter Nidek MP-1 (MP1). Fixation stability was significantly worse in the ADOA group (P = 0.01). The most severe sensitivity defects in ADOA

  11. Optic neuritis heralding varicella zoster virus retinitis in a patient with acquired immunodeficiency syndrome.

    PubMed

    Meenken, C; van den Horn, G J; de Smet, M D; van der Meer, J T

    1998-04-01

    We report on a 29-year-old severely compromised acquired immunodeficiency syndrome patient who developed retrobulbar optic neuritis 5 weeks after an episode of cutaneous herpes zoster infection. During the optic neuritis, varicella zoster virus could be demonstrated in the cerebrospinal fluid. The neuritis responded well to treatment with foscarnet, but, 3 weeks into therapy, varicella zoster retinitis developed. Additional treatment with intravenous acyclovir stopped progression of the retinitis and resulted in healing of the retinal lesions. This case suggests that retrobulbar optic neuritis can be regarded as a prodrome of imminent acute retinal necrosis. Early recognition and prompt therapy with combined antivirals may prevent the development of this devastating ocular complication of varicella zoster infection.

  12. Detection of retinal blood vessel changes in multiple sclerosis with optical coherence tomography

    PubMed Central

    Bhaduri, Basanta; Nolan, Ryan M.; Shelton, Ryan L.; Pilutti, Lara A.; Motl, Robert W.; Moss, Heather E.; Pula, John H.; Boppart, Stephen A.

    2016-01-01

    Although retinal vasculitis is common in multiple sclerosis (MS), it is not known if MS is associated with quantitative abnormalities in retinal blood vessels (BVs). Optical coherence tomography (OCT) is suitable for examining the integrity of the anterior visual pathways in MS. In this paper we have compared the size and number of retinal blood vessels in patients with MS, with and without a history of optic neuritis (ON), and control subjects from the cross-sectional retinal images from OCT. Blood vessel diameter (BVD), blood vessel number (BVN), and retinal nerve fiber layer thickness (RNFLT) were extracted from OCT images collected from around the optic nerves of 129 eyes (24 control, 24 MS + ON, 81 MS-ON) of 71 subjects. Associations between blood vessel metrics, MS diagnosis, MS disability, ON, and RNFLT were evaluated using generalized estimating equation (GEE) models. MS eyes had a lower total BVD and BVN than control eyes. The effect was more pronounced with increased MS disability, and persisted in multivariate models adjusting for RNFLT and ON history. Twenty-nine percent (29%) of MS subjects had fewer retinal blood vessels than all control subjects. MS diagnosis, disability, and ON history were not associated with average blood vessel size. The relationship between MS and lower total BVD/BVN is not accounted for by RNFLT or ON. Further study is needed to determine the relationship between OCT blood vessel metrics and qualitative retinal blood vessel abnormalities in MS. PMID:27375947

  13. Characteristic Retinal Atrophy with Secondary “Inverse” Optic Atrophy Identifies Vigabatrin Toxicity in Children

    PubMed Central

    Buncic, J. Raymond; Westall, Carol A.; Panton, Carole M.; Munn, J. Robert; MacKeen, Leslie D.; Logan, William J.

    2013-01-01

    Objective To describe the clinical pattern of retinal atrophy in children caused by the anticonvulsant vigabatrin. Design An interventional case series report. Participants One hundred thirty-eight patients, mainly infants, were evaluated regularly for evidence of possible vigabatrin toxicity in the Eye and Neurology clinics at the Hospital for Sick Children, Toronto. Method Sequential clinical and electroretinographic (International Society for Clinical Electrophysiology of Vision standards) evaluations every 6 months. Main Outcome Measures Presence of recognizable retinal and optic atrophy in the presence of abnormal electroretinogram (ERG) and other clinical findings. Results Three children being treated for seizures with vigabatrin showed definite clinical findings of peripheral retinal nerve fiber layer atrophy, with relative sparing of the central or macular portion of the retina and relative nasal optic nerve atrophic changes. Some macular wrinkling was evident in 1 case. Progressive ERG changes showing decreased responses, especially the 30-Hz flicker response, supported the presence of decreased retinal function. Conclusions A recognizable and characteristic form of peripheral retinal atrophy and nasal or “inverse” optic disc atrophy can occur in a small number of children being treated with vigabatrin. The changes in superficial light reflexes of the retina in children facilitate the clinical recognition of nerve fiber layer atrophy. The macula is relatively spared, although superficial retinal light reflexes indicating wrinkling of the innermost retina suggest early macular toxicity as well. Because these changes are accompanied by electrophysiologic evidence of retinal dysfunction, discontinuation of vigabatrin should be strongly considered. PMID:15465561

  14. Wide-field optical coherence tomography based microangiography for retinal imaging

    PubMed Central

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; Van Gelder, Russell N.; Wang, Ruikang K.

    2016-01-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice. PMID:26912261

  15. Retinal Vessel Density in Optical Coherence Tomography Angiography in Optic Atrophy after Nonarteritic Anterior Ischemic Optic Neuropathy

    PubMed Central

    Kao, Ling-Yuh; Sun, Ming-Hui

    2017-01-01

    Aims. To compare optical coherence tomography angiography (OCT-A) retinal vasculature measurements between normal and optic atrophy after nonarteritic anterior ischemic optic neuropathy (NAION) subjects. Design. This prospective observational study was conducted between July 2015 and August 2016 at the ophthalmology outpatient department of a referral center in Taiwan. Peripapillary (4.5 × 4.5 mm) and parafoveal (6 × 6 mm) OCT-A scans were acquired. Measurements of the peripapillary region were obtained in two areas: (1) circumpapillary vessel density (cpVD) and (2) whole enface image vessel density (wiVD). Results. 13 participants with optic atrophy after NAION had lower peripapillary vessel density than the 18 age-matched participants in the healthy control (HC) group (p < 0.001 for both cpVD and wiVD). However, the parafoveal vessel density was not significantly different between the two groups (p = 0.49). The areas under the receiver operating characteristic curve for the HC and NAION eyes were 0.992 for cpVD and 0.970 for wiVD. cpVD and wiVD were significantly correlated with the average retinal nerve fiber layer thickness (p < 0.001 for both). Conclusion. Peripapillary retinal perfusion is significantly decreased in optic atrophy after NAION. OCT-A may aid in the understanding of structure-function-perfusion relationships in NAION. PMID:28316838

  16. The ERIS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Fedrigo, Enrico; Le Louarn, Miska; Madec, Pierre-Yves; Soenke, Christian; Brast, Roland; Conzelmann, Ralf; Delabre, Bernard; Duchateau, Michel; Frank, Christoph; Klein, Barbara; Amico, Paola; Hubin, Norbert; Esposito, Simone; Antichi, Jacopo; Carbonaro, Luca; Puglisi, Alfio; Quirós-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the new Adaptive Optics based instrument for ESO's VLT aiming at replacing NACO and SINFONI to form a single compact facility with AO fed imaging and integral field unit spectroscopic scientific channels. ERIS completes the instrument suite at the VLT adaptive telescope. In particular it is equipped with a versatile AO system that delivers up to 95% Strehl correction in K band for science observations up to 5 micron It comprises high order NGS and LGS correction enabling the observation from exoplanets to distant galaxies with a large sky coverage thanks to the coupling of the LGS WFS with the high sensitivity of its visible WFS and the capability to observe in dust embedded environment thanks to its IR low order WFS. ERIS will be installed at the Cassegrain focus of the VLT unit hosting the Adaptive Optics Facility (AOF). The wavefront correction is provided by the AOF deformable secondary mirror while the Laser Guide Star is provided by one of the four launch units of the 4 Laser Guide Star Facility for the AOF. The overall layout of the ERIS AO system is extremely compact and highly optimized: the SPIFFI spectrograph is fed directly by the Cassegrain focus and both the NIX's (IR imager) and SPIFFI's entrance windows work as visible/infrared dichroics. In this paper we describe the concept of the ERIS AO system in detail, starting from the requirements and going through the estimated performance, the opto-mechanical design and the Real-Time Computer design.

  17. ERIS adaptive optics system design

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Le Louarn, Miska; Soenke, Christian; Fedrigo, Enrico; Madec, Pierre-Yves; Hubin, Norbert

    2012-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation instrument planned for the Very Large Telescope (VLT) and the Adaptive Optics facility (AOF). It is an AO assisted instrument that will make use of the Deformable Secondary Mirror and the new Laser Guide Star Facility (4LGSF), and it is planned for the Cassegrain focus of the telescope UT4. The project is currently in its Phase A awaiting for approval to continue to the next phases. The Adaptive Optics system of ERIS will include two wavefront sensors (WFS) to maximize the coverage of the proposed sciences cases. The first is a high order 40x40 Pyramid WFS (PWFS) for on axis Natural Guide Star (NGS) observations. The second is a high order 40x40 Shack-Hartmann WFS for single Laser Guide Stars (LGS) observations. The PWFS, with appropriate sub-aperture binning, will serve also as low order NGS WFS in support to the LGS mode with a field of view patrolling capability of 2 arcmin diameter. Both WFSs will be equipped with the very low read-out noise CCD220 based camera developed for the AOF. The real-time reconstruction and control is provided by a SPARTA real-time platform adapted to support both WFS modes. In this paper we will present the ERIS AO system in all its main aspects: opto-mechanical design, real-time computer design, control and calibrations strategy. Particular emphasis will be given to the system performance obtained via dedicated numerical simulations.

  18. The pathogenesis of retinal detachment with morning glory disc and optic pit.

    PubMed

    Irvine, A R; Crawford, J B; Sullivan, J H

    1986-01-01

    A child with nonrhegmatogenous retinal detachment associated with morning glory disc underwent first a vitrectomy and then, some months later, an optic nerve sheath fenestration. The latter procedure led to retinal reattachment. It also produced a biopsy specimen that confirmed the perineural herniation of poorly differentiated retinal tissue in this condition, similar to that in congenital pit of the optic nerve. It demonstrated continuity of the vitreous cavity with the perineural space, both histologically and by the fact that gas injected through the pars plana into the vitreous cavity bubbled out the window in the optic nerve sheath. The authors suggest that morning glory disc and optic pit share similar anatomic features, differing more in degree than in kind, and that the porous nature of the poorly differentiated tissue herniated around the optic nerve into the subarachnoid space in these conditions makes several sources of subretinal fluid possible.

  19. Retinal Intrinsic Optical Signals in a Cat Model of Primary Congenital Glaucoma

    PubMed Central

    Schallek, Jesse B.; McLellan, Gillian J.; Viswanathan, Suresh; Ts'o, Daniel Y.

    2012-01-01

    Purpose. To examine the impact of reduced inner retinal function and breed on intrinsic optical signals in cats. Methods. Retinal intrinsic optical signals were recorded from anesthetized cats with a modified fundus camera. Near infrared light (NIR, 700–900 nm) was used to illuminate the retina while a charge-coupled device (CCD) camera captured the NIR reflectance of the retina. Visible stimuli (540 nm) evoked patterned changes in NIR retinal reflectance. NIR intrinsic signals were compared across three subject groups: two Siamese cats with primary congenital glaucoma (PCG), a control Siamese cat without glaucoma, and a control group of seven normally pigmented cats. Intraocular pressure (IOP), pattern electroretinogram, and optical coherence tomography measurements were evaluated to confirm the inner retinal deficit in PCG cats. Results. Stimulus-evoked, NIR retinal reflectance signals were observed in PCG cats despite severe degeneration of the nerve fiber layer and inner retinal function. The time course, spectral dependence, and spatial profile of signals imaged in PCG cats were similar to signals measured from normal and Siamese control cats. Conclusions. Despite increased IOP, reduced nerve fiber layer thickness and ganglion cell function, intrinsic optical signals persist in cats affected with PCG. The mechanisms giving rise to intrinsic signals remain despite inner retinal damage. Signal strength was reduced in all Siamese cats compared to controls, suggesting that reduced intrinsic signals in PCG cats represent a difference between breeds rather than loss of ganglion cells. These results corroborated previous findings that retinal ganglion cells are not the dominant source of intrinsic optical signals of the retina. PMID:22395886

  20. Further Studies on Nonlinear Adaptive Optics,

    DTIC Science & Technology

    1981-04-01

    AD-A9 167 SCIENCE APPLICATIONS INC LA JOLLA CA F/9 20/6 A-A*9 16 FURTHER STUDIES ON NONLINEAR ADAPTIVE OPTICS , 1W _ ASFE APR SI A ELCI. J1 NAGEL. D...FURTHER STUDIES ON NONLINEAR ADAPTIVE OPTICS Apr 8l 7 Submitted to: Director of Physics Air Force Office of Scientific Research ATTN: NP Bldg. 410...1 I STATEMENT OF WORK ...... .. .................... I-I II NONLINEAR ADAPTIVE OPTICS SUMMARY

  1. High-resolution optical coherence tomography in mouse models of genetic and induced retinal degeneration

    NASA Astrophysics Data System (ADS)

    Cimalla, Peter; Carido, Madalena; Pran Babu, Sheik; Santos-Ferreira, Tiago; Gaertner, Maria; Kordowich, Simon; Wittig, Dierk; Ader, Marius; Karl, Mike; Koch, Edmund

    2013-06-01

    For the study of disease mechanisms and the development of novel therapeutic strategies for retinal pathologies in human, rodent models play an important role. Nowadays, optical coherence tomography (OCT) allows three-dimensional investigation of retinal events over time. However, a detailed analysis of how different retinal degenerations are reflected in OCT images is still lacking in the biomedical field. Therefore, we use OCT to visualize retinal degeneration in specific mouse models in order to study disease progression in vivo and improve image interpretation of this noninvasive modality. We use a self-developed spectral domain OCT system for simultaneous dual-band imaging in the 0.8 μm- and 1.3 μm-wavelength range - the two most common spectral bands in biomedical OCT. A fiber-coupled ophthalmic scanning unit allows flexible imaging of the eye with a high axial resolution of 3 - 4 μm in tissue. Four different mouse models consisting of one genetic (rhodopsin-deficient and three induced retinal degenerations (sodium iodate-induced damage, light-induced photoreceptor damage and Kainate neurotoxin damage) were investigated. OCT imaging was performed daily or weekly, depending on the specific degeneration model, over a time period of up to 9 weeks. Individual retinal layers that were affected by the specific degeneration could successfully be identified and monitored over the observation time period. Therefore, longitudinal OCT studies deliver reliable information about the retinal microstructure and the time course of retinal degeneration processes in vivo.

  2. High speed optical holography of retinal blood flow

    NASA Astrophysics Data System (ADS)

    Pellizzari, M.; Simonutti, M.; Degardin, J.; Sahel, J.-A.; Fink, M.; Paques, M.; Atlan, M.

    2016-08-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  3. Functional imaging of inherited retinal disease with a commercial optical coherence tomography device

    NASA Astrophysics Data System (ADS)

    Theelen, T.; Hoyng, C. B.; Klevering, B. J.; Cense, B.

    2011-06-01

    Retinal dystrophies (RD) are blinding diseases affecting visual acuity mostly at young age. Intrinsic optical signals (IOS) on optical coherence tomography (OCT) may give topographical information on injure of retinal function in these patients. We demonstrate light response of the healthy and diseased human retina by IOS on a commercially available spectral-domain OCT. Significant IOS could be measured in the healthy retina and in unchanged retinal sectors of the RD patients. Main responses were located in the outer retina (photoreceptors) and the nerve fiber layer. In affected areas of RD eyes IOS were significantly reduced or even absent. Functional OCT imaging was able to give information about retinal function in RD patients on a micrometer scale. These results could be of value for refined disease analysis and control of upcoming gene therapy studies.

  4. Keck adaptive optics: control subsystem

    SciTech Connect

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval for the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.

  5. Optic Disc and Retinal Nerve Fibre Layer Changes in Parkinson’s Disease

    PubMed Central

    Cetin, Ebru N.; Bir, Levent S.; Sarac, Gülden; Yaldızkaya, Filiz; Yaylalı, Volkan

    2013-01-01

    Abstract This study was conducted to assess optic nerve and peripapillary retinal nerve fibre layer (RNFL) changes in patients with idiopathic Parkinson’s disease (PD) and its correlation with disease duration and severity. Optic nerve parameters and RNFL thickness were measured in 24 PD patients and 25 age–gender-matched controls by Heidelberg Retinal Tomography II (Heidelberg Engineering, Dossenheim, Germany). Patients with visual acuity below 20/25 were excluded. The mean RNFL in the temporal sector was significantly thinner in the study group than the control group (p = 0.020). Additionally, disease severity and duration negatively correlated with optic disc parameters in some sectors. PMID:28163751

  6. Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods.

    PubMed

    Frederiksen, Rikard; Boyer, Nicholas P; Nickle, Benjamin; Chakrabarti, Kalyan S; Koutalos, Yiannis; Crouch, Rosalie K; Oprian, Daniel; Cornwall, M Carter

    2012-06-01

    We report experiments designed to test the hypothesis that the aqueous solubility of 11-cis-retinoids plays a significant role in the rate of visual pigment regeneration. Therefore, we have compared the aqueous solubility and the partition coefficients in photoreceptor membranes of native 11-cis-retinal and an analogue retinoid, 11-cis 4-OH retinal, which has a significantly higher solubility in aqueous medium. We have then correlated these parameters with the rates of pigment regeneration and sensitivity recovery that are observed when bleached intact salamander rod photoreceptors are treated with physiological solutions containing these retinoids. We report the following results: (a) 11-cis 4-OH retinal is more soluble in aqueous buffer than 11-cis-retinal. (b) Both 11-cis-retinal and 11-cis 4-OH retinal have extremely high partition coefficients in photoreceptor membranes, though the partition coefficient of 11-cis-retinal is roughly 50-fold greater than that of 11-cis 4-OH retinal. (c) Intact bleached isolated rods treated with solutions containing equimolar amounts of 11-cis-retinal or 11-cis 4-OH retinal form functional visual pigments that promote full recovery of dark current, sensitivity, and response kinetics. However, rods treated with 11-cis 4-OH retinal regenerated on average fivefold faster than rods treated with 11-cis-retinal. (d) Pigment regeneration from recombinant and wild-type opsin in solution is slower when treated with 11-cis 4-OH retinal than with 11-cis-retinal. Based on these observations, we propose a model in which aqueous solubility of cis-retinoids within the photoreceptor cytosol can place a limit on the rate of visual pigment regeneration in vertebrate photoreceptors. We conclude that the cytosolic gap between the plasma membrane and the disk membranes presents a bottleneck for retinoid flux that results in slowed pigment regeneration and dark adaptation in rod photoreceptors.

  7. MEMS segmented-based adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Manzanera, Silvestre; Helmbrecht, Michael A.; Kempf, Carl J.; Roorda, Austin

    2011-01-01

    The performance of a MEMS (micro-electro-mechanical-system) segmented deformable mirror was evaluated in an adaptive optics (AO) scanning laser ophthalmoscope. The tested AO mirror (Iris AO, Inc, Berkeley, CA) is composed of 37 hexagonal segments that allow piston/tip/tilt motion up to 5 μm stroke and ±5 mrad angle over a 3.5 mm optical aperture. The control system that implements the closed-loop operation employs a 1:1 matched 37-lenslet Shack-Hartmann wavefront sensor whose measurements are used to apply modal corrections to the deformable mirror. After a preliminary evaluation of the AO mirror optical performance, retinal images from 4 normal subjects over a 0.9°x0.9° field size were acquired through a 6.4 mm ocular pupil, showing resolved retinal features at the cellular level. Cone photoreceptors were observed as close as 0.25 degrees from the foveal center. In general, the quality of these images is comparable to that obtained using deformable mirrors based on different technologies. PMID:21559132

  8. Longitudinal In Vivo Imaging of Retinal Ganglion Cells and Retinal Thickness Changes Following Optic Nerve Injury in Mice

    PubMed Central

    Chauhan, Balwantray C.; Stevens, Kelly T.; Levesque, Julie M.; Nuschke, Andrea C.; Sharpe, Glen P.; O'Leary, Neil; Archibald, Michele L.; Wang, Xu

    2012-01-01

    Background Retinal ganglion cells (RGCs) die in sight-threatening eye diseases. Imaging RGCs in humans is not currently possible and proof of principle in experimental models is fundamental for future development. Our objective was to quantify RGC density and retinal thickness following optic nerve transection in transgenic mice expressing cyan fluorescent protein (CFP) under control of the Thy1 promoter, expressed by RGCs and other neurons. Methodology/Principal Findings A modified confocal scanning laser ophthalmoscopy (CSLO)/spectral-domain optical coherence tomography (SD-OCT) camera was used to image and quantify CFP+ cells in mice from the B6.Cg-Tg(Thy1-CFP)23Jrs/J line. SD-OCT circle (1 B-scan), raster (37 B-scans) and radial (24 B-scans) scans of the retina were also obtained. CSLO was performed at baseline (n = 11) and 3 (n = 11), 5 (n = 4), 7 (n = 10), 10 (n = 6), 14 (n = 7) and 21 (n = 5) days post-transection, while SD-OCT was performed at baseline and 7, 14 and 35 days (n = 9) post-transection. Longitudinal change in CFP+ cell density and retinal thickness were computed. Compared to baseline, the mean (SD) percentage CFP+ cells remaining at 3, 5, 7, 10, 14 and 21 days post-transection was 86 (9)%, 63 (11)%, 45 (11)%, 31 (9)%, 20 (9)% and 8 (4)%, respectively. Compared to baseline, the mean (SD) retinal thickness at 7 days post-transection was 97 (3)%, 98 (2)% and 97 (4)% for the circle, raster and radial scans, respectively. The corresponding figures at 14 and 35 days post-transection were 96 (3)%, 97 (2)% and 95 (3)%; and 93 (3)%, 94 (3)% and 92 (3)%. Conclusions/Significance Longitudinal imaging showed an exponential decline in CFP+ cell density and a small (≤8%) reduction in SD-OCT measured retinal thickness post-transection. SD-OCT is a promising tool for detecting structural changes in experimental optic neuropathy. These results represent an important step towards translation for clinical use. PMID:22768284

  9. Distinct subcomponents of mouse retinal ganglion cell receptive fields are differentially altered by light adaptation.

    PubMed

    Cowan, Cameron S; Sabharwal, Jasdeep; Seilheimer, Robert L; Wu, Samuel M

    2017-02-01

    The remarkable dynamic range of vision is facilitated by adaptation of retinal sensitivity to ambient lighting conditions. An important mechanism of sensitivity adaptation is control of the spatial and temporal window over which light is integrated. The retina accomplishes this by switching between parallel synaptic pathways with differing kinetics and degrees of synaptic convergence. However, the relative shifts in spatial and temporal integration are not well understood - particularly in the context of the antagonistic spatial surround. Here, we resolve these issues by characterizing the adaptation-induced changes to spatiotemporal integration in the linear receptive field center and surround of mouse retinal ganglion cells. While most ganglion cells lose their antagonistic spatial surround under scotopic conditions, a strong surround is maintained in a subset. We then applied a novel technique that allowed us to analyze the receptive field as a triphasic temporal filter in the center and a biphasic filter in the surround. The temporal tuning of the surround was relatively maintained across adaptation conditions compared to the center, which greatly increased its temporal integration. Though all phases of the center's triphasic temporal response slowed, some shifted significantly less. Additionally, adaptation differentially shifted ON and OFF pathway temporal tuning, reducing their asymmetry under scotopic conditions. Finally, spatial integration was significantly increased by dark adaptation in some cells while it decreased it in others. These findings provide novel insight into how adaptation adjusts visual information processing by altering fundamental properties of ganglion cell receptive fields, such as center-surround antagonism and space-time integration.

  10. Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics.

    PubMed

    Salas, Matthias; Augustin, Marco; Ginner, Laurin; Kumar, Abhishek; Baumann, Bernhard; Leitgeb, Rainer; Drexler, Wolfgang; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2017-01-01

    The purpose of this work is to investigate the benefits of adaptive optics (AO) technology for optical coherence tomography angiography (OCTA). OCTA has shown great potential in non-invasively enhancing the contrast of vessels and small capillaries. Especially the capability of the technique to visualize capillaries with a lateral extension that is below the transverse resolution of the system opens unique opportunities in diagnosing retinal vascular diseases. However, there are some limitations of this technology such as shadowing and projection artifacts caused by overlying vasculature or the inability to determine the true extension of a vessel. Thus, the evaluation of the vascular structure and density based on OCTA alone can be misleading. In this paper we compare the performance of AO-OCT, AO-OCTA and OCTA for imaging retinal vasculature. The improved transverse resolution and the reduced depth of focus of AO-OCT and AO-OCTA greatly reduce shadowing artifacts allowing for a better differentiation and segmentation of different vasculature layers of the inner retina. The comparison is done on images recorded in healthy volunteers and in diabetic patients with distinct pathologies of the retinal microvasculature.

  11. Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics

    PubMed Central

    Salas, Matthias; Augustin, Marco; Ginner, Laurin; Kumar, Abhishek; Baumann, Bernhard; Leitgeb, Rainer; Drexler, Wolfgang; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2016-01-01

    The purpose of this work is to investigate the benefits of adaptive optics (AO) technology for optical coherence tomography angiography (OCTA). OCTA has shown great potential in non-invasively enhancing the contrast of vessels and small capillaries. Especially the capability of the technique to visualize capillaries with a lateral extension that is below the transverse resolution of the system opens unique opportunities in diagnosing retinal vascular diseases. However, there are some limitations of this technology such as shadowing and projection artifacts caused by overlying vasculature or the inability to determine the true extension of a vessel. Thus, the evaluation of the vascular structure and density based on OCTA alone can be misleading. In this paper we compare the performance of AO-OCT, AO-OCTA and OCTA for imaging retinal vasculature. The improved transverse resolution and the reduced depth of focus of AO-OCT and AO-OCTA greatly reduce shadowing artifacts allowing for a better differentiation and segmentation of different vasculature layers of the inner retina. The comparison is done on images recorded in healthy volunteers and in diabetic patients with distinct pathologies of the retinal microvasculature. PMID:28101412

  12. Adaptive optics research at Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Greenwood, Darryl P.; Primmerman, Charles A.

    A development history is presented for adaptive-optics methods of optical aberration measurement and correction in real time, which are applicable to the thermal blooming of high-energy laser beams, the compensation of a laser beam propagating from ground to space, and compensation by means of a synthetic beacon. Attention is given to schematics of the various adaptive optics system types, which cover the cases of cooperative and uncooperative targets. Representative research projects encompassed by the high-energy propagation range in West Palm Beach are the 'Everlaser' instrumented target vehicle, the OCULAR multidither system installation, and the Atmospheric Compensation Experiment Adaptive Optics System.

  13. [Inherited retinal or optic nerve disorders – five steps to diagnosis].

    PubMed

    Kellner, U; Kellner, S; Weinitz, S; Farmand, G; Weber, B H F; Stöhr, H

    2015-03-01

    An early diagnosis of inherited retinal or optic nerve disorders is often delayed due to unspecific clinical signs, multiple clinical manifestations and striking genetic heterogeneity of the underlying molecular defects. This study represents a retrospective analysis of findings in 4,021 patients with inherited retinal or optic nerve disorders seen between 1986 and 2014 (1,171 with follow-up). In addition to the basic ophthalmological examination, electrophysiological tests (ERG, n = 2,088, since 1986; EOG, n = 381, since 1986; VEP n = 595, since 1986; mfERG, n = 819, since 1998) and non-invasive retinal imaging (fundus autofluorescence (FAF, n = 1,784, since 2002), near-infrared autofluorescence (NIA, n = 1,091, since 2006), spectral domain OCT (SD-OCT, n = 848, since 2008) and three-wavelengths multicolour spectral reflection imaging (MC, n = 366, since 2013) were performed at least once. Molecular DNA testing was done in 383 patients between 2006 and 2014. Based on these data an efficient diagnostic strategy is suggested: 1) inclusion of inherited retinal and optic nerve disorders into the differential diagnosis of visual loss or visual field defects with undefined causes; 2) non-invasive retinal imaging; 3) electrophysiological tests; 4) DNA testing to confirm the initial clinical diagnosis; 5) examination in specialised centres, therapy and follow-up. In recent years, the spectrum of diagnostic techniques has continuously expanded. Importantly, non-invasive retinal imaging has become the primary diagnostic tool and DNA testing based on state-of-the-art high throughput techniques increases the identification of associated gene mutations. In conclusion, a structured process in the diagnostic procedure of inherited retinal and optic nerve disorders greatly reduces a diagnostic delay, enables an earlier counselling and therapy and avoids further unnecessary diagnostic tests.

  14. Non-Invasive Detection of Early Retinal Neuronal Degeneration by Ultrahigh Resolution Optical Coherence Tomography

    PubMed Central

    Tudor, Debbie; Kajić, Vedran; Rey, Sara; Erchova, Irina; Považay, Boris; Hofer, Bernd; Powell, Kate A.; Marshall, David; Rosin, Paul L.; Drexler, Wolfgang; Morgan, James E.

    2014-01-01

    Optical coherence tomography (OCT) has revolutionises the diagnosis of retinal disease based on the detection of microscopic rather than subcellular changes in retinal anatomy. However, currently the technique is limited to the detection of microscopic rather than subcellular changes in retinal anatomy. However, coherence based imaging is extremely sensitive to both changes in optical contrast and cellular events at the micrometer scale, and can generate subtle changes in the spectral content of the OCT image. Here we test the hypothesis that OCT image speckle (image texture) contains information regarding otherwise unresolvable features such as organelle changes arising in the early stages of neuronal degeneration. Using ultrahigh resolution (UHR) OCT imaging at 800 nm (spectral width 140 nm) we developed a robust method of OCT image analyses, based on spatial wavelet and texture-based parameterisation of the image speckle pattern. For the first time we show that this approach allows the non-invasive detection and quantification of early apoptotic changes in neurons within 30 min of neuronal trauma sufficient to result in apoptosis. We show a positive correlation between immunofluorescent labelling of mitochondria (a potential source of changes in cellular optical contrast) with changes in the texture of the OCT images of cultured neurons. Moreover, similar changes in optical contrast were also seen in the retinal ganglion cell- inner plexiform layer in retinal explants following optic nerve transection. The optical clarity of the explants was maintained throughout in the absence of histologically detectable change. Our data suggest that UHR OCT can be used for the non-invasive quantitative assessment of neuronal health, with a particular application to the assessment of early retinal disease. PMID:24776961

  15. Adaptive optics for reduced threshold energy in femtosecond laser induced optical breakdown in water based eye model

    NASA Astrophysics Data System (ADS)

    Hansen, Anja; Krueger, Alexander; Ripken, Tammo

    2013-03-01

    In ophthalmic microsurgery tissue dissection is achieved using femtosecond laser pulses to create an optical breakdown. For vitreo-retinal applications the irradiance distribution in the focal volume is distorted by the anterior components of the eye causing a raised threshold energy for breakdown. In this work, an adaptive optics system enables spatial beam shaping for compensation of aberrations and investigation of wave front influence on optical breakdown. An eye model was designed to allow for aberration correction as well as detection of optical breakdown. The eye model consists of an achromatic lens for modeling the eye's refractive power, a water chamber for modeling the tissue properties, and a PTFE sample for modeling the retina's scattering properties. Aberration correction was performed using a deformable mirror in combination with a Hartmann-Shack-sensor. The influence of an adaptive optics aberration correction on the pulse energy required for photodisruption was investigated using transmission measurements for determination of the breakdown threshold and video imaging of the focal region for study of the gas bubble dynamics. The threshold energy is considerably reduced when correcting for the aberrations of the system and the model eye. Also, a raise in irradiance at constant pulse energy was shown for the aberration corrected case. The reduced pulse energy lowers the potential risk of collateral damage which is especially important for retinal safety. This offers new possibilities for vitreo-retinal surgery using femtosecond laser pulses.

  16. Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging.

    PubMed

    Chen, Yueli; Burnes, Daina L; de Bruin, Martijn; Mujat, Mircea; de Boer, Johannes F

    2009-01-01

    To compare the optical properties of the human retina, 3-D volumetric images of the same eye are acquired with two nearly identical optical coherence tomography (OCT) systems at center wavelengths of 845 and 1060 nm using optical frequency domain imaging (OFDI). To characterize the contrast of individual tissue layers in the retina at these two wavelengths, the 3-D volumetric data sets are carefully spatially matched. The relative scattering intensities from different layers such as the nerve fiber, photoreceptor, pigment epithelium, and choroid are measured and a quantitative comparison is presented. OCT retinal imaging at 1060 nm is found to have a significantly better depth penetration but a reduced contrast between the retinal nerve fiber, the ganglion cell, and the inner plexiform layers compared to the OCT retinal imaging at 845 nm.

  17. Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yueli; Burnes, Daina L.; de Bruin, Martijn; Mujat, Mircea; de Boer, Johannes F.

    2009-03-01

    To compare the optical properties of the human retina, 3-D volumetric images of the same eye are acquired with two nearly identical optical coherence tomography (OCT) systems at center wavelengths of 845 and 1060 nm using optical frequency domain imaging (OFDI). To characterize the contrast of individual tissue layers in the retina at these two wavelengths, the 3-D volumetric data sets are carefully spatially matched. The relative scattering intensities from different layers such as the nerve fiber, photoreceptor, pigment epithelium, and choroid are measured and a quantitative comparison is presented. OCT retinal imaging at 1060 nm is found to have a significantly better depth penetration but a reduced contrast between the retinal nerve fiber, the ganglion cell, and the inner plexiform layers compared to the OCT retinal imaging at 845 nm.

  18. Binocular adaptive optics visual simulator.

    PubMed

    Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo

    2009-09-01

    A binocular adaptive optics visual simulator is presented. The instrument allows for measuring and manipulating ocular aberrations of the two eyes simultaneously, while the subject performs visual testing under binocular vision. An important feature of the apparatus consists on the use of a single correcting device and wavefront sensor. Aberrations are controlled by means of a liquid-crystal-on-silicon spatial light modulator, where the two pupils of the subject are projected. Aberrations from the two eyes are measured with a single Hartmann-Shack sensor. As an example of the potential of the apparatus for the study of the impact of the eye's aberrations on binocular vision, results of contrast sensitivity after addition of spherical aberration are presented for one subject. Different binocular combinations of spherical aberration were explored. Results suggest complex binocular interactions in the presence of monochromatic aberrations. The technique and the instrument might contribute to the better understanding of binocular vision and to the search for optimized ophthalmic corrections.

  19. Adaptive optics and the eye (super resolution OCT)

    PubMed Central

    Miller, D T; Kocaoglu, O P; Wang, Q; Lee, S

    2011-01-01

    The combination of adaptive optics (AO) and optical coherence tomography (OCT) was first reported 8 years ago and has undergone tremendous technological advances since then. The technical benefits of adding AO to OCT (increased lateral resolution, smaller speckle, and enhanced sensitivity) increase the imaging capability of OCT in ways that make it well suited for three-dimensional (3D) cellular imaging in the retina. Today, AO–OCT systems provide ultrahigh 3D resolution (3 × 3 × 3 μm3) and ultrahigh speed (up to an order of magnitude faster than commercial OCT). AO–OCT systems have been used to capture volume images of retinal structures, previously only visible with histology, and are being used for studying clinical conditions. Here, we present representative examples of cellular structures that can be visualized with AO–OCT. We overview three studies from our laboratory that used ultrahigh-resolution AO–OCT to measure the cross-sectional profiles of individual bundles in the retinal nerve fiber layer; the diameters of foveal capillaries that define the terminal rim of the foveal avascular zone; and the spacing and length of individual cone photoreceptor outer segments as close as 0.5° from the fovea center. PMID:21390066

  20. Progress on the VLT Adaptive Optics Facility

    NASA Astrophysics Data System (ADS)

    Arsenault, R.; Madec, P.-Y.; Paufique, J.; Ströbele, S.; Pirard, J.-F.; Vernet, É.; Hackenberg, W.; Hubin, N.; Jochum, L.; Kuntschner, H.; Glindemann, A.; Amico, P.; Lelouarn, M.; Kolb, J.; Tordo, S.; Donaldson, R.; Sã¶Nke, C.; Bonaccini Calia, D.; Conzelmann, R.; Delabre, B.; Kiekebusch, M.; Duhoux, P.; Guidolin, I.; Quattri, M.; Guzman, R.; Buzzoni, B.; Comin, M.; Dupuy, C.; Quentin, J.; Lizon, J.-L.; Silber, A.; Jolly, P.; Manescau, A.; Hammersley, P.; Reyes, J.; Jost, A.; Duchateau, M.; Heinz, V.; Bechet, C.; Stuik, R.

    2010-12-01

    The Very Large Telescope (VLT) Adaptive Optics Facility is a project that will transform one of the VLT's Unit Telescopes into an adaptive telescope that includes a deformable mirror in its optical train. For this purpose the secondary mirror is to be replaced by a thin shell deformable mirror; it will be possible to launch four laser guide stars from the centrepiece and two adaptive optics modules are being developed to feed the instruments HAWK-I and MUSE. These modules implement innovative correction modes for seeing improvement through ground layer adaptive optics and, for high Strehl ratio performance, laser tomography adaptive correction. The performance of these modes will be tested in Europe with a custom test bench called ASSIST. The project has completed its final design phase and concluded an intense phase of procurement; the year 2011 will see the beginning of assembly, integration and tests.

  1. Towards high-resolution retinal prostheses with direct optical addressing and inductive telemetry

    NASA Astrophysics Data System (ADS)

    Ha, Sohmyung; Khraiche, Massoud L.; Akinin, Abraham; Jing, Yi; Damle, Samir; Kuang, Yanjin; Bauchner, Sue; Lo, Yu-Hwa; Freeman, William R.; Silva, Gabriel A.; Cauwenberghs, Gert

    2016-10-01

    Objective. Despite considerable advances in retinal prostheses over the last two decades, the resolution of restored vision has remained severely limited, well below the 20/200 acuity threshold of blindness. Towards drastic improvements in spatial resolution, we present a scalable architecture for retinal prostheses in which each stimulation electrode is directly activated by incident light and powered by a common voltage pulse transferred over a single wireless inductive link. Approach. The hybrid optical addressability and electronic powering scheme provides separate spatial and temporal control over stimulation, and further provides optoelectronic gain for substantially lower light intensity thresholds than other optically addressed retinal prostheses using passive microphotodiode arrays. The architecture permits the use of high-density electrode arrays with ultra-high photosensitive silicon nanowires, obviating the need for excessive wiring and high-throughput data telemetry. Instead, the single inductive link drives the entire array of electrodes through two wires and provides external control over waveform parameters for common voltage stimulation. Main results. A complete system comprising inductive telemetry link, stimulation pulse demodulator, charge-balancing series capacitor, and nanowire-based electrode device is integrated and validated ex vivo on rat retina tissue. Significance. Measurements demonstrate control over retinal neural activity both by light and electrical bias, validating the feasibility of the proposed architecture and its system components as an important first step towards a high-resolution optically addressed retinal prosthesis.

  2. Evaluation of Retinal Vessel Morphology in Patients with Parkinson's Disease Using Optical Coherence Tomography

    PubMed Central

    Hidding, Ute; Keserü, Matthias; Keserü, Diana; Hassenstein, Andrea; Stemplewitz, Birthe

    2016-01-01

    Purpose The retina has been found affected in Parkinson’s disease (PD). It is unclear if this is due to neurodegeneration of local dopamine-dependent retinal cells, a result of central nervous degeneration including the optic nerve or retinal small vessel disease. This study aimed to detect changes of the retinal vasculature in PD patients compared to controls. Methods We examined 49 PD patients and 49 age- and sex-matched healthy controls by spectral domain optical coherence tomography (SD-OCT) with a circular scan centred at the optic disc. Vessels within the retinal nerve fibre layer were identified by an automated algorithm and thereafter manually labelled as artery or vein. Layer segmentation, vessel lumen and direct surrounding tissue were marked automatically with a grey value and the contrast between both values in relation to the surrounding tissue was calculated. The differences in these grey value ratios among subjects were determined and used as an indicator for differences in vessel morphology. Furthermore, the diameters of the veins and arteries were measured and then compared between the groups. Results The contrast of retinal veins was significantly lower in PD patients compared to controls, which indicates changes in vessel morphology in PD. The contrast of arteries was not significantly different. Disease duration, disease stage according to Hoehn and Yahr or age did not influence the grey value ratios in PD patients. Vessel diameter in either veins or arteries did not differ between subject groups. The contrast of retinal veins contralateral to the clinically predominant and first affected side was significantly lower compared to the ipsilateral side. Conclusion Our data show a potential difference of the retinal vasculature in PD patients compared to controls. Vascular changes in the retina of PD patients might contribute to vision-related complaints in PD. PMID:27525728

  3. Single Cell Imaging of the Chick Retina with Adaptive Optics

    PubMed Central

    Headington, Kenneth; Choi, Stacey S.; Nickla, Debora; Doble, Nathan

    2012-01-01

    Purpose The chick eye is extensively used as a model in the study of myopia and its progression; however, analysis of the photoreceptor mosaic has required the use of excised retina due to the uncorrected optical aberrations in the lens and cornea. This study implemented high resolution adaptive optics (AO) retinal imaging to visualize the chick cone mosaic in vivo. Methods The New England College of Optometry (NECO) AO fundus camera was modified to allow high resolution in vivo imaging on 2 six-week-old White Leghorn chicks (Gallus gallus domesticus) – labeled chick A and chick B. Multiple, adjacent images, each with a 2.5° field of view, were taken and subsequently montaged together. This process was repeated at varying retinal locations measured from the tip of the pecten. Automated software was used to determine the cone spacing and density at each location. Voronoi analysis was applied to determine the packing arrangement of the cones. Results In both chicks, cone photoreceptors were clearly visible at all retinal locations imaged. Cone densities measured at 36° nasal-12° superior retina from the pecten tip for chick A and 40° nasal-12° superior retina for chick B were 21,714±543 and 26,105±653 cones/mm2 respectively. For chick B, a further 11 locations immediately surrounding the pecten were imaged, with cone densities ranging from 20,980±524 to 25,148±629 cones/mm2. Conclusion In vivo analysis of the cone density and its packing characteristics are now possible in the chick eye through AO imaging, which has important implications for future studies of myopia and ocular disease research. PMID:21950701

  4. Optical flow versus retinal flow as sources of information for flight guidance

    NASA Technical Reports Server (NTRS)

    Cutting, James E.

    1991-01-01

    The appropriate description is considered of visual information for flight guidance, optical flow vs. retinal flow. Most descriptions in the psychological literature are based on the optical flow. However, human eyes move and this movement complicates the issues at stake, particularly when movement of the observer is involved. The question addressed is whether an observer, whose eyes register only retinal flow, use information in optical flow. It is suggested that the observer cannot and does not reconstruct the image in optical flow; instead they use retinal flow. Retinal array is defined as the projections of a three space onto a point and beyond to a movable, nearly hemispheric sensing device, like the retina. Optical array is defined as the projection of a three space environment to a point within that space. And flow is defined as global motion as a field of vectors, best placed on a spherical projection surface. Specifically, flow is the mapping of the field of changes in position of corresponding points on objects in three space onto a point, where that point has moved in position.

  5. Short-term adaptation of the VOR: non-retinal-slip error signals and saccade substitution

    NASA Technical Reports Server (NTRS)

    Eggers, Sscott D Z.; De Pennington, Nick; Walker, Mark F.; Shelhamer, Mark; Zee, David S.

    2003-01-01

    We studied short-term (30 min) adaptation of the vestibulo-ocular reflex (VOR) in five normal humans using a "position error" stimulus without retinal image motion. Both before and after adaptation a velocity gain (peak slow-phase eye velocity/peak head velocity) and a position gain (total eye movement during chair rotation/amplitude of chair motion) were measured in darkness using search coils. The vestibular stimulus was a brief ( approximately 700 ms), 15 degrees chair rotation in darkness (peak velocity 43 degrees /s). To elicit adaptation, a straight-ahead fixation target disappeared during chair movement and when the chair stopped the target reappeared at a new location in front of the subject for gain-decrease (x0) adaptation, or 10 degrees opposite to chair motion for gain-increase (x1.67) adaptation. This position-error stimulus was effective at inducing VOR adaptation, though for gain-increase adaptation the primary strategy was to substitute augmenting saccades during rotation while for gain-decrease adaptation both corrective saccades and a decrease in slow-phase velocity occurred. Finally, the presence of the position-error signal alone, at the end of head rotation, without any attempt to fix upon it, was not sufficient to induce adaptation. Adaptation did occur, however, if the subject did make a saccade to the target after head rotation, or even if the subject paid attention to the new location of the target without actually looking at it.

  6. Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer

    PubMed Central

    Stokkan, Karl-Arne; Folkow, Lars; Dukes, Juliet; Neveu, Magella; Hogg, Chris; Siefken, Sandra; Dakin, Steven C.; Jeffery, Glen

    2013-01-01

    Arctic reindeer experience extreme changes in environmental light from continuous summer daylight to continuous winter darkness. Here, we show that they may have a unique mechanism to cope with winter darkness by changing the wavelength reflection from their tapetum lucidum (TL). In summer, it is golden with most light reflected back directly through the retina, whereas in winter it is deep blue with less light reflected out of the eye. The blue reflection in winter is associated with significantly increased retinal sensitivity compared with summer animals. The wavelength of reflection depends on TL collagen spacing, with reduced spacing resulting in shorter wavelengths, which we confirmed in summer and winter animals. Winter animals have significantly increased intra-ocular pressure, probably produced by permanent pupil dilation blocking ocular drainage. This may explain the collagen compression. The resulting shift to a blue reflection may scatter light through photoreceptors rather than directly reflecting it, resulting in elevated retinal sensitivity via increased photon capture. This is, to our knowledge, the first description of a retinal structural adaptation to seasonal changes in environmental light. Increased sensitivity occurs at the cost of reduced acuity, but may be an important adaptation in reindeer to detect moving predators in the dark Arctic winter. PMID:24174115

  7. Cortical reorganization after long-term adaptation to retinal lesions in humans.

    PubMed

    Chung, Susana T L

    2013-11-13

    Single-unit recordings demonstrated that the adult mammalian visual cortex is capable of reorganizing after induced retinal lesions. In humans, whether the adult cortex is capable of reorganizing has only been studied using functional magnetic resonance imaging, with equivocal results. Here, we exploited the phenomenon of visual crowding, a major limitation on object recognition, to show that, in humans with long-standing retinal (macular) lesions that afflict the fovea and thus use their peripheral vision exclusively, the signature properties of crowding are distinctly different from those of the normal periphery. Crowding refers to the inability to recognize objects when the object spacing is smaller than the critical spacing. Critical spacing depends only on the retinal location of the object, scales linearly with its distance from the fovea, and is approximately two times larger in the radial than the tangential direction with respect to the fovea, thus demonstrating the signature radial-tangential anisotropy of the crowding zone. Using retinal imaging combined with behavioral measurements, we mapped out the crowding zone at the precise peripheral retinal locations adopted by individuals with macular lesions as the new visual reference loci. At these loci, the critical spacings are substantially smaller along the radial direction than expected based on the normal periphery, resulting in a lower scaling of critical spacing with the eccentricity of the peripheral locus and a loss in the signature radial-tangential anisotropy of the crowding zone. These results imply a fundamental difference in the substrate of cortical processing in object recognition following long-term adaptation to macular lesions.

  8. Adaptive optics program at TMT

    NASA Astrophysics Data System (ADS)

    Boyer, C.; Adkins, Sean; Andersen, David R.; Atwood, Jenny; Bo, Yong; Byrnes, Peter; Caputa, Kris; Cavaco, Jeff; Ellerbroek, Brent; Gilles, Luc; Gregory, James; Herriot, Glen; Hickson, Paul; Ljusic, Zoran; Manter, Darren; Marois, Christian; Otárola, Angel; Pagès, Hubert; Schoeck, Matthias; Sinquin, Jean-Christophe; Smith, Malcolm; Spano, Paolo; Szeto, Kei; Tang, Jinlong; Travouillon, Tony; Véran, Jean-Pierre; Wang, Lianqi; Wei, Kai

    2014-07-01

    The TMT first light Adaptive Optics (AO) facility consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). NFIRAOS is a 60 × 60 laser guide star (LGS) multi-conjugate AO (MCAO) system, which provides uniform, diffraction-limited performance in the J, H, and K bands over 17-30 arc sec diameter fields with 50 per cent sky coverage at the galactic pole, as required to support the TMT science cases. NFIRAOS includes two deformable mirrors, six laser guide star wavefront sensors, and three low-order, infrared, natural guide star wavefront sensors within each client instrument. The first light LGSF system includes six sodium lasers required to generate the NFIRAOS laser guide stars. In this paper, we will provide an update on the progress in designing, modeling and validating the TMT first light AO systems and their components over the last two years. This will include pre-final design and prototyping activities for NFIRAOS, preliminary design and prototyping activities for the LGSF, design and prototyping for the deformable mirrors, fabrication and tests for the visible detectors, benchmarking and comparison of different algorithms and processing architecture for the Real Time Controller (RTC) and development and tests of prototype candidate lasers. Comprehensive and detailed AO modeling is continuing to support the design and development of the first light AO facility. Main modeling topics studied during the last two years include further studies in the area of wavefront error budget, sky coverage, high precision astrometry for the galactic center and other observations, high contrast imaging with NFIRAOS and its first light instruments, Point Spread Function (PSF) reconstruction for LGS MCAO, LGS photon return and sophisticated low order mode temporal filtering.

  9. Multimodal adaptive optics for depth-enhanced high-resolution ophthalmic imaging

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Mujat, Mircea; Iftimia, Nicusor V.; Lue, Niyom; Ferguson, R. Daniel

    2010-02-01

    We developed a multimodal adaptive optics (AO) retinal imager for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa (RP). The development represents the first ever high performance AO system constructed that combines AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. The SSOCT channel operates at a wavelength of 1 μm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. The system is designed to operate on a broad clinical population with a dual deformable mirror (DM) configuration that allows simultaneous low- and high-order aberration correction. The system also includes a wide field line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation; an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of rotational eye motion; and a high-resolution LCD-based fixation target for presentation to the subject of stimuli and other visual cues. The system was tested in a limited number of human subjects without retinal disease for performance optimization and validation. The system was able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 μm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve targets deep into the choroid. In addition to instrument hardware development, analysis algorithms were developed for efficient information extraction from clinical imaging sessions, with functionality including automated image registration, photoreceptor counting, strip and montage stitching, and segmentation. The system provides clinicians and researchers with high-resolution, high performance adaptive optics imaging to help

  10. Adaptive optical interconnects: the ADDAPT project

    NASA Astrophysics Data System (ADS)

    Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter

    2015-09-01

    Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.

  11. Mouse retinal adaptive response to proton irradiation: Correlation with DNA repair and photoreceptor cell death

    NASA Astrophysics Data System (ADS)

    Tronov, V. A.; Vinogradova, Yu. V.; Poplinskaya, V. A.; Nekrasova, E. I.; Ostrovsky, M. A.

    2015-01-01

    Emerging body of data indicate protecting effect of low level of stress (preconditioning) on retina. Our previous study revealed non-linear dose-response relationship for cytotoxicity of both ionizing radiation and N-methyl-N-nitrosourea (MNU) on mouse retina. Moreover, non cytotoxic dose of MNU increased tolerance of retina to following challenge dose of MNU. This result displays protection of retina through mechanism of recovery. In present study we used the mouse model for MNU-induced retinal degeneration to evaluate adaptive response of retina to proton irradiation and implication in it of glial Muller cells. The data showed that the recovery of retina after genotoxic agents has been associated with increased efficacy of DNA damage repair and lowered death of retinal photoreceptor cells.

  12. Association of Diabetic Macular Nonperfusion With Outer Retinal Disruption on Optical Coherence Tomography

    PubMed Central

    Scarinci, Fabio; Jampol, Lee M.; Linsenmeier, Robert A.; Fawzi, Amani A.

    2015-01-01

    IMPORTANCE Diabetic macular nonperfusion leads to decreased perifoveal capillary blood flow, which in turn causes chronic ischemia of the retinal tissue. Using point-to-point correlation between spectral-domain optical coherence tomography (SD-OCT) and nonperfusion on fluorescein angiography, we observed that retinal capillary nonperfusion is associated with photoreceptor compromise on OCT. This study highlights a new concept of a possible contribution of the retinal deep capillary plexus to photoreceptor compromise in diabetic retinopathy in the absence of diabetic macular edema. OBJECTIVE To report outer retinal structural changes associated with enlargement of the foveal avascular zone and/or capillary nonperfusion in the macular area of diabetic patients. DESIGN, SETTING, AND PARTICIPANTS Retrospective observational cross-sectional study in 9 patients who were diagnosed as having diabetic retinopathy without diabetic macular edema and underwent fluorescein angiography and SD-OCT for diabetic retinopathy from July 8, 2014, to December 1, 2014, at a tertiary academic referral center. This analysis was conducted between December 2, 2014, and January 31, 2015. MAIN OUTCOMES AND MEASURES Outer retinal changes on SD-OCT in areas of macular ischemia. RESULTS The study included 13 eyes of 9 diabetic patients (4 men and 5 women aged 34–58 years) with a mean duration of diabetes mellitus of 14.5 years. Nine eyes showed outer retinal disruption revealed by SD-OCT that colocalized to areas of enlargement of the foveal avascular zone and macular capillary nonperfusion. Four fellow eyes with normal foveal avascular zones did not show any retinal changes on SD-OCT. CONCLUSIONS AND RELEVANCE Macular ischemia in diabetic patients can be associated with photoreceptor compromise. The presence of disruption of the photoreceptors on OCT in diabetic patients can be a manifestation of underlying capillary nonperfusion in eyes without diabetic macular edema. Ischemia at the deep

  13. A new approach to optic disc detection in human retinal images using the firefly algorithm.

    PubMed

    Rahebi, Javad; Hardalaç, Fırat

    2016-03-01

    There are various methods and algorithms to detect the optic discs in retinal images. In recent years, much attention has been given to the utilization of the intelligent algorithms. In this paper, we present a new automated method of optic disc detection in human retinal images using the firefly algorithm. The firefly intelligent algorithm is an emerging intelligent algorithm that was inspired by the social behavior of fireflies. The population in this algorithm includes the fireflies, each of which has a specific rate of lighting or fitness. In this method, the insects are compared two by two, and the less attractive insects can be observed to move toward the more attractive insects. Finally, one of the insects is selected as the most attractive, and this insect presents the optimum response to the problem in question. Here, we used the light intensity of the pixels of the retinal image pixels instead of firefly lightings. The movement of these insects due to local fluctuations produces different light intensity values in the images. Because the optic disc is the brightest area in the retinal images, all of the insects move toward brightest area and thus specify the location of the optic disc in the image. The results of implementation show that proposed algorithm could acquire an accuracy rate of 100 % in DRIVE dataset, 95 % in STARE dataset, and 94.38 % in DiaRetDB1 dataset. The results of implementation reveal high capability and accuracy of proposed algorithm in the detection of the optic disc from retinal images. Also, recorded required time for the detection of the optic disc in these images is 2.13 s for DRIVE dataset, 2.81 s for STARE dataset, and 3.52 s for DiaRetDB1 dataset accordingly. These time values are average value.

  14. A serial study of retinal changes following optic neuritis with sample size estimates for acute neuroprotection trials.

    PubMed

    Henderson, Andrew P D; Altmann, Daniel R; Trip, Anand S; Kallis, Constantinos; Jones, Steve J; Schlottmann, Patricio G; Garway-Heath, David F; Plant, Gordon T; Miller, David H

    2010-09-01

    Following an episode of optic neuritis, thinning of the retinal nerve fibre layer, which indicates axonal loss, is observed using optical coherence tomography. The longitudinal course of the retinal changes has not been well characterized. We performed a serial optical coherence tomography study in patients presenting with optic neuritis in order to define the temporal evolution of retinal nerve fibre layer changes and to estimate sample sizes for proof-of-concept trials of neuroprotection using retinal nerve fibre layer loss as the outcome measure. Twenty-three patients (7 male, 16 female, mean age 31 years) with acute clinically isolated unilateral optic neuritis were recruited to undergo optical coherence tomography, visual assessments and visual evoked potentials at presentation (median 16 days from onset of visual loss) and after 3, 6, 12 and 18 months. Compared with the clinically unaffected fellow eye, the retinal nerve fibre layer thickness of the affected eye was significantly increased at presentation and significantly reduced at all later time points. The evolution of retinal nerve fibre layer changes in the affected eye fitted well with an exponential model, with thinning appearing a mean of 1.6 months from symptom onset and the rate of ongoing retinal nerve fibre layer loss decreasing thereafter. At presentation, increased retinal nerve fibre layer thickness was associated with impaired visual acuity and prolonged visual evoked potential latency. Visual function after 12 months was not related to the extent of acute retinal nerve fibre layer swelling but was significantly associated with the extent of concurrent retinal nerve fibre layer loss. Sample size calculations for placebo-controlled trials of acute neuroprotection indicated that the numbers needed after 6 months of follow up are smaller than those after 3 months and similar to those after 12 months of follow-up. Study power was greater when investigating differences between clinically

  15. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    PubMed

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  16. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography

    PubMed Central

    Wong, Kevin S. K.; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation. PMID:25780747

  17. Adaptive-optics performance of Antarctic telescopes.

    PubMed

    Lawrence, Jon S

    2004-02-20

    The performance of natural guide star adaptive-optics systems for telescopes located on the Antarctic plateau is evaluated and compared with adaptive-optics systems operated with the characteristic mid-latitude atmosphere found at Mauna Kea. A 2-m telescope with tip-tilt correction and an 8-m telescope equipped with a high-order adaptive-optics system are considered. Because of the large isoplanatic angle of the South Pole atmosphere, the anisoplanatic error associated with an adaptive-optics correction is negligible, and the achievable resolution is determined only by the fitting error associated with the number of corrected wave-front modes, which depends on the number of actuators on the deformable mirror. The usable field of view of an adaptive-optics equipped Antarctic telescope is thus orders of magnitude larger than for a similar telescope located at a mid-latitude site; this large field of view obviates the necessity for multiconjugate adaptive-optics systems that use multiple laser guide stars. These results, combined with the low infrared sky backgrounds, indicate that the Antarctic plateau is the best site on Earth at which to perform high-resolution imaging with large telescopes, either over large fields of view or with appreciable sky coverage. Preliminary site-testing results obtained recently from the Dome Concordia station indicate that this site is far superior to even the South Pole.

  18. Measurements of contrast sensitivity by an adaptive optics visual simulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Ucikawa, Keiji

    2015-08-01

    We developed an adaptive optics visual simulator (AOVS) to study the relationship between the contrast sensitivity and higher-order wavefront aberrations of human eyes. A desired synthetic aberration was virtually generated on a subject eye by the AOVS, and red laser light was used to measure the aberrations. The contrast sensitivity was measured in a psychophysical experiment using visual stimulus patterns provided by a large-contrast-range imaging system, which included two liquid crystal displays illuminated by red light emitting diodes from the backside. The diameter of the pupil was set to 4 mm by an artificial aperture, and the retinal illuminance of the stimulus image was controlled to 10 Td. Experiments conducted with four normal subjects revealed that their contrast sensitivity to a high-spatial-frequency vertical sinusoidal grating pattern was lower in the presence of a horizontal coma aberration than in the presence of a vertical coma or no aberrations ( p < 0.02, Nagai method).

  19. Small scale adaptive optics experiment systems engineering

    NASA Technical Reports Server (NTRS)

    Boykin, William H.

    1993-01-01

    Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.

  20. Spectral-domain optical coherence tomography appearance of a retinal nematode.

    PubMed

    Masudi, Ali; Soheilian, Masoud; Nourinia, Ramin; Soheilian, Rasam; Peyman, Gholam A

    2013-11-25

    A 65-year-old man presented with decreased visual acuity in his left eye of 10 days' duration. Ocular examination revealed visual acuity of 20/200 in the left eye caused by a visible retinal nematode (roundworm) located close to the fovea. Spectral-domain optical coherence tomography imaging showed the nematode in the retinal nerve fiber layer. The patient was followed up without treatment, and the nematode disappeared spontaneously after 5 weeks. Visual acuity in the affected eye improved to 20/25.

  1. Evaluation of Retinal Changes Using Optical Coherence Tomography in a Pediatric Case of Susac Syndrome

    PubMed Central

    Kola, Mehmet; Erdöl, Hidayet; Ertuğrul Atasoy, Sevil; Türk, Adem

    2017-01-01

    Susac syndrome is a rare occlusive vasculopathy affecting the retina, inner ear and brain. The cause is unknown, although it generally affects young women. This syndrome can be difficult to diagnose because its signs can only be revealed by detailed examination. These signs are not always concomitant, but may appear at different times. This report describes a pediatric case who was diagnosed with Susac syndrome when retinal lesions were identified in the inactive period with the help of optical coherence tomography (OCT). The purpose of this case report is to emphasize the importance of OCT in clarifying undefined retinal changes in Susac syndrome. PMID:28182173

  2. [Optical properties and clinical performance of the Topcon retinal camera TRC-FET 3 (author's transl)].

    PubMed

    Dressler, M; Rassow, B; Wesemann, W

    1979-08-01

    A Topcon Retinal Camera TRC-FET 3 was tested for several weeks under laboratory and clinical routine conditions. The optical properties turned out as good and meet the requirements for retinal cameras in all details. Remarkable is the high speed of the imaging system, which allows working with low flash energies and with high flash frequency. The resolving power is high (8 microns at the center) and decreases slowly to the periphery. The illumination of the fundus is fairly homogeneous. Many filters of good performance are provided. There was no problem in handling the camera, and the test photographs as well as the clinical routine photographs were of high quality.

  3. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    PubMed Central

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  4. Assessment of ischemia in acute central retinal vein occlusion from inner retinal reflectivity on spectral domain optical coherence tomography

    PubMed Central

    Browning, David J; Punjabi, Omar S; Lee, Chong

    2017-01-01

    Purpose To determine the relationship between different spectral domain optical coherence tomography (SD-OCT) signs of retinal ischemia in acute central retinal vein occlusion (CRVO) and whether they predict anterior segment neovascularization (ASNV). Design Retrospective, observational study. Subjects Thirty-nine consecutive patients with acute CRVO and 12 months of follow-up. Methods We graded baseline SD-OCTs for increased reflectivity of the inner retina, loss of definition of inner retinal layers, presence of a prominent middle-limiting membrane (p-MLM) sign, and presence of paracentral acute middle maculopathy (PAMM). Graders were masked with respect to all clinical information. Results The intraclass correlation coefficients (ICCs) of grading–regrading by graders 1 and 2 were 0.8104, 95% confidence interval (CI) (0.6686, 0.8956), and 0.7986, 95% CI (0.6475, 0.8892), respectively. The intragrader coefficients of repeatability (COR) for graders 1 and 2 were 0.94 and 0.92, respectively. The ICC of graders 1 compared with 2 was 0.8039, 95% CI (0.6544, 0.8916). The intergrader COR was 0.80. SD-OCT grades of baseline ischemia were not associated with baseline visual acuity (VA), central subfield mean thickness (CSMT), or relative afferent pupillary defect; 12-month VA, CSMT, change in VA, change in CSMT, number of antivascular endothelial growth factor injections or corticosteroid injections, or proportion of eyes developing ASNV. SD-OCT grades of ischemia did not correlate with the proportion of eyes having the p-MLM sign or PAMM. PAMM and p-MLM are milder signs of ischemia than increased reflectivity of the inner retinal layers. Eyes with PAMM can evolve, losing PAMM and gaining the p-MLM sign. Conclusion Grading of ischemia from SD-OCT in acute CRVO was repeatable within graders and reproducible across graders for the graders in this study. SD-OCT signs of ischemia are not correlated with each other and do not reliably predict subsequent ASNV. Close

  5. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP

    PubMed Central

    Legarreta, Andrew D.; Legarreta, John E.; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X.; Ferguson, R. Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S.

    2016-01-01

    Purpose: To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. Methods: A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Results: Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Conclusion: Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease. PMID:26735319

  6. Optical Profilometers Using Adaptive Signal Processing

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Youngquist, Robert; Mikhael, Wasfy

    2006-01-01

    A method of adaptive signal processing has been proposed as the basis of a new generation of interferometric optical profilometers for measuring surfaces. The proposed profilometers would be portable, hand-held units. Sizes could be thus reduced because the adaptive-signal-processing method would make it possible to substitute lower-power coherent light sources (e.g., laser diodes) for white light sources and would eliminate the need for most of the optical components of current white-light profilometers. The adaptive-signal-processing method would make it possible to attain scanning ranges of the order of decimeters in the proposed profilometers.

  7. Toward Adaptive Optic Mitigation of Aero-Optic Effects

    DTIC Science & Technology

    2009-02-27

    photography .[43] Tyson developed expressions for the "gain" of a deformable mirror removing Zernike modes within an aperture. [35] The following...R.K., Principles of Adaptive Optics, Academic Press, Inc., San Diego, 1991. 9. Tyson, R.K., The status of astronomical adaptive optics systems...pin-hole photography The London, Edinburg and Dublin philosophical magazine and journal of science 31 87-99 44. Siegenthaler, J., Guidelines for

  8. Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice

    PubMed Central

    Rodríguez-Muela, N; Germain, F; Mariño, G; Fitze, P S; Boya, P

    2012-01-01

    Autophagy is an essential recycling pathway implicated in neurodegeneration either as a pro-survival or a pro-death mechanism. Its role after axonal injury is still uncertain. Axotomy of the optic nerve is a classical model of neurodegeneration. It induces retinal ganglion cell death, a process also occurring in glaucoma and other optic neuropathies. We analyzed autophagy induction and cell survival following optic nerve transection (ONT) in mice. Our results demonstrate activation of autophagy shortly after axotomy with autophagosome formation, upregulation of the autophagy regulator Atg5 and apoptotic death of 50% of the retinal ganglion cells (RGCs) after 5 days. Genetic downregulation of autophagy using knockout mice for Atg4B (another regulator of autophagy) or with specific deletion of Atg5 in retinal ganglion cells, using the Atg5flox/flox mice reduces cell survival after ONT, whereas pharmacological induction of autophagy in vivo increases the number of surviving cells. In conclusion, our data support that autophagy has a cytoprotective role in RGCs after traumatic injury and may provide a new therapeutic strategy to ameliorate retinal diseases. PMID:21701497

  9. Absolute Retinal Blood Flow Measurement With a Dual-Beam Doppler Optical Coherence Tomography

    PubMed Central

    Dai, Cuixia; Liu, Xiaojing; Zhang, Hao F.; Puliafito, Carmen A.; Jiao, Shuliang

    2013-01-01

    Purpose. To test the capability of a novel dual-beam Doppler optical coherence tomography (OCT) technique for simultaneous in vivo measurement of the Doppler angle and, thus, the absolute retinal blood velocity and the retinal flow rate, without the influence of motion artifacts. Methods. A novel dual-beam Doppler spectral domain OCT (SD-OCT) was developed. The two probing beams are separated with a controllable distance along an arbitrary direction, both of which are controlled by two independent 2D optical scanners. Two sets of optical Doppler tomography (ODT) images are acquired simultaneously. The Doppler angle of each blood vessel segment is calculated from the relative coordinates of the centers of the blood vessel in the two corresponding ODT images. The absolute blood flow velocity and the volumetric blood flow rate can then be calculated. To measure the total retinal blood flow, we used a circular scan pattern centered at the optic disc to obtain two sets of concentric OCT/ODT images simultaneously. Results. We imaged two normal human subjects at ages of 48 and 34 years. The total retinal blood flow rates of the two human subjects were calculated to be 47.01 μL/min (older subject) and 51.37 μL/min (younger subject), respectively. Results showed that the performance of this imaging system is immune to eye movement, since the two sets of ODT images were acquired simultaneously. Conclusions. The dual-beam OCT/ODT system is successful in measuring the absolute retinal blood velocity and the volumetric flow rate. The advantage of the technique is that the two sets of ODT images used for the calculation are acquired simultaneously, which eliminates the influence of eye motion and ensures the accuracy of the calculated hemodynamic parameters. PMID:24222303

  10. Application of improved homogeneity similarity-based denoising in optical coherence tomography retinal images.

    PubMed

    Chen, Qiang; de Sisternes, Luis; Leng, Theodore; Rubin, Daniel L

    2015-06-01

    Image denoising is a fundamental preprocessing step of image processing in many applications developed for optical coherence tomography (OCT) retinal imaging--a high-resolution modality for evaluating disease in the eye. To make a homogeneity similarity-based image denoising method more suitable for OCT image removal, we improve it by considering the noise and retinal characteristics of OCT images in two respects: (1) median filtering preprocessing is used to make the noise distribution of OCT images more suitable for patch-based methods; (2) a rectangle neighborhood and region restriction are adopted to accommodate the horizontal stretching of retinal structures when observed in OCT images. As a performance measurement of the proposed technique, we tested the method on real and synthetic noisy retinal OCT images and compared the results with other well-known spatial denoising methods, including bilateral filtering, five partial differential equation (PDE)-based methods, and three patch-based methods. Our results indicate that our proposed method seems suitable for retinal OCT imaging denoising, and that, in general, patch-based methods can achieve better visual denoising results than point-based methods in this type of imaging, because the image patch can better represent the structured information in the images than a single pixel. However, the time complexity of the patch-based methods is substantially higher than that of the others.

  11. Optical Recording of Retinal and Visual Cortical Responses Evoked by Electrical Stimulation on the Retina

    NASA Astrophysics Data System (ADS)

    Osanai, Makoto; Sakaehara, Haruko; Sawai, Hajime; Song, Wen-Jie; Yagi, Tetsuya

    To develop a retinal prosthesis for blind patients using an implanted multielectrode array, it is important to study the response properties of retinal ganglion cells and of the visual cortex to localized retinal electrical stimulation. Optical imaging can reveal the spatio-temporal properties of neuronal activity. Therefore, we conducted a calcium imaging study to investigate response properties to local current stimulation in frog retinas, and a membrane potential imaging study to explore the visual cortical responses to retinal stimulation in guinea pigs. In the retina, local current stimuli evoked transient responses in the ganglion cells located near the stimulus electrode. The spatial pattern of the responding area was altered by changing the location of the stimulation. Local electrical stimulation to the retina also caused transient responses in the visual cortex. The responding cortical areas in the primary visual cortex were localized. A spatially different cortical response was observed to stimulation of a different position on the retina. These results suggest that the imaging study has great potential in revealing the spatio-temporal properties of the neuronal response for the retinal prosthesis.

  12. Ultrahigh resolution optical coherence tomography for quantitative topographic mapping of retinal and intraretinal architectural morphology

    NASA Astrophysics Data System (ADS)

    Ko, Tony H.; Hartl, Ingmar; Drexler, Wolfgang; Ghanta, Ravi K.; Fujimoto, James G.

    2002-06-01

    Quantitative, three-dimensional mapping of retinal architectural morphology was achieved using an ultrahigh resolution ophthalmic OCT system. This OCT system utilizes a broad bandwidth titanium-sapphire laser light source generating bandwidths of up to 300 nm near 800 nm center wavelength. The system enables real-time cross-sectional imaging of the retina with ~3 micrometers axial resolution. The macula and the papillomacular axis of a normal human subject were systematically mapped using a series of linear scans. Edge detection and segmentation algorithms were developed to quantify retinal and intraretinal thicknesses. Topographic mapping of the total retinal thickness and the total ganglion cell/inner plexiform layer thickness was achieved around the macula. A topographic mapping quantifying the progressive thickening of the nerve fiber layer (NFL) nasally approaching the optic disk was also demonstrated. The ability to create three-dimensional topographic mapping of retinal architectural morphology at ~3 micrometers axial resolution will be relevant for the diagnosis of many retinal diseases. The topographic quantification of these structures can serve as a powerful tool for developing algorithms and clinical scanning protocols for the screening and staging of ophthalmic diseases such as glaucoma.

  13. Analysis of retinal flecks in fundus flavimaculatus using optical coherence tomography

    PubMed Central

    Querques, G; Leveziel, N; Benhamou, N; Voigt, M; Soubrane, G; Souied, E H

    2006-01-01

    Background/aim Retinal flecks are commonly observed in both Stargardt disease and fundus flavimaculatus (FFM). The aim was to determine the precise localisation of these flecks within the retinal layers using Stratus optical coherence tomography (OCT). Methods A prospective observational case series. A complete ophthalmological examination, including autofluorescence, fluorescein angiography (FA), and Stratus OCT (Carl Zeiss) was performed in 49 eyes of 26 consecutive patients with FFM. Six to 12 Stratus OCT linear scans focused on the retinal flecks were performed in each eye. Results The age at presentation ranged from 23 years to 71 years and visual acuity ranged from 20/20 to 20/400. Hyper‐reflective deposits classified into two types were observed on Stratus OCT: type 1 lesions (94% of eyes) presented as dome‐shaped deposits located in the inner part of the retinal pigment epithelium (RPE) layer and type 2 lesions (86% of eyes) presented as small linear deposits located at the level of the outer nuclear layer and clearly separated from the RPE layer. Conclusions Stratus OCT is a non‐invasive instrument that provides new information on the location of flecks in FFM. The location of type 2 lesions is quite unusual among macular dystrophies; OCT may therefore be useful in the diagnosis of retinal flecks in some cases of FFM. PMID:16754647

  14. Convex hull based neuro-retinal optic cup ellipse optimization in glaucoma diagnosis.

    PubMed

    Zhang, Zhuo; Liu, Jiang; Cherian, Neetu Sara; Sun, Ying; Lim, Joo Hwee; Wong, Wing Kee; Tan, Ngan Meng; Lu, Shijian; Li, Huiqi; Wong, Tien Ying

    2009-01-01

    Glaucoma is the second leading cause of blindness. Glaucoma can be diagnosed through measurement of neuro-retinal optic cup-to-disc ratio (CDR). Automatic calculation of optic cup boundary is challenging due to the interweavement of blood vessels with the surrounding tissues around the cup. A Convex Hull based Neuro-Retinal Optic Cup Ellipse Optimization algorithm improves the accuracy of the boundary estimation. The algorithm's effectiveness is demonstrated on 70 clinical patient's data set collected from Singapore Eye Research Institute. The root mean squared error of the new algorithm is 43% better than the ARGALI system which is the state-of-the-art. This further leads to a large clinical evaluation of the algorithm involving 15 thousand patients from Australia and Singapore.

  15. Optical aberrations, retinal image quality and eye growth: Experimentation and modeling

    NASA Astrophysics Data System (ADS)

    Tian, Yibin

    2007-12-01

    Retinal image quality is important for normal eye growth. Optical aberrations are of interest for two reasons: first, they degrade retinal images; second, they might provide some cues to defocus. Higher than normal ocular aberrations have been previously associated with human myopia. However, these studies were cross-sectional in design, and only reported aberrations in terms of root mean square (RMS) errors of Zernike coefficients, a poor metric of optical quality. This dissertation presents results from investigations of ocular optical aberrations, retinal image quality and eye growth in chicks and humans. A number of techniques were utilized, including Shack-Hartmann aberrometry, high-frequency A-scan ultrasonography, ciliary nerve section (CNX), photorefractive keratectomy (PRK) as well as computer simulations and modeling. A technique to extract light scatter information from Shack-Hartmann images was also developed. The main findings of the dissertation are summarized below. In young chicks, most ocular aberrations decreased with growth in both normal and CNX eyes, and there were diurnal fluctuations in some aberrations. Modeling suggested active reduction in higher order aberrations (HOAs) during early development. Although CNX eyes manifested greater than normal HOAs, they showed near normal growth. Retinal image degradation varied greatly among individual eyes post-PRK in young chicks. Including light scatter information into analyses of retinal image quality better estimated the latter. Albino eyes showed more severe retinal image degradation than normal eyes, due to increased optical aberrations and light scatter, but their growth was similar to those of normal eyes, implying that they are relatively insensitive to retina image quality. Although the above results questioned the influence of optical aberrations on early ocular growth, some optical quality metrics, derived from optical aberrations data, could predict how much the eyes of young chicks

  16. Enhanced Visualization of Subtle Outer Retinal Pathology by En Face Optical Coherence Tomography and Correlation with Multi-Modal Imaging

    PubMed Central

    Chew, Avenell L.; Lamey, Tina; McLaren, Terri; De Roach, John

    2016-01-01

    Purpose To present en face optical coherence tomography (OCT) images generated by graph-search theory algorithm-based custom software and examine correlation with other imaging modalities. Methods En face OCT images derived from high density OCT volumetric scans of 3 healthy subjects and 4 patients using a custom algorithm (graph-search theory) and commercial software (Heidelberg Eye Explorer software (Heidelberg Engineering)) were compared and correlated with near infrared reflectance, fundus autofluorescence, adaptive optics flood-illumination ophthalmoscopy (AO-FIO) and microperimetry. Results Commercial software was unable to generate accurate en face OCT images in eyes with retinal pigment epithelium (RPE) pathology due to segmentation error at the level of Bruch’s membrane (BM). Accurate segmentation of the basal RPE and BM was achieved using custom software. The en face OCT images from eyes with isolated interdigitation or ellipsoid zone pathology were of similar quality between custom software and Heidelberg Eye Explorer software in the absence of any other significant outer retinal pathology. En face OCT images demonstrated angioid streaks, lesions of acute macular neuroretinopathy, hydroxychloroquine toxicity and Bietti crystalline deposits that correlated with other imaging modalities. Conclusions Graph-search theory algorithm helps to overcome the limitations of outer retinal segmentation inaccuracies in commercial software. En face OCT images can provide detailed topography of the reflectivity within a specific layer of the retina which correlates with other forms of fundus imaging. Our results highlight the need for standardization of image reflectivity to facilitate quantification of en face OCT images and longitudinal analysis. PMID:27959968

  17. Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach.

    PubMed

    Welfer, Daniel; Scharcanski, Jacob; Kitamura, Cleyson M; Dal Pizzol, Melissa M; Ludwig, Laura W B; Marinho, Diane Ruschel

    2010-02-01

    The identification of some important retinal anatomical regions is a prerequisite for the computer aided diagnosis of several retinal diseases. In this paper, we propose a new adaptive method for the automatic segmentation of the optic disk in digital color fundus images, using mathematical morphology. The proposed method has been designed to be robust under varying illumination and image acquisition conditions, common in eye fundus imaging. Our experimental results based on two publicly available eye fundus image databases are encouraging, and indicate that our approach potentially can achieve a better performance than other known methods proposed in the literature. Using the DRIVE database (which consists of 40 retinal images), our method achieves a success rate of 100% in the correct location of the optic disk, with 41.47% of mean overlap. In the DIARETDB1 database (which consists of 89 retinal images), the optic disk is correctly located in 97.75% of the images, with a mean overlap of 43.65%.

  18. Comparison of optical coherence tomography findings in a patient with central retinal artery occlusion in one eye and end-stage glaucoma in the fellow eye.

    PubMed

    Greene, Daniel P; Richards, Charles P; Ghazi, Nicola G

    2012-01-01

    This case describes a patient with chronic central retinal artery occlusion in one eye and end-stage traumatic glaucoma in the fellow eye. Optical coherence tomography (OCT) of the macula of the chronic phase of central retinal artery occlusion of the right eye indicated loss of the normal foveal depression, extensive inner retinal atrophy, and marked retinal thinning. In contrast, scans of the left eye with end-stage glaucoma demonstrated an intact foveal depression and limited retinal thinning. The pattern of macular OCT findings in this patient illustrates distinguishing features between chronic central retinal artery occlusion and chronic optic neuropathy due to end-stage glaucoma.

  19. Comparison of retinal thickness by Fourier-domain optical coherence tomography and OCT retinal image analysis software segmentation analysis derived from Stratus optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Tátrai, Erika; Ranganathan, Sudarshan; Ferencz, Mária; Debuc, Delia Cabrera; Somfai, Gábor Márk

    2011-05-01

    Purpose: To compare thickness measurements between Fourier-domain optical coherence tomography (FD-OCT) and time-domain OCT images analyzed with a custom-built OCT retinal image analysis software (OCTRIMA). Methods: Macular mapping (MM) by StratusOCT and MM5 and MM6 scanning protocols by an RTVue-100 FD-OCT device are performed on 11 subjects with no retinal pathology. Retinal thickness (RT) and the thickness of the ganglion cell complex (GCC) obtained with the MM6 protocol are compared for each early treatment diabetic retinopathy study (ETDRS)-like region with corresponding results obtained with OCTRIMA. RT results are compared by analysis of variance with Dunnett post hoc test, while GCC results are compared by paired t-test. Results: A high correlation is obtained for the RT between OCTRIMA and MM5 and MM6 protocols. In all regions, the StratusOCT provide the lowest RT values (mean difference 43 +/- 8 μm compared to OCTRIMA, and 42 +/- 14 μm compared to RTVue MM6). All RTVue GCC measurements were significantly thicker (mean difference between 6 and 12 μm) than the GCC measurements of OCTRIMA. Conclusion: High correspondence of RT measurements is obtained not only for RT but also for the segmentation of intraretinal layers between FD-OCT and StratusOCT-derived OCTRIMA analysis. However, a correction factor is required to compensate for OCT-specific differences to make measurements more comparable to any available OCT device.

  20. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy.

    PubMed

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R; Roorda, Austin; Rossi, Ethan A

    2014-09-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10-15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66-2.56 μm or ~0.34-0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20-0.25 μm or ~0.04-0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported.

  1. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy

    PubMed Central

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R.; Roorda, Austin; Rossi, Ethan A.

    2014-01-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported. PMID:25401030

  2. Determining locus and periphery of optic disk in retinal images

    NASA Astrophysics Data System (ADS)

    Norouzi Fard, Mohammad; Salehi, Alireza; Shanbeh Zadeh, Jamshid

    2008-04-01

    Diabetes can be recognized by features of retina. Automatic retina feature extraction improves the speed of diabetes diagnosis. The first step in extracting the features is to localize the optic disk. Methods with low accuracy in localizing the optic disk include area with maximum lightness or the largest area containing pixels with maximum gray levels. A more accurate method is to find the physical position of blood vessel that passes through optic disk. This paper presents a fast and accurate algorithm for localizing the optic disk. The process of localization consists of finding the target area, Optic Disk center and Optic Disk boundaries. Optic Disk boundaries are recognized by our algorithm with %90 accuracy.

  3. Liquid lens: advances in adaptive optics

    NASA Astrophysics Data System (ADS)

    Casey, Shawn Patrick

    2010-12-01

    'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.

  4. Optical coherence tomography imaging of retinal damage in real time under a stimulus electrode

    NASA Astrophysics Data System (ADS)

    Cohen, Ethan; Agrawal, Anant; Connors, Megan; Hansen, Barry; Charkhkar, Hamid; Pfefer, Joshua

    2011-10-01

    We have developed a novel method to study the effects of electrical stimulation of the local retina directly under an epiretinal stimulus electrode in real time. Using optical coherence tomography (OCT) and a superfused retinal eyecup preparation, we obtained high-resolution images of the rabbit retina directly under an optically transparent saline-filled fluoropolymer stimulation tube electrode. During OCT imaging, 50 Hz trains of biphasic current pulses 1 ms/phase (23-749 µC cm-2 ph-1) were applied to the retinal surface for 5 min. After imaging, the stimulated regions were stained with the dye propidium iodide (PI) to reveal cytotoxic damage. Pulse train stimulation at 44-133 µC cm-2 ph-1 had little effect on the retina; however, trains >=442 µC cm-2 ph-1 caused increases in the reflectance of the inner plexiform layer (IPL) and edema. The damage seen in retinal OCT images matched the pattern observed in histological sections, and in the PI staining. With pulse trains >=442 µC cm-2 ph-1, rapid increases in the reflectivity of the IPL could be observed under the stimulus electrode. Below the electrode, we observed a ring-like pattern of retinal detachment in the subretinal space. The OCT imaging method may be useful for analyzing overstimulation of neuronal tissue by electrodes in many brain regions. This paper was originally submitted for the special issue containing contributions from the Sixth Biennial Research Congress of The Eye and the Chip.

  5. Segmentation of the blood vessels and optic disk in retinal images.

    PubMed

    Salazar-Gonzalez, Ana; Kaba, Djibril; Li, Yongmin; Liu, Xiaohui

    2014-11-01

    Retinal image analysis is increasingly prominent as a nonintrusive diagnosis method in modern ophthalmology. In this paper, we present a novel method to segment blood vessels and optic disk in the fundus retinal images. The method could be used to support nonintrusive diagnosis in modern ophthalmology since the morphology of the blood vessel and the optic disk is an important indicator for diseases like diabetic retinopathy, glaucoma, and hypertension. Our method takes as first step the extraction of the retina vascular tree using the graph cut technique. The blood vessel information is then used to estimate the location of the optic disk. The optic disk segmentation is performed using two alternative methods. The Markov random field (MRF) image reconstruction method segments the optic disk by removing vessels from the optic disk region, and the compensation factor method segments the optic disk using the prior local intensity knowledge of the vessels. The proposed method is tested on three public datasets, DIARETDB1, DRIVE, and STARE. The results and comparison with alternative methods show that our method achieved exceptional performance in segmenting the blood vessel and optic disk.

  6. Adaptive Optics at Lawrence Livermore National Laboratory

    SciTech Connect

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media and must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.

  7. Robust Wiener filtering for Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2004-06-17

    In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.

  8. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  9. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  10. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  11. Adaptive Optics Reveals Photoreceptor Abnormalities in Diabetic Macular Ischemia

    PubMed Central

    Nesper, Peter L.; Scarinci, Fabio

    2017-01-01

    Diabetic macular ischemia (DMI) is a phenotype of diabetic retinopathy (DR) associated with chronic hypoxia of retinal tissue. The goal of this prospective observational study was to report evidence of photoreceptor abnormalities using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with DR in the setting of deep capillary plexus (DCP) non-perfusion. Eleven eyes from 11 patients (6 women, age 31–68), diagnosed with DR without macular edema, underwent optical coherence tomography angiography (OCTA) and AOSLO imaging. One patient without OCTA imaging underwent fluorescein angiography to characterize the enlargement of the foveal avascular zone. The parameters studied included photoreceptor heterogeneity packing index (HPi) on AOSLO, as well as DCP non-perfusion and vessel density on OCTA. Using AOSLO, OCTA and spectral domain (SD)-OCT, we observed that photoreceptor abnormalities on AOSLO and SD-OCT were found in eyes with non-perfusion of the DCP on OCTA. All eight eyes with DCP non-flow on OCTA showed photoreceptor abnormalities on AOSLO. Six of the eight eyes also had outer retinal abnormalities on SD-OCT. Three eyes with DR and robust capillary perfusion of the DCP had normal photoreceptors on SD-OCT and AOSLO. Compared to eyes with DR without DCP non-flow, the eight eyes with DCP non-flow had significantly lower HPi (P = 0.013) and parafoveal DCP vessel density (P = 0.016). We found a significant correlation between cone HPi and parafoveal DCP vessel density (r = 0.681, P = 0.030). Using a novel approach with AOSLO and OCTA, this study shows an association between capillary non-perfusion of the DCP and abnormalities in the photoreceptor layer in eyes with DR. This observation is important in confirming the significant contribution of the DCP to oxygen requirements of photoreceptors in DMI, while highlighting the ability of AOSLO to detect subtle photoreceptor changes not always visible on SD-OCT. PMID:28068435

  12. An adaptive optics imaging system designed for clinical use.

    PubMed

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R; Rossi, Ethan A

    2015-06-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2-3 arc minutes, (arcmin) 2) ~0.5-0.8 arcmin and, 3) ~0.05-0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3-5 arcmin, 2) ~0.7-1.1 arcmin and 3) ~0.07-0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing.

  13. An adaptive optics imaging system designed for clinical use

    PubMed Central

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R.; Rossi, Ethan A.

    2015-01-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2–3 arc minutes, (arcmin) 2) ~0.5–0.8 arcmin and, 3) ~0.05–0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3–5 arcmin, 2) ~0.7–1.1 arcmin and 3) ~0.07–0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  14. Adaptive Optics Applications in Vision Science

    SciTech Connect

    Olivier, S S

    2003-03-17

    Adaptive optics can be used to correct the aberrations in the human eye caused by imperfections in the cornea and the lens and thereby, improve image quality both looking into and out of the eye. Under the auspices of the NSF Center for Adaptive Optics and the DOE Biomedical Engineering Program, Lawrence Livermore National Laboratory has joined together with leading vision science researchers around the country to develop and test new ophthalmic imaging systems using novel wavefront corrector technologies. Results of preliminary comparative evaluations of these technologies in initial system tests show promise for future clinical utility.

  15. Adaptive optics requirements definition for TMT

    NASA Astrophysics Data System (ADS)

    Dekany, Richard G.; Britton, Matthew C.; Gavel, Don T.; Ellerbroek, Brent L.; Herriot, Glen; Max, Claire E.; Veran, Jean-Pierre

    2004-10-01

    The scientific return on adaptive optics on large telescopes has generated a new vocabulary of different adaptive optics (AO) modalities. Multiobject AO (MOAO), multiconjugate AO (MCAO), ground-layer AO (GLAO), and extreme contrast AO (ExAO) each require complex new extensions in functional requirements beyond the experience gained with systems operational on large telescopes today. Because of this potential for increased complexity, a more formal requirements development process is recommended. We describe a methodology for requirements definition under consideration and summarize the current scientific prioritization of TMT AO capabilities.

  16. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    SciTech Connect

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-09-15

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  17. Retinal thinning in tree shrews with induced high myopia: optical coherence tomography and histological assessment.

    PubMed

    Abbott, Carla J; Grünert, Ulrike; Pianta, Michael J; McBrien, Neville A

    2011-02-09

    This study determined retinal thinning in a mammalian model of high myopia using optical coherence tomography (OCT) and histological sections from the same retinal tissue. High myopia was induced in three tree shrews (Tupaia belangeri) by deprivation of form vision via lid suture of one eye, with the other eye a control. Ocular biometry data was obtained by Ascan ultrasonography, keratometry and retinoscopy. The Zeiss StratusOCT was used to obtain Bscans in vivo across the retina. Subsequently, eyes were enucleated and retinas fixed, dehydrated, embedded and sectioned. Treated eyes developed a high degree of axial myopia (-15.9 ± 2.3D; n = 3). The OCT analysis showed that in myopic eyes the nasal retina thinned more than the temporal retina relative to the disc (p=0.005). Histology showed that the retinas in the myopic eyes comprise all layers but were thinner than the retinas in normal and control eyes. Detailed thickness measurements in corresponding locations of myopic and control eyes in superior nasal retina using longitudinal reflectivity profiles from OCT and semithin vertical histological sections showed the percentage of retinal thinning in the myopic eyes was similar between methods (OCT 15.34 ± 5.69%; histology 17.61 ± 3.02%; p = 0.10). Analysis of retinal layers revealed that the inner plexiform, inner nuclear and outer plexiform layers thin the most. Cell density measurements showed all neuronal cell types are involved in retinal thinning. The results indicate that in vivo OCT measurements can accurately detect retinal thinning in high myopia.

  18. First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes

    NASA Astrophysics Data System (ADS)

    Gómez-Vieyra, Armando; Dubra, Alfredo; Williams, David R.; Malacara-Hernández, Daniel

    2009-09-01

    Scanning laser ophthalmoscopes (SLOs) and optical coherence tomographs are the state-of-the-art retinal imaging instruments, and are essential for early and reliable diagnosis of eye disease. Recently, with the incorporation of adaptive optics (AO), these instruments have started to deliver near diffraction-limited performance in both humans and animal models, enabling the resolution of the retinal ganglion cell bodies, their processes, the cone photoreceptor and the retinal pigment epithelial cells mosaics. Unfortunately, these novel instruments have not delivered consistent performance across human subjects and animal models. One of the limitations of current instruments is the astigmatism in the pupil and imaging planes, which degrades image quality, by preventing the wavefront sensor from measuring aberrations with high spatial content. This astigmatism is introduced by the sequence of off-axis reflective elements, typically spherical mirrors, used for relaying pupil and imaging planes. Expressions for minimal astigmatism on the image and pupil planes in off-axis reflective afocal telescopes formed by pairs of spherical mirrors are presented. The formulas, derived from the marginal ray fans equation, are valid for small angles of incidence (<=15°), and can be used to design laser cavities, spectrographs and vision adaptive optics systems. An example related to this last application is discussed.

  19. Effect of optic nerve sheath fenestration for idiopathic intracranial hypertension on retinal nerve fiber layer thickness.

    PubMed

    Starks, Victoria; Gilliland, Grant; Vrcek, Ivan; Gilliland, Connor

    2016-01-01

    The objective of the study was to evaluate whether optic nerve sheath fenestration in patients with idiopathic intracranial hypertension was associated with improvement in visual field pattern deviation and optical coherence tomography retinal nerve fiber layer thickness.The records of 13 eyes of 11 patients who underwent optic nerve sheath fenestration were reviewed. The subjects were patients of a clinical practice in Dallas, Texas. Charts were reviewed for pre- and postoperative visual field pattern deviation (PD) and retinal nerve fiber layer thickness (RNFL).PD and RNFL significantly improved after surgery. Average PD preoperatively was 8.51 DB and postoperatively was 4.80 DB (p = 0.0002). Average RNFL preoperatively was 113.63 and postoperatively was 102.70 (p = 0.01). The preoperative PD and RNFL did not correlate strongly.Our results demonstrate that PD and RNFL are improved after optic nerve sheath fenestration. The pre- and postoperative RNFL values were compared to the average RNFL value of healthy optic nerves obtained from the literature. Post-ONSF RNFL values were significantly closer to the normal value than preoperative. RNFL is an objective parameter for monitoring the optic nerve after optic nerve sheath fenestration. This study adds to the evidence that OCT RNFL may be an effective monitoring tool for patients with IIH and that it continues to be a useful parameter after ONSF.

  20. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform.

    PubMed

    Chitchian, Shahab; Mayer, Markus A; Boretsky, Adam R; van Kuijk, Frederik J; Motamedi, Massoud

    2012-11-01

    ABSTRACT. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained.

  1. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform

    PubMed Central

    Mayer, Markus A.; Boretsky, Adam R.; van Kuijk, Frederik J.; Motamedi, Massoud

    2012-01-01

    Abstract. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained. PMID:23117804

  2. Adaptive optical antennas: design and evaluation

    NASA Astrophysics Data System (ADS)

    Weyrauch, Thomas; Vorontsov, Mikhail A.; Carhart, Gary W.; Simonova, Galina V.; Beresnev, Leonid A.; Polnau, Ernst E.

    2007-09-01

    We present the design and evaluation of compact adaptive optical antennas with apertures diameters of 16 mm and 100 mm for 5Gbit/s-class free-space optical communication systems. The antennas provide a bi-directional optically transparent link between fiber-optical wavelength-division multiplex systems and allow for mitigation of atmospheric-turbulence induced wavefront phase distortions with adaptive optics components. Beam steering is implemented in the antennas either with mirrors on novel tip/tilt platforms or a fiber-tip positioning system, both enabling operation bandwidths of more than 1 kHz. Bimorph piezoelectric actuated deformable mirrors are used for low-order phase-distortion compensation. An imaging system is integrated in the antennas for coarse pointing and tracking. Beam steering and wavefront control is based on blind maximization of the received signal level using a stochastic parallel gradient descent algorithm. The adaptive optics control architecture allowed the use of feedback signals provided locally within each transceiver system and remotely by the opposite transceiver system via an RF link. First atmospheric compensation results from communication experiments over a 250 m near-ground propagation path are presented.

  3. Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Glaucoma Using Optical Coherence Tomography–Based Microangiography

    PubMed Central

    Chen, Chieh-Li; Zhang, Anqi; Bojikian, Karine D.; Wen, Joanne C.; Zhang, Qinqin; Xin, Chen; Mudumbai, Raghu C.; Johnstone, Murray A.; Chen, Philip P.; Wang, Ruikang K.

    2016-01-01

    Purpose To investigate the vascular microcirculation changes in the retinal nerve fiber layer (RNFL) in normal, glaucoma suspect, and open-angle glaucoma (OAG) groups using optical coherence tomography–based microangiography (OMAG). Methods One eye from each subject was scanned with a Cirrus HD-OCT 5000–based OMAG prototype system montage scanning protocol centered at the optic nerve head (ONH). Blood flow signals were extracted using OMAG algorithm. Retinal nerve fiber layer vascular microcirculation was measured by calculating the blood flux index and vessel area density within a 1.2-mm width annulus centered at the ONH with exclusion of big retinal vessels. One-way ANOVA were performed to analyze the RNFL microcirculation among groups. Linear-regression models were constructed to analyze the correlation between RNFL microcirculation and clinical parameters. Discrimination capabilities of the flow metrics were assessed with the area under the receiver operating characteristic curve (AROC). Results Twenty normal, 26 glaucoma suspect, and 42 OAG subjects were enrolled. Eyes from OAG subjects and glaucoma suspects showed significantly lower blood flux index compared with normal eyes (P ≤ 0.0015). Retinal nerve fiber layer blood flow metrics showed significant correlations with visual field indices and structural changes in glaucomatous eyes (P ≤ 0.0123). Similar discrimination capability of blood flux index compared with RNFL thickness was found in both disease groups. Conclusions Peripapillary RNFL vascular microcirculation measured as blood flux index by OMAG showed significant differences among OAG, glaucoma suspect, and normal controls and was significantly correlated with functional and structural defects. Retinal nerve fiber layer microcirculation measurement using OMAG may help physicians monitor glaucoma. PMID:27442341

  4. Macular Microcysts in Mitochondrial Optic Neuropathies: Prevalence and Retinal Layer Thickness Measurements

    PubMed Central

    Carbonelli, Michele; La Morgia, Chiara; Savini, Giacomo; Cascavilla, Maria Lucia; Borrelli, Enrico; Chicani, Filipe; do V. F. Ramos, Carolina; Salomao, Solange R.; Parisi, Vincenzo; Sebag, Jerry; Bandello, Francesco; Sadun, Alfredo A.; Carelli, Valerio; Barboni, Piero

    2015-01-01

    Purpose To investigate the thickness of the retinal layers and to assess the prevalence of macular microcysts (MM) in the inner nuclear layer (INL) of patients with mitochondrial optic neuropathies (MON). Methods All patients with molecularly confirmed MON, i.e. Leber’s Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), referred between 2010 and 2012 were enrolled. Eight patients with MM were compared with two control groups: MON patients without MM matched by age, peripapillary retinal nerve fiber layer (RNFL) thickness, and visual acuity, as well as age-matched controls. Retinal segmentation was performed using specific Optical coherence tomography (OCT) software (Carl Zeiss Meditec). Macular segmentation thickness values of the three groups were compared by one-way analysis of variance with Bonferroni post hoc corrections. Results MM were identified in 5/90 (5.6%) patients with LHON and 3/58 (5.2%) with DOA. The INL was thicker in patients with MON compared to controls regardless of the presence of MM [133.1±7μm vs 122.3±9μm in MM patients (p<0.01) and 128.5±8μm vs. 122.3±9μm in no-MM patients (p<0.05)], however the outer nuclear layer (ONL) was thicker in patients with MM (101.4±1mμ) compared to patients without MM [77.5±8mμ (p<0.001)] and controls [78.4±7mμ (p<0.001)]. ONL thickness did not significantly differ between patients without MM and controls. Conclusion The prevalence of MM in MON is low (5-6%), but associated with ONL thickening. We speculate that in MON patients with MM, vitreo-retinal traction contributes to the thickening of ONL as well as to the production of cystic spaces. PMID:26047507

  5. Method of targeted delivery of laser beam to isolated retinal rods by fiber optics.

    PubMed

    Sim, Nigel; Bessarab, Dmitri; Jones, C Michael; Krivitsky, Leonid

    2011-11-01

    A method of controllable light delivery to retinal rod cells using an optical fiber is described. Photo-induced current of the living rod cells was measured with the suction electrode technique. The approach was tested with measurements relating the spatial distribution of the light intensity to photo-induced current. In addition, the ion current responses of rod cells to polarized light at two different orientation geometries of the cells were studied.

  6. Pulse front control with adaptive optics

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  7. Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Keller, Brenton; Cunefare, David; Grewal, Dilraj S.; Mahmoud, Tamer H.; Izatt, Joseph A.; Farsiu, Sina

    2016-07-01

    We introduce a metric in graph search and demonstrate its application for segmenting retinal optical coherence tomography (OCT) images of macular pathology. Our proposed "adjusted mean arc length" (AMAL) metric is an adaptation of the lowest mean arc length search technique for automated OCT segmentation. We compare this method to Dijkstra's shortest path algorithm, which we utilized previously in our popular graph theory and dynamic programming segmentation technique. As an illustrative example, we show that AMAL-based length-adaptive segmentation outperforms the shortest path in delineating the retina/vitreous boundary of patients with full-thickness macular holes when compared with expert manual grading.

  8. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  9. Implementations of adaptive associative optical computing elements

    NASA Astrophysics Data System (ADS)

    Fisher, Arthur D.; Lee, John N.; Fukuda, Robert C.

    1986-01-01

    The present optical implementations for heteroassociative memory modules, which are capable of real time adaptive learning, are pertinent to the eventual construction of large, multimodule associative/neural network architectures that can consider problems in the acquisition, transformation, matching/recognition, and manipulation of large amounts of data in parallel. These modules offer such performance features as convergence to the least-squares-optimum pseudoinverse association, accumulative and gated learning, forgetfulness of unused associations, resistance to dynamic-range saturation, and compensation of optical system aberrations. Optics uniquely furnish the massive parallel interconnection paths required to cascade and interconnect a number of modules to form the more sophisticated multiple module architectures.

  10. Measurement of retinal blood flow in the rat by combining Doppler Fourier-domain optical coherence tomography with fundus imaging

    NASA Astrophysics Data System (ADS)

    Werkmeister, René M.; Vietauer, Martin; Knopf, Corinna; Fürnsinn, Clemens; Leitgeb, Rainer A.; Reitsamer, Herbert; Gröschl, Martin; Garhöfer, Gerhard; Vilser, Walthard; Schmetterer, Leopold

    2014-10-01

    A wide variety of ocular diseases are associated with abnormalities in ocular circulation. As such, there is considerable interest in techniques for quantifying retinal blood flow, among which Doppler optical coherence tomography (OCT) may be the most promising. We present an approach to measure retinal blood flow in the rat using a new optical system that combines the measurement of blood flow velocities via Doppler Fourier-domain optical coherence tomography and the measurement of vessel diameters using a fundus camera-based technique. Relying on fundus images for extraction of retinal vessel diameters instead of OCT images improves the reliability of the technique. The system was operated with an 841-nm superluminescent diode and a charge-coupled device camera that could be operated at a line rate of 20 kHz. We show that the system is capable of quantifying the response of 100% oxygen breathing on the retinal blood flow. In six rats, we observed a decrease in retinal vessel diameters of 13.2% and a decrease in retinal blood velocity of 42.6%, leading to a decrease in retinal blood flow of 56.7%. Furthermore, in four rats, the response of retinal blood flow during stimulation with diffuse flicker light was assessed. Retinal vessel diameter and blood velocity increased by 3.4% and 28.1%, respectively, leading to a relative increase in blood flow of 36.2%;. The presented technique shows much promise to quantify early changes in retinal blood flow during provocation with various stimuli in rodent models of ocular diseases in rats.

  11. Measurement of retinal blood flow in the rat by combining Doppler Fourier-domain optical coherence tomography with fundus imaging.

    PubMed

    Werkmeister, René M; Vietauer, Martin; Knopf, Corinna; Fürnsinn, Clemens; Leitgeb, Rainer A; Reitsamer, Herbert; Gröschl, Martin; Garhöfer, Gerhard; Vilser, Walthard; Schmetterer, Leopold

    2014-01-01

    A wide variety of ocular diseases are associated with abnormalities in ocular circulation. As such, there is considerable interest in techniques for quantifying retinal blood flow, among which Doppler optical coherence tomography (OCT) may be the most promising. We present an approach to measure retinal blood flow in the rat using a new optical system that combines the measurement of blood flow velocities via Doppler Fourier-domain optical coherence tomography and the measurement of vessel diameters using a fundus camera-based technique. Relying on fundus images for extraction of retinal vessel diameters instead of OCT images improves the reliability of the technique. The system was operated with an 841-nm superluminescent diode and a charge-coupled device camera that could be operated at a line rate of 20 kHz. We show that the system is capable of quantifying the response of 100% oxygen breathing on the retinal blood flow. In six rats, we observed a decrease in retinal vessel diameters of 13.2% and a decrease in retinal blood velocity of 42.6%, leading to a decrease in retinal blood flow of 56.7%. Furthermore, in four rats, the response of retinal blood flow during stimulation with diffuse flicker light was assessed. Retinal vessel diameter and blood velocity increased by 3.4% and 28.1%, respectively, leading to a relative increase in blood flow of 36.2%. The presented technique shows much promise to quantify early changes in retinal blood flow during provocation with various stimuli in rodent models of ocular diseases in rats.

  12. Analysis of Retinal Layer Thicknesses and Their Clinical Correlation in Patients with Traumatic Optic Neuropathy

    PubMed Central

    Lee, Ju-Yeun; Cho, Kyuyeon; Park, Kyung-Ah; Oh, Sei Yeul

    2016-01-01

    The aims of this study were 1) To evaluate retinal nerve fiber layer (fRNFL) thickness and ganglion cell layer plus inner plexiform layer (GCIPL) thickness at the fovea in eyes affected with traumatic optic neuropathy (TON) compared with contralateral normal eyes, 2) to further evaluate these thicknesses within 3 weeks following trauma (defined as “early TON”), and 3) to investigate the relationship between these retinal layer thicknesses and visual function in TON eyes. Twenty-nine patients with unilateral TON were included. Horizontal and vertical spectral-domain optical coherence tomography (SD-OCT) scans of the fovea were taken in patients with unilateral TON. The main outcome measure was thickness of the entire retina, fRNFL, and GCIPL in eight areas. Thickness of each retinal layer was compared between affected and unaffected eyes. The correlation between the thickness of each retinal layer and visual function parameters, including best corrected visual acuity, color vision, P100 latency, and P100 amplitude in visual evoked potential (VEP), mean deviation (MD) and visual field index (VFI) in Humphrey visual field analysis in TON eyes was analyzed. Thicknesses of the entire retina, fRNFL, and GCIPL in SD-OCT were significantly thinner (3–36%) in all measurement areas of TON eyes compared to those in healthy eyes (all p<0.05). Whereas, only GCIPL in the outer nasal, superior, and inferior areas was significantly thinner (5–10%) in the early TON eyes than that in the control eyes (all p<0.01). A significant correlation was detected between retinal layer thicknesses and visual function parameters including color vision, P100 latency and P100 amplitude in VEP, MD, and VFI (particularly P100 latency, MD, and VFI) (r = -0.70 to 0.84). Among the retinal layers analyzed in this study, GCIPL (particularly in the superior and inferior areas) was most correlated with these five visual function parameters (r = -0.70 to 0.71). Therefore, evaluation of morphological

  13. Adaptive Optics at the World’s Biggest Optical Telescope

    DTIC Science & Technology

    2010-09-01

    bottom up. The reflective, and deformable, component of each of the LBT’s mirrors is a concave Zerodur shell, 1.6 mm in average thickness and 911 mm in...Physik, 85748 Garching, Germany ABSTRACT The Large Binocular Telescope (LBT) on Mt. Graham, Arizona, comprises two 8.4 m primary mirrors on a...adaptive optics (AO) was incorporated into the design through two adaptive secondary mirrors (ASM), each 91 cm in diameter with 672 actuators, which feed

  14. Free Space Optical Communications Utilizing MEMS Adaptive Optics Correction

    SciTech Connect

    Thompson, C A; Kartz, M W; Flath, L M; Wilks, S C; Young, R A; Johnson, G W; Ruggiero, A J

    2002-07-09

    Free space optical communications (FSO) are beginning to provide attractive alternatives to fiber-based solutions in many situations. Currently, a handful of companies provide fiberless alternatives specifically aimed at corporate intranet and sporting event video applications. These solutions are geared toward solving the ''last mile'' connectivity issues. There exists a potential need to extend this pathlength to distances much greater than a 1 km, particularly for government and military applications. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method to improve signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal and slant path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors, as well as improved communication and computational components.

  15. Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui; Sun, Yong; Dai, Cuixia; Zheng, Haihua; Ren, Qiushi; Jiao, Shuliang; Zhou, Chuanqing

    2014-09-01

    To research retinal stretching or distortion with accommodation, accommodation-induced changes in retinal thickness (RT) in the macular area were investigated in a population of young adults (n=23) by using a dual-channel spectral domain optical coherence tomography (SD-OCT) system manufactured in-house for this study. This dual-channel SD-OCT is capable of imaging the cornea and retina simultaneously with an imaging speed of 24 kHz A-line scan rate, which can provide the anatomical dimensions of the eye, including the RT and axial length. Thus, the modification of the RT with accommodation can be calculated. A significant decrease in the RT (13.50±1.25 μm) was observed during maximum accommodation. In the 4 mm×4 mm macular area centered at the fovea, we did not find a significant quadrant-dependent difference in retinal volume change, which indicates that neither retinal stretching nor distortion was quadrant-dependent during accommodation. We speculate that the changes in RT with maximum accommodation resulted from accommodation-induced ciliary muscle contractions.

  16. Multispectral scanning laser ophthalmoscopy combined with optical coherence tomography for simultaneous in vivo mouse retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Zam, Azhar; Jian, Yifan; Wang, Xinlei; Burns, Marie E.; Sarunic, Marinko V.; Pugh, Edward N.; Zawadzki, Robert J.

    2015-03-01

    A compact, non-invasive multi-modal system has been developed for in vivo mouse retina imaging. It is configured for simultaneously detecting green and red fluorescent protein signals with scanning laser ophthalmoscopy (SLO) back-scattered light from the SLO illumination beam, and depth information about different retinal layers by means of Optical Coherence Tomography (OCT). Simultaneous assessment of retinal characteristics with different modalities can provide a wealth of information about the structural and functional changes in the retinal neural tissue and chorio-retinal vasculature in vivo. Additionally, simultaneous acquisition of multiple channels facilitates analysis of the data of different modalities by automatic temporal and structural co-registration. As an example of the instrument's performance we imaged the retina of a mouse with constitutive expression of GFP in microglia cells (Cx3cr1GFP/+), and which also expressed the red fluorescent protein mCherry in Müller glial cells by means of adeno-associated virus delivery (AAV2) of an mCherry cDNA driven by the GFAP (glial fibrillary acid protein) promoter.

  17. Optically deviated focusing method based high-speed SD-OCT for in vivo retinal clinical applications

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Ruchire Eranga; Park, Kibeom; Kim, Pilun; Oh, Jaeryung; Kim, Seong-Woo; Kim, Kwangtae; Kim, Beop-Min; Jeon, Mansik; Kim, Jeehyun

    2016-04-01

    The aim of this study is to provide accurately focused, high-resolution in vivo human retinal depth images using an optically deviated focusing method with spectral-domain optical coherence tomography (SD-OCT) system. The proposed method was applied to increase the retinal diagnosing speed of patients with various values of retinal distances (i.e., the distance between the crystalline eye lens and the retina). The increased diagnosing speed was facilitated through an optical modification in the OCT sample arm configuration. Moreover, the optical path length matching process was compensated using the proposed optically deviated focusing method. The developed system was mounted on a bench-top cradle to overcome the motion artifacts. Further, we demonstrated the capability of the system by carrying out in vivo retinal imaging experiments. The clinical trials confirmed that the system was effective in diagnosing normal and abnormal retinal layers as several retinal abnormalities were identified using non-averaged single-shot OCT images, which demonstrate the feasibility of the method for clinical applications.

  18. Demonstration of portable solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Dong, Bing

    2012-10-01

    Solar-adaptive optics (AO) are more challenging than night-time AO, in some aspects. A portable solar adaptive optics (PSAO) system featuring compact physical size, low cost, and good performance has been proposed and developed. PSAO can serve as a visiting instrument for any existing ground-based solar telescope to improve solar image quality by replacing just a few optical components. High-level programming language, LabVIEW, is used to develop the wavefront sensing and control software, and general purpose computers are used to drive the whole system. During October 2011, the feasibility and good performance of PSAO was demonstrated with the 61-cm solar telescope at San Fernando Observatory. The image contrast and resolution are noticeably improved after AO correction.

  19. Electroretinography combined with spectral domain optical coherence tomography to detect retinal damage in shaken baby syndrome.

    PubMed

    Nakayama, Yuri; Yokoi, Tadashi; Sachiko, Nishina; Okuyama, Makiko; Azuma, Noriyuki

    2013-08-01

    In order to correlate anatomical changes with visual function in shaken baby syndrome, we performed electroretinography and spectral domain optical coherence tomography on a 2-month-old girl and a 9-month-old girl after the retinal hemorrhages absorbed. Both patients had significant abnormalities in spectral domain optical coherence tomography images of the macular area. The amplitudes of the focal macular electroretinograms were more severely decreased than those of the full-field electroretinograms. Combining spectral domain coherence tomography with focal macular electroretinograms might better estimate the functional damage to the macula in patients with shaken baby syndrome.

  20. Total retinal blood flow measurement by three beam Doppler optical coherence tomography

    PubMed Central

    Haindl, Richard; Trasischker, Wolfgang; Wartak, Andreas; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.

    2016-01-01

    We present measurements of total retinal blood flow in healthy volunteers using a three beam Doppler optical coherence tomography (D-OCT) technique. This technology has the advantage of a precise determination of the flow vector without the use of any a-priori information on the vessel geometry. Circular D-OCT scans around the optic disc were recorded and venous as well as arterial total blood flow was determined and compared for each subject. The reproducibility of the method was assessed in 6 subjects by repeated measurements. Only small deviations of around 6% between the measurements were found which indicates the high precision of the proposed method. PMID:26977340

  1. Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells.

    PubMed

    Ohlemacher, Sarah K; Iglesias, Clara L; Sridhar, Akshayalakshmi; Gamm, David M; Meyer, Jason S

    2015-02-02

    The protocol outlined below is used to differentiate human pluripotent stem cells (hPSCs) into retinal cell types through a process that faithfully recapitulates the stepwise progression observed in vivo. From pluripotency, cells are differentiated to a primitive anterior neural fate, followed by progression into two distinct populations of retinal progenitors and forebrain progenitors, each of which can be manually separated and purified. The hPSC-derived retinal progenitors are found to self-organize into three-dimensional optic vesicle-like structures, with each aggregate possessing the ability to differentiate into all major retinal cell types. The ability to faithfully recapitulate the stepwise in vivo development in a three-dimensional cell culture system allows for the study of mechanisms underlying human retinogenesis. Furthermore, this methodology allows for the study of retinal dysfunction and disease modeling using patient-derived cells, as well as high-throughput pharmacological screening and eventually patient-specific therapies.

  2. Adaptive optics ophthalmologic systems using dual deformable mirrors

    SciTech Connect

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  3. Directional property of the retinal reflection measured with optical coherence tomography and wavefront sensing

    NASA Astrophysics Data System (ADS)

    Gao, Weihua

    The last thirty years have experienced tremendous advancement in our understanding of light-tissue interactions in the human retina. Nevertheless, major gaps remain, and our modeling of light return from the back of the eye continues to evolve. The objective of this thesis is to investigate one of these gaps, specifically that related to the directional property (angular dependence) of the retinal reflection and in particular that of cone photoreceptors. Directionality of cones is commonly referred to as the optical Stiles-Crawford effect (SCE). While cone directionality is well known to originate from their waveguide properties, considerable uncertainty remains as to which reflections are waveguided. Since normal directionality of the photoreceptor requires normal morphology, the optical SCE has significant clinical interest. The research presented in this thesis contains three main objectives. First, I evaluated the potential of spectral-domain optical coherence tomography (SD-OCT) to study the optical SCE. Second, motivated by these first results, I developed a custom high-resolution SD-OCT that was designed specifically for directional reflectance measurements. This allowed a more complete study to be performed and extended the analysis from photoreceptors to several other major layers of the retina. Directional properties were measured for the retinal pigment epithelium (RPE), two principle reflections of the photoreceptor layer (inner/outer segment (IS/OS) and posterior tips of outer segment (PTOS), Henle's fiber layer (HFL), retinal nerve fiber layer (RNFL), and finally the sum of all the layers considered (overall directionality). Reflectance of the IS/OS and PTOS were found highly sensitive to illumination angle regardless of retinal eccentricity. In contrast, the reflectance of the RPE showed little directionality. The reflectance of HFL and RNFL showed directional dependence, but unlike that of the photoreceptors, depended strongly on pupil meridian and

  4. Adaptive holography for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Residori, S.; Bortolozzo, U.; Peigné, A.; Molin, S.; Nouchi, P.; Dolfi, D.; Huignard, J. P.

    2016-03-01

    Adaptive holography is a promising method for high sensitivity phase modulation measurements in the presence of slow perturbations from the environment. The technique is based on the use of a nonlinear recombining medium, here an optically addressed spatial light modulator specifically realized to operate at 1.55 μm. Owing to the physical mechanisms involved, the interferometer adapts to slow phase variations within a range of 5-10 Hz, thus filtering out low frequency noise while transmitting higher frequency phase modulations. We present the basic principles of the adaptive interferometer and show that it can be used in association with a sensing fiber in order to detect phase modulations. Finally, a phase-OTDR architecture using the adaptive holographic interferometer is presented and shown to allows the detection of localized perturbations along the sensing fiber.

  5. Retinal image degradation by optical aberrations and light scatter in normal and albino chick eyes

    NASA Astrophysics Data System (ADS)

    Tian, Yibin; Shieh, Kevin; Wildsoet, Christine F.

    2007-02-01

    Comprehensive evaluation of retinal image quality requires that light scatter as well as optical aberrations be considered. In investigating how retinal image degradation affects eye growth in the chick model of myopia, we developed a simple method based on Shack-Hartmann images for evaluating the effects of both monochromatic aberrations and light scatter on retinal image quality. We further evaluated our method in the current study by applying it to data collected from both normal chick eyes and albino eyes that were expected to show increased intraocular light scatter. To analyze light scatter in our method, each Shack-Hartmann dot is treated as a local point spread function (PSF) that is the convolution of a local scatter PSF and a lenslet diffraction PSF. The local scatter PSF is obtained by de-convolution, and is fitted with a circularly symmetric Gaussian function using nonlinear regressions. A whole-eye scatter PSF also can be derived from the local scatter PSFs for the analyzed pupil. Aberrations are analyzed using OSA standard Zernike polynomials, and aberration-related PSF calculated from reconstructed wavefront using fast Fourier transform. Modulation transfer functions (MTFs) are computed separately for aberration and scatter PSFs, and a whole-eye MTF is derived as the product of the two. This method was applied to 4 normal and 4 albino eyes. Compared to normal eyes, albino eyes were more aberrated and showed greater light scatter. As a result, overall retinal image degradation was much greater in albino eyes than in normal eyes, with the relative contribution to retinal image degradation of light scatter compared to aberrations also being greater for albino eyes.

  6. Robust Retinal Vessel Segmentation via Locally Adaptive Derivative Frames in Orientation Scores.

    PubMed

    Zhang, Jiong; Dashtbozorg, Behdad; Bekkers, Erik; Pluim, Josien P W; Duits, Remco; Ter Haar Romeny, Bart M

    2016-12-01

    This paper presents a robust and fully automatic filter-based approach for retinal vessel segmentation. We propose new filters based on 3D rotating frames in so-called orientation scores, which are functions on the Lie-group domain of positions and orientations [Formula: see text]. By means of a wavelet-type transform, a 2D image is lifted to a 3D orientation score, where elongated structures are disentangled into their corresponding orientation planes. In the lifted domain [Formula: see text], vessels are enhanced by means of multi-scale second-order Gaussian derivatives perpendicular to the line structures. More precisely, we use a left-invariant rotating derivative (LID) frame, and a locally adaptive derivative (LAD) frame. The LAD is adaptive to the local line structures and is found by eigensystem analysis of the left-invariant Hessian matrix (computed with the LID). After multi-scale filtering via the LID or LAD in the orientation score domain, the results are projected back to the 2D image plane giving us the enhanced vessels. Then a binary segmentation is obtained through thresholding. The proposed methods are validated on six retinal image datasets with different image types, on which competitive segmentation performances are achieved. In particular, the proposed algorithm of applying the LAD filter on orientation scores (LAD-OS) outperforms most of the state-of-the-art methods. The LAD-OS is capable of dealing with typically difficult cases like crossings, central arterial reflex, closely parallel and tiny vessels. The high computational speed of the proposed methods allows processing of large datasets in a screening setting.

  7. Segmentation guided registration of wide field-of-view retinal optical coherence tomography volumes

    PubMed Central

    Lezama, José; Mukherjee, Dibyendu; McNabb, Ryan P.; Sapiro, Guillermo; Kuo, Anthony N.; Farsiu, Sina

    2016-01-01

    Patient motion artifacts are often visible in densely sampled or large wide field-of-view (FOV) retinal optical coherence tomography (OCT) volumes. A popular strategy for reducing motion artifacts is to capture two orthogonally oriented volumetric scans. However, due to larger volume sizes, longer acquisition times, and corresponding larger motion artifacts, the registration of wide FOV scans remains a challenging problem. In particular, gaps in data acquisition due to eye motion, such as saccades, can be significant and their modeling becomes critical for successful registration. In this article, we develop a complete computational pipeline for the automatic motion correction and accurate registration of wide FOV orthogonally scanned OCT images of the human retina. The proposed framework utilizes the retinal boundary segmentation as a guide for registration and requires only a minimal transformation of the acquired data to produce a successful registration. It includes saccade detection and correction, a custom version of the optical flow algorithm for dense lateral registration and a linear optimization approach for axial registration. Utilizing a wide FOV swept source OCT system, we acquired retinal volumes of 12 subjects and we provide qualitative and quantitative experimental results to validate the state-of-the-art effectiveness of the proposed technique. The source code corresponding to the proposed algorithm is available online. PMID:28018709

  8. Calpain Inhibition Attenuates Apoptosis of Retinal Ganglion Cells in Acute Optic Neuritis

    PubMed Central

    Smith, Amena W.; Das, Arabinda; Guyton, M. Kelly; Ray, Swapan K.; Rohrer, Baerbel

    2011-01-01

    Purpose. Optic neuritis (ON), inflammation of the optic nerve, is strongly associated with the pathogenesis of multiple sclerosis (MS) and is initiated by the attack of autoreactive T cells against self-myelin antigens, resulting in demyelination, degeneration of retinal ganglion cells (RGCs), and cumulative visual impairment. Methods. Experimental autoimmune encephalomyelitis (EAE) was induced in Lewis rats on day 0, and animals received daily intraperitoneal injections of calpain inhibitor (calpeptin) or vehicle from day 1 until killed. Retinal cell death was analyzed by DNA fragmentation, and surviving ganglion cells were quantified after double labeling of retinal tissue with TUNEL and Brn3a. The expression of apoptotic and inflammatory proteins was determined by Western blotting. Results. It was demonstrated that calpain inhibition downregulates expression of proapoptotic proteins and the proinflammatory molecule nuclear factor-kappa B (NF-κB) in the retina of Lewis rats with acute EAE. Immunofluorescent labeling revealed that apoptotic cells in the RGC layer of vehicle-treated EAE animals were Brn3a positive, and a moderate dose of calpeptin dramatically reduced the frequency of apoptotic RGCs. Conclusions. These results suggest that calpain inhibition might be a useful supplement to immunomodulatory therapies such as corticosteroids in ON, due to its neuroprotective effect on RGCs. PMID:21613375

  9. Loss of heterozygosity for the NF2 gene in retinal and optic nerve lesions of patients with neurofibromatosis 2

    PubMed Central

    Chan, Chi-Chao; Koch, Christian A; Kaiser-Kupfer, Muriel I; Parry, Dilys M; Gutmann, David H; Zhuang, Zhengping; Vortmeyer, Alexander O

    2008-01-01

    Individuals affected with the neurofibromatosis 2 (NF2) cancer predisposition syndrome develop specific ocular lesions. To determine whether these lesions result from altered NF2 gene expression, microdissection and PCR were used to investigate 40 ocular lesions from seven eyes of four NF2 patients for LOH, with markers that flank the NF2 gene on chromosome 22q. NF2 protein (merlin) expression was also evaluated in these lesions, using immunohistochemistry. Retinal hamartoma was observed in all seven eyes, including one with combined pigment epithelial and retinal hamartoma (CPERH). Retinal tufts were present in four eyes (three patients), retinal dysplasia in two eyes (two patients), optic nerve neurofibroma in one eye, iris naevoid hyperplasia in two eyes (two patients) and pseudophakia in all eyes. Markers were informative in three patients (six eyes from three unrelated families). One patient was non-informative due to prolonged decalcification. All retinal and optic nerve, but not iris lesions, demonstrated consistent LOH for the NF2 gene. Merlin was not expressed in the retina, optic nerve, or iris lesions. These results suggest that inactivation of the NF2 gene is associated with the formation of a variety of retinal and optic nerve lesions in NF2 patients. PMID:12210058

  10. Development of large aperture composite adaptive optics

    NASA Astrophysics Data System (ADS)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  11. Adaptive optics assisted reconfigurable liquid-driven optical switch

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Huang, Wei-Chi

    2013-07-01

    This study demonstrates a mechanical-based, liquid-driven optical switch integrated with adaptive optics and a reconfigurable black liquid (dye-doped liquid). The device aperture can be continuously tuned between 0.6 and 6.9 mm, precisely achieved by a syringe pump for volume control. Adaptive optics (AO) capability and possible enhancement of the lost power intensity of the ink-polluted glass plate have also been experimentally investigated. While measuring power intensity with/without AO indicates only a marginal difference of ˜1%, a significant difference of 3 s in the response characteristic of "switching on" time can be observed. An extremely high contrast ratio of ˜105 for a red-colored light is achieved.

  12. Decreased retinal nerve fibre layer thickness detected by optical coherence tomography in patients with ethambutol‐induced optic neuropathy

    PubMed Central

    Chai, Samantha J; Foroozan, Rod

    2007-01-01

    Background It is difficult to assess the degree of optic nerve damage in patients with ethambutol‐induced optic neuropathy, especially just after the onset of visual loss, when the optic disc typically looks normal. Aim To evaluate changes in retinal nerve fibre layer thickness (RNFLT) using optical coherence tomography (OCT) in patients with optic neuropathy within 3 months of cessation of ethambutol treatment. Design A retrospective observational case series from a single neuro‐ophthalmology practice. Methods 8 patients with a history of ethambutol‐induced optic neuropathy were examined within 3 months after stopping ethambutol treatment. All patients underwent a neuro‐ophthalmologic examination, including visual acuity, colour vision, visual fields and funduscopy. OCT was performed on both eyes of each patient using the retinal nerve fibre layer analysis protocol. Results The interval between cessation of ethambutol treatment and the initial visit ranged from 1 week to 3 months. All patients had visual deficits characteristic of ethambutol‐induced optic neuropathy at their initial visit, and the follow‐up examination was performed within 12 months. Compared with the initial RNFLT, there was a statistically significant decrease in the mean RNFLT of the temporal, superior and nasal quadrants (p = 0.009, 0.019 and 0.025, respectively), with the greatest decrease in the temporal quadrant (mean decrease 26.5 μm). Conclusions A decrease in RNFLT is observed in all quadrants in patients with ethambutol‐induced optic neuropathy who have recently discontinued the medication. This decrease is most pronounced in the temporal quadrant of the optic disc. PMID:17215265

  13. Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation.

    PubMed

    Mookiah, Muthu Rama Krishnan; Acharya, U Rajendra; Chua, Chua Kuang; Min, Lim Choo; Ng, E Y K; Mushrif, Milind M; Laude, Augustinus

    2013-01-01

    The human eye is one of the most sophisticated organs, with perfectly interrelated retina, pupil, iris cornea, lens, and optic nerve. Automatic retinal image analysis is emerging as an important screening tool for early detection of eye diseases. Uncontrolled diabetic retinopathy (DR) and glaucoma may lead to blindness. The identification of retinal anatomical regions is a prerequisite for the computer-aided diagnosis of several retinal diseases. The manual examination of optic disk (OD) is a standard procedure used for detecting different stages of DR and glaucoma. In this article, a novel automated, reliable, and efficient OD localization and segmentation method using digital fundus images is proposed. General-purpose edge detection algorithms often fail to segment the OD due to fuzzy boundaries, inconsistent image contrast, or missing edge features. This article proposes a novel and probably the first method using the Attanassov intuitionistic fuzzy histon (A-IFSH)-based segmentation to detect OD in retinal fundus images. OD pixel intensity and column-wise neighborhood operation are employed to locate and isolate the OD. The method has been evaluated on 100 images comprising 30 normal, 39 glaucomatous, and 31 DR images. Our proposed method has yielded precision of 0.93, recall of 0.91, F-score of 0.92, and mean segmentation accuracy of 93.4%. We have also compared the performance of our proposed method with the Otsu and gradient vector flow (GVF) snake methods. Overall, our result shows the superiority of proposed fuzzy segmentation technique over other two segmentation methods.

  14. Glaucoma Increases Retinal Surface Contour Variability as Measured by Optical Coherence Tomography

    PubMed Central

    Tan, Ou; Liu, Liang; Zhang, Xinbo; Morrison, John C.; Huang, David

    2016-01-01

    Purpose We investigated the feasibility of glaucoma detection by measuring retinal surface contour variability (RSCV) using optical coherence tomography (OCT). Methods The peripapillary region in one eye of each participant was scanned over an 8 × 8 mm area with a swept source OCT prototype. The retinal surface contour was sampled at approximately 1.5- to 3.5-mm radius circles centered on the optic nerve head. The RSCV is defined as the average log value within a middle spatial frequency band of the Fourier transform to the elevation profile of the inner retinal surface. The spatial frequency band was optimized to distinguish glaucoma from normal. Nerve fiber layer thickness (NFLT) was sampled around a 1.7-mm radius circle. Glaucoma severity was assessed by automated static perimetry. Results We enrolled 17 glaucomatous eyes and 17 healthy eyes. A great majority of the glaucoma group were in the early stage (visual field mean deviation average −2.48 ± 3.73 dB). Significant differences were found for RSCV between glaucoma and control eyes (P < 0.003) at all radii. The area under the receiver operating characteristic curve (AROC = 0.90) of RSCV was best at the 3.5-mm radius. This was not significantly better than NFLT (AROC = 0.84). With the 99% specificity, the glaucoma detection sensitivity was 53% for RSCV and 29% for NFLT (P = 0.13). Conclusions Retinal surface contour variability was significantly increased in glaucoma patients. The diagnostic accuracy of RSCV was equal to NFLT in early glaucoma. Since the RSCV detects small-scale focal damage and the average NFLT measures global damage, they provide different diagnostic information that may be synergistic. PMID:27409503

  15. Lens based adaptive optics scanning laser ophthalmoscope.

    PubMed

    Felberer, Franz; Kroisamer, Julia-Sophie; Hitzenberger, Christoph K; Pircher, Michael

    2012-07-30

    We present an alternative approach for an adaptive optics scanning laser ophthalmoscope (AO-SLO). In contrast to other commonly used AO-SLO instruments, the imaging optics consist of lenses. Images of the fovea region of 5 healthy volunteers are recorded. The system is capable to resolve human foveal cones in 3 out of 5 healthy volunteers. Additionally, we investigated the capability of the system to support larger scanning angles (up to 5°) on the retina. Finally, in order to demonstrate the performance of the instrument images of rod photoreceptors are presented.

  16. [Technical principles of adaptive optics in ophthalmology].

    PubMed

    Reiniger, J L; Domdei, N; Holz, F G; Harmening, W M

    2017-03-01

    During the last 25 years ophthalmic imaging has undergone a revolution. This review gives an overview of the possibilities of adaptive optics (AO) for ophthalmic imaging technologies and their development and illustrates that the role of ophthalmic imaging changed from the documentation of obvious abnormalities to the detection of microscopic yet significant conspicuities. This enables earlier and more precise diagnoses. The implementation of AO for imaging systems like fundus cameras, scanning laser ophthalmoscopy and optical coherence tomography has gained in importance. In recent years a couple of companies started developing commercially available AO systems, thus, indicating a future use in clinical routine.

  17. Elevated intracranial pressure causes optic nerve and retinal ganglion cell degeneration in mice

    PubMed Central

    Nusbaum, Derek M.; Wu, Samuel M.; Frankfort, Benjamin J.

    2015-01-01

    The purpose of this study was to develop a novel experimental system for the modulation and measurement of intracranial pressure (ICP), and to use this system to assess the impact of elevated ICP on the optic nerve and retinal ganglion cells (RGCs) in CD1 mice. This system involved surgical implantation of an infusion cannula and a radiowave based pressure monitoring probe through the skull and into the subarachnoid space. The infusion cannula was used to increase ICP, which was measured by the probe and transmitted to a nearby receiver. The system provided robust and consistent ICP waveforms, was well tolerated, and was stable over time. ICP was elevated to approximately 30 mmHg for one week, after which we assessed changes in optic nerve structure with transmission electron microscopy in cross section and RGC numbers with antibody staining in retinal flat mounts. ICP elevation resulted in optic nerve axonal loss and disorganization, as well as RGC soma loss. We conclude that the controlled manipulation of ICP in active, awake mice is possible, despite their small size. Furthermore, ICP elevation results in visual system phenotypes of optic nerve and RGC degeneration, suggesting that this model can be used to study the impact of ICP on the visual system. Potentially, this model can also be used to study the relationship between ICP and IOP, as well diseases impacted by ICP variation such as glaucoma, idiopathic intracranial hypertension, and the spaceflight-related visual impairment intracranial pressure syndrome. PMID:25912998

  18. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1997-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1 sec. The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have been using adaptive optics (AO) on a 4-m class telescope to obtain 0.1 sec resolution images solar system objects at far red and near infrared wavelengths (0.7-2.5 micron) which best discriminate their spectral signatures. Our efforts has been put into areas of research for which high angular resolution is essential, such as the mapping of Titan and of large asteroids, the dynamics and composition of Neptune stratospheric clouds, the infrared photometry of Pluto, Charon, and close satellites previously undetected from the ground.

  19. Adaptive optics without guide stars (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mertz, Jerome; Li, Jiang; Beaulieu, Devin; Paudel, Hari P.; Barankov, Roman; Bifano, Thomas G.

    2016-03-01

    Adaptive optics is a strategy to compensate for sample-induced aberrations in microscopy applications. Generally, it requires the presence of "guide stars" in the sample to serve as localized reference targets. We describe an implementation of conjugate adaptive optics that is amenable to widefield (i.e. non-scanning) microscopy, and can provide aberration corrections over potentially large fields of view without the use of guide stars. A unique feature of our implementation is that it is based on wavefront sensing with a single-shot partitioned-aperture sensor that provides large dynamic range compatible with extended samples. Combined information provided by this sensor and the imaging camera enable robust image de-blurring based on a rapid estimation of sample and aberrations obtained by closed-loop feedback. We present the theoretical principle of our technique and experimental demonstrations using both trans-illumination and fluorescence microscopes. Finally, we apply our technique to mouse brain imaging.

  20. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  1. High-efficiency Autonomous Laser Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A. N.; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2014-07-01

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  2. Geometric view of adaptive optics control

    NASA Astrophysics Data System (ADS)

    Wiberg, Donald M.; Max, Claire E.; Gavel, Donald T.

    2005-05-01

    The objective of an astronomical adaptive optics control system is to minimize the residual wave-front error remaining on the science-object wave fronts after being compensated for atmospheric turbulence and telescope aberrations. Minimizing the mean square wave-front residual maximizes the Strehl ratio and the encircled energy in pointlike images and maximizes the contrast and resolution of extended images. We prove the separation principle of optimal control for application to adaptive optics so as to minimize the mean square wave-front residual. This shows that the residual wave-front error attributable to the control system can be decomposed into three independent terms that can be treated separately in design. The first term depends on the geometry of the wave-front sensor(s), the second term depends on the geometry of the deformable mirror(s), and the third term is a stochastic term that depends on the signal-to-noise ratio. The geometric view comes from understanding that the underlying quantity of interest, the wave-front phase surface, is really an infinite-dimensional vector within a Hilbert space and that this vector space is projected into subspaces we can control and measure by the deformable mirrors and wave-front sensors, respectively. When the control and estimation algorithms are optimal, the residual wave front is in a subspace that is the union of subspaces orthogonal to both of these projections. The method is general in that it applies both to conventional (on-axis, ground-layer conjugate) adaptive optics architectures and to more complicated multi-guide-star- and multiconjugate-layer architectures envisaged for future giant telescopes. We illustrate the approach by using a simple example that has been worked out previously [J. Opt. Soc. Am. A73, 1171 (1983)] for a single-conjugate, static atmosphere case and follow up with a discussion of how it is extendable to general adaptive optics architectures.

  3. Extragalactic Fields Optimized for Adaptive Optics

    DTIC Science & Technology

    2011-03-01

    observatories (including those on Mauna Kea ). Before proceeding with a detailed analysis, it is instructive to note that many positions in the sky likely...4Gemini Observatory , Southern Operations Center, c/o AURA, Casilla 603,La Serena, Chile. sObservatories of the Carnegie Institution of Washington...United States Naval Observatory , 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420. 348 galaxies in these fields require adaptive optics (AO

  4. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  5. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  6. Robotic visible-light laser adaptive optics

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas; Ramaprakash, A. N.; Tendulkar, Shriharsh; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2013-12-01

    Robo-AO is the first autonomous laser adaptive optics system and science instrument operating on sky. With minimal human oversight, the system robotically executes large scale surveys, monitors long-term astrophysical dynamics and characterizes newly discovered transients, all at the visible diffraction limit. The adaptive optics setup time, from the end of the telescope slew to the beginning of an observation, is a mere ~50-60 s, enabling over 200 observations per night. The first of many envisioned systems has finished 58 nights of science observing at the Palomar Observatory 60-inch (1.5 m) telescope, with over 6,400 robotic observations executed thus far. The system will be augmented in late 2013 with a low-noise wide field infrared camera, which doubles as a tip-tilt sensor, to widen the spectral bandwidth of observations and increase available sky coverage while also enabling deeper visible imaging using adaptive-optics sharpened infrared tip-tilt guide sources. Techniques applicable to larger telescope systems will also be tested: the infrared camera will be used to demonstrate advanced multiple region-of-interest tip-tilt guiding methods, and a visitor instrument port will be used for evaluation of other instrumentation, e.g. single-mode and photonic fibers to feed compact spectrographs.

  7. Estrogen activation of microglia underlies the sexually dimorphic differences in Nf1 optic glioma-induced retinal pathology.

    PubMed

    Toonen, Joseph A; Solga, Anne C; Ma, Yu; Gutmann, David H

    2017-01-01

    Children with neurofibromatosis type 1 (NF1) develop low-grade brain tumors throughout the optic pathway. Nearly 50% of children with optic pathway gliomas (OPGs) experience visual impairment, and few regain their vision after chemotherapy. Recent studies have revealed that girls with optic nerve gliomas are five times more likely to lose vision and require treatment than boys. To determine the mechanism underlying this sexually dimorphic difference in clinical outcome, we leveraged Nf1 optic glioma (Nf1-OPG) mice. We demonstrate that female Nf1-OPG mice exhibit greater retinal ganglion cell (RGC) loss and only females have retinal nerve fiber layer (RNFL) thinning, despite mice of both sexes harboring tumors of identical volumes and proliferation. Female gonadal sex hormones are responsible for this sexual dimorphism, as ovariectomy, but not castration, of Nf1-OPG mice normalizes RGC survival and RNFL thickness. In addition, female Nf1-OPG mice have threefold more microglia than their male counterparts, and minocycline inhibition of microglia corrects the retinal pathology. Moreover, pharmacologic inhibition of microglial estrogen receptor-β (ERβ) function corrects the retinal abnormalities in female Nf1-OPG mice. Collectively, these studies establish that female gonadal sex hormones underlie the sexual dimorphic differences in Nf1 optic glioma-induced retinal dysfunction by operating at the level of tumor-associated microglial activation.

  8. The Effect of Optic Disc Center Displacement on Retinal Nerve Fiber Layer Measurement Determined by Spectral Domain Optical Coherence Tomography

    PubMed Central

    Uhm, Ki Bang; Sung, Kyung Rim; Kang, Min Ho; Cho, Hee Yoon; Seong, Mincheol

    2016-01-01

    Purpose To investigate the effect of optic disc center displacement on retinal nerve fiber layer (RNFL) measurement determined by spectral domain optical coherence tomography (SD-OCT). Methods The optic disc center was manipulated at 1-pixel intervals in horizontal, vertical, and diagonal directions. According to the manipulated optic disc center location, the RNFL thickness data were resampled: (1) at a 3.46-mm diameter circle; and (2) between a 2.5-mm diameter circle and 5.4-mm square. Error was calculated between the original and resampled RNFL measurements. The tolerable error threshold of the optic disc center displacement was determined by considering test-retest variability of SD-OCT. The unreliable zone was defined as an area with 10% or more variability. Results The maximum tolerable error thresholds of optic disc center displacement on the RNFL thickness map were distributed from 0.042 to 0.09 mm in 8 directions. The threshold shape was vertically elongated. Clinically important unreliable zones were located: (1) at superior and inferior region in the vertical displacement; (2) at inferotemporal region in the horizontal displacement, and (3) at superotemporal or inferotemporal region in the diagonal displacement. The unreliable zone pattern and threshold limit varied according to the direction of optic disc displacement. Conclusions Optic disc center displacement had a considerable impact on whole RNFL thickness measurements. Understanding the effect of optic disc center displacement could contribute to reliable RNFL measurements. PMID:27783663

  9. Specialized wavefront sensors for adaptive optics

    NASA Astrophysics Data System (ADS)

    Neal, Daniel R.; Mansell, J. D.; Gruetzner, James K.; Morgan, R.; Warren, Mial E.

    1995-08-01

    The performance of an adaptive optical system is strongly dependent upon correctly measuring the wavefront of the arriving light. The most common wavefront measurement techniques used to date are the shearing interferometer and the Shack-Hartmann sensor. Shack-Hartmann sensors rely on the use of lenslet arrays to sample the aperture appropriately. These have traditionally been constructed using MLM or step and repeat technology, and more recently with binary optics technology. Diffractive optics fabrication methodology can be used to remove some of the limitations of the previous technologies and can allow for low-cost production of sophisticated elements. We have investigated several different specialized wavefront sensor configurations using both Shack-Hartmann and shearing interferometer principles. We have taken advantage of the arbitrary nature of these elements to match pupil shapes of detector and telescope aperture and to introduce magnification between the lenslet array and the detector. We have fabricated elements that facilitate matching the sampling to the current atmospheric conditions. The sensors were designed using a far-field diffraction model and a photolithography layout program. They were fabricated using photolithography and RIE etching. Several different designs are presented with some experimental results from a small-scale adaptive optics brass-board.

  10. Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells

    PubMed Central

    Cui, Yuwei; Wang, Yanbin V; Park, Silvia J H; Demb, Jonathan B; Butts, Daniel A

    2016-01-01

    Visual processing depends on specific computations implemented by complex neural circuits. Here, we present a circuit-inspired model of retinal ganglion cell computation, targeted to explain their temporal dynamics and adaptation to contrast. To localize the sources of such processing, we used recordings at the levels of synaptic input and spiking output in the in vitro mouse retina. We found that an ON-Alpha ganglion cell's excitatory synaptic inputs were described by a divisive interaction between excitation and delayed suppression, which explained nonlinear processing that was already present in ganglion cell inputs. Ganglion cell output was further shaped by spike generation mechanisms. The full model accurately predicted spike responses with unprecedented millisecond precision, and accurately described contrast adaptation of the spike train. These results demonstrate how circuit and cell-intrinsic mechanisms interact for ganglion cell function and, more generally, illustrate the power of circuit-inspired modeling of sensory processing. DOI: http://dx.doi.org/10.7554/eLife.19460.001 PMID:27841746

  11. Retinal transcriptome sequencing sheds light on the adaptation to nocturnal and diurnal lifestyles in raptors

    PubMed Central

    Wu, Yonghua; Hadly, Elizabeth A.; Teng, Wenjia; Hao, Yuyang; Liang, Wei; Liu, Yu; Wang, Haitao

    2016-01-01

    Owls (Strigiformes) represent a fascinating group of birds that are the ecological night-time counterparts to diurnal raptors (Accipitriformes). The nocturnality of owls, unusual within birds, has favored an exceptional visual system that is highly tuned for hunting at night, yet the molecular basis for this adaptation is lacking. Here, using a comparative evolutionary analysis of 120 vision genes obtained by retinal transcriptome sequencing, we found strong positive selection for low-light vision genes in owls, which contributes to their remarkable nocturnal vision. Not surprisingly, we detected gene loss of the violet/ultraviolet-sensitive opsin (SWS1) in all owls we studied, but two other color vision genes, the red-sensitive LWS and the blue-sensitive SWS2, were found to be under strong positive selection, which may be linked to the spectral tunings of these genes toward maximizing photon absorption in crepuscular conditions. We also detected the only other positively selected genes associated with motion detection in falcons and positively selected genes associated with bright-light vision and eye protection in other diurnal raptors (Accipitriformes). Our results suggest the adaptive evolution of vision genes reflect differentiated activity time and distinct hunting behaviors. PMID:27645106

  12. Adaptive optics on a shoe string

    NASA Astrophysics Data System (ADS)

    Restaino, Sergio R.; Payne, Don M.

    1998-12-01

    There are two main ways to mitigate the effects of atmospheric turbulence on an imaging system. A post factor approach, where data are opportunely acquired and processed in order to increase the overall resolution attainable by the optical system, speckle imaging is an example of such technique. The other approach is to use an adaptive optics system that will compensate for atmospheric effects before the data are recorded. Of course, the situation is not sharply distinct. Hybrid approaches have been proposed and demonstrated. Other approaches that are a mid-way between the two are also possible. The basic idea of static and dynamic pupil masking will be presented. Experimental results based on point sources and extended objects will be presented. Advantages and limitations of such technique will be discussed. Finally some new ideas involving fiber optics and liquid crystals will be presented.

  13. Hybrid adaptive-optics visual simulator.

    PubMed

    Cánovas, Carmen; Prieto, Pedro M; Manzanera, Silvestre; Mira, Alejandro; Artal, Pablo

    2010-01-15

    We have developed a hybrid adaptive-optics visual simulator (HAOVS), combining two different phase-manipulation technologies: an optically addressed liquid-crystal phase modulator, relatively slow but capable of producing abrupt or discontinuous phase profiles; and a membrane deformable mirror, restricted to smooth profiles but with a temporal response allowing compensation of the eye's aberration fluctuations. As proof of concept, a phase element structured as discontinuous radial sectors was objectively tested as a function of defocus, and a correction loop was closed in a real eye. To further illustrate the capabilities of the device for visual simulation, we recorded extended images of different stimuli through the system by means of an external camera replacing the subject's eye. The HAOVS is specially intended as a tool for developing new ophthalmic optics elements, where it opens the possibility to explore designs with irregularities and/or discontinuities.

  14. Imaging Foveal Microvasculature: Optical Coherence Tomography Angiography Versus Adaptive Optics Scanning Light Ophthalmoscope Fluorescein Angiography

    PubMed Central

    Mo, Shelley; Krawitz, Brian; Efstathiadis, Eleni; Geyman, Lawrence; Weitz, Rishard; Chui, Toco Y. P.; Carroll, Joseph; Dubra, Alfredo; Rosen, Richard B.

    2016-01-01

    Purpose To compare the use of optical coherence tomography angiography (OCTA) and adaptive optics scanning light ophthalmoscope fluorescein angiography (AOSLO FA) for characterizing the foveal microvasculature in healthy and vasculopathic eyes. Methods Four healthy controls and 11 vasculopathic patients (4 diabetic retinopathy, 4 retinal vein occlusion, and 3 sickle cell retinopathy) were imaged with OCTA and AOSLO FA. Foveal perfusion maps were semiautomatically skeletonized for quantitative analysis, which included foveal avascular zone (FAZ) metrics (area, perimeter, acircularity index) and vessel density in three concentric annular regions of interest. On each set of OCTA and AOSLO FA images, matching vessel segments were used for lumen diameter measurement. Qualitative image comparisons were performed by visual identification of microaneurysms, vessel loops, leakage, and vessel segments. Results Adaptive optics scanning light ophthalmoscope FA and OCTA showed no statistically significant differences in FAZ perimeter, acircularity index, and vessel densities. Foveal avascular zone area, however, showed a small but statistically significant difference of 1.8% (P = 0.004). Lumen diameter was significantly larger on OCTA (mean difference 5.7 μm, P < 0.001). Microaneurysms, fine structure of vessel loops, leakage, and some vessel segments were visible on AOSLO FA but not OCTA, while blood vessels obscured by leakage were visible only on OCTA. Conclusions Optical coherence tomography angiography is comparable to AOSLO FA at imaging the foveal microvasculature except for differences in FAZ area, lumen diameter, and some qualitative features. These results, together with its ease of use, short acquisition time, and avoidance of potentially phototoxic blue light, support OCTA as a tool for monitoring ocular pathology and detecting early disease. PMID:27409463

  15. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future

    PubMed Central

    Jonnal, Ravi S.; Kocaoglu, Omer P.; Zawadzki, Robert J.; Liu, Zhuolin; Miller, Donald T.; Werner, John S.

    2016-01-01

    Purpose Optical coherence tomography (OCT) has enabled “virtual biopsy” of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. Methods We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Results Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Conclusions Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings. PMID:27409507

  16. Optical imaging of oxidative stress in retinitis pigmentosa (RP) in rodent model

    NASA Astrophysics Data System (ADS)

    Ghanian, Zahra; Maleki, Sepideh; Gopalakrishnan, Sandeep; Sepehr, Reyhaneh; Eells, Janis T.; Ranji, Mahsa

    2013-02-01

    Oxidative stress (OS), which increases during retinal degenerative disorders, contributes to photoreceptor cell loss. The objective of this study was to investigate the changes in the metabolic state of the eye tissue in rodent models of retinitis pigmentosa by using the cryofluorescence imaging technique. The mitochondrial metabolic coenzymes NADH and FADH2 are autofluorescent and can be monitored without exogenous labels using optical techniques. The NADH redox ratio (RR), which is the ratio of the fluorescence intensity of these fluorophores (NADH/FAD), was used as a quantitative diagnostic marker. The NADH RR was examined in an established rodent model of retinitis pigmentosa (RP), the P23H rat, and compared to that of control Sprague-Dawley (SD) rats and P23H NIR treated rats. Our results demonstrated 24% decrease in the mean NADH RR of the eyes from P23H transgenic rats compared to normal rats and 20% increase in the mean NADH RR of the eyes from the P23H NIR treated rats compared to P23H non-treated rats.

  17. Optical imaging of mitochondrial redox state in rodent model of retinitis pigmentosa

    NASA Astrophysics Data System (ADS)

    Maleki, Sepideh; Gopalakrishnan, Sandeep; Ghanian, Zahra; Sepehr, Reyhaneh; Schmitt, Heather; Eells, Janis; Ranji, Mahsa

    2013-01-01

    Oxidative stress (OS) and mitochondrial dysfunction contribute to photoreceptor cell loss in retinal degenerative disorders. The metabolic state of the retina in a rodent model of retinitis pigmentosa (RP) was investigated using a cryo-fluorescence imaging technique. The mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent and can be monitored without exogenous labels using optical techniques. The cryo-fluorescence redox imaging technique provides a quantitative assessment of the metabolism. More specifically, the ratio of the fluorescence intensity of these fluorophores (NADH/FAD), the NADH redox ratio (RR), is a marker of the metabolic state of the tissue. The NADH RR and retinal function were examined in an established rodent model of RP, the P23H rat compared to that of nondystrophic Sprague-Dawley (SD) rats. The NADH RR mean values were 1.11±0.03 in the SD normal and 0.841±0.01 in the P23H retina, indicating increased OS in the P23H retina. Electroretinographic data revealed a significant reduction in photoreceptor function in P23H animals compared to SD nozrmal rats. Thus, cryo-fluorescence redox imaging was used as a quantitative marker of OS in eyes from transgenic rats and demonstrated that alterations in the oxidative state of eyes occur during the early stages of RP.

  18. State-of-the-art in retinal optical coherence tomography image analysis

    PubMed Central

    Yu, Zeyun; D’Souza, Roshan M.

    2015-01-01

    Optical coherence tomography (OCT) is an emerging imaging modality that has been widely used in the field of biomedical imaging. In the recent past, it has found uses as a diagnostic tool in dermatology, cardiology, and ophthalmology. In this paper we focus on its applications in the field of ophthalmology and retinal imaging. OCT is able to non-invasively produce cross-sectional volumetric images of the tissues which can be used for analysis of tissue structure and properties. Due to the underlying physics, OCT images suffer from a granular pattern, called speckle noise, which restricts the process of interpretation. This requires specialized noise reduction techniques to eliminate the noise while preserving image details. Another major step in OCT image analysis involves the use of segmentation techniques for distinguishing between different structures, especially in retinal OCT volumes. The outcome of this step is usually thickness maps of different retinal layers which are very useful in study of normal/diseased subjects. Lastly, movements of the tissue under imaging as well as the progression of disease in the tissue affect the quality and the proper interpretation of the acquired images which require the use of different image registration techniques. This paper reviews various techniques that are currently used to process raw image data into a form that can be clearly interpreted by clinicians. PMID:26435924

  19. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation

    PubMed Central

    Yi, Ji; Liu, Wenzhong; Chen, Siyu; Backman, Vadim; Sheibani, Nader; Sorenson, Christine M.; Fawzi, Amani A.; Linsenmeier, Robert A.; Zhang, Hao F.

    2015-01-01

    The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28 ± 0.08 μL min−1 (p < 0.001), and 0.20 ± 0.04 μL min−1 (p < 0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation. Results from an oxygen diffusion model based on previous oxygen electrode measurements corroborated our in vivo observations. We believe that vis-OCT has the potential to reveal the fundamental role of oxygen metabolism in various retinal diseases. PMID:26658555

  20. Electron density measurements for plasma adaptive optics

    NASA Astrophysics Data System (ADS)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  1. Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury

    PubMed Central

    van der Merwe, Yolandi

    2015-01-01

    Abstract Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer “biohybrid” sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome. PMID:26478910

  2. In vitro retinal imaging with full field swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fergusson, James; Považay, Boris; Hofer, Bernd; Drexler, Wolfgang

    2010-02-01

    Weakly scattering tree shrew retina has been imaged in vitro with full field swept source optical coherence tomography, visualising multiple intraretinal layers. The system utilises a 50nm bandwidth Superlum SLD, to acheive ~8μm of axial resolution and 4μm of transversal resolution. Volumetric images of retinal tissue with dimensions of 1248x936x678μm (horizontal by vertical by axial) were recorded in two second (equivalent of 153,600 A-scans per second) with a measured signal to noise ratio of 75dB. From the 5mW of SLD optical power available, 720μW illuminates the sample, giving a power per pixel of 4.6nW, ten times less power per pixel then standard FDOCT systems. After upgrading the camera and redesigning the optical beam path, 82dB of SNR was realised.

  3. Mesenchymal stem cell therapy in retinal and optic nerve diseases: An update of clinical trials

    PubMed Central

    Labrador-Velandia, Sonia; Alonso-Alonso, María Luz; Alvarez-Sanchez, Sara; González-Zamora, Jorge; Carretero-Barrio, Irene; Pastor, José Carlos; Fernandez-Bueno, Iván; Srivastava, Girish Kumar

    2016-01-01

    Retinal and optic nerve diseases are degenerative ocular pathologies which lead to irreversible visual loss. Since the advanced therapies availability, cell-based therapies offer a new all-encompassing approach. Advances in the knowledge of neuroprotection, immunomodulation and regenerative properties of mesenchymal stem cells (MSCs) have been obtained by several preclinical studies of various neurodegenerative diseases. It has provided the opportunity to perform the translation of this knowledge to prospective treatment approaches for clinical practice. Since 2008, several first steps projecting new treatment approaches, have been taken regarding the use of cell therapy in patients with neurodegenerative pathologies of optic nerve and retina. Most of the clinical trials using MSCs are in I/II phase, recruiting patients or ongoing, and they have as main objective the safety assessment of MSCs using various routes of administration. However, it is important to recognize that, there is still a long way to go to reach clinical trials phase III-IV. Hence, it is necessary to continue preclinical and clinical studies to improve this new therapeutic tool. This paper reviews the latest progress of MSCs in human clinical trials for retinal and optic nerve diseases. PMID:27928464

  4. Retinal Ganglion Cell Loss is Delayed Following Optic Nerve Crush in NLRP3 Knockout Mice

    PubMed Central

    Puyang, Zhen; Feng, Liang; Chen, Hui; Liang, Peiji; Troy, John B.; Liu, Xiaorong

    2016-01-01

    The NLRP3 inflammasome, a sensor for a variety of pathogen- and host-derived threats, consists of the adaptor ASC (Apoptosis-associated Speck-like protein containing a Caspase Activation and Recruitment Domain (CARD)), pro-caspase-1, and NLRP3 (NOD-Like Receptor family Pyrin domain containing 3). NLRP3-induced neuroinflammation is implicated in the pathogenesis and progression of eye diseases, but it remains unclear whether activation of NLRP3 inflammasome contributes to retinal ganglion cell (RGC) death. Here we examined NLRP3-induced neuroinflammation and RGC survival following partial optic nerve crush (pONC) injury. We showed that NLRP3 was up-regulated in retinal microglial cells following pONC, propagating from the injury site to the optic nerve head and finally the entire retina within one day. Activation of NLRP3-ASC inflammasome led to the up-regulation of caspase-1 and a proinflammatory cytokine, interleukin-1β (IL-1β). In NLRP3 knockout mice, up-regulation of ASC, caspase-1, and IL-1β were all reduced, and, importantly, RGC and axon loss was substantially delayed following pONC injury. The average survival time of RGCs in NLRP3 knockout mice was about one week longer than for control animals. Taken together, our study demonstrated that ablating the NLRP3 gene significantly reduced neuroinflammation and delayed RGC loss after optic nerve crush injury. PMID:26893104

  5. Visible light optical coherence tomography measure retinal oxygen metabolic response to systemic oxygenation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yi, Ji; Liu, Wenzhong; Chen, Siyu; Backman, Vadim; Sheibani, Nader; Sorenson, Christine M.; Fawzi, Amani A.; Linsenmeier, Robert A.; Zhang, Hao F.

    2016-03-01

    The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. The rMRO2 was calculated by concurrent measurement of blood flow and blood oxygen saturation (sO2). Blood flow was calculated by the principle of Doppler optical coherence tomography, where the phase shift between two closely spaced A-lines measures the axial velocity. The distinct optical absorption spectra of oxy- and deoxy-hemoglobin provided the contrast for sO2 measurement, combined with the spectroscopic analysis of vis-OCT signal within the blood vessels. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28+/-0.08 μL/min (p<0.001), and 0.20+/-0.04 μL/min (p<0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation (CC).

  6. Volume Averaging of Spectral-Domain Optical Coherence Tomography Impacts Retinal Segmentation in Children

    PubMed Central

    Trimboli-Heidler, Carmelina; Vogt, Kelly; Avery, Robert A.

    2016-01-01

    Purpose To determine the influence of volume averaging on retinal layer thickness measures acquired with spectral-domain optical coherence tomography (SD-OCT) in children. Methods Macular SD-OCT images were acquired using three different volume settings (i.e., 1, 3, and 9 volumes) in children enrolled in a prospective OCT study. Total retinal thickness and five inner layers were measured around an Early Treatment Diabetic Retinopathy Scale (ETDRS) grid using beta version automated segmentation software for the Spectralis. The magnitude of manual segmentation required to correct the automated segmentation was classified as either minor (<12 lines adjusted), moderate (>12 and <25 lines adjusted), severe (>26 and <48 lines adjusted), or fail (>48 lines adjusted or could not adjust due to poor image quality). The frequency of each edit classification was assessed for each volume setting. Thickness, paired difference, and 95% limits of agreement of each anatomic quadrant were compared across volume density. Results Seventy-five subjects (median age 11.8 years, range 4.3–18.5 years) contributed 75 eyes. Less than 5% of the 9- and 3-volume scans required more than minor manual segmentation corrections, compared with 71% of 1-volume scans. The inner (3 mm) region demonstrated similar measures across all layers, regardless of volume number. The 1-volume scans demonstrated greater variability of the retinal nerve fiber layer (RNLF) thickness, compared with the other volumes in the outer (6 mm) region. Conclusions In children, volume averaging of SD-OCT acquisitions reduce retinal layer segmentation errors. Translational Relevance This study highlights the importance of volume averaging when acquiring macula volumes intended for multilayer segmentation. PMID:27570711

  7. Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm

    PubMed Central

    Abdullah, Muhammad; Barman, Sarah A.

    2016-01-01

    Automated retinal image analysis has been emerging as an important diagnostic tool for early detection of eye-related diseases such as glaucoma and diabetic retinopathy. In this paper, we have presented a robust methodology for optic disc detection and boundary segmentation, which can be seen as the preliminary step in the development of a computer-assisted diagnostic system for glaucoma in retinal images. The proposed method is based on morphological operations, the circular Hough transform and the grow-cut algorithm. The morphological operators are used to enhance the optic disc and remove the retinal vasculature and other pathologies. The optic disc center is approximated using the circular Hough transform, and the grow-cut algorithm is employed to precisely segment the optic disc boundary. The method is quantitatively evaluated on five publicly available retinal image databases DRIVE, DIARETDB1, CHASE_DB1, DRIONS-DB, Messidor and one local Shifa Hospital Database. The method achieves an optic disc detection success rate of 100% for these databases with the exception of 99.09% and 99.25% for the DRIONS-DB, Messidor, and ONHSD databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 78.6%, 85.12%, 83.23%, 85.1%, 87.93%, 80.1%, and 86.1%, respectively, for these databases. This unique method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc. PMID:27190713

  8. Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm.

    PubMed

    Abdullah, Muhammad; Fraz, Muhammad Moazam; Barman, Sarah A

    2016-01-01

    Automated retinal image analysis has been emerging as an important diagnostic tool for early detection of eye-related diseases such as glaucoma and diabetic retinopathy. In this paper, we have presented a robust methodology for optic disc detection and boundary segmentation, which can be seen as the preliminary step in the development of a computer-assisted diagnostic system for glaucoma in retinal images. The proposed method is based on morphological operations, the circular Hough transform and the grow-cut algorithm. The morphological operators are used to enhance the optic disc and remove the retinal vasculature and other pathologies. The optic disc center is approximated using the circular Hough transform, and the grow-cut algorithm is employed to precisely segment the optic disc boundary. The method is quantitatively evaluated on five publicly available retinal image databases DRIVE, DIARETDB1, CHASE_DB1, DRIONS-DB, Messidor and one local Shifa Hospital Database. The method achieves an optic disc detection success rate of 100% for these databases with the exception of 99.09% and 99.25% for the DRIONS-DB, Messidor, and ONHSD databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 78.6%, 85.12%, 83.23%, 85.1%, 87.93%, 80.1%, and 86.1%, respectively, for these databases. This unique method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc.

  9. Adaptive optics scanning ophthalmoscopy with annular pupils.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2012-07-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections.

  10. Adaptive optics fundus camera using a liquid crystal phase modulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Nakazawa, Naoki; Bessho, Kenichiro; Kitaguchi, Yoshiyuki; Maeda, Naoyuki; Fujikado, Takashi; Mihashi, Toshifumi

    2008-05-01

    We have developed an adaptive optics (AO) fundus camera to obtain high resolution retinal images of eyes. We use a liquid crystal phase modulator to compensate the aberrations of the eye for better resolution and better contrast in the images. The liquid crystal phase modulator has a wider dynamic range to compensate aberrations than most mechanical deformable mirrors and its linear phase generation makes it easy to follow eye movements. The wavefront aberration was measured in real time with a sampling rate of 10 Hz and the closed loop system was operated at around 2 Hz. We developed software tools to align consecutively obtained images. From our experiments with three eyes, the aberrations of normal eyes were reduced to less than 0.1 μm (RMS) in less than three seconds by the liquid crystal phase modulator. We confirmed that this method was adequate for measuring eyes with large aberrations including keratoconic eyes. Finally, using the liquid crystal phase modulator, high resolution images of retinas could be obtained.

  11. FGF-2 modulates expression and distribution of GAP-43 in frog retinal ganglion cells after optic nerve injury.

    PubMed

    Soto, Ileana; Marie, Bruno; Baro, Deborah J; Blanco, Rosa E

    2003-08-15

    Basic fibroblast growth factor (bFGF or FGF-2) has been implicated as a trophic factor that promotes survival and neurite outgrowth of neurons. We found previously that application of FGF-2 to the proximal stump of the injured axon increases retinal ganglion cell (RGC) survival. We determine here the effect of FGF-2 on expression of the axonal growth-associated phosphoprotein (GAP)-43 in retinal ganglion cells and tectum of Rana pipiens during regeneration of the optic nerve. In control retinas, GAP-43 protein was found in the optic fiber layer and in optic nerve; mRNA levels were low. After axotomy, mRNA levels increased sevenfold and GAP-43 protein was significantly increased. GAP-43 was localized in retinal axons and in a subset of RGC cell bodies and dendrites. This upregulation of GAP-43 was sustained through the period in which retinal axons reconnect with their target in the tectum. FGF-2 application to the injured nerve, but not to the eyeball, increased GAP-43 mRNA in the retina but decreased GAP-43 protein levels and decreased the number of immunopositive cell bodies. In the tectum, no treatment affected GAP-43 mRNA but FGF-2 application to the axotomized optic nerve increased GAP-43 protein in regenerating retinal projections. We conclude that FGF-2 upregulates the synthesis and alters the distribution of the axonal growth-promoting protein GAP-43, suggesting that it may enhance axonal regrowth.

  12. Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform

    NASA Astrophysics Data System (ADS)

    Song, Wei; Wei, Qing; Liu, Tan; Kuai, David; Burke, Janice M.; Jiao, Shuliang; Zhang, Hao F.

    2012-06-01

    Photoacoustic ophthalmoscopy (PAOM) is a newly developed retinal imaging technology that holds promise for both fundamental investigation and clinical diagnosis of several blinding diseases. Hence, integrating PAOM with other existing ophthalmic imaging modalities is important to identify and verify the strengths of PAOM compared with the established technologies and to provide the foundation for more comprehensive multimodal imaging. To this end, we developed a retinal imaging platform integrating PAOM with scanning laser ophthalmoscopy (SLO), spectral-domain optical coherence tomography (SD-OCT), and fluorescein angiography (FA). In the system, all the imaging modalities shared the same optical scanning and delivery mechanisms, which enabled registered retinal imaging from all the modalities. High-resolution PAOM, SD-OCT, SLO, and FA images were acquired in both albino and pigmented rat eyes. The reported in vivo results demonstrate the capability of the integrated system to provide comprehensive anatomic imaging based on multiple optical contrasts.

  13. Fixation light hue bias revisited: implications for using adaptive optics to study color vision.

    PubMed

    Hofer, H J; Blaschke, J; Patolia, J; Koenig, D E

    2012-03-01

    Current vision science adaptive optics systems use near infrared wavefront sensor 'beacons' that appear as red spots in the visual field. Colored fixation targets are known to influence the perceived color of macroscopic visual stimuli (Jameson, D., & Hurvich, L. M. (1967). Fixation-light bias: An unwanted by-product of fixation control. Vision Research, 7, 805-809.), suggesting that the wavefront sensor beacon may also influence perceived color for stimuli displayed with adaptive optics. Despite its importance for proper interpretation of adaptive optics experiments on the fine scale interaction of the retinal mosaic and spatial and color vision, this potential bias has not yet been quantified or addressed. Here we measure the impact of the wavefront sensor beacon on color appearance for dim, monochromatic point sources in five subjects. The presence of the beacon altered color reports both when used as a fixation target as well as when displaced in the visual field with a chromatically neutral fixation target. This influence must be taken into account when interpreting previous experiments and new methods of adaptive correction should be used in future experiments using adaptive optics to study color.

  14. Perceiving Collision Impacts in Alzheimer's Disease: The Effect of Retinal Eccentricity on Optic Flow Deficits.

    PubMed

    Kim, Nam-Gyoon

    2015-01-01

    The present study explored whether the optic flow deficit in Alzheimer's disease (AD) reported in the literature transfers to different types of optic flow, in particular, one that specifies collision impacts with upcoming surfaces, with a special focus on the effect of retinal eccentricity. Displays simulated observer movement over a ground plane toward obstacles lying in the observer's path. Optical expansion was modulated by varying [Formula: see text]. The visual field was masked either centrally (peripheral vision) or peripherally (central vision) using masks ranging from 10° to 30° in diameter in steps of 10°. Participants were asked to indicate whether their approach would result in "collision" or "no collision" with the obstacles. Results showed that AD patients' sensitivity to [Formula: see text] was severely compromised, not only for central vision but also for peripheral vision, compared to age- and education-matched elderly controls. The results demonstrated that AD patients' optic flow deficit is not limited to radial optic flow but includes also the optical pattern engendered by [Formula: see text]. Further deterioration in the capacity to extract [Formula: see text] to determine potential collisions in conjunction with the inability to extract heading information from radial optic flow would exacerbate AD patients' difficulties in navigation and visuospatial orientation.

  15. Imaging Radio Galaxies with Adaptive Optics

    NASA Astrophysics Data System (ADS)

    de Vries, W. H.; van Breugel, W. J. M.; Quirrenbach, A.; Roberts, J.; Fidkowski, K.

    2000-12-01

    We present 42 milli-arcsecond resolution Adaptive Optics near-infrared images of 3C 452 and 3C 294, two powerful radio galaxies at z=0.081 and z=1.79 respectively, obtained with the NIRSPEC/SCAM+AO instrument on the Keck telescope. The observations provide unprecedented morphological detail of radio galaxy components like nuclear dust-lanes, off-centered or binary nuclei, and merger induced starforming structures; all of which are key features in understanding galaxy formation and the onset of powerful radio emission. Complementary optical HST imaging data are used to construct high resolution color images, which, for the first time, have matching optical and near-IR resolutions. Based on these maps, the extra-nuclear structural morphologies and compositions of both galaxies are discussed. Furthermore, detailed brightness profile analysis of 3C 452 allows a direct comparison to a large literature sample of nearby ellipticals, all of which have been observed in the optical and near-IR by HST. Both the imaging data and the profile information on 3C 452 are consistent with it being a relative diminutive and well-evolved elliptical, in stark contrast to 3C 294 which seems to be in its initial formation throes with an active AGN off-centered from the main body of the galaxy. These results are discussed further within the framework of radio galaxy triggering and the formation of massive ellipticals. The work of WdV and WvB was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. The work at UCSD has been supported by the NSF Science and Technology Center for Adaptive Optics, under agreement No. AST-98-76783.

  16. The Adaptive Optics Summer School Laboratory Activities

    NASA Astrophysics Data System (ADS)

    Ammons, S. M.; Severson, S.; Armstrong, J. D.; Crossfield, I.; Do, T.; Fitzgerald, M.; Harrington, D.; Hickenbotham, A.; Hunter, J.; Johnson, J.; Johnson, L.; Li, K.; Lu, J.; Maness, H.; Morzinski, K.; Norton, A.; Putnam, N.; Roorda, A.; Rossi, E.; Yelda, S.

    2010-12-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO systems as a research tool. The activities are divided into three stations: Vision Science, Fourier Optics, and the AO Demonstrator. We briefly overview these activities, which are described fully in other articles in these conference proceedings (Putnam et al., Do et al., and Harrington et al., respectively). We devote attention to the unique challenges encountered in the design of these activities, including the marriage of inquiry-like investigation techniques with complex content and the need to tune depth to a graduate- and PhD-level audience. According to before-after surveys conducted in 2008, the vast majority of participants found that all activities were valuable to their careers, although direct experience with integrated, functional AO systems was particularly beneficial.

  17. The CHARA Array Adaptive Optics Program

    NASA Astrophysics Data System (ADS)

    Ten Brummelaar, Theo; Che, Xiao; McAlister, Harold A.; Ireland, Michael; Monnier, John D.; Mourard, Denis; Ridgway, Stephen T.; sturmann, judit; Sturmann, Laszlo; Turner, Nils H.; Tuthill, Peter

    2016-01-01

    The CHARA array is an optical/near infrared interferometer consisting of six 1-meter diameter telescopes the longest baseline of which is 331 meters. With sub-millisecond angular resolution, the CHARA array is able to spatially resolve nearby stellar systems to reveal the detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011, and by NSF-MRI in 2015, for an upgrade of adaptive optics (AO) systems to all six telescopes. The initial grant covers Phase I of the adaptive optics system, which includes an on-telescope Wavefront Sensor and non-common-path (NCP) error correction. The WFS use a fairly standard Shack-Hartman design and will initially close the tip tilt servo and log wavefront errors for use in data reduction and calibration. The second grant provides the funding for deformable mirrors for each telescope which will be used closed loop to remove atmospheric aberrations from the beams. There are then over twenty reflections after the WFS at the telescopes that bring the light several hundred meters into the beam combining laboratory. Some of these, including the delay line and beam reducing optics, are powered elements, and some of them, in particular the delay lines and telescope Coude optics, are continually moving. This means that the NCP problems in an interferometer are much greater than those found in more standard telescope systems. A second, slow AO system is required in the laboratory to correct for these NCP errors. We will breifly describe the AO system, and it's current status, as well as discuss the new science enabled by the system with a focus on our YSO program.

  18. Retinal nerve fiber layer evaluation in multiple sclerosis with spectral domain optical coherence tomography

    PubMed Central

    Khanifar, Aziz A; Parlitsis, George J; Ehrlich, Joshua R; Aaker, Grant D; D’Amico, Donald J; Gauthier, Susan A; Kiss, Szilárd

    2010-01-01

    Purpose: Histopathologic studies have reported retinal nerve fiber layer (RNFL) thinning in various neurodegenerative diseases. Attempts to quantify this loss in vivo have relied on time-domain optical coherence tomography (TDOCT), which has low resolution and requires substantial interpolation of data for volume measurements. We hypothesized that the significantly higher resolution of spectral-domain optical coherence tomography (SDOCT) would better detect RNFL changes in patients with multiple sclerosis, and that RNFL thickness differences between eyes with and without optic neuritis might be identified more accurately. Methods: In this retrospective case series, patients with multiple sclerosis were recruited from the Judith Jaffe Multiple Sclerosis Center at Weill Cornell Medical College in New York. Patients with a recent clinical diagnosis of optic neuritis (less than three months) were excluded. Eyes with a history of glaucoma, optic neuropathy (other than multiple sclerosis-related optic neuritis), age-related macular degeneration, or other relevant retinal and/or optic nerve disease were excluded. Both eyes of each patient were imaged with the Heidelberg Spectralis® HRA + OCT. RNFL and macular thickness were measured for each eye using the Heidelberg OCT software. These measurements were compared with validated published normal values, and were modeled as linear functions of duration of disease. The odds of an optic neuritis diagnosis as a function of RNFL and macular thickness were calculated. Results: Ninety-four eyes were prospectively evaluated using OCT. Ages of patients ranged from 26 to 69 years, with an average age of 39 years. Peripapillary RNFL thinning was demonstrated in multiple sclerosis patients; mean RNFL thickness was 88.5 μm for individuals with multiple sclerosis compared with a reported normal value of 97 μm (P < 0.001). Eyes with a history of optic neuritis had more thinning compared with those without optic neuritis (83.0

  19. “Lucky Averaging”: Quality improvement on Adaptive Optics Scanning Laser Ophthalmoscope Images

    PubMed Central

    Huang, Gang; Zhong, Zhangyi; Zou, Weiyao; Burns, Stephen A.

    2012-01-01

    Adaptive optics(AO) has greatly improved retinal image resolution. However, even with AO, temporal and spatial variations in image quality still occur due to wavefront fluctuations, intra-frame focus shifts and other factors. As a result, aligning and averaging images can produce a mean image that has lower resolution or contrast than the best images within a sequence. To address this, we propose an image post-processing scheme called “lucky averaging”, analogous to lucky imaging (Fried, 1978) based on computing the best local contrast over time. Results from eye data demonstrate improvements in image quality. PMID:21964097

  20. Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Baumann, Bernhard; Götzinger, Erich; Pircher, Michael; Sattmann, Harald; Schütze, Christopher; Schlanitz, Ferdinand; Ahlers, Christian; Schmidt-Erfurth, Ursula; Hitzenberger, Christoph K.

    2010-11-01

    We present polarization-sensitive optical coherence tomography (PS-OCT) for quantitative assessment of retinal pathologies in age-related macular degeneration (AMD). On the basis of the polarization scrambling characteristics of the retinal pigment epithelium, novel segmentation algorithms were developed that allow one to segment pathologic features such as drusen and atrophic zones in dry AMD as well as to determine their dimensions. Results from measurements in the eyes of AMD patients prove the ability of PS-OCT for quantitative imaging based on the retinal features polarizing properties. Repeatability measurements were performed in retinas diagnosed with drusen and geographic atrophy in order to evaluate the performance of the described methods. PS-OCT appears as a promising imaging modality for three-dimensional retinal imaging and ranging with additional contrast based on the structures' tissue-inherent polarization properties.

  1. Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography.

    PubMed

    Baumann, Bernhard; Gotzinger, Erich; Pircher, Michael; Sattmann, Harald; Schuutze, Christopher; Schlanitz, Ferdinand; Ahlers, Christian; Schmidt-Erfurth, Ursula; Hitzenberger, Christoph K

    2010-01-01

    We present polarization-sensitive optical coherence tomography (PS-OCT) for quantitative assessment of retinal pathologies in age-related macular degeneration (AMD). On the basis of the polarization scrambling characteristics of the retinal pigment epithelium, novel segmentation algorithms were developed that allow one to segment pathologic features such as drusen and atrophic zones in dry AMD as well as to determine their dimensions. Results from measurements in the eyes of AMD patients prove the ability of PS-OCT for quantitative imaging based on the retinal features polarizing properties. Repeatability measurements were performed in retinas diagnosed with drusen and geographic atrophy in order to evaluate the performance of the described methods. PS-OCT appears as a promising imaging modality for three-dimensional retinal imaging and ranging with additional contrast based on the structures' tissue-inherent polarization properties.

  2. The ESO Adaptive Optics Facility under Test

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-François; Hackenberg, Wolfgang; Kuntschner, Harald; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Rob; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andrea; Duchateau, Michel; Downing, Mark; Moreno, Javier; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Max; Pfrommer, Thomas; Garcia-Rissmann, Aurea; Biasi, Roberto; Gallieni, Daniele; Stuik, Remko

    2013-12-01

    The Adaptive Optics Facility project has received most of its subsystems in Garching and the ESO Integration Hall has become the central operation location for the next phase of the project. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM will now undergo a series of tests on ASSIST to qualify its optical performance which launches the System Test Phase of the AOF. The tests will validate the AO modules operation with the DSM: first the GRAAL adaptive optics module for Hawk-I in natural guide star AO mode on-axis and then its Ground Layer AO mode. This will be followed by the GALACSI (for MUSE) Wide-Field-Mode (GLAO) and then the more challenging Narrow-Field-Mode (LTAO). We will report on the status of the subsystems at the time of the conference but also on the performance of the delivered ASSIST test bench, the DSM and the 20 Watt Sodium fiber Laser pre-production unit which has validated all specifications before final manufacturing of the serial units. We will also present some considerations and tools to ensure an efficient operation of the Facility in Paranal.

  3. Adaptive Optics for Ground-based Hypertelescopes

    NASA Astrophysics Data System (ADS)

    Labeyrie, Antoine; Borkowski, Virginie; Martinache, Franz; Arnold, Luc; Dejonghe, Julien; Riaud, Pierre; Lardière, Olivier; Gillet, Sophie

    Hypertelescopes, which may be considered as "exploded" versions of an OWL or other ELT, can in principle reach aperture sizes exceeding 1-10 kilometers. They utilize a multi-aperture diluted array and produce direct images through a densified exit pupil. Variants with a flat (the hypertelescope version of the Optical Very Large Array) or spherical (Arecibo-like CARLINA concept) site are studied. Adaptive optics is a major requirement for obtaining direct snapshot images at high resolution. Ways of adapting the Shack-Hartmann and curvature sensing methods for diluted apertures have been proposed. We explore the feasibility of applying 3D Fourier transforms to the dispersed images for extracting the path difference and phase information. With a spherical site, the numerous stars observable simultaneously at large angles can presumably help in the way of atmospheric tomography. Similar optics, equipped with a coronagraph, is proposed to NASA for the Terrestrial Planet Finder. The 3D Fourier transform algorithm also appears applicable in this case for fringe acquisition and π/100 phasing.

  4. Multifocal multiphoton microscopy with adaptive optical correction

    NASA Astrophysics Data System (ADS)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  5. Minimizing camera-eye optical aberrations during the 3D reconstruction of retinal structures

    NASA Astrophysics Data System (ADS)

    Aldana-Iuit, Javier; Martinez-Perez, M. Elena; Espinosa-Romero, Arturo; Diaz-Uribe, Rufino

    2010-05-01

    3D reconstruction of blood vessels is a powerful visualization tool for physicians, since it allows them to refer to qualitative representation of their subject of study. In this paper we propose a 3D reconstruction method of retinal vessels from fundus images. The reconstruction method propose herein uses images of the same retinal structure in epipolar geometry. Images are preprocessed by RISA system for segmenting blood vessels and obtaining feature points for correspondences. The correspondence points process is solved using correlation. The LMedS analysis and Graph Transformation Matching algorithm are used for outliers suppression. Camera projection matrices are computed with the normalized eight point algorithm. Finally, we retrieve 3D position of the retinal tree points by linear triangulation. In order to increase the power of visualization, 3D tree skeletons are represented by surfaces via generalized cylinders whose radius correspond to morphological measurements obtained by RISA. In this paper the complete calibration process including the fundus camera and the optical properties of the eye, the so called camera-eye system is proposed. On one hand, the internal parameters of the fundus camera are obtained by classical algorithms using a reference pattern. On the other hand, we minimize the undesirable efects of the aberrations induced by the eyeball optical system assuming that contact enlarging lens corrects astigmatism, spherical and coma aberrations are reduced changing the aperture size and eye refractive errors are suppressed adjusting camera focus during image acquisition. Evaluation of two self-calibration proposals and results of 3D blood vessel surface reconstruction are presented.

  6. High-speed adaptive optics for imaging of the living human eye

    PubMed Central

    Yu, Yongxin; Zhang, Tianjiao; Meadway, Alexander; Wang, Xiaolin; Zhang, Yuhua

    2015-01-01

    The discovery of high frequency temporal fluctuation of human ocular wave aberration dictates the necessity of high speed adaptive optics (AO) correction for high resolution retinal imaging. We present a high speed AO system for an experimental adaptive optics scanning laser ophthalmoscope (AOSLO). We developed a custom high speed Shack-Hartmann wavefront sensor and maximized the wavefront detection speed based upon a trade-off among the wavefront spatial sampling density, the dynamic range, and the measurement sensitivity. We examined the temporal dynamic property of the ocular wavefront under the AOSLO imaging condition and improved the dual-thread AO control strategy. The high speed AO can be operated with a closed-loop frequency up to 110 Hz. Experiment results demonstrated that the high speed AO system can provide improved compensation for the wave aberration up to 30 Hz in the living human eye. PMID:26368408

  7. Progress with the lick adaptive optics system

    SciTech Connect

    Gavel, D T; Olivier, S S; Bauman, B; Max, C E; Macintosh, B

    2000-03-01

    Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1-2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.

  8. Progress with the Lick adaptive optics system

    NASA Astrophysics Data System (ADS)

    Gavel, Donald T.; Olivier, Scot S.; Bauman, Brian J.; Max, Claire E.; Macintosh, Bruce A.

    2000-07-01

    Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1 - 2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.

  9. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    SciTech Connect

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  10. Adaptive optics-assisted optical coherence tomography for imaging of patients with age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Sudo, Kenta; Cense, Barry

    2013-03-01

    We developed an optical coherence tomography (OCT) prototype with a sample arm that uses a 3.4 mm beam, which is considerably larger than the 1.2 to 1.5 mm beam that is used in commercialized OCT systems. The system is equipped with adaptive optics (AO), and to distinguish it from traditional AO-OCT systems with a larger 6 mm beam we have coined this concept AO-assisted OCT. Compared to commercialized OCT systems, the 3.4 mm aperture combined with AO improves light collection efficiency and imaging lateral resolution. In this paper, the performance of the AOa-OCT system was compared to a standard OCT system and demonstrated for imaging of age-related macular degeneration (AMD). Measurements were performed on the retinas of three human volunteers with healthy eyes and on one eye of a patient diagnosed with AMD. The AO-assisted OCT system imaged retinal structures of healthy human eyes and a patient eye affected by AMD with higher lateral resolution and a 9° by 9° field of view. This combination of a large isoplanatic patch and high lateral resolution can be expected to fill a gap between standard OCT with a 1.2 mm beam and conventional AO-OCT with a 6 mm beam and a 1.5° by 1.5° isoplanatic patch.

  11. Concentration of astrocytic filaments at the retinal optic nerve junction is coincident with the absence of intra-retinal myelination: comparative and developmental evidence.

    PubMed

    Morcos, Y; Chan-Ling, T

    2000-09-01

    The structure of the lamina cribrosa (LC) and astrocytic density were examined in various species with and without intra-retinal myelination. Sections of optic nerve from various species were stained with Milligan's trichrome or antibodies to glial fibrillary acidic protein, myelin basic protein (MBP) and antibody O4. Marmoset, flying fox, cat, and sheep, which lack intraretinal myelination, were shown to possess a well-developed LC as well as a marked concentration of astrocytic filaments distal to the LC. Rat and mouse, which lack intraretinal myelination, lacked a well-developed LC but exhibited a marked concentration of astrocytic filaments in this region. Rabbit and chicken, which exhibit intraretinal myelination, lacked both a well-developed LC and a concentration of astrocytes at the retinal optic nerve junction (ROJ). A marked concentration of astrocytes at the ROJ of human fetuses was also apparent at 13 weeks of gestation, prior to myelination of the optic nerve; in contrast, the LC was not fully developed even at birth. This concentration of astrocytes was located distal to O4 and MBP immunoreactivity in human optic nerve, and coincided with the site of initial myelination of ganglion cell axons in marmoset and rat. Myelination proceeded from the chiasm towards the retinal end of the human optic nerve. Moreover, the outer limit of oligodendrocyte precursor cells (OPC) migration into the rabbit retina was restricted by the outer limit of astrocyte spread. These observations indicate that a concentration of astrocytic filaments at the ROJ is coincident with the absence of intraretinal myelination. Differential expression of tenascin-C by astrocytes at the ROJ appears to contribute to the molecular barrier to OPC migration (see Bartsch et al., 1994), while expression of the homedomain protein Vax 1 by glial cells at the optic nerve head appears to inhibit migration of retinal pigment epithelial cells into the optic nerve (see Bertuzzi et al., 1999). These

  12. Optical Detection of Early Damage in Retinal Ganglion Cells in a Mouse Model of Partial Optic Nerve Crush Injury

    PubMed Central

    Yi, Ji; Puyang, Zhen; Feng, Liang; Duan, Lian; Liang, Peiji; Backman, Vadim; Liu, Xiaorong; Zhang, Hao F.

    2016-01-01

    Purpose Elastic light backscattering spectroscopy (ELBS) has exquisite sensitivity to the ultrastructural properties of tissue and thus has been applied to detect various diseases associated with ultrastructural alterations in their early stages. This study aims to test whether ELBS can detect early damage in retinal ganglion cells (RGCs). Methods We used a mouse model of partial optic nerve crush (pONC) to induce rapid RGC death. We confirmed RGC loss by axon counting and characterized the changes in retinal morphology by optical coherence tomography (OCT) and in retinal function by full-field electroretinogram (ERG), respectively. To quantify the ultrastructural properties, elastic backscattering spectroscopic analysis was implemented in the wavelength-dependent images recorded by reflectance confocal microscopy. Results At 3 days post-pONC injury, no significant change was found in the thickness of the RGC layer or in the mean amplitude of the oscillatory potentials measured by OCT and ERG, respectively; however, we did observe a significantly decreased number of axons compared with the controls. At 3 days post-pONC, we used ELBS to calculate the ultrastructural marker (D), the shape factor quantifying the shape of the local mass density correlation functions. It was significantly reduced in the crushed eyes compared with the controls, indicating the ultrastructural fragmentation in the crushed eyes. Conclusions Elastic light backscattering spectroscopy detected ultrastructural neuronal damage in RGCs following the pONC injury when OCT and ERG tests appeared normal. Our study suggests a potential clinical method for detecting early neuronal damage prior to anatomical alterations in the nerve fiber and ganglion cell layers. PMID:27784071

  13. An adaptive grid for graph-based segmentation in retinal OCT

    PubMed Central

    Lang, Andrew; Carass, Aaron; Calabresi, Peter A.; Ying, Howard S.; Prince, Jerry L.

    2016-01-01

    Graph-based methods for retinal layer segmentation have proven to be popular due to their efficiency and accuracy. These methods build a graph with nodes at each voxel location and use edges connecting nodes to encode the hard constraints of each layer’s thickness and smoothness. In this work, we explore deforming the regular voxel grid to allow adjacent vertices in the graph to more closely follow the natural curvature of the retina. This deformed grid is constructed by fixing node locations based on a regression model of each layer’s thickness relative to the overall retina thickness, thus we generate a subject specific grid. Graph vertices are not at voxel locations, which allows for control over the resolution that the graph represents. By incorporating soft constraints between adjacent nodes, segmentation on this grid will favor smoothly varying surfaces consistent with the shape of the retina. Our final segmentation method then follows our previous work. Boundary probabilities are estimated using a random forest classifier followed by an optimal graph search algorithm on the new adaptive grid to produce a final segmentation. Our method is shown to produce a more consistent segmentation with an overall accuracy of 3.38 μm across all boundaries. PMID:27773959

  14. Adaptive optics and laser guide stars at Lick observatory

    SciTech Connect

    Brase, J.M.

    1994-11-15

    For the past several years LLNL has been developing adaptive optics systems for correction of both atmospheric turbulence effects and thermal distortions in optics for high-power lasers. Our early work focused on adaptive optics for beam control in laser isotope separation and ground-based free electron lasers. We are currently developing innovative adaptive optics and laser systems for sodium laser guide star applications at the University of California`s Lick and Keck Observeratories. This talk will describe our adaptive optics technology and some of its applications in high-resolution imaging and beam control.

  15. Structural and Function Correlation of Cone Packing Utilizing Adaptive Optics and Microperimetry

    PubMed Central

    Supriya, Dabir; Shwetha, Mangalesh; Kiran Anupama, Kumar; Kummelil Mathew, Kurian; Berendschot, Tos T. J. M.; Schouten, Jan S. A. G.; Bharamshetter, Roopa; Naresh, Yadav K.; Rohit, Shetty; Hegde, Bharath

    2015-01-01

    Aim. To assess the functional aspects of cone mosaic and correlate cone packing with retinal sensitivity utilizing microperimetry in emmetropes at different eccentricities. Methods. Twenty-four healthy volunteers underwent microperimetry (MAIA Centervue, Italy) and assessment of photoreceptors using adaptive optics retinal camera, rtx1 (Imagine Eyes, Orsay, France), at 2 and 3 degrees from the foveal centre in 4 quadrants: superior, inferior, temporal, and nasal. Data was analyzed using SPSS version 17 (IBM). Spearman's correlation tests were used to establish correlation between mean cone packing density and retinal sensitivity at different quadrants. Results. Thirteen females and 11 males (age range 20–40 years) were included. The cone density was found to be significantly different among all quadrants (temporal = 25786.68/mm2 ± 4367.07/mm2, superior = 23009.35/mm2 ± 5415.81/mm2, nasal = 22838.09/mm2 ± 4166.22/mm2, and inferior = 21097.53/mm2 ± 4235.84/mm2). A statistical significance (P < 0.008) was found between orthogonal meridians, that is, temporal, nasal (48624.77/mm2)> superior, inferior (44106.88/mm2). A drop in retinal sensitivity was observed as the eccentricity increased (P < 0.05). It was also found that as cone packing density decreased retinal sensitivity also decreased (P < 0.05) in all quadrants. This was observed at both 2 and 3 degrees. Conclusion. It is of crucial importance to establish normative variations in cone structure-function correlation. This may help in detection of subtle pathology and its early intervention. PMID:26167509

  16. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    SciTech Connect

    Bauman, Brian J.

    2003-01-01

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro-electromechanical system (MEMS) to track the LGS light subaperture by

  17. Parapapillary atrophy and optic disc region assessment (PANDORA): retinal imaging tool for assessment of the optic disc and parapapillary atrophy

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Kai; Tang, Tong Boon; Laude, Augustinus; Dhillon, Baljean; Murray, Alan F.

    2012-10-01

    We describe a computer-aided measuring tool, named parapapillary atrophy and optic disc region assessment (PANDORA), for automated detection and quantification of both the parapapillary atrophy (PPA) and the optic disc (OD) regions in two-dimensional color retinal fundus images. The OD region is segmented using a combination of edge detection and ellipse fitting methods. The PPA region is identified by the presence of bright pixels in the temporal zone of the OD, and it is segmented using a sequence of techniques, including a modified Chan-Vese approach, thresholding, scanning filter, and multiseed region growing. PANDORA has been tested with 133 color retinal images (82 with PPA; 51 without PPA) drawn randomly from the Lothian Birth Cohort (LBC) database, together with a "ground truth" estimate from an ophthalmologist. The PPA detection rate is 89.47% with a sensitivity of 0.83 and a specificity of 1. The mean accuracy in defining the OD region is 81.31% (SD=10.45) when PPA is present and 95.32% (SD=4.36) when PPA is absent. The mean accuracy in defining the PPA region is 73.57% (SD=11.62). PANDORA demonstrates for the first time how to quantify the OD and PPA regions using two-dimensional fundus images, enabling ophthalmologists to study ocular diseases related to PPA using a standard fundus camera.

  18. Glioprotection of Retinal Astrocytes After Intravitreal Administration of Memantine in the Mouse Optic Nerve Crush Model

    PubMed Central

    Maciulaitiene, Ruta; Pakuliene, Giedre; Kaja, Simon; Pauza, Dainius Haroldas; Kalesnykas, Giedrius; Januleviciene, Ingrida

    2017-01-01

    Background In glaucoma, non-intraocular pressure (IOP)-related risk factors can result in increased levels of extracellular glutamate, which triggers a cascade of neurodegeneration characterized by the excessive activation of N-methyl-D-aspartate (NMDA). The purpose of our study was to evaluate the glioprotective effects of memantine as a prototypic uncompetitive NMDA blocker on retinal astrocytes in the optic nerve crush (ONC) mouse model for glaucoma. Material/Methods Optic nerve crush was performed on all of the right eyes (n=8), whereas left eyes served as contralateral healthy controls (n=8) in Balb/c/Sca mice. Four randomly assigned mice received 2-μl intravitreal injections of memantine (1 mg/ml) after ONC in the experimental eye. One week after the experiment, optic nerves were dissected and stained with methylene blue. Retinae were detached from the sclera. The tissue was immunostained. Whole-mount retinae were investigated by fluorescent microscopy. Astrocyte counts for each image were performed manually. Results Histological sections of crushed optic nerves showed consistently moderate tissue damage in experimental groups. The mean number of astrocytes per image in the ONC group was significantly lower than in the healthy control group (7.13±1.5 and 10.47±1.9, respectively). Loss of astrocytes in the memantine-treated group was significantly lower (8.83±2.2) than in the ONC group. Assessment of inter-observer reliability showed excellent agreement among observations in control, ONC, and memantine groups. Conclusions The ONC is an effective method for investigation of astrocytic changes in mouse retina. Intravitreally administered memantine shows a promising glioprotective effect on mouse retinal astrocytes by preserving astrocyte count after ONC. PMID:28265105

  19. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques

    PubMed Central

    Bayır, Şafak

    2016-01-01

    With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC. PMID:27110272

  20. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.

    PubMed

    Akyol, Kemal; Şen, Baha; Bayır, Şafak

    2016-01-01

    With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC.

  1. Kalman filter based control for Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry

    2004-12-01

    Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.

  2. Performance of adaptive optics at Lick Observatory

    SciTech Connect

    Olivier, S.S.; An, J.; Avicola, K.

    1994-03-01

    A prototype adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use at Lick Observatory. This system is based on an ITEX 69-actuator continuous-surface deformable mirror, a Kodak fast-framing intensified CCD camera, and a Mercury VME board containing four Intel i860 processors. The system has been tested using natural reference stars on the 40-inch Nickel telescope at Lick Observatory yielding up to a factor of 10 increase in image peak intensity and a factor of 6 reduction in image full width at half maximum (FWHM). These results are consistent with theoretical expectations. In order to improve performance, the intensified CCD camera will be replaced by a high-quantum-efficiency low-noise fast CCD camera built for LLNL by Adaptive Optics Associates using a chip developed by Lincoln Laboratory, and the 69-actuator deformable mirror will be replaced by a 127-actuator deformable mirror developed at LLNL. With these upgrades, the system should perform well in median seeing conditions on the 120-inch Shane telescope for observing wavelengths longer than {approximately}1 {mu}m and using natural reference stars brighter than m{sub R} {approximately} 10 or using the laser currently being developed at LLNL for use at Lick Observatory to generate a sodium-layer reference star.

  3. Extreme Adaptive Optics Planet Imager: XAOPI

    SciTech Connect

    Macintosh, B A; Graham, J; Poyneer, L; Sommargren, G; Wilhelmsen, J; Gavel, D; Jones, S; Kalas, P; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Patience, J; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Troy, M; Wallace, K

    2003-09-17

    Ground based adaptive optics is a potentially powerful technique for direct imaging detection of extrasolar planets. Turbulence in the Earth's atmosphere imposes some fundamental limits, but the large size of ground-based telescopes compared to spacecraft can work to mitigate this. We are carrying out a design study for a dedicated ultra-high-contrast system, the eXtreme Adaptive Optics Planet Imager (XAOPI), which could be deployed on an 8-10m telescope in 2007. With a 4096-actuator MEMS deformable mirror it should achieve Strehl >0.9 in the near-IR. Using an innovative spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused by static errors. We predict that it will achieve contrast levels of 10{sup 7}-10{sup 8} at angular separations of 0.2-0.8 inches around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. We are constructing a high-contrast AO testbed to verify key concepts of our system, and present preliminary results here, showing an RMS wavefront error of <1.3 nm with a flat mirror.

  4. Large aperture adaptive optics for intense lasers

    NASA Astrophysics Data System (ADS)

    Deneuville, François; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-05-01

    ISP SYSTEM has developed a range of large aperture electro-mechanical deformable mirrors (DM) suitable for ultra short pulsed intense lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations thanks to electromechanical actuators driven by stepper motors. DM design and assembly method have been adapted to large aperture beams and the performances were evaluated on a first application for a beam with a diameter of 250mm at 45° angle of incidence. A Strehl ratio above 0.9 was reached for this application. Simulations were correlated with measurements on optical bench and the design has been validated by calculation for very large aperture (up to Ø550mm). Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for actual MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The MD-AME mirrors can be adapted to circular, square or elliptical beams and they are compatible with all dielectric or metallic coatings.

  5. pH dependence of Anabaena sensory rhodopsin: retinal isomer composition, rate of dark adaptation, and photochemistry.

    PubMed

    Rozin, Rinat; Wand, Amir; Jung, Kwang-Hwan; Ruhman, Sanford; Sheves, Mordechai

    2014-07-31

    Microbial rhodopsins are photoactive proteins, and their binding site can accommodate either all-trans or 13-cis retinal chromophore. The pH dependence of isomeric composition, dark-adaptation rate, and primary events of Anabaena sensory rhodopsin (ASR), a microbial rhodopsin discovered a decade ago, are presented. The main findings are: (a) Two pKa values of 6.5 and 4.0 assigned to two different protein residues are observed using spectroscopic titration experiments for both ground-state retinal isomers: all-trans, 15-anti (AT) and 13-cis, 15-syn (13C). The protonation states of these protein residues affect the absorption spectrum of the pigment and most probably the isomerization process of the retinal chromophore. An additional pKa value of 8.5 is observed only for 13C-ASR. (b) The isomeric composition of ASR is determined over a wide pH range and found to be almost pH-independent in the dark (>96% AT isomer) but highly pH-dependent in the light-adapted form. (c) The kinetics of dark adaptation is recorded over a wide pH range, showing that the thermal isomerization from 13C to AT retinal occurs much faster at high pH rather than under acidic conditions. (d) Primary photochemical events of ASR at pH 5 are recorded using VIS hyperspectral pump-probe spectroscopy with <100 fs resolution and compared with the previously recorded results at pH 7.5. For AT-ASR, these are shown to be almost pH-independent. However, photochemistry of 13C-ASR is pH-dependent and slowed down in acidic environments.

  6. Optical design of the adaptive optics laser guide star system

    SciTech Connect

    Bissinger, H.

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  7. Spectral domain optical coherence tomography for in-vivo three-dimensional retinal imaging of small animals

    NASA Astrophysics Data System (ADS)

    Ruggeri, Marco; Wehbe, Hassan; Jiao, Shuliang; Gregori, Giovanni; Jockovich, Maria E.; Hackam, Abigail; Duan, Yuanli; Puliafito, Carmen A.

    2007-02-01

    The purpose of this study is to demonstrate the application of ultrahigh-resolution Spectral Domain Optical Coherence Tomography (SD-OCT) for non contact in vivo imaging of the retina of small animals and quantitative retinal information extraction using 3D segmentation of the OCT images. An ultrahigh-resolution SD-OCT system was specifically designed for in vivo retinal imaging of small animal. En face fundus image was constructed from the measured OCT data, which enables precise registration of the OCT images on the fundus. 3D segmentation algorithms were developed for the calculation of retinal thickness map. High quality OCT images of the retina of mice (B6/SJLF2 for normal retina, Rho -/- for photoreceptor degeneration and LH BETAT AG for retinoblastoma) and rats (Wistar for normal retina) were acquired, where all the retinal layers can be clearly recognized. The calculated retinal thickness map makes successful quantitative comparison of the retinal thickness distribution between normal and degenerative mouse retina. The capabilities of the OCT system provide a valuable tool for longitudinal studies of small animal models of ocular diseases.

  8. Relationship Between Optic Nerve Appearance and Retinal Nerve Fiber Layer Thickness as Explored with Spectral Domain Optical Coherence Tomography

    PubMed Central

    Aleman, Tomas S.; Huang, Jiayan; Garrity, Sean T.; Carter, Stuart B.; Aleman, Wendy D.; Ying, Gui-shuang; Tamhankar, Madhura A.

    2014-01-01

    Purpose To study the relationship between the appearance of the optic nerve and the retinal nerve fiber layer (RNFL) thickness determined by spectral domain optical coherence tomography (OCT). Methods Records from patients with spectral domain-OCT imaging in a neuro-ophthalmology practice were reviewed. Eyes with glaucoma/glaucoma suspicion, macular/optic nerve edema, pseudophakia, and with refractive errors > 6D were excluded. Optic nerve appearance by slit lamp biomicroscopy was related to the RNFL thickness by spectral domain-OCT and to visual field results. Results Ninety-one patients (176 eyes; mean age: 49 ± 15 years) were included. Eighty-three eyes (47%) showed optic nerve pallor; 89 eyes (50.6%) showed RNFL thinning (sectoral or average peripapillary). Average peripapillary RNFL thickness in eyes with pallor (mean ± SD = 76 ± 17 μm) was thinner compared to eyes without pallor (91 ± 14 μm, P < 0.001). Optic nerve pallor predicted RNFL thinning with a sensitivity of 69% and a specificity of 75%. Optic nerve appearance predicted RNFL thinning (with a sensitivity and specificity of 81%) when RNFL had thinned by ∼ 40%. Most patients with pallor had RNFL thinning with (66%) or without (25%) visual field loss; the remainder had normal RNFL and fields (5%) or with visual field abnormalities (4%). Conclusions Optic nerve pallor as a predictor of RNFL thinning showed fair sensitivity and specificity, although it is optimally sensitive/specific only when substantial RNFL loss has occurred. Translational Relevance Finding an acceptable relationship between the optic nerve appearance by ophthalmoscopy and spectral domain-OCT RNFL measures will help the clinician's interpretation of the information provided by this technology, which is gaining momentum in neuro-ophthalmic research. PMID:25374773

  9. Manufacturing of the ESO adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Arsenault, R.,; Madec, P.-Y.; Hubin, N.; Stroebele, S.; Paufique, J.; Vernet, E.; Hackenberg, W.; Pirard, J.-F.; Jochum, L.; Glindemann, A.; Jost, A.; Conzelmann, R.; Kiekebusch, M.; Tordo, S.; Lizon, J.-L.; Donaldson, R.; Fedrigo, E.; Soenke, C.; Duchateau, M.; Bruton, A.; Delabre, B.; Downing, M.; Reyes, J.; Kolb, J.; Bechet, C.; Lelouarn, M.; Bonaccini Calia, D.; Quattri, M.; Guidolin, I.; Buzzoni, B.; Dupuy, C.; Guzman, R.; Comin, M.; Silber, A.; Quentin, J.; La Penna, P.; Manescau, A.; Jolley, P.; Heinz, V.; Duhoux, P.; Argomedo, J.; Gallieni, D.; Lazzarini, P.; Biasi, R.; Andrighettoni, M.; Angerer, G.; Pescoller, D.; Stuik, R.,; Deep, A.

    2010-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train, in this case the secondary 1.1m mirror, and four Laser Guide Stars (LGSs). This evolution implements many challenging technologies like the Deformable Secondary Mirror (DSM) including a thin shell mirror (1.1 m diameter and 2mm thin), the high power Na lasers (20W), the low Read-Out Noise (RON) WaveFront Sensor (WFS) camera (< 1e-) and SPARTA the new generation of Real Time Computers (RTC) for adaptive control. It also faces many problematic similar to any Extremely Large Telescope (ELT) and as such, will validate many technologies and solutions needed for the European ELT (E-ELT) 42m telescope. The AOF will offer a very large (7 arcmin) Field Of View (FOV) GLAO correction in J, H and K bands (GRAAL+Hawk-I), a visible integral field spectrograph with a 1 arcmin GLAO corrected FOV (GALACSI-MUSE WFM) and finally a LTAO 7.5" FOV (GALACSI-MUSE NFM). Most systems of the AOF have completed final design and are in manufacturing phase. Specific activities are linked to the modification of the 8m telescope in order to accommodate the new DSM and the 4 LGS Units assembled on its Center-Piece. A one year test period in Europe is planned to test and validate all modes and their performance followed by a commissioning phase in Paranal scheduled for 2014.

  10. Daytime adaptive optics for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.

    2003-01-01

    The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.

  11. Object-oriented Matlab adaptive optics toolbox

    NASA Astrophysics Data System (ADS)

    Conan, R.; Correia, C.

    2014-08-01

    Object-Oriented Matlab Adaptive Optics (OOMAO) is a Matlab toolbox dedicated to Adaptive Optics (AO) systems. OOMAO is based on a small set of classes representing the source, atmosphere, telescope, wavefront sensor, Deformable Mirror (DM) and an imager of an AO system. This simple set of classes allows simulating Natural Guide Star (NGS) and Laser Guide Star (LGS) Single Conjugate AO (SCAO) and tomography AO systems on telescopes up to the size of the Extremely Large Telescopes (ELT). The discrete phase screens that make the atmosphere model can be of infinite size, useful for modeling system performance on large time scales. OOMAO comes with its own parametric influence function model to emulate different types of DMs. The cone effect, altitude thickness and intensity profile of LGSs are also reproduced. Both modal and zonal modeling approach are implemented. OOMAO has also an extensive library of theoretical expressions to evaluate the statistical properties of turbulence wavefronts. The main design characteristics of the OOMAO toolbox are object-oriented modularity, vectorized code and transparent parallel computing. OOMAO has been used to simulate and to design the Multi-Object AO prototype Raven at the Subaru telescope and the Laser Tomography AO system of the Giant Magellan Telescope. In this paper, a Laser Tomography AO system on an ELT is simulated with OOMAO. In the first part, we set-up the class parameters and we link the instantiated objects to create the source optical path. Then we build the tomographic reconstructor and write the script for the pseudo-open-loop controller.

  12. Central Retinal Venous Pressure in Eyes of Normal-Tension Glaucoma Patients with Optic Disc Hemorrhage

    PubMed Central

    Kim, Ko Eun; Kim, Dong Myung; Flammer, Josef; Kim, Kyoung Nam

    2015-01-01

    Objective To compare central retinal venous pressure (CRVP) among eyes with and without optic disc hemorrhage (ODH) in bilateral normal-tension glaucoma (NTG) patients and NTG eyes without an episode of ODH. Methods In this prospective study, 22 bilateral NTG patients showing a unilateral ODH and 29 bilateral NTG patients without an episode of ODH were included. Eyes were categorized into group A (n = 22, eyes with ODH), group B (n = 22, fellow eyes without ODH), and group C (n = 29, NTG eyes without an episode of ODH). A contact lens ophthalmodynamometer was used to measure CRVP and central retinal arterial pressure (CRAP). Results Intraocular pressure (IOP) measured on the day of contact lens ophthalmodynamometry showed no difference among groups. However, the mean baseline IOP in group A was significantly lower than that in group C (P = .008). The CRVP in group A (29.1 ± 10.8 mmHg) was significantly lower than that in group C (40.1 ± 8.8 mmHg, P = .001), but similar to that in group B (30.5 ± 8.7 mmHg, P = .409). A similar relationship was noted for CRAP. No significant eye-associated variable for ODH was found in group A and B by conditional logistic regression analysis (all P > 0.05). However, multivariate logistic regression analysis in groups A and C revealed that low mean baseline IOP (odds ratio [OR] = 0.69, 95% confidence interval [CI] 0.49-0.98, P = 0.043) and low CRVP (OR = 0.88, 95% CI 0.80-0.95, P = 0.003) were associated with ODH. Conclusions CRVP was lower in NTG eyes with ODH than in eyes without an episode of ODH, but similar to that of fellow eyes without ODH. These imply less likelihood of association between increased central retinal venous resistance and ODH. PMID:25996599

  13. Automated segmentation of retinal blood vessels in spectral domain optical coherence tomography scans.

    PubMed

    Pilch, Matthäus; Wenner, Yaroslava; Strohmayr, Elisabeth; Preising, Markus; Friedburg, Christoph; Meyer Zu Bexten, Erdmuthe; Lorenz, Birgit; Stieger, Knut

    2012-07-01

    The correct segmentation of blood vessels in optical coherence tomography (OCT) images may be an important requirement for the analysis of intra-retinal layer thickness in human retinal diseases. We developed a shape model based procedure for the automatic segmentation of retinal blood vessels in spectral domain (SD)-OCT scans acquired with the Spectralis OCT system. The segmentation procedure is based on a statistical shape model that has been created through manual segmentation of vessels in a training phase. The actual segmentation procedure is performed after the approximate vessel position has been defined by a shadowgraph that assigns the lateral vessel positions. The active shape model method is subsequently used to segment blood vessel contours in axial direction. The automated segmentation results were validated against the manual segmentation of the same vessels by three expert readers. Manual and automated segmentations of 168 blood vessels from 34 B-scans were analyzed with respect to the deviations in the mean Euclidean distance and surface area. The mean Euclidean distance between the automatically and manually segmented contours (on average 4.0 pixels respectively 20 µm against all three experts) was within the range of the manually marked contours among the three readers (approximately 3.8 pixels respectively 18 µm for all experts). The area deviations between the automated and manual segmentation also lie within the range of the area deviations among the 3 clinical experts. Intra reader variability for the experts was between 0.9 and 0.94. We conclude that the automated segmentation approach is able to segment blood vessels with comparable accuracy as expert readers and will provide a useful tool in vessel analysis of whole C-scans, and in particular in multicenter trials.

  14. The Tesat transportable adaptive optical ground station

    NASA Astrophysics Data System (ADS)

    Saucke, Karen; Seiter, Christoph; Heine, Frank; Gregory, Mark; Tröndle, Daniel; Fischer, Edgar; Berkefeld, Thomas; Feriencik, Mikael; Feriencik, Marco; Richter, Ines; Meyer, Rolf

    2016-03-01

    Tesat together with Synopta have built a Transportable Adaptive Optical Ground Station (TAOGS) under contract of German Aerospace Center DLR for communication with the 1st and 2nd generation of Tesat's spaceborne Laser Communication Terminals (LCTs), which employ coherent homodyne optical communication with 1064 nm and binary phase shift keying (BPSK) modulation. The TAOGS is able to communicate with space segments on low earth orbit (LEO, high pointing and tracking dynamics, 5.625 Gbps), and with space segments on geostationary orbit (GEO, low pointing dynamics, up to 40,000 km distance, optical data rate of 2.8125 Gbps and user data rate of 1.8 Gbps). After an alignment and testing phase at the location of Izana, Tenerife, using the TDP1 LCT on geostationary Alphasat as counter terminal, the TAOGS is now fully functioning. Several up-links, down-links and bi-directional links have been performed. Experimental results of some of these links are presented. An outlook to further activities is given.

  15. The Coming of Age of Adaptive Optics

    NASA Astrophysics Data System (ADS)

    1995-10-01

    How Ground-Based Astronomers Beat the Atmosphere Adaptive Optics (AO) is the new ``wonder-weapon'' in ground-based astronomy. By means of advanced electro-optical devices at their telescopes, astronomers are now able to ``neutralize'' the image-smearing turbulence of the terrestrial atmosphere (seen by the unaided eye as the twinkling of stars) so that much sharper images can be obtained than before. In practice, this is done with computer-controlled, flexible mirrors which refocus the blurred images up to 100 times per second, i.e. at a rate that is faster than the changes in the atmospheric turbulence. This means that finer details in astronomical objects can be studied and also - because of the improved concentration of light in the telescope's focal plane - that fainter objects can be observed. At the moment, Adaptive Optics work best in the infrared part of spectrum, but at some later time it may also significantly improve observations at the shorter wavelengths of visible light. The many-sided aspects of this new technology and its impact on astronomical instrumentation was the subject of a recent AO conference [1] with over 150 participants from about 30 countries, presenting a total of more than 100 papers. The Introduction of AO Techniques into Astronomy The scope of this meeting was the design, fabrication and testing of AO systems, characterisation of the sources of atmospheric disturbance, modelling of compensation systems, individual components, astronomical AO results, non-astronomical applications, laser guide star systems, non-linear optical phase conjugation, performance evaluation, and other areas of this wide and complex field, in which front-line science and high technology come together in a new and powerful symbiosis. One of the specific goals of the meeting was to develop contacts between AO scientists and engineers in the western world and their colleagues in Russia and Asia. For the first time at a conference of this type, nine Russian

  16. Retinal Ganglion Cell Dysfunction in Asymptomatic G11778A: Leber Hereditary Optic Neuropathy

    PubMed Central

    Guy, John; Feuer, William J.; Porciatti, Vittorio; Schiffman, Joyce; Abukhalil, Fawzi; Vandenbroucke, Ruth; Rosa, Potyra R.; Lam, Byron L.

    2014-01-01

    Purpose. To report the serial evaluation of asymptomatic eyes of subjects with mutated G11778A mitochondrial DNA. Methods. Forty-five asymptomatic G11778A Leber hereditary optic neuropathy (LHON) carriers and two patients with the mutation who developed unilateral visual loss underwent testing that included visual acuity, automated visual field, pattern electroretinogram (PERG), and spectral-domain optical coherence tomography every 6 months between September 2008 and March 2012. Results. Visual acuity, visual fields, and retinal nerve fiber layer thickness remained stable within the normal range. Mean PERG amplitudes of carriers dropped progressively by ∼40% from baseline to 36 months. In addition, comparisons with the fellow eyes of patients with unilateral optic neuritis revealed a 3.4 ETDRS (Early Treatment Diabetic Retinopathy Study) letter loss in the LHON carriers. A single carrier developed visual loss, with PERG amplitudes dropping by half. In one of two LHON cases who presented with unilateral visual loss, visual acuity in the asymptomatic eye was ∼20/40 at baseline. The PERG amplitude of this eye was reduced to ∼30% of normal. Six months later, his visual acuity had dropped to ∼20/500. A second patient who was ∼20/20 and had a visual field defect in the asymptomatic eye at baseline remained at this level for the 18 months of follow-up. His PERG amplitudes were similar to those of asymptomatic carriers, with 0.78 μV at baseline that did not decline with follow-up. Conclusions. Declines of the PERG amplitude suggest subclinical retinal ganglion cell dysfunction in asymptomatic G11778A subjects, which is progressive. PMID:24398093

  17. Dual-thread parallel control strategy for ophthalmic adaptive optics.

    PubMed

    Yu, Yongxin; Zhang, Yuhua

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope.

  18. Macular and retinal nerve fiber layer thickness in Japanese measured by Stratus optical coherence tomography.

    PubMed

    Oshitari, Toshiyuki; Hanawa, Katsuhiro; Adachi-Usami, Emiko

    2007-06-01

    The purpose of this study was to determine the thickness of the macula and the retinal nerve fiber layer (RNFL) in Japanese subjects by Stratus optical coherence tomography (OCT), and to compare the findings with the normative data of subjects from the United States of America (USA). Sixty-one eyes from 31 healthy subjects were used for the measurement of the macular thickness, and 60 eyes from 30 healthy subjects were used for the RNFL thickness measurements. The values obtained from the Japanese subjects were compared with the corresponding values in healthy subjects from the USA. The superior, nasal, temporal, and inferior macular sectors and the mean and inferior areas of the RNFL in the Japanese subjects were significantly thicker than the corresponding areas of normal subjects in the USA (272 +/- 13 vs 255 +/- 17 mum, 274 +/- 12 vs 267 +/- 16 mum, 262 +/- 12 vs 251 +/- 13 mum, 268 +/- 13 vs 260 +/- 15 mum; p < 0.0001, 104 +/- 11 vs 100 +/- 12 mum, 134 +/- 20 vs. 126 +/- 18 mum; p = 0.0167, 0.0047, respectively). In conclusion, the significantly thicker macular regions and RNFL in the Japanese indicate not only that there are racial differences in retinal thicknesses but also that the normative values provided by the Stratus OCT should not be used for different races.

  19. Wavefront sensorless approaches to adaptive optics for in vivo fluorescence imaging of mouse retina

    NASA Astrophysics Data System (ADS)

    Wahl, Daniel J.; Bonora, Stefano; Mata, Oscar S.; Haunerland, Bengt K.; Zawadzki, Robert J.; Sarunic, Marinko V.; Jian, Yifan

    2016-03-01

    Adaptive optics (AO) is necessary to correct aberrations when imaging the mouse eye with high numerical aperture. In order to obtain cellular resolution, we have implemented wavefront sensorless adaptive optics for in vivo fluorescence imaging of mouse retina. Our approach includes a lens-based system and MEMS deformable mirror for aberration correction. The AO system was constructed with a reflectance channel for structural images and fluorescence channel for functional images. The structural imaging was used in real-time for navigation on the retina using landmarks such as blood vessels. We have also implemented a tunable liquid lens to select the retinal layer of interest at which to perform the optimization. At the desired location on the mouse retina, the optimization algorithm used the fluorescence image data to drive a modal hill-climbing algorithm using an intensity or sharpness image quality metric. The optimization requires ~30 seconds to complete a search up to the 20th Zernike mode. In this report, we have demonstrated the AO performance for high-resolution images of the capillaries in a fluorescence angiography. We have also made progress on an approach to AO with pupil segmentation as a possible sensorless technique suitable for small animal retinal imaging. Pupil segmentation AO was implemented on the same ophthalmic system and imaging performance was demonstrated on fluorescent beads with induced aberrations.

  20. Adaptive interferometric null testing for unknown freeform optics metrology.

    PubMed

    Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan R; Kim, Dae Wook

    2016-12-01

    We report an adaptive interferometric null testing method for overcoming the dynamic range limitations of conventional null testing approaches during unknown freeform optics metrology or optics manufacturing processes that require not-yet-completed surface measurements to guide the next fabrication process. In the presented adaptive method, a deformable mirror functions as an adaptable null component for an unknown optical surface. The optimal deformable mirror's shape is determined by the stochastic parallel gradient descent algorithm and controlled by a deflectometry system. An adaptive interferometric null testing setup was constructed, and its metrology data successfully demonstrated superb adaptive capability in measuring an unknown surface.

  1. Two-dimensional segmentation of the retinal vascular network from optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Rodrigues, Pedro; Guimarães, Pedro; Santos, Torcato; Simão, Sílvia; Miranda, Telmo; Serranho, Pedro; Bernardes, Rui

    2013-12-01

    The automatic segmentation of the retinal vascular network from ocular fundus images has been performed by several research groups. Although different approaches have been proposed for traditional imaging modalities, only a few have addressed this problem for optical coherence tomography (OCT). Furthermore, these approaches were focused on the optic nerve head region. Compared to color fundus photography and fluorescein angiography, two-dimensional ocular fundus reference images computed from three-dimensional OCT data present additional problems related to system lateral resolution, image contrast, and noise. Specifically, the combination of system lateral resolution and vessel diameter in the macular region renders the process particularly complex, which might partly explain the focus on the optic disc region. In this report, we describe a set of features computed from standard OCT data of the human macula that are used by a supervised-learning process (support vector machines) to automatically segment the vascular network. For a set of macular OCT scans of healthy subjects and diabetic patients, the proposed method achieves 98% accuracy, 99% specificity, and 83% sensitivity. This method was also tested on OCT data of the optic nerve head region achieving similar results.

  2. Adaptive Optics at the World's Biggest Optical Telescope

    NASA Astrophysics Data System (ADS)

    Hart, M.; Esposito, S.; Rabien, S.

    2010-09-01

    The Large Binocular Telescope (LBT) on Mt. Graham, Arizona, comprises two 8.4 m primary mirrors on a common mount. The two apertures will be co-phased to create a single telescope with 110 m2 of collecting area and 22.7 m baseline. From the outset, adaptive optics (AO) was incorporated into the design through two adaptive secondary mirrors (ASM), each 91 cm in diameter with 672 actuators, which feed all of the instruments mounted at the telescope's four pairs of Gregorian foci. The first ASM has now seen first light on sky with natural guide stars. Strehl ratios at 1.6 μm under average seeing are estimated to be ~80%, and diffraction-limited performance is maintained for stars down to magnitude 15. At the same time, pioneering work at the 6.5 m MMT telescope has for the first time shown the compelling benefits of ground-layer AO compensation. This technique relies on the signals from multiple laser beacons to sense and correct aberration arising close to the telescope with the result that near IR seeing is reduced by a factor of 2-3 over a field of many arc minutes. Building on these efforts at both telescopes, a project is underway to enhance the LBT's AO capability by the addition of wavefront sensing with multiple laser guide stars. The Advanced Rayleigh Ground-layer adaptive Optics System (ARGOS) is now in the construction phase. We provide an overview of ARGOS and how it foreshadows AO systems destined for the 30 m class telescopes of tomorrow.

  3. Wavefront control for extreme adaptive optics

    NASA Astrophysics Data System (ADS)

    Poyneer, Lisa A.; Macintosh, Bruce A.

    2003-12-01

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  4. Wavefront Control for Extreme Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2003-07-16

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  5. Fast, compact, autonomous holographic adaptive optics.

    PubMed

    Andersen, Geoff; Gelsinger-Austin, Paul; Gaddipati, Ravi; Gaddipati, Phani; Ghebremichael, Fassil

    2014-04-21

    We present a closed-loop adaptive optics system based on a holographic sensing method. The system uses a multiplexed holographic recording of the response functions of each actuator in a deformable mirror. By comparing the output intensity measured in a pair of photodiodes, the absolute phase can be measured over each actuator location. From this a feedback correction signal is applied to the input beam without need for a computer. The sensing and correction is applied to each actuator in parallel, so the bandwidth is independent of the number of actuator. We demonstrate a breadboard system using a 32-actuator MEMS deformable mirror capable of operating at over 10 kHz without a computer in the loop.

  6. Adaptive Optics Imaging and Spectroscopy of Neptune

    NASA Technical Reports Server (NTRS)

    Johnson, Lindley (Technical Monitor); Sromovsky, Lawrence A.

    2005-01-01

    OBJECTIVES: We proposed to use high spectral resolution imaging and spectroscopy of Neptune in visible and near-IR spectral ranges to advance our understanding of Neptune s cloud structure. We intended to use the adaptive optics (AO) system at Mt. Wilson at visible wavelengths to try to obtain the first groundbased observations of dark spots on Neptune; we intended to use A 0 observations at the IRTF to obtain near-IR R=2000 spatially resolved spectra and near-IR A0 observations at the Keck observatory to obtain the highest spatial resolution studies of cloud feature dynamics and atmospheric motions. Vertical structure of cloud features was to be inferred from the wavelength dependent absorption of methane and hydrogen,

  7. Comparison of adaptive optics scanning light ophthalmoscopic fluorescein angiography and offset pinhole imaging.

    PubMed

    Chui, Toco Y P; Dubow, Michael; Pinhas, Alexander; Shah, Nishit; Gan, Alexander; Weitz, Rishard; Sulai, Yusufu N; Dubra, Alfredo; Rosen, Richard B

    2014-04-01

    Recent advances to the adaptive optics scanning light ophthalmoscope (AOSLO) have enabled finer in vivo assessment of the human retinal microvasculature. AOSLO confocal reflectance imaging has been coupled with oral fluorescein angiography (FA), enabling simultaneous acquisition of structural and perfusion images. AOSLO offset pinhole (OP) imaging combined with motion contrast post-processing techniques, are able to create a similar set of structural and perfusion images without the use of exogenous contrast agent. In this study, we evaluate the similarities and differences of the structural and perfusion images obtained by either method, in healthy control subjects and in patients with retinal vasculopathy including hypertensive retinopathy, diabetic retinopathy, and retinal vein occlusion. Our results show that AOSLO OP motion contrast provides perfusion maps comparable to those obtained with AOSLO FA, while AOSLO OP reflectance images provide additional information such as vessel wall fine structure not as readily visible in AOSLO confocal reflectance images. AOSLO OP offers a non-invasive alternative to AOSLO FA without the need for any exogenous contrast agent.

  8. ESO adaptive optics facility progress report

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-Francois; Hackenberg, Wolfgang; Kuntschner, Harald; Jochum, Lieselotte; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose A.; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Robert; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andreas; Duchateau, Michel; Downing, Mark; Moreno, Javier R.; Dorn, Reinhold; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan M.; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Maximilian; Pfrommer, Thomas; Biasi, Roberto; Gallieni, Daniele; Bechet, Clementine; Stuik, Remko

    2012-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train. The project has completed the procurement phase and several large structures have been delivered to Garching (Germany) and are being integrated (the AO modules GRAAL and GALACSI and the ASSIST test bench). The 4LGSF Laser (TOPTICA) has undergone final design review and a pre-production unit has been built and successfully tested. The Deformable Secondary Mirror is fully integrated and system tests have started with the first science grade thin shell mirror delivered by SAGEM. The integrated modules will be tested in stand-alone mode in 2012 and upon delivery of the DSM in late 2012, the system test phase will start. A commissioning strategy has been developed and will be updated before delivery to Paranal. A substantial effort has been spent in 2011-2012 to prepare the unit telescope to receive the AOF by preparing the mechanical interfaces and upgrading the cooling and electrical network. This preparation will also simplify the final installation of the facility on the telescope. A lot of attention is given to the system calibration, how to record and correct any misalignment and control the whole facility. A plan is being developed to efficiently operate the AOF after commissioning. This includes monitoring a relevant set of atmospheric parameters for scheduling and a Laser Traffic control system to assist the operator during the night and help/support the observing block preparation.

  9. FPGA-accelerated adaptive optics wavefront control

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.

    2014-03-01

    The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.

  10. Image processing methods to elucidate spatial characteristics of retinal microglia after optic nerve transection.

    PubMed

    Zhang, Yudong; Peng, Bo; Wang, Shuihua; Liang, Yu-Xiang; Yang, Jiquan; So, Kwok-Fai; Yuan, Ti-Fei

    2016-02-18

    Microglia are the mononuclear phagocytes with various functions in the central nervous system, and the morphologies of microglia imply the different stages and functions. In optical nerve transection model of the retina, the retrograde degeneration of retinal ganglion cells induces microglial activations to a unique morphology termed rod microglia. A few studies described the rod microglia in the cortex and retina; however, the spatial characteristic of rod microglia is not fully understood. In this study, we built a mathematical model to characterize the spatial trait of rod microglia. In addition, we developed a Matlab-based image processing pipeline that consists of log enhancement, image segmentation, mathematical morphology based cell detection, area calculation and angle analysis. This computer program provides researchers a powerful tool to quickly analyze the spatial trait of rod microglia.

  11. Image processing methods to elucidate spatial characteristics of retinal microglia after optic nerve transection

    PubMed Central

    Zhang, Yudong; Peng, Bo; Wang, Shuihua; Liang, Yu-Xiang; Yang, Jiquan; So, Kwok-Fai; Yuan, Ti-Fei

    2016-01-01

    Microglia are the mononuclear phagocytes with various functions in the central nervous system, and the morphologies of microglia imply the different stages and functions. In optical nerve transection model of the retina, the retrograde degeneration of retinal ganglion cells induces microglial activations to a unique morphology termed rod microglia. A few studies described the rod microglia in the cortex and retina; however, the spatial characteristic of rod microglia is not fully understood. In this study, we built a mathematical model to characterize the spatial trait of rod microglia. In addition, we developed a Matlab-based image processing pipeline that consists of log enhancement, image segmentation, mathematical morphology based cell detection, area calculation and angle analysis. This computer program provides researchers a powerful tool to quickly analyze the spatial trait of rod microglia. PMID:26888347

  12. Proteoglycan regulation of goldfish retinal explant growth on optic tectal membranes.

    PubMed

    Su, Yung-Kang; Elam, John S

    2003-05-14

    Regenerating goldfish retinal explants cultured on poly-L-lysine overlaid with membranes isolated from 21-day regenerating 1/3 anterior optic tectum (Ant. OTec) exhibited extensive defasciculated neurite outgrowth. Heparatinase treatment of membranes caused the complete inhibition of neurite outgrowth on that substrate. Western blot analysis showed that the OTec membranes contain a 300 kDa heparan sulfate proteoglycan. Explants cultured on 21-day regenerating 1/3 Ant. OTec membranes in the presence of 1 mM beta-xyloside, an axonal proteoglycan synthesis inhibitor, showed a significant reduction in the number of neurites per explant and in the average neurite length. Taken all together, the present results provide evidence that a 300-kDa membrane HSPG present in the Ant. OTec is necessary for axonal outgrowth and that axonal PGs are involved in modulating outgrowth on 21-day regenerating 1/3 Ant. OTec membranes.

  13. Fast retinal layer segmentation of spectral domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Zhang, Tianqiao; Song, Zhangjun; Wang, Xiaogang; Zheng, Huimin; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao

    2015-09-01

    An approach to segment macular layer thicknesses from spectral domain optical coherence tomography has been proposed. The main contribution is to decrease computational costs while maintaining high accuracy via exploring Kalman filtering, customized active contour, and curve smoothing. Validation on 21 normal volumes shows that 8 layer boundaries could be segmented within 5.8 s with an average layer boundary error <2.35 μm. It has been compared with state-of-the-art methods for both normal and age-related macular degeneration cases to yield similar or significantly better accuracy and is 37 times faster. The proposed method could be a potential tool to clinically quantify the retinal layer boundaries.

  14. Adaptive optics without altering visual perception.

    PubMed

    Koenig, D E; Hart, N W; Hofer, H J

    2014-04-01

    Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer et al., 2012). Here we describe a simple strategy employing a longer wavelength (980nm) beacon that, in conjunction with appropriate restriction on timing and placement, allowed us to perform psychophysics when dark adapted without altering visual perception. The method was verified by comparing detection and color appearance of foveally presented small spot stimuli with and without the wavefront beacon present in 5 subjects. As an important caution, we found that significant perceptual interference can occur even with a subliminal beacon when additional measures are not taken to limit exposure. Consequently, the lack of perceptual interference should be verified for a given system, and not assumed based on invisibility of the beacon.

  15. Adaptive optics for the CHARA array

    NASA Astrophysics Data System (ADS)

    ten Brummelaar, Theo A.; Sturmann, Laszlo; Sturmann, Judit; Ridgway, Stephen T.; Monnier, John D.; Ireland, Michael J.; Che, Xiao; McAlister, Harold A.; Turner, Nils H.; Tuthill, P. G.

    2012-07-01

    The CHARA Array is a six telescope optical/IR interferometer run by the Center for High Angular Resolution Astronomy of Georgia State University and is located at Mount Wilson Observatory just to the north of Los Angeles California. The CHARA Array has the largest operational baselines in the world and has been in regular use for scientific observations since 2004. In 2011 we received funding from the NSF to begin work on Adaptive Optics for our six telescopes. Phase I of this project, fully funded by the NSF grant, consists of designing and building wavefront sensors for each telescope that will also serve as tip/tilt detectors. Having tip/tilt at the telescopes, instead of in the laboratory, will add several magnitudes of sensitivity to this system. Phase I also includes a slow wavefront sensor in the laboratory to measure non-common path errors and small deformable mirrors in the laboratory to remove static and slowly changing aberrations. Phase II of the project will allow us to place high-speed deformable mirrors at the telescopes thereby enabling full closed loop operation. We are currently seeking funding for Phase II. This paper will describe the scientific rational and design of the system and give the current status of the project.

  16. Adaptive Detector Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    2000-01-01

    The structure of an optimal adaptive array receiver for ground-based optical communications is described and its performance investigated. Kolmogorov phase screen simulations are used to model the sample functions of the focal-plane signal distribution due to turbulence and to generate realistic spatial distributions of the received optical field. This novel array detector concept reduces interference from background radiation by effectively assigning higher confidence levels at each instant of time to those detector elements that contain significant signal energy and suppressing those that do not. A simpler suboptimum structure that replaces the continuous weighting function of the optimal receiver by a hard decision on the selection of the signal detector elements also is described and evaluated. Approximations and bounds to the error probability are derived and compared with the exact calculations and receiver simulation results. It is shown that, for photon-counting receivers observing Poisson-distributed signals, performance improvements of approximately 5 dB can be obtained over conventional single-detector photon-counting receivers, when operating in high background environments.

  17. Absence of galectin-3 promotes neuroprotection in retinal ganglion cells after optic nerve injury.

    PubMed

    Abreu, Carla Andreia; De Lima, Silmara Veline; Mendonça, Henrique Rocha; Goulart, Camila de Oliveira; Martinez, Ana Maria Blanco

    2017-03-01

    A trauma to the mature central nervous system (CNS) often leads to persistent deficits, due to the inability of axons to regenerate after being injured. Increasing evidence suggests that pro-inflammatory and pro-apoptotic genes can present a major obstacle to promoting neuroprotection of retinal ganglion cells and consequently succeed in axonal regeneration. This study evaluated the effect of the absence of galectin-3 (Gal-3) on retinal ganglion cells (RGC) survival and axonal regeneration/degeneration after optic nerve crush injury. Two weeks after crush there was a 2.6 fold increase in the rate of cell survival in Gal-3-/- mice (1283±79.15) compared to WT animals (495.4±53.96). However, no regeneration was observed in the Gal-3-/- mice two weeks after lesion. Furthermore, axonal degeneration presented a particular pattern on those mice; Electron Microscopy (EM) analysis showed incomplete axon degeneration while the WT mice presented an advanced stage of degeneration. This suggests that the removal of the nerve fibers in the Gal 3-/- mice could be deficient and this would cause a delay in the process of Wallerian degeneration once there is a decrease in the number of macrophages/microglia in the nerve. This study demonstrates how the absence of Gal-3 can affect RGC survival and optic nerve regeneration/degeneration after lesion. Our results suggest that the absence of Gal-3 plays an important role in the survival of RGC and thus can be a potential target for therapeutic intervention in RGC neuroprotection.

  18. Multimodal retinal vessel segmentation from spectral-domain optical coherence tomography and fundus photography.

    PubMed

    Hu, Zhihong; Niemeijer, Meindert; Abràmoff, Michael D; Garvin, Mona K

    2012-10-01

    Segmenting retinal vessels in optic nerve head (ONH) centered spectral-domain optical coherence tomography (SD-OCT) volumes is particularly challenging due to the projected neural canal opening (NCO) and relatively low visibility in the ONH center. Color fundus photographs provide a relatively high vessel contrast in the region inside the NCO, but have not been previously used to aid the SD-OCT vessel segmentation process. Thus, in this paper, we present two approaches for the segmentation of retinal vessels in SD-OCT volumes that each take advantage of complimentary information from fundus photographs. In the first approach (referred to as the registered-fundus vessel segmentation approach), vessels are first segmented on the fundus photograph directly (using a k-NN pixel classifier) and this vessel segmentation result is mapped to the SD-OCT volume through the registration of the fundus photograph to the SD-OCT volume. In the second approach (referred to as the multimodal vessel segmentation approach), after fundus-to-SD-OCT registration, vessels are simultaneously segmented with a k -NN classifier using features from both modalities. Three-dimensional structural information from the intraretinal layers and neural canal opening obtained through graph-theoretic segmentation approaches of the SD-OCT volume are used in combination with Gaussian filter banks and Gabor wavelets to generate the features. The approach is trained on 15 and tested on 19 randomly chosen independent image pairs of SD-OCT volumes and fundus images from 34 subjects with glaucoma. Based on a receiver operating characteristic (ROC) curve analysis, the present registered-fundus and multimodal vessel segmentation approaches [area under the curve (AUC) of 0.85 and 0.89, respectively] both perform significantly better than the two previous OCT-based approaches (AUC of 0.78 and 0.83, p < 0.05). The multimodal approach overall performs significantly better than the other three approaches (p < 0.05).

  19. Reproducibility of Circumpapillary Retinal Nerve Fiber Layer Measurements Using Handheld Optical Coherence Tomography in Sedated Children

    PubMed Central

    Avery, Robert A.; Cnaan, Avital; Schuman, Joel S.; Chen, Chieh-Li; Glaug, Natalie C.; Packer, Roger J.; Quinn, Graham E.; Ishikawa, Hiroshi

    2014-01-01

    Purpose To determine the intra- and intervisit reproducibility of circumpapillary retinal nerve fiber layer (RNFL) measures using handheld optical coherence tomography (OCT) in sedated children. Design Prospective cross-sectional and longitudinal study Methods Children undergoing sedation for a clinically indicated MRI for an optic pathway glioma and or Neurofibromatosis type 1 (NF1) had multiple 6 × 6 mm volumes (isotropic 300×300 or non-isotropic 1000×100 samplings) acquired over the optic nerve. Children with two handheld OCT sessions within 6 months were included in the intervisit cohort. The intra- and inter-visit coefficient of variation (CV) and intraclass correlation coefficient (ICC) were calculated for the average and anatomic quadrant circumpapillary RNFL thickness. Results Fifty-nine subjects (mean age 5.1 years, range 0.8–13.0 years) comprised the intravisit cohort and 29 subjects (mean age 5.7 years, range 1.8–12.7 years) contributed to the intervisit cohort. Forty-nine subjects had an optic pathway glioma and 10 subjects had NF1 without an optic pathway glioma. The CV was comparable regardless of imaging with an isotropic and non-isotropic volume in both the intra- and intervisit cohorts. The average circumpapillary RNFL demonstrated the lowest CV and highest ICC compared to the quadrants. For the intervisit cohort, the average ICC was typically higher while the CV was typically lower, but not statistically different compared to the other quadrants. Discussion Circumpapillary RNFL measures acquired with handheld OCT during sedation demonstrate good intra- and intervisit reproducibility. Handheld OCT has the potential to monitor progressive optic neuropathies in young children who have difficulty cooperating with traditional OCT devices. PMID:24983792

  20. Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking.

    PubMed

    Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J; Jian, Yifan; Sarunic, Marinko V

    2016-02-01

    High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  1. Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography.

    PubMed

    Fernández, Enrique; Drexler, Wolfgang

    2005-10-03

    Optical coherence tomography (OCT) enables visualization of the living human retina with unprecedented high axial resolution. The transverse resolution of existing OCT approaches is relatively modest as compared to other retinal imaging techniques. In this context, the use of adaptive optics (AO) to correct for ocular aberrations in combination with OCT has recently been demonstrated to notably increase the transverse resolution of the retinal OCT tomograms. AO is required when imaging is performed through moderate and large pupil sizes. A fundamental difference of OCT as compared to other imaging techniques is the demand of polychromatic light to accomplish high axial resolution. In ophthalmic OCT applications, the performance is therefore also limited by ocular chromatic aberrations. In the current work, the effects of chromatic and monochromatic ocular aberrations on the quality of retinal OCT tomograms, especially concerning transverse resolution, sensitivity and contrast, are theoretically studied and characterized. The repercussion of the chosen spectral bandwidth and pupil size on the final transverse resolution of OCT tomograms is quantitatively examined. It is found that losses in the intensity of OCT images obtained with monochromatic aberration correction can be up to 80 %, using a pupil size of 8 mm diameter in combination with a spectral bandwidth of 120 nm full width at half maximum for AO ultrahigh resolution OCT. The limits to the performance of AO for correction of monochromatic aberrations in OCT are established. The reduction of the detected signal and the resulting transverse resolution caused by chromatic aberration of the human eye is found to be strongly dependent on the employed bandwidth and pupil size. Comparison of theoretical results with experimental findings obtained in living human eyes is also provided.

  2. A study of retinal parameters measured by optical coherence tomography in patients with multiple sclerosis

    PubMed Central

    Hu, Sai-Jing; You, Yi-An; Zhang, Yi

    2015-01-01

    AIM To investigate the difference of retinal nerve fiber layer (RNFL) thickness and macular fovea thickness/volume between multiple sclerosis (MS) patients and healthy normal individuals using optical coherence tomography (OCT) and assess its association with visual field parameters. METHODS Thirty consecutive MS patients and 28 healthy controls were recruited in this prospective study. Comprehensive standardized ophthalmic examinations included visual acuity, cycloplegic refraction, intraocular pressure, gonioscopy, visual field, and RNFL thickness and macular fovea thickness/volume detection using Humphrey OCT. Mean values for the thickness of the peripapillary RNFL and macular volume were calculated. Associations between visual field parameters and RNFL thickness/macular volume were analyzed by Pearson correlation analysis. RESULTS The RNFL thicknesses in each quadrant, the average macular thickness, and the average macular volume in MS patients were all less than those in healthy controls, with statistically significant differences. The RNFL thickness and macular fovea thickness/volume were greater in eyes without optic neuritis than in eyes with optic neuritis. The average visual field parameters had positive correlations with the RNFL thickness and negative correlations with macular parameters in MS patients. CONCLUSION OCT measurements can effectively identify the nerve changes of MS patients, which provide more data for the diagnosis of MS. PMID:26682175

  3. Evaluation of retinal nerve fiber layer thickness profile in thyroid ophthalmopathy without optic nerve dysfunction

    PubMed Central

    Mugdha, Kumari; Kaur, Apjit; Sinha, Neha; Saxena, Sandeep

    2016-01-01

    AIM To evaluate retinal nerve fiber layer (RNFL) thickness profile in patients of thyroid ophthalmopathy with no clinical signs of optic nerve dysfunction. METHODS A prospective, case-control, observational study conducted at a tertiary care centre. Inclusion criteria consisted of patients with eyelid retraction in association with any one of: biochemical thyroid dysfunction, exophthalmos, or extraocular muscle involvement; or thyroid dysfunction in association with either exophthalmos or extra-ocular muscle involvement; or a clinical activity score (CAS)>3/7. Two measurements of RNFL thickness were done for each eye, by Cirrus HD-optical coherence tomography 6mo apart. RESULTS Mean age of the sample was 38.75y (range 13-70y) with 18 males and 22 females. Average RNFL thickness at first visit was 92.06±12.44 µm, significantly lower than control group (101.28±6.64 µm) (P=0.0001). Thickness of inferior quadrant decreased from 118.2±21.27 µm to 115.0±22.27 µm after 6mo (P=0.02). There was no correlation between the change in CAS and RNFL thickness. CONCLUSION Decreased RNFL thickness is an important feature of thyroid orbitopathy, which is an inherent outcome of compressive optic neuropathy of any etiology. Subclinical RNFL damage continues in the absence of clinical activity of the disease. RNFL evaluation is essential in Grave's disease and active intervention may be warranted in the presence of significant damage. PMID:27990368

  4. Long-term Characterization of Retinal Degeneration in Royal College of Surgeons Rats Using Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Ryals, Renee C.; Andrews, Michael D.; Datta, Shreya; Coyner, Aaron S.; Fischer, Cody M.; Wen, Yuquan; Pennesi, Mark E.; McGill, Trevor J.

    2017-01-01

    Purpose Prospective treatments for age-related macular degeneration and inherited retinal degenerations are commonly evaluated in the Royal College of Surgeons (RCS) rat before translation into clinical application. Historically, retinal thickness obtained through postmortem anatomic assessments has been a key outcome measure; however, utility of this measurement is limited because it precludes the ability to perform longitudinal studies. To overcome this limitation, the present study was designed to provide a baseline longitudinal quantification of retinal thickness in the RCS rat by using spectral-domain optical coherence tomography (SD-OCT). Methods Horizontal and vertical linear SD-OCT scans centered on the optic nerve were captured from Long-Evans control rats at P30, P60, P90 and from RCS rats between P17 and P90. Total retina (TR), outer nuclear layer+ (ONL+), inner nuclear layer (INL), and retinal pigment epithelium (RPE) thicknesses were quantified. Histologic sections of RCS retina obtained from P21 to P60 were compared to SD-OCT images. Results In RCS rats, TR and ONL+ thickness decreased significantly as compared to Long-Evans controls. Changes in INL and RPE thickness were not significantly different between control and RCS retinas. From P30 to P90 a subretinal hyperreflective layer (HRL) was observed and quantified in RCS rats. After correlation with histology, the HRL was identified as disorganized outer segments and the location of accumulated debris. Conclusions Retinal layer thickness can be quantified longitudinally throughout the course of retinal degeneration in the RCS rat by using SD-OCT. Thickness measurements obtained with SD-OCT were consistent with previous anatomic thickness assessments. This study provides baseline data for future longitudinal assessment of therapeutic agents in the RCS rat. PMID:28253400

  5. Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery

    PubMed Central

    Carrasco-Zevallos, Oscar M.; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Seider, Michael I.; Izatt, Joseph A.; Toth, Cynthia A.

    2016-01-01

    Magnification of the surgical field using the operating microscope facilitated profound innovations in retinal surgery in the 1970s, such as pars plana vitrectomy. Although surgical instrumentation and illumination techniques are continually developing, the operating microscope for vitreoretinal procedures has remained essentially unchanged and currently limits the surgeon's depth perception and assessment of subtle microanatomy. Optical coherence tomography (OCT) has revolutionized clinical management of retinal pathology, and its introduction into the operating suite may have a similar impact on surgical visualization and treatment. In this article, we review the evolution of OCT for retinal surgery, from perioperative analysis to live volumetric (four-dimensional, 4D) image-guided surgery. We begin by briefly addressing the benefits and limitations of the operating microscope, the progression of OCT technology, and OCT applications in clinical/perioperative retinal imaging. Next, we review intraoperative OCT (iOCT) applications using handheld probes during surgical pauses, two-dimensional (2D) microscope-integrated OCT (MIOCT) of live surgery, and volumetric MIOCT of live surgery. The iOCT discussion focuses on technological advancements, applications during human retinal surgery, translational difficulties and limitations, and future directions. PMID:27409495

  6. Retinal metabolic changes in an experimental model of optic nerve transection by ex vivo 1H magnetic resonance spectroscopy.

    PubMed

    Li, Shuang; Huang, Mingming; Wang, Xinghua; Wang, Xuxia; Chen, Fei; Lei, Hao; Jiang, Fagang

    2011-12-01

    This study aims to investigate the retinal metabolic processes in a rat axotomy model. Retinal metabolic changes in optic nerve transection (ONT) rat model were analyzed by (1)H magnetic resonance spectroscopy ((1)H-MRS). Retinal ganglion cells (RGCs) densities were assessed from retinal whole mounts. The retina was stained immunohistochemically with glial fibrillary acidic protein (GFAP). The results showed that the retina in ONT rats had significantly decreased concentrations of γ-aminobutyric acid (GABA), N-acetylaspartate (NAA), taurine (Tau), creatine (Cr) and increased concentrations of alanine (Ala) compared with control. Examination of glutamate (Glu), glutamine (Gln) and Glx (Glu + Gln) concentrations disclosed no significant differences. The mean density of RGCs reduced from 2,249 ± 87 cells/mm(2) in control group to 320 ± 56 cells/mm(2) in ONT group. GFAP immunoreactivity was markedly higher in ONT group than that in control group. The retinal metabolism after ONT was associated with neurotransmitter recycling/production perturbation, as well as other metabolic disequilibrium.

  7. Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions

    PubMed Central

    Rodolfo, Mastropasqua; Lisa, Toto; Luca, Di Antonio; Enrico, Borrelli; Alfonso, Senatore; Marta, Di Nicola; Giuseppe, Di Martino; Marco, Ciancaglini; Carpineto, Paolo

    2017-01-01

    The aim of this study was to evaluate retinal and choriocapillaris vessel density using optical coherence tomography angiography (OCTA) in eyes with central retinal vein occlusion (CRVO) and branch retinal vein occlusion (BRVO) complicated by macular edema (ME). Sixty eyes of 60 patients with CRVO or BRVO and ME and 40 healthy subjects underwent measurements of superficial and deep foveal and parafoveal vessel density (FVD, PFVD) and choricapillary density using OCTA at baseline and 60 days after intravitreal dexamethasone implant (IVDEX). FVD and PFVD of the superficial plexus were not significantly lower in CRVO group compared to the controls while in the BRVO group overall PFVD were significantly lower compared to control group (p < 0.001). Overall PFVD of the deep plexus was significantly lower in CRVO and BRVO groups compared to the control group (p < 0.001). FVD and overall PFVD of choriocapillaris were significantly reduced compared to controls in CRVO group (p < 0.001) and PFVD of choriocapillaris was significantly reduced compared to controls in the affected hemi fields in BRVO groups (p < 0.001). OCTA showed vessel density reduction in BRVO and CRVO with main involvement of the deep retinal plexus compared to the superficial retinal plexus due to ischemia that did not recover after intravitreal dexamethasone implant. PMID:28098203

  8. Proposed Multiconjugate Adaptive Optics Experiment at Lick Observatory

    SciTech Connect

    Bauman, B J; Gavel, D T; Flath, L M; Hurd, R L; Max, C E; Olivier, S S

    2001-08-15

    While the theory behind design of multiconjugate adaptive optics (MCAO) systems is growing, there is still a paucity of experience building and testing such instruments. We propose using the Lick adaptive optics (AO) system as a basis for demonstrating the feasibility/workability of MCAO systems, testing underlying assumptions, and experimenting with different approaches to solving MCAO system issues.

  9. Proposed multiconjugate adaptive optics experiment at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Bauman, Brian J.; Gavel, Donald T.; Flath, Laurence M.; Hurd, Randall L.; Max, Claire E.; Olivier, Scot S.

    2002-02-01

    While the theory behind design of multiconjugate adaptive optics (MCAO) systems is growing, there is still a paucity of experience building and testing such instruments. We propose using the Lick adaptive optics (AO) system as a basis for demonstrating the feasibility/workability of MCAO systems, testing underlying assumptions, and experimenting with different approaches to solving MCAO system issues.

  10. The LIM protein complex establishes a retinal circuitry of visual adaptation by regulating Pax6 α-enhancer activity

    PubMed Central

    Kim, Yeha; Lim, Soyeon; Ha, Taejeong; Song, You-Hyang; Sohn, Young-In; Park, Dae-Jin; Paik, Sun-Sook; Kim-Kaneyama, Joo-ri; Song, Mi-Ryoung; Leung, Amanda; Levine, Edward M; Kim, In-Beom; Goo, Yong Sook; Lee, Seung-Hee; Kang, Kyung Hwa; Kim, Jin Woo

    2017-01-01

    The visual responses of vertebrates are sensitive to the overall composition of retinal interneurons including amacrine cells, which tune the activity of the retinal circuitry. The expression of Paired-homeobox 6 (PAX6) is regulated by multiple cis-DNA elements including the intronic α-enhancer, which is active in GABAergic amacrine cell subsets. Here, we report that the transforming growth factor ß1-induced transcript 1 protein (Tgfb1i1) interacts with the LIM domain transcription factors Lhx3 and Isl1 to inhibit the α-enhancer in the post-natal mouse retina. Tgfb1i1-/- mice show elevated α-enhancer activity leading to overproduction of Pax6ΔPD isoform that supports the GABAergic amacrine cell fate maintenance. Consequently, the Tgfb1i1-/- mouse retinas show a sustained light response, which becomes more transient in mice with the auto-stimulation-defective Pax6ΔPBS/ΔPBS mutation. Together, we show the antagonistic regulation of the α-enhancer activity by Pax6 and the LIM protein complex is necessary for the establishment of an inner retinal circuitry, which controls visual adaptation. DOI: http://dx.doi.org/10.7554/eLife.21303.001 PMID:28139974

  11. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope.

    PubMed

    Sheehy, Christy K; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-07-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone.

  12. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-01-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370

  13. Clinical Validation of Smartphone Based Adapter: Peek Retina for Optic Disc Imaging in Kenya

    PubMed Central

    Bastawrous, Andrew; Giardini, Mario Ettore; Bolster, Nigel M; Peto, Tunde; Shah, Nisha; Livingstone, Iain AT; Weiss, Helen A.; Hu, Sen; Rono, Hillary; Kuper, Hannah; Burton, Matthew

    2017-01-01

    Importance Visualization and interpretation of the optic nerve and retina is an essential part of most physical examinations. Objectives To design and validate a smartphone-based retinal adapter enabling image capture and remote grading of the retina Design, setting and participants Validation study comparing the grading of optic nerves from smartphones images with those of a Digital Fundus Camera. Both image sets were independently graded at Moorfields Eye Hospital Reading Centre. Nested within the six-year follow-up of the Nakuru Eye Disease Cohort in Kenya: 1,460adults (2,920eyes) aged 55years and above were recruited consecutively from the Study. A sub-set of 100 optic disc images from both methods were further used to validate a grading app for the optic nerves. Main outcome(s) and measure(s) Vertical cup-to-disc-ratio (VCDR) for each test was compared, in terms of agreement (Bland-Altman & weighted Kappa) and test-retest variability (TRV). Results 2,152 optic nerve images were available from both methods (additionally 371 from reference but not Peek, 170 from Peek but not the reference and 227 from neither the reference camera or Peek). Bland-Altman analysis demonstrated a difference of the average of 0.02 with 95% limits of agreement between -0.21 and 0.17 and a weighted Kappa coefficient of 0.69 (excellent agreement). An experienced retinal photographer was compared to a lay photographer (no health care experience prior to the study) with no observable difference in image acquisition quality between them. Conclusions and relevance Non-clinical photographers using the low-cost Peek Retina adapter and smartphone were able to acquire optic nerve images at a standard that enabled comparable independent remote grading of the images to those acquired using a desktop retinal camera operated by an ophthalmic assistant. The potential for task-shifting and the detection of avoidable causes of blindness in the most at risk communities makes this an attractive public

  14. Two axes of the human eye and inversion of the retinal layers: the basis for the interpretation of the retina as a phase-grating-optical cellular 3D chip

    NASA Astrophysics Data System (ADS)

    Lauinger, Norbert

    1994-10-01

    The question of why the human eye has two axes, a photopic visual axis and an eye axis, is just as justified as the one of why the fovea is not on the eye axis, but instead is on the visual axis. An optical engineer would have omitted the second axis and placed the fovea on the eye axis. The answer to the question of why the design of the real eye differs from the logic of the engineer is found in its prenatal development. The biaxial design was the only possible consequence of the decision to invert the retinal layers. Accordingly, this is of considerable importance. It in turn forms the basis of the interpretation of the retinal nuclear layers as a cellular 3D phase grating, and can provide a diffraction-optical interpretation of adaptive effects (Purkinje shift), aperture phenomena (Stiles-Crawford effects I and II) in photopic vision, and visual acuity data in photopic and scotopic vision.

  15. The research and development of the adaptive optics in ophthalmology

    NASA Astrophysics Data System (ADS)

    Wu, Chuhan; Zhang, Xiaofang; Chen, Weilin

    2015-08-01

    Recently the combination of adaptive optics and ophthalmology has made great progress and become highly effective. The retina disease is diagnosed by retina imaging technique based on scanning optical system, so the scanning of eye requires optical system characterized by great ability of anti-moving and optical aberration correction. The adaptive optics possesses high level of adaptability and is available for real time imaging, which meets the requirement of medical retina detection with accurate images. Now the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are widely used, which are the core techniques in the area of medical retina detection. Based on the above techniques, in China, a few adaptive optics systems used for eye medical scanning have been designed by some researchers from The Institute of Optics And Electronics of CAS(The Chinese Academy of Sciences); some foreign research institutions have adopted other methods to eliminate the interference of eye moving and optical aberration; there are many relevant patents at home and abroad. In this paper, the principles and relevant technique details of the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are described. And the recent development and progress of adaptive optics in the field of eye retina imaging are analyzed and summarized.

  16. Optimized micromirror arrays for adaptive optics

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Comtois, John H.; Hetherington, Dale L.

    1999-01-01

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 μm minimum feature sizes and 0.1 μm mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces can be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2-3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98% or better. Combining the process planarization with a ``planarized-by-design'' approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics.

  17. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking

    PubMed Central

    Zhang, Qinqin; Huang, Yanping; Zhang, Thomas; Kubach, Sophie; An, Lin; Laron, Michal; Sharma, Utkarsh; Wang, Ruikang K.

    2015-01-01

    Abstract. Optical coherence tomography (OCT)-based optical microangiography (OMAG) is a high-resolution, noninvasive imaging technique capable of providing three-dimensional in vivo blood flow visualization within microcirculatory tissue beds in the eye. Although the technique has demonstrated early clinical utility by imaging diseased eyes, its limited field of view (FOV) and the sensitivity to eye motion remain the two biggest challenges for the widespread clinical use of the technology. Here, we report the results of retinal OMAG imaging obtained from a Zeiss Cirrus 5000 spectral domain OCT system with motion tracking capability achieved by a line scan ophthalmoscope (LSO). The tracking LSO is able to guide the OCT scanning, which minimizes the effect of eye motion in the final results. We show that the tracking can effectively correct the motion artifacts and remove the discontinuities and distortions of vascular appearance due to microsaccade, leading to almost motion-free OMAG angiograms with good repeatability and reliability. Due to the robustness of the tracking LSO, we also show the montage scan protocol to provide unprecedented wide field retinal OMAG angiograms. We experimentally demonstrate a 12×16  mm2 retinal OMAG angiogram acquired from a volunteer, which is the widest FOV retinal vasculature imaging up to now in the community. PMID:26102573

  18. Consortium for Adaptive Optics and Image Post-Processing

    DTIC Science & Technology

    2008-06-12

    optics bench laboratory is located in Kula , Maui, and is called “The Space Surveillance Simulator” (S-Cube). S-Cube is designed to simulate both the...Wheeler, Trex Maui Personnel from the Center for Adaptive Optics Contributed DURIP Maui Adaptive Optics Laboratory (S-Cube), Kula Setup Meeting (26...for Astronomy’s buildings in Kula , Maui. The move also caused a change in the scientists directly involved in the simulator as well as a change in

  19. Variability of Retinal Thickness Measurements in Tilted or Stretched Optical Coherence Tomography Images

    PubMed Central

    Uji, Akihito; Abdelfattah, Nizar Saleh; Boyer, David S.; Balasubramanian, Siva; Lei, Jianqin; Sadda, SriniVas R.

    2017-01-01

    Purpose To investigate the level of inaccuracy of retinal thickness measurements in tilted and axially stretched optical coherence tomography (OCT) images. Methods A consecutive series of 50 eyes of 50 patients with age-related macular degeneration were included in this study, and Cirrus HD-OCT images through the foveal center were used for the analysis. The foveal thickness was measured in three ways: (1) parallel to the orientation of the A-scan (Tx), (2) perpendicular to the retinal pigment epithelium (RPE) surface in the instrument-displayed aspect ratio image (Ty), and (3) thickness measured perpendicular to the RPE surface in a native aspect ratio image (Tz). Mathematical modeling was performed to estimate the measurement error. Results The measurement error was larger in tilted images with a greater angle of tilt. In the simulation, with axial stretching by a factor of 2, Ty/Tz ratio was > 1.05 at a tilt angle between 13° to 18° and 72° to 77°, > 1.10 at a tilt angle between 19° to 31° and 59° to 71°, and > 1.20 at an angle ranging from 32° to 58°. Of note with even more axial stretching, the Ty/Tz ratio is even larger. Tx/Tz ratio was smaller than the Ty/Tz ratio at angles ranging from 0° to 54°. The actual patient data showed good agreement with the simulation. The Ty/Tz ratio was greater than 1.05 (5% error) at angles ranging from 13° to 18° and 72° to 77°, greater than 1.10 (10% error) angles ranging from 19° to 31° and 59° to 71°, and greater than 1.20 (20% error) angles ranging from 32° to 58° in the images axially stretched by a factor of 2 (b/a = 2), which is typical of most OCT instrument displays. Conclusions Retinal thickness measurements obtained perpendicular to the RPE surface were overestimated when using tilted and axially stretched OCT images. Translational Relevance If accurate measurements are to be obtained, images with a native aspect ratio similar to microscopy must be used. PMID:28299239

  20. Detection of low-amplitude in vivo intrinsic signals from an optical imager of retinal function

    NASA Astrophysics Data System (ADS)

    Barriga, Eduardo S.; T'so, Dan; Pattichis, Marios; Kwon, Young; Kardon, Randy; Abramoff, Michael; Soliz, Peter

    2006-02-01

    In the early stages of some retinal diseases, such as glaucoma, loss of retinal activity may be difficult to detect with today's clinical instruments. Many of today's instruments focus on detecting changes in anatomical structures, such as the nerve fiber layer. Our device, which is based on a modified fundus camera, seeks to detect changes in optical signals that reflect functional changes in the retina. The functional imager uses a patterned stimulus at wavelength of 535nm. An intrinsic functional signal is collected at a near infrared wavelength. Measured changes in reflectance in response to the visual stimulus are on the order of 0.1% to 1% of the total reflected intensity level, which makes the functional signal difficult to detect by standard methods because it is masked by other physiological signals and by imaging system noise. In this paper, we analyze the video sequences from a set of 60 experiments with different patterned stimuli from cats. Using a set of statistical techniques known as Independent Component Analysis (ICA), we estimate the signals present in the videos. Through controlled simulation experiments, we quantify the limits of signal strength in order to detect the physiological signal of interest. The results of the analysis show that, in principle, signal levels of 0.1% (-30dB) can be detected. The study found that in 86% of the animal experiments the patterned stimuli effects on the retina can be detected and extracted. The analysis of the different responses extracted from the videos can give an insight of the functional processes present during the stimulation of the retina.

  1. Retinal and choroidal oxygen saturation of the optic nerve head in open-angle glaucoma subjects by multispectral imaging

    PubMed Central

    Li, Gai-yun; Al-wesabi, Samer abdo; Zhang, Hong

    2016-01-01

    Abstract The aim of this study was to determine whether differences exist in oxygen supply to the optic nerve head (ONH) from the retinal and choroidal vascular layers in patients with primary open angle glaucoma (POAG) using multispectral imaging (MSI).This ia an observational, cross-sectional study. Multispectral images were acquired from 38 eyes of 19 patients with POAG, and 42 healthy eyes from 21 matched volunteers with Annidis’ RHA multispectral digital ophthalmoscopy. Superficial and deeper oxygen saturation of the optic disc was represented by the mean gray scale values on the retinal and choroidal oxy-deoxy maps, respectively. Statistical analysis was performed to detect differences in ONH oxygen saturation between the 2 groups. Oxygen saturation levels in the eyes of POAG patients with severe glaucoma were compared to those of fellow eyes from the same subjects. Linear correlation analysis was performed to assess the association between ONH oxygen saturation and systemic and ocular parameters. No statistical difference was found in retinal and choroidal oxygen saturation between the POAG and control groups. In the glaucoma patients, retinal oxygen saturation was lower for eyes with worse visual fields than in those with good visual fields (t = 4.009, P = 0.001). In POAG patients, retinal oxygen saturation was dependent on mean defect of visual field and retinal nerve fiber layer thickness (RNFLT) (r = 0.511, 0.504, P = 0.001, 0.001, respectively), whereas the choroid vasculature oxygen saturation was inversely related to RNFLT (r = −0.391, P = 0.015). An age-dependent increase in retinal oxygen saturation was found for both the POAG and control groups (r = 0.473, 0.410, P = 0.007, 0.003, respectively). MSI revealed a significant correlation between functional and structural impairments in glaucoma and retinal oxygen saturation. MSI could provide objective assessments of perfusion impairments of the glaucomatous ONH

  2. Retinal and choroidal oxygen saturation of the optic nerve head in open-angle glaucoma subjects by multispectral imaging.

    PubMed

    Li, Gai-Yun; Al-Wesabi, Samer Abdo; Zhang, Hong

    2016-12-01

    The aim of this study was to determine whether differences exist in oxygen supply to the optic nerve head (ONH) from the retinal and choroidal vascular layers in patients with primary open angle glaucoma (POAG) using multispectral imaging (MSI).This ia an observational, cross-sectional study.Multispectral images were acquired from 38 eyes of 19 patients with POAG, and 42 healthy eyes from 21 matched volunteers with Annidis' RHA multispectral digital ophthalmoscopy. Superficial and deeper oxygen saturation of the optic disc was represented by the mean gray scale values on the retinal and choroidal oxy-deoxy maps, respectively. Statistical analysis was performed to detect differences in ONH oxygen saturation between the 2 groups. Oxygen saturation levels in the eyes of POAG patients with severe glaucoma were compared to those of fellow eyes from the same subjects. Linear correlation analysis was performed to assess the association between ONH oxygen saturation and systemic and ocular parameters.No statistical difference was found in retinal and choroidal oxygen saturation between the POAG and control groups. In the glaucoma patients, retinal oxygen saturation was lower for eyes with worse visual fields than in those with good visual fields (t = 4.009, P = 0.001). In POAG patients, retinal oxygen saturation was dependent on mean defect of visual field and retinal nerve fiber layer thickness (RNFLT) (r = 0.511, 0.504, P = 0.001, 0.001, respectively), whereas the choroid vasculature oxygen saturation was inversely related to RNFLT (r = -0.391, P = 0.015). An age-dependent increase in retinal oxygen saturation was found for both the POAG and control groups (r = 0.473, 0.410, P = 0.007, 0.003, respectively).MSI revealed a significant correlation between functional and structural impairments in glaucoma and retinal oxygen saturation. MSI could provide objective assessments of perfusion impairments of the glaucomatous ONH. This is a

  3. Design optimization of system level adaptive optical performance

    NASA Astrophysics Data System (ADS)

    Michels, Gregory J.; Genberg, Victor L.; Doyle, Keith B.; Bisson, Gary R.

    2005-09-01

    By linking predictive methods from multiple engineering disciplines, engineers are able to compute more meaningful predictions of a product's performance. By coupling mechanical and optical predictive techniques mechanical design can be performed to optimize optical performance. This paper demonstrates how mechanical design optimization using system level optical performance can be used in the development of the design of a high precision adaptive optical telescope. While mechanical design parameters are treated as the design variables, the objective function is taken to be the adaptively corrected optical imaging performance of an orbiting two-mirror telescope.

  4. Adaptive optics and phase diversity imaging for responsive space applications.

    SciTech Connect

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  5. Longitudinal Change of Circumpapillary Retinal Nerve Fiber Layer Thickness in Children with Optic Pathway Gliomas

    PubMed Central

    Avery, Robert A.; Cnaan, Avital; Schuman, Joel S.; Trimboli-Heidler, Carmelina; Chen, Chieh-Li; Packer, Roger J.; Ishikawa, Hiroshi

    2015-01-01

    Purpose To evaluate longitudinal changes in circumpapillary retinal nerve fiber layer (RNFL) thickness, as measured by spectral-domain optical coherence tomography (SD-OCT), in children with optic pathway gliomas. Design Longitudinal cohort study Methods Global and quadrant specific circumpapillary RNFL thickness measures were acquired using either a hand-held during sedation or a table-top SD-OCT in children old enough to cooperate. Vision loss was defined as either a 0.2 logMAR decline in visual acuity, or progression of visual field. Percent change in circumpapillary RNFL thickness in eyes experiencing vision loss was compared to eyes with stable vision. Results Fifty-five eyes completed two-hundred fifty study visits. Ten eyes (18%) from 7 patients experienced a new episode of vision loss during the study and 45 (82%) eyes from 39 patients demonstrated stable vision across study visits. Percent decline of RNFL thickness between the baseline visit and first event of vision loss event was greatest in the superior (−14%) and inferior (−10%) quadrants as well as global average (−13%). Using a threshold of ≥ 10% decline in RNFL, the positive and negative predictive value for vision loss when two or more anatomic sectors were affected was 100% and 94%, respectively. Conclusions Children experiencing vision loss from their optic pathway gliomas frequently demonstrate a ≥ 10% decline of RNFL thickness in one or more anatomic sectors. Global average and the inferior quadrant demonstrated the best positive and negative predictive values. Circumpapillary RNFL is a surrogate marker of vision and could be helpful in making treatment decisions for children with optic pathway gliomas. PMID:26231306

  6. Characterization of the optic disc in retinal imagery using a probabilistic approach

    NASA Astrophysics Data System (ADS)

    Tobin, Kenneth W., Jr.; Chaum, Edward; Govindasamy, V. P.; Karnowski, Thomas P.; Sezer, Omer

    2006-03-01

    The application of computer based image analysis to the diagnosis of retinal disease is rapidly becoming a reality due to the broad-based acceptance of electronic imaging devices throughout the medical community and through the collection and accumulation of large patient histories in picture archiving and communications systems. Advances in the imaging of ocular anatomy and pathology can now provide data to diagnose and quantify specific diseases such as diabetic retinopathy (DR). Visual disability and blindness have a profound socioeconomic impact upon the diabetic population and DR is the leading cause of new blindness in working-age adults in the industrialized world. To reduce the impact of diabetes on vision loss, robust automation is required to achieve productive computer-based screening of large at-risk populations at lower cost. Through this research we are developing automation methods for locating and characterizing important structures in the human retina such as the vascular arcades, optic nerve, macula, and lesions. In this paper we present results for the automatic detection of the optic nerve using digital red-free fundus photography. Our method relies on the accurate segmentation of the vasculature of the retina along with spatial probability distributions describing the luminance across the retina and the density, average thickness, and average orientation of the vasculature in relation to the position of the optic nerve. With these features and other prior knowledge, we predict the location of the optic nerve in the retina using a two-class, Bayesian classifier. We report 81% detection performance on a broad range of red-free fundus images representing a population of over 345 patients with 19 different pathologies associated with DR.

  7. Turbulence profiling for adaptive optics tomographic reconstructors

    NASA Astrophysics Data System (ADS)

    Laidlaw, Douglas J.; Osborn, James; Wilson, Richard W.; Morris, Timothy J.; Butterley, Timothy; Reeves, Andrew P.; Townson, Matthew J.; Gendron, Éric; Vidal, Fabrice; Morel, Carine

    2016-07-01

    To approach optimal performance advanced Adaptive Optics (AO) systems deployed on ground-based telescopes must have accurate knowledge of atmospheric turbulence as a function of altitude. Stereo-SCIDAR is a high-resolution stereoscopic instrument dedicated to this measure. Here, its profiles are directly compared to internal AO telemetry atmospheric profiling techniques for CANARY (Vidal et al. 20141), a Multi-Object AO (MOAO) pathfinder on the William Herschel Telescope (WHT), La Palma. In total twenty datasets are analysed across July and October of 2014. Levenberg-Marquardt fitting algorithms dubbed Direct Fitting and Learn 2 Step (L2S; Martin 20142) are used in the recovery of profile information via covariance matrices - respectively attaining average Pearson product-moment correlation coefficients with stereo-SCIDAR of 0.2 and 0.74. By excluding the measure of covariance between orthogonal Wavefront Sensor (WFS) slopes these results have revised values of 0.65 and 0.2. A data analysis technique that combines L2S and SLODAR is subsequently introduced that achieves a correlation coefficient of 0.76.

  8. KAPAO: A Pomona College Adaptive Optics Instrument

    NASA Astrophysics Data System (ADS)

    Choi, Philip I.; Severson, S. A.; Rudy, A. R.; Gilbreth, B. N.; Contreras, D. S.; McGonigle, L. P.; Chin, R. M.; Horn, B.; Hoidn, O.; Spjut, E.; Baranec, C.; Riddle, R.

    2011-01-01

    We describe our project (KAPAO) to develop and deploy a low-cost, remote-access, natural guide star adaptive optics system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. The system will offer simultaneous dual-band, diffraction-limited imaging at visible and near-infrared wavelengths and will deliver an order-of-magnitude improvement in point source sensitivity and angular resolution relative to the current TMO seeing limits. In order to ensure reliability, minimize costs and encourage replication efforts, off-the-shelf components that include a MEMS deformable mirror, a Shack-Hartmann wavefront sensor and a piezo-electric tip-tilt mirror are being adopted for the core hardware elements. We present: the instrument design; performance predictions based on AO simulations; and the current status of the testbed instrument and high-speed control system. Beyond the expanded scientific capabilities enabled by AO-enhanced resolution and sensitivity, the interdisciplinary nature of the instrument development effort provides an exceptional opportunity to train a broad range of undergraduate STEM students in AO technologies and techniques. The breadth of our collaboration, which includes both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges) undergraduate institutions has enabled us to engage students ranging from physics, astronomy, engineering and computer science in the early stages of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  9. Simulation of DKIST solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Carlisle, Elizabeth; Schmidt, Dirk

    2016-07-01

    Solar adaptive optics (AO) simulations are a valuable tool to guide the design and optimization process of current and future solar AO and multi-conjugate AO (MCAO) systems. Solar AO and MCAO systems rely on extended object cross-correlating Shack-Hartmann wavefront sensors to measure the wavefront. Accurate solar AO simulations require computationally intensive operations, which have until recently presented a prohibitive computational cost. We present an update on the status of a solar AO and MCAO simulation tool being developed at the National Solar Observatory. The simulation tool is a multi-threaded application written in the C++ language that takes advantage of current large multi-core CPU computer systems and fast ethernet connections to provide accurate full simulation of solar AO and MCAO systems. It interfaces with KAOS, a state of the art solar AO control software developed by the Kiepenheuer-Institut fuer Sonnenphysik, that provides reliable AO control. We report on the latest results produced by the solar AO simulation tool.

  10. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats.

    PubMed

    Park, Kevin K; Luo, Xueting; Mooney, Skyler J; Yungher, Benjamin J; Belin, Stephane; Wang, Chen; Holmes, Melissa M; He, Zhigang

    2017-02-01

    In the adult mammalian central nervous system (CNS), axonal damage often triggers neuronal cell death and glial activation, with very limited spontaneous axon regeneration. In this study, we performed optic nerve injury in adult naked mole-rats, the longest living rodent, with a maximum life span exceeding 30 years, and found that injury responses in this species are quite distinct from those in other mammalian species. In contrast to what is seen in other mammals, the majority of injured retinal ganglion cells (RGCs) survive with relatively high spontaneous axon regeneration. Furthermore, injured RGCs display activated signal transducer and activator of transcription-3 (STAT3), whereas astrocytes in the optic nerve robustly occupy and fill the lesion area days after injury. These neuron-intrinsic and -extrinsic injury responses are reminiscent of those in "cold-blooded" animals, such as fish and amphibians, suggesting that the naked mole-rat is a powerful model for exploring the mechanisms of neuronal injury responses and axon regeneration in mammals. J. Comp. Neurol. 525:380-388, 2017. © 2016 Wiley Periodicals, Inc.

  11. Neural activity in the dorsal medial superior temporal area of monkeys represents retinal error during adaptive motor learning

    PubMed Central

    Takemura, Aya; Ofuji, Tomoyo; Miura, Kenichiro; Kawano, Kenji

    2017-01-01

    To adapt to variable environments, humans regulate their behavior by modulating gains in sensory-to-motor processing. In this study, we measured a simple eye movement, the ocular following response (OFR), in monkeys to study the neuronal basis of adaptive motor learning in the visuomotor processing stream. The medial superior temporal (MST) area of the cerebral cortex is a critical site for contextual gain modulation of the OFR. However, the role of MST neurons in adaptive gain modulation of the OFR remains unknown. We adopted a velocity step-down sequence paradigm that was designed to promote adaptive gain modulation of the OFR to investigate the role of the dorsal MST (MSTd) in adaptive motor learning. In the initial learning stage, we observed a reduction in the OFR but no significant change in the “open-loop” responses for the majority of the MSTd neurons. However, in the late learning stage, some MSTd neurons exhibited significantly enhanced “closed-loop” responses in association with increases in retinal error velocity. These results indicate that the MSTd area primarily encodes visual motion, suggesting that MSTd neurons function upstream of the motor learning site to provide sensory signals to the downstream structures involved in adaptive motor learning. PMID:28102342

  12. Retinitis Pigmentosa

    MedlinePlus

    ... Action You are here Home › Retinal Diseases Listen Retinitis Pigmentosa What is retinitis pigmentosa? What are the symptoms? ... is available? What treatment is available? What is retinitis pigmentosa? Retinitis pigmentosa, also known as RP, refers to ...

  13. High-Resolution Adaptive Optics Scanning Laser Ophthalmoscope with Dual Deformable Mirrors

    SciTech Connect

    Chen, D C; Jones, S M; Silva, D A; Olivier, S S

    2006-08-11

    Adaptive optics scanning laser ophthalmoscope (AO SLO) has demonstrated superior optical quality of non-invasive view of the living retina, but with limited capability of aberration compensation. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina. We used a bimorph mirror to correct large-stroke, low-order aberrations and a MEMS mirror to correct low-stroke, high-order aberration. The measured ocular RMS wavefront error of a test subject was 240 nm without AO compensation. We were able to reduce the RMS wavefront error to 90 nm in clinical settings using one deformable mirror for the phase compensation and further reduced the wavefront error to 48 nm using two deformable mirrors. Compared with that of a single-deformable-mirror SLO system, dual AO SLO offers much improved dynamic range and better correction of the wavefront aberrations. The use of large-stroke deformable mirrors provided the system with the capability of axial sectioning different layers of the retina. We have achieved diffraction-limited in-vivo retinal images of targeted retinal layers such as photoreceptor layer, blood vessel layer and nerve fiber layers with the combined phase compensation of the two deformable mirrors in the AO SLO.

  14. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography

    PubMed Central

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa

    2016-01-01

    Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541

  15. Differential effects of charybdotoxin on the activity of retinal ganglion cells in the dark- and light-adapted mouse retina

    PubMed Central

    Nemargut, Joseph P.; Zhu, Junling; Savoie, Brian T.; Wang, Guo-Yong

    2009-01-01

    Patch-clamp recordings were made from retinal ganglion cells in the mouse retina. Under dark adaptation, blockage of BKCa channels increases the spontaneous excitatory postsynaptic currents (EPSCs) and light-evoked On-EPSCs, while it decreases the light-evoked Off inhibitory postsynaptic currents (IPSCs). However, under light adaptation it decreases the light-evoked On-EPSCs, the spontaneous IPSCs and the light-evoked On- and Off-IPSCs. Blockage of BKCa channels significantly altered the outputs of RGCs by changing their light-evoked responses into a bursting pattern and increasing the light-evoked depolarization of the membrane potentials, while it did not significantly change the peak firing rates of light-evoked responses. PMID:19084033

  16. Quantitative television fluoroangiography - the optical measurement of dye concentrations and estimation of retinal blood flow

    SciTech Connect

    Greene, M.; Thomas, A.L. Jr.

    1985-06-01

    The development of a system for the measurement of dye concentrations from single retinal vessels during retinal fluorescein angiography is presented and discussed. The system uses a fundus camera modified for TV viewing. Video gating techniques define the areas of the retina to be studied, and video peak detection yields dye concentrations from retinal vessels. The time course of dye concentration is presented and blood flow into the retina is estimated by a time of transit technique.

  17. Impending anterior ischemic optic neuropathy with elements of retinal vein occlusion in a patient on interferon for polycythemia vera.

    PubMed

    Rue, Kelly S; Hirsch, Louis K; Sadun, Alfredo A

    2012-01-01

    We describe the course and likely pathophysiology of impending anterior ischemic optic neuropathy (AION) and retinal vein occlusion in a 56-year-old man with polycythemia vera managed with interferon alpha for 2 years. Our patient presented with decreased vision, scintillating scotomata, and floaters. Fundus examination findings and results of a fluorescein angiogram led to the diagnosis of impending AION and retinal vein occlusion. Considering that both polycythemia vera and interferon have possible influences on vascular occlusion and optic disc edema, we stopped interferon treatment and immediately attempted to treat the polycythemia vera empirically with pentoxifylline and any interferon-associated inflammation with prednisone. Our patient experienced complete resolution of fundus abnormalities and return of normal vision within 3 weeks, which may be attributed to our successful treatment of both etiologies. Thus, further study is warranted to elucidate the treatment of both polycythemia vera and interferon-induced impending AION.

  18. Testing the Apodized Pupil Lyot Coronagraph on the Laboratory for Adaptive Optics Extreme Adaptive Optics Testbed

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine J.; Soummer, Rémi; Dillon, Daren; Macintosh, Bruce; Gavel, Donald; Sivaramakrishnan, Anand

    2011-10-01

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  19. TESTING THE APODIZED PUPIL LYOT CORONAGRAPH ON THE LABORATORY FOR ADAPTIVE OPTICS EXTREME ADAPTIVE OPTICS TESTBED

    SciTech Connect

    Thomas, Sandrine J.; Dillon, Daren; Gavel, Donald; Macintosh, Bruce; Sivaramakrishnan, Anand E-mail: dillon@ucolick.org E-mail: soummer@stsci.edu E-mail: anand@amnh.org

    2011-10-15

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  20. Photoreceptor perturbation around subretinal drusenoid deposits revealed by adaptive optics scanning laser ophthalmoscopy

    PubMed Central

    Zhang, Yuhua; Wang, Xiaolin; Rivero, Ernesto Blanco; Clark, Mark E; Witherspoon, Clark Douglas; Spaide, Richard F; Girkin, Christopher A.; Owsley, Cynthia; Curcio, Christine A.

    2014-01-01

    Purpose To describe the microscopic structure of photoreceptors impacted by subretinal drusenoid deposits, also called pseudodrusen, an extracellular lesion associated with age-related macular degeneration (AMD), using adaptive optics scanning laser ophthalmoscopy (AOSLO). Design Observational case series. Methods Fifty-three patients with AMD and 10 age-similar subjects in normal retinal health were recruited. All subjects underwent color fundus photography, infrared reflectance, red-free reflectance, autofluorescence, and spectral-domain optical coherence tomography (SD-OCT). Subretinal drusenoid deposits were classified with a 3-stage OCT-based grading system. Lesions and surrounding photoreceptors were examined with AOSLO. Results Subretinal drusenoid deposits were found in 26 eyes of 13 patients with AMD and imaged by AOSLO and SD-OCT in 18 eyes (n=342 lesions). SD-OCT showed subretinal drusenoid deposits as highly reflective material accumulated internal to the retinal pigment epithelium. AOSLO revealed that photoreceptor reflectivity was qualitatively reduced by stage 1 subretinal drusenoid deposits and greatly reduced by stage 2. AOSLO presented a distinct structure in stage 3, a hyporeflective annulus consisting of deflected, degenerated or absent photoreceptors. A central core with a reflectivity superficially resembling photoreceptors is formed by the lesion material itself. A hyporeflective gap in the photoreceptor ellipsoid zone on either side of this core shown in SD-OCT corresponded to the hyporeflective annulus seen by AOSLO. Conclusions AOSLO and multimodal imaging of subretinal drusenoid deposits indicate solid, space filling lesions in the subretinal space. Associated retinal reflectivity changes are related to lesion stages and are consistent with perturbations to photoreceptors, as suggested by histology. PMID:24907433

  1. Adaptive optics parallel near-confocal scanning ophthalmoscopy.

    PubMed

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2016-08-15

    We present an adaptive optics parallel near-confocal scanning ophthalmoscope (AOPCSO) using a digital micromirror device (DMD). The imaging light is modulated to be a line of point sources by the DMD, illuminating the retina simultaneously. By using a high-speed line camera to acquire the image and using adaptive optics to compensate the ocular wave aberration, the AOPCSO can image the living human eye with cellular level resolution at the frame rate of 100 Hz. AOPCSO has been demonstrated with improved spatial resolution in imaging of the living human retina compared with adaptive optics line scan ophthalmoscopy.

  2. Pulse front adaptive optics in two-photon microscopy.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-11-01

    Adaptive optics has been extensively studied for the correction of phase front aberrations in optical systems. In systems using ultrafast lasers, distortions can also exist in the pulse front (contour of constant intensity in space and time), but until now their correction has been mostly unexplored due to technological limitations. In this Letter, we apply newly developed pulse front adaptive optics, for the first time to our knowledge, to practical compensation of a two-photon fluorescence microscope. With adaptive correction of the system-induced pulse front distortion, improvements beyond conventional phase correction are demonstrated.

  3. Total retinal blood flow and reproducibility evaluation by three beam optical Doppler tomography

    NASA Astrophysics Data System (ADS)

    Haindl, Richard; Trasischker, Wolfgang; Wartak, Andreas; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.

    2016-03-01

    We present a three beam optical Doppler tomography (ODT) technique suitable for 3-D velocity and flow measurements to evaluate total retinal blood circulation from and to the optic nerve head (ONH). The system consists of three independent ODT channels. Superluminescent diodes with a central wavelength of 840 nm and a spectral bandwidth of 50 nm were used. The sources are coupled to collimators resting in a specially designed mount to ensure a well-defined beam geometry, necessary for the full reconstruction of the three dimensional velocity vector. The reconstruction works without prior knowledge on the vessel geometry, which is normally required for ODT systems with less than three beams. The beams share a common bulk optics Michelson interferometer, while the detection comprises three identical spectrometers with a line scan rate of 50 kHz. 20 eyes of healthy volunteers were imaged with the 3 beam ODT, employing a circular scan pattern around the ONH. The mean total blood flow was calculated for arteries (47.1 +/- 2.4 μl/min (mean +/- SD)) and veins (47.1 +/- 2.7 μl/min μl/min) independently. The two results showed no significant difference (paired t-test, p < 0.96), rendering both equally reliable for total flow measurements. Furthermore the reproducibility of the method was evaluated for the total flow and flow, velocities within each individual vessel of 6 eyes. The average variation for total flow measurements is sufficiently low to detect deviations of ~ 6% indicating high precision of the proposed method.

  4. Isoplanatism in a multiconjugate adaptive optics system.

    PubMed

    Tokovinin, A; Le Louarn, M; Sarazin, M

    2000-10-01

    Turbulence correction in a large field of view by use of an adaptive optics imaging system with several deformable mirrors (DM's) conjugated to various heights is considered. The residual phase variance is computed for an optimized linear algorithm in which a correction of each turbulent layer is achieved by applying a combination of suitably smoothed and scaled input phase screens to all DM's. Finite turbulence outer scale and finite spatial resolution of the DM's are taken into account. A general expression for the isoplanatic angle thetaM of a system with M mirrors is derived in the limiting case of infinitely large apertures and Kolmogorov turbulence. Like Fried's isoplanatic angle theta0,thetaM is a function only of the turbulence vertical profile, is scalable with wavelength, and is independent of the telescope diameter. Use of angle thetaM permits the gain in the field of view due to the increased number of DM's to be quantified and their optimal conjugate heights to be found. Calculations with real turbulence profiles show that with three DM's a gain of 7-10x is possible, giving the typical and best isoplanatic field-of-view radii of 16 and 30 arcseconds, respectively, at lambda = 0.5 microm. It is shown that in the actual systems the isoplanatic field will be somewhat larger than thetaM owing to the combined effects of finite aperture diameter, finite outer scale, and optimized wave-front spatial filtering. However, this additional gain is not dramatic; it is less than 1.5x for large-aperture telescopes.

  5. Simulating Astronomical Adaptive Optics Systems Using Yao

    NASA Astrophysics Data System (ADS)

    Rigaut, François; Van Dam, Marcos

    2013-12-01

    Adaptive Optics systems are at the heart of the coming Extremely Large Telescopes generation. Given the importance, complexity and required advances of these systems, being able to simulate them faithfully is key to their success, and thus to the success of the ELTs. The type of systems envisioned to be built for the ELTs cover most of the AO breeds, from NGS AO to multiple guide star Ground Layer, Laser Tomography and Multi-Conjugate AO systems, with typically a few thousand actuators. This represents a large step up from the current generation of AO systems, and accordingly a challenge for existing AO simulation packages. This is especially true as, in the past years, computer power has not been following Moore's law in its most common understanding; CPU clocks are hovering at about 3GHz. Although the use of super computers is a possible solution to run these simulations, being able to use smaller machines has obvious advantages: cost, access, environmental issues. By using optimised code in an already proven AO simulation platform, we were able to run complex ELT AO simulations on very modest machines, including laptops. The platform is YAO. In this paper, we describe YAO, its architecture, its capabilities, the ELT-specific challenges and optimisations, and finally its performance. As an example, execution speed ranges from 5 iterations per second for a 6 LGS 60x60 subapertures Shack-Hartmann Wavefront sensor Laser Tomography AO system (including full physical image formation and detector characteristics) up to over 30 iterations/s for a single NGS AO system.

  6. Curvature adaptive optics and low light imaging

    NASA Astrophysics Data System (ADS)

    Ftaclas, C.; Chun, M.; Kuhn, J.; Ritter, J.

    We review the basic approach of curvature adaptive optics (AO) and show how its many advantages arise. A curvature wave front sensor (WFS) measures exactly what a curvature deformable mirror (DM) generates. This leads to the computational and operational simplicity of a nearly diagonal control matrix. The DM automatically reconstructs the wave front based on WFS curvature measurements. Thus, there is no formal wave front reconstruction. This poses an interesting challenge to post-processing of AO images. Physical continuity of the DM and the reconstruction of phase from wave front curvature data assure that each actuated region of the DM corrects local phase, tip-tilt and focus. This gain in per-channel correction efficiency, combined with the need for only one pixel per channel detector reads in the WFS allows the use of photon counting detectors for wave front sensing. We note that the use of photon counting detectors implies penalty-free combination of correction channels either in the WFS or on the DM. This effectively decouples bright and faint source performance in that one no longer predicts the other. The application of curvature AO to the low light moving target detection problem, and explore the resulting challenges to components and control systems. Rapidly moving targets impose high-speed operation posing new requirements unique to curvature components. On the plus side, curvature wave front sensors, unlike their Shack-Hartmann counterparts, are tunable for optimum sensitivity to seeing and we are examining autonomous optimization of the WFS to respond to rapid changes in seeing.

  7. Visual Loss, Retinal Hemorrhages, and Optic Disc Edema Resulting From Thiamine Deficiency Following Bariatric Surgery Complicated by Prolonged Vomiting

    PubMed Central

    Lawton, Andrew W.; Frisard, Nicholas E.

    2017-01-01

    Background: Vision loss resulting from thiamine deficiency is a recognized complication of bariatric surgery. Most patients with such vision loss have Wernicke encephalopathy with characteristic changes seen on neuroimaging. Other patients may have retinal hemorrhages, optic disc edema, and peripheral neuropathy without Wernicke encephalopathy. The risk for thiamine deficiency is potentiated by the presence of prolonged vomiting. Case Report: A 37-year-old female presented with abrupt onset of vision loss and peripheral neuropathy following bariatric surgery. She had a history of prolonged vomiting postoperatively. Examination of the posterior segment of the eye revealed optic disc edema and large retinal hemorrhages bilaterally. Metabolic workup demonstrated thiamine deficiency. She responded quickly to parenteral thiamine therapy with recovery of normal vision and resolution of ophthalmologic findings. Conclusion: Patients who undergo bariatric surgery and have a thiamine deficiency can present with visual symptoms and ophthalmologic findings only visible by fundoscopy prior to developing more severe and potentially irreversible complications from the vitamin deficiency. Early detection of intraocular changes resulting from thiamine deficiency and initiation of therapy could prevent more devastating neurologic manifestations. Our case supports the consideration of a prospective study aimed at determining the true incidence of ocular and visual changes such as retinal hemorrhage, optic disc edema, and peripapillary telangiectasia in patients following bariatric surgery. PMID:28331457

  8. Intraoperative optical coherence tomography in macula involving rhegmatogenous retinal detachment repair with pars plana vitrectomy and perfluoron

    PubMed Central

    Toygar, O; Riemann, C D

    2016-01-01

    Purpose To investigate microanatomical relationships during surgical repair of macula involving retinal detachment with pars plana vitrectomy (PPV) and perfluoron (PFO) with a microscope-integrated intraoperative optical coherence tomography (iOCT) device. Patients and methods This consecutive case series included nine eyes of nine patients with macula involving retinal detachment operated by a single surgeon at the Cincinnati Eye Institute. All patients underwent PPV, PFO injection, endolaser, and air–fluid exchange. The macula was imaged with iOCT before PFO injection, after PFO injection, and after air–fluid exchange in all eyes. Results iOCT imaging was ergonomically easy to obtain in all eyes. iOCT clearly demonstrated submacular fluid (SMF) at the beginning of the surgery, macular flattening under PFO in all eyes, small residual SMF under PFO in six of nine eyes, and increased occult SMF following air–fluid exchange in all eyes. Conclusion Microscope-integrated iOCT is a versatile and powerful imaging modality that holds a great deal of promise in the future. Its confirmation of persistent occult SMF in this small series of macular involving retinal detachment repair with PFO, may inform surgical decision making, and demonstrates a pathophysiological rationale for initial face-down positioning after retinal detachment repair. PMID:26656086

  9. Modelling the optical response of human retinal photoreceptors to plane wave illumination with the finite integration technique

    NASA Astrophysics Data System (ADS)

    Akhlagh Moayed, Alireza; Dang, Shannon; Ramahi, Omar M.; Bizheva, Kostadinka K.

    2009-02-01

    The early stages of ocular diseases such as Diabetic Retinopathy are manifested by morphological changes in retinal tissue occurring on cellular level. Therefore, a number of ophthalmic diseases can be diagnosed at an early stage by detecting spatial and temporal variations in the scattering profile of retinal tissue. It was recently demonstrated that, OCT can be used to probe the functional response of retinal photoreceptors to external light stimulation [1]-[3]. fUHROCT measures localized differential changes in the retina reflectivity over time resulting from external light stimulation of the retina. Currently the origins of the observed reflectivity changes are not well understood. However, due to the complex nature of retinal physiology using purely experimental approaches in this case is problematic. For example fUHROCT is sensitive to small changes in the refractive index of biological tissue which as demonstrated previously, can result from a number of processes such as membrane hyperpolarization, osmotic swelling, metabolic changes, etc. In this paper, we present a computational model of interaction between photoreceptor cells and optical plane wave based on the Finite Integration Technique (FIT).

  10. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain

    NASA Astrophysics Data System (ADS)

    Pedrazzani, Mélanie; Loriette, Vincent; Tchenio, Paul; Benrezzak, Sakina; Nutarelli, Daniele; Fragola, Alexandra

    2016-03-01

    We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain. We present a detailed characterization of the system performances. We prove that the gain brought to optical sectioning by realizing structured illumination microscopy with adaptive optics down to 50 μm deep inside living Drosophila brain.

  11. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain.

    PubMed

    Pedrazzani, Mélanie; Loriette, Vincent; Tchenio, Paul; Benrezzak, Sakina; Nutarelli, Daniele; Fragola, Alexandra

    2016-03-01

    We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain. We present a detailed characterization of the system performances. We prove that the gain brought to optical sectioning by realizing structured illumination microscopy with adaptive optics down to 50 μm deep inside living Drosophila brain.

  12. RefMoB, a Reflectivity Feature Model-Based Automated Method for Measuring Four Outer Retinal Hyperreflective Bands in Optical Coherence Tomography

    PubMed Central

    Ross, Douglas H.; Clark, Mark E.; Godara, Pooja; Huisingh, Carrie; McGwin, Gerald; Owsley, Cynthia; Litts, Katie M.; Spaide, Richard F.; Sloan, Kenneth R.; Curcio, Christine A.

    2015-01-01

    Purpose. To validate a model-driven method (RefMoB) of automatically describing the four outer retinal hyperreflective bands revealed by spectral-domain optical coherence tomography (SDOCT), for comparison with histology of normal macula; to report thickness and position of bands, particularly band 2 (ellipsoid zone [EZ], commonly called IS/OS). Methods. Foveal and superior perifoveal scans of seven SDOCT volumes of five individuals aged 28 to 69 years with healthy maculas were used (seven eyes for validation, five eyes for measurement). RefMoB determines band thickness and position by a multistage procedure that models reflectivities as a summation of Gaussians. Band thickness and positions were compared with those obtained by manual evaluators for the same scans, and compared with an independent published histological dataset. Results. Agreement among manual evaluators was moderate. Relative to manual evaluation, RefMoB reported reduced thickness and vertical shifts in band positions in a band-specific manner for both simulated and empirical data. In foveal and perifoveal scans, band 1 was thick relative to the anatomical external limiting membrane, band 2 aligned with the outer one-third of the anatomical IS ellipsoid, and band 3 (IZ, interdigitation of retinal pigment epithelium and photoreceptors) was cleanly delineated. Conclusions. RefMoB is suitable for automatic description of the location and thickness of the four outer retinal hyperreflective bands. Initial results suggest that band 2 aligns with the outer ellipsoid, thus supporting its recent designation as EZ. Automated and objective delineation of band 3 will help investigations of structural biomarkers of dark-adaptation changes in aging. PMID:26132776

  13. [Histology of the living eye : Noninvasive microscopic structure and functional analysis of the retina with adaptive optics].

    PubMed

    Domdei, N; Reiniger, J L; Pfau, M; Charbel Issa, P; Holz, F G; Harmening, W M

    2017-03-01

    Equipping an ophthalmoscope with adaptive optics (AO) offers access to the living human retina with unprecedented spatial resolution. With AO, cellular structures such as the nerve fiber layer, the microvasculature of the smallest retinal capillaries, rod and cone photoreceptors and the mosaic of the retinal pigment epithelium are directly observable. A large number of studies in the normal and diseased retina have already shown that this level of detail offers new insights into disease mechanisms and progression, and promises to identify early disease markers. In conjunction with functional testing of single photoreceptors that is possible with AO microstimulation, a structure-function relationship on the cellular scale is within reach. These technological advances offer new avenues for clinical ophthalmology, interventional efforts, and basic research of the function and dysfunction of vision.

  14. Evaluation of Retinal Nerve Fiber Layer and Ganglion Cell Complex in Patients with Optic Neuritis or Neuromyelitis Optica Spectrum Disorders Using Optical Coherence Tomography in a Chinese Cohort.

    PubMed

    Tian, Guohong; Li, Zhenxin; Zhao, Guixian; Feng, Chaoyi; Li, Mengwei; Huang, Yongheng; Sun, Xinghuai

    2015-01-01

    We evaluate a cohort of optic neuritis and neuromyelitis optica (NMO) spectrum disorders patients in a territory hospital in China. The peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell complex (GCC) were measured using spectral-domain OCT after 6 months of acute onset. The results showed that both the peripapillary RNFL and macular GCC were significantly thinner in all optic neuritis subtypes compared to controls. In addition, the recurrent optic neuritis and NMO groups showed more severe damage on the RNFL and GCC pattern.

  15. Evaluation of Retinal Nerve Fiber Layer and Ganglion Cell Complex in Patients with Optic Neuritis or Neuromyelitis Optica Spectrum Disorders Using Optical Coherence Tomography in a Chinese Cohort

    PubMed Central

    Tian, Guohong; Li, Zhenxin; Zhao, Guixian; Feng, Chaoyi; Li, Mengwei; Huang, Yongheng; Sun, Xinghuai

    2015-01-01

    We evaluate a cohort of optic neuritis and neuromyelitis optica (NMO) spectrum disorders patients in a territory hospital in China. The peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell complex (GCC) were measured using spectral-domain OCT after 6 months of acute onset. The results showed that both the peripapillary RNFL and macular GCC were significantly thinner in all optic neuritis subtypes compared to controls. In addition, the recurrent optic neuritis and NMO groups showed more severe damage on the RNFL and GCC pattern. PMID:26649191

  16. Optical coherence tomography angiography in paracentral acute middle maculopathy secondary to central retinal vein occlusion.

    PubMed

    Casalino, G; Williams, M; McAvoy, C; Bandello, F; Chakravarthy, U

    2016-06-01

    PurposeTo report the clinical course and the optical coherence tomography angiography (OCTA) findings of patients presenting with paracentral acute middle maculopathy (PAMM) and central retinal vein occlusion (CRVO).MethodsRetrospective case series. Clincal records and multimodal imaging findings of patients presenting with PAMM and CRVO were reviewed.ResultsThree eyes of three patients (2 males; mean age: 66 years) were included in the study. Mean follow-up was 9 months and images using OCTA (AngioVue OCT angiography system, Optovue, Inc., Fremont, CA, USA) were available at the last follow-up visit. During follow-up, best corrected visual acuity (BCVA) of case 1 was unchanged at 85 ETDRS letters and OCTA revealed a mild attenuation of the perifoveal deep capillary plexus (DCP); in case 2, BCVA changed from 83 to 77 ETDRS letters and OCTA revealed patchy areas of attenuation and pruning of the DCP; in case 3, BCVA decreased from 26 to 8 ETDRS letters and OCTA revealed extensive areas of DCP dropout.ConclusionThe natural course of visual acuity in patients with PAMM secondary to CRVO may vary. In these patients, the extent of DCP dropout on OCTA may reflect the extent of visual acuity impairment.

  17. Improved automated optic cup segmentation based on detection of blood vessel bends in retinal fundus images.

    PubMed

    Hatanaka, Yuji; Nagahata, Yuuki; Muramatsu, Chisako; Okumura, Susumu; Ogohara, Kazunori; Sawada, Akira; Ishida, Kyoko; Yamamoto, Tetsuya; Fujita, Hiroshi

    2014-01-01

    Glaucoma is a leading cause of permanent blindness. Retinal imaging is useful for early detection of glaucoma. In order to evaluate the presence of glaucoma, ophthalmologists may determine the cup and disc areas and diagnose glaucoma using a vertical optic cup-to-disc (C/D) ratio and a rim-to-disc (R/D) ratio. Previously we proposed a method to determine cup edge by analyzing a vertical profile of pixel values, but this method provided a cup edge smaller than that of an ophthalmologist. This paper describes an improved method using the locations of the blood vessel bends. The blood vessels were detected by a concentration feature determined from the density gradient. The blood vessel bends were detected by tracking the blood vessels from the disc edge to the primary cup edge, which was determined by our previous method. Lastly, the vertical C/D ratio and the R/D ratio were calculated. Using forty-four images, including 32 glaucoma images, the AUCs of both the vertical C/D ratio and R/D ratio by this proposed method were 0.966 and 0.936, respectively.

  18. Retinal Fibre Layer Thickness Measurement in Normal Paediatric Population in Sweden Using Optical Coherence Tomography

    PubMed Central

    Ntoula, Evangelia

    2016-01-01

    Purpose. To evaluate the correlation between peripapillary retinal nerve fibre layer (RNFL) thickness and both age and refraction error in healthy children using optical coherence tomography (OCT). Patients and Methods. 80 healthy children with a mean age of 9.1 years (range 3.8 to 16.7 years) undergoing routine ocular examination at the orthoptic section of the Ophthalmology Department were recruited for this cross-sectional study. After applying cycloplegia, the peripapillary RNFL thickness was measured in both eyes using the Topcon 3D OCT 2000 device. Results. 138 eyes were included in the analysis. The average refractive error (SE) was +1.7 D (range −5.25 to +7.25 D). The mean total RNFL thickness was 105 μm ± 10.3, the mean superior RNFL thickness was 112.7 μm ± 16.5, and the mean inferior RNFL thickness was 132.6 μm ± 18.3. We found no statistically significant effect of age on RNFL thickness (ANOVA, f = 0.33, p = 0.56). Refraction was proven to have a statistically significant effect (ANOVA, f = 67.1, p < 0.05) in RNFL measurements. Conclusions. Data obtained from this study may assist in establishing a normative database for a paediatric population. Refraction error should be taken into consideration due to its statistically significant correlation with RNFL thickness. PMID:27980862

  19. Multiple sclerosis and optic nerve: an analysis of retinal nerve fiber layer thickness and color Doppler imaging parameters

    PubMed Central

    Akçam, H T; Capraz, I Y; Aktas, Z; Batur Caglayan, H Z; Ozhan Oktar, S; Hasanreisoglu, M; Irkec, C

    2014-01-01

    Purpose To compare both retinal nerve fiber layer thickness and orbital color Doppler ultrasonography parameters in patients with multiple sclerosis (MS) versus healthy controls. Methods This is an observational case–control study. Forty eyes from MS patients and twenty eyes from healthy volunteers were examined. Eyes were classified into three groups as group 1, eyes from MS patients with previous optic neuritis (n=20); group 2, eyes from MS patients without previous optic neuritis (n=20); and group 3, eyes from healthy controls (n=20). Following complete ophthalmologic examination and retinal nerve fiber layer thickness measurement for each group, blood flow velocities of posterior ciliary arteries, central retinal artery, ophthalmic artery, and superior ophthalmic vein were measured. Pourcelot index (resistive index), an indicator of peripheral vascular resistance, was also calculated. The statistical assessment was performed with the assistance of Pearson's Chi-square test, Mann–Whitney U-test, Kruskal–Wallis test, and Spearman's correlation test. Results The studied eyes exposed similar values in terms of intraocular pressure and central corneal thickness, implying no evidence in favor of glaucoma. All nerve fiber layer thickness values, except superior nasal quadrants, in group 1 were found to be significantly thinner than groups 2 and 3. Blood flow velocity and mean resistivity index parameters were similar in all the groups. Conclusions In MS patients, especially with previous optic neuritis, diminished retinal nerve fiber layer thickness was observed. Contrary to several studies in the current literature, no evidence supporting potential vascular origin of ocular involvement in MS was found. PMID:25081285

  20. Solar adaptive optics: specificities, lessons learned, and open alternatives

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Marino, J.; Asensio Ramos, A.; Collados, M.; Montoya, L.; Tallon, M.

    2016-07-01

    First on sky adaptive optics experiments were performed on the Dunn Solar Telescope on 1979, with a shearing interferometer and limited success. Those early solar adaptive optics efforts forced to custom-develop many components, such as Deformable Mirrors and WaveFront Sensors, which were not available at that time. Later on, the development of the correlation Shack-Hartmann marked a breakthrough in solar adaptive optics. Since then, successful Single Conjugate Adaptive Optics instruments have been developed for many solar telescopes, i.e. the National Solar Observatory, the Vacuum Tower Telescope and the Swedish Solar Telescope. Success with the Multi Conjugate Adaptive Optics systems for GREGOR and the New Solar Telescope has proved to be more difficult to attain. Such systems have a complexity not only related to the number of degrees of freedom, but also related to the specificities of the Sun, used as reference, and the sensing method. The wavefront sensing is performed using correlations on images with a field of view of 10", averaging wavefront information from different sky directions, affecting the sensing and sampling of high altitude turbulence. Also due to the low elevation at which solar observations are performed we have to include generalized fitting error and anisoplanatism, as described by Ragazzoni and Rigaut, as non-negligible error sources in the Multi Conjugate Adaptive Optics error budget. For the development of the next generation Multi Conjugate Adaptive Optics systems for the Daniel K. Inouye Solar Telescope and the European Solar Telescope we still need to study and understand these issues, to predict realistically the quality of the achievable reconstruction. To improve their designs other open issues have to be assessed, i.e. possible alternative sensing methods to avoid the intrinsic anisoplanatism of the wide field correlation Shack-Hartmann, new parameters to estimate the performance of an adaptive optics solar system, alternatives to

  1. Astronomy Applications of Adaptive Optics at Lawrence Livermore National Laboratory

    SciTech Connect

    Bauman, B J; Gavel, D T

    2003-04-23

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  2. Laser guide star adaptive optics: Present and future

    SciTech Connect

    Olivier, S.S.; Max, C.E.

    1993-03-01

    Feasibility demonstrations using one to two meter telescopes have confirmed the utility of laser beacons as wavefront references for adaptive optics systems. Laser beacon architectures suitable for the new generation of eight and ten meter telescopes are presently under study. This paper reviews the concept of laser guide star adaptive optics and the progress that has been made by groups around the world implementing such systems. A description of the laser guide star program at LLNL and some experimental results is also presented.

  3. How adaptive optics may have won the Cold War

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    2013-05-01

    While there are many theories and studies concerning the end of the Cold War, circa 1990, I postulate that one of the contributors to the result was the development of adaptive optics. The emergence of directed energy weapons, specifically space-based and ground-based high energy lasers made practicable with adaptive optics, showed that a successful defense against inter-continental ballistic missiles was not only possible, but achievable in a reasonable period of time.

  4. Solar adaptive optics at the Observatorio del Teide, Tenerife

    NASA Astrophysics Data System (ADS)

    Soltau, Dirk; Berkefeld, Thomas; Schmidt, Dirk; von der Lühe, Oskar

    2013-10-01

    Observing the Sun with high angular resolution is difficult because the turbulence in the atmosphere is strongest during day time. In this paper we describe the principles of solar adaptive optics exemplified by the two German solar telescopes VTT and GREGOR at the Observatorio del Teide. With theses systems we obtain near diffraction limited images of the Sun. Ways to overcome the limits of conventional AO by applying multiconjugate adaptive optics (MCAO) are shown.

  5. Validity and cost-effectiveness of cone adaptation test as a screening tool to detect retinitis pigmentosa

    PubMed Central

    Deshpande, Rahul; Save, Prajakta; Deshpande, Madan; Shegunashi, Mahadev; Chougule, Marium; Khandekar, Rajiv

    2016-01-01

    Background: The cone adaptation test is to detect retinitis pigmentosa (RP) cases confirmed by electroretinogram (ERG). We present the validity and cost-effectiveness of cone adaptation test as a screening tool for detecting RP. Methods: This cross-sectional study was conducted between November 2013 and December 2013. All RP cases diagnosed by ophthalmologists of H. V. Desai Eye Hospital in the last 5 years were participated in this study. The cone adaptation test was done in photopic and scotopic illumination. Failed test means 10 s or more to complete the test under scotopic illumination. A technician who was masked for cone adaptation test finding carried out ERG. Demographics, symptoms, and history of treatment were inquired. Those with flat ERG wave in scotopic condition and corresponding clinical findings were defined as having RP. Sensitivity, specificity, and false-positive and false-negative parameters of validity were estimated. The unit cost of performing test and ERG was calculated. Results: All 32 RP patients (28 male, age median 23.5 ± 14.5 years) had a vision more than 6/60 and flat wave in ERG under mesopic/scotopic illumination. Thirty-one participants failed cone adaptation test. The sensitivity was 31/32 × 100 = 97%. The specificity was 100%. There was no false-positive case. Consanguinity rate among parents was 43%. The cost of testing one child using “cone adaptation test kit” was 2.5 US $. The unit cost of diagnosing RP using ERG was 10 US $. Conclusion: Cone adaptation is a valid and cost-effective screening tool test for RP. The consanguinity rate among parents of an RP patient was high. PMID:27843226

  6. Retinal Blood Flow Response to Hyperoxia Measured With En Face Doppler Optical Coherence Tomography

    PubMed Central

    Pechauer, Alex D.; Tan, Ou; Liu, Liang; Jia, Yali; Hou, Vivian; Hills, William; Huang, David

    2016-01-01

    Purpose To use multiplane en face Doppler optical coherence tomography (OCT) to measure the change in total retinal blood flow (TRBF) in response to hyperoxia. Methods One eye of each healthy human participant (n = 8) was scanned with a commercial high-speed (70-kHz) spectral OCT system. Three repeated scans were captured at baseline and after 10 minutes of oxygen (hyperoxia) by open nasal mask. The procedure was performed twice on day 1 and once more on day 2. Blood flow of each vein was estimated using Doppler OCT at an optimized en face plane. The TRBF was summed from all veins at the optic disc. The TRBF hyperoxic response was calculated as the TRBF percent change from baseline. Results Participants experienced a 23.6% ± 10.7% (mean ± standard deviation [SD]) decrease (P < 0.001, paired t-test) in TRBF during hyperoxia. The within-day repeatability of baseline TRBF was 4.1% and the between-day reproducibility was 10.9% coefficient of variation (CV). Between-grader reproducibility was 3.9% CV. The repeatability and reproducibility (pooled SD) of hyperoxic response were 6.1% and 6.4%, respectively. Conclusions The multiplane en face Doppler OCT algorithm was able to detect, in all participants, a decreased TRBF in response to hyperoxia. The response magnitude for each participant varied among repeated trials, and the averaging of multiple trials was helpful in establishing the individual response. This technique shows good potential for the clinical investigation of vascular autoregulation. PMID:27409465

  7. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map.

    PubMed

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D; Sonka, Milan

    2013-12-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively.

  8. The neuroprotective effect of resveratrol on retinal ganglion cells after optic nerve transection

    PubMed Central

    Park, Joo Hyun; Kim, Yu Jeong; Park, Ki Ho

    2013-01-01

    Purpose This study aimed to investigate the neuroprotective effect of resveratrol in an optic nerve transection (ONT) model and to identify the neuroprotective mechanism of resveratrol in retinal ganglion cells (RGCs). Methods ONT and retrograde labeling were performed in Sprague-Dawley rats. Various concentrations of resveratrol were injected intravitreally immediately after ONT. The number of labeled RGCs was determined at 1 and 2 weeks after ONT. The effect of resveratrol and sirtinol (a sirtuin 1 inhibitor) co-injection was investigated. RGC-5 cells were cultured and treated with staurosporine to induce differentiation. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate the effect of resveratrol on RGC-5 cell survival under serum-free conditions. RGC-5 cells were cultured with sirtinol to investigate the neuroprotective mechanism of resveratrol. Results A dose–response relationship was observed between resveratrol and RGC survival. A single intravitreal injection of resveratrol was neuroprotective in RGCs at 1 week after ONT (p<0.01). Repeated intravitreal injection of resveratrol showed a neuroprotective effect at 2 weeks after ONT (p<0.01). However, co-injection of resveratrol and sirtinol diminished the neuroprotective effect of resveratrol (p<0.05). The neuroprotective effect of resveratrol was observed in RGC-5 cells under serum-free conditions, and sirtinol diminished this neuroprotective effect. Conclusions Resveratrol exerts its neuroprotective effect on RGCs via activation of the sirtuin 1 pathway in an ONT model. This finding demonstrates the therapeutic potential of resveratrol in treating optic nerve diseases. PMID:23901250

  9. Transcorneal electrical stimulation alters morphology and survival of retinal ganglion cells after optic nerve damage.

    PubMed

    Henrich-Noack, Petra; Voigt, Nadine; Prilloff, Sylvia; Fedorov, Anton; Sabel, Bernhard A

    2013-05-24

    Traumatic optic nerve injury leads to retrograde death of retinal ganglion cells (RGCs), but transcorneal electrical stimulation (TES) can increase the cell survival rate. To understand the mechanisms and to further define the TES-induced effects we monitored in living animals RGC morphology and survival after optic nerve crush (ONC) in real time by using in vivo confocal neuroimaging (ICON) of the retina. ONC was performed in rats and ICON was performed before crush and on post-lesion days 3, 7 and 15 which allowed us to repeatedly record RGC number and size. TES or sham-stimulation were performed immediately after the crush and on post-injury day 11. Three days after ONC we detected a higher percentage of surviving RGCs in the TES group as compared to sham-treated controls. However, the difference was below significance level on day 7 and disappeared completely by day 15. The death rate was more variable amongst the TES-treated rats than in the control group. Morphological analysis revealed that average cell size changed significantly in the control group but not in stimulated animals and the morphological alterations of surviving neurons were smaller in TES-treated compared to control cells. In conclusion, TES delays post-traumatic cell death significantly. Moreover, we found "responder animals" which also benefited in the long-term from the treatment. Our in vivo cellular imaging results provide evidence that TES reduces ONC-associated neuronal swelling and shrinkage especially in RGCs which survived long-term. Further studies are now needed to determine the differences of responders vs. non-responders.

  10. Guide star lasers for adaptive optics

    NASA Astrophysics Data System (ADS)

    Roberts, William Thomas, Jr.

    Exploitation of the imaging capabilities of the new generation of ground-based astronomical telescopes relies heavily on Adaptive Optics (AO). Current AO system designs call for sodium guide star lasers capable of producing at least eight Watts of power tuned to the peak of the sodium D2 line, with a high duty cycle to avoid saturation, and with 0.5-1.0 GHz spectral broadening. This work comprises development and testing of six candidate laser systems and materials which may afford a path to achieving these goals. An end-pumped CW dye laser producing 4.0 Watts of tuned output power was developed and used to obtain the first accurate measurement of sodium layer scattering efficiency. Methods of optimizing the laser output through improving pump overlap efficiency and reducing the number of intracavity scattering surfaces are covered. The 1181 nm fluorescence peak of Mn5+ ion in Ba5 (PO4)3Cl could be tuned and doubled to reach 589 nm. While efforts to grow this crystal were under way, the Mn5+ ion in natural apatite (Ca5(PO4)3F) was studied as a potential laser material. Fluorescence saturation measurements and transmission saturation are presented, as well as efforts to obtain CW lasing in natural apatite. A Q-switched laser color-center laser in LiF : F-2 was developed and successfully tuned and doubled to the sodium D 2 line. Broad-band lasing of 80 mW and tuned narrow-band lasing of 35 mW at 1178 nm were obtained with 275 mW of input pump power at 1064 nm. The measured thermal properties of this material indicate its potential for scaling to much higher power. A Q-switched intracavity Raman laser was developed in which CaWO 4 was used to shift a Nd:YAG laser, the frequency-doubled output of which was centered at 589.3 nm. To obtain light at 589.0 nm, a compositionally tuned pump laser of Nd : Y3Ga1.1Al3.9O 12 was produced which generated the desired shift, but was inhomogeneous broadened, limiting the tunable power of the material. Finally, temperature tuning of

  11. Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography

    PubMed Central

    Aaker, Grant D; Myung, Jane S; Ehrlich, Joshua R; Mohammed, Mujtaba; Henchcliffe, Claire;