Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi
2017-01-01
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824
Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi
2017-06-13
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).
Control of antiviral immunity by pattern recognition and the microbiome
Pang, Iris K.; Iwasaki, Akiko
2013-01-01
Summary Human skin and mucosal surfaces are in constant contact with resident and invasive microbes. Recognition of microbial products by receptors of the innate immune system triggers rapid innate defense and transduces signals necessary for initiating and maintaining the adaptive immune responses. Microbial sensing by innate pattern recognition receptors is not restricted to pathogens. Rather, proper development, function, and maintenance of innate and adaptive immunity rely on continuous recognition of products derived from the microorganisms indigenous to the internal and external surfaces of mammalian host. Tonic immune activation by the resident microbiota governs host susceptibility to intestinal and extra-intestinal infections including those caused by viruses. This review highlights recent developments in innate viral recognition leading to adaptive immunity, and discusses potential link between viruses, microbiota and the host immune system. Further, we discuss the possible roles of microbiome in chronic viral infection and pathogenesis of autoimmune disease, and speculate on the benefit for probiotic therapies against such diseases. PMID:22168422
Recent progress in invariant pattern recognition
NASA Astrophysics Data System (ADS)
Arsenault, Henri H.; Chang, S.; Gagne, Philippe; Gualdron Gonzalez, Oscar
1996-12-01
We present some recent results in invariant pattern recognition, including methods that are invariant under two or more distortions of position, orientation and scale. There are now a few methods that yield good results under changes of both rotation and scale. Some new methods are introduced. These include locally adaptive nonlinear matched filters, scale-adapted wavelet transforms and invariant filters for disjoint noise. Methods using neural networks will also be discussed, including an optical method that allows simultaneous classification of multiple targets.
System integration of pattern recognition, adaptive aided, upper limb prostheses
NASA Technical Reports Server (NTRS)
Lyman, J.; Freedy, A.; Solomonow, M.
1975-01-01
The requirements for successful integration of a computer aided control system for multi degree of freedom artificial arms are discussed. Specifications are established for a system which shares control between a human amputee and an automatic control subsystem. The approach integrates the following subsystems: (1) myoelectric pattern recognition, (2) adaptive computer aiding; (3) local reflex control; (4) prosthetic sensory feedback; and (5) externally energized arm with the functions of prehension, wrist rotation, elbow extension and flexion and humeral rotation.
Forecasting of hourly load by pattern recognition in a small area power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehdashti-Shahrokh, A.
1982-01-01
An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less
Liquid lens: advances in adaptive optics
NASA Astrophysics Data System (ADS)
Casey, Shawn Patrick
2010-12-01
'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.
Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology
ERIC Educational Resources Information Center
Suresh, Rahul; Mosser, David M.
2013-01-01
Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…
Rhodes, Gillian; Jeffery, Linda; Taylor, Libby; Hayward, William G; Ewing, Louise
2014-06-01
Despite their similarity as visual patterns, we can discriminate and recognize many thousands of faces. This expertise has been linked to 2 coding mechanisms: holistic integration of information across the face and adaptive coding of face identity using norms tuned by experience. Recently, individual differences in face recognition ability have been discovered and linked to differences in holistic coding. Here we show that they are also linked to individual differences in adaptive coding of face identity, measured using face identity aftereffects. Identity aftereffects correlated significantly with several measures of face-selective recognition ability. They also correlated marginally with own-race face recognition ability, suggesting a role for adaptive coding in the well-known other-race effect. More generally, these results highlight the important functional role of adaptive face-coding mechanisms in face expertise, taking us beyond the traditional focus on holistic coding mechanisms. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Pattern recognition for Space Applications Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Singley, M. E.
1984-01-01
Results and conclusions are presented on the application of recent developments in pattern recognition to spacecraft star mapping systems. Sensor data for two representative starfields are processed by an adaptive shape-seeking version of the Fc-V algorithm with good results. Cluster validity measures are evaluated, but not found especially useful to this application. Recommendations are given two system configurations worthy of additional study,
Recognition of Similar Shaped Handwritten Marathi Characters Using Artificial Neural Network
NASA Astrophysics Data System (ADS)
Jane, Archana P.; Pund, Mukesh A.
2012-03-01
The growing need have handwritten Marathi character recognition in Indian offices such as passport, railways etc has made it vital area of a research. Similar shape characters are more prone to misclassification. In this paper a novel method is provided to recognize handwritten Marathi characters based on their features extraction and adaptive smoothing technique. Feature selections methods avoid unnecessary patterns in an image whereas adaptive smoothing technique form smooth shape of charecters.Combination of both these approaches leads to the better results. Previous study shows that, no one technique achieves 100% accuracy in handwritten character recognition area. This approach of combining both adaptive smoothing & feature extraction gives better results (approximately 75-100) and expected outcomes.
Structure, recognition and adaptive binding in RNA aptamer complexes.
Patel, D J; Suri, A K; Jiang, F; Jiang, L; Fan, P; Kumar, R A; Nonin, S
1997-10-10
Novel features of RNA structure, recognition and discrimination have been recently elucidated through the solution structural characterization of RNA aptamers that bind cofactors, aminoglycoside antibiotics, amino acids and peptides with high affinity and specificity. This review presents the solution structures of RNA aptamer complexes with adenosine monophosphate, flavin mononucleotide, arginine/citrulline and tobramycin together with an example of hydrogen exchange measurements of the base-pair kinetics for the AMP-RNA aptamer complex. A comparative analysis of the structures of these RNA aptamer complexes yields the principles, patterns and diversity associated with RNA architecture, molecular recognition and adaptive binding associated with complex formation.
A Novel Receptor-Like Kinase Involved in Fungal Pathogen Defense in Arabidopsis thaliana
USDA-ARS?s Scientific Manuscript database
Plants are under constant attack from a variety of disease causing organisms. Lacking an adaptive immune system, plants repel pathogen attack via an array of pathogen recognition machinery. Receptor-like kinases (RLKs) are involved in the recognition of pathogen-associated molecular patterns (PAMPs)...
Trdá, Lucie; Boutrot, Freddy; Claverie, Justine; Brulé, Daphnée; Dorey, Stephan; Poinssot, Benoit
2015-01-01
Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition. PMID:25904927
NASA Astrophysics Data System (ADS)
Zhang, Shijun; Jing, Zhongliang; Li, Jianxun
2005-01-01
The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real-world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.
Motion Based Target Acquisition and Evaluation in an Adaptive Machine Vision System
1995-05-01
paths in facial recognition and learning. Annals of Neurology, 22, 41-45. Tolman, E.C. (1932) Purposive behavior in Animals and Men. New York: Appleton...Learned scan paths are the active processes of perception. Rizzo et al. (1987) studied the fixation patterns of two patients with impaired facial ... recognition and learning and found an increase in the randomness of the scan patterns compared to controls, indicating that the cortex was failing to direct
Multi-subject subspace alignment for non-stationary EEG-based emotion recognition.
Chai, Xin; Wang, Qisong; Zhao, Yongping; Liu, Xin; Liu, Dan; Bai, Ou
2018-01-01
Emotion recognition based on EEG signals is a critical component in Human-Machine collaborative environments and psychiatric health diagnoses. However, EEG patterns have been found to vary across subjects due to user fatigue, different electrode placements, and varying impedances, etc. This problem renders the performance of EEG-based emotion recognition highly specific to subjects, requiring time-consuming individual calibration sessions to adapt an emotion recognition system to new subjects. Recently, domain adaptation (DA) strategies have achieved a great deal success in dealing with inter-subject adaptation. However, most of them can only adapt one subject to another subject, which limits their applicability in real-world scenarios. To alleviate this issue, a novel unsupervised DA strategy called Multi-Subject Subspace Alignment (MSSA) is proposed in this paper, which takes advantage of subspace alignment solution and multi-subject information in a unified framework to build personalized models without user-specific labeled data. Experiments on a public EEG dataset known as SEED verify the effectiveness and superiority of MSSA over other state of the art methods for dealing with multi-subject scenarios.
de la Rosa, Stephan; Ekramnia, Mina; Bülthoff, Heinrich H.
2016-01-01
The ability to discriminate between different actions is essential for action recognition and social interactions. Surprisingly previous research has often probed action recognition mechanisms with tasks that did not require participants to discriminate between actions, e.g., left-right direction discrimination tasks. It is not known to what degree visual processes in direction discrimination tasks are also involved in the discrimination of actions, e.g., when telling apart a handshake from a high-five. Here, we examined whether action discrimination is influenced by movement direction and whether direction discrimination depends on the type of action. We used an action adaptation paradigm to target action and direction discrimination specific visual processes. In separate conditions participants visually adapted to forward and backward moving handshake and high-five actions. Participants subsequently categorized either the action or the movement direction of an ambiguous action. The results showed that direction discrimination adaptation effects were modulated by the type of action but action discrimination adaptation effects were unaffected by movement direction. These results suggest that action discrimination and direction categorization rely on partly different visual information. We propose that action discrimination tasks should be considered for the exploration of visual action recognition mechanisms. PMID:26941633
NASA Astrophysics Data System (ADS)
Sato, Ayuko; Iwasaki, Akiko
2004-11-01
Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection
RIG-I in RNA virus recognition
Kell, Alison M.; Gale, Michael
2015-01-01
Antiviral immunity is initiated upon host recognition of viral products via non-self molecular patterns known as pathogen-associated molecular patterns (PAMPs). Such recognition initiates signaling cascades that induce intracellular innate immune defenses and an inflammatory response that facilitates development of the acquired immune response. The retinoic acid-inducible gene I (RIG-I) and the RIG-I-like receptor (RLR) protein family are key cytoplasmic pathogen recognition receptors that are implicated in the recognition of viruses across genera and virus families, including functioning as major sensors of RNA viruses, and promoting recognition of some DNA viruses. RIG-I, the charter member of the RLR family, is activated upon binding to PAMP RNA. Activated RIG-I signals by interacting with the adapter protein MAVS leading to a signaling cascade that activates the transcription factors IRF3 and NF-κB. These actions induce the expression of antiviral gene products and the production of type I and III interferons that lead to an antiviral state in the infected cell and surrounding tissue. RIG-I signaling is essential for the control of infection by many RNA viruses. Recently, RIG-I crosstalk with other pathogen recognition receptors and components of the inflammasome has been described. In this review, we discuss the current knowledge regarding the role of RIG-I in recognition of a variety of virus families and its role in programming the adaptive immune response through cross-talk with parallel arms of the innate immune system, including how RIG-I can be leveraged for antiviral therapy. PMID:25749629
van der Post, Daniel J; Semmann, Dirk
2011-10-01
Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or "recognize patterns" in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is "staying in patches". In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-26
... subspecies recognition for the coastal California gnatcatcher. We subsequently made these data available to... support recognition of the coastal California gnatcatcher as a subspecies. Zink et al. (2000) does not... adaptation. Other molecular markers with higher mutation rates may reveal more recent patterns of divergence...
Rhodes, Gillian; Jeffery, Linda; Taylor, Libby; Ewing, Louise
2013-11-01
Our ability to discriminate and recognize thousands of faces despite their similarity as visual patterns relies on adaptive, norm-based, coding mechanisms that are continuously updated by experience. Reduced adaptive coding of face identity has been proposed as a neurocognitive endophenotype for autism, because it is found in autism and in relatives of individuals with autism. Autistic traits can also extend continuously into the general population, raising the possibility that reduced adaptive coding of face identity may be more generally associated with autistic traits. In the present study, we investigated whether adaptive coding of face identity decreases as autistic traits increase in an undergraduate population. Adaptive coding was measured using face identity aftereffects, and autistic traits were measured using the Autism-Spectrum Quotient (AQ) and its subscales. We also measured face and car recognition ability to determine whether autistic traits are selectively related to face recognition difficulties. We found that men who scored higher on levels of autistic traits related to social interaction had reduced adaptive coding of face identity. This result is consistent with the idea that atypical adaptive face-coding mechanisms are an endophenotype for autism. Autistic traits were also linked with face-selective recognition difficulties in men. However, there were some unexpected sex differences. In women, autistic traits were linked positively, rather than negatively, with adaptive coding of identity, and were unrelated to face-selective recognition difficulties. These sex differences indicate that autistic traits can have different neurocognitive correlates in men and women and raise the intriguing possibility that endophenotypes of autism can differ in males and females. © 2013 Elsevier Ltd. All rights reserved.
Semantic Network Adaptation Based on QoS Pattern Recognition for Multimedia Streams
NASA Astrophysics Data System (ADS)
Exposito, Ernesto; Gineste, Mathieu; Lamolle, Myriam; Gomez, Jorge
This article proposes an ontology based pattern recognition methodology to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams. The use of this ontology by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet self-optimization of communication services regarding the actual application requirements. A case study showing how this methodology is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach.
NASA Astrophysics Data System (ADS)
Sultana, Maryam; Bhatti, Naeem; Javed, Sajid; Jung, Soon Ki
2017-09-01
Facial expression recognition (FER) is an important task for various computer vision applications. The task becomes challenging when it requires the detection and encoding of macro- and micropatterns of facial expressions. We present a two-stage texture feature extraction framework based on the local binary pattern (LBP) variants and evaluate its significance in recognizing posed and nonposed facial expressions. We focus on the parametric limitations of the LBP variants and investigate their effects for optimal FER. The size of the local neighborhood is an important parameter of the LBP technique for its extraction in images. To make the LBP adaptive, we exploit the granulometric information of the facial images to find the local neighborhood size for the extraction of center-symmetric LBP (CS-LBP) features. Our two-stage texture representations consist of an LBP variant and the adaptive CS-LBP features. Among the presented two-stage texture feature extractions, the binarized statistical image features and adaptive CS-LBP features were found showing high FER rates. Evaluation of the adaptive texture features shows competitive and higher performance than the nonadaptive features and other state-of-the-art approaches, respectively.
Jacobs, Barbara Bennett
2013-01-01
Professional practice models have emerged as the way hospital-based nursing expresses its consensus-derived philosophy. Magnet recognition influences this practice, while extant nursing theories continue the quest to bridge scholarship with practice. The innovative model presented in this article is an adaptation of Carper's patterns of knowing into a nursing meta-language of science, ethics, art, and advocacy. In this model, boundaries of the patterns of knowing blur and synchronous movement of values, patterns of research, and Aristotelian intellectual virtues blend. Patient and nurse in an intersubjective relationship share the end of human flourishing as the patient's narrative evolves and shared meaning of the ultimate good is actualized.
Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin
2016-01-01
With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053
NASA Astrophysics Data System (ADS)
Han, Sheng; Xi, Shi-qiong; Geng, Wei-dong
2017-11-01
In order to solve the problem of low recognition rate of traditional feature extraction operators under low-resolution images, a novel algorithm of expression recognition is proposed, named central oblique average center-symmetric local binary pattern (CS-LBP) with adaptive threshold (ATCS-LBP). Firstly, the features of face images can be extracted by the proposed operator after pretreatment. Secondly, the obtained feature image is divided into blocks. Thirdly, the histogram of each block is computed independently and all histograms can be connected serially to create a final feature vector. Finally, expression classification is achieved by using support vector machine (SVM) classifier. Experimental results on Japanese female facial expression (JAFFE) database show that the proposed algorithm can achieve a recognition rate of 81.9% when the resolution is as low as 16×16, which is much better than that of the traditional feature extraction operators.
van der Post, Daniel J.; Semmann, Dirk
2011-01-01
Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or “recognize patterns” in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is “staying in patches”. In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape. PMID:21998571
Biochip microsystem for bioinformatics recognition and analysis
NASA Technical Reports Server (NTRS)
Lue, Jaw-Chyng (Inventor); Fang, Wai-Chi (Inventor)
2011-01-01
A system with applications in pattern recognition, or classification, of DNA assay samples. Because DNA reference and sample material in wells of an assay may be caused to fluoresce depending upon dye added to the material, the resulting light may be imaged onto an embodiment comprising an array of photodetectors and an adaptive neural network, with applications to DNA analysis. Other embodiments are described and claimed.
Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation
NASA Technical Reports Server (NTRS)
Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)
2000-01-01
This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.
NASA Astrophysics Data System (ADS)
Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.
A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.
Nonlinear Time Series Analysis via Neural Networks
NASA Astrophysics Data System (ADS)
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Invariant-feature-based adaptive automatic target recognition in obscured 3D point clouds
NASA Astrophysics Data System (ADS)
Khuon, Timothy; Kershner, Charles; Mattei, Enrico; Alverio, Arnel; Rand, Robert
2014-06-01
Target recognition and classification in a 3D point cloud is a non-trivial process due to the nature of the data collected from a sensor system. The signal can be corrupted by noise from the environment, electronic system, A/D converter, etc. Therefore, an adaptive system with a desired tolerance is required to perform classification and recognition optimally. The feature-based pattern recognition algorithm architecture as described below is particularly devised for solving a single-sensor classification non-parametrically. Feature set is extracted from an input point cloud, normalized, and classifier a neural network classifier. For instance, automatic target recognition in an urban area would require different feature sets from one in a dense foliage area. The figure above (see manuscript) illustrates the architecture of the feature based adaptive signature extraction of 3D point cloud including LIDAR, RADAR, and electro-optical data. This network takes a 3D cluster and classifies it into a specific class. The algorithm is a supervised and adaptive classifier with two modes: the training mode and the performing mode. For the training mode, a number of novel patterns are selected from actual or artificial data. A particular 3D cluster is input to the network as shown above for the decision class output. The network consists of three sequential functional modules. The first module is for feature extraction that extracts the input cluster into a set of singular value features or feature vector. Then the feature vector is input into the feature normalization module to normalize and balance it before being fed to the neural net classifier for the classification. The neural net can be trained by actual or artificial novel data until each trained output reaches the declared output within the defined tolerance. In case new novel data is added after the neural net has been learned, the training is then resumed until the neural net has incrementally learned with the new novel data. The associative memory capability of the neural net enables the incremental learning. The back propagation algorithm or support vector machine can be utilized for the classification and recognition.
Knowledge Retrieval Solutions.
ERIC Educational Resources Information Center
Khan, Kamran
1998-01-01
Excalibur RetrievalWare offers true knowledge retrieval solutions. Its fundamental technologies, Adaptive Pattern Recognition Processing and Semantic Networks, have capabilities for knowledge discovery and knowledge management of full-text, structured and visual information. The software delivers a combination of accuracy, extensibility,…
Talker variability in audio-visual speech perception
Heald, Shannon L. M.; Nusbaum, Howard C.
2014-01-01
A change in talker is a change in the context for the phonetic interpretation of acoustic patterns of speech. Different talkers have different mappings between acoustic patterns and phonetic categories and listeners need to adapt to these differences. Despite this complexity, listeners are adept at comprehending speech in multiple-talker contexts, albeit at a slight but measurable performance cost (e.g., slower recognition). So far, this talker variability cost has been demonstrated only in audio-only speech. Other research in single-talker contexts have shown, however, that when listeners are able to see a talker’s face, speech recognition is improved under adverse listening (e.g., noise or distortion) conditions that can increase uncertainty in the mapping between acoustic patterns and phonetic categories. Does seeing a talker’s face reduce the cost of word recognition in multiple-talker contexts? We used a speeded word-monitoring task in which listeners make quick judgments about target word recognition in single- and multiple-talker contexts. Results show faster recognition performance in single-talker conditions compared to multiple-talker conditions for both audio-only and audio-visual speech. However, recognition time in a multiple-talker context was slower in the audio-visual condition compared to audio-only condition. These results suggest that seeing a talker’s face during speech perception may slow recognition by increasing the importance of talker identification, signaling to the listener a change in talker has occurred. PMID:25076919
Talker variability in audio-visual speech perception.
Heald, Shannon L M; Nusbaum, Howard C
2014-01-01
A change in talker is a change in the context for the phonetic interpretation of acoustic patterns of speech. Different talkers have different mappings between acoustic patterns and phonetic categories and listeners need to adapt to these differences. Despite this complexity, listeners are adept at comprehending speech in multiple-talker contexts, albeit at a slight but measurable performance cost (e.g., slower recognition). So far, this talker variability cost has been demonstrated only in audio-only speech. Other research in single-talker contexts have shown, however, that when listeners are able to see a talker's face, speech recognition is improved under adverse listening (e.g., noise or distortion) conditions that can increase uncertainty in the mapping between acoustic patterns and phonetic categories. Does seeing a talker's face reduce the cost of word recognition in multiple-talker contexts? We used a speeded word-monitoring task in which listeners make quick judgments about target word recognition in single- and multiple-talker contexts. Results show faster recognition performance in single-talker conditions compared to multiple-talker conditions for both audio-only and audio-visual speech. However, recognition time in a multiple-talker context was slower in the audio-visual condition compared to audio-only condition. These results suggest that seeing a talker's face during speech perception may slow recognition by increasing the importance of talker identification, signaling to the listener a change in talker has occurred.
NASA Technical Reports Server (NTRS)
Knasel, T. Michael
1996-01-01
The primary goal of the Adaptive Vision Laboratory Research project was to develop advanced computer vision systems for automatic target recognition. The approach used in this effort combined several machine learning paradigms including evolutionary learning algorithms, neural networks, and adaptive clustering techniques to develop the E-MOR.PH system. This system is capable of generating pattern recognition systems to solve a wide variety of complex recognition tasks. A series of simulation experiments were conducted using E-MORPH to solve problems in OCR, military target recognition, industrial inspection, and medical image analysis. The bulk of the funds provided through this grant were used to purchase computer hardware and software to support these computationally intensive simulations. The payoff from this effort is the reduced need for human involvement in the design and implementation of recognition systems. We have shown that the techniques used in E-MORPH are generic and readily transition to other problem domains. Specifically, E-MORPH is multi-phase evolutionary leaming system that evolves cooperative sets of features detectors and combines their response using an adaptive classifier to form a complete pattern recognition system. The system can operate on binary or grayscale images. In our most recent experiments, we used multi-resolution images that are formed by applying a Gabor wavelet transform to a set of grayscale input images. To begin the leaming process, candidate chips are extracted from the multi-resolution images to form a training set and a test set. A population of detector sets is randomly initialized to start the evolutionary process. Using a combination of evolutionary programming and genetic algorithms, the feature detectors are enhanced to solve a recognition problem. The design of E-MORPH and recognition results for a complex problem in medical image analysis are described at the end of this report. The specific task involves the identification of vertebrae in x-ray images of human spinal columns. This problem is extremely challenging because the individual vertebra exhibit variation in shape, scale, orientation, and contrast. E-MORPH generated several accurate recognition systems to solve this task. This dual use of this ATR technology clearly demonstrates the flexibility and power of our approach.
Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.
Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta
2013-09-01
Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Rhodes, Gillian; Nishimura, Mayu; de Heering, Adelaide; Jeffery, Linda; Maurer, Daphne
2017-05-01
Faces are adaptively coded relative to visual norms that are updated by experience, and this adaptive coding is linked to face recognition ability. Here we investigated whether adaptive coding of faces is disrupted in individuals (adolescents and adults) who experience face recognition difficulties following visual deprivation from congenital cataracts in infancy. We measured adaptive coding using face identity aftereffects, where smaller aftereffects indicate less adaptive updating of face-coding mechanisms by experience. We also examined whether the aftereffects increase with adaptor identity strength, consistent with norm-based coding of identity, as in typical populations, or whether they show a different pattern indicating some more fundamental disruption of face-coding mechanisms. Cataract-reversal patients showed significantly smaller face identity aftereffects than did controls (Experiments 1 and 2). However, their aftereffects increased significantly with adaptor strength, consistent with norm-based coding (Experiment 2). Thus we found reduced adaptability but no fundamental disruption of norm-based face-coding mechanisms in cataract-reversal patients. Our results suggest that early visual experience is important for the normal development of adaptive face-coding mechanisms. © 2016 John Wiley & Sons Ltd.
An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.
Adewuyi, Adenike A; Hargrove, Levi J; Kuiken, Todd A
2016-04-01
Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.
An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control
Adewuyi, Adenike A.; Hargrove, Levi J.; Kuiken, Todd A.
2015-01-01
Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for partial-hand applications. PMID:25955989
Liu, Dong; Wang, Shengsheng; Huang, Dezhi; Deng, Gang; Zeng, Fantao; Chen, Huiling
2016-05-01
Medical image recognition is an important task in both computer vision and computational biology. In the field of medical image classification, representing an image based on local binary patterns (LBP) descriptor has become popular. However, most existing LBP-based methods encode the binary patterns in a fixed neighborhood radius and ignore the spatial relationships among local patterns. The ignoring of the spatial relationships in the LBP will cause a poor performance in the process of capturing discriminative features for complex samples, such as medical images obtained by microscope. To address this problem, in this paper we propose a novel method to improve local binary patterns by assigning an adaptive neighborhood radius for each pixel. Based on these adaptive local binary patterns, we further propose a spatial adjacent histogram strategy to encode the micro-structures for image representation. An extensive set of evaluations are performed on four medical datasets which show that the proposed method significantly improves standard LBP and compares favorably with several other prevailing approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vasou, Andri; Sultanoglu, Nazife; Goodbourn, Stephen
2017-01-01
Modern vaccinology has increasingly focused on non-living vaccines, which are more stable than live-attenuated vaccines but often show limited immunogenicity. Immunostimulatory substances, known as adjuvants, are traditionally used to increase the magnitude of protective adaptive immunity in response to a pathogen-associated antigen. Recently developed adjuvants often include substances that stimulate pattern recognition receptors (PRRs), essential components of innate immunity required for the activation of antigen-presenting cells (APCs), which serve as a bridge between innate and adaptive immunity. Nearly all PRRs are potential targets for adjuvants. Given the recent success of toll-like receptor (TLR) agonists in vaccine development, molecules with similar, but additional, immunostimulatory activity, such as defective interfering particles (DIPs) of viruses, represent attractive candidates for vaccine adjuvants. This review outlines some of the recent advances in vaccine development related to the use of TLR agonists, summarizes the current knowledge regarding DIP immunogenicity, and discusses the potential applications of DIPs in vaccine adjuvantation. PMID:28703784
Electronic system with memristive synapses for pattern recognition
Park, Sangsu; Chu, Myonglae; Kim, Jongin; Noh, Jinwoo; Jeon, Moongu; Hun Lee, Byoung; Hwang, Hyunsang; Lee, Boreom; Lee, Byung-geun
2015-01-01
Memristive synapses, the most promising passive devices for synaptic interconnections in artificial neural networks, are the driving force behind recent research on hardware neural networks. Despite significant efforts to utilize memristive synapses, progress to date has only shown the possibility of building a neural network system that can classify simple image patterns. In this article, we report a high-density cross-point memristive synapse array with improved synaptic characteristics. The proposed PCMO-based memristive synapse exhibits the necessary gradual and symmetrical conductance changes, and has been successfully adapted to a neural network system. The system learns, and later recognizes, the human thought pattern corresponding to three vowels, i.e. /a /, /i /, and /u/, using electroencephalography signals generated while a subject imagines speaking vowels. Our successful demonstration of a neural network system for EEG pattern recognition is likely to intrigue many researchers and stimulate a new research direction. PMID:25941950
Rotation, scale, and translation invariant pattern recognition using feature extraction
NASA Astrophysics Data System (ADS)
Prevost, Donald; Doucet, Michel; Bergeron, Alain; Veilleux, Luc; Chevrette, Paul C.; Gingras, Denis J.
1997-03-01
A rotation, scale and translation invariant pattern recognition technique is proposed.It is based on Fourier- Mellin Descriptors (FMD). Each FMD is taken as an independent feature of the object, and a set of those features forms a signature. FMDs are naturally rotation invariant. Translation invariance is achieved through pre- processing. A proper normalization of the FMDs gives the scale invariance property. This approach offers the double advantage of providing invariant signatures of the objects, and a dramatic reduction of the amount of data to process. The compressed invariant feature signature is next presented to a multi-layered perceptron neural network. This final step provides some robustness to the classification of the signatures, enabling good recognition behavior under anamorphically scaled distortion. We also present an original feature extraction technique, adapted to optical calculation of the FMDs. A prototype optical set-up was built, and experimental results are presented.
Face-selective regions show invariance to linear, but not to non-linear, changes in facial images.
Baseler, Heidi A; Young, Andrew W; Jenkins, Rob; Mike Burton, A; Andrews, Timothy J
2016-12-01
Familiar face recognition is remarkably invariant across huge image differences, yet little is understood concerning how image-invariant recognition is achieved. To investigate the neural correlates of invariance, we localized the core face-responsive regions and then compared the pattern of fMR-adaptation to different stimulus transformations in each region to behavioural data demonstrating the impact of the same transformations on familiar face recognition. In Experiment 1, we compared linear transformations of size and aspect ratio to a non-linear transformation affecting only part of the face. We found that adaptation to facial identity in face-selective regions showed invariance to linear changes, but there was no invariance to non-linear changes. In Experiment 2, we measured the sensitivity to non-linear changes that fell within the normal range of variation across face images. We found no adaptation to facial identity for any of the non-linear changes in the image, including to faces that varied in different levels of caricature. These results show a compelling difference in the sensitivity to linear compared to non-linear image changes in face-selective regions of the human brain that is only partially consistent with their effect on behavioural judgements of identity. We conclude that while regions such as the FFA may well be involved in the recognition of face identity, they are more likely to contribute to some form of normalisation that underpins subsequent recognition than to form the neural substrate of recognition per se. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fechner, Hanna B; Pachur, Thorsten; Schooler, Lael J; Mehlhorn, Katja; Battal, Ceren; Volz, Kirsten G; Borst, Jelmer P
2016-12-01
How do people use memories to make inferences about real-world objects? We tested three strategies based on predicted patterns of response times and blood-oxygen-level-dependent (BOLD) responses: one strategy that relies solely on recognition memory, a second that retrieves additional knowledge, and a third, lexicographic (i.e., sequential) strategy, that considers knowledge conditionally on the evidence obtained from recognition memory. We implemented the strategies as computational models within the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture, which allowed us to derive behavioral and neural predictions that we then compared to the results of a functional magnetic resonance imaging (fMRI) study in which participants inferred which of two cities is larger. Overall, versions of the lexicographic strategy, according to which knowledge about many but not all alternatives is searched, provided the best account of the joint patterns of response times and BOLD responses. These results provide insights into the interplay between recognition and additional knowledge in memory, hinting at an adaptive use of these two sources of information in decision making. The results highlight the usefulness of implementing models of decision making within a cognitive architecture to derive predictions on the behavioral and neural level. Copyright © 2016 Elsevier B.V. All rights reserved.
Dynamic Learning Style Prediction Method Based on a Pattern Recognition Technique
ERIC Educational Resources Information Center
Yang, Juan; Huang, Zhi Xing; Gao, Yue Xiang; Liu, Hong Tao
2014-01-01
During the past decade, personalized e-learning systems and adaptive educational hypermedia systems have attracted much attention from researchers in the fields of computer science Aand education. The integration of learning styles into an intelligent system is a possible solution to the problems of "learning deviation" and…
Ground Viewing Perspective Hyperspectral Anomaly Detection
2008-09-01
Statistical Pattern Recognition; 2nd edition, Academic Press, Inc., San Diego, CA, 1990. 7. Crist, E .; Schwartz, C.; Stocker, A. Pairwise adaptive...Research Laboratory: Adelphi, MD, February 2006. 19. Vane, G.; Green, R. O.; Chrien, T. Go.; Enmark, H. T.; Hansen, E . G.; Porter, W. M. The airborne...22. Duda, R. O.; Hart, P. E . Pattern Classification Scene Anal.; Second Edition, New York: J. Wiley & Sons, 2004. 23. Law, A. M.; Kelton, W. D
Motion-based signaling in sympatric species of Australian agamid lizards.
Ramos, Jose A; Peters, Richard A
2017-08-01
Signaling species occurring in sympatry are often exposed to similar environmental constraints, so similar adaptations to enhance signal efficacy are expected. However, potentially opposing selective pressures might be present to ensure species recognition. Here, we analyzed the movement-based signals of two pairs of sympatric lizard species to consider how reliable communication is maintained while avoiding misidentification. Our novel approach allows us to quantify signal contrast with plant motion noise at any site we measure, including those utilized by other species. Ctenophorus caudicinctus and Gowidon longirostris differed in display complexity and motor pattern use. They also differed in overall morphology, but their signal contrast scores are strikingly similar. These results demonstrate similar adaptations to their shared environment while maintaining species recognition cues. In contrast, Ctenophorus fordi and Ctenophorus pictus are much closer in appearance, but C. pictus produces considerably higher signal contrast scores, which we suggest is attributable to the absence of territoriality in C. fordi. Taken together, our data provide evidence for adaptation to the local environment in movement-based signals, while also meeting species recognition requirements, but the selective pressure to deal with local conditions is mediated by signal function.
Wilson, Anthony B; Whittington, Camilla M; Bahr, Angela
2014-12-20
The genes of the major histocompatibility complex (MHC/MH) have attracted considerable scientific interest due to their exceptional levels of variability and important function as part of the adaptive immune system. Despite a large number of studies on MH class II diversity of both model and non-model organisms, most research has focused on patterns of genetic variability at individual loci, failing to capture the functional diversity of the biologically active dimeric molecule. Here, we take a systematic approach to the study of MH variation, analyzing patterns of genetic variation at MH class IIα and IIβ loci of the seahorse, which together form the immunologically active peptide binding cleft of the MH class II molecule. The seahorse carries a minimal class II system, consisting of single copies of both MH class IIα and IIβ, which are physically linked and inherited in a Mendelian fashion. Both genes are ubiquitously expressed and detectible in the brood pouch of male seahorses throughout pregnancy. Genetic variability of the two genes is high, dominated by non-synonymous variation concentrated in their peptide-binding regions. Coding variation outside these regions is negligible, a pattern thought to be driven by intra- and interlocus recombination. Despite the tight physical linkage of MH IIα and IIβ loci, recombination has produced novel composite alleles, increasing functional diversity at sites responsible for antigen recognition. Antigen recognition by the adaptive immune system of the seahorse is enhanced by high variability at both MH class IIα and IIβ loci. Strong positive selection on sites involved in pathogen recognition, coupled with high levels of intra- and interlocus recombination, produce a patchwork pattern of genetic variation driven by genetic hitchhiking. Studies focusing on variation at individual MH loci may unintentionally overlook an important component of ecologically relevant variation.
Online recognition of Chinese characters: the state-of-the-art.
Liu, Cheng-Lin; Jaeger, Stefan; Nakagawa, Masaki
2004-02-01
Online handwriting recognition is gaining renewed interest owing to the increase of pen computing applications and new pen input devices. The recognition of Chinese characters is different from western handwriting recognition and poses a special challenge. To provide an overview of the technical status and inspire future research, this paper reviews the advances in online Chinese character recognition (OLCCR), with emphasis on the research works from the 1990s. Compared to the research in the 1980s, the research efforts in the 1990s aimed to further relax the constraints of handwriting, namely, the adherence to standard stroke orders and stroke numbers and the restriction of recognition to isolated characters only. The target of recognition has shifted from regular script to fluent script in order to better meet the requirements of practical applications. The research works are reviewed in terms of pattern representation, character classification, learning/adaptation, and contextual processing. We compare important results and discuss possible directions of future research.
Automatic voice recognition using traditional and artificial neural network approaches
NASA Technical Reports Server (NTRS)
Botros, Nazeih M.
1989-01-01
The main objective of this research is to develop an algorithm for isolated-word recognition. This research is focused on digital signal analysis rather than linguistic analysis of speech. Features extraction is carried out by applying a Linear Predictive Coding (LPC) algorithm with order of 10. Continuous-word and speaker independent recognition will be considered in future study after accomplishing this isolated word research. To examine the similarity between the reference and the training sets, two approaches are explored. The first is implementing traditional pattern recognition techniques where a dynamic time warping algorithm is applied to align the two sets and calculate the probability of matching by measuring the Euclidean distance between the two sets. The second is implementing a backpropagation artificial neural net model with three layers as the pattern classifier. The adaptation rule implemented in this network is the generalized least mean square (LMS) rule. The first approach has been accomplished. A vocabulary of 50 words was selected and tested. The accuracy of the algorithm was found to be around 85 percent. The second approach is in progress at the present time.
Event identification by acoustic signature recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dress, W.B.; Kercel, S.W.
1995-07-01
Many events of interest to the security commnnity produce acoustic emissions that are, in principle, identifiable as to cause. Some obvious examples are gunshots, breaking glass, takeoffs and landings of small aircraft, vehicular engine noises, footsteps (high frequencies when on gravel, very low frequencies. when on soil), and voices (whispers to shouts). We are investigating wavelet-based methods to extract unique features of such events for classification and identification. We also discuss methods of classification and pattern recognition specifically tailored for acoustic signatures obtained by wavelet analysis. The paper is divided into three parts: completed work, work in progress, and futuremore » applications. The completed phase has led to the successful recognition of aircraft types on landing and takeoff. Both small aircraft (twin-engine turboprop) and large (commercial airliners) were included in the study. The project considered the design of a small, field-deployable, inexpensive device. The techniques developed during the aircraft identification phase were then adapted to a multispectral electromagnetic interference monitoring device now deployed in a nuclear power plant. This is a general-purpose wavelet analysis engine, spanning 14 octaves, and can be adapted for other specific tasks. Work in progress is focused on applying the methods previously developed to speaker identification. Some of the problems to be overcome include recognition of sounds as voice patterns and as distinct from possible background noises (e.g., music), as well as identification of the speaker from a short-duration voice sample. A generalization of the completed work and the work in progress is a device capable of classifying any number of acoustic events-particularly quasi-stationary events such as engine noises and voices and singular events such as gunshots and breaking glass. We will show examples of both kinds of events and discuss their recognition likelihood.« less
Immune functions of insect βGRPs and their potential application.
Rao, Xiang-Jun; Zhan, Ming-Yue; Pan, Yue-Min; Liu, Su; Yang, Pei-Jin; Yang, Li-Ling; Yu, Xiao-Qiang
2018-06-01
Insects rely completely on the innate immune system to sense the foreign bodies and to mount the immune responses. Germ-line encoded pattern recognition receptors play crucial roles in recognizing pathogen-associated molecular patterns. Among them, β-1,3-glucan recognition proteins (βGRPs) and gram-negative bacteria-binding proteins (GNBPs) belong to the same pattern recognition receptor family, which can recognize β-1,3-glucans. Typical insect βGRPs are comprised of a tandem carbohydrate-binding module in the N-terminal and a glucanase-like domain in the C-terminal. The former can recognize triple-helical β-1,3-glucans, whereas the latter, which normally lacks the enzymatic activity, can recruit adapter proteins to initiate the protease cascade. According to studies, insect βGRPs possess at least three types of functions. Firstly, some βGRPs cooperate with peptidoglycan recognition proteins to recognize the lysine-type peptidoglycans upstream of the Toll pathway. Secondly, some directly recognize fungal β-1,3-glucans to activate the Toll pathway and melanization. Thirdly, some form the 'attack complexes' with other immune effectors to promote the antifungal defenses. The current review will focus on the discovery of insect βGRPs, functions of some well-characterized members, structure-function studies and their potential application. Copyright © 2017 Elsevier Ltd. All rights reserved.
An improved CS-LSSVM algorithm-based fault pattern recognition of ship power equipments.
Yang, Yifei; Tan, Minjia; Dai, Yuewei
2017-01-01
A ship power equipments' fault monitoring signal usually provides few samples and the data's feature is non-linear in practical situation. This paper adopts the method of the least squares support vector machine (LSSVM) to deal with the problem of fault pattern identification in the case of small sample data. Meanwhile, in order to avoid involving a local extremum and poor convergence precision which are induced by optimizing the kernel function parameter and penalty factor of LSSVM, an improved Cuckoo Search (CS) algorithm is proposed for the purpose of parameter optimization. Based on the dynamic adaptive strategy, the newly proposed algorithm improves the recognition probability and the searching step length, which can effectively solve the problems of slow searching speed and low calculation accuracy of the CS algorithm. A benchmark example demonstrates that the CS-LSSVM algorithm can accurately and effectively identify the fault pattern types of ship power equipments.
Toward More Accurate Iris Recognition Using Cross-Spectral Matching.
Nalla, Pattabhi Ramaiah; Kumar, Ajay
2017-01-01
Iris recognition systems are increasingly deployed for large-scale applications such as national ID programs, which continue to acquire millions of iris images to establish identity among billions. However, with the availability of variety of iris sensors that are deployed for the iris imaging under different illumination/environment, significant performance degradation is expected while matching such iris images acquired under two different domains (either sensor-specific or wavelength-specific). This paper develops a domain adaptation framework to address this problem and introduces a new algorithm using Markov random fields model to significantly improve cross-domain iris recognition. The proposed domain adaptation framework based on the naive Bayes nearest neighbor classification uses a real-valued feature representation, which is capable of learning domain knowledge. Our approach to estimate corresponding visible iris patterns from the synthesis of iris patches in the near infrared iris images achieves outperforming results for the cross-spectral iris recognition. In this paper, a new class of bi-spectral iris recognition system that can simultaneously acquire visible and near infra-red images with pixel-to-pixel correspondences is proposed and evaluated. This paper presents experimental results from three publicly available databases; PolyU cross-spectral iris image database, IIITD CLI and UND database, and achieve outperforming results for the cross-sensor and cross-spectral iris matching.
Rhodes, Gillian; Ewing, Louise; Jeffery, Linda; Avard, Eleni; Taylor, Libby
2014-09-01
Faces are adaptively coded relative to visual norms that are updated by experience. This coding is compromised in autism and the broader autism phenotype, suggesting that atypical adaptive coding of faces may be an endophenotype for autism. Here we investigate the nature of this atypicality, asking whether adaptive face-coding mechanisms are fundamentally altered, or simply less responsive to experience, in autism. We measured adaptive coding, using face identity aftereffects, in cognitively able children and adolescents with autism and neurotypical age- and ability-matched participants. We asked whether these aftereffects increase with adaptor identity strength as in neurotypical populations, or whether they show a different pattern indicating a more fundamental alteration in face-coding mechanisms. As expected, face identity aftereffects were reduced in the autism group, but they nevertheless increased with adaptor strength, like those of our neurotypical participants, consistent with norm-based coding of face identity. Moreover, their aftereffects correlated positively with face recognition ability, consistent with an intact functional role for adaptive coding in face recognition ability. We conclude that adaptive norm-based face-coding mechanisms are basically intact in autism, but are less readily calibrated by experience. Copyright © 2014 Elsevier Ltd. All rights reserved.
Speech as a pilot input medium
NASA Technical Reports Server (NTRS)
Plummer, R. P.; Coler, C. R.
1977-01-01
The speech recognition system under development is a trainable pattern classifier based on a maximum-likelihood technique. An adjustable uncertainty threshold allows the rejection of borderline cases for which the probability of misclassification is high. The syntax of the command language spoken may be used as an aid to recognition, and the system adapts to changes in pronunciation if feedback from the user is available. Words must be separated by .25 second gaps. The system runs in real time on a mini-computer (PDP 11/10) and was tested on 120,000 speech samples from 10- and 100-word vocabularies. The results of these tests were 99.9% correct recognition for a vocabulary consisting of the ten digits, and 99.6% recognition for a 100-word vocabulary of flight commands, with a 5% rejection rate in each case. With no rejection, the recognition accuracies for the same vocabularies were 99.5% and 98.6% respectively.
NASA Technical Reports Server (NTRS)
Tescher, Andrew G. (Editor)
1989-01-01
Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.
Finger vein recognition based on finger crease location
NASA Astrophysics Data System (ADS)
Lu, Zhiying; Ding, Shumeng; Yin, Jing
2016-07-01
Finger vein recognition technology has significant advantages over other methods in terms of accuracy, uniqueness, and stability, and it has wide promising applications in the field of biometric recognition. We propose using finger creases to locate and extract an object region. Then we use linear fitting to overcome the problem of finger rotation in the plane. The method of modular adaptive histogram equalization (MAHE) is presented to enhance image contrast and reduce computational cost. To extract the finger vein features, we use a fusion method, which can obtain clear and distinguishable vein patterns under different conditions. We used the Hausdorff average distance algorithm to examine the recognition performance of the system. The experimental results demonstrate that MAHE can better balance the recognition accuracy and the expenditure of time compared with three other methods. Our resulting equal error rate throughout the total procedure was 3.268% in a database of 153 finger vein images.
Betthauser, Joseph L; Hunt, Christopher L; Osborn, Luke E; Masters, Matthew R; Levay, Gyorgy; Kaliki, Rahul R; Thakor, Nitish V
2018-04-01
Myoelectric signals can be used to predict the intended movements of an amputee for prosthesis control. However, untrained effects like limb position changes influence myoelectric signal characteristics, hindering the ability of pattern recognition algorithms to discriminate among motion classes. Despite frequent and long training sessions, these deleterious conditional influences may result in poor performance and device abandonment. We present a robust sparsity-based adaptive classification method that is significantly less sensitive to signal deviations resulting from untrained conditions. We compare this approach in the offline and online contexts of untrained upper-limb positions for amputee and able-bodied subjects to demonstrate its robustness compared against other myoelectric classification methods. We report significant performance improvements () in untrained limb positions across all subject groups. The robustness of our suggested approach helps to ensure better untrained condition performance from fewer training conditions. This method of prosthesis control has the potential to deliver real-world clinical benefits to amputees: better condition-tolerant performance, reduced training burden in terms of frequency and duration, and increased adoption of myoelectric prostheses.
Dos Reis, Julio Cesar; Dinh, Duy; Da Silveira, Marcos; Pruski, Cédric; Reynaud-Delaître, Chantal
2015-03-01
Mappings established between life science ontologies require significant efforts to maintain them up to date due to the size and frequent evolution of these ontologies. In consequence, automatic methods for applying modifications on mappings are highly demanded. The accuracy of such methods relies on the available description about the evolution of ontologies, especially regarding concepts involved in mappings. However, from one ontology version to another, a further understanding of ontology changes relevant for supporting mapping adaptation is typically lacking. This research work defines a set of change patterns at the level of concept attributes, and proposes original methods to automatically recognize instances of these patterns based on the similarity between attributes denoting the evolving concepts. This investigation evaluates the benefits of the proposed methods and the influence of the recognized change patterns to select the strategies for mapping adaptation. The summary of the findings is as follows: (1) the Precision (>60%) and Recall (>35%) achieved by comparing manually identified change patterns with the automatic ones; (2) a set of potential impact of recognized change patterns on the way mappings is adapted. We found that the detected correlations cover ∼66% of the mapping adaptation actions with a positive impact; and (3) the influence of the similarity coefficient calculated between concept attributes on the performance of the recognition algorithms. The experimental evaluations conducted with real life science ontologies showed the effectiveness of our approach to accurately characterize ontology evolution at the level of concept attributes. This investigation confirmed the relevance of the proposed change patterns to support decisions on mapping adaptation. Copyright © 2014 Elsevier B.V. All rights reserved.
Visual adaptation dominates bimodal visual-motor action adaptation
de la Rosa, Stephan; Ferstl, Ylva; Bülthoff, Heinrich H.
2016-01-01
A long standing debate revolves around the question whether visual action recognition primarily relies on visual or motor action information. Previous studies mainly examined the contribution of either visual or motor information to action recognition. Yet, the interaction of visual and motor action information is particularly important for understanding action recognition in social interactions, where humans often observe and execute actions at the same time. Here, we behaviourally examined the interaction of visual and motor action recognition processes when participants simultaneously observe and execute actions. We took advantage of behavioural action adaptation effects to investigate behavioural correlates of neural action recognition mechanisms. In line with previous results, we find that prolonged visual exposure (visual adaptation) and prolonged execution of the same action with closed eyes (non-visual motor adaptation) influence action recognition. However, when participants simultaneously adapted visually and motorically – akin to simultaneous execution and observation of actions in social interactions - adaptation effects were only modulated by visual but not motor adaptation. Action recognition, therefore, relies primarily on vision-based action recognition mechanisms in situations that require simultaneous action observation and execution, such as social interactions. The results suggest caution when associating social behaviour in social interactions with motor based information. PMID:27029781
Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S.; Tremoli, Elena; Catapano, Alberico L.; Norata, Giuseppe D.; Bottazzi, Barbara; Garlanda, Cecilia
2015-01-01
Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372
2016-01-01
The objectives of the study were to (1) investigate the potential of using monopolar psychophysical detection thresholds for estimating spatial selectivity of neural excitation with cochlear implants and to (2) examine the effect of site removal on speech recognition based on the threshold measure. Detection thresholds were measured in Cochlear Nucleus® device users using monopolar stimulation for pulse trains that were of (a) low rate and long duration, (b) high rate and short duration, and (c) high rate and long duration. Spatial selectivity of neural excitation was estimated by a forward-masking paradigm, where the probe threshold elevation in the presence of a forward masker was measured as a function of masker-probe separation. The strength of the correlation between the monopolar thresholds and the slopes of the masking patterns systematically reduced as neural response of the threshold stimulus involved interpulse interactions (refractoriness and sub-threshold adaptation), and spike-rate adaptation. Detection threshold for the low-rate stimulus most strongly correlated with the spread of forward masking patterns and the correlation reduced for long and high rate pulse trains. The low-rate thresholds were then measured for all electrodes across the array for each subject. Subsequently, speech recognition was tested with experimental maps that deactivated five stimulation sites with the highest thresholds and five randomly chosen ones. Performance with deactivating the high-threshold sites was better than performance with the subjects’ clinical map used every day with all electrodes active, in both quiet and background noise. Performance with random deactivation was on average poorer than that with the clinical map but the difference was not significant. These results suggested that the monopolar low-rate thresholds are related to the spatial neural excitation patterns in cochlear implant users and can be used to select sites for more optimal speech recognition performance. PMID:27798658
Neural network for intelligent query of an FBI forensic database
NASA Astrophysics Data System (ADS)
Uvanni, Lee A.; Rainey, Timothy G.; Balasubramanian, Uma; Brettle, Dean W.; Weingard, Fred; Sibert, Robert W.; Birnbaum, Eric
1997-02-01
Examiner is an automated fired cartridge case identification system utilizing a dual-use neural network pattern recognition technology, called the statistical-multiple object detection and location system (S-MODALS) developed by Booz(DOT)Allen & Hamilton, Inc. in conjunction with Rome Laboratory. S-MODALS was originally designed for automatic target recognition (ATR) of tactical and strategic military targets using multisensor fusion [electro-optical (EO), infrared (IR), and synthetic aperture radar (SAR)] sensors. Since S-MODALS is a learning system readily adaptable to problem domains other than automatic target recognition, the pattern matching problem of microscopic marks for firearms evidence was analyzed using S-MODALS. The physics; phenomenology; discrimination and search strategies; robustness requirements; error level and confidence level propagation that apply to the pattern matching problem of military targets were found to be applicable to the ballistic domain as well. The Examiner system uses S-MODALS to rank a set of queried cartridge case images from the most similar to the least similar image in reference to an investigative fired cartridge case image. The paper presents three independent tests and evaluation studies of the Examiner system utilizing the S-MODALS technology for the Federal Bureau of Investigation.
Sign Language Recognition System using Neural Network for Digital Hardware Implementation
NASA Astrophysics Data System (ADS)
Vargas, Lorena P.; Barba, Leiner; Torres, C. O.; Mattos, L.
2011-01-01
This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.
Sintes, Jordi; Polentarutti, Nadia; Walland, A. Cooper; Yeiser, John R.; Cunha, Cristina; Lacerda, João F.; Salvatori, Giovanni; Blander, J. Magarian
2016-01-01
Pentraxin 3 (PTX3) is a fluid-phase pattern recognition receptor of the humoral innate immune system with ancestral antibody-like properties but unknown antibody-inducing function. In this study, we found binding of PTX3 to splenic marginal zone (MZ) B cells, an innate-like subset of antibody-producing lymphocytes strategically positioned at the interface between the circulation and the adaptive immune system. PTX3 was released by a subset of neutrophils that surrounded the splenic MZ and expressed an immune activation–related gene signature distinct from that of circulating neutrophils. Binding of PTX3 promoted homeostatic production of IgM and class-switched IgG antibodies to microbial capsular polysaccharides, which decreased in PTX3-deficient mice and humans. In addition, PTX3 increased IgM and IgG production after infection with blood-borne encapsulated bacteria or immunization with bacterial carbohydrates. This immunogenic effect stemmed from the activation of MZ B cells through a neutrophil-regulated pathway that elicited class switching and plasmablast expansion via a combination of T cell–independent and T cell–dependent signals. Thus, PTX3 may bridge the humoral arms of the innate and adaptive immune systems by serving as an endogenous adjuvant for MZ B cells. This property could be harnessed to develop more effective vaccines against encapsulated pathogens. PMID:27621420
Vasta, Gerardo R.; Ahmed, Hafiz; Nita-Lazar, Mihai; Banerjee, Aditi; Pasek, Marta; Shridhar, Surekha; Guha, Prasun; Fernández-Robledo, José A.
2012-01-01
Galectins are characterized by their binding affinity for β-galactosides, a unique binding site sequence motif, and wide taxonomic distribution and structural conservation in vertebrates, invertebrates, protista, and fungi. Since their initial description, galectins were considered to bind endogenous (“self”) glycans and mediate developmental processes and cancer. In the past few years, however, numerous studies have described the diverse effects of galectins on cells involved in both innate and adaptive immune responses, and the mechanistic aspects of their regulatory roles in immune homeostasis. More recently, however, evidence has accumulated to suggest that galectins also bind exogenous (“non-self”) glycans on the surface of potentially pathogenic microbes, parasites, and fungi, suggesting that galectins can function as pattern recognition receptors (PRRs) in innate immunity. Thus, a perplexing paradox arises by the fact that galectins also recognize lactosamine-containing glycans on the host cell surface during developmental processes and regulation of immune responses. According to the currently accepted model for non-self recognition, PRRs recognize pathogens via highly conserved microbial surface molecules of wide distribution such as LPS or peptidoglycan (pathogen-associated molecular patterns; PAMPs), which are absent in the host. Hence, this would not apply to galectins, which apparently bind similar self/non-self molecular patterns on host and microbial cells. This paradox underscores first, an oversimplification in the use of the PRR/PAMP terminology. Second, and most importantly, it reveals significant gaps in our knowledge about the diversity of the host galectin repertoire, and the subcellular targeting, localization, and secretion. Furthermore, our knowledge about the structural and biophysical aspects of their interactions with the host and microbial carbohydrate moieties is fragmentary, and warrants further investigation. PMID:22811679
Subject-Adaptive Real-Time Sleep Stage Classification Based on Conditional Random Field
Luo, Gang; Min, Wanli
2007-01-01
Sleep staging is the pattern recognition task of classifying sleep recordings into sleep stages. This task is one of the most important steps in sleep analysis. It is crucial for the diagnosis and treatment of various sleep disorders, and also relates closely to brain-machine interfaces. We report an automatic, online sleep stager using electroencephalogram (EEG) signal based on a recently-developed statistical pattern recognition method, conditional random field, and novel potential functions that have explicit physical meanings. Using sleep recordings from human subjects, we show that the average classification accuracy of our sleep stager almost approaches the theoretical limit and is about 8% higher than that of existing systems. Moreover, for a new subject snew with limited training data Dnew, we perform subject adaptation to improve classification accuracy. Our idea is to use the knowledge learned from old subjects to obtain from Dnew a regulated estimate of CRF’s parameters. Using sleep recordings from human subjects, we show that even without any Dnew, our sleep stager can achieve an average classification accuracy of 70% on snew. This accuracy increases with the size of Dnew and eventually becomes close to the theoretical limit. PMID:18693884
Chuk, Tim; Chan, Antoni B; Hsiao, Janet H
2017-12-01
The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neural networks: Alternatives to conventional techniques for automatic docking
NASA Technical Reports Server (NTRS)
Vinz, Bradley L.
1994-01-01
Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.
Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L.; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F.; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A.; Schweizer, Patrick
2016-01-01
Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus. PMID:28018377
Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A; Schweizer, Patrick
2016-01-01
Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8 ) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici . Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei . Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.
Chitin and Its Effects on Inflammatory and Immune Responses.
Elieh Ali Komi, Daniel; Sharma, Lokesh; Dela Cruz, Charles S
2018-04-01
Chitin, a potential allergy-promoting pathogen-associated molecular pattern (PAMP), is a linear polymer composed of N-acetylglucosamine residues which are linked by β-(1,4)-glycosidic bonds. Mammalians are potential hosts for chitin-containing protozoa, fungi, arthropods, and nematodes; however, mammalians themselves do not synthetize chitin and thus it is considered as a potential target for recognition by mammalian immune system. Chitin is sensed primarily in the lungs or gut where it activates a variety of innate (eosinophils, macrophages) and adaptive immune cells (IL-4/IL-13 expressing T helper type-2 lymphocytes). Chitin induces cytokine production, leukocyte recruitment, and alternative macrophage activation. Intranasal or intraperitoneal administration of chitin (varying in size, degree of acetylation and purity) to mice has been applied as a routine approach to investigate chitin's priming effects on innate and adaptive immunity. Structural chitin present in microorganisms is actively degraded by host true chitinases, including acidic mammalian chitinases and chitotriosidase into smaller fragments that can be sensed by mammalian receptors such as FIBCD1, NKR-P1, and RegIIIc. Immune recognition of chitin also involves pattern recognition receptors, mainly via TLR-2 and Dectin-1, to activate immune cells to induce cytokine production and creation of an immune network that results in inflammatory and allergic responses. In this review, we will focus on various immunological aspects of the interaction between chitin and host immune system such as sensing, interactions with immune cells, chitinases as chitin degrading enzymes, and immunologic applications of chitin.
Misra, Dharitri; Chen, Siyuan; Thoma, George R
2009-01-01
One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques.At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts.In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Zaitsev, Alexandr V.; Voloshin, Victor M.
2001-03-01
Historic information regarding the appearance and creation of fundamentals of algebra-logical apparatus-`equivalental algebra' for description of neuro-nets paradigms and algorithms is considered which is unification of theory of neuron nets (NN), linear algebra and the most generalized neuro-biology extended for matrix case. A survey is given of `equivalental models' of neuron nets and associative memory is suggested new, modified matrix-tenzor neurological equivalental models (MTNLEMS) are offered with double adaptive-equivalental weighing (DAEW) for spatial-non- invariant recognition (SNIR) and space-invariant recognition (SIR) of 2D images (patterns). It is shown, that MTNLEMS DAEW are the most generalized, they can describe the processes in NN both within the frames of known paradigms and within new `equivalental' paradigm of non-interaction type, and the computing process in NN under using the offered MTNLEMs DAEW is reduced to two-step and multi-step algorithms and step-by-step matrix-tenzor procedures (for SNIR) and procedures of defining of space-dependent equivalental functions from two images (for SIR).
NASA Astrophysics Data System (ADS)
Yu, Francis T. S.; Jutamulia, Suganda
2008-10-01
Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.
Yang, Cheng-Huei; Luo, Ching-Hsing; Yang, Cheng-Hong; Chuang, Li-Yeh
2004-01-01
Morse code is now being harnessed for use in rehabilitation applications of augmentative-alternative communication and assistive technology, including mobility, environmental control and adapted worksite access. In this paper, Morse code is selected as a communication adaptive device for disabled persons who suffer from muscle atrophy, cerebral palsy or other severe handicaps. A stable typing rate is strictly required for Morse code to be effective as a communication tool. This restriction is a major hindrance. Therefore, a switch adaptive automatic recognition method with a high recognition rate is needed. The proposed system combines counter-propagation networks with a variable degree variable step size LMS algorithm. It is divided into five stages: space recognition, tone recognition, learning process, adaptive processing, and character recognition. Statistical analyses demonstrated that the proposed method elicited a better recognition rate in comparison to alternative methods in the literature.
Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities
Jing, Wei; Liu, Wen-Zhong; Gong, Xin-Wei; Gong, Hai-Qing
2010-01-01
Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells’ activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm. PMID:21886670
Quality based approach for adaptive face recognition
NASA Astrophysics Data System (ADS)
Abboud, Ali J.; Sellahewa, Harin; Jassim, Sabah A.
2009-05-01
Recent advances in biometric technology have pushed towards more robust and reliable systems. We aim to build systems that have low recognition errors and are less affected by variation in recording conditions. Recognition errors are often attributed to the usage of low quality biometric samples. Hence, there is a need to develop new intelligent techniques and strategies to automatically measure/quantify the quality of biometric image samples and if necessary restore image quality according to the need of the intended application. In this paper, we present no-reference image quality measures in the spatial domain that have impact on face recognition. The first is called symmetrical adaptive local quality index (SALQI) and the second is called middle halve (MH). Also, an adaptive strategy has been developed to select the best way to restore the image quality, called symmetrical adaptive histogram equalization (SAHE). The main benefits of using quality measures for adaptive strategy are: (1) avoidance of excessive unnecessary enhancement procedures that may cause undesired artifacts, and (2) reduced computational complexity which is essential for real time applications. We test the success of the proposed measures and adaptive approach for a wavelet-based face recognition system that uses the nearest neighborhood classifier. We shall demonstrate noticeable improvements in the performance of adaptive face recognition system over the corresponding non-adaptive scheme.
An adaptive deep Q-learning strategy for handwritten digit recognition.
Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min
2018-02-22
Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm
NASA Technical Reports Server (NTRS)
Mitra, Sunanda; Pemmaraju, Surya
1992-01-01
Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.
Within-person adaptivity in frugal judgments from memory.
Filevich, Elisa; Horn, Sebastian S; Kühn, Simone
2017-12-22
Humans can exploit recognition memory as a simple cue for judgment. The utility of recognition depends on the interplay with the environment, particularly on its predictive power (validity) in a domain. It is, therefore, an important question whether people are sensitive to differences in recognition validity between domains. Strategic, intra-individual changes in the reliance on recognition have not been investigated so far. The present study fills this gap by scrutinizing within-person changes in using a frugal strategy, the recognition heuristic (RH), across two task domains that differed in recognition validity. The results showed adaptive changes in the reliance on recognition between domains. However, these changes were neither associated with the individual recognition validities nor with corresponding changes in these validities. These findings support a domain-adaptivity explanation, suggesting that people have broader intuitions about the usefulness of recognition across different domains that are nonetheless sufficiently robust for adaptive decision making. The analysis of metacognitive confidence reports mirrored and extended these results. Like RH use, confidence ratings covaried with task domain, but not with individual recognition validities. The changes in confidence suggest that people may have metacognitive access to information about global differences between task domains, but not to individual cue validities.
Use of Biometrics within Sub-Saharan Refugee Communities
2013-12-01
fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity. Biometrics creates and...Biometrics typically comprises fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity...authentication because it identifies an individual based on mathematical analysis of the random pattern visible within the iris. Facial recognition is
Rotation-invariant neural pattern recognition system with application to coin recognition.
Fukumi, M; Omatu, S; Takeda, F; Kosaka, T
1992-01-01
In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.
Breast Cancer Diagnostics Based on Spatial Genome Organization
2012-07-01
using an already established imaging tool, called NMFA-FLO (Nuclei Manual and FISH automatic). In order to achieve accurate segmentation of nuclei...in tissue we used an artificial neuronal network (ANN)-based supervised pattern recognition approach to screen out well segmented nuclei, after image ... segmentation used to process images for automated nuclear segmentation . Part a) has been adapted from [15] and b) from [16]. Figure 4. Comparison of
Looking into Candida albicans infection, host response, and antifungal strategies.
Wang, Yan
2015-01-01
Candida albicans, a commonly encountered fungal pathogen, causes diseases varying from superficial mucosal complaints to life-threatening systemic disorders. Among the virulence traits of C. albicans, yeast-to-hypha transition is most widely acknowledged. Host innate immunity to C. albicans critically requires pattern recognition receptors (PRRs), and defence against C. albicans infection is provided by an exquisite interplay between the innate and adaptive arms of the host immune system.
Sheehan, Michael J; Nachman, Michael W
2014-09-16
Facial recognition plays a key role in human interactions, and there has been great interest in understanding the evolution of human abilities for individual recognition and tracking social relationships. Individual recognition requires sufficient cognitive abilities and phenotypic diversity within a population for discrimination to be possible. Despite the importance of facial recognition in humans, the evolution of facial identity has received little attention. Here we demonstrate that faces evolved to signal individual identity under negative frequency-dependent selection. Faces show elevated phenotypic variation and lower between-trait correlations compared with other traits. Regions surrounding face-associated single nucleotide polymorphisms show elevated diversity consistent with frequency-dependent selection. Genetic variation maintained by identity signalling tends to be shared across populations and, for some loci, predates the origin of Homo sapiens. Studies of human social evolution tend to emphasize cognitive adaptations, but we show that social evolution has shaped patterns of human phenotypic and genetic diversity as well.
Misra, Dharitri; Chen, Siyuan; Thoma, George R.
2010-01-01
One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques. At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts. In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system. PMID:21179386
Method and System for Object Recognition Search
NASA Technical Reports Server (NTRS)
Duong, Tuan A. (Inventor); Duong, Vu A. (Inventor); Stubberud, Allen R. (Inventor)
2012-01-01
A method for object recognition using shape and color features of the object to be recognized. An adaptive architecture is used to recognize and adapt the shape and color features for moving objects to enable object recognition.
A neural network prototyping package within IRAF
NASA Technical Reports Server (NTRS)
Bazell, D.; Bankman, I.
1992-01-01
We outline our plans for incorporating a Neural Network Prototyping Package into the IRAF environment. The package we are developing will allow the user to choose between different types of networks and to specify the details of the particular architecture chosen. Neural networks consist of a highly interconnected set of simple processing units. The strengths of the connections between units are determined by weights which are adaptively set as the network 'learns'. In some cases, learning can be a separate phase of the user cycle of the network while in other cases the network learns continuously. Neural networks have been found to be very useful in pattern recognition and image processing applications. They can form very general 'decision boundaries' to differentiate between objects in pattern space and they can be used for associative recall of patterns based on partial cures and for adaptive filtering. We discuss the different architectures we plan to use and give examples of what they can do.
The Role of TLR2 in Infection and Immunity
Oliveira-Nascimento, Laura; Massari, Paola; Wetzler, Lee M.
2012-01-01
Toll-like receptors (TLRs) are recognition molecules for multiple pathogens, including bacteria, viruses, fungi, and parasites. TLR2 forms heterodimers with TLR1 and TLR6, which is the initial step in a cascade of events leading to significant innate immune responses, development of adaptive immunity to pathogens and protection from immune sequelae related to infection with these pathogens. This review will discuss the current status of TLR2 mediated immune responses by recognition of pathogen-associated molecular patterns (PAMPS) on these organisms. We will emphasize both canonical and non-canonical responses to TLR2 ligands with emphasis on whether the inflammation induced by these responses contributes to the disease state or to protection from diseases. PMID:22566960
A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics.
Freeman, Walter J
2008-01-01
Computational models of brain dynamics fall short of performance in speed and robustness of pattern recognition in detecting minute but highly significant pattern fragments. A novel model employs the properties of thermodynamic systems operating far from equilibrium, which is analyzed by linearization near adaptive operating points using root locus techniques. Such systems construct order by dissipating energy. Reinforcement learning of conditioned stimuli creates a landscape of attractors and their basins in each sensory cortex by forming nerve cell assemblies in cortical connectivity. Retrieval of a selected category of stored knowledge is by a phase transition that is induced by a conditioned stimulus, and that leads to pattern self-organization. Near self-regulated criticality the cortical background activity displays aperiodic null spikes at which analytic amplitude nears zero, and which constitute a form of Rayleigh noise. Phase transitions in recognition and recall are initiated at null spikes in the presence of an input signal, owing to the high signal-to-noise ratio that facilitates capture of cortex by an attractor, even by very weak activity that is typically evoked by a conditioned stimulus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Andre M.
2009-07-17
The advanced geospatial information extraction and analysis capabilities of a Geographic Information System (GISs) and Artificial Neural Networks (ANNs), particularly Self-Organizing Maps (SOMs), provide a topology-preserving means for reducing and understanding complex data relationships in the landscape. The Adaptive Landscape Classification Procedure (ALCP) is presented as an adaptive and evolutionary capability where varying types of data can be assimilated to address different management needs such as hydrologic response, erosion potential, habitat structure, instrumentation placement, and various forecast or what-if scenarios. This paper defines how the evaluation and analysis of spatial and/or temporal patterns in the landscape can provide insight intomore » complex ecological, hydrological, climatic, and other natural and anthropogenic-influenced processes. Establishing relationships among high-dimensional datasets through neurocomputing based pattern recognition methods can help 1) resolve large volumes of data into a structured and meaningful form; 2) provide an approach for inferring landscape processes in areas that have limited data available but exhibit similar landscape characteristics; and 3) discover the value of individual variables or groups of variables that contribute to specific processes in the landscape. Classification of hydrologic patterns in the landscape is demonstrated.« less
Holistic neural coding of Chinese character forms in bilateral ventral visual system.
Mo, Ce; Yu, Mengxia; Seger, Carol; Mo, Lei
2015-02-01
How are Chinese characters recognized and represented in the brain of skilled readers? Functional MRI fast adaptation technique was used to address this question. We found that neural adaptation effects were limited to identical characters in bilateral ventral visual system while no activation reduction was observed for partially overlapping characters regardless of the spatial location of the shared sub-character components, suggesting highly selective neuronal tuning to whole characters. The consistent neural profile across the entire ventral visual cortex indicates that Chinese characters are represented as mutually distinctive wholes rather than combinations of sub-character components, which presents a salient contrast to the left-lateralized, simple-to-complex neural representations of alphabetic words. Our findings thus revealed the cultural modulation effect on both local neuronal activity patterns and functional anatomical regions associated with written symbol recognition. Moreover, the cross-language discrepancy in written symbol recognition mechanism might stem from the language-specific early-stage learning experience. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Development of a written music-recognition system using Java and open source technologies
NASA Astrophysics Data System (ADS)
Loibner, Gernot; Schwarzl, Andreas; Kovač, Matthias; Paulus, Dietmar; Pölzleitner, Wolfgang
2005-10-01
We report on the development of a software system to recognize and interpret printed music. The overall goal is to scan printed music sheets, analyze and recognize the notes, timing, and written text, and derive the all necessary information to use the computers MIDI sound system to play the music. This function is primarily useful for musicians who want to digitize printed music for editing purposes. There exist a number of commercial systems that offer such a functionality. However, on testing these systems, we were astonished on how weak they behave in their pattern recognition parts. Although we submitted very clear and rather flawless scanning input, none of these systems was able to e.g. recognize all notes, staff lines, and systems. They all require a high degree of interaction, post-processing, and editing to get a decent digital version of the hard copy material. In this paper we focus on the pattern recognition area. In a first approach we tested more or less standard methods of adaptive thresholding, blob detection, line detection, and corner detection to find the notes, staff lines, and candidate objects subject to OCR. Many of the objects on this type of material can be learned in a training phase. None of the commercial systems we saw offers the option to train special characters or unusual signatures. A second goal in this project is to use a modern software engineering platform. We were interested in how well Java and open source technologies are suitable for pattern recognition and machine vision. The scanning of music served as a case-study.
The adaptation of GDL motion recognition system to sport and rehabilitation techniques analysis.
Hachaj, Tomasz; Ogiela, Marek R
2016-06-01
The main novelty of this paper is presenting the adaptation of Gesture Description Language (GDL) methodology to sport and rehabilitation data analysis and classification. In this paper we showed that Lua language can be successfully used for adaptation of the GDL classifier to those tasks. The newly applied scripting language allows easily extension and integration of classifier with other software technologies and applications. The obtained execution speed allows using the methodology in the real-time motion capture data processing where capturing frequency differs from 100 Hz to even 500 Hz depending on number of features or classes to be calculated and recognized. Due to this fact the proposed methodology can be used to the high-end motion capture system. We anticipate that using novel, efficient and effective method will highly help both sport trainers and physiotherapist in they practice. The proposed approach can be directly applied to motion capture data kinematics analysis (evaluation of motion without regard to the forces that cause that motion). The ability to apply pattern recognition methods for GDL description can be utilized in virtual reality environment and used for sport training or rehabilitation treatment.
Stropahl, Maren; Plotz, Karsten; Schönfeld, Rüdiger; Lenarz, Thomas; Sandmann, Pascale; Yovel, Galit; De Vos, Maarten; Debener, Stefan
2015-11-01
There is converging evidence that the auditory cortex takes over visual functions during a period of auditory deprivation. A residual pattern of cross-modal take-over may prevent the auditory cortex to adapt to restored sensory input as delivered by a cochlear implant (CI) and limit speech intelligibility with a CI. The aim of the present study was to investigate whether visual face processing in CI users activates auditory cortex and whether this has adaptive or maladaptive consequences. High-density electroencephalogram data were recorded from CI users (n=21) and age-matched normal hearing controls (n=21) performing a face versus house discrimination task. Lip reading and face recognition abilities were measured as well as speech intelligibility. Evaluation of event-related potential (ERP) topographies revealed significant group differences over occipito-temporal scalp regions. Distributed source analysis identified significantly higher activation in the right auditory cortex for CI users compared to NH controls, confirming visual take-over. Lip reading skills were significantly enhanced in the CI group and appeared to be particularly better after a longer duration of deafness, while face recognition was not significantly different between groups. However, auditory cortex activation in CI users was positively related to face recognition abilities. Our results confirm a cross-modal reorganization for ecologically valid visual stimuli in CI users. Furthermore, they suggest that residual takeover, which can persist even after adaptation to a CI is not necessarily maladaptive. Copyright © 2015 Elsevier Inc. All rights reserved.
Learning Rotation-Invariant Local Binary Descriptor.
Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2017-08-01
In this paper, we propose a rotation-invariant local binary descriptor (RI-LBD) learning method for visual recognition. Compared with hand-crafted local binary descriptors, such as local binary pattern and its variants, which require strong prior knowledge, local binary feature learning methods are more efficient and data-adaptive. Unlike existing learning-based local binary descriptors, such as compact binary face descriptor and simultaneous local binary feature learning and encoding, which are susceptible to rotations, our RI-LBD first categorizes each local patch into a rotational binary pattern (RBP), and then jointly learns the orientation for each pattern and the projection matrix to obtain RI-LBDs. As all the rotation variants of a patch belong to the same RBP, they are rotated into the same orientation and projected into the same binary descriptor. Then, we construct a codebook by a clustering method on the learned binary codes, and obtain a histogram feature for each image as the final representation. In order to exploit higher order statistical information, we extend our RI-LBD to the triple rotation-invariant co-occurrence local binary descriptor (TRICo-LBD) learning method, which learns a triple co-occurrence binary code for each local patch. Extensive experimental results on four different visual recognition tasks, including image patch matching, texture classification, face recognition, and scene classification, show that our RI-LBD and TRICo-LBD outperform most existing local descriptors.
A novel approach for SEMG signal classification with adaptive local binary patterns.
Ertuğrul, Ömer Faruk; Kaya, Yılmaz; Tekin, Ramazan
2016-07-01
Feature extraction plays a major role in the pattern recognition process, and this paper presents a novel feature extraction approach, adaptive local binary pattern (aLBP). aLBP is built on the local binary pattern (LBP), which is an image processing method, and one-dimensional local binary pattern (1D-LBP). In LBP, each pixel is compared with its neighbors. Similarly, in 1D-LBP, each data in the raw is judged against its neighbors. 1D-LBP extracts feature based on local changes in the signal. Therefore, it has high a potential to be employed in medical purposes. Since, each action or abnormality, which is recorded in SEMG signals, has its own pattern, and via the 1D-LBP these (hidden) patterns may be detected. But, the positions of the neighbors in 1D-LBP are constant depending on the position of the data in the raw. Also, both LBP and 1D-LBP are very sensitive to noise. Therefore, its capacity in detecting hidden patterns is limited. To overcome these drawbacks, aLBP was proposed. In aLBP, the positions of the neighbors and their values can be assigned adaptively via the down-sampling and the smoothing coefficients. Therefore, the potential to detect (hidden) patterns, which may express an illness or an action, is really increased. To validate the proposed feature extraction approach, two different datasets were employed. Achieved accuracies by the proposed approach were higher than obtained results by employed popular feature extraction approaches and the reported results in the literature. Obtained accuracy results were brought out that the proposed method can be employed to investigate SEMG signals. In summary, this work attempts to develop an adaptive feature extraction scheme that can be utilized for extracting features from local changes in different categories of time-varying signals.
NASA Astrophysics Data System (ADS)
Hsieh, Cheng-Ta; Huang, Kae-Horng; Lee, Chang-Hsing; Han, Chin-Chuan; Fan, Kuo-Chin
2017-12-01
Robust face recognition under illumination variations is an important and challenging task in a face recognition system, particularly for face recognition in the wild. In this paper, a face image preprocessing approach, called spatial adaptive shadow compensation (SASC), is proposed to eliminate shadows in the face image due to different lighting directions. First, spatial adaptive histogram equalization (SAHE), which uses face intensity prior model, is proposed to enhance the contrast of each local face region without generating visible noises in smooth face areas. Adaptive shadow compensation (ASC), which performs shadow compensation in each local image block, is then used to produce a wellcompensated face image appropriate for face feature extraction and recognition. Finally, null-space linear discriminant analysis (NLDA) is employed to extract discriminant features from SASC compensated images. Experiments performed on the Yale B, Yale B extended, and CMU PIE face databases have shown that the proposed SASC always yields the best face recognition accuracy. That is, SASC is more robust to face recognition under illumination variations than other shadow compensation approaches.
TLR9-based immunotherapy for the treatment of allergic diseases.
Farrokhi, Shokrollah; Abbasirad, Narjes; Movahed, Ali; Khazaei, Hossein Ali; Pishjoo, Masoud; Rezaei, Nima
2017-03-01
Toll-like receptors (TLRs), a family of pattern recognition receptors expressed on many cell types of innate immunity, recognize the pathogen-associated molecular patterns of microbes. The hygiene hypothesis suggests that a reduced microbial exposure in early childhood increases the susceptibility to allergic diseases due to deviation in development of the immune system. TLRs are key roles in the right and healthy direction of adaptive immunity with the induction of T-helper 2 toward Th1 immune responses and regulatory T cells. TLR ligand CpG-ODN-based immunomodulation is independent of allergen and it mainly affects innate immune system. While, CpG-oligodeoxynucleotide-based vaccination is allergen specific and induces adaptive immune system. The use of agonists of TLR9 in two distinct strategies of immunotherapy, immunomodulation and vaccination, could be presented as the curative method for the treatment of allergic diseases.
Grismer, L Lee; Wood, Perry L; Anuar, Shahrul; Grismer, Marta S; Quah, Evan S H; Murdoch, Matthew L; Muin, Mohd Abdul; Davis, Hayden R; Aguilar, César; Klabacka, Randy; Cobos, Anthony J; Aowphol, Anchalee; Sites, Jack W
2016-04-25
A new species of limestone cave-adapted gecko of the Cyrtodactylus pulchellus complex, C. hidupselamanya sp. nov., is described from an isolated karst formation at Felda Chiku 7, Kelantan, Peninsular Malaysia. This formation is scheduled to be completely quarried for its mineral content. From what we know about the life history of C. hidupselamanya sp. nov., this will result in its extinction. A new limestone forest-adapted species, C. lenggongensis sp. nov., from the Lenggong Valley, Perak was previously considered to be conspecific with C. bintangrendah but a re-evaluation of morphological, color pattern, molecular, and habitat preference indicates that it too is a unique lineage worthy of specific recognition. Fortunately C. lenggongensis sp. nov. is not facing extinction because its habitat is protected by the UNESCO Archaeological Heritage of the Lenggong Valley due to the archaeological significance of that region. Both new species can be distinguished from all other species of Cyrtodactylus based on molecular evidence from the mitochondrial gene ND2 and its flanking tRNAs as well as having unique combinations of morphological and color pattern characteristics. Using a time-calibrated BEAST analysis we inferred that the evolution of a limestone habitat preference and its apparently attendant morphological and color pattern adaptations evolved independently at least four times in the C. pulchellus complex between 26.1 and 0.78 mya.
Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection
Xu, Zhipeng; Xu, Lei; Li, Wei; Jin, Xin; Song, Xian; Chen, Xiaojun; Zhu, Jifeng; Zhou, Sha; Li, Yong; Zhang, Weiwei; Dong, Xiaoxiao; Yang, Xiaowei; Liu, Feng; Bai, Hui; Chen, Qi; Su, Chuan
2017-01-01
The pattern recognition receptor (PRR) scavenger receptor class A (SR-A) has an important function in the pathogenesis of non-infectious diseases and in innate immune responses to pathogen infections. However, little is known about the role of SR-A in the host adaptive immune responses to pathogen infection. Here we show with mouse models of helminth Schistosoma japonicum infection and heat-inactivated Mycobacterium tuberculosis stimulation that SR-A is regulated by pathogens and suppresses IRF5 nuclear translocation by direct interaction. Reduced abundance of nuclear IRF5 shifts macrophage polarization from M1 towards M2, which subsequently switches T-helper responses from type 1 to type 2. Our study identifies a role for SR-A as an innate PRR in regulating adaptive immune responses. PMID:28695899
Line fitting based feature extraction for object recognition
NASA Astrophysics Data System (ADS)
Li, Bing
2014-06-01
Image feature extraction plays a significant role in image based pattern applications. In this paper, we propose a new approach to generate hierarchical features. This new approach applies line fitting to adaptively divide regions based upon the amount of information and creates line fitting features for each subsequent region. It overcomes the feature wasting drawback of the wavelet based approach and demonstrates high performance in real applications. For gray scale images, we propose a diffusion equation approach to map information-rich pixels (pixels near edges and ridge pixels) into high values, and pixels in homogeneous regions into small values near zero that form energy map images. After the energy map images are generated, we propose a line fitting approach to divide regions recursively and create features for each region simultaneously. This new feature extraction approach is similar to wavelet based hierarchical feature extraction in which high layer features represent global characteristics and low layer features represent local characteristics. However, the new approach uses line fitting to adaptively focus on information-rich regions so that we avoid the feature waste problems of the wavelet approach in homogeneous regions. Finally, the experiments for handwriting word recognition show that the new method provides higher performance than the regular handwriting word recognition approach.
NASA Astrophysics Data System (ADS)
Cui, Chen; Asari, Vijayan K.
2014-03-01
Biometric features such as fingerprints, iris patterns, and face features help to identify people and restrict access to secure areas by performing advanced pattern analysis and matching. Face recognition is one of the most promising biometric methodologies for human identification in a non-cooperative security environment. However, the recognition results obtained by face recognition systems are a affected by several variations that may happen to the patterns in an unrestricted environment. As a result, several algorithms have been developed for extracting different facial features for face recognition. Due to the various possible challenges of data captured at different lighting conditions, viewing angles, facial expressions, and partial occlusions in natural environmental conditions, automatic facial recognition still remains as a difficult issue that needs to be resolved. In this paper, we propose a novel approach to tackling some of these issues by analyzing the local textural descriptions for facial feature representation. The textural information is extracted by an enhanced local binary pattern (ELBP) description of all the local regions of the face. The relationship of each pixel with respect to its neighborhood is extracted and employed to calculate the new representation. ELBP reconstructs a much better textural feature extraction vector from an original gray level image in different lighting conditions. The dimensionality of the texture image is reduced by principal component analysis performed on each local face region. Each low dimensional vector representing a local region is now weighted based on the significance of the sub-region. The weight of each sub-region is determined by employing the local variance estimate of the respective region, which represents the significance of the region. The final facial textural feature vector is obtained by concatenating the reduced dimensional weight sets of all the modules (sub-regions) of the face image. Experiments conducted on various popular face databases show promising performance of the proposed algorithm in varying lighting, expression, and partial occlusion conditions. Four databases were used for testing the performance of the proposed system: Yale Face database, Extended Yale Face database B, Japanese Female Facial Expression database, and CMU AMP Facial Expression database. The experimental results in all four databases show the effectiveness of the proposed system. Also, the computation cost is lower because of the simplified calculation steps. Research work is progressing to investigate the effectiveness of the proposed face recognition method on pose-varying conditions as well. It is envisaged that a multilane approach of trained frameworks at different pose bins and an appropriate voting strategy would lead to a good recognition rate in such situation.
Mispronunciation Detection for Language Learning and Speech Recognition Adaptation
ERIC Educational Resources Information Center
Ge, Zhenhao
2013-01-01
The areas of "mispronunciation detection" (or "accent detection" more specifically) within the speech recognition community are receiving increased attention now. Two application areas, namely language learning and speech recognition adaptation, are largely driving this research interest and are the focal points of this work.…
NASA Astrophysics Data System (ADS)
He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang
2017-03-01
Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.
The evolution of vertebrate Toll-like receptors
Roach, J.C.; Glusman, G.; Rowen, L.; Kaur, A.; Purcell, M.K.; Smith, K.D.; Hood, L.E.; Aderem, A.
2005-01-01
The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathogen-associated molecular patterns. Most vertebrates have exactly one gene ortholog for each TLR family. The family including TLR1 has more species-specific adaptations than other families. A major family including TLR11 is represented in humans only by a pseudogene. Coincidental evolution plays a minor role in TLR evolution. The sequencing phase of this study produced finished genomic sequences for the 12 Takifugu rubripes TLRs. In addition, we have produced > 70 gene models, including sequences from the opossum, chicken, frog, dog, sea urchin, and sea squirt. ?? 2005 by The National Academy of Sciences of the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.
Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...
2014-10-01
Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less
Novel Adaptive and Innate Immunity Targets in Hypertension
Abais-Battad, Justine M.; Dasinger, John Henry; Fehrenbach, Daniel J.; Mattson, David L.
2017-01-01
Hypertension is a worldwide epidemic and global health concern as it is a major risk factor for the development of cardiovascular diseases. A relationship between the immune system and its contributing role to the pathogenesis of hypertension has been long established, but substantial advancements within the last few years have dissected specific causal molecular mechanisms. This review will briefly examine these recent studies exploring the involvement of either innate or adaptive immunity pathways. Such pathways to be discussed include innate immunity factors such as antigen presenting cells and pattern recognition receptors, adaptive immune elements including T and B lymphocytes, and more specifically, the emerging role of T regulatory cells, as well as the potential of cytokines and chemokines to serve as signaling messengers connecting innate and adaptive immunity. Together, we summarize these studies to provide new perspective for what will hopefully lead to more targeted approaches to manipulate the immune system as hypertensive therapy. PMID:28336371
A design philosophy for multi-layer neural networks with applications to robot control
NASA Technical Reports Server (NTRS)
Vadiee, Nader; Jamshidi, MO
1989-01-01
A system is proposed which receives input information from many sensors that may have diverse scaling, dimension, and data representations. The proposed system tolerates sensory information with faults. The proposed self-adaptive processing technique has great promise in integrating the techniques of artificial intelligence and neural networks in an attempt to build a more intelligent computing environment. The proposed architecture can provide a detailed decision tree based on the input information, information stored in a long-term memory, and the adapted rule-based knowledge. A mathematical model for analysis will be obtained to validate the cited hypotheses. An extensive software program will be developed to simulate a typical example of pattern recognition problem. It is shown that the proposed model displays attention, expectation, spatio-temporal, and predictory behavior which are specific to the human brain. The anticipated results of this research project are: (1) creation of a new dynamic neural network structure, and (2) applications to and comparison with conventional multi-layer neural network structures. The anticipated benefits from this research are vast. The model can be used in a neuro-computer architecture as a building block which can perform complicated, nonlinear, time-varying mapping from a multitude of input excitory classes to an output or decision environment. It can be used for coordinating different sensory inputs and past experience of a dynamic system and actuating signals. The commercial applications of this project can be the creation of a special-purpose neuro-computer hardware which can be used in spatio-temporal pattern recognitions in such areas as air defense systems, e.g., target tracking, and recognition. Potential robotics-related applications are trajectory planning, inverse dynamics computations, hierarchical control, task-oriented control, and collision avoidance.
Benefits of adaptive FM systems on speech recognition in noise for listeners who use hearing aids.
Thibodeau, Linda
2010-06-01
To compare the benefits of adaptive FM and fixed FM systems through measurement of speech recognition in noise with adults and students in clinical and real-world settings. Five adults and 5 students with moderate-to-severe hearing loss completed objective and subjective speech recognition in noise measures with the 2 types of FM processing. Sentence recognition was evaluated in a classroom for 5 competing noise levels ranging from 54 to 80 dBA while the FM microphone was positioned 6 in. from the signal loudspeaker to receive input at 84 dB SPL. The subjective measures included 2 classroom activities and 6 auditory lessons in a noisy, public aquarium. On the objective measures, adaptive FM processing resulted in significantly better speech recognition in noise than fixed FM processing for 68- and 73-dBA noise levels. On the subjective measures, all individuals preferred adaptive over fixed processing for half of the activities. Adaptive processing was also preferred by most (8-9) individuals for the remaining 4 activities. The adaptive FM processing resulted in significant improvements at the higher noise levels and was preferred by the majority of participants in most of the conditions.
DSP-Based dual-polarity mass spectrum pattern recognition for bio-detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riot, V; Coffee, K; Gard, E
2006-04-21
The Bio-Aerosol Mass Spectrometry (BAMS) instrument analyzes single aerosol particles using a dual-polarity time-of-flight mass spectrometer recording simultaneously spectra of thirty to a hundred thousand points on each polarity. We describe here a real-time pattern recognition algorithm developed at Lawrence Livermore National Laboratory that has been implemented on a nine Digital Signal Processor (DSP) system from Signatec Incorporated. The algorithm first preprocesses independently the raw time-of-flight data through an adaptive baseline removal routine. The next step consists of a polarity dependent calibration to a mass-to-charge representation, reducing the data to about five hundred to a thousand channels per polarity. Themore » last step is the identification step using a pattern recognition algorithm based on a library of known particle signatures including threat agents and background particles. The identification step includes integrating the two polarities for a final identification determination using a score-based rule tree. This algorithm, operating on multiple channels per-polarity and multiple polarities, is well suited for parallel real-time processing. It has been implemented on the PMP8A from Signatec Incorporated, which is a computer based board that can interface directly to the two one-Giga-Sample digitizers (PDA1000 from Signatec Incorporated) used to record the two polarities of time-of-flight data. By using optimized data separation, pipelining, and parallel processing across the nine DSPs it is possible to achieve a processing speed of up to a thousand particles per seconds, while maintaining the recognition rate observed on a non-real time implementation. This embedded system has allowed the BAMS technology to improve its throughput and therefore its sensitivity while maintaining a large dynamic range (number of channels and two polarities) thus maintaining the systems specificity for bio-detection.« less
The effect of hearing aid technologies on listening in an automobile.
Wu, Yu-Hsiang; Stangl, Elizabeth; Bentler, Ruth A; Stanziola, Rachel W
2013-06-01
Communication while traveling in an automobile often is very difficult for hearing aid users. This is because the automobile/road noise level is usually high, and listeners/drivers often do not have access to visual cues. Since the talker of interest usually is not located in front of the listener/driver, conventional directional processing that places the directivity beam toward the listener's front may not be helpful and, in fact, could have a negative impact on speech recognition (when compared to omnidirectional processing). Recently, technologies have become available in commercial hearing aids that are designed to improve speech recognition and/or listening effort in noisy conditions where talkers are located behind or beside the listener. These technologies include (1) a directional microphone system that uses a backward-facing directivity pattern (Back-DIR processing), (2) a technology that transmits audio signals from the ear with the better signal-to-noise ratio (SNR) to the ear with the poorer SNR (Side-Transmission processing), and (3) a signal processing scheme that suppresses the noise at the ear with the poorer SNR (Side-Suppression processing). The purpose of the current study was to determine the effect of (1) conventional directional microphones and (2) newer signal processing schemes (Back-DIR, Side-Transmission, and Side-Suppression) on listener's speech recognition performance and preference for communication in a traveling automobile. A single-blinded, repeated-measures design was used. Twenty-five adults with bilateral symmetrical sensorineural hearing loss aged 44 through 84 yr participated in the study. The automobile/road noise and sentences of the Connected Speech Test (CST) were recorded through hearing aids in a standard van moving at a speed of 70 mph on a paved highway. The hearing aids were programmed to omnidirectional microphone, conventional adaptive directional microphone, and the three newer schemes. CST sentences were presented from the side and back of the hearing aids, which were placed on the ears of a manikin. The recorded stimuli were presented to listeners via earphones in a sound-treated booth to assess speech recognition performance and preference with each programmed condition. Compared to omnidirectional microphones, conventional adaptive directional processing had a detrimental effect on speech recognition when speech was presented from the back or side of the listener. Back-DIR and Side-Transmission processing improved speech recognition performance (relative to both omnidirectional and adaptive directional processing) when speech was from the back and side, respectively. The performance with Side-Suppression processing was better than with adaptive directional processing when speech was from the side. The participants' preferences for a given processing scheme were generally consistent with speech recognition results. The finding that performance with adaptive directional processing was poorer than with omnidirectional microphones demonstrates the importance of selecting the correct microphone technology for different listening situations. The results also suggest the feasibility of using hearing aid technologies to provide a better listening experience for hearing aid users in automobiles. American Academy of Audiology.
Adaptive and perceptual learning technologies in medical education and training.
Kellman, Philip J
2013-10-01
Recent advances in the learning sciences offer remarkable potential to improve medical education and maximize the benefits of emerging medical technologies. This article describes 2 major innovation areas in the learning sciences that apply to simulation and other aspects of medical learning: Perceptual learning (PL) and adaptive learning technologies. PL technology offers, for the first time, systematic, computer-based methods for teaching pattern recognition, structural intuition, transfer, and fluency. Synergistic with PL are new adaptive learning technologies that optimize learning for each individual, embed objective assessment, and implement mastery criteria. The author describes the Adaptive Response-Time-based Sequencing (ARTS) system, which uses each learner's accuracy and speed in interactive learning to guide spacing, sequencing, and mastery. In recent efforts, these new technologies have been applied in medical learning contexts, including adaptive learning modules for initial medical diagnosis and perceptual/adaptive learning modules (PALMs) in dermatology, histology, and radiology. Results of all these efforts indicate the remarkable potential of perceptual and adaptive learning technologies, individually and in combination, to improve learning in a variety of medical domains. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
Complex adaptive systems and their relevance for nursing: An evolutionary concept analysis.
Notarnicola, Ippolito; Petrucci, Cristina; De Jesus Barbosa, Maria Rosimar; Giorgi, Fabio; Stievano, Alessandro; Rocco, Gennaro; Lancia, Loreto
2017-06-01
This study aimed to analyse the concept of "complex adaptive systems." The construct is still nebulous in the literature, and a further explanation of the idea is needed to have a shared knowledge of it. A concept analysis was conducted utilizing Rodgers evolutionary method. The inclusive years of bibliographic search started from 2005 to 2015. The search was conducted at PubMed©, CINAHL© (EBSCO host©), Scopus©, Web of Science©, and Academic Search Premier©. Retrieved papers were critically analysed to explore the attributes, antecedents, and consequences of the concept. Moreover, surrogates, related terms, and a pattern recognition scheme were identified. The concept analysis showed that complex systems are adaptive and have the ability to process information. They can adapt to the environment and consequently evolve. Nursing is a complex adaptive system, and the nursing profession in practice exhibits complex adaptive system characteristics. Complexity science through complex adaptive systems provides new ways of seeing and understanding the mechanisms that underpin the nursing profession. © 2017 John Wiley & Sons Australia, Ltd.
Adaptive fuzzy leader clustering of complex data sets in pattern recognition
NASA Technical Reports Server (NTRS)
Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda
1992-01-01
A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.
Object Recognition using Feature- and Color-Based Methods
NASA Technical Reports Server (NTRS)
Duong, Tuan; Duong, Vu; Stubberud, Allen
2008-01-01
An improved adaptive method of processing image data in an artificial neural network has been developed to enable automated, real-time recognition of possibly moving objects under changing (including suddenly changing) conditions of illumination and perspective. The method involves a combination of two prior object-recognition methods one based on adaptive detection of shape features and one based on adaptive color segmentation to enable recognition in situations in which either prior method by itself may be inadequate. The chosen prior feature-based method is known as adaptive principal-component analysis (APCA); the chosen prior color-based method is known as adaptive color segmentation (ACOSE). These methods are made to interact with each other in a closed-loop system to obtain an optimal solution of the object-recognition problem in a dynamic environment. One of the results of the interaction is to increase, beyond what would otherwise be possible, the accuracy of the determination of a region of interest (containing an object that one seeks to recognize) within an image. Another result is to provide a minimized adaptive step that can be used to update the results obtained by the two component methods when changes of color and apparent shape occur. The net effect is to enable the neural network to update its recognition output and improve its recognition capability via an adaptive learning sequence. In principle, the improved method could readily be implemented in integrated circuitry to make a compact, low-power, real-time object-recognition system. It has been proposed to demonstrate the feasibility of such a system by integrating a 256-by-256 active-pixel sensor with APCA, ACOSE, and neural processing circuitry on a single chip. It has been estimated that such a system on a chip would have a volume no larger than a few cubic centimeters, could operate at a rate as high as 1,000 frames per second, and would consume in the order of milliwatts of power.
Shape and Color Features for Object Recognition Search
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.
2012-01-01
A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.
Automatic anatomy recognition on CT images with pathology
NASA Astrophysics Data System (ADS)
Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.
2016-03-01
Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.
Face recognition system and method using face pattern words and face pattern bytes
Zheng, Yufeng
2014-12-23
The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.
Enhanced iris recognition method based on multi-unit iris images
NASA Astrophysics Data System (ADS)
Shin, Kwang Yong; Kim, Yeong Gon; Park, Kang Ryoung
2013-04-01
For the purpose of biometric person identification, iris recognition uses the unique characteristics of the patterns of the iris; that is, the eye region between the pupil and the sclera. When obtaining an iris image, the iris's image is frequently rotated because of the user's head roll toward the left or right shoulder. As the rotation of the iris image leads to circular shifting of the iris features, the accuracy of iris recognition is degraded. To solve this problem, conventional iris recognition methods use shifting of the iris feature codes to perform the matching. However, this increases the computational complexity and level of false acceptance error. To solve these problems, we propose a novel iris recognition method based on multi-unit iris images. Our method is novel in the following five ways compared with previous methods. First, to detect both eyes, we use Adaboost and a rapid eye detector (RED) based on the iris shape feature and integral imaging. Both eyes are detected using RED in the approximate candidate region that consists of the binocular region, which is determined by the Adaboost detector. Second, we classify the detected eyes into the left and right eyes, because the iris patterns in the left and right eyes in the same person are different, and they are therefore considered as different classes. We can improve the accuracy of iris recognition using this pre-classification of the left and right eyes. Third, by measuring the angle of head roll using the two center positions of the left and right pupils, detected by two circular edge detectors, we obtain the information of the iris rotation angle. Fourth, in order to reduce the error and processing time of iris recognition, adaptive bit-shifting based on the measured iris rotation angle is used in feature matching. Fifth, the recognition accuracy is enhanced by the score fusion of the left and right irises. Experimental results on the iris open database of low-resolution images showed that the averaged equal error rate of iris recognition using the proposed method was 4.3006%, which is lower than that of other methods.
NASA Technical Reports Server (NTRS)
Henderson, R. G.; Thomas, G. S.; Nalepka, R. F.
1975-01-01
Methods of performing signature extension, using LANDSAT-1 data, are explored. The emphasis is on improving the performance and cost-effectiveness of large area wheat surveys. Two methods were developed: ASC, and MASC. Two methods, Ratio, and RADIFF, previously used with aircraft data were adapted to and tested on LANDSAT-1 data. An investigation into the sources and nature of between scene data variations was included. Initial investigations into the selection of training fields without in situ ground truth were undertaken.
Proceedings of the 1986 IEEE international conference on systems, man and cybernetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.
Pattern Recognition Using Artificial Neural Network: A Review
NASA Astrophysics Data System (ADS)
Kim, Tai-Hoon
Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, artificial neural network techniques theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system using ANN and identify research topics and applications which are at the forefront of this exciting and challenging field.
Encoding in the visual word form area: an fMRI adaptation study of words versus handwriting.
Barton, Jason J S; Fox, Christopher J; Sekunova, Alla; Iaria, Giuseppe
2010-08-01
Written texts are not just words but complex multidimensional stimuli, including aspects such as case, font, and handwriting style, for example. Neuropsychological reports suggest that left fusiform lesions can impair the reading of text for word (lexical) content, being associated with alexia, whereas right-sided lesions may impair handwriting recognition. We used fMRI adaptation in 13 healthy participants to determine if repetition-suppression occurred for words but not handwriting in the left visual word form area (VWFA) and the reverse in the right fusiform gyrus. Contrary to these expectations, we found adaptation for handwriting but not for words in both the left VWFA and the right VWFA homologue. A trend to adaptation for words but not handwriting was seen only in the left middle temporal gyrus. An analysis of anterior and posterior subdivisions of the left VWFA also failed to show any adaptation for words. We conclude that the right and the left fusiform gyri show similar patterns of adaptation for handwriting, consistent with a predominantly perceptual contribution to text processing.
Track and vertex reconstruction: From classical to adaptive methods
NASA Astrophysics Data System (ADS)
Strandlie, Are; Frühwirth, Rudolf
2010-04-01
This paper reviews classical and adaptive methods of track and vertex reconstruction in particle physics experiments. Adaptive methods have been developed to meet the experimental challenges at high-energy colliders, in particular, the CERN Large Hadron Collider. They can be characterized by the obliteration of the traditional boundaries between pattern recognition and statistical estimation, by the competition between different hypotheses about what constitutes a track or a vertex, and by a high level of flexibility and robustness achieved with a minimum of assumptions about the data. The theoretical background of some of the adaptive methods is described, and it is shown that there is a close connection between the two main branches of adaptive methods: neural networks and deformable templates, on the one hand, and robust stochastic filters with annealing, on the other hand. As both classical and adaptive methods of track and vertex reconstruction presuppose precise knowledge of the positions of the sensitive detector elements, the paper includes an overview of detector alignment methods and a survey of the alignment strategies employed by past and current experiments.
Target Recognition Using Neural Networks for Model Deformation Measurements
NASA Technical Reports Server (NTRS)
Ross, Richard W.; Hibler, David L.
1999-01-01
Optical measurements provide a non-invasive method for measuring deformation of wind tunnel models. Model deformation systems use targets mounted or painted on the surface of the model to identify known positions, and photogrammetric methods are used to calculate 3-D positions of the targets on the model from digital 2-D images. Under ideal conditions, the reflective targets are placed against a dark background and provide high-contrast images, aiding in target recognition. However, glints of light reflecting from the model surface, or reduced contrast caused by light source or model smoothness constraints, can compromise accurate target determination using current algorithmic methods. This paper describes a technique using a neural network and image processing technologies which increases the reliability of target recognition systems. Unlike algorithmic methods, the neural network can be trained to identify the characteristic patterns that distinguish targets from other objects of similar size and appearance and can adapt to changes in lighting and environmental conditions.
A cascaded neuro-computational model for spoken word recognition
NASA Astrophysics Data System (ADS)
Hoya, Tetsuya; van Leeuwen, Cees
2010-03-01
In human speech recognition, words are analysed at both pre-lexical (i.e., sub-word) and lexical (word) levels. The aim of this paper is to propose a constructive neuro-computational model that incorporates both these levels as cascaded layers of pre-lexical and lexical units. The layered structure enables the system to handle the variability of real speech input. Within the model, receptive fields of the pre-lexical layer consist of radial basis functions; the lexical layer is composed of units that perform pattern matching between their internal template and a series of labels, corresponding to the winning receptive fields in the pre-lexical layer. The model adapts through self-tuning of all units, in combination with the formation of a connectivity structure through unsupervised (first layer) and supervised (higher layers) network growth. Simulation studies show that the model can achieve a level of performance in spoken word recognition similar to that of a benchmark approach using hidden Markov models, while enabling parallel access to word candidates in lexical decision making.
Pollen Image Recognition Based on DGDB-LBP Descriptor
NASA Astrophysics Data System (ADS)
Han, L. P.; Xie, Y. H.
2018-01-01
In this paper, we propose DGDB-LBP, a local binary pattern descriptor based on the pixel blocks in the dominant gradient direction. Differing from traditional LBP and its variants, DGDB-LBP encodes by comparing the main gradient magnitude of each block rather than the single pixel value or the average of pixel blocks, in doing so, it reduces the influence of noise on pollen images and eliminates redundant and non-informative features. In order to fully describe the texture features of pollen images and analyze it under multi-scales, we propose a new sampling strategy, which uses three types of operators to extract the radial, angular and multiple texture features under different scales. Considering that the pollen images have some degree of rotation under the microscope, we propose the adaptive encoding direction, which is determined by the texture distribution of local region. Experimental results on the Pollenmonitor dataset show that the average correct recognition rate of our method is superior to other pollen recognition methods in recent years.
Auditory Pattern Recognition and Brief Tone Discrimination of Children with Reading Disorders
ERIC Educational Resources Information Center
Walker, Marianna M.; Givens, Gregg D.; Cranford, Jerry L.; Holbert, Don; Walker, Letitia
2006-01-01
Auditory pattern recognition skills in children with reading disorders were investigated using perceptual tests involving discrimination of frequency and duration tonal patterns. A behavioral test battery involving recognition of the pattern of presentation of tone triads was used in which individual components differed in either frequency or…
Image pattern recognition supporting interactive analysis and graphical visualization
NASA Technical Reports Server (NTRS)
Coggins, James M.
1992-01-01
Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.
Understanding eye movements in face recognition using hidden Markov models.
Chuk, Tim; Chan, Antoni B; Hsiao, Janet H
2014-09-16
We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone. © 2014 ARVO.
Zhang, Jianhua; Yin, Zhong; Wang, Rubin
2017-01-01
This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.
Impact of severity of drug use on discrete emotions recognition in polysubstance abusers.
Fernández-Serrano, María José; Lozano, Oscar; Pérez-García, Miguel; Verdejo-García, Antonio
2010-06-01
Neuropsychological studies support the association between severity of drug intake and alterations in specific cognitive domains and neural systems, but there is disproportionately less research on the neuropsychology of emotional alterations associated with addiction. One of the key aspects of adaptive emotional functioning potentially relevant to addiction progression and treatment is the ability to recognize basic emotions in the faces of others. Therefore, the aims of this study were: (i) to examine facial emotion recognition in abstinent polysubstance abusers, and (ii) to explore the association between patterns of quantity and duration of use of several drugs co-abused (including alcohol, cannabis, cocaine, heroin and MDMA) and the ability to identify discrete facial emotional expressions portraying basic emotions. We compared accuracy of emotion recognition of facial expressions portraying six basic emotions (measured with the Ekman Faces Test) between polysubstance abusers (PSA, n=65) and non-drug using comparison individuals (NDCI, n=30), and used regression models to explore the association between quantity and duration of use of the different drugs co-abused and indices of recognition of each of the six emotions, while controlling for relevant socio-demographic and affect-related confounders. Results showed: (i) that PSA had significantly poorer recognition than NDCI for facial expressions of anger, disgust, fear and sadness; (ii) that measures of quantity and duration of drugs used significantly predicted poorer discrete emotions recognition: quantity of cocaine use predicted poorer anger recognition, and duration of cocaine use predicted both poorer anger and fear recognition. Severity of cocaine use also significantly predicted overall recognition accuracy. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Fuzzy support vector machines for adaptive Morse code recognition.
Yang, Cheng-Hong; Jin, Li-Cheng; Chuang, Li-Yeh
2006-11-01
Morse code is now being harnessed for use in rehabilitation applications of augmentative-alternative communication and assistive technology, facilitating mobility, environmental control and adapted worksite access. In this paper, Morse code is selected as a communication adaptive device for persons who suffer from muscle atrophy, cerebral palsy or other severe handicaps. A stable typing rate is strictly required for Morse code to be effective as a communication tool. Therefore, an adaptive automatic recognition method with a high recognition rate is needed. The proposed system uses both fuzzy support vector machines and the variable-degree variable-step-size least-mean-square algorithm to achieve these objectives. We apply fuzzy memberships to each point, and provide different contributions to the decision learning function for support vector machines. Statistical analyses demonstrated that the proposed method elicited a higher recognition rate than other algorithms in the literature.
The adaptive use of recognition in group decision making.
Kämmer, Juliane E; Gaissmaier, Wolfgang; Reimer, Torsten; Schermuly, Carsten C
2014-06-01
Applying the framework of ecological rationality, the authors studied the adaptivity of group decision making. In detail, they investigated whether groups apply decision strategies conditional on their composition in terms of task-relevant features. The authors focused on the recognition heuristic, so the task-relevant features were the validity of the group members' recognition and knowledge, which influenced the potential performance of group strategies. Forty-three three-member groups performed an inference task in which they had to infer which of two German companies had the higher market capitalization. Results based on the choice data support the hypothesis that groups adaptively apply the strategy that leads to the highest theoretically achievable performance. Time constraints had no effect on strategy use but did have an effect on the proportions of different types of arguments. Possible mechanisms underlying the adaptive use of recognition in group decision making are discussed. © 2014 Cognitive Science Society, Inc.
Pitch Adaptation Patterns in Bimodal Cochlear Implant Users: Over Time and After Experience
Reiss, Lina A.J.; Ito, Rindy A.; Eggleston, Jessica L.; Liao, Selena; Becker, Jillian J.; Lakin, Carrie E.; Warren, Frank M.; McMenomey, Sean O.
2014-01-01
Background Pitch plasticity has been observed in Hybrid cochlear implant (CI) users. Does pitch plasticity also occur in bimodal CI users with traditional long-electrode CIs, and is pitch adaptation pattern associated with electrode discrimination or speech recognition performance? Objective Characterize pitch adaptation patterns in long-electrode CI users, correlate these patterns with electrode discrimination and speech perception outcomes, and analyze which subject factors are associated with the different patterns. Methods Electric-to-acoustic pitch matches were obtained in 19 subjects over time from CI activation to at least 12 months after activation, and in a separate group of 18 subjects in a single visit after at least 24 months of CI experience. Audiometric thresholds, electrode discrimination performance, and speech perception scores were also measured. Results Subjects measured over time had pitch adaptation patterns that fit one of the following categories: 1) “Pitch-adapting”, i.e. the mismatch between perceived electrode pitch and the corresponding frequency-to-electrode allocations decreased; 2) “Pitch-dropping”, i.e. the pitches of multiple electrodes dropped and converged to a similar low pitch; 3) “Pitch-unchanging”, i.e. electrode pitches did not change. Subjects measured after CI experience had a parallel set of adaptation patterns: 1) “Matched-pitch”, i.e. the electrode pitch was matched to the frequency allocation; 2) “Low-pitch”, i.e. the pitches of multiple electrodes were all around the lowest frequency allocation; 3) “Nonmatched-pitch”, i.e. the pitch patterns were compressed relative to the frequency allocations and did not fit either the matched-pitch or low-pitch categories. Unlike Hybrid CI users which were mostly in the pitch-adapting/matched-pitch category, the majority of bimodal CI users were in the latter two categories, pitch-dropping/low-pitch or pitch-unchanging/nonmatched-pitch. Subjects with pitch-adapting or matched-pitch patterns tended to have better low-frequency thresholds than subjects in the latter categories. Changes in electrode discrimination over time were not associated with changes in pitch differences between electrodes. Reductions in speech perception scores over time showed a weak but nonsignificant association with dropping-pitch patterns. Conclusions Bimodal CI users with more residual hearing may have somewhat greater similarity to Hybrid CI users and be more likely to adapt pitch perception to reduce mismatch with the frequencies allocated to the electrodes and the acoustic hearing. In contrast, bimodal CI users with less residual hearing exhibit either no adaptation, or surprisingly, a third pattern in which the pitches of the basal electrodes drop to match the frequency range allocated to the most apical electrode. The lack of association of electrode discrimination changes with pitch changes suggests that electrode discrimination does not depend on perceived pitch differences between electrodes, but rather on some other characteristics such as timbre. In contrast, speech perception may depend more on pitch perception and the ability to distinguish pitch between electrodes, especially since during multi-electrode stimulation, cues such as timbre may be less useful for discrimination. PMID:25319401
Pattern activation/recognition theory of mind
du Castel, Bertrand
2015-01-01
In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition Theory of Mind” that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call “Pattern Activation/Recognition Theory of Mind.” While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228
Pattern activation/recognition theory of mind.
du Castel, Bertrand
2015-01-01
In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.
Automated Coronal Loop Identification Using Digital Image Processing Techniques
NASA Technical Reports Server (NTRS)
Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.
2003-01-01
The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.
The effect of hearing aid technologies on listening in an automobile
Wu, Yu-Hsiang; Stangl, Elizabeth; Bentler, Ruth A.; Stanziola, Rachel W.
2014-01-01
Background Communication while traveling in an automobile often is very difficult for hearing aid users. This is because the automobile /road noise level is usually high, and listeners/drivers often do not have access to visual cues. Since the talker of interest usually is not located in front of the driver/listener, conventional directional processing that places the directivity beam toward the listener’s front may not be helpful, and in fact, could have a negative impact on speech recognition (when compared to omnidirectional processing). Recently, technologies have become available in commercial hearing aids that are designed to improve speech recognition and/or listening effort in noisy conditions where talkers are located behind or beside the listener. These technologies include (1) a directional microphone system that uses a backward-facing directivity pattern (Back-DIR processing), (2) a technology that transmits audio signals from the ear with the better signal-to-noise ratio (SNR) to the ear with the poorer SNR (Side-Transmission processing), and (3) a signal processing scheme that suppresses the noise at the ear with the poorer SNR (Side-Suppression processing). Purpose The purpose of the current study was to determine the effect of (1) conventional directional microphones and (2) newer signal processing schemes (Back-DIR, Side-Transmission, and Side-Suppression) on listener’s speech recognition performance and preference for communication in a traveling automobile. Research design A single-blinded, repeated-measures design was used. Study Sample Twenty-five adults with bilateral symmetrical sensorineural hearing loss aged 44 through 84 years participated in the study. Data Collection and Analysis The automobile/road noise and sentences of the Connected Speech Test (CST) were recorded through hearing aids in a standard van moving at a speed of 70 miles/hour on a paved highway. The hearing aids were programmed to omnidirectional microphone, conventional adaptive directional microphone, and the three newer schemes. CST sentences were presented from the side and back of the hearing aids, which were placed on the ears of a manikin. The recorded stimuli were presented to listeners via earphones in a sound treated booth to assess speech recognition performance and preference with each programmed condition. Results Compared to omnidirectional microphones, conventional adaptive directional processing had a detrimental effect on speech recognition when speech was presented from the back or side of the listener. Back-DIR and Side-Transmission processing improved speech recognition performance (relative to both omnidirectional and adaptive directional processing) when speech was from the back and side, respectively. The performance with Side-Suppression processing was better than with adaptive directional processing when speech was from the side. The participants’ preferences for a given processing scheme were generally consistent with speech recognition results. Conclusions The finding that performance with adaptive directional processing was poorer than with omnidirectional microphones demonstrates the importance of selecting the correct microphone technology for different listening situations. The results also suggest the feasibility of using hearing aid technologies to provide a better listening experience for hearing aid users in automobiles. PMID:23886425
The NTID speech recognition test: NSRT(®).
Bochner, Joseph H; Garrison, Wayne M; Doherty, Karen A
2015-07-01
The purpose of this study was to collect and analyse data necessary for expansion of the NSRT item pool and to evaluate the NSRT adaptive testing software. Participants were administered pure-tone and speech recognition tests including W-22 and QuickSIN, as well as a set of 323 new NSRT items and NSRT adaptive tests in quiet and background noise. Performance on the adaptive tests was compared to pure-tone thresholds and performance on other speech recognition measures. The 323 new items were subjected to Rasch scaling analysis. Seventy adults with mild to moderately severe hearing loss participated in this study. Their mean age was 62.4 years (sd = 20.8). The 323 new NSRT items fit very well with the original item bank, enabling the item pool to be more than doubled in size. Data indicate high reliability coefficients for the NSRT and moderate correlations with pure-tone thresholds (PTA and HFPTA) and other speech recognition measures (W-22, QuickSIN, and SRT). The adaptive NSRT is an efficient and effective measure of speech recognition, providing valid and reliable information concerning respondents' speech perception abilities.
Covariance Matrix Adaptation Evolutionary Strategy for Drift Correction of Electronic Nose Data
NASA Astrophysics Data System (ADS)
Di Carlo, S.; Falasconi, M.; Sanchez, E.; Sberveglieri, G.; Scionti, A.; Squillero, G.; Tonda, A.
2011-09-01
Electronic Noses (ENs) might represent a simple, fast, high sample throughput and economic alternative to conventional analytical instruments [1]. However, gas sensors drift still limits the EN adoption in real industrial setups due to high recalibration effort and cost [2]. In fact, pattern recognition (PaRC) models built in the training phase become useless after a period of time, in some cases a few weeks. Although algorithms to mitigate the drift date back to the early 90 this is still a challenging issue for the chemical sensor community [3]. Among other approaches, adaptive drift correction methods adjust the PaRC model in parallel with data acquisition without need of periodic calibration. Self-Organizing Maps (SOMs) [4] and Adaptive Resonance Theory (ART) networks [5] have been already tested in the past with fair success. This paper presents and discusses an original methodology based on a Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [6], suited for stochastic optimization of complex problems.
NASA Technical Reports Server (NTRS)
Padgett, Mary L. (Editor)
1993-01-01
The present conference discusses such neural networks (NN) related topics as their current development status, NN architectures, NN learning rules, NN optimization methods, NN temporal models, NN control methods, NN pattern recognition systems and applications, biological and biomedical applications of NNs, VLSI design techniques for NNs, NN systems simulation, fuzzy logic, and genetic algorithms. Attention is given to missileborne integrated NNs, adaptive-mixture NNs, implementable learning rules, an NN simulator for travelling salesman problem solutions, similarity-based forecasting, NN control of hypersonic aircraft takeoff, NN control of the Space Shuttle Arm, an adaptive NN robot manipulator controller, a synthetic approach to digital filtering, NNs for speech analysis, adaptive spline networks, an anticipatory fuzzy logic controller, and encoding operations for fuzzy associative memories.
Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System
Hosseini, Monireh Sheikh; Zekri, Maryam
2012-01-01
Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054
Artificial Immune System Approaches for Aerospace Applications
NASA Technical Reports Server (NTRS)
KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)
2002-01-01
Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.
NASA Astrophysics Data System (ADS)
Maskeliunas, Rytis; Rudzionis, Vytautas
2011-06-01
In recent years various commercial speech recognizers have become available. These recognizers provide the possibility to develop applications incorporating various speech recognition techniques easily and quickly. All of these commercial recognizers are typically targeted to widely spoken languages having large market potential; however, it may be possible to adapt available commercial recognizers for use in environments where less widely spoken languages are used. Since most commercial recognition engines are closed systems the single avenue for the adaptation is to try set ways for the selection of proper phonetic transcription methods between the two languages. This paper deals with the methods to find the phonetic transcriptions for Lithuanian voice commands to be recognized using English speech engines. The experimental evaluation showed that it is possible to find phonetic transcriptions that will enable the recognition of Lithuanian voice commands with recognition accuracy of over 90%.
Intelligent fault recognition strategy based on adaptive optimized multiple centers
NASA Astrophysics Data System (ADS)
Zheng, Bo; Li, Yan-Feng; Huang, Hong-Zhong
2018-06-01
For the recognition principle based optimized single center, one important issue is that the data with nonlinear separatrix cannot be recognized accurately. In order to solve this problem, a novel recognition strategy based on adaptive optimized multiple centers is proposed in this paper. This strategy recognizes the data sets with nonlinear separatrix by the multiple centers. Meanwhile, the priority levels are introduced into the multi-objective optimization, including recognition accuracy, the quantity of optimized centers, and distance relationship. According to the characteristics of various data, the priority levels are adjusted to ensure the quantity of optimized centers adaptively and to keep the original accuracy. The proposed method is compared with other methods, including support vector machine (SVM), neural network, and Bayesian classifier. The results demonstrate that the proposed strategy has the same or even better recognition ability on different distribution characteristics of data.
Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou
2013-01-01
A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.
Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou
2013-01-01
A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe. PMID:24223789
Handwritten word preprocessing for database adaptation
NASA Astrophysics Data System (ADS)
Oprean, Cristina; Likforman-Sulem, Laurence; Mokbel, Chafic
2013-01-01
Handwriting recognition systems are typically trained using publicly available databases, where data have been collected in controlled conditions (image resolution, paper background, noise level,...). Since this is not often the case in real-world scenarios, classification performance can be affected when novel data is presented to the word recognition system. To overcome this problem, we present in this paper a new approach called database adaptation. It consists of processing one set (training or test) in order to adapt it to the other set (test or training, respectively). Specifically, two kinds of preprocessing, namely stroke thickness normalization and pixel intensity normalization are considered. The advantage of such approach is that we can re-use the existing recognition system trained on controlled data. We conduct several experiments with the Rimes 2011 word database and with a real-world database. We adapt either the test set or the training set. Results show that training set adaptation achieves better results than test set adaptation, at the cost of a second training stage on the adapted data. Accuracy of data set adaptation is increased by 2% to 3% in absolute value over no adaptation.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Editor)
1988-01-01
The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.
Toward faster and more accurate star sensors using recursive centroiding and star identification
NASA Astrophysics Data System (ADS)
Samaan, Malak Anees
The objective of this research is to study different novel developed techniques for spacecraft attitude determination methods using star tracker sensors. This dissertation addresses various issues on developing improved star tracker software, presents new approaches for better performance of star trackers, and considers applications to realize high precision attitude estimates. Star-sensors are often included in a spacecraft attitude-system instrument suite, where high accuracy pointing capability is required. Novel methods for image processing, camera parameters ground calibration, autonomous star pattern recognition, and recursive star identification are researched and implemented to achieve high accuracy and a high frame rate star tracker that can be used for many space missions. This dissertation presents the methods and algorithms implemented for the one Field of View 'FOV'Star NavI sensor that was tested aboard the STS-107 mission in spring 2003 and the two fields of view StarNavII sensor for the EO-3 spacecraft scheduled for launch in 2007. The results of this research enable advances in spacecraft attitude determination based upon real time star sensing and pattern recognition. Building upon recent developments in image processing, pattern recognition algorithms, focal plane detectors, electro-optics, and microprocessors, the star tracker concept utilized in this research has the following key objectives for spacecraft of the future: lower cost, lower mass and smaller volume, increased robustness to environment-induced aging and instrument response variations, increased adaptability and autonomy via recursive self-calibration and health-monitoring on-orbit. Many of these attributes are consequences of improved algorithms that are derived in this dissertation.
Multimodal Neuroelectric Interface Development
NASA Technical Reports Server (NTRS)
Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Totah, Joseph (Technical Monitor)
2001-01-01
This project aims to improve performance of NASA missions by developing multimodal neuroelectric technologies for augmented human-system interaction. Neuroelectric technologies will add completely new modes of interaction that operate in parallel with keyboards, speech, or other manual controls, thereby increasing the bandwidth of human-system interaction. We recently demonstrated the feasibility of real-time electromyographic (EMG) pattern recognition for a direct neuroelectric human-computer interface. We recorded EMG signals from an elastic sleeve with dry electrodes, while a human subject performed a range of discrete gestures. A machine-teaming algorithm was trained to recognize the EMG patterns associated with the gestures and map them to control signals. Successful applications now include piloting two Class 4 aircraft simulations (F-15 and 757) and entering data with a "virtual" numeric keyboard. Current research focuses on on-line adaptation of EMG sensing and processing and recognition of continuous gestures. We are also extending this on-line pattern recognition methodology to electroencephalographic (EEG) signals. This will allow us to bypass muscle activity and draw control signals directly from the human brain. Our system can reliably detect P-rhythm (a periodic EEG signal from motor cortex in the 10 Hz range) with a lightweight headset containing saline-soaked sponge electrodes. The data show that EEG p-rhythm can be modulated by real and imaginary motions. Current research focuses on using biofeedback to train of human subjects to modulate EEG rhythms on demand, and to examine interactions of EEG-based control with EMG-based and manual control. Viewgraphs on these neuroelectric technologies are also included.
Swartz, R. Andrew
2013-01-01
This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136
NASA Astrophysics Data System (ADS)
Millán, María S.
2012-10-01
On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.
ERIC Educational Resources Information Center
Stinson, Michael; Elliot, Lisa; McKee, Barbara; Coyne, Gina
This report discusses a project that adapted new automatic speech recognition (ASR) technology to provide real-time speech-to-text transcription as a support service for students who are deaf and hard of hearing (D/HH). In this system, as the teacher speaks, a hearing intermediary, or captionist, dictates into the speech recognition system in a…
Classification of Partial Discharge Measured under Different Levels of Noise Contamination.
Jee Keen Raymond, Wong; Illias, Hazlee Azil; Abu Bakar, Ab Halim
2017-01-01
Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination.
Mold allergy: is it real and what do we do about it?
Rudert, Amanda; Portnoy, Jay
2017-08-01
fungi produce substances that contain pathogen-associated molecular patterns (pamps) and damage-associated molecular patterns (damps) which bind to pattern recognition receptors, stimulating innate immune responses in humans. they also produce allergens that induce production of specific ige. Areas covered: In this review we cover both innate and adaptive immune responses to fungi. Some fungal products can activate both innate and adaptive responses and in doing so, cause an intense and complex health effects. Methods of testing for fungal allergy and evidence for clinical treatment including environmental control are also discussed. In addition, we describe controversial issues including the role of Stachybotrys and mycotoxins in adverse health effects. Expert commentary: Concerns about long-term exposure to fungi have led some patients, attorneys and fungus advocates to promote fears about a condition that has been termed toxic mold syndrome. This syndrome is associated with vague symptoms and is believed to be due to exposure to mycotoxins, though this connection has not been proven. Ultimately, more precise methods are needed to measure both fungal exposure and the resulting health effects. Once that such methods become available, much of the speculation will be replaced by knowledge.
Keefe, Bruce D; Wincenciak, Joanna; Jellema, Tjeerd; Ward, James W; Barraclough, Nick E
2016-07-01
When observing another individual's actions, we can both recognize their actions and infer their beliefs concerning the physical and social environment. The extent to which visual adaptation influences action recognition and conceptually later stages of processing involved in deriving the belief state of the actor remains unknown. To explore this we used virtual reality (life-size photorealistic actors presented in stereoscopic three dimensions) to see how visual adaptation influences the perception of individuals in naturally unfolding social scenes at increasingly higher levels of action understanding. We presented scenes in which one actor picked up boxes (of varying number and weight), after which a second actor picked up a single box. Adaptation to the first actor's behavior systematically changed perception of the second actor. Aftereffects increased with the duration of the first actor's behavior, declined exponentially over time, and were independent of view direction. Inferences about the second actor's expectation of box weight were also distorted by adaptation to the first actor. Distortions in action recognition and actor expectations did not, however, extend across different actions, indicating that adaptation is not acting at an action-independent abstract level but rather at an action-dependent level. We conclude that although adaptation influences more complex inferences about belief states of individuals, this is likely to be a result of adaptation at an earlier action recognition stage rather than adaptation operating at a higher, more abstract level in mentalizing or simulation systems.
Robust autoassociative memory with coupled networks of Kuramoto-type oscillators
NASA Astrophysics Data System (ADS)
Heger, Daniel; Krischer, Katharina
2016-08-01
Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.
IEEE 1982. Proceedings of the international conference on cybernetics and society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
The following topics were dealt with: knowledge-based systems; risk analysis; man-machine interactions; human information processing; metaphor, analogy and problem-solving; manual control modelling; transportation systems; simulation; adaptive and learning systems; biocybernetics; cybernetics; mathematical programming; robotics; decision support systems; analysis, design and validation of models; computer vision; systems science; energy systems; environmental modelling and policy; pattern recognition; nuclear warfare; technological forecasting; artificial intelligence; the Turin shroud; optimisation; workloads. Abstracts of individual papers can be found under the relevant classification codes in this or future issues.
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike
2016-05-01
We have developed a new way for detection and tracking of human full-body and body-parts with color (intensity) patch morphological segmentation and adaptive thresholding for security surveillance cameras. An adaptive threshold scheme has been developed for dealing with body size changes, illumination condition changes, and cross camera parameter changes. Tests with the PETS 2009 and 2014 datasets show that we can obtain high probability of detection and low probability of false alarm for full-body. Test results indicate that our human full-body detection method can considerably outperform the current state-of-the-art methods in both detection performance and computational complexity. Furthermore, in this paper, we have developed several methods using color features for detection and tracking of human body-parts (arms, legs, torso, and head, etc.). For example, we have developed a human skin color sub-patch segmentation algorithm by first conducting a RGB to YIQ transformation and then applying a Subtractive I/Q image Fusion with morphological operations. With this method, we can reliably detect and track human skin color related body-parts such as face, neck, arms, and legs. Reliable body-parts (e.g. head) detection allows us to continuously track the individual person even in the case that multiple closely spaced persons are merged. Accordingly, we have developed a new algorithm to split a merged detection blob back to individual detections based on the detected head positions. Detected body-parts also allow us to extract important local constellation features of the body-parts positions and angles related to the full-body. These features are useful for human walking gait pattern recognition and human pose (e.g. standing or falling down) estimation for potential abnormal behavior and accidental event detection, as evidenced with our experimental tests. Furthermore, based on the reliable head (face) tacking, we have applied a super-resolution algorithm to enhance the face resolution for improved human face recognition performance.
Immunoevasive Aspergillus virulence factors.
Chotirmall, Sanjay H; Mirkovic, Bojana; Lavelle, Gillian M; McElvaney, Noel G
2014-12-01
Individuals with structural lung disease or defective immunity are predisposed to Aspergillus-associated disease. Manifestations range from allergic to cavitary or angio-invasive syndromes. Despite daily spore inhalation, immunocompetence facilitates clearance through initiation of innate and adaptive host responses. These include mechanical barriers, phagocyte activation, antimicrobial peptide release and pattern recognition receptor activation. Adaptive responses include Th1 and Th2 approaches. Understanding Aspergillus virulence mechanisms remains critical to the development of effective research and treatment strategies to counteract the fungi. Major virulence factors relate to fungal structure, protease release and allergens; however, mechanisms utilized to evade immune recognition continue to be important in establishing infection. These include the fungal rodlet layer, dihydroxynaphthalene-melanin, detoxifying systems for reactive oxygen species and toxin release. One major immunoevasive toxin, gliotoxin, plays a key role in mediating Aspergillus-associated colonization in the context of cystic fibrosis. Here, it down-regulates vitamin D receptor expression which following itraconazole therapy is rescued concurrent with decreased Th2 cytokine (IL-5 and IL-13) concentrations in the CF airway. This review focuses on the interaction between Aspergillus pathogenic mechanisms, host immune responses and the immunoevasive strategies employed by the organism during disease states such as that observed in cystic fibrosis.
NASA Astrophysics Data System (ADS)
Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2018-01-01
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.
Weber, Jesse N; Kalbe, Martin; Shim, Kum Chuan; Erin, Noémie I; Steinel, Natalie C; Ma, Lei; Bolnick, Daniel I
2017-01-01
Parasite infections are a product of both ecological processes affecting host-parasite encounter rates and evolutionary dynamics affecting host susceptibility. However, few studies examine natural infection variation from both ecological and evolutionary perspectives. Here, we describe the ecological and evolutionary factors generating variation in infection rates by a tapeworm (Schistocephalus solidus) in a vertebrate host, the threespine stickleback (Gasterosteus aculeatus). To explore ecological aspects of infection, we measured tapeworm prevalence in Canadian stickleback inhabiting two distinct environments: marine and freshwater. Consistent with ecological control of infection, the tapeworm is very rare in marine environments, even though marine fish are highly susceptible. Conversely, commonly infected freshwater stickleback exhibit substantial resistance in controlled laboratory trials, suggesting that high exposure risk overwhelms their recently evolved resistance. We also tested for parasite adaptation to its host by performing transcontinental reciprocal infections, using stickleback and tapeworm populations from Europe and western Canada. More infections occurred in same-continent host-parasite combinations, indicating parasite "local" adaptation, at least on the scale of continents. However, the recently evolved immunity of freshwater hosts applies to both local and foreign parasites. The pattern of adaptation described here is not wholly compatible with either of the common models of host-parasite coevolution (i.e., matching infection or targeted recognition). Instead, we propose a hybrid, eco-evolutionary model to explain the remarkable pattern of global host resistance and local parasite infectivity.
[Role adaptation process of elementary school health teachers: establishing their own positions].
Lee, Jeong Hee; Lee, Byoung Sook
2014-06-01
The purpose of this study was to explore and identify patterns from the phenomenon of the role adaptation process in elementary school health teachers and finally, suggest a model to describe the process. Grounded theory methodology and focus group interviews were used. Data were collected from 24 participants of four focus groups. The questions used were about their experience of role adaptation including situational contexts and interactional coping strategies. Transcribed data and field notes were analyzed with continuous comparative analysis. The core category was 'establishing their own positions', an interactional coping strategy. The phenomenon identified by participants was confusion and wandering in their role performance. Influencing contexts were unclear beliefs for their role as health teachers and non-supportive job environments. The result of the adaptation process was consolidation of their positions. Pride as health teachers and social recognition and supports intervened to produce that result. The process had three stages; entry, growth, and maturity. The role adaptation process of elementary school health teachers can be explained as establishing, strengthening and consolidating their own positions. Results of this study can be used as fundamental information for developing programs to support the role adaptation of health teachers.
The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors
NASA Astrophysics Data System (ADS)
Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.;
2017-09-01
The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.
[Analysis of the stability and adaptability of near infrared spectra qualitative analysis model].
Cao, Wu; Li, Wei-jun; Wang, Ping; Zhang, Li-ping
2014-06-01
The stability and adaptability of model of near infrared spectra qualitative analysis were studied. Method of separate modeling can significantly improve the stability and adaptability of model; but its ability of improving adaptability of model is limited. Method of joint modeling can not only improve the adaptability of the model, but also the stability of model, at the same time, compared to separate modeling, the method can shorten the modeling time, reduce the modeling workload; extend the term of validity of model, and improve the modeling efficiency. The experiment of model adaptability shows that, the correct recognition rate of separate modeling method is relatively low, which can not meet the requirements of application, and joint modeling method can reach the correct recognition rate of 90%, and significantly enhances the recognition effect. The experiment of model stability shows that, the identification results of model by joint modeling are better than the model by separate modeling, and has good application value.
QWT: Retrospective and New Applications
NASA Astrophysics Data System (ADS)
Xu, Yi; Yang, Xiaokang; Song, Li; Traversoni, Leonardo; Lu, Wei
Quaternion wavelet transform (QWT) achieves much attention in recent years as a new image analysis tool. In most cases, it is an extension of the real wavelet transform and complex wavelet transform (CWT) by using the quaternion algebra and the 2D Hilbert transform of filter theory, where analytic signal representation is desirable to retrieve phase-magnitude description of intrinsically 2D geometric structures in a grayscale image. In the context of color image processing, however, it is adapted to analyze the image pattern and color information as a whole unit by mapping sequential color pixels to a quaternion-valued vector signal. This paper provides a retrospective of QWT and investigates its potential use in the domain of image registration, image fusion, and color image recognition. It is indicated that it is important for QWT to induce the mechanism of adaptive scale representation of geometric features, which is further clarified through two application instances of uncalibrated stereo matching and optical flow estimation. Moreover, quaternionic phase congruency model is defined based on analytic signal representation so as to operate as an invariant feature detector for image registration. To achieve better localization of edges and textures in image fusion task, we incorporate directional filter bank (DFB) into the quaternion wavelet decomposition scheme to greatly enhance the direction selectivity and anisotropy of QWT. Finally, the strong potential use of QWT in color image recognition is materialized in a chromatic face recognition system by establishing invariant color features. Extensive experimental results are presented to highlight the exciting properties of QWT.
Improvement and implementation for Canny edge detection algorithm
NASA Astrophysics Data System (ADS)
Yang, Tao; Qiu, Yue-hong
2015-07-01
Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.
Innate immunity against HIV-1 infection.
Altfeld, Marcus; Gale, Michael
2015-06-01
During acute HIV-1 infection, viral pathogen-associated molecular patterns are recognized by pathogen-recognition receptors (PRRs) of infected cells, which triggers a signaling cascade that initiates innate intracellular antiviral defenses aimed at restricting the replication and spread of the virus. This cell-intrinsic response propagates outward via the action of secreted factors such as cytokines and chemokines that activate innate immune cells and attract them to the site of infection and to local lymphatic tissue. Antiviral innate effector cells can subsequently contribute to the control of viremia and modulate the quality of the adaptive immune response to HIV-1. The concerted actions of PRR signaling, specific viral-restriction factors, innate immune cells, innate-adaptive immune crosstalk and viral evasion strategies determine the outcome of HIV-1 infection and immune responses.
Pohl, Rüdiger F; Michalkiewicz, Martha; Erdfelder, Edgar; Hilbig, Benjamin E
2017-07-01
According to the recognition-heuristic theory, decision makers solve paired comparisons in which one object is recognized and the other not by recognition alone, inferring that recognized objects have higher criterion values than unrecognized ones. However, success-and thus usefulness-of this heuristic depends on the validity of recognition as a cue, and adaptive decision making, in turn, requires that decision makers are sensitive to it. To this end, decision makers could base their evaluation of the recognition validity either on the selected set of objects (the set's recognition validity), or on the underlying domain from which the objects were drawn (the domain's recognition validity). In two experiments, we manipulated the recognition validity both in the selected set of objects and between domains from which the sets were drawn. The results clearly show that use of the recognition heuristic depends on the domain's recognition validity, not on the set's recognition validity. In other words, participants treat all sets as roughly representative of the underlying domain and adjust their decision strategy adaptively (only) with respect to the more general environment rather than the specific items they are faced with.
Real Time Large Memory Optical Pattern Recognition.
1984-06-01
AD-Ri58 023 REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION(U) - h ARMY MISSILE COMMAND REDSTONE ARSENAL AL RESEARCH DIRECTORATE D A GREGORY JUN...TECHNICAL REPORT RR-84-9 Ln REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION Don A. Gregory Research Directorate US Army Missile Laboratory JUNE 1984 L...RR-84-9 , ___/_ _ __ _ __ _ __ _ __"__ _ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Real Time Large Memory Optical Pattern Technical
Thibodeau, Linda
2014-06-01
The purpose of this study was to compare the benefits of 3 types of remote microphone hearing assistance technology (HAT), adaptive digital broadband, adaptive frequency modulation (FM), and fixed FM, through objective and subjective measures of speech recognition in clinical and real-world settings. Participants included 11 adults, ages 16 to 78 years, with primarily moderate-to-severe bilateral hearing impairment (HI), who wore binaural behind-the-ear hearing aids; and 15 adults, ages 18 to 30 years, with normal hearing. Sentence recognition in quiet and in noise and subjective ratings were obtained in 3 conditions of wireless signal processing. Performance by the listeners with HI when using the adaptive digital technology was significantly better than that obtained with the FM technology, with the greatest benefits at the highest noise levels. The majority of listeners also preferred the digital technology when listening in a real-world noisy environment. The wireless technology allowed persons with HI to surpass persons with normal hearing in speech recognition in noise, with the greatest benefit occurring with adaptive digital technology. The use of adaptive digital technology combined with speechreading cues would allow persons with HI to engage in communication in environments that would have otherwise not been possible with traditional wireless technology.
Classification and machine recognition of severe weather patterns
NASA Technical Reports Server (NTRS)
Wang, P. P.; Burns, R. C.
1976-01-01
Forecasting and warning of severe weather conditions are treated from the vantage point of pattern recognition by machine. Pictorial patterns and waveform patterns are distinguished. Time series data on sferics are dealt with by considering waveform patterns. A severe storm patterns recognition machine is described, along with schemes for detection via cross-correlation of time series (same channel or different channels). Syntactic and decision-theoretic approaches to feature extraction are discussed. Active and decayed tornados and thunderstorms, lightning discharges, and funnels and their related time series data are studied.
Fuzzy Logic-Based Audio Pattern Recognition
NASA Astrophysics Data System (ADS)
Malcangi, M.
2008-11-01
Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.
New Optical Transforms For Statistical Image Recognition
NASA Astrophysics Data System (ADS)
Lee, Sing H.
1983-12-01
In optical implementation of statistical image recognition, new optical transforms on large images for real-time recognition are of special interest. Several important linear transformations frequently used in statistical pattern recognition have now been optically implemented, including the Karhunen-Loeve transform (KLT), the Fukunaga-Koontz transform (FKT) and the least-squares linear mapping technique (LSLMT).1-3 The KLT performs principle components analysis on one class of patterns for feature extraction. The FKT performs feature extraction for separating two classes of patterns. The LSLMT separates multiple classes of patterns by maximizing the interclass differences and minimizing the intraclass variations.
Optimal pattern synthesis for speech recognition based on principal component analysis
NASA Astrophysics Data System (ADS)
Korsun, O. N.; Poliyev, A. V.
2018-02-01
The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.
NASA Astrophysics Data System (ADS)
Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.
2013-12-01
Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones, and forming training sets from three or four pattern classes. The presented automated classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.
[Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].
Wang, Lulu; Hu, Xin; Hu, Jie; Fang, Youfang; He, Rongrong; Yu, Hongliu
2016-12-01
In order to help the patients with upper-limb disfunction go on rehabilitation training,this paper proposed an upper-limb exoskeleton rehabilitation robot with four degrees of freedom(DOF),and realized two control schemes,i.e.,voice control and electromyography control.The hardware and software design of the voice control system was completed based on RSC-4128 chips,which realized the speech recognition technology of a specific person.Besides,this study adapted self-made surface eletromyogram(sEMG)signal extraction electrodes to collect sEMG signals and realized pattern recognition by conducting sEMG signals processing,extracting time domain features and fixed threshold algorithm.In addition,the pulse-width modulation(PWM)algorithm was used to realize the speed adjustment of the system.Voice control and electromyography control experiments were then carried out,and the results showed that the mean recognition rate of the voice control and electromyography control reached 93.1%and 90.9%,respectively.The results proved the feasibility of the control system.This study is expected to lay a theoretical foundation for the further improvement of the control system of the upper-limb rehabilitation robot.
Adaptive error correction codes for face identification
NASA Astrophysics Data System (ADS)
Hussein, Wafaa R.; Sellahewa, Harin; Jassim, Sabah A.
2012-06-01
Face recognition in uncontrolled environments is greatly affected by fuzziness of face feature vectors as a result of extreme variation in recording conditions (e.g. illumination, poses or expressions) in different sessions. Many techniques have been developed to deal with these variations, resulting in improved performances. This paper aims to model template fuzziness as errors and investigate the use of error detection/correction techniques for face recognition in uncontrolled environments. Error correction codes (ECC) have recently been used for biometric key generation but not on biometric templates. We have investigated error patterns in binary face feature vectors extracted from different image windows of differing sizes and for different recording conditions. By estimating statistical parameters for the intra-class and inter-class distributions of Hamming distances in each window, we encode with appropriate ECC's. The proposed approached is tested for binarised wavelet templates using two face databases: Extended Yale-B and Yale. We shall demonstrate that using different combinations of BCH-based ECC's for different blocks and different recording conditions leads to in different accuracy rates, and that using ECC's results in significantly improved recognition results.
The Need for Careful Data Collection for Pattern Recognition in Digital Pathology.
Marée, Raphaël
2017-01-01
Effective pattern recognition requires carefully designed ground-truth datasets. In this technical note, we first summarize potential data collection issues in digital pathology and then propose guidelines to build more realistic ground-truth datasets and to control their quality. We hope our comments will foster the effective application of pattern recognition approaches in digital pathology.
Pattern recognition: A basis for remote sensing data analysis
NASA Technical Reports Server (NTRS)
Swain, P. H.
1973-01-01
The theoretical basis for the pattern-recognition-oriented algorithms used in the multispectral data analysis software system is discussed. A model of a general pattern recognition system is presented. The receptor or sensor is usually a multispectral scanner. For each ground resolution element the receptor produces n numbers or measurements corresponding to the n channels of the scanner.
Optical Pattern Recognition With Self-Amplification
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang
1994-01-01
In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.
Ecological factors affecting gene flow in the Brachionus plicatilis complex (Rotifera).
Gómez, Africa; Carmona, María José; Serra, Manuel
1997-07-01
We investigated how adaptation to salinity and temperature acts as reproductive barriers in three sympatric species from the Brachionus plicatilis species complex. These species co-occur in a salt marsh in Spain, and a previous electrophoretic study of variation revealed no hybrids between them. A factorial experiment was designed to test for differences in population growth rates and patterns of bisexual reproduction. The design combined representative strains from each species in different salinity and temperature conditions, representing the range over which these rotifers are found in their natural environment. We found differences in the growth response of the three species to both factors and in the pattern of bisexual reproduction. These differences help to explain patterns of succession observed in the field. We conclude that these ecological factors, together with mate recognition systems, account for the absence of gene flow in these sympatric species.
Genetic Diversity of Toll-Like Receptors and Immunity to M. leprae Infection
Hart, Bryan E.; Tapping, Richard I.
2012-01-01
Genetic association studies of leprosy cohorts across the world have identified numerous polymorphisms which alter susceptibility and outcome to infection with Mycobacterium leprae. As expected, many of the polymorphisms reside within genes that encode components of the innate and adaptive immune system. Despite the preponderance of these studies, our understanding of the mechanisms that underlie these genetic associations remains sparse. Toll-like receptors (TLRs) have emerged as an essential family of innate immune pattern recognition receptors which play a pivotal role in host defense against microbes, including pathogenic strains of mycobacteria. This paper will highlight studies which have uncovered the association of specific TLR gene polymorphisms with leprosy or tuberculosis: two important diseases resulting from mycobacterial infection. This analysis will focus on the potential influence these polymorphic variants have on TLR expression and function and how altered TLR recognition or signaling may contribute to successful antimycobacterial immunity. PMID:22529866
ERIC Educational Resources Information Center
Annett, John
An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…
Degraded character recognition based on gradient pattern
NASA Astrophysics Data System (ADS)
Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash
2010-02-01
Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.
Automatic Target Recognition Based on Cross-Plot
Wong, Kelvin Kian Loong; Abbott, Derek
2011-01-01
Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; Adams, C.; An, R.
The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less
Acciarri, R.; Adams, C.; An, R.; ...
2018-01-29
The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less
Mechanisms and neural basis of object and pattern recognition: a study with chess experts.
Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang
2010-11-01
Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.
Finger Vein Recognition Based on Local Directional Code
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-01-01
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194
Finger vein recognition based on local directional code.
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-11-05
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.
Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.
Ming, Yue; Wang, Guangchao; Fan, Chunxiao
2015-01-01
With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.
φ-evo: A program to evolve phenotypic models of biological networks.
Henry, Adrien; Hemery, Mathieu; François, Paul
2018-06-01
Molecular networks are at the core of most cellular decisions, but are often difficult to comprehend. Reverse engineering of network architecture from their functions has proved fruitful to classify and predict the structure and function of molecular networks, suggesting new experimental tests and biological predictions. We present φ-evo, an open-source program to evolve in silico phenotypic networks performing a given biological function. We include implementations for evolution of biochemical adaptation, adaptive sorting for immune recognition, metazoan development (somitogenesis, hox patterning), as well as Pareto evolution. We detail the program architecture based on C, Python 3, and a Jupyter interface for project configuration and network analysis. We illustrate the predictive power of φ-evo by first recovering the asymmetrical structure of the lac operon regulation from an objective function with symmetrical constraints. Second, we use the problem of hox-like embryonic patterning to show how a single effective fitness can emerge from multi-objective (Pareto) evolution. φ-evo provides an efficient approach and user-friendly interface for the phenotypic prediction of networks and the numerical study of evolution itself.
Scaltritti, Michele; Balota, David A; Peressotti, Francesca
2013-01-01
Stimulus quality and word frequency produce additive effects in lexical decision performance, whereas the semantic priming effect interacts with both stimulus quality and word frequency effects. This pattern places important constraints on models of visual word recognition. In Experiment 1, all three variables were investigated within a single speeded pronunciation study. The results indicated that the joint effects of stimulus quality and word frequency were dependent upon prime relatedness. In particular, an additive effect of stimulus quality and word frequency was found after related primes, and an interactive effect was found after unrelated primes. It was hypothesized that this pattern reflects an adaptive reliance on related prime information within the experimental context. In Experiment 2, related primes were eliminated from the list, and the interactive effects of stimulus quality and word frequency found following unrelated primes in Experiment 1 reverted to additive effects for the same unrelated prime conditions. The results are supportive of a flexible lexical processor that adapts to both local prime information and global list-wide context.
Memory recall and spike-frequency adaptation
NASA Astrophysics Data System (ADS)
Roach, James P.; Sander, Leonard M.; Zochowski, Michal R.
2016-05-01
The brain can reproduce memories from partial data; this ability is critical for memory recall. The process of memory recall has been studied using autoassociative networks such as the Hopfield model. This kind of model reliably converges to stored patterns that contain the memory. However, it is unclear how the behavior is controlled by the brain so that after convergence to one configuration, it can proceed with recognition of another one. In the Hopfield model, this happens only through unrealistic changes of an effective global temperature that destabilizes all stored configurations. Here we show that spike-frequency adaptation (SFA), a common mechanism affecting neuron activation in the brain, can provide state-dependent control of pattern retrieval. We demonstrate this in a Hopfield network modified to include SFA, and also in a model network of biophysical neurons. In both cases, SFA allows for selective stabilization of attractors with different basins of attraction, and also for temporal dynamics of attractor switching that is not possible in standard autoassociative schemes. The dynamics of our models give a plausible account of different sorts of memory retrieval.
Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil
Chen, Bin; Wang, Yanan; Yan, Zhaoli
2018-01-01
Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method. PMID:29382144
NASA Astrophysics Data System (ADS)
Moody, Daniela I.; Wilson, Cathy J.; Rowland, Joel C.; Altmann, Garrett L.
2015-06-01
Advanced pattern recognition and computer vision algorithms are of great interest for landscape characterization, change detection, and change monitoring in satellite imagery, in support of global climate change science and modeling. We present results from an ongoing effort to extend neuroscience-inspired models for feature extraction to the environmental sciences, and we demonstrate our work using Worldview-2 multispectral satellite imagery. We use a Hebbian learning rule to derive multispectral, multiresolution dictionaries directly from regional satellite normalized band difference index data. These feature dictionaries are used to build sparse scene representations, from which we automatically generate land cover labels via our CoSA algorithm: Clustering of Sparse Approximations. These data adaptive feature dictionaries use joint spectral and spatial textural characteristics to help separate geologic, vegetative, and hydrologic features. Land cover labels are estimated in example Worldview-2 satellite images of Barrow, Alaska, taken at two different times, and are used to detect and discuss seasonal surface changes. Our results suggest that an approach that learns from both spectral and spatial features is promising for practical pattern recognition problems in high resolution satellite imagery.
Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil.
Chen, Bin; Wang, Yanan; Yan, Zhaoli
2018-01-29
Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method.
Imbalanced learning for pattern recognition: an empirical study
NASA Astrophysics Data System (ADS)
He, Haibo; Chen, Sheng; Man, Hong; Desai, Sachi; Quoraishee, Shafik
2010-10-01
The imbalanced learning problem (learning from imbalanced data) presents a significant new challenge to the pattern recognition and machine learning society because in most instances real-world data is imbalanced. When considering military applications, the imbalanced learning problem becomes much more critical because such skewed distributions normally carry the most interesting and critical information. This critical information is necessary to support the decision-making process in battlefield scenarios, such as anomaly or intrusion detection. The fundamental issue with imbalanced learning is the ability of imbalanced data to compromise the performance of standard learning algorithms, which assume balanced class distributions or equal misclassification penalty costs. Therefore, when presented with complex imbalanced data sets these algorithms may not be able to properly represent the distributive characteristics of the data. In this paper we present an empirical study of several popular imbalanced learning algorithms on an army relevant data set. Specifically we will conduct various experiments with SMOTE (Synthetic Minority Over-Sampling Technique), ADASYN (Adaptive Synthetic Sampling), SMOTEBoost (Synthetic Minority Over-Sampling in Boosting), and AdaCost (Misclassification Cost-Sensitive Boosting method) schemes. Detailed experimental settings and simulation results are presented in this work, and a brief discussion of future research opportunities/challenges is also presented.
Immunotherapeutic potential of CpG oligodeoxynucleotides in veterinary species.
Manuja, Anju; Manuja, Balvinder K; Kaushik, Jyoti; Singha, Harisankar; Singh, Raj Kumar
2013-10-01
Innate immunity plays a critical role in host defense against infectious diseases by discriminating between self and infectious non-self. The recognition of infectious non-self involves germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs). The PAMPs are the components of pathogenic microbes which include not only the cell wall constituents but also the unmethylated 2'-deoxy-ribo-cytosine-phosphate-guanosine (CpG) motifs. These CpG motifs present within bacterial and viral DNA are recognized by toll-like receptor 9 (TLR9), and signaling by this receptor triggers a proinflammatory cytokine response which, in turn, influences both innate and adaptive immune responses. The activation of TLR9 with synthetic CpG oligodeoxynucleotides (ODNs) induces powerful Th1-like immune responses. It has been shown to provide protection against infectious diseases, allergy and cancer in laboratory animal models and some domestic animal species. With better understanding of the basic biology and immune mechanisms, it would be possible to exploit the potential of CpG motifs for animal welfare. The research developments in the area of CpG and TLR9 and the potential applications in animal health have been reviewed in this article.
Geophysical phenomena classification by artificial neural networks
NASA Technical Reports Server (NTRS)
Gough, M. P.; Bruckner, J. R.
1995-01-01
Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.
A carbohydrate-anion recognition system in aprotic solvents.
Ren, Bo; Dong, Hai; Ramström, Olof
2014-05-01
A carbohydrate-anion recognition system in nonpolar solvents is reported, in which complexes form at the B-faces of β-D-pyranosides with H1-, H3-, and H5-cis patterns similar to carbohydrate-π interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate-anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH⋅⋅⋅A(-) hydrogen bonds between the binding partners and is related to electron-withdrawing groups of the carbohydrates as well as increased hydrogen-bond-accepting capability of the anions. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Gillham, Michael; Pepper, Matthew; Kelly, Steve; Howells, Gareth
2017-01-01
Background : Many powered wheelchair users find their medical condition and their ability to drive the wheelchair will change over time. In order to maintain their independent mobility, the powered chair will require adjustment over time to suit the user's needs, thus regular input from healthcare professionals is required. These limited resources can result in the user having to wait weeks for appointments, resulting in the user losing independent mobility, consequently affecting their quality of life and that of their family and carers. In order to provide an adaptive assistive driving system, a range of features need to be identified which are suitable for initial system setup and can automatically provide data for re-calibration over the long term. Methods : A questionnaire was designed to collect information from powered wheelchair users with regard to their symptoms and how they changed over time. Another group of volunteer participants were asked to drive a test platform and complete a course which represented manoeuvring in a very confined space as quickly as possible. Two of those participants were also monitored over a longer period in their normal home daily environment. Features, thought to be suitable, were examined using pattern recognition classifiers to determine their suitability for identifying the changing user input over time. Results : The results are not designed to provide absolute insight into the individual user behaviour, as no ground truth of their ability has been determined, they do nevertheless demonstrate the utility of the measured features to provide evidence of the users' changing ability over time whilst driving a powered wheelchair. Conclusions : Determining the driving features and adjustable elements provides the initial step towards developing an adaptable assistive technology for the user when the ground truths of the individual and their machine have been learned by a smart pattern recognition system.
Gillham, Michael; Pepper, Matthew; Kelly, Steve; Howells, Gareth
2018-01-01
Background: Many powered wheelchair users find their medical condition and their ability to drive the wheelchair will change over time. In order to maintain their independent mobility, the powered chair will require adjustment over time to suit the user's needs, thus regular input from healthcare professionals is required. These limited resources can result in the user having to wait weeks for appointments, resulting in the user losing independent mobility, consequently affecting their quality of life and that of their family and carers. In order to provide an adaptive assistive driving system, a range of features need to be identified which are suitable for initial system setup and can automatically provide data for re-calibration over the long term. Methods: A questionnaire was designed to collect information from powered wheelchair users with regard to their symptoms and how they changed over time. Another group of volunteer participants were asked to drive a test platform and complete a course which represented manoeuvring in a very confined space as quickly as possible. Two of those participants were also monitored over a longer period in their normal home daily environment. Features, thought to be suitable, were examined using pattern recognition classifiers to determine their suitability for identifying the changing user input over time. Results: The results are not designed to provide absolute insight into the individual user behaviour, as no ground truth of their ability has been determined, they do nevertheless demonstrate the utility of the measured features to provide evidence of the users’ changing ability over time whilst driving a powered wheelchair. Conclusions: Determining the driving features and adjustable elements provides the initial step towards developing an adaptable assistive technology for the user when the ground truths of the individual and their machine have been learned by a smart pattern recognition system. PMID:29552641
NASA Astrophysics Data System (ADS)
Chang, Wen-Li
2010-01-01
We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.
The recognition of graphical patterns invariant to geometrical transformation of the models
NASA Astrophysics Data System (ADS)
Ileană, Ioan; Rotar, Corina; Muntean, Maria; Ceuca, Emilian
2010-11-01
In case that a pattern recognition system is used for images recognition (in robot vision, handwritten recognition etc.), the system must have the capacity to identify an object indifferently of its size or position in the image. The problem of the invariance of recognition can be approached in some fundamental modes. One may apply the similarity criterion used in associative recall. The original pattern is replaced by a mathematical transform that assures some invariance (e.g. the value of two-dimensional Fourier transformation is translation invariant, the value of Mellin transformation is scale invariant). In a different approach the original pattern is represented through a set of features, each of them being coded indifferently of the position, orientation or position of the pattern. Generally speaking, it is easy to obtain invariance in relation with one transformation group, but is difficult to obtain simultaneous invariance at rotation, translation and scale. In this paper we analyze some methods to achieve invariant recognition of images, particularly for digit images. A great number of experiments are due and the conclusions are underplayed in the paper.
NASA Technical Reports Server (NTRS)
Hong, J. P.
1971-01-01
Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.
Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution
Gong, Lizhi Ian; Bloom, Jesse D.
2014-01-01
Most experimental studies of epistasis in evolution have focused on adaptive changes—but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well-defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza—here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play. PMID:24811236
Pattern-Recognition System for Approaching a Known Target
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Cheng, Yang
2008-01-01
A closed-loop pattern-recognition system is designed to provide guidance for maneuvering a small exploratory robotic vehicle (rover) on Mars to return to a landed spacecraft to deliver soil and rock samples that the spacecraft would subsequently bring back to Earth. The system could be adapted to terrestrial use in guiding mobile robots to approach known structures that humans could not approach safely, for such purposes as reconnaissance in military or law-enforcement applications, terrestrial scientific exploration, and removal of explosive or other hazardous items. The system has been demonstrated in experiments in which the Field Integrated Design and Operations (FIDO) rover (a prototype Mars rover equipped with a video camera for guidance) is made to return to a mockup of Mars-lander spacecraft. The FIDO rover camera autonomously acquires an image of the lander from a distance of 125 m in an outdoor environment. Then under guidance by an algorithm that performs fusion of multiple line and texture features in digitized images acquired by the camera, the rover traverses the intervening terrain, using features derived from images of the lander truss structure. Then by use of precise pattern matching for determining the position and orientation of the rover relative to the lander, the rover aligns itself with the bottom of ramps extending from the lander, in preparation for climbing the ramps to deliver samples to the lander. The most innovative aspect of the system is a set of pattern-recognition algorithms that govern a three-phase visual-guidance sequence for approaching the lander. During the first phase, a multifeature fusion algorithm integrates the outputs of a horizontal-line-detection algorithm and a wavelet-transform-based visual-area-of-interest algorithm for detecting the lander from a significant distance. The horizontal-line-detection algorithm is used to determine candidate lander locations based on detection of a horizontal deck that is part of the lander.
Andrews, Timothy J; Baseler, Heidi; Jenkins, Rob; Burton, A Mike; Young, Andrew W
2016-10-01
A full understanding of face recognition will involve identifying the visual information that is used to discriminate different identities and how this is represented in the brain. The aim of this study was to explore the importance of shape and surface properties in the recognition and neural representation of familiar faces. We used image morphing techniques to generate hybrid faces that mixed shape properties (more specifically, second order spatial configural information as defined by feature positions in the 2D-image) from one identity and surface properties from a different identity. Behavioural responses showed that recognition and matching of these hybrid faces was primarily based on their surface properties. These behavioural findings contrasted with neural responses recorded using a block design fMRI adaptation paradigm to test the sensitivity of Haxby et al.'s (2000) core face-selective regions in the human brain to the shape or surface properties of the face. The fusiform face area (FFA) and occipital face area (OFA) showed a lower response (adaptation) to repeated images of the same face (same shape, same surface) compared to different faces (different shapes, different surfaces). From the behavioural data indicating the critical contribution of surface properties to the recognition of identity, we predicted that brain regions responsible for familiar face recognition should continue to adapt to faces that vary in shape but not surface properties, but show a release from adaptation to faces that vary in surface properties but not shape. However, we found that the FFA and OFA showed an equivalent release from adaptation to changes in both shape and surface properties. The dissociation between the neural and perceptual responses suggests that, although they may play a role in the process, these core face regions are not solely responsible for the recognition of facial identity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Distorted Character Recognition Via An Associative Neural Network
NASA Astrophysics Data System (ADS)
Messner, Richard A.; Szu, Harold H.
1987-03-01
The purpose of this paper is two-fold. First, it is intended to provide some preliminary results of a character recognition scheme which has foundations in on-going neural network architecture modeling, and secondly, to apply some of the neural network results in a real application area where thirty years of effort has had little effect on providing the machine an ability to recognize distorted objects within the same object class. It is the author's belief that the time is ripe to start applying in ernest the results of over twenty years of effort in neural modeling to some of the more difficult problems which seem so hard to solve by conventional means. The character recognition scheme proposed utilizes a preprocessing stage which performs a 2-dimensional Walsh transform of an input cartesian image field, then sequency filters this spectrum into three feature bands. Various features are then extracted and organized into three sets of feature vectors. These vector patterns that are stored and recalled associatively. Two possible associative neural memory models are proposed for further investigation. The first being an outer-product linear matrix associative memory with a threshold function controlling the strength of the output pattern (similar to Kohonen's crosscorrelation approach [1]). The second approach is based upon a modified version of Grossberg's neural architecture [2] which provides better self-organizing properties due to its adaptive nature. Preliminary results of the sequency filtering and feature extraction preprocessing stage and discussion about the use of the proposed neural architectures is included.
Emerging Role of D-Amino Acid Metabolism in the Innate Defense
Sasabe, Jumpei; Suzuki, Masataka
2018-01-01
Mammalian innate and adaptive immune systems use the pattern recognition receptors, such as toll-like receptors, to detect conserved bacterial and viral components. Bacteria synthesize diverse D-amino acids while eukaryotes and archaea generally produce two D-amino acids, raising the possibility that many of bacterial D-amino acids are bacteria-specific metabolites. Although D-amino acids have not been identified to bind to any known pattern recognition receptors, D-amino acids are enantioselectively recognized by some other receptors and enzymes including a flavoenzyme D-amino acid oxidase (DAO) in mammals. At host–microbe interfaces in the neutrophils and intestinal mucosa, DAO catalyzes oxidation of bacterial D-amino acids, such as D-alanine, and generates H2O2, which is linked to antimicrobial activity. Intestinal DAO also modifies the composition of microbiota through modulation of growth for some bacteria that are dependent on host nutrition. Furthermore, regulation and recognition of D-amino acids in mammals have additional meanings at various host–microbe interfaces; D-phenylalanine and D-tryptophan regulate chemotaxis of neutrophils through a G-coupled protein receptor, D-serine has a bacteriostatic role in the urinary tract, D-phenylalanine and D-leucine inhibit innate immunity through the sweet taste receptor in the upper airway, and D-tryptophan modulates immune tolerance in the lower airway. This mini-review highlights recent evidence supporting the hypothesis that D-amino acids are utilized as inter-kingdom communication at host–microbe interface to modulate bacterial colonization and host defense. PMID:29867842
Emerging Role of D-Amino Acid Metabolism in the Innate Defense.
Sasabe, Jumpei; Suzuki, Masataka
2018-01-01
Mammalian innate and adaptive immune systems use the pattern recognition receptors, such as toll-like receptors, to detect conserved bacterial and viral components. Bacteria synthesize diverse D-amino acids while eukaryotes and archaea generally produce two D-amino acids, raising the possibility that many of bacterial D-amino acids are bacteria-specific metabolites. Although D-amino acids have not been identified to bind to any known pattern recognition receptors, D-amino acids are enantioselectively recognized by some other receptors and enzymes including a flavoenzyme D-amino acid oxidase (DAO) in mammals. At host-microbe interfaces in the neutrophils and intestinal mucosa, DAO catalyzes oxidation of bacterial D-amino acids, such as D-alanine, and generates H 2 O 2 , which is linked to antimicrobial activity. Intestinal DAO also modifies the composition of microbiota through modulation of growth for some bacteria that are dependent on host nutrition. Furthermore, regulation and recognition of D-amino acids in mammals have additional meanings at various host-microbe interfaces; D-phenylalanine and D-tryptophan regulate chemotaxis of neutrophils through a G-coupled protein receptor, D-serine has a bacteriostatic role in the urinary tract, D-phenylalanine and D-leucine inhibit innate immunity through the sweet taste receptor in the upper airway, and D-tryptophan modulates immune tolerance in the lower airway. This mini-review highlights recent evidence supporting the hypothesis that D-amino acids are utilized as inter-kingdom communication at host-microbe interface to modulate bacterial colonization and host defense.
Inflammasomes and Their Role in Innate Immunity of Sexually Transmitted Infections
Verma, Vivek; Dhanda, Rakesh Singh; Møller, Niels Frimodt; Yadav, Manisha
2016-01-01
Inflammasomes are multiprotein complexes present in the cytosol as pattern recognition receptors or as sensors of damage-associated molecular patterns. After recognition of microbe-associated molecular patterns or host-derived danger signals, nucleotide oligomerization domain-like receptors oligomerize to form inflammasomes. The activation of inflammasomes results in an alarm, which is raised to alert adjacent cells through the processing and release of a number of other substrates present in the cytosol. A wide array of inflammasomes and their adapter molecules have been identified in the host’s innate immune system in response to various pathogens. Components of specific pathogens activate different inflammasomes, which once activated in response to pathogen-induced infection, induce the activation of caspases, and the release of mature forms of interleukin-1β (IL-1β) and IL-18. Identifying the mechanisms underlying pathogen-induced inflammasome activation is important if we are to develop novel therapeutic strategies to target sexually transmitted infections (STIs) related pathogens. This information is currently lacking in literature. In this review, we have discussed the role of various inflammasomes in sensing different STIs, as well as the beneficial or detrimental effects of inflammasome signaling in host resistance. Additionally, we have discussed both canonical and non-canonical processing of IL-1β induced with respect to particular infections. Overall, these findings transform our understanding of both the basic biology and clinical relevance of inflammasomes. PMID:27994587
Sado, Tetsuya; Hahn, Christoph; Byrkjedal, Ingvar; Miya, Masaki
2016-01-01
The family Opisthoproctidae (barreleyes) constitutes one of the most peculiar looking and unknown deep-sea fish groups in terms of taxonomy and specialized adaptations. All the species in the family are united by the possession of tubular eyes, with one distinct lineage exhibiting also drastic shortening of the body. Two new species of the mesopelagic opisthoproctid mirrorbelly genus Monacoa are described based on pigmentation patterns of the “sole”—a unique vertebrate structure used in the reflection and control of bioluminescence in most short-bodied forms. Different pigmentation patterns of the soles, previously noted as intraspecific variations based on preserved specimens, are here shown species-specific and likely used for communication in addition to counter-illumination of down-welling sunlight. The genus Monacoa is resurrected from Opisthoproctus based on extensive morphological synaphomorphies pertaining to the anal fin and snout. Doubling the species diversity within sole-bearing opisthoproctids, including recognition of two genera, is unambiguously supported by mitogenomic DNA sequence data. Regular fixation with formalin and alcohol preservation is shown problematic concerning the retention of species-specific pigmentation patterns. Examination or photos of fresh material before formalin fixation is shown paramount for correct species recognition of sole-bearing opisthoproctids—a relatively unknown issue concerning species diversity in the deep-sea pelagic realm. PMID:27508419
Classification of Partial Discharge Measured under Different Levels of Noise Contamination
2017-01-01
Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination. PMID:28085953
2014-01-01
Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks. PMID:24410948
Keegan, Caroline; Krutzik, Stephan; Schenk, Mirjam; Scumpia, Philip O; Lu, Jing; Pang, Yan Ling Joy; Russell, Brandon S; Lim, Kok Seong; Shell, Scarlet; Prestwich, Erin; Su, Dan; Elashoff, David; Hershberg, Robert M; Bloom, Barry R; Belisle, John T; Fortune, Sarah; Dedon, Peter C; Pellegrini, Matteo; Modlin, Robert L
2018-05-01
Upon recognition of a microbial pathogen, the innate and adaptive immune systems are linked to generate a cell-mediated immune response against the foreign invader. The culture filtrate of Mycobacterium tuberculosis contains ligands, such as M. tuberculosis tRNA, that activate the innate immune response and secreted Ags recognized by T cells to drive adaptive immune responses. In this study, bioinformatics analysis of gene-expression profiles derived from human PBMCs treated with distinct microbial ligands identified a mycobacterial tRNA-induced innate immune network resulting in the robust production of IL-12p70, a cytokine required to instruct an adaptive Th1 response for host defense against intracellular bacteria. As validated by functional studies, this pathway contained a feed-forward loop, whereby the early production of IL-18, type I IFNs, and IL-12p70 primed NK cells to respond to IL-18 and produce IFN-γ, enhancing further production of IL-12p70. Mechanistically, tRNA activates TLR3 and TLR8, and this synergistic induction of IL-12p70 was recapitulated by the addition of a specific TLR8 agonist with a TLR3 ligand to PBMCs. These data indicate that M. tuberculosis tRNA activates a gene network involving the integration of multiple innate signals, including types I and II IFNs, as well as distinct cell types to induce IL-12p70. Copyright © 2018 by The American Association of Immunologists, Inc.
NASA Astrophysics Data System (ADS)
Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.
2004-11-01
Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.
Efficient boundary hunting via vector quantization
NASA Astrophysics Data System (ADS)
Diamantini, Claudia; Panti, Maurizio
2001-03-01
A great amount of information about a classification problem is contained in those instances falling near the decision boundary. This intuition dates back to the earliest studies in pattern recognition, and in the more recent adaptive approaches to the so called boundary hunting, such as the work of Aha et alii on Instance Based Learning and the work of Vapnik et alii on Support Vector Machines. The last work is of particular interest, since theoretical and experimental results ensure the accuracy of boundary reconstruction. However, its optimization approach has heavy computational and memory requirements, which limits its application on huge amounts of data. In the paper we describe an alternative approach to boundary hunting based on adaptive labeled quantization architectures. The adaptation is performed by a stochastic gradient algorithm for the minimization of the error probability. Error probability minimization guarantees the accurate approximation of the optimal decision boundary, while the use of a stochastic gradient algorithm defines an efficient method to reach such approximation. In the paper comparisons to Support Vector Machines are considered.
Flexible Piezoelectric Sensor-Based Gait Recognition.
Cha, Youngsu; Kim, Hojoon; Kim, Doik
2018-02-05
Most motion recognition research has required tight-fitting suits for precise sensing. However, tight-suit systems have difficulty adapting to real applications, because people normally wear loose clothes. In this paper, we propose a gait recognition system with flexible piezoelectric sensors in loose clothing. The gait recognition system does not directly sense lower-body angles. It does, however, detect the transition between standing and walking. Specifically, we use the signals from the flexible sensors attached to the knee and hip parts on loose pants. We detect the periodic motion component using the discrete time Fourier series from the signal during walking. We adapt the gait detection method to a real-time patient motion and posture monitoring system. In the monitoring system, the gait recognition operates well. Finally, we test the gait recognition system with 10 subjects, for which the proposed system successfully detects walking with a success rate over 93 %.
On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information
NASA Astrophysics Data System (ADS)
Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.
Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.
Basics of identification measurement technology
NASA Astrophysics Data System (ADS)
Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.
2018-01-01
All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.
Primary care for adults on the autism spectrum.
Nicolaidis, Christina; Kripke, Clarissa Calliope; Raymaker, Dora
2014-09-01
Autism spectrum disorder (ASD) is defined by differences in social communication and restricted, repetitive patterns of behavior, interests, or activities. Skills and challenges can change depending on environmental stimuli, supports, and stressors. Quality of life can be improved by the use of accommodations, assistive technologies, therapies to improve adaptive function or communication, caregiver training, acceptance, access, and inclusion. This article focuses on the identification of ASD in adults, referrals for services, the recognition of associated conditions, strategies and accommodations to facilitate effective primary care services, and ethical issues related to caring for autistic adults. Copyright © 2014 Elsevier Inc. All rights reserved.
1991-05-23
rotational objects can b ec-tetd. E-Ac Ceedent 3exp-erimental demon ct r-ati ons for these tuo zethodsc hare L-en nerfor-med.A aner atohi naturve xs...dependent nature ---f the Joint rransifore f.Iter. Unlike theVa.dr %g~ii ssignal indepndent. a0. eir -las 3advata in real-tim ’-n14-a-entatio-n...a-tit reI ra-’ t --er is n -) 0 s-’ow Uha thsthoesc~-heo 8 spectral content of the target. A paper of this nature is published in the Optics and
Gandarias, Juan M; Gómez-de-Gabriel, Jesús M; García-Cerezo, Alfonso J
2018-02-26
The use of tactile perception can help first response robotic teams in disaster scenarios, where visibility conditions are often reduced due to the presence of dust, mud, or smoke, distinguishing human limbs from other objects with similar shapes. Here, the integration of the tactile sensor in adaptive grippers is evaluated, measuring the performance of an object recognition task based on deep convolutional neural networks (DCNNs) using a flexible sensor mounted in adaptive grippers. A total of 15 classes with 50 tactile images each were trained, including human body parts and common environment objects, in semi-rigid and flexible adaptive grippers based on the fin ray effect. The classifier was compared against the rigid configuration and a support vector machine classifier (SVM). Finally, a two-level output network has been proposed to provide both object-type recognition and human/non-human classification. Sensors in adaptive grippers have a higher number of non-null tactels (up to 37% more), with a lower mean of pressure values (up to 72% less) than when using a rigid sensor, with a softer grip, which is needed in physical human-robot interaction (pHRI). A semi-rigid implementation with 95.13% object recognition rate was chosen, even though the human/non-human classification had better results (98.78%) with a rigid sensor.
Action Recognition in a Crowded Environment
Nieuwenhuis, Judith; Bülthoff, Isabelle; Barraclough, Nick; de la Rosa, Stephan
2017-01-01
So far, action recognition has been mainly examined with small point-light human stimuli presented alone within a narrow central area of the observer’s visual field. Yet, we need to recognize the actions of life-size humans viewed alone or surrounded by bystanders, whether they are seen in central or peripheral vision. Here, we examined the mechanisms in central vision and far periphery (40° eccentricity) involved in the recognition of the actions of a life-size actor (target) and their sensitivity to the presence of a crowd surrounding the target. In Experiment 1, we used an action adaptation paradigm to probe whether static or idly moving crowds might interfere with the recognition of a target’s action (hug or clap). We found that this type of crowds whose movements were dissimilar to the target action hardly affected action recognition in central and peripheral vision. In Experiment 2, we examined whether crowd actions that were more similar to the target actions affected action recognition. Indeed, the presence of that crowd diminished adaptation aftereffects in central vision as wells as in the periphery. We replicated Experiment 2 using a recognition task instead of an adaptation paradigm. With this task, we found evidence of decreased action recognition accuracy, but this was significant in peripheral vision only. Our results suggest that the presence of a crowd carrying out actions similar to that of the target affects its recognition. We outline how these results can be understood in terms of high-level crowding effects that operate on action-sensitive perceptual channels. PMID:29308177
Pattern recognition neural-net by spatial mapping of biology visual field
NASA Astrophysics Data System (ADS)
Lin, Xin; Mori, Masahiko
2000-05-01
The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia A.; Hosamani, Ravikumar; Bhattacharya, Sharmila
2015-01-01
Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives.
Zheng, Ping; Wang, Minxiao; Li, Chaolun; Sun, Xiaoqing; Wang, Xiaocheng; Sun, Yan; Sun, Song
2017-10-01
Mussels (Bivalve: Mytilidae) have adapted to various habitats, from fresh water to the deep sea. To understand their adaptive characteristics in different habitats, particularly in the bathymodiolin mussels in deep-sea chemosynthetic ecosystems, we conducted a comparative transcriptomic analysis between deep-sea bathymodiolin mussels and their shallow-water relatives. A number of gene families related to stress responses were shared across all mussels, without specific or significantly expanded families in deep-sea species, indicating that all mussels are capable of adapting to diverse harsh environments, but that different members of the same gene family may be preferentially utilized by different species. One of the most extraordinary trait of bathymodiolin mussels is their endosymbiosis. Lineage-specific and positively selected TLRs and highly expressed C1QDC proteins were identified in the gills of the bathymodiolins, suggesting their possible functions in symbiont recognition. However, pattern recognition receptors of the bathymodiolins were globally reduced, facilitating the invasion and maintenance of the symbionts obtained by either endocytosis or phagocytosis. Additionally, various transporters were positively selected or more highly expressed in the deep-sea mussels, indicating a means by which necessary materials could be provided for the symbionts. Key genes supporting lysosomal activity were also positively selected or more highly expressed in the deep-sea mussels, suggesting that nutrition fixed by the symbionts can be absorbed in a "farming" way wherein the symbionts are digested by lysosomes. Regulation of key physiological processes including lysosome activity, apoptosis and immune reactions is needed to maintain a stable host-symbiont relationship, but the mechanisms are still unclear. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
33 CFR 106.215 - Company or OCS facility personnel with security duties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...
33 CFR 106.215 - Company or OCS facility personnel with security duties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...
Facial expression recognition based on improved local ternary pattern and stacked auto-encoder
NASA Astrophysics Data System (ADS)
Wu, Yao; Qiu, Weigen
2017-08-01
In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.
NASA Astrophysics Data System (ADS)
Luo, Yuan; Wang, Bo-yu; Zhang, Yi; Zhao, Li-ming
2018-03-01
In this paper, under different illuminations and random noises, focusing on the local texture feature's defects of a face image that cannot be completely described because the threshold of local ternary pattern (LTP) cannot be calculated adaptively, a local three-value model of improved adaptive local ternary pattern (IALTP) is proposed. Firstly, the difference function between the center pixel and the neighborhood pixel weight is established to obtain the statistical characteristics of the central pixel and the neighborhood pixel. Secondly, the adaptively gradient descent iterative function is established to calculate the difference coefficient which is defined to be the threshold of the IALTP operator. Finally, the mean and standard deviation of the pixel weight of the local region are used as the coding mode of IALTP. In order to reflect the overall properties of the face and reduce the dimension of features, the two-directional two-dimensional PCA ((2D)2PCA) is adopted. The IALTP is used to extract local texture features of eyes and mouth area. After combining the global features and local features, the fusion features (IALTP+) are obtained. The experimental results on the Extended Yale B and AR standard face databases indicate that under different illuminations and random noises, the algorithm proposed in this paper is more robust than others, and the feature's dimension is smaller. The shortest running time reaches 0.329 6 s, and the highest recognition rate reaches 97.39%.
The Role of Higher Level Adaptive Coding Mechanisms in the Development of Face Recognition
ERIC Educational Resources Information Center
Pimperton, Hannah; Pellicano, Elizabeth; Jeffery, Linda; Rhodes, Gillian
2009-01-01
DevDevelopmental improvements in face identity recognition ability are widely documented, but the source of children's immaturity in face recognition remains unclear. Differences in the way in which children and adults visually represent faces might underlie immaturities in face recognition. Recent evidence of a face identity aftereffect (FIAE),…
Khan, Nargis; Aqdas, Mohammad; Vidyarthi, Aurobind; Negi, Shikha; Pahari, Susanta; Agnihotri, Tapan; Agrewala, Javed N.
2016-01-01
Dendritic cells (DCs) play a crucial role in bridging innate and adaptive immunity by activating naïve T cells. The role of pattern recognition receptors like Toll-Like Receptors and Nod-Like Receptors expressed on DCs is well-defined in the recognition of the pathogens. However, nothing is precisely studied regarding the impact of NOD-2 signaling during the differentiation of DCs. Consequently, we explored the role of NOD-2 signaling in the differentiation of DCs and therefore their capability to activate innate and adaptive immunity. Intriguingly, we observed that NOD-2 stimulated DCs (nDCs) acquired highly activated and matured phenotype and exhibited substantially greater bactericidal activity by robust production of nitric oxide. The mechanism involved in improving the functionality of nDCs was dependent on IFN-αβ signaling, leading to the activation of STAT pathways. Furthermore, we also observed that STAT-1 and STAT-4 dependent maturation and activation of DCs was under the feedback mechanism of SOCS-1 and SOCS-3 proteins. nDCs acquired enhanced potential to activate chiefly Th1 and Th17 immunity. Taken together, these results suggest that nDCs can be exploited as an immunotherapeutic agent in bolstering host immunity and imparting protection against the pathogens. PMID:27265209
Patterns recognition of electric brain activity using artificial neural networks
NASA Astrophysics Data System (ADS)
Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.
2017-04-01
An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.
NASA Astrophysics Data System (ADS)
Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.
2017-01-01
In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.
ICPR-2016 - International Conference on Pattern Recognition
Learning for Scene Understanding" Speakers ICPR2016 PAPER AWARDS Best Piero Zamperoni Student Paper -Paced Dictionary Learning for Cross-Domain Retrieval and Recognition Xu, Dan; Song, Jingkuan; Alameda discussions on recent advances in the fields of Pattern Recognition, Machine Learning and Computer Vision, and
Tcheng, David K.; Nayak, Ashwin K.; Fowlkes, Charless C.; Punyasena, Surangi W.
2016-01-01
Discriminating between black and white spruce (Picea mariana and Picea glauca) is a difficult palynological classification problem that, if solved, would provide valuable data for paleoclimate reconstructions. We developed an open-source visual recognition software (ARLO, Automated Recognition with Layered Optimization) capable of differentiating between these two species at an accuracy on par with human experts. The system applies pattern recognition and machine learning to the analysis of pollen images and discovers general-purpose image features, defined by simple features of lines and grids of pixels taken at different dimensions, size, spacing, and resolution. It adapts to a given problem by searching for the most effective combination of both feature representation and learning strategy. This results in a powerful and flexible framework for image classification. We worked with images acquired using an automated slide scanner. We first applied a hash-based “pollen spotting” model to segment pollen grains from the slide background. We next tested ARLO’s ability to reconstruct black to white spruce pollen ratios using artificially constructed slides of known ratios. We then developed a more scalable hash-based method of image analysis that was able to distinguish between the pollen of black and white spruce with an estimated accuracy of 83.61%, comparable to human expert performance. Our results demonstrate the capability of machine learning systems to automate challenging taxonomic classifications in pollen analysis, and our success with simple image representations suggests that our approach is generalizable to many other object recognition problems. PMID:26867017
NASA Technical Reports Server (NTRS)
Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.
2010-01-01
New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.
Hopfield's Model of Patterns Recognition and Laws of Artistic Perception
NASA Astrophysics Data System (ADS)
Yevin, Igor; Koblyakov, Alexander
The model of patterns recognition or attractor network model of associative memory, offered by J.Hopfield 1982, is the most known model in theoretical neuroscience. This paper aims to show, that such well-known laws of art perception as the Wundt curve, perception of visual ambiguity in art, and also the model perception of musical tonalities are nothing else than special cases of the Hopfield’s model of patterns recognition.
Computer discrimination procedures applicable to aerial and ERTS multispectral data
NASA Technical Reports Server (NTRS)
Richardson, A. J.; Torline, R. J.; Allen, W. A.
1970-01-01
Two statistical models are compared in the classification of crops recorded on color aerial photographs. A theory of error ellipses is applied to the pattern recognition problem. An elliptical boundary condition classification model (EBC), useful for recognition of candidate patterns, evolves out of error ellipse theory. The EBC model is compared with the minimum distance to the mean (MDM) classification model in terms of pattern recognition ability. The pattern recognition results of both models are interpreted graphically using scatter diagrams to represent measurement space. Measurement space, for this report, is determined by optical density measurements collected from Kodak Ektachrome Infrared Aero Film 8443 (EIR). The EBC model is shown to be a significant improvement over the MDM model.
Sub-pattern based multi-manifold discriminant analysis for face recognition
NASA Astrophysics Data System (ADS)
Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen
2018-04-01
In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.
ERIC Educational Resources Information Center
Harris, Richard W.; And Others
1988-01-01
A two-microphone adaptive digital noise cancellation technique improved word-recognition ability for 20 normal and 12 hearing-impaired adults by reducing multitalker speech babble and speech spectrum noise 18-22 dB. Word recognition improvements averaged 37-50 percent for normal and 27-40 percent for hearing-impaired subjects. Improvement was best…
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan
2014-09-01
In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.
Pattern association--a key to recognition of shark attacks.
Cirillo, G; James, H
2004-12-01
Investigation of a number of shark attacks in South Australian waters has lead to recognition of pattern similarities on equipment recovered from the scene of such attacks. Six cases are presented in which a common pattern of striations has been noted.
The method for froth floatation condition recognition based on adaptive feature weighted
NASA Astrophysics Data System (ADS)
Wang, Jieran; Zhang, Jun; Tian, Jinwen; Zhang, Daimeng; Liu, Xiaomao
2018-03-01
The fusion of foam characteristics can play a complementary role in expressing the content of foam image. The weight of foam characteristics is the key to make full use of the relationship between the different features. In this paper, an Adaptive Feature Weighted Method For Froth Floatation Condition Recognition is proposed. Foam features without and with weights are both classified by using support vector machine (SVM).The classification accuracy and optimal equaling algorithm under the each ore grade are regarded as the result of the adaptive feature weighting algorithm. At the same time the effectiveness of adaptive weighted method is demonstrated.
Activation of RIG-I-like Receptor Signal Transduction
Bruns, Annie; Horvath, Curt M.
2011-01-01
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling cascades. The RIG-I-like receptors are cytoplasmic DExD/H box proteins that can specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RIG-I-like receptor family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All of these proteins can bind double-stranded RNA species with varying affinities via their conserved DExD/H box RNA helicase domains and C-terminal regulatory domains. The recognition of foreign RNA by the RLRs activates enzymatic functions and initiates signal transduction pathways resulting in the production of antiviral cytokines and the establishment of a broadly effective cellular antiviral state that protects neighboring cells from infection and triggers innate and adaptive immune systems. The propagation of this signal via the interferon antiviral system has been studied extensively, while the precise roles for enzymatic activities of the RNA helicase domain in antiviral responses are only beginning to be elucidated. Here, current models for RLR ligand recognition and signaling are reviewed. PMID:22066529
Mechanisms and evolution of plant resistance to aphids.
Züst, Tobias; Agrawal, Anurag A
2016-01-06
Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions.
Recognition vs Reverse Engineering in Boolean Concepts Learning
ERIC Educational Resources Information Center
Shafat, Gabriel; Levin, Ilya
2012-01-01
This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…
Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.
Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre
2017-06-01
We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.
Finger vein recognition based on personalized weight maps.
Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu
2013-09-10
Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition.
Finger Vein Recognition Based on Personalized Weight Maps
Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu
2013-01-01
Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-11-22
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-01-01
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
NASA Astrophysics Data System (ADS)
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-11-01
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.
A Hybrid Acoustic and Pronunciation Model Adaptation Approach for Non-native Speech Recognition
NASA Astrophysics Data System (ADS)
Oh, Yoo Rhee; Kim, Hong Kook
In this paper, we propose a hybrid model adaptation approach in which pronunciation and acoustic models are adapted by incorporating the pronunciation and acoustic variabilities of non-native speech in order to improve the performance of non-native automatic speech recognition (ASR). Specifically, the proposed hybrid model adaptation can be performed at either the state-tying or triphone-modeling level, depending at which acoustic model adaptation is performed. In both methods, we first analyze the pronunciation variant rules of non-native speakers and then classify each rule as either a pronunciation variant or an acoustic variant. The state-tying level hybrid method then adapts pronunciation models and acoustic models by accommodating the pronunciation variants in the pronunciation dictionary and by clustering the states of triphone acoustic models using the acoustic variants, respectively. On the other hand, the triphone-modeling level hybrid method initially adapts pronunciation models in the same way as in the state-tying level hybrid method; however, for the acoustic model adaptation, the triphone acoustic models are then re-estimated based on the adapted pronunciation models and the states of the re-estimated triphone acoustic models are clustered using the acoustic variants. From the Korean-spoken English speech recognition experiments, it is shown that ASR systems employing the state-tying and triphone-modeling level adaptation methods can relatively reduce the average word error rates (WERs) by 17.1% and 22.1% for non-native speech, respectively, when compared to a baseline ASR system.
Tima, Hermann Giresse; Huygen, Kris; Romano, Marta
2016-11-01
Pathogen recognition receptors (PRRs) recognize pathogen-associated molecular patterns, triggering the induction of inflammatory innate responses and contributing to the development of specific adaptive immune responses. Novel adjuvants have been developed based on agonists of PRRs. Areas covered: Lipid pathogen-associated molecular patterns (PAMPs) present in the cell wall of mycobacteria are revised, with emphasis on agonists of C-type lectin receptors, signaling pathways, and preclinical data supporting their use as novel adjuvants inducing cell-mediated immune responses. Their potential use as lipid antigens in novel tuberculosis subunit vaccines is also discussed. Expert commentary: Few adjuvants are licensed for human use and mainly favour antibody-mediated protective immunity. Use of lipid PAMPs that trigger cell-mediated immune responses could lead to the development of adjuvants for vaccines against intracellular pathogens and cancer.
Wavelet-based associative memory
NASA Astrophysics Data System (ADS)
Jones, Katharine J.
2004-04-01
Faces provide important characteristics of a person"s identification. In security checks, face recognition still remains the method in continuous use despite other approaches (i.e. fingerprints, voice recognition, pupil contraction, DNA scanners). With an associative memory, the output data is recalled directly using the input data. This can be achieved with a Nonlinear Holographic Associative Memory (NHAM). This approach can also distinguish between strongly correlated images and images that are partially or totally enclosed by others. Adaptive wavelet lifting has been used for Content-Based Image Retrieval. In this paper, adaptive wavelet lifting will be applied to face recognition to achieve an associative memory.
A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation
USDA-ARS?s Scientific Manuscript database
Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...
Recognition Without Words: Using Taste to Explore Survival Processing
Hallock, Henry L.; Garman, Heather D.; Cook, Shaun P.; Gallagher, Shawn P.
2017-01-01
Many educational demonstrations of memory and recall employ word lists and number strings; items that lend themselves to semantic organization and “chunking.” By applying taste recall to the adaptive memory paradigm, which evaluates memory from a survival-based evolutionary perspective, we have developed a simple, inexpensive exercise that defies mnemonic strategies. Most adaptive memory studies have evaluated recall of words encountered while imagining survival and non-survival scenarios. Here, we’ve left the lexical domain and hypothesized that taste memory, as measured by recognition, would be best when acquisition occurs under imagined threat of personal harm, namely poisoning. We tested participants individually while they evaluated eight teas in one of three conditions: in one, they evaluated the toxicity of the tea (survival condition), in a second, they considered the marketability of the tea and, in the third, they evaluated the bitterness of the tea. After a filler task, a surprise recognition task required the participants to taste and identify the eight original teas from a group of 16 that included eight novel teas. The survival condition led to better recognition than the bitterness condition but, surprisingly, it did not yield better recognition than the marketing condition. A second experiment employed a streamlined design more appropriate for classroom settings and failed to support the hypothesis that planning enhanced recognition in survival scenarios. This simple technique has, at least, revealed a robust levels-of-processing effect for taste recognition and invites students to consider the adaptive advantages of all forms of memory. PMID:28690433
33 CFR 104.210 - Company Security Officer (CSO).
Code of Federal Regulations, 2011 CFR
2011-07-01
... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...
33 CFR 104.210 - Company Security Officer (CSO).
Code of Federal Regulations, 2010 CFR
2010-07-01
... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...
Infrared face recognition based on LBP histogram and KW feature selection
NASA Astrophysics Data System (ADS)
Xie, Zhihua
2014-07-01
The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).
NASA Astrophysics Data System (ADS)
Yu, Wenwu; Cao, Jinde
2007-09-01
Parameter identification of dynamical systems from time series has received increasing interest due to its wide applications in secure communication, pattern recognition, neural networks, and so on. Given the driving system, parameters can be estimated from the time series by using an adaptive control algorithm. Recently, it has been reported that for some stable systems, in which parameters are difficult to be identified [Li et al., Phys Lett. A 333, 269-270 (2004); Remark 5 in Yu and Cao, Physica A 375, 467-482 (2007); and Li et al., Chaos 17, 038101 (2007)], and in this paper, a brief discussion about whether parameters can be identified from time series is investigated. From some detailed analyses, the problem of why parameters of stable systems can be hardly estimated is discussed. Some interesting examples are drawn to verify the proposed analysis.
Multi-layer holographic bifurcative neural network system for real-time adaptive EOS data analysis
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Huang, K. S.; Diep, J.
1993-01-01
Optical data processing techniques have the inherent advantage of high data throughout, low weight and low power requirements. These features are particularly desirable for onboard spacecraft in-situ real-time data analysis and data compression applications. the proposed multi-layer optical holographic neural net pattern recognition technique will utilize the nonlinear photorefractive devices for real-time adaptive learning to classify input data content and recognize unexpected features. Information can be stored either in analog or digital form in a nonlinear photofractive device. The recording can be accomplished in time scales ranging from milliseconds to microseconds. When a system consisting of these devices is organized in a multi-layer structure, a feedforward neural net with bifurcating data classification capability is formed. The interdisciplinary research will involve the collaboration with top digital computer architecture experts at the University of Southern California.
Adaptive learning compressive tracking based on Markov location prediction
NASA Astrophysics Data System (ADS)
Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan
2017-03-01
Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.
Saeed, Faisal; Salim, Naomie; Abdo, Ammar
2013-07-01
Many consensus clustering methods have been applied in different areas such as pattern recognition, machine learning, information theory and bioinformatics. However, few methods have been used for chemical compounds clustering. In this paper, an information theory and voting based algorithm (Adaptive Cumulative Voting-based Aggregation Algorithm A-CVAA) was examined for combining multiple clusterings of chemical structures. The effectiveness of clusterings was evaluated based on the ability of the clustering method to separate active from inactive molecules in each cluster, and the results were compared with Ward's method. The chemical dataset MDL Drug Data Report (MDDR) and the Maximum Unbiased Validation (MUV) dataset were used. Experiments suggest that the adaptive cumulative voting-based consensus method can improve the effectiveness of combining multiple clusterings of chemical structures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2D DOST based local phase pattern for face recognition
NASA Astrophysics Data System (ADS)
Moniruzzaman, Md.; Alam, Mohammad S.
2017-05-01
A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.
Lieberman, Debra; Tooby, John; Cosmides, Leda
2003-04-22
Kin-recognition systems have been hypothesized to exist in humans, and adaptively to regulate altruism and incest avoidance among close genetic kin. This latter function allows the architecture of the kin recognition system to be mapped by quantitatively matching individual variation in opposition to incest to individual variation in developmental parameters, such as family structure and co-residence patterns. Methodological difficulties that appear when subjects are asked to disclose incestuous inclinations can be circumvented by measuring their opposition to incest in third parties, i.e. morality. This method allows a direct test of Westermarck's original hypothesis that childhood co-residence with an opposite-sex individual predicts the strength of moral sentiments regarding third-party sibling incest. Results support Westermarck's hypothesis and the model of kin recognition that it implies. Co-residence duration objectively predicts genetic relatedness, making it a reliable cue to kinship. Co-residence duration predicts the strength of opposition to incest, even after controlling for relatedness and even when co-residing individuals are genetically unrelated. This undercuts kin-recognition models requiring matching to self (through, for example, major histocompatibility complex or phenotypic markers). Subjects' beliefs about relatedness had no effect after controlling for co-residence, indicating that systems regulating kin-relevant behaviours are non-conscious, and calibrated by co-residence, not belief.
Lieberman, Debra; Tooby, John; Cosmides, Leda
2003-01-01
Kin-recognition systems have been hypothesized to exist in humans, and adaptively to regulate altruism and incest avoidance among close genetic kin. This latter function allows the architecture of the kin recognition system to be mapped by quantitatively matching individual variation in opposition to incest to individual variation in developmental parameters, such as family structure and co-residence patterns. Methodological difficulties that appear when subjects are asked to disclose incestuous inclinations can be circumvented by measuring their opposition to incest in third parties, i.e. morality. This method allows a direct test of Westermarck's original hypothesis that childhood co-residence with an opposite-sex individual predicts the strength of moral sentiments regarding third-party sibling incest. Results support Westermarck's hypothesis and the model of kin recognition that it implies. Co-residence duration objectively predicts genetic relatedness, making it a reliable cue to kinship. Co-residence duration predicts the strength of opposition to incest, even after controlling for relatedness and even when co-residing individuals are genetically unrelated. This undercuts kin-recognition models requiring matching to self (through, for example, major histocompatibility complex or phenotypic markers). Subjects' beliefs about relatedness had no effect after controlling for co-residence, indicating that systems regulating kin-relevant behaviours are non-conscious, and calibrated by co-residence, not belief. PMID:12737660
Optical Pattern Recognition for Missile Guidance.
1982-11-15
directed to novel pattern recognition algo- rithms (that allow pattern recognition and object classification in the face of various geometrical and...I wats EF5 = 50) p.j/t’ni 2 (for btith image pat tern recognitio itas a preproicessing oiperatiton. Ini devices). TIhe rt’ad light intensity (0.33t mW...electrodes on its large faces . This Priz light modulator and the motivation for its devel- SLM is known as the Prom (Pockels real-time optical opment. In Sec
Neural networks and applications tutorial
NASA Astrophysics Data System (ADS)
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
Unsupervised learning of digit recognition using spike-timing-dependent plasticity
Diehl, Peter U.; Cook, Matthew
2015-01-01
In order to understand how the mammalian neocortex is performing computations, two things are necessary; we need to have a good understanding of the available neuronal processing units and mechanisms, and we need to gain a better understanding of how those mechanisms are combined to build functioning systems. Therefore, in recent years there is an increasing interest in how spiking neural networks (SNN) can be used to perform complex computations or solve pattern recognition tasks. However, it remains a challenging task to design SNNs which use biologically plausible mechanisms (especially for learning new patterns), since most such SNN architectures rely on training in a rate-based network and subsequent conversion to a SNN. We present a SNN for digit recognition which is based on mechanisms with increased biological plausibility, i.e., conductance-based instead of current-based synapses, spike-timing-dependent plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking threshold. Unlike most other systems, we do not use a teaching signal and do not present any class labels to the network. Using this unsupervised learning scheme, our architecture achieves 95% accuracy on the MNIST benchmark, which is better than previous SNN implementations without supervision. The fact that we used no domain-specific knowledge points toward the general applicability of our network design. Also, the performance of our network scales well with the number of neurons used and shows similar performance for four different learning rules, indicating robustness of the full combination of mechanisms, which suggests applicability in heterogeneous biological neural networks. PMID:26941637
Recognition as Support for Reasoning about Horizontal Motion: A Further Resource for School Science?
ERIC Educational Resources Information Center
Howe, Christine; Taylor Tavares, Joana; Devine, Amy
2016-01-01
Background: Even infants can recognize whether patterns of motion are or are not natural, yet an acknowledged challenge for science education is to promote adequate reasoning about such patterns. Since research indicates linkage between the conceptual bases of recognition and reasoning, it seems possible that recognition can be engaged to support…
Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat; Song, Minshu; Shulgina, Irina
2015-01-01
Detecting local adaptation and its spatial scale is one of the most important questions of evolutionary biology. However, recognition of the effect of local selection can be challenging when there is considerable environmental variation across the distance at the whole species range. We analyzed patterns of local adaptation in emmer wheat, Triticum dicoccoides, at two spatial scales, small (inter-population distance less than one km) and large (inter-population distance more than 50 km) using several approaches. Plants originating from four distinct habitats at two geographic scales (cold edge, arid edge and two topographically dissimilar core locations) were reciprocally transplanted and their success over time was measured as 1) lifetime fitness in a year of planting, and 2) population growth four years after planting. In addition, we analyzed molecular (SSR) and quantitative trait variation and calculated the QST/FST ratio. No home advantage was detected at the small spatial scale. At the large spatial scale, home advantage was detected for the core population and the cold edge population in the year of introduction via measuring life-time plant performance. However, superior performance of the arid edge population in its own environment was evident only after several generations via measuring experimental population growth rate through genotyping with SSRs allowing counting the number of plants and seeds per introduced genotype per site. These results highlight the importance of multi-generation surveys of population growth rate in local adaptation testing. Despite predominant self-fertilization of T. dicoccoides and the associated high degree of structuring of genetic variation, the results of the QST - FST comparison were in general agreement with the pattern of local adaptation at the two spatial scales detected by reciprocal transplanting.
33 CFR 105.210 - Facility personnel with security duties.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...
33 CFR 105.210 - Facility personnel with security duties.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...
Self/nonself perception in plants in innate immunity and defense
Sanabria, Natasha M; Huang, Ju-Chi
2010-01-01
The ability to distinguish ‘self’ from ‘nonself’ is the most fundamental aspect of any immune system. The evolutionary solution in plants to the problems of perceiving and responding to pathogens involves surveillance of nonself, damaged-self and altered-self as danger signals. This is reflected in basal resistance or non-host resistance, which is the innate immune response that protects plants against the majority of pathogens. In the case of surveillance of nonself, plants utilize receptor-like proteins or -kinases (RLP/Ks) as pattern recognition receptors (PRRs), which can detect conserved pathogen/microbe-associated molecular pattern (P/MAMP) molecules. P/MAMP detection serves as an early warning system for the presence of a wide range of potential pathogens and the timely activation of plant defense mechanisms. However, adapted microbes express a suite of effector proteins that often interfere or act as suppressors of these defenses. In response, plants have evolved a second line of defense that includes intracellular nucleotide binding leucine-rich repeat (NB-LRR)-containing resistance proteins, which recognize isolate-specific pathogen effectors once the cell wall has been compromised. This host-immunity acts within the species level and is controlled by polymorphic host genes, where resistance protein-mediated activation of defense is based on an ‘altered-self’ recognition mechanism. PMID:21559176
Smolen, Kinga K; Cai, Bing; Fortuno, Edgardo S; Gelinas, Laura; Larsen, Martin; Speert, David P; Chamekh, Mustapha; Kollmann, Tobias R
2014-01-01
Innate immunity instructs adaptive immunity, and suppression of innate immunity is associated with increased risk for infection. We had previously shown that whole blood cellular components from a cohort of South African children secreted significantly lower levels of most cytokines following stimulation of pattern recognition receptors (PRR) as compared to whole blood from cohorts of Ecuadorian, Belgian, or Canadian children. To begin dissecting the responsible molecular mechanisms, we now set out to identify the relevant cellular source of these differences. Across the four cohorts represented in our study, we identified significant variation in the cellular composition of whole blood; however, significant reduction of the intracellular cytokine production on the single cell level was only detected in South African childrens’ monocytes, cDC, and pDC. We also uncovered a marked reduction in polyfunctionality for each of these cellular compartments in South African children as compared to children from other continents. Together our data identify differences in cell composition as well as profoundly lower functional responses of innate cells in our cohort of South African children. A possible link between altered innate immunity and increased risk for infection or lower response to vaccines in South African infants needs to be explored. PMID:25135829
Robust image region descriptor using local derivative ordinal binary pattern
NASA Astrophysics Data System (ADS)
Shang, Jun; Chen, Chuanbo; Pei, Xiaobing; Liang, Hu; Tang, He; Sarem, Mudar
2015-05-01
Binary image descriptors have received a lot of attention in recent years, since they provide numerous advantages, such as low memory footprint and efficient matching strategy. However, they utilize intermediate representations and are generally less discriminative than floating-point descriptors. We propose an image region descriptor, namely local derivative ordinal binary pattern, for object recognition and image categorization. In order to preserve more local contrast and edge information, we quantize the intensity differences between the central pixels and their neighbors of the detected local affine covariant regions in an adaptive way. These differences are then sorted and mapped into binary codes and histogrammed with a weight of the sum of the absolute value of the differences. Furthermore, the gray level of the central pixel is quantized to further improve the discriminative ability. Finally, we combine them to form a joint histogram to represent the features of the image. We observe that our descriptor preserves more local brightness and edge information than traditional binary descriptors. Also, our descriptor is robust to rotation, illumination variations, and other geometric transformations. We conduct extensive experiments on the standard ETHZ and Kentucky datasets for object recognition and PASCAL for image classification. The experimental results show that our descriptor outperforms existing state-of-the-art methods.
Scudiero, Ivan; Mazzone, Pellegrino; D'Andrea, Luca E; Ferravante, Angela; Zotti, Tiziana; Telesio, Gianluca; De Rubis, Gabriele; Reale, Carla; Pizzulo, Maddalena; Muralitharan, Shanmugakonar; Vito, Pasquale; Stilo, Romania
2017-02-23
The molecular complexes formed by specific members of the family of CARMA proteins, the CARD domain-containing adapter molecule BCL10 and MALT1 (CBM complex) represent a central hub in regulating activation of the pleiotropic transcription factor NF-κB. Recently, missense mutations in CARMA2sh have been shown to cause psoriasis in a dominant manner and with high penetrancy. Here, we demonstrate that in human keratinocytes CARMA2sh plays an essential role in the signal transduction pathway that connects pathogen-associated molecular patterns recognition to NF-κB activation. We also find that the serine/threonine kinase ULK2 binds to and phosphorylates CARMA2sh, thereby inhibiting its capacity to activate NF-κB by promoting lysosomal degradation of BCL10, which is essential for CARMA2sh-mediated NF-κB signaling. Remarkably, CARMA2sh mutants associated with psoriasis escape ULK2 inhibition. Finally, we show that a peptide blocking CARD-mediated BCL10 interactions reduces the capacity of psoriasis-linked CARMA2sh mutants to activate NF-κB. Our work elucidates a fundamental signaling mechanism operating in human keratinocytes and opens to novel potential tools for the therapeutical treatment of human skin disorders.
Distributed memory approaches for robotic neural controllers
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1990-01-01
The suitability is explored of two varieties of distributed memory neutral networks as trainable controllers for a simulated robotics task. The task requires that two cameras observe an arbitrary target point in space. Coordinates of the target on the camera image planes are passed to a neural controller which must learn to solve the inverse kinematics of a manipulator with one revolute and two prismatic joints. Two new network designs are evaluated. The first, radial basis sparse distributed memory (RBSDM), approximates functional mappings as sums of multivariate gaussians centered around previously learned patterns. The second network types involved variations of Adaptive Vector Quantizers or Self Organizing Maps. In these networks, random N dimensional points are given local connectivities. They are then exposed to training patterns and readjust their locations based on a nearest neighbor rule. Both approaches are tested based on their ability to interpolate manipulator joint coordinates for simulated arm movement while simultaneously performing stereo fusion of the camera data. Comparisons are made with classical k-nearest neighbor pattern recognition techniques.
Older and Wiser: Older Adults’ Episodic Word Memory Benefits from Sentence Study Contexts
Matzen, Laura E.; Benjamin, Aaron S.
2013-01-01
A hallmark of adaptive cognition is the ability to modulate learning in response to the demands posed by different types of tests and different types of materials. Here we evaluate how older adults process words and sentences differently by examining patterns of memory errors. In two experiments, we explored younger and older adults’ sensitivity to lures on a recognition test following study of words in these two types of contexts. Among the studied words were compound words such as “blackmail” and “jailbird” that were related to conjunction lures (e.g. “blackbird”) and semantic lures (e.g. “criminal”). Participants engaged in a recognition test that included old items, conjunction lures, semantic lures, and unrelated new items. In both experiments, younger and older adults had the same general pattern of memory errors: more incorrect endorsements of semantic than conjunction lures following sentence study and more incorrect endorsements of conjunction than semantic lures following list study. The similar pattern reveals that older and younger adults responded to the constraints of the two different study contexts in similar ways. However, while younger and older adults showed similar levels of memory performance for the list study context, the sentence study context elicited superior memory performance in the older participants. It appears as though memory tasks that take advantage of greater expertise in older adults--in this case, greater experience with sentence processing--can reveal superior memory performance in the elderly. PMID:23834493
Villa-Parra, Ana Cecilia; Bastos-Filho, Teodiano; López-Delis, Alberto; Frizera-Neto, Anselmo; Krishnan, Sridhar
2017-01-01
This work presents a new on-line adaptive filter, which is based on a similarity analysis between standard electrode locations, in order to reduce artifacts and common interferences throughout electroencephalography (EEG) signals, but preserving the useful information. Standard deviation and Concordance Correlation Coefficient (CCC) between target electrodes and its correspondent neighbor electrodes are analyzed on sliding windows to select those neighbors that are highly correlated. Afterwards, a model based on CCC is applied to provide higher values of weight to those correlated electrodes with lower similarity to the target electrode. The approach was applied to brain computer-interfaces (BCIs) based on Canonical Correlation Analysis (CCA) to recognize 40 targets of steady-state visual evoked potential (SSVEP), providing an accuracy (ACC) of 86.44 ± 2.81%. In addition, also using this approach, features of low frequency were selected in the pre-processing stage of another BCI to recognize gait planning. In this case, the recognition was significantly (p<0.01) improved for most of the subjects (ACC≥74.79%), when compared with other BCIs based on Common Spatial Pattern, Filter Bank-Common Spatial Pattern, and Riemannian Geometry. PMID:29186848
NASA Astrophysics Data System (ADS)
Chen, Su Shing; Caulfield, H. John
1994-03-01
Adaptive Computing, vs. Classical Computing, is emerging to be a field which is the culmination during the last 40 and more years of various scientific and technological areas, including cybernetics, neural networks, pattern recognition networks, learning machines, selfreproducing automata, genetic algorithms, fuzzy logics, probabilistic logics, chaos, electronics, optics, and quantum devices. This volume of "Critical Reviews on Adaptive Computing: Mathematics, Electronics, and Optics" is intended as a synergistic approach to this emerging field. There are many researchers in these areas working on important results. However, we have not seen a general effort to summarize and synthesize these results in theory as well as implementation. In order to reach a higher level of synergism, we propose Adaptive Computing as the field which comprises of the above mentioned computational paradigms and various realizations. The field should include both the Theory (or Mathematics) and the Implementation. Our emphasis is on the interplay of Theory and Implementation. The interplay, an adaptive process itself, of Theory and Implementation is the only "holistic" way to advance our understanding and realization of brain-like computation. We feel that a theory without implementation has the tendency to become unrealistic and "out-of-touch" with reality, while an implementation without theory runs the risk to be superficial and obsolete.
Extended target recognition in cognitive radar networks.
Wei, Yimin; Meng, Huadong; Liu, Yimin; Wang, Xiqin
2010-01-01
We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR) based sequential hypothesis testing (SHT) framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS). Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.
Intelligent Systems For Aerospace Engineering: An Overview
NASA Technical Reports Server (NTRS)
KrishnaKumar, K.
2003-01-01
Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.
Intelligent Systems for Aerospace Engineering: An Overview
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje
2002-01-01
Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.
Souza, Iara da Costa; Morozesk, Mariana; Duarte, Ian Drumond; Bonomo, Marina Marques; Rocha, Lívia Dorsch; Furlan, Larissa Maria; Arrivabene, Hiulana Pereira; Monferrán, Magdalena Victoria; Matsumoto, Silvia Tamie; Milanez, Camilla Rozindo Dias; Wunderlin, Daniel Alberto; Fernandes, Marisa Narciso
2014-08-01
Roots of mangrove trees have an important role in depurating water and sediments by retaining metals that may accumulate in different plant tissues, affecting physiological processes and anatomy. The present study aimed to evaluate adaptive changes in root of Rhizophora mangle in response to different levels of chemical elements (metals/metalloids) in interstitial water and sediments from four neotropical mangroves in Brazil. What sets this study apart from other studies is that we not only investigate adaptive modifications in R. mangle but also changes in environments where this plant grows, evaluating correspondence between physical, chemical and biological issues by a combined set of multivariate statistical methods (pattern recognition). Thus, we looked to match changes in the environment with adaptations in plants. Multivariate statistics highlighted that the lignified periderm and the air gaps are directly related to the environmental contamination. Current results provide new evidences of root anatomical strategies to deal with contaminated environments. Multivariate statistics greatly contributes to extrapolate results from complex data matrixes obtained when analyzing environmental issues, pointing out parameters involved in environmental changes and also evidencing the adaptive response of the exposed biota. Copyright © 2014 Elsevier Ltd. All rights reserved.
Inflammatory bowel disease: cause and immunobiology.
Baumgart, Daniel C; Carding, Simon R
2007-05-12
Crohn's disease and ulcerative colitis are idiopathic inflammatory bowel disorders. In this paper, we discuss how environmental factors (eg, geography, cigarette smoking, sanitation and hygiene), infectious microbes, ethnic origin, genetic susceptibility, and a dysregulated immune system can result in mucosal inflammation. After describing the symbiotic interaction of the commensal microbiota with the host, oral tolerance, epithelial barrier function, antigen recognition, and immunoregulation by the innate and adaptive immune system, we examine the initiating and perpetuating events of mucosal inflammation. We pay special attention to pattern-recognition receptors, such as toll-like receptors and nucleotide-binding-oligomerisation-domains (NOD), NOD-like receptors and their mutual interaction on epithelial cells and antigen-presenting cells. We also discuss the important role of dendritic cells in directing tolerance and immunity by modulation of subpopulations of effector T cells, regulatory T cells, Th17 cells, natural killer T cells, natural killer cells, and monocyte-macrophages in mucosal inflammation. Implications for novel therapies, which are discussed in detail in the second paper in this Series, are covered briefly.
Research on Palmprint Identification Method Based on Quantum Algorithms
Zhang, Zhanzhan
2014-01-01
Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT) is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%. PMID:25105165
Repetition and lag effects in movement recognition.
Hall, C R; Buckolz, E
1982-03-01
Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.
Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D
2016-03-01
In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats displayed a significant interaction between the two groups and the number of available objects suggesting impairment in a pattern completion function for object cues. Copyright © 2015 Elsevier Inc. All rights reserved.
Adaptive Learning and Pruning Using Periodic Packet for Fast Invariance Extraction and Recognition
NASA Astrophysics Data System (ADS)
Chang, Sheng-Jiang; Zhang, Bian-Li; Lin, Lie; Xiong, Tao; Shen, Jin-Yuan
2005-02-01
A new learning scheme using a periodic packet as the neuronal activation function is proposed for invariance extraction and recognition of handwritten digits. Simulation results show that the proposed network can extract the invariant feature effectively and improve both the convergence and the recognition rate.
Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition
Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan
2017-01-01
Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. PMID:29172273
Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition
Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan
2017-11-26
Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. Creative Commons Attribution License
Evaluation of Adaptive Noise Management Technologies for School-Age Children with Hearing Loss.
Wolfe, Jace; Duke, Mila; Schafer, Erin; Jones, Christine; Rakita, Lori
2017-05-01
Children with hearing loss experience significant difficulty understanding speech in noisy and reverberant situations. Adaptive noise management technologies, such as fully adaptive directional microphones and digital noise reduction, have the potential to improve communication in noise for children with hearing aids. However, there are no published studies evaluating the potential benefits children receive from the use of adaptive noise management technologies in simulated real-world environments as well as in daily situations. The objective of this study was to compare speech recognition, speech intelligibility ratings (SIRs), and sound preferences of children using hearing aids equipped with and without adaptive noise management technologies. A single-group, repeated measures design was used to evaluate performance differences obtained in four simulated environments. In each simulated environment, participants were tested in a basic listening program with minimal noise management features, a manual program designed for that scene, and the hearing instruments' adaptive operating system that steered hearing instrument parameterization based on the characteristics of the environment. Twelve children with mild to moderately severe sensorineural hearing loss. Speech recognition and SIRs were evaluated in three hearing aid programs with and without noise management technologies across two different test sessions and various listening environments. Also, the participants' perceptual hearing performance in daily real-world listening situations with two of the hearing aid programs was evaluated during a four- to six-week field trial that took place between the two laboratory sessions. On average, the use of adaptive noise management technology improved sentence recognition in noise for speech presented in front of the participant but resulted in a decrement in performance for signals arriving from behind when the participant was facing forward. However, the improvement with adaptive noise management exceeded the decrement obtained when the signal arrived from behind. Most participants reported better subjective SIRs when using adaptive noise management technologies, particularly when the signal of interest arrived from in front of the listener. In addition, most participants reported a preference for the technology with an automatically switching, adaptive directional microphone and adaptive noise reduction in real-world listening situations when compared to conventional, omnidirectional microphone use with minimal noise reduction processing. Use of the adaptive noise management technologies evaluated in this study improves school-age children's speech recognition in noise for signals arriving from the front. Although a small decrement in speech recognition in noise was observed for signals arriving from behind the listener, most participants reported a preference for use of noise management technology both when the signal arrived from in front and from behind the child. The results of this study suggest that adaptive noise management technologies should be considered for use with school-age children when listening in academic and social situations. American Academy of Audiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, Seth; Chen Bin; Holbrook, Kristen
CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern ofmore » residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.« less
2013-01-01
Background Analysis of global gene expression by DNA microarrays is widely used in experimental molecular biology. However, the complexity of such high-dimensional data sets makes it difficult to fully understand the underlying biological features present in the data. The aim of this study is to introduce a method for DNA microarray analysis that provides an intuitive interpretation of data through dimension reduction and pattern recognition. We present the first “Archetypal Analysis” of global gene expression. The analysis is based on microarray data from five integrated studies of Pseudomonas aeruginosa isolated from the airways of cystic fibrosis patients. Results Our analysis clustered samples into distinct groups with comprehensible characteristics since the archetypes representing the individual groups are closely related to samples present in the data set. Significant changes in gene expression between different groups identified adaptive changes of the bacteria residing in the cystic fibrosis lung. The analysis suggests a similar gene expression pattern between isolates with a high mutation rate (hypermutators) despite accumulation of different mutations for these isolates. This suggests positive selection in the cystic fibrosis lung environment, and changes in gene expression for these isolates are therefore most likely related to adaptation of the bacteria. Conclusions Archetypal analysis succeeded in identifying adaptive changes of P. aeruginosa. The combination of clustering and matrix factorization made it possible to reveal minor similarities among different groups of data, which other analytical methods failed to identify. We suggest that this analysis could be used to supplement current methods used to analyze DNA microarray data. PMID:24059747
Optical character recognition based on nonredundant correlation measurements.
Braunecker, B; Hauck, R; Lohmann, A W
1979-08-15
The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.
Self-organizing neural network models for visual pattern recognition.
Fukushima, K
1987-01-01
Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.
Audiovisual cues benefit recognition of accented speech in noise but not perceptual adaptation
Banks, Briony; Gowen, Emma; Munro, Kevin J.; Adank, Patti
2015-01-01
Perceptual adaptation allows humans to recognize different varieties of accented speech. We investigated whether perceptual adaptation to accented speech is facilitated if listeners can see a speaker’s facial and mouth movements. In Study 1, participants listened to sentences in a novel accent and underwent a period of training with audiovisual or audio-only speech cues, presented in quiet or in background noise. A control group also underwent training with visual-only (speech-reading) cues. We observed no significant difference in perceptual adaptation between any of the groups. To address a number of remaining questions, we carried out a second study using a different accent, speaker and experimental design, in which participants listened to sentences in a non-native (Japanese) accent with audiovisual or audio-only cues, without separate training. Participants’ eye gaze was recorded to verify that they looked at the speaker’s face during audiovisual trials. Recognition accuracy was significantly better for audiovisual than for audio-only stimuli; however, no statistical difference in perceptual adaptation was observed between the two modalities. Furthermore, Bayesian analysis suggested that the data supported the null hypothesis. Our results suggest that although the availability of visual speech cues may be immediately beneficial for recognition of unfamiliar accented speech in noise, it does not improve perceptual adaptation. PMID:26283946
Audiovisual cues benefit recognition of accented speech in noise but not perceptual adaptation.
Banks, Briony; Gowen, Emma; Munro, Kevin J; Adank, Patti
2015-01-01
Perceptual adaptation allows humans to recognize different varieties of accented speech. We investigated whether perceptual adaptation to accented speech is facilitated if listeners can see a speaker's facial and mouth movements. In Study 1, participants listened to sentences in a novel accent and underwent a period of training with audiovisual or audio-only speech cues, presented in quiet or in background noise. A control group also underwent training with visual-only (speech-reading) cues. We observed no significant difference in perceptual adaptation between any of the groups. To address a number of remaining questions, we carried out a second study using a different accent, speaker and experimental design, in which participants listened to sentences in a non-native (Japanese) accent with audiovisual or audio-only cues, without separate training. Participants' eye gaze was recorded to verify that they looked at the speaker's face during audiovisual trials. Recognition accuracy was significantly better for audiovisual than for audio-only stimuli; however, no statistical difference in perceptual adaptation was observed between the two modalities. Furthermore, Bayesian analysis suggested that the data supported the null hypothesis. Our results suggest that although the availability of visual speech cues may be immediately beneficial for recognition of unfamiliar accented speech in noise, it does not improve perceptual adaptation.
Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David
2017-11-01
Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.
A strip chart recorder pattern recognition tool kit for Shuttle operations
NASA Technical Reports Server (NTRS)
Hammen, David G.; Moebes, Travis A.; Shelton, Robert O.; Savely, Robert T.
1993-01-01
During Space Shuttle operations, Mission Control personnel monitor numerous mission-critical systems such as electrical power; guidance, navigation, and control; and propulsion by means of paper strip chart recorders. For example, electrical power controllers monitor strip chart recorder pen traces to identify onboard electrical equipment activations and deactivations. Recent developments in pattern recognition technologies coupled with new capabilities that distribute real-time Shuttle telemetry data to engineering workstations make it possible to develop computer applications that perform some of the low-level monitoring now performed by controllers. The number of opportunities for such applications suggests a need to build a pattern recognition tool kit to reduce software development effort through software reuse. We are building pattern recognition applications while keeping such a tool kit in mind. We demonstrated the initial prototype application, which identifies electrical equipment activations, during three recent Shuttle flights. This prototype was developed to test the viability of the basic system architecture, to evaluate the performance of several pattern recognition techniques including those based on cross-correlation, neural networks, and statistical methods, to understand the interplay between an advanced automation application and human controllers to enhance utility, and to identify capabilities needed in a more general-purpose tool kit.
The Effect of Adaptive Nonlinear Frequency Compression on Phoneme Perception.
Glista, Danielle; Hawkins, Marianne; Bohnert, Andrea; Rehmann, Julia; Wolfe, Jace; Scollie, Susan
2017-12-12
This study implemented a fitting method, developed for use with frequency lowering hearing aids, across multiple testing sites, participants, and hearing aid conditions to evaluate speech perception with a novel type of frequency lowering. A total of 8 participants, including children and young adults, participated in real-world hearing aid trials. A blinded crossover design, including posttrial withdrawal testing, was used to assess aided phoneme perception. The hearing aid conditions included adaptive nonlinear frequency compression (NFC), static NFC, and conventional processing. Enabling either adaptive NFC or static NFC improved group-level detection and recognition results for some high-frequency phonemes, when compared with conventional processing. Mean results for the distinction component of the Phoneme Perception Test (Schmitt, Winkler, Boretzki, & Holube, 2016) were similar to those obtained with conventional processing. Findings suggest that both types of NFC tested in this study provided a similar amount of speech perception benefit, when compared with group-level performance with conventional hearing aid technology. Individual-level results are presented with discussion around patterns of results that differ from the group average.
Digital and biological computing in organizations.
Kampfner, Roberto R
2002-01-01
Michael Conrad unveiled many of the fundamental characteristics of biological computing. Underlying the behavioral variability and the adaptability of biological systems are these characteristics, including the ability of biological information processing to exploit quantum features at the atomic level, the powerful 3-D pattern recognition capabilities of macromolecules, the computational efficiency, and the ability to support biological function. Among many other things, Conrad formalized and explicated the underlying principles of biological adaptability, characterized the differences between biological and digital computing in terms of a fundamental tradeoff between adaptability and programmability of information processing, and discussed the challenges of interfacing digital computers and human society. This paper is about the encounter of biological and digital computing. The focus is on the nature of the biological information processing infrastructure of organizations and how it can be extended effectively with digital computing. In order to achieve this goal effectively, however, we need to embed properly digital computing into the information processing aspects of human and social behavior and intelligence, which are fundamentally biological. Conrad's legacy provides a firm, strong, and inspiring foundation for this endeavor.
A dynamical pattern recognition model of gamma activity in auditory cortex
Zavaglia, M.; Canolty, R.T.; Schofield, T.M.; Leff, A.P.; Ursino, M.; Knight, R.T.; Penny, W.D.
2012-01-01
This paper describes a dynamical process which serves both as a model of temporal pattern recognition in the brain and as a forward model of neuroimaging data. This process is considered at two separate levels of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition environments, these features rival standard cepstral coefficient features. At an implementation level, the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient synchronization mechanism to signal a recognition event. In a second set of experiments, we use the strength of the synchronization event to predict the high gamma (75–150 Hz) activity produced by the brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences about parameters governing pattern recognition dynamics in the brain. PMID:22327049
Visual cluster analysis and pattern recognition methods
Osbourn, Gordon Cecil; Martinez, Rubel Francisco
2001-01-01
A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator)
1984-01-01
Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.
Proceedings of the NASA/MPRIA Workshop: Pattern Recognition
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.
1983-01-01
Outlines of talks presented at the workshop conducted at Texas A & M University on February 3 and 4, 1983 are presented. Emphasis was given to the application of Mathematics to image processing and pattern recognition.
Cellular-automata-based learning network for pattern recognition
NASA Astrophysics Data System (ADS)
Tzionas, Panagiotis G.; Tsalides, Phillippos G.; Thanailakis, Adonios
1991-11-01
Most classification techniques either adopt an approach based directly on the statistical characteristics of the pattern classes involved, or they transform the patterns in a feature space and try to separate the point clusters in this space. An alternative approach based on memory networks has been presented, its novelty being that it can be implemented in parallel and it utilizes direct features of the patterns rather than statistical characteristics. This study presents a new approach for pattern classification using pseudo 2-D binary cellular automata (CA). This approach resembles the memory network classifier in the sense that it is based on an adaptive knowledge based formed during a training phase, and also in the fact that both methods utilize pattern features that are directly available. The main advantage of this approach is that the sensitivity of the pattern classifier can be controlled. The proposed pattern classifier has been designed using 1.5 micrometers design rules for an N-well CMOS process. Layout has been achieved using SOLO 1400. Binary pseudo 2-D hybrid additive CA (HACA) is described in the second section of this paper. The third section describes the operation of the pattern classifier and the fourth section presents some possible applications. The VLSI implementation of the pattern classifier is presented in the fifth section and, finally, the sixth section draws conclusions from the results obtained.
Matthews, Luke J
2012-06-01
Recent research on the evolution of religion has focused on whether religion is an unselected by-product of evolutionary processes or if it is instead an adaptation by natural selection. Adaptive hypotheses for religion include direct fitness benefits from improved health and indirect fitness benefits mediated by costly signals and/or cultural group selection. Herein, I propose that religious denominations achieve indirect fitness gains for members through the use of ecologically arbitrary beliefs, rituals, and moral rules that function as recognition markers of cultural inheritance analogous to kin and species recognition of genetic inheritance in biology. This recognition signal hypotheses could act in concert with either costly signaling or cultural group selection to produce evolutionarily altruistic behaviors within denominations. Using a cultural phylogenetic analysis, I show that a large set of religious behaviors among extant Christian denominations supports the prediction of the recognition signal hypothesis that characters change more frequently near historical schisms. By incorporating demographic data into the model, I show that more-distinctive denominations, as measured through dissimilar characteristics, appear to be protected from intrusion by nonmembers in mixed-denomination households, and that they may be experiencing greater biological growth of their populations even in the present day.
NASA Astrophysics Data System (ADS)
Intriligator, M.
2011-12-01
Vladimir (Volodya) Keilis-Borok has pioneered the use of pattern recognition as a technique for analyzing and forecasting developments in natural as well as socio-economic systems. Keilis-Borok's work on predicting earthquakes and landslides using this technique as a leading geophysicist has been recognized around the world. Keilis-Borok has also been a world leader in the application of pattern recognition techniques to the analysis and prediction of socio-economic systems. He worked with Allan Lichtman of American University in using such techniques to predict presidential elections in the U.S. Keilis-Borok and I have worked together with others on the use of pattern recognition techniques to analyze and to predict socio-economic systems. We have used this technique to study the pattern of macroeconomic indicators that would predict the end of an economic recession in the U.S. We have also worked with officers in the Los Angeles Police Department to use this technique to predict surges of homicides in Los Angeles.
Running Improves Pattern Separation during Novel Object Recognition.
Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef
2015-10-09
Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.
A Compact Prototype of an Optical Pattern Recognition System
NASA Technical Reports Server (NTRS)
Jin, Y.; Liu, H. K.; Marzwell, N. I.
1996-01-01
In the Technology 2006 Case Studies/Success Stories presentation, we will describe and demonstrate a prototype of a compact optical pattern recognition system as an example of a successful technology transfer and continuuing development of state-of-the-art know-how by the close collaboration among government, academia, and small business via the NASA SBIR program. The prototype consists of a complete set of optical pattern recognition hardware with multi-channel storage and retrieval capability that is compactly configured inside a portable 1'X 2'X 3' aluminum case.
Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V C; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R
2015-01-01
Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage.
Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V. C.; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R.
2015-01-01
Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage. PMID:25992718
Adaptive Hybrid Picture Coding. Volume 2.
1985-02-01
ooo5 V.a Measurement Vector ..eho..............57 V.b Size Variable o .entroi* Vector .......... .- 59 V * c Shape Vector .Ř 0-60o oe 6 I V~d...the Program for the Adaptive Line of Sight Method .i.. 18.. o ... .... .... 1 B Details of the Feature Vector FormationProgram .. o ...oo..-....- .122 C ...shape recognition is analogous to recognition of curves in space. Therefore, well known concepts and theorems from differential geometry can be 34 . o
Adaptation of hidden Markov models for recognizing speech of reduced frame rate.
Lee, Lee-Min; Jean, Fu-Rong
2013-12-01
The frame rate of the observation sequence in distributed speech recognition applications may be reduced to suit a resource-limited front-end device. In order to use models trained using full-frame-rate data in the recognition of reduced frame-rate (RFR) data, we propose a method for adapting the transition probabilities of hidden Markov models (HMMs) to match the frame rate of the observation. Experiments on the recognition of clean and noisy connected digits are conducted to evaluate the proposed method. Experimental results show that the proposed method can effectively compensate for the frame-rate mismatch between the training and the test data. Using our adapted model to recognize the RFR speech data, one can significantly reduce the computation time and achieve the same level of accuracy as that of a method, which restores the frame rate using data interpolation.
A modified active appearance model based on an adaptive artificial bee colony.
Abdulameer, Mohammed Hasan; Sheikh Abdullah, Siti Norul Huda; Othman, Zulaiha Ali
2014-01-01
Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition.
Modelling Errors in Automatic Speech Recognition for Dysarthric Speakers
NASA Astrophysics Data System (ADS)
Caballero Morales, Santiago Omar; Cox, Stephen J.
2009-12-01
Dysarthria is a motor speech disorder characterized by weakness, paralysis, or poor coordination of the muscles responsible for speech. Although automatic speech recognition (ASR) systems have been developed for disordered speech, factors such as low intelligibility and limited phonemic repertoire decrease speech recognition accuracy, making conventional speaker adaptation algorithms perform poorly on dysarthric speakers. In this work, rather than adapting the acoustic models, we model the errors made by the speaker and attempt to correct them. For this task, two techniques have been developed: (1) a set of "metamodels" that incorporate a model of the speaker's phonetic confusion matrix into the ASR process; (2) a cascade of weighted finite-state transducers at the confusion matrix, word, and language levels. Both techniques attempt to correct the errors made at the phonetic level and make use of a language model to find the best estimate of the correct word sequence. Our experiments show that both techniques outperform standard adaptation techniques.
Control of adaptive immunity by the innate immune system.
Iwasaki, Akiko; Medzhitov, Ruslan
2015-04-01
Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.
Visual cluster analysis and pattern recognition template and methods
Osbourn, Gordon Cecil; Martinez, Rubel Francisco
1999-01-01
A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.
Photonic correlator pattern recognition: Application to autonomous docking
NASA Technical Reports Server (NTRS)
Sjolander, Gary W.
1991-01-01
Optical correlators for real-time automatic pattern recognition applications have recently become feasible due to advances in high speed devices and filter formulation concepts. The devices are discussed in the context of their use in autonomous docking.
An adaptive Hidden Markov Model for activity recognition based on a wearable multi-sensor device
USDA-ARS?s Scientific Manuscript database
Human activity recognition is important in the study of personal health, wellness and lifestyle. In order to acquire human activity information from the personal space, many wearable multi-sensor devices have been developed. In this paper, a novel technique for automatic activity recognition based o...
The Relationships among Facial Emotion Recognition, Social Skills, and Quality of Life.
ERIC Educational Resources Information Center
Simon, Elliott W.; And Others
1995-01-01
Forty-six institutionalized adults with mild or moderate mental retardation were administered the Vineland Adaptive Behavior Scales (socialization domain), a subjective measure of quality of life, and a facial emotion recognition test. Facial emotion recognition, quality of life, and social skills appeared to be independent of one another. Facial…
Application of an auditory model to speech recognition.
Cohen, J R
1989-06-01
Some aspects of auditory processing are incorporated in a front end for the IBM speech-recognition system [F. Jelinek, "Continuous speech recognition by statistical methods," Proc. IEEE 64 (4), 532-556 (1976)]. This new process includes adaptation, loudness scaling, and mel warping. Tests show that the design is an improvement over previous algorithms.
Speaker-Machine Interaction in Automatic Speech Recognition. Technical Report.
ERIC Educational Resources Information Center
Makhoul, John I.
The feasibility and limitations of speaker adaptation in improving the performance of a "fixed" (speaker-independent) automatic speech recognition system were examined. A fixed vocabulary of 55 syllables is used in the recognition system which contains 11 stops and fricatives and five tense vowels. The results of an experiment on speaker…
Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition
NASA Technical Reports Server (NTRS)
Huntsberger, Terry
2011-01-01
The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.
Segmenting Images for a Better Diagnosis
NASA Technical Reports Server (NTRS)
2004-01-01
NASA's Hierarchical Segmentation (HSEG) software has been adapted by Bartron Medical Imaging, LLC, for use in segmentation feature extraction, pattern recognition, and classification of medical images. Bartron acquired licenses from NASA Goddard Space Flight Center for application of the HSEG concept to medical imaging, from the California Institute of Technology/Jet Propulsion Laboratory to incorporate pattern-matching software, and from Kennedy Space Center for data-mining and edge-detection programs. The Med-Seg[TM] united developed by Bartron provides improved diagnoses for a wide range of medical images, including computed tomography scans, positron emission tomography scans, magnetic resonance imaging, ultrasound, digitized Z-ray, digitized mammography, dental X-ray, soft tissue analysis, and moving object analysis. It also can be used in analysis of soft-tissue slides. Bartron's future plans include the application of HSEG technology to drug development. NASA is advancing it's HSEG software to learn more about the Earth's magnetosphere.
Finger Vein Recognition Based on a Personalized Best Bit Map
Yang, Gongping; Xi, Xiaoming; Yin, Yilong
2012-01-01
Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735
Finger vein recognition based on a personalized best bit map.
Yang, Gongping; Xi, Xiaoming; Yin, Yilong
2012-01-01
Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.
Large-memory real-time multichannel multiplexed pattern recognition
NASA Technical Reports Server (NTRS)
Gregory, D. A.; Liu, H. K.
1984-01-01
The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.
Quamme, Joel R.; Weiss, David J.; Norman, Kenneth A.
2010-01-01
Recent studies of recognition memory indicate that subjects can strategically vary how much they rely on recollection of specific details vs. feelings of familiarity when making recognition judgments. One possible explanation of these results is that subjects can establish an internally directed attentional state (“listening for recollection”) that enhances retrieval of studied details; fluctuations in this attentional state over time should be associated with fluctuations in subjects’ recognition behavior. In this study, we used multi-voxel pattern analysis of fMRI data to identify brain regions that are involved in listening for recollection. We looked for brain regions that met the following criteria: (1) Distinct neural patterns should be present when subjects are instructed to rely on recollection vs. familiarity, and (2) fluctuations in these neural patterns should be related to recognition behavior in the manner predicted by dual-process theories of recognition: Specifically, the presence of the recollection pattern during the pre-stimulus interval (indicating that subjects are “listening for recollection” at that moment) should be associated with a selective decrease in false alarms to related lures. We found that pre-stimulus activity in the right supramarginal gyrus met all of these criteria, suggesting that this region proactively establishes an internally directed attentional state that fosters recollection. We also found other regions (e.g., left middle temporal gyrus) where the pattern of neural activity was related to subjects’ responding to related lures after stimulus onset (but not before), suggesting that these regions implement processes that are engaged in a reactive fashion to boost recollection. PMID:20740073
Auditory orientation in crickets: Pattern recognition controls reactive steering
NASA Astrophysics Data System (ADS)
Poulet, James F. A.; Hedwig, Berthold
2005-10-01
Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis
Action recognition is sensitive to the identity of the actor.
Ferstl, Ylva; Bülthoff, Heinrich; de la Rosa, Stephan
2017-09-01
Recognizing who is carrying out an action is essential for successful human interaction. The cognitive mechanisms underlying this ability are little understood and have been subject of discussions in embodied approaches to action recognition. Here we examine one solution, that visual action recognition processes are at least partly sensitive to the actor's identity. We investigated the dependency between identity information and action related processes by testing the sensitivity of neural action recognition processes to clothing and facial identity information with a behavioral adaptation paradigm. Our results show that action adaptation effects are in fact modulated by both clothing information and the actor's facial identity. The finding demonstrates that neural processes underlying action recognition are sensitive to identity information (including facial identity) and thereby not exclusively tuned to actions. We suggest that such response properties are useful to help humans in knowing who carried out an action. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Yamaguchi, Koji; Yamada, Kenta; Kawasaki, Tsutomu
2013-10-01
Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand-activated PRRs and initiate pattern-triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.
Proceedings of the NASA Symposium on Mathematical Pattern Recognition and Image Analysis
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.
1983-01-01
The application of mathematical and statistical analyses techniques to imagery obtained by remote sensors is described by Principal Investigators. Scene-to-map registration, geometric rectification, and image matching are among the pattern recognition aspects discussed.
ERIC Educational Resources Information Center
Mhlolo, Michael Kainose
2016-01-01
The concept of pattern recognition lies at the heart of numerous deliberations concerned with new mathematics curricula, because it is strongly linked to improved generalised thinking. However none of these discussions has made the deceptive nature of patterns an object of exploration and understanding. Yet there is evidence showing that pattern…
Use of complex adaptive systems metaphor to achieve professional and organizational change.
Rowe, Ann; Hogarth, Annette
2005-08-01
This paper uses the experiences of a programme designed to bring about change in performance of public health nurses (health visitors and school nurses) in an inner city primary care trust, to explore the issues of professional and organizational change in health care organizations. The United Kingdom government has given increasing emphasis to programmes of modernization within the National Health Service. A central facet of this policy shift has been an expectation of behaviour and practice change by health care professionals. Change was brought about through use of a Complex Adaptive Systems approach. This enabled change to be seen as an inclusive, evolving and unpredictable process rather one which is linear and mechanistic. The paper examines in detail how the use of concepts and metaphors associated with Complex Adaptive Systems influenced the development of the programme, its implementation and outcomes. The programme resulted in extensive change in professional behaviour, service delivery and transformational change in the organizational structures and processes of the employing organization. This gave greater opportunities for experimentation and innovation, leading to new developments in service delivery, but also meant higher levels of uncertainty, responsibility, decision-making and risk management for practitioners. Using a Complex Adaptive Systems approach was helpful for developing alternative views of change and for understanding why and how some aspects of change were more successful than others. Its use encouraged the confrontation of some long-standing assumptions about change and service delivery patterns in the National Health Service, and the process exposed challenging tensions within the Service. The consequent destabilising of organizational and professional norms resulted in considerable emotional impacts for practitioners, an area which was found to be underplayed within the Complex Adaptive Systems literature. A Complex Adaptive Systems approach can support change, in particular a recognition and understanding of the emergence of unexpected structures, patterns and processes. The approach can support nurses to change their behaviour and innovate, but requires high levels of accountability, individual and professional creativity.
NASA Astrophysics Data System (ADS)
Nikitaev, V. G.
2017-01-01
The development of methods of pattern recognition in modern intelligent systems of clinical cancer diagnosis are discussed. The histological (morphological) diagnosis - primary diagnosis for medical setting with cancer are investigated. There are proposed: interactive methods of recognition and structure of intellectual morphological complexes based on expert training-diagnostic and telemedicine systems. The proposed approach successfully implemented in clinical practice.
Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models
Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori
2016-01-01
A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner’s faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals. PMID:27191162
Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models.
Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori
2016-01-01
A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner's faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals.
Action recognition using mined hierarchical compound features.
Gilbert, Andrew; Illingworth, John; Bowden, Richard
2011-05-01
The field of Action Recognition has seen a large increase in activity in recent years. Much of the progress has been through incorporating ideas from single-frame object recognition and adapting them for temporal-based action recognition. Inspired by the success of interest points in the 2D spatial domain, their 3D (space-time) counterparts typically form the basic components used to describe actions, and in action recognition the features used are often engineered to fire sparsely. This is to ensure that the problem is tractable; however, this can sacrifice recognition accuracy as it cannot be assumed that the optimum features in terms of class discrimination are obtained from this approach. In contrast, we propose to initially use an overcomplete set of simple 2D corners in both space and time. These are grouped spatially and temporally using a hierarchical process, with an increasing search area. At each stage of the hierarchy, the most distinctive and descriptive features are learned efficiently through data mining. This allows large amounts of data to be searched for frequently reoccurring patterns of features. At each level of the hierarchy, the mined compound features become more complex, discriminative, and sparse. This results in fast, accurate recognition with real-time performance on high-resolution video. As the compound features are constructed and selected based upon their ability to discriminate, their speed and accuracy increase at each level of the hierarchy. The approach is tested on four state-of-the-art data sets, the popular KTH data set to provide a comparison with other state-of-the-art approaches, the Multi-KTH data set to illustrate performance at simultaneous multiaction classification, despite no explicit localization information provided during training. Finally, the recent Hollywood and Hollywood2 data sets provide challenging complex actions taken from commercial movie sequences. For all four data sets, the proposed hierarchical approach outperforms all other methods reported thus far in the literature and can achieve real-time operation.
Character Recognition Using Genetically Trained Neural Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diniz, C.; Stantz, K.M.; Trahan, M.W.
1998-10-01
Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfidmore » recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the amount of noise significantly degrades character recognition efficiency, some of which can be overcome by adding noise during training and optimizing the form of the network's activation fimction.« less
C-type lectins: their network and roles in pathogen recognition and immunity.
Mayer, Sabine; Raulf, Marie-Kristin; Lepenies, Bernd
2017-02-01
C-type lectins (CTLs) represent the most complex family of animal/human lectins that comprises 17 different groups. During evolution, CTLs have developed by diversification to cover a broad range of glycan ligands. However, ligand binding by CTLs is not necessarily restricted to glycans as some CTLs also bind to proteins, lipids, inorganic molecules, or ice crystals. CTLs share a common fold that harbors a Ca 2+ for contact to the sugar and about 18 invariant residues in a phylogenetically conserved pattern. In vertebrates, CTLs have numerous functions, including serum glycoprotein homeostasis, pathogen sensing, and the initiation of immune responses. Myeloid CTLs in innate immunity are mainly expressed by antigen-presenting cells and play a prominent role in the recognition of a variety of pathogens such as fungi, bacteria, viruses, and parasites. However, myeloid CTLs such as the macrophage inducible CTL (Mincle) or Clec-9a may also bind to self-antigens and thus contribute to immune homeostasis. While some CTLs induce pro-inflammatory responses and thereby lead to activation of adaptive immune responses, other CTLs act as inhibitory receptors and dampen cellular functions. Since CTLs are key players in pathogen recognition and innate immunity, targeting CTLs may be a promising strategy for cell-specific delivery of drugs or vaccine antigens and to modulate immune responses.
When anger dominates the mind: Increased motor corticospinal excitability in the face of threat
Hortensius, Ruud
2016-01-01
Abstract Threat demands fast and adaptive reactions that are manifested at the physiological, behavioral, and phenomenological level and are responsive to the direction of threat and its severity for the individual. Here, we investigated the effects of threat directed toward or away from the observer on motor corticospinal excitability and explicit recognition. Sixteen healthy right‐handed volunteers completed a transcranial magnetic stimulation (TMS) task and a separate three‐alternative forced‐choice emotion recognition task. Single‐pulse TMS to the left primary motor cortex was applied to measure motor evoked potentials from the right abductor pollicis brevis in response to dynamic angry, fearful, and neutral bodily expressions with blurred faces directed toward or away from the observer. Results showed that motor corticospinal excitability increased independent of direction of anger compared with fear and neutral. In contrast, anger was better recognized when directed toward the observer compared with when directed away from the observer, while the opposite pattern was found for fear. The present results provide evidence for the differential effects of threat direction on explicit recognition and motor corticospinal excitability. In the face of threat, motor corticospinal excitability increases independently of the direction of anger, indicative of the importance of more automatic reactions to threat. PMID:27325519
Postprocessing for character recognition using pattern features and linguistic information
NASA Astrophysics Data System (ADS)
Yoshikawa, Takatoshi; Okamoto, Masayosi; Horii, Hiroshi
1993-04-01
We propose a new method of post-processing for character recognition using pattern features and linguistic information. This method corrects errors in the recognition of handwritten Japanese sentences containing Kanji characters. This post-process method is characterized by having two types of character recognition. Improving the accuracy of the character recognition rate of Japanese characters is made difficult by the large number of characters, and the existence of characters with similar patterns. Therefore, it is not practical for a character recognition system to recognize all characters in detail. First, this post-processing method generates a candidate character table by recognizing the simplest features of characters. Then, it selects words corresponding to the character from the candidate character table by referring to a word and grammar dictionary before selecting suitable words. If the correct character is included in the candidate character table, this process can correct an error, however, if the character is not included, it cannot correct an error. Therefore, if this method can presume a character does not exist in a candidate character table by using linguistic information (word and grammar dictionary). It then can verify a presumed character by character recognition using complex features. When this method is applied to an online character recognition system, the accuracy of character recognition improves 93.5% to 94.7%. This proved to be the case when it was used for the editorials of a Japanese newspaper (Asahi Shinbun).
Research on pre-processing of QR Code
NASA Astrophysics Data System (ADS)
Sun, Haixing; Xia, Haojie; Dong, Ning
2013-10-01
QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.
Facial emotion recognition in patients with focal and diffuse axonal injury.
Yassin, Walid; Callahan, Brandy L; Ubukata, Shiho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita
2017-01-01
Facial emotion recognition impairment has been well documented in patients with traumatic brain injury. Studies exploring the neural substrates involved in such deficits have implicated specific grey matter structures (e.g. orbitofrontal regions), as well as diffuse white matter damage. Our study aims to clarify whether different types of injuries (i.e. focal vs. diffuse) will lead to different types of impairments on facial emotion recognition tasks, as no study has directly compared these patients. The present study examined performance and response patterns on a facial emotion recognition task in 14 participants with diffuse axonal injury (DAI), 14 with focal injury (FI) and 22 healthy controls. We found that, overall, participants with FI and DAI performed more poorly than controls on the facial emotion recognition task. Further, we observed comparable emotion recognition performance in participants with FI and DAI, despite differences in the nature and distribution of their lesions. However, the rating response pattern between the patient groups was different. This is the first study to show that pure DAI, without gross focal lesions, can independently lead to facial emotion recognition deficits and that rating patterns differ depending on the type and location of trauma.
Gordon-Salant, Sandra; Cole, Stacey Samuels
2016-01-01
This study aimed to determine if younger and older listeners with normal hearing who differ on working memory span perform differently on speech recognition tests in noise. Older adults typically exhibit poorer speech recognition scores in noise than younger adults, which is attributed primarily to poorer hearing sensitivity and more limited working memory capacity in older than younger adults. Previous studies typically tested older listeners with poorer hearing sensitivity and shorter working memory spans than younger listeners, making it difficult to discern the importance of working memory capacity on speech recognition. This investigation controlled for hearing sensitivity and compared speech recognition performance in noise by younger and older listeners who were subdivided into high and low working memory groups. Performance patterns were compared for different speech materials to assess whether or not the effect of working memory capacity varies with the demands of the specific speech test. The authors hypothesized that (1) normal-hearing listeners with low working memory span would exhibit poorer speech recognition performance in noise than those with high working memory span; (2) older listeners with normal hearing would show poorer speech recognition scores than younger listeners with normal hearing, when the two age groups were matched for working memory span; and (3) an interaction between age and working memory would be observed for speech materials that provide contextual cues. Twenty-eight older (61 to 75 years) and 25 younger (18 to 25 years) normal-hearing listeners were assigned to groups based on age and working memory status. Northwestern University Auditory Test No. 6 words and Institute of Electrical and Electronics Engineers sentences were presented in noise using an adaptive procedure to measure the signal-to-noise ratio corresponding to 50% correct performance. Cognitive ability was evaluated with two tests of working memory (Listening Span Test and Reading Span Test) and two tests of processing speed (Paced Auditory Serial Addition Test and The Letter Digit Substitution Test). Significant effects of age and working memory capacity were observed on the speech recognition measures in noise, but these effects were mediated somewhat by the speech signal. Specifically, main effects of age and working memory were revealed for both words and sentences, but the interaction between the two was significant for sentences only. For these materials, effects of age were observed for listeners in the low working memory groups only. Although all cognitive measures were significantly correlated with speech recognition in noise, working memory span was the most important variable accounting for speech recognition performance. The results indicate that older adults with high working memory capacity are able to capitalize on contextual cues and perform as well as young listeners with high working memory capacity for sentence recognition. The data also suggest that listeners with normal hearing and low working memory capacity are less able to adapt to distortion of speech signals caused by background noise, which requires the allocation of more processing resources to earlier processing stages. These results indicate that both younger and older adults with low working memory capacity and normal hearing are at a disadvantage for recognizing speech in noise.
Cough Recognition Based on Mel Frequency Cepstral Coefficients and Dynamic Time Warping
NASA Astrophysics Data System (ADS)
Zhu, Chunmei; Liu, Baojun; Li, Ping
Cough recognition provides important clinical information for the treatment of many respiratory diseases, but the assessment of cough frequency over a long period of time remains unsatisfied for either clinical or research purpose. In this paper, according to the advantage of dynamic time warping (DTW) and the characteristic of cough recognition, an attempt is made to adapt DTW as the recognition algorithm for cough recognition. The process of cough recognition based on mel frequency cepstral coefficients (MFCC) and DTW is introduced. Experiment results of testing samples from 3 subjects show that acceptable performances of cough recognition are obtained by DTW with a small training set.
33 CFR 106.205 - Company Security Officer (CSO).
Code of Federal Regulations, 2011 CFR
2011-07-01
... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...
33 CFR 106.205 - Company Security Officer (CSO).
Code of Federal Regulations, 2010 CFR
2010-07-01
... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...
Visual cluster analysis and pattern recognition template and methods
Osbourn, G.C.; Martinez, R.F.
1999-05-04
A method of clustering using a novel template to define a region of influence is disclosed. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques. 30 figs.
Multiple degree of freedom optical pattern recognition
NASA Technical Reports Server (NTRS)
Casasent, D.
1987-01-01
Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.
Ultrasonography of ovarian masses using a pattern recognition approach
Jung, Sung Il
2015-01-01
As a primary imaging modality, ultrasonography (US) can provide diagnostic information for evaluating ovarian masses. Using a pattern recognition approach through gray-scale transvaginal US, ovarian masses can be diagnosed with high specificity and sensitivity. Doppler US may allow ovarian masses to be diagnosed as benign or malignant with even greater confidence. In order to differentiate benign and malignant ovarian masses, it is necessary to categorize ovarian masses into unilocular cyst, unilocular solid cyst, multilocular cyst, multilocular solid cyst, and solid tumor, and then to detect typical US features that demonstrate malignancy based on pattern recognition approach. PMID:25797108
Application of pattern recognition techniques to crime analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, C.F.; Cox, L.A. Jr.; Chappell, G.A.
1976-08-15
The initial goal was to evaluate the capabilities of current pattern recognition techniques when applied to existing computerized crime data. Performance was to be evaluated both in terms of the system's capability to predict crimes and to optimize police manpower allocation. A relation was sought to predict the crime's susceptibility to solution, based on knowledge of the crime type, location, time, etc. The preliminary results of this work are discussed. They indicate that automatic crime analysis involving pattern recognition techniques is feasible, and that efforts to determine optimum variables and techniques are warranted. 47 figures (RWR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, B.H.; Narasimhan, R.
1963-01-01
The overall computer system contains three main parts: an input device, a pattern recognition unit (PRU), and a control computer. The bubble chamber picture is divided into a grid of st run. Concent 1-mm squares on the film. It is then processed in parallel in a two-dimensional array of 1024 identical processing modules (stalactites) of the PRU. The array can function as a two- dimensional shift register in which results of successive shifting operations can be accumulated. The pattern recognition process is generally controlled by a conventional arithmetic computer. (A.G.W.)
Fraser, D A; Tenner, A J
2008-02-01
Defense collagens and other soluble pattern recognition receptors contain the ability to recognize and bind molecular patterns associated with pathogens (PAMPs) or apoptotic cells (ACAMPs) and signal appropriate effector-function responses. PAMP recognition by defense collagens C1q, MBL and ficolins leads to rapid containment of infection via complement activation. However, in the absence of danger, such as during the clearance of apoptotic cells, defense collagens such as C1q, MBL, ficolins, SP-A, SP-D and even adiponectin have all been shown to facilitate enhanced phagocytosis and modulate induction of cytokines towards an anti-inflammatory profile. In this way, cellular debris can be removed without provoking an inflammatory immune response which may be important in the prevention of autoimmunity and/or resolving inflammation. Indeed, deficiencies and/or knock-out mouse studies have highlighted critical roles for soluble pattern recognition receptors in the clearance of apoptotic bodies and protection from autoimmune diseases along with mediating protection from specific infections. Understanding the mechanisms involved in defense collagen and other soluble pattern recognition receptor modulation of the immune response may provide important novel insights into therapeutic targets for infectious and/or autoimmune diseases and additionally may identify avenues for more effective vaccine design.
ERIC Educational Resources Information Center
Hilbig, Benjamin E.; Pohl, Rudiger F.
2009-01-01
According to part of the adaptive toolbox notion of decision making known as the recognition heuristic (RH), the decision process in comparative judgments--and its duration--is determined by whether recognition discriminates between objects. By contrast, some recently proposed alternative models predict that choices largely depend on the amount of…
Using Workflows to Explore and Optimise Named Entity Recognition for Chemistry
Kolluru, BalaKrishna; Hawizy, Lezan; Murray-Rust, Peter; Tsujii, Junichi; Ananiadou, Sophia
2011-01-01
Chemistry text mining tools should be interoperable and adaptable regardless of system-level implementation, installation or even programming issues. We aim to abstract the functionality of these tools from the underlying implementation via reconfigurable workflows for automatically identifying chemical names. To achieve this, we refactored an established named entity recogniser (in the chemistry domain), OSCAR and studied the impact of each component on the net performance. We developed two reconfigurable workflows from OSCAR using an interoperable text mining framework, U-Compare. These workflows can be altered using the drag-&-drop mechanism of the graphical user interface of U-Compare. These workflows also provide a platform to study the relationship between text mining components such as tokenisation and named entity recognition (using maximum entropy Markov model (MEMM) and pattern recognition based classifiers). Results indicate that, for chemistry in particular, eliminating noise generated by tokenisation techniques lead to a slightly better performance than others, in terms of named entity recognition (NER) accuracy. Poor tokenisation translates into poorer input to the classifier components which in turn leads to an increase in Type I or Type II errors, thus, lowering the overall performance. On the Sciborg corpus, the workflow based system, which uses a new tokeniser whilst retaining the same MEMM component, increases the F-score from 82.35% to 84.44%. On the PubMed corpus, it recorded an F-score of 84.84% as against 84.23% by OSCAR. PMID:21633495
Using workflows to explore and optimise named entity recognition for chemistry.
Kolluru, Balakrishna; Hawizy, Lezan; Murray-Rust, Peter; Tsujii, Junichi; Ananiadou, Sophia
2011-01-01
Chemistry text mining tools should be interoperable and adaptable regardless of system-level implementation, installation or even programming issues. We aim to abstract the functionality of these tools from the underlying implementation via reconfigurable workflows for automatically identifying chemical names. To achieve this, we refactored an established named entity recogniser (in the chemistry domain), OSCAR and studied the impact of each component on the net performance. We developed two reconfigurable workflows from OSCAR using an interoperable text mining framework, U-Compare. These workflows can be altered using the drag-&-drop mechanism of the graphical user interface of U-Compare. These workflows also provide a platform to study the relationship between text mining components such as tokenisation and named entity recognition (using maximum entropy Markov model (MEMM) and pattern recognition based classifiers). Results indicate that, for chemistry in particular, eliminating noise generated by tokenisation techniques lead to a slightly better performance than others, in terms of named entity recognition (NER) accuracy. Poor tokenisation translates into poorer input to the classifier components which in turn leads to an increase in Type I or Type II errors, thus, lowering the overall performance. On the Sciborg corpus, the workflow based system, which uses a new tokeniser whilst retaining the same MEMM component, increases the F-score from 82.35% to 84.44%. On the PubMed corpus, it recorded an F-score of 84.84% as against 84.23% by OSCAR.
Visual scanning behavior is related to recognition performance for own- and other-age faces
Proietti, Valentina; Macchi Cassia, Viola; dell’Amore, Francesca; Conte, Stefania; Bricolo, Emanuela
2015-01-01
It is well-established that our recognition ability is enhanced for faces belonging to familiar categories, such as own-race faces and own-age faces. Recent evidence suggests that, for race, the recognition bias is also accompanied by different visual scanning strategies for own- compared to other-race faces. Here, we tested the hypothesis that these differences in visual scanning patterns extend also to the comparison between own and other-age faces and contribute to the own-age recognition advantage. Participants (young adults with limited experience with infants) were tested in an old/new recognition memory task where they encoded and subsequently recognized a series of adult and infant faces while their eye movements were recorded. Consistent with findings on the other-race bias, we found evidence of an own-age bias in recognition which was accompanied by differential scanning patterns, and consequently differential encoding strategies, for own-compared to other-age faces. Gaze patterns for own-age faces involved a more dynamic sampling of the internal features and longer viewing time on the eye region compared to the other regions of the face. This latter strategy was extensively employed during learning (vs. recognition) and was positively correlated to discriminability. These results suggest that deeply encoding the eye region is functional for recognition and that the own-age bias is evident not only in differential recognition performance, but also in the employment of different sampling strategies found to be effective for accurate recognition. PMID:26579056
Lee, Michelle W; Han, Ming; Bossa, Guilherme Volpe; Snell, Carly; Song, Ziyuan; Tang, Haoyu; Yin, Lichen; Cheng, Jianjun; May, Sylvio; Luijten, Erik; Wong, Gerard C L
2017-03-28
At physiological conditions, most proteins or peptides can fold into relatively stable structures that present on their molecular surfaces specific chemical patterns partially smeared out by thermal fluctuations. These nanoscopically defined patterns of charge, hydrogen bonding, and/or hydrophobicity, along with their elasticity and shape stability (folded proteins have Young's moduli of ∼1 × 10 8 Pa), largely determine and limit the interactions of these molecules, such as molecular recognition and allosteric regulation. In this work, we show that the membrane-permeating activity of antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) can be significantly enhanced using prototypical peptides with "molten" surfaces: metaphilic peptides with quasi-liquid surfaces and adaptable shapes. These metaphilic peptides have a bottlebrush-like architecture consisting of a rigid helical core decorated with mobile side chains that are terminated by cationic or hydrophobic groups. Computer simulations show that these flexible side chains can undergo significant rearrangement in response to different environments, giving rise to adaptable surface chemistry of the peptide. This quality makes it possible to control their hydrophobicity over a broad range while maintaining water solubility, unlike many AMPs and CPPs. Thus, we are able to show how the activity of these peptides is amplified by hydrophobicity and cationic charge, and rationalize these results using a quantitative mean-field theory. Computer simulations show that the shape-changing properties of the peptides and the resultant adaptive presentation of chemistry play a key enabling role in their interactions with membranes.
NASA Astrophysics Data System (ADS)
Maas, Christian; Schmalzl, Jörg
2013-08-01
Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.
CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern
NASA Astrophysics Data System (ADS)
Gong, Qian; Qu, Zhiyi; Hao, Kun
2017-07-01
Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.
HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation
NASA Astrophysics Data System (ADS)
Guo, Shuhang; Wang, Jian; Wang, Tong
2017-09-01
Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.
The importance of immune gene variability (MHC) in evolutionary ecology and conservation
Sommer, Simone
2005-01-01
Genetic studies have typically inferred the effects of human impact by documenting patterns of genetic differentiation and levels of genetic diversity among potentially isolated populations using selective neutral markers such as mitochondrial control region sequences, microsatellites or single nucleotide polymorphism (SNPs). However, evolutionary relevant and adaptive processes within and between populations can only be reflected by coding genes. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC). MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and characteristics place genes of the MHC among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygote advantage or frequency-dependent selection. Up to now, most of our knowledge has derived from studies in humans or from model organisms under experimental, laboratory conditions. Empirical support for selective mechanisms in free-ranging animal populations in their natural environment is rare. In this review, I first introduce general information about the structure and function of MHC genes, as well as current hypotheses and concepts concerning the role of selection in the maintenance of MHC polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding markers are compared. Then, I summarise empirical support for the functional importance of MHC variability in parasite resistance with emphasis on the evidence derived from free-ranging animal populations investigated in their natural habitat. Finally, I discuss the importance of adaptive genetic variability with respect to human impact and conservation, and implications for future studies. PMID:16242022
Emotional Faces in Context: Age Differences in Recognition Accuracy and Scanning Patterns
Noh, Soo Rim; Isaacowitz, Derek M.
2014-01-01
While age-related declines in facial expression recognition are well documented, previous research relied mostly on isolated faces devoid of context. We investigated the effects of context on age differences in recognition of facial emotions and in visual scanning patterns of emotional faces. While their eye movements were monitored, younger and older participants viewed facial expressions (i.e., anger, disgust) in contexts that were emotionally congruent, incongruent, or neutral to the facial expression to be identified. Both age groups had highest recognition rates of facial expressions in the congruent context, followed by the neutral context, and recognition rates in the incongruent context were worst. These context effects were more pronounced for older adults. Compared to younger adults, older adults exhibited a greater benefit from congruent contextual information, regardless of facial expression. Context also influenced the pattern of visual scanning characteristics of emotional faces in a similar manner across age groups. In addition, older adults initially attended more to context overall. Our data highlight the importance of considering the role of context in understanding emotion recognition in adulthood. PMID:23163713
Comparing the visual spans for faces and letters
He, Yingchen; Scholz, Jennifer M.; Gage, Rachel; Kallie, Christopher S.; Liu, Tingting; Legge, Gordon E.
2015-01-01
The visual span—the number of adjacent text letters that can be reliably recognized on one fixation—has been proposed as a sensory bottleneck that limits reading speed (Legge, Mansfield, & Chung, 2001). Like reading, searching for a face is an important daily task that involves pattern recognition. Is there a similar limitation on the number of faces that can be recognized in a single fixation? Here we report on a study in which we measured and compared the visual-span profiles for letter and face recognition. A serial two-stage model for pattern recognition was developed to interpret the data. The first stage is characterized by factors limiting recognition of isolated letters or faces, and the second stage represents the interfering effect of nearby stimuli on recognition. Our findings show that the visual span for faces is smaller than that for letters. Surprisingly, however, when differences in first-stage processing for letters and faces are accounted for, the two visual spans become nearly identical. These results suggest that the concept of visual span may describe a common sensory bottleneck that underlies different types of pattern recognition. PMID:26129858
Scheme, Erik; Englehart, Kevin
2013-01-01
The performance of pattern recognition based myoelectric control has seen significant interest in the research community for many years. Due to a recent surge in the development of dexterous prosthetic devices, determining the clinical viability of multifunction myoelectric control has become paramount. Several factors contribute to differences between offline classification accuracy and clinical usability, but the overriding theme is that the variability of the elicited patterns increases greatly during functional use. Proportional control has been shown to greatly improve the usability of conventional myoelectric control systems. Typically, a measure of the amplitude of the electromyogram (a rectified and smoothed version) is used to dictate the velocity of control of a device. The discriminatory power of myoelectric pattern classifiers, however, is also largely based on amplitude features of the electromyogram. This work presents an introductory look at the effect of contraction strength and proportional control on pattern recognition based control. These effects are investigated using typical pattern recognition data collection methods as well as a real-time position tracking test. Training with dynamically force varying contractions and appropriate gain selection is shown to significantly improve (p<0.001) the classifier’s performance and tolerance to proportional control. PMID:23894224
The QuakeSim Project: Numerical Simulations for Active Tectonic Processes
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Parker, Jay; Lyzenga, Greg; Granat, Robert; Fox, Geoffrey; Pierce, Marlon; Rundle, John; McLeod, Dennis; Grant, Lisa; Tullis, Terry
2004-01-01
In order to develop a solid earth science framework for understanding and studying of active tectonic and earthquake processes, this task develops simulation and analysis tools to study the physics of earthquakes using state-of-the art modeling, data manipulation, and pattern recognition technologies. We develop clearly defined accessible data formats and code protocols as inputs to the simulations. these are adapted to high-performance computers because the solid earth system is extremely complex and nonlinear resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes.
A Portable Electronic Nose For Toxic Vapor Detection, Identification, and Quantification
NASA Technical Reports Server (NTRS)
Linnell, B. R.; Young, R. C.; Griffin, T. P.; Meneghelli, B. J.; Peterson, B. V.; Brooks, K. B.
2005-01-01
A new prototype instrument based on electronic nose (e-nose) technology has demonstrated the ability to identify and quantify many vapors of interest to the Space Program at their minimum required concentrations for both single vapors and two-component vapor mixtures, and may easily be adapted to detect many other toxic vapors. To do this, it was necessary to develop algorithms to classify unknown vapors, recognize when a vapor is not any of the vapors of interest, and estimate the concentrations of the contaminants. This paper describes the design of the portable e-nose instrument, test equipment setup, test protocols, pattern recognition algorithms, concentration estimation methods, and laboratory test results.
Use of Co-occurrences for Temporal Expressions Annotation
NASA Astrophysics Data System (ADS)
Craveiro, Olga; Macedo, Joaquim; Madeira, Henrique
The annotation or extraction of temporal information from text documents is becoming increasingly important in many natural language processing applications such as text summarization, information retrieval, question answering, etc.. This paper presents an original method for easy recognition of temporal expressions in text documents. The method creates semantically classified temporal patterns, using word co-occurrences obtained from training corpora and a pre-defined seed keywords set, derived from the used language temporal references. A participation on a Portuguese named entity evaluation contest showed promising effectiveness and efficiency results. This approach can be adapted to recognize other type of expressions or languages, within other contexts, by defining the suitable word sets and training corpora.
Road sign recognition with fuzzy adaptive pre-processing models.
Lin, Chien-Chuan; Wang, Ming-Shi
2012-01-01
A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance.
Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models
Lin, Chien-Chuan; Wang, Ming-Shi
2012-01-01
A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance. PMID:22778650
DOT National Transportation Integrated Search
2015-11-01
One of the most efficient ways to solve the damage detection problem using the statistical pattern recognition : approach is that of exploiting the methods of outlier analysis. Cast within the pattern recognition framework, : damage detection assesse...
Fast traffic sign recognition with a rotation invariant binary pattern based feature.
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-19
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.
Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-01
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217
Iris recognition based on key image feature extraction.
Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y
2008-01-01
In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.
Quantum pattern recognition with multi-neuron interactions
NASA Astrophysics Data System (ADS)
Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.
2018-03-01
We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.
Applications of artificial neural network in AIDS research and therapy.
Sardari, S; Sardari, D
2002-01-01
In recent years considerable effort has been devoted to applying pattern recognition techniques to the complex task of data analysis in drug research. Artificial neural networks (ANN) methodology is a modeling method with great ability to adapt to a new situation, or control an unknown system, using data acquired in previous experiments. In this paper, a brief history of ANN and the basic concepts behind the computing, the mathematical and algorithmic formulation of each of the techniques, and their developmental background is presented. Based on the abilities of ANNs in pattern recognition and estimation of system outputs from the known inputs, the neural network can be considered as a tool for molecular data analysis and interpretation. Analysis by neural networks improves the classification accuracy, data quantification and reduces the number of analogues necessary for correct classification of biologically active compounds. Conformational analysis and quantifying the components in mixtures using NMR spectra, aqueous solubility prediction and structure-activity correlation are among the reported applications of ANN as a new modeling method. Ranging from drug design and discovery to structure and dosage form design, the potential pharmaceutical applications of the ANN methodology are significant. In the areas of clinical monitoring, utilization of molecular simulation and design of bioactive structures, ANN would make the study of the status of the health and disease possible and brings their predicted chemotherapeutic response closer to reality.
Pattern recognition receptor-mediated cytokine response in infants across 4 continents.
Smolen, Kinga K; Ruck, Candice E; Fortuno, Edgardo S; Ho, Kevin; Dimitriu, Pedro; Mohn, William W; Speert, David P; Cooper, Philip J; Esser, Monika; Goetghebuer, Tessa; Marchant, Arnaud; Kollmann, Tobias R
2014-03-01
Susceptibility to infection as well as response to vaccination varies among populations. To date, the underlying mechanisms responsible for these clinical observations have not been fully delineated. Because innate immunity instructs adaptive immunity, we hypothesized that differences between populations in innate immune responses may represent a mechanistic link to variation in susceptibility to infection or response to vaccination. Determine whether differences in innate immune responses exist among infants from different continents of the world. We determined the innate cytokine response following pattern recognition receptor (PRR) stimulation of whole blood from 2-year-old infants across 4 continents (Africa, North America, South America, and Europe). We found that despite the many possible genetic and environmental exposure differences in infants across 4 continents, innate cytokine responses were similar for infants from North America, South America, and Europe. However, cells from South African infants secreted significantly lower levels of cytokines than did cells from infants from the 3 other sites, and did so following stimulation of extracellular and endosomal but not cytosolic PRRs. Substantial differences in innate cytokine responses to PRR stimulation exist among different populations of infants that could not have been predicted. Delineating the underlying mechanism(s) for these differences will not only aid in improving vaccine-mediated protection but possibly also provide clues for the susceptibility to infection in different regions of the world. Copyright © 2013 The Authors. Published by Mosby, Inc. All rights reserved.
Structural health monitoring feature design by genetic programming
NASA Astrophysics Data System (ADS)
Harvey, Dustin Y.; Todd, Michael D.
2014-09-01
Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.
Thonse, Umesh; Behere, Rishikesh V; Praharaj, Samir Kumar; Sharma, Podila Sathya Venkata Narasimha
2018-06-01
Facial emotion recognition deficits have been consistently demonstrated in patients with severe mental disorders. Expressed emotion is found to be an important predictor of relapse. However, the relationship between facial emotion recognition abilities and expressed emotions and its influence on socio-occupational functioning in schizophrenia versus bipolar disorder has not been studied. In this study we examined 91 patients with schizophrenia and 71 with bipolar disorder for psychopathology, socio occupational functioning and emotion recognition abilities. Primary caregivers of 62 patients with schizophrenia and 49 with bipolar disorder were assessed on Family Attitude Questionnaire to assess their expressed emotions. Patients of schizophrenia and bipolar disorder performed similarly on the emotion recognition task. Patients with schizophrenia group experienced higher critical comments and had a poorer socio-occupational functioning as compared to patients with bipolar disorder. Poorer socio-occupational functioning in patients with schizophrenia was significantly associated with greater dissatisfaction in their caregivers. In patients with bipolar disorder, poorer emotion recognition scores significantly correlated with poorer adaptive living skills and greater hostility and dissatisfaction in their caregivers. The findings of our study suggest that emotion recognition abilities in patients with bipolar disorder are associated with negative expressed emotions leading to problems in adaptive living skills. Copyright © 2018 Elsevier B.V. All rights reserved.
Word Recognition in Auditory Cortex
ERIC Educational Resources Information Center
DeWitt, Iain D. J.
2013-01-01
Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…
Shen, Xu; Tian, Xinmei; Liu, Tongliang; Xu, Fang; Tao, Dacheng
2017-10-03
Dropout has been proven to be an effective algorithm for training robust deep networks because of its ability to prevent overfitting by avoiding the co-adaptation of feature detectors. Current explanations of dropout include bagging, naive Bayes, regularization, and sex in evolution. According to the activation patterns of neurons in the human brain, when faced with different situations, the firing rates of neurons are random and continuous, not binary as current dropout does. Inspired by this phenomenon, we extend the traditional binary dropout to continuous dropout. On the one hand, continuous dropout is considerably closer to the activation characteristics of neurons in the human brain than traditional binary dropout. On the other hand, we demonstrate that continuous dropout has the property of avoiding the co-adaptation of feature detectors, which suggests that we can extract more independent feature detectors for model averaging in the test stage. We introduce the proposed continuous dropout to a feedforward neural network and comprehensively compare it with binary dropout, adaptive dropout, and DropConnect on Modified National Institute of Standards and Technology, Canadian Institute for Advanced Research-10, Street View House Numbers, NORB, and ImageNet large scale visual recognition competition-12. Thorough experiments demonstrate that our method performs better in preventing the co-adaptation of feature detectors and improves test performance.
NASA Astrophysics Data System (ADS)
Fernández, Ariel; Ferrari, José A.
2017-05-01
Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.
33 CFR 104.220 - Company or vessel personnel with security duties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...
33 CFR 104.220 - Company or vessel personnel with security duties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...
Genetic dissection of the maize (Zea mays L.) MAMP response
USDA-ARS?s Scientific Manuscript database
Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors (PRRs). Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and ex...
The Functional Architecture of Visual Object Recognition
1991-07-01
different forms of agnosia can provide clues to the representations underlying normal object recognition (Farah, 1990). For example, the pair-wise...patterns of deficit and sparing occur. In a review of 99 published cases of agnosia , the observed patterns of co- occurrence implicated two underlying
DOT National Transportation Integrated Search
2009-01-01
This report describes a study conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information. The study gathered data from a large number of pilots who conduct all type...
Spatial pattern recognition of seismic events in South West Colombia
NASA Astrophysics Data System (ADS)
Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber
2013-09-01
Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.
Haller, Sven; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon; Van De Ville, Dimitri
2014-05-01
Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.
ERIC Educational Resources Information Center
Hills, Peter J.; Lewis, Michael B.
2009-01-01
Five minutes of processing the local features of a Navon letter causes a detriment in subsequent face-recognition performance (Macrae & Lewis, 2002). We hypothesize a perceptual after effect explanation of this effect in which face recognition is less accurate after adapting to high-spatial frequencies at high contrasts. Five experiments were…
An investigative framework to facilitate epidemiological thinking during herd problem-solving.
More, Simon J; Doherty, Michael L; O'Grady, Luke
2017-01-01
Veterinary clinicians and students commonly use diagnostic approaches appropriate for individual cases when conducting herd problem-solving. However, these approaches can be problematic, in part because they make limited use of epidemiological principles and methods, which has clear application during the investigation of herd problems. In this paper, we provide an overview of diagnostic approaches that are used when investigating individual animal cases, and the challenges faced when these approaches are directly translated from the individual to the herd. Further, we propose an investigative framework to facilitate epidemiological thinking during herd problem-solving. A number of different approaches are used when making a diagnosis on an individual animal, including pattern recognition, hypothetico-deductive reasoning, and the key abnormality method. Methods commonly applied to individuals are often adapted for herd problem-solving: 'comparison with best practice' being a herd-level adaptation of pattern recognition, and 'differential diagnoses' a herd-level adaptation of hypothetico-deductive reasoning. These approaches can be effective, however, challenges can arise. Herds are complex; a collection of individual cows, but also additional layers relating to environment, management, feeding etc. It is unrealistic to expect seamless translation of diagnostic approaches from the individual to the herd. Comparison with best practice is time-consuming and prioritisation of actions can be problematic, whereas differential diagnoses can lead to 'pathogen hunting', particularly in complex cases. Epidemiology is the science of understanding disease in populations. The focus is on the population, underpinned by principles and utilising methods that seek to allow us to generate solid conclusions from apparently uncontrolled situations. In this paper, we argue for the inclusion of epidemiological principles and methods as an additional tool for herd problem-solving, and outline an investigative framework, with examples, to effectively incorporate these principles and methods with other diagnostic approaches during herd problem-solving. Relevant measures of performance are identified, and measures of case frequencies are calculated and compared across time, in space and among animal groupings, to identify patterns, clues and plausible hypotheses, consistent with potential biological processes. With this knowledge, the subsequent investigation (relevant on-farm activities, diagnostic testing and other examinations) can be focused, and actions prioritised (specifically, those actions that are likely to make the greatest difference in addressing the problem if enacted). In our experience, this investigative framework is an effective teaching tool, facilitating epidemiological thinking among students during herd problem-solving. It is a generic and robust process, suited to many herd-based problems.
Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization
Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali
2014-01-01
Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584
Purpura, Giulia; Cioni, Giovanni; Tinelli, Francesca
2018-07-01
Object recognition is a long and complex adaptive process and its full maturation requires combination of many different sensory experiences as well as cognitive abilities to manipulate previous experiences in order to develop new percepts and subsequently to learn from the environment. It is well recognized that the transfer of visual and haptic information facilitates object recognition in adults, but less is known about development of this ability. In this study, we explored the developmental course of object recognition capacity in children using unimodal visual information, unimodal haptic information, and visuo-haptic information transfer in children from 4 years to 10 years and 11 months of age. Participants were tested through a clinical protocol, involving visual exploration of black-and-white photographs of common objects, haptic exploration of real objects, and visuo-haptic transfer of these two types of information. Results show an age-dependent development of object recognition abilities for visual, haptic, and visuo-haptic modalities. A significant effect of time on development of unimodal and crossmodal recognition skills was found. Moreover, our data suggest that multisensory processes for common object recognition are active at 4 years of age. They facilitate recognition of common objects, and, although not fully mature, are significant in adaptive behavior from the first years of age. The study of typical development of visuo-haptic processes in childhood is a starting point for future studies regarding object recognition in impaired populations.
Computer Vision for Artificially Intelligent Robotic Systems
NASA Astrophysics Data System (ADS)
Ma, Chialo; Ma, Yung-Lung
1987-04-01
In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Model, we use a narrow beam transducer and it's input voltage is 50V p-p. A RobOt equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.
NASA Astrophysics Data System (ADS)
Ma, Yung-Lung; Ma, Chialo
1987-03-01
In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.
Study and response time for the visual recognition of 'similarity' and identity
NASA Technical Reports Server (NTRS)
Derks, P. L.; Bauer, T. M.
1974-01-01
Four subjects compared successively presented pairs of line patterns for a match between any lines in the pattern (similarity) and for a match between all lines (identity). The encoding or study times for pattern recognition from immediate memory and the latency in responses to comparison stimuli were examined. Qualitative differences within and between subjects were most evident in study times.
Hypothesis Support Mechanism for Mid-Level Visual Pattern Recognition
NASA Technical Reports Server (NTRS)
Amador, Jose J (Inventor)
2007-01-01
A method of mid-level pattern recognition provides for a pose invariant Hough Transform by parametrizing pairs of points in a pattern with respect to at least two reference points, thereby providing a parameter table that is scale- or rotation-invariant. A corresponding inverse transform may be applied to test hypothesized matches in an image and a distance transform utilized to quantify the level of match.
The chemical structure of DNA sequence signals for RNA transcription
NASA Technical Reports Server (NTRS)
George, D. G.; Dayhoff, M. O.
1982-01-01
The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.
2003-01-01
A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.
Fourier transform magnitudes are unique pattern recognition templates.
Gardenier, P H; McCallum, B C; Bates, R H
1986-01-01
Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.
Detection and recognition of analytes based on their crystallization patterns
Morozov, Victor [Manassas, VA; Bailey, Charles L [Cross Junction, VA; Vsevolodov, Nikolai N [Kensington, MD; Elliott, Adam [Manassas, VA
2008-05-06
The invention contemplates a method for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization pattern") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. It has been shown that changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. It was also found that both the character of changer in the crystallization patter and the fact of such changes can be used as recognition elements in analysis of protein molecules.
NASA Astrophysics Data System (ADS)
Zee, Frank C.
2011-12-01
The ability to "smell" various gas vapors and complex odors is important for many applications such as environmental monitoring for detecting toxic gases as well as quality control in the processing of food, cosmetics, and other chemical products for commercial industries. Mimicking the architecture of the biological nose, a miniature electronic nose system was designed and developed consisting of an array of sensor devices, signal-processing circuits, and software pattern-recognition algorithms. The array of sensors used polymer/carbon-black composite thin-films, which would swell or expand reversibly and reproducibly and cause a resistance change upon exposure to a wide variety of gases. Two types of sensor devices were fabricated using silicon micromachining techniques to form "wells" that confined the polymer/carbon-black to a small and specific area. The first type of sensor device formed the "well" by etching into the silicon substrate using bulk micromachining. The second type built a high-aspect-ratio "well" on the surface of a silicon wafer using SU-8 photoresist. Two sizes of "wells" were fabricated: 500 x 600 mum² and 250 x 250 mum². Custom signal-processing circuits were implemented on a printed circuit board and as an application-specific integrated-circuit (ASIC) chip. The circuits were not only able to measure and amplify the small resistance changes, which corresponded to small ppm (parts-per-million) changes in gas concentrations, but were also adaptable to accommodate the various characteristics of the different thin-films. Since the thin-films were not specific to any one particular gas vapor, an array of sensors each containing a different thin-film was used to produce a distributed response pattern when exposed to a gas vapor. Pattern recognition, including a clustering algorithm and two artificial neural network algorithms, was used to classify the response pattern and identify the gas vapor or odor. Two gas experiments were performed, one at low gas concentrations between 100 and 600 ppm for two gas vapors and the other at high gas concentrations between 2000 ppm and the saturated vapor pressure of three gas vapors. The array of sensors and circuits were able to uniquely detect and measure these gas vapors and showed a linear response to their concentration levels for both experiments. The results also demonstrated that a reduction in the sensor area by two orders of magnitude (from 4.32 mm² to 0.0625 mm²) did not affect the sensor response. By applying pattern-recognition algorithms, the electronic nose system was able to correctly identify the different gas vapors from the pattern responses of the sensor array.
Recognition of neural brain activity patterns correlated with complex motor activity
NASA Astrophysics Data System (ADS)
Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.
2018-04-01
In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.
Peptidoglycan recognition proteins in Drosophila immunity.
Kurata, Shoichiro
2014-01-01
Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila. Copyright © 2013 Elsevier Ltd. All rights reserved.
Automatic micropropagation of plants--the vision-system: graph rewriting as pattern recognition
NASA Astrophysics Data System (ADS)
Schwanke, Joerg; Megnet, Roland; Jensch, Peter F.
1993-03-01
The automation of plant-micropropagation is necessary to produce high amounts of biomass. Plants have to be dissected on particular cutting-points. A vision-system is needed for the recognition of the cutting-points on the plants. With this background, this contribution is directed to the underlying formalism to determine cutting-points on abstract-plant models. We show the usefulness of pattern recognition by graph-rewriting along with some examples in this context.
Age-related increases in false recognition: the role of perceptual and conceptual similarity.
Pidgeon, Laura M; Morcom, Alexa M
2014-01-01
Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499-510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.'s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous "old/new" responses at test, while in Experiment 2 participants were also asked to judge lures as "similar," to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.'s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation.
Age-related increases in false recognition: the role of perceptual and conceptual similarity
Pidgeon, Laura M.; Morcom, Alexa M.
2014-01-01
Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499–510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.’s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous “old/new” responses at test, while in Experiment 2 participants were also asked to judge lures as “similar,” to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.’s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation. PMID:25368576
ARCH: Adaptive recurrent-convolutional hybrid networks for long-term action recognition
Xin, Miao; Zhang, Hong; Wang, Helong; Sun, Mingui; Yuan, Ding
2017-01-01
Recognition of human actions from digital video is a challenging task due to complex interfering factors in uncontrolled realistic environments. In this paper, we propose a learning framework using static, dynamic and sequential mixed features to solve three fundamental problems: spatial domain variation, temporal domain polytrope, and intra- and inter-class diversities. Utilizing a cognitive-based data reduction method and a hybrid “network upon networks” architecture, we extract human action representations which are robust against spatial and temporal interferences and adaptive to variations in both action speed and duration. We evaluated our method on the UCF101 and other three challenging datasets. Our results demonstrated a superior performance of the proposed algorithm in human action recognition. PMID:29290647
Image-based automatic recognition of larvae
NASA Astrophysics Data System (ADS)
Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai
2010-08-01
As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.
Enemy at the gates: traffic at the plant cell pathogen interface.
Hoefle, Caroline; Hückelhoven, Ralph
2008-12-01
The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.
A Modified Active Appearance Model Based on an Adaptive Artificial Bee Colony
Othman, Zulaiha Ali
2014-01-01
Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition. PMID:25165748
One-Shot Learning of Human Activity With an MAP Adapted GMM and Simplex-HMM.
Rodriguez, Mario; Orrite, Carlos; Medrano, Carlos; Makris, Dimitrios
2016-05-10
This paper presents a novel activity class representation using a single sequence for training. The contribution of this representation lays on the ability to train an one-shot learning recognition system, useful in new scenarios where capturing and labeling sequences is expensive or impractical. The method uses a universal background model of local descriptors obtained from source databases available on-line and adapts it to a new sequence in the target scenario through a maximum a posteriori adaptation. Each activity sample is encoded in a sequence of normalized bag of features and modeled by a new hidden Markov model formulation, where the expectation-maximization algorithm for training is modified to deal with observations consisting in vectors in a unit simplex. Extensive experiments in recognition have been performed using one-shot learning over the public datasets Weizmann, KTH, and IXMAS. These experiments demonstrate the discriminative properties of the representation and the validity of application in recognition systems, achieving state-of-the-art results.
Jiang, Xiong; Chevillet, Mark A; Rauschecker, Josef P; Riesenhuber, Maximilian
2018-04-18
Grouping auditory stimuli into common categories is essential for a variety of auditory tasks, including speech recognition. We trained human participants to categorize auditory stimuli from a large novel set of morphed monkey vocalizations. Using fMRI-rapid adaptation (fMRI-RA) and multi-voxel pattern analysis (MVPA) techniques, we gained evidence that categorization training results in two distinct sets of changes: sharpened tuning to monkey call features (without explicit category representation) in left auditory cortex and category selectivity for different types of calls in lateral prefrontal cortex. In addition, the sharpness of neural selectivity in left auditory cortex, as estimated with both fMRI-RA and MVPA, predicted the steepness of the categorical boundary, whereas categorical judgment correlated with release from adaptation in the left inferior frontal gyrus. These results support the theory that auditory category learning follows a two-stage model analogous to the visual domain, suggesting general principles of perceptual category learning in the human brain. Copyright © 2018 Elsevier Inc. All rights reserved.
Aldao, Amelia; Jazaieri, Hooria; Goldin, Philippe R.; Gross, James J.
2014-01-01
There has been a increasing interest in understanding emotion regulation deficits in social anxiety disorder (SAD; e.g., Hofmann, Sawyer, Fang, & Asnaani, 2012). However, much remains to be understood about the patterns of associations among regulation strategies in the repertoire. Doing so is important in light of the growing recognition that people’s ability to flexibly implement strategies is associated with better mental health (e.g., Kashdan et al., 2014). Based on previous work (Aldao & Nolen-Hoeksema, 2012), we examined whether putatively adaptive and maladaptive emotion regulation strategies interacted with each other in the prediction of social anxiety symptoms in a sample of 71 participants undergoing CBT for SAD. We found that strategies interacted with each other and that this interaction was qualified by a three-way interaction with a contextual factor, namely treatment study phase. Consequently, these findings underscore the importance of modeling contextual factors when seeking to understand emotion regulation deficits in SAD. PMID:24742755
DOT National Transportation Integrated Search
2009-04-28
A study was conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information, such as electronic charts and moving map displays. The goal of this research is to support t...
USDA-ARS?s Scientific Manuscript database
The combination of gas chromatography and pattern recognition (GC/PR) analysis is a powerful tool for investigating complicated biological problems. Clustering, mapping, discriminant development, etc. are necessary to analyze realistically large chromatographic data sets and to seek meaningful relat...
Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.
Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J
2016-01-01
Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities.
Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns
Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.
2016-01-01
Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities. PMID:27932941
Recognition of emotion from body language among patients with unipolar depression
Loi, Felice; Vaidya, Jatin G.; Paradiso, Sergio
2013-01-01
Major depression may be associated with abnormal perception of emotions and impairment in social adaptation. Emotion recognition from body language and its possible implications to social adjustment have not been examined in patients with depression. Three groups of participants (51 with depression; 68 with history of depression in remission; and 69 never depressed healthy volunteers) were compared on static and dynamic tasks of emotion recognition from body language. Psychosocial adjustment was assessed using the Social Adjustment Scale Self-Report (SAS-SR). Participants with current depression showed reduced recognition accuracy for happy stimuli across tasks relative to remission and comparison participants. Participants with depression tended to show poorer psychosocial adaptation relative to remission and comparison groups. Correlations between perception accuracy of happiness and scores on the SAS-SR were largely not significant. These results indicate that depression is associated with reduced ability to appraise positive stimuli of emotional body language but emotion recognition performance is not tied to social adjustment. These alterations do not appear to be present in participants in remission suggesting state-like qualities. PMID:23608159
Horn, Sebastian S; Ruggeri, Azzurra; Pachur, Thorsten
2016-09-01
Judgments about objects in the world are often based on probabilistic information (or cues). A frugal judgment strategy that utilizes memory (i.e., the ability to discriminate between known and unknown objects) as a cue for inference is the recognition heuristic (RH). The usefulness of the RH depends on the structure of the environment, particularly the predictive power (validity) of recognition. Little is known about developmental differences in use of the RH. In this study, the authors examined (a) to what extent children and adolescents recruit the RH when making judgments, and (b) around what age adaptive use of the RH emerges. Primary schoolchildren (M = 9 years), younger adolescents (M = 12 years), and older adolescents (M = 17 years) made comparative judgments in task environments with either high or low recognition validity. Reliance on the RH was measured with a hierarchical multinomial model. Results indicated that primary schoolchildren already made systematic use of the RH. However, only older adolescents adaptively adjusted their strategy use between environments and were better able to discriminate between situations in which the RH led to correct versus incorrect inferences. These findings suggest that the use of simple heuristics does not progress unidirectionally across development but strongly depends on the task environment, in line with the perspective of ecological rationality. Moreover, adaptive heuristic inference seems to require experience and a developed base of domain knowledge. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Biological complexity and adaptability of simple mammalian olfactory memory systems.
Brennan, P; Keverne, E B
2015-03-01
Chemosensory systems play vital roles in the lives of most mammals, including the detection and identification of predators, as well as sex and reproductive status and the identification of individual conspecifics. All of these capabilities require a process of recognition involving a combination of innate (kairomonal/pheromonal) and learned responses. Across very different phylogenies, the mechanisms for pheromonal and odour learning have much in common. They are frequently associated with plasticity of GABA-ergic feedback at the initial level of processing the chemosensory information, which enhances its pattern separation capability. Association of odourant features into an odour object primarily involves anterior piriform cortex for non-social odours. However, the medial amygdala appears to be involved in both the recognition of social odours and their association with chemosensory information sensed by the vomeronasal system. Unusually not only the sensory neurons themselves, but also the GABA-ergic interneurons in the olfactory bulb are continually being replaced, with implications for the induction and maintenance of learned chemosensory responses. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Emerging IL-12 family cytokines in the fight against fungal infections.
Thompson, Aiysha; Orr, Selinda J
2018-05-21
Invasive fungal infections cause approximately 1.5 million deaths per year worldwide and are a growing threat to human health. Current anti-fungal therapies are often insufficient, therefore studies into host-pathogen interactions are critical for the development of novel therapies to improve mortality rates. Myeloid cells, such as macrophages and dendritic cells, express pattern recognition receptor (PRRs), which are important for fungal recognition. Engagement of these PRRs by fungal pathogens induces multiple cytokines, which in turn activate T effector responses. Interleukin (IL)-12 family members (IL-12p70, IL-23, IL-27 and IL-35) link innate immunity with the development of adaptive immunity and are also important for regulating T cell responses. IL-12 and IL-23 have established roles during anti-fungal immunity, whereas emerging roles for IL-27 and IL-35 have recently been reported. Here, we discuss the IL-12 family, focusing on IL-27 and IL-35 during anti-fungal immune responses to pathogens such as Candida and Aspergillus. Copyright © 2018. Published by Elsevier Ltd.
Analysis of the hand vein pattern for people recognition
NASA Astrophysics Data System (ADS)
Castro-Ortega, R.; Toxqui-Quitl, C.; Cristóbal, G.; Marcos, J. Victor; Padilla-Vivanco, A.; Hurtado Pérez, R.
2015-09-01
The shape of the hand vascular pattern contains useful and unique features that can be used for identifying and authenticating people, with applications in access control, medicine and financial services. In this work, an optical system for the image acquisition of the hand vascular pattern is implemented. It consists of a CCD camera with sensitivity in the IR and a light source with emission in the 880 nm. The IR radiation interacts with the desoxyhemoglobin, hemoglobin and water present in the blood of the veins, making possible to see the vein pattern underneath skin. The segmentation of the Region Of Interest (ROI) is achieved using geometrical moments locating the centroid of an image. For enhancement of the vein pattern we use the technique of Histogram Equalization and Contrast Limited Adaptive Histogram Equalization (CLAHE). In order to remove unnecessary information such as body hair and skinfolds, a low pass filter is implemented. A method based on geometric moments is used to obtain the invariant descriptors of the input images. The classification task is achieved using Artificial Neural Networks (ANN) and K-Nearest Neighbors (K-nn) algorithms. Experimental results using our database show a percentage of correct classification, higher of 86.36% with ANN for 912 images of 38 people with 12 versions each one.
ERIC Educational Resources Information Center
Bufford, Carolyn A.; Mettler, Everett; Geller, Emma H.; Kellman, Philip J.
2014-01-01
Mathematics requires thinking but also pattern recognition. Recent research indicates that perceptual learning (PL) interventions facilitate discovery of structure and recognition of patterns in mathematical domains, as assessed by tests of mathematical competence. Here we sought direct evidence that a brief perceptual learning module (PLM)…
Summary of 1971 pattern recognition program development
NASA Technical Reports Server (NTRS)
Whitley, S. L.
1972-01-01
Eight areas related to pattern recognition analysis at the Earth Resources Laboratory are discussed: (1) background; (2) Earth Resources Laboratory goals; (3) software problems/limitations; (4) operational problems/limitations; (5) immediate future capabilities; (6) Earth Resources Laboratory data analysis system; (7) general program needs and recommendations; and (8) schedule and milestones.
Pattern Recognition by Retina-Like Devices.
ERIC Educational Resources Information Center
Weiman, Carl F. R.; Rothstein, Jerome
This study has investigated some pattern recognition capabilities of devices consisting of arrays of cooperating elements acting in parallel. The problem of recognizing straight lines in general position on the quadratic lattice has been completely solved by applying parallel acting algorithms to a special code for lines on the lattice. The…
Cognitive Development and Reading Processes. Developmental Program Report Number 76.
ERIC Educational Resources Information Center
West, Richard F.
In discussing the relationship between cognitive development (perception, pattern recognition, and memory) and reading processes, this paper especially emphasizes developmental factors. After an overview of some issues that bear on how written language is processed, the paper presents a discussion of pattern recognition, including general pattern…
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Editor); Schenker, Paul (Editor)
1987-01-01
The papers presented in this volume provide an overview of current research in both optical and digital pattern recognition, with a theme of identifying overlapping research problems and methodologies. Topics discussed include image analysis and low-level vision, optical system design, object analysis and recognition, real-time hybrid architectures and algorithms, high-level image understanding, and optical matched filter design. Papers are presented on synthetic estimation filters for a control system; white-light correlator character recognition; optical AI architectures for intelligent sensors; interpreting aerial photographs by segmentation and search; and optical information processing using a new photopolymer.
NASA Astrophysics Data System (ADS)
Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.
2017-03-01
In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deptuch, Gregory; Hoff, James; Jindariani, Sergo
Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The firstmore » step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.« less
Distributed Fusion in Sensor Networks with Information Genealogy
2011-06-28
image processing [2], acoustic and speech recognition [3], multitarget tracking [4], distributed fusion [5], and Bayesian inference [6-7]. For...Adaptation for Distant-Talking Speech Recognition." in Proc Acoustics. Speech , and Signal Processing, 2004 |4| Y Bar-Shalom and T 1-. Fortmann...used in speech recognition and other classification applications [8]. But their use in underwater mine classification is limited. In this paper, we
Do pattern recognition skills transfer across sports? A preliminary analysis.
Smeeton, Nicholas J; Ward, Paul; Williams, A Mark
2004-02-01
The ability to recognize patterns of play is fundamental to performance in team sports. While typically assumed to be domain-specific, pattern recognition skills may transfer from one sport to another if similarities exist in the perceptual features and their relations and/or the strategies used to encode and retrieve relevant information. A transfer paradigm was employed to compare skilled and less skilled soccer, field hockey and volleyball players' pattern recognition skills. Participants viewed structured and unstructured action sequences from each sport, half of which were randomly represented with clips not previously seen. The task was to identify previously viewed action sequences quickly and accurately. Transfer of pattern recognition skill was dependent on the participant's skill, sport practised, nature of the task and degree of structure. The skilled soccer and hockey players were quicker than the skilled volleyball players at recognizing structured soccer and hockey action sequences. Performance differences were not observed on the structured volleyball trials between the skilled soccer, field hockey and volleyball players. The skilled field hockey and soccer players were able to transfer perceptual information or strategies between their respective sports. The less skilled participants' results were less clear. Implications for domain-specific expertise, transfer and diversity across domains are discussed.
STANFORD ARTIFICIAL INTELLIGENCE PROJECT.
ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.
Action recognition in depth video from RGB perspective: A knowledge transfer manner
NASA Astrophysics Data System (ADS)
Chen, Jun; Xiao, Yang; Cao, Zhiguo; Fang, Zhiwen
2018-03-01
Different video modal for human action recognition has becoming a highly promising trend in the video analysis. In this paper, we propose a method for human action recognition from RGB video to Depth video using domain adaptation, where we use learned feature from RGB videos to do action recognition for depth videos. More specifically, we make three steps for solving this problem in this paper. First, different from image, video is more complex as it has both spatial and temporal information, in order to better encode this information, dynamic image method is used to represent each RGB or Depth video to one image, based on this, most methods for extracting feature in image can be used in video. Secondly, as video can be represented as image, so standard CNN model can be used for training and testing for videos, beside, CNN model can be also used for feature extracting as its powerful feature expressing ability. Thirdly, as RGB videos and Depth videos are belong to two different domains, in order to make two different feature domains has more similarity, domain adaptation is firstly used for solving this problem between RGB and Depth video, based on this, the learned feature from RGB video model can be directly used for Depth video classification. We evaluate the proposed method on one complex RGB-D action dataset (NTU RGB-D), and our method can have more than 2% accuracy improvement using domain adaptation from RGB to Depth action recognition.
Goal-seeking neural net for recall and recognition
NASA Astrophysics Data System (ADS)
Omidvar, Omid M.
1990-07-01
Neural networks have been used to mimic cognitive processes which take place in animal brains. The learning capability inherent in neural networks makes them suitable candidates for adaptive tasks such as recall and recognition. The synaptic reinforcements create a proper condition for adaptation, which results in memorization, formation of perception, and higher order information processing activities. In this research a model of a goal seeking neural network is studied and the operation of the network with regard to recall and recognition is analyzed. In these analyses recall is defined as retrieval of stored information where little or no matching is involved. On the other hand recognition is recall with matching; therefore it involves memorizing a piece of information with complete presentation. This research takes the generalized view of reinforcement in which all the signals are potential reinforcers. The neuronal response is considered to be the source of the reinforcement. This local approach to adaptation leads to the goal seeking nature of the neurons as network components. In the proposed model all the synaptic strengths are reinforced in parallel while the reinforcement among the layers is done in a distributed fashion and pipeline mode from the last layer inward. A model of complex neuron with varying threshold is developed to account for inhibitory and excitatory behavior of real neuron. A goal seeking model of a neural network is presented. This network is utilized to perform recall and recognition tasks. The performance of the model with regard to the assigned tasks is presented.
Face Recognition Using Local Quantized Patterns and Gabor Filters
NASA Astrophysics Data System (ADS)
Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.
2015-05-01
The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.
A Bridge between Pictures and Print.
ERIC Educational Resources Information Center
Jeffree, Dorothy
1981-01-01
The experiment investigated the feasibility of bridging the gap between the recognition of pictures and the recognition of words in four mentally handicapped adolescents by adapting a modified version of symbol accentuation (in which a printed word looks like the object it represents). (SB)
Speaker normalization for chinese vowel recognition in cochlear implants.
Luo, Xin; Fu, Qian-Jie
2005-07-01
Because of the limited spectra-temporal resolution associated with cochlear implants, implant patients often have greater difficulty with multitalker speech recognition. The present study investigated whether multitalker speech recognition can be improved by applying speaker normalization techniques to cochlear implant speech processing. Multitalker Chinese vowel recognition was tested with normal-hearing Chinese-speaking subjects listening to a 4-channel cochlear implant simulation, with and without speaker normalization. For each subject, speaker normalization was referenced to the speaker that produced the best recognition performance under conditions without speaker normalization. To match the remaining speakers to this "optimal" output pattern, the overall frequency range of the analysis filter bank was adjusted for each speaker according to the ratio of the mean third formant frequency values between the specific speaker and the reference speaker. Results showed that speaker normalization provided a small but significant improvement in subjects' overall recognition performance. After speaker normalization, subjects' patterns of recognition performance across speakers changed, demonstrating the potential for speaker-dependent effects with the proposed normalization technique.
Visual Scanning Patterns and Executive Function in Relation to Facial Emotion Recognition in Aging
Circelli, Karishma S.; Clark, Uraina S.; Cronin-Golomb, Alice
2012-01-01
Objective The ability to perceive facial emotion varies with age. Relative to younger adults (YA), older adults (OA) are less accurate at identifying fear, anger, and sadness, and more accurate at identifying disgust. Because different emotions are conveyed by different parts of the face, changes in visual scanning patterns may account for age-related variability. We investigated the relation between scanning patterns and recognition of facial emotions. Additionally, as frontal-lobe changes with age may affect scanning patterns and emotion recognition, we examined correlations between scanning parameters and performance on executive function tests. Methods We recorded eye movements from 16 OA (mean age 68.9) and 16 YA (mean age 19.2) while they categorized facial expressions and non-face control images (landscapes), and administered standard tests of executive function. Results OA were less accurate than YA at identifying fear (p<.05, r=.44) and more accurate at identifying disgust (p<.05, r=.39). OA fixated less than YA on the top half of the face for disgust, fearful, happy, neutral, and sad faces (p’s<.05, r’s≥.38), whereas there was no group difference for landscapes. For OA, executive function was correlated with recognition of sad expressions and with scanning patterns for fearful, sad, and surprised expressions. Conclusion We report significant age-related differences in visual scanning that are specific to faces. The observed relation between scanning patterns and executive function supports the hypothesis that frontal-lobe changes with age may underlie some changes in emotion recognition. PMID:22616800
Stable Odor Recognition by a neuro-adaptive Electronic Nose
Martinelli, Eugenio; Magna, Gabriele; Polese, Davide; Vergara, Alexander; Schild, Detlev; Di Natale, Corrado
2015-01-01
Sensitivity, selectivity and stability are decisive properties of sensors. In chemical gas sensors odor recognition can be severely compromised by poor signal stability, particularly in real life applications where the sensors are exposed to unpredictable sequences of odors under changing external conditions. Although olfactory receptor neurons in the nose face similar stimulus sequences under likewise changing conditions, odor recognition is very stable and odorants can be reliably identified independently from past odor perception. We postulate that appropriate pre-processing of the output signals of chemical sensors substantially contributes to the stability of odor recognition, in spite of marked sensor instabilities. To investigate this hypothesis, we use an adaptive, unsupervised neural network inspired by the glomerular input circuitry of the olfactory bulb. Essentially the model reduces the effect of the sensors’ instabilities by utilizing them via an adaptive multicompartment feed-forward inhibition. We collected and analyzed responses of a 4 × 4 gas sensor array to a number of volatile compounds applied over a period of 18 months, whereby every sensor was sampled episodically. The network conferred excellent stability to the compounds’ identification and was clearly superior over standard classifiers, even when one of the sensors exhibited random fluctuations or stopped working at all. PMID:26043043
Are face representations depth cue invariant?
Dehmoobadsharifabadi, Armita; Farivar, Reza
2016-06-01
The visual system can process three-dimensional depth cues defining surfaces of objects, but it is unclear whether such information contributes to complex object recognition, including face recognition. The processing of different depth cues involves both dorsal and ventral visual pathways. We investigated whether facial surfaces defined by individual depth cues resulted in meaningful face representations-representations that maintain the relationship between the population of faces as defined in a multidimensional face space. We measured face identity aftereffects for facial surfaces defined by individual depth cues (Experiments 1 and 2) and tested whether the aftereffect transfers across depth cues (Experiments 3 and 4). Facial surfaces and their morphs to the average face were defined purely by one of shading, texture, motion, or binocular disparity. We obtained identification thresholds for matched (matched identity between adapting and test stimuli), non-matched (non-matched identity between adapting and test stimuli), and no-adaptation (showing only the test stimuli) conditions for each cue and across different depth cues. We found robust face identity aftereffect in both experiments. Our results suggest that depth cues do contribute to forming meaningful face representations that are depth cue invariant. Depth cue invariance would require integration of information across different areas and different pathways for object recognition, and this in turn has important implications for cortical models of visual object recognition.
Online adaptive neural control of a robotic lower limb prosthesis
NASA Astrophysics Data System (ADS)
Spanias, J. A.; Simon, A. M.; Finucane, S. B.; Perreault, E. J.; Hargrove, L. J.
2018-02-01
Objective. The purpose of this study was to develop and evaluate an adaptive intent recognition algorithm that continuously learns to incorporate a lower limb amputee’s neural information (acquired via electromyography (EMG)) as they ambulate with a robotic leg prosthesis. Approach. We present a powered lower limb prosthesis that was configured to acquire the user’s neural information and kinetic/kinematic information from embedded mechanical sensors, and identify and respond to the user’s intent. We conducted an experiment with eight transfemoral amputees over multiple days. EMG and mechanical sensor data were collected while subjects using a powered knee/ankle prosthesis completed various ambulation activities such as walking on level ground, stairs, and ramps. Our adaptive intent recognition algorithm automatically transitioned the prosthesis into the different locomotion modes and continuously updated the user’s model of neural data during ambulation. Main results. Our proposed algorithm accurately and consistently identified the user’s intent over multiple days, despite changing neural signals. The algorithm incorporated 96.31% [0.91%] (mean, [standard error]) of neural information across multiple experimental sessions, and outperformed non-adaptive versions of our algorithm—with a 6.66% [3.16%] relative decrease in error rate. Significance. This study demonstrates that our adaptive intent recognition algorithm enables incorporation of neural information over long periods of use, allowing assistive robotic devices to accurately respond to the user’s intent with low error rates.
Recognition of surface lithologic and topographic patterns in southwest Colorado with ADP techniques
NASA Technical Reports Server (NTRS)
Melhorn, W. N.; Sinnock, S.
1973-01-01
Analysis of ERTS-1 multispectral data by automatic pattern recognition procedures is applicable toward grappling with current and future resource stresses by providing a means for refining existing geologic maps. The procedures used in the current analysis already yield encouraging results toward the eventual machine recognition of extensive surface lithologic and topographic patterns. Automatic mapping of a series of hogbacks, strike valleys, and alluvial surfaces along the northwest flank of the San Juan Basin in Colorado can be obtained by minimal man-machine interaction. The determination of causes for separable spectral signatures is dependent upon extensive correlation of micro- and macro field based ground truth observations and aircraft underflight data with the satellite data.
Infrared Ship Classification Using A New Moment Pattern Recognition Concept
NASA Astrophysics Data System (ADS)
Casasent, David; Pauly, John; Fetterly, Donald
1982-03-01
An analysis of the statistics of the moments and the conventional invariant moments shows that the variance of the latter become quite large as the order of the moments and the degree of invariance increases. Moreso, the need to whiten the error volume increases with the order and degree, but so does the computational load associated with computing the whitening operator. We thus advance a new estimation approach to the use of moments in pattern recog-nition that overcomes these problems. This work is supported by experimental verification and demonstration on an infrared ship pattern recognition problem. The computational load associated with our new algorithm is also shown to be very low.
Intelligent data processing of an ultrasonic sensor system for pattern recognition improvements
NASA Astrophysics Data System (ADS)
Na, Seung You; Park, Min-Sang; Hwang, Won-Gul; Kee, Chang-Doo
1999-05-01
Though conventional time-of-flight ultrasonic sensor systems are popular due to the advantages of low cost and simplicity, the usage of the sensors is rather narrowly restricted within object detection and distance readings. There is a strong need to enlarge the amount of environmental information for mobile applications to provide intelligent autonomy. Wide sectors of such neighboring object recognition problems can be satisfactorily handled with coarse vision data such as sonar maps instead of accurate laser or optic measurements. For the usage of object pattern recognition, ultrasonic senors have inherent shortcomings of poor directionality and specularity which result in low spatial resolution and indistinctiveness of object patterns. To resolve these problems an array of increased number of sensor elements has been used for large objects. In this paper we propose a method of sensor array system with improved recognition capability using electronic circuits accompanying the sensor array and neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. Relying upon the known sensor characteristics, a set of different return signals from neighboring senors is manipulated to provide an enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.
NASA Astrophysics Data System (ADS)
Sheng, Yehua; Zhang, Ka; Ye, Chun; Liang, Cheng; Li, Jian
2008-04-01
Considering the problem of automatic traffic sign detection and recognition in stereo images captured under motion conditions, a new algorithm for traffic sign detection and recognition based on features and probabilistic neural networks (PNN) is proposed in this paper. Firstly, global statistical color features of left image are computed based on statistics theory. Then for red, yellow and blue traffic signs, left image is segmented to three binary images by self-adaptive color segmentation method. Secondly, gray-value projection and shape analysis are used to confirm traffic sign regions in left image. Then stereo image matching is used to locate the homonymy traffic signs in right image. Thirdly, self-adaptive image segmentation is used to extract binary inner core shapes of detected traffic signs. One-dimensional feature vectors of inner core shapes are computed by central projection transformation. Fourthly, these vectors are input to the trained probabilistic neural networks for traffic sign recognition. Lastly, recognition results in left image are compared with recognition results in right image. If results in stereo images are identical, these results are confirmed as final recognition results. The new algorithm is applied to 220 real images of natural scenes taken by the vehicle-borne mobile photogrammetry system in Nanjing at different time. Experimental results show a detection and recognition rate of over 92%. So the algorithm is not only simple, but also reliable and high-speed on real traffic sign detection and recognition. Furthermore, it can obtain geometrical information of traffic signs at the same time of recognizing their types.
Vélez, Alejandro; Bee, Mark A
2013-05-01
This study tested three hypotheses about the ability of female frogs to exploit temporal fluctuations in the level of background noise to overcome the problem of recognizing male advertisement calls in noisy breeding choruses. Phonotaxis tests with green treefrogs (Hyla cinerea) and Cope's gray treefrogs (Hyla chrysoscelis) were used to measure thresholds for recognizing calls in the presence of noise maskers with (a) no level fluctuations, (b) random fluctuations, or level fluctuations characteristic of (c) conspecific choruses and (d) heterospecific choruses. The dip-listening hypothesis predicted lower signal recognition thresholds in the presence of fluctuating maskers compared with nonfluctuating maskers. Support for the dip-listening hypothesis was weak; only Cope's gray treefrogs experienced dip listening and only in the presence of randomly fluctuating maskers. The natural soundscapes advantage hypothesis predicted lower recognition thresholds when level fluctuations resembled those of natural soundscapes compared with artificial fluctuations. This hypothesis was rejected. In noise backgrounds with natural fluctuations, the species-specific advantage hypothesis predicted lower recognition thresholds when fluctuations resembled species-specific patterns of conspecific soundscapes. No evidence was found to support this hypothesis. These results corroborate previous findings showing that Cope's gray treefrogs, but not green treefrogs, experience dip listening under some noise conditions. Together, the results suggest level fluctuations in the soundscape of natural breeding choruses may present few dip-listening opportunities. The findings of this study provide little support for the hypothesis that receivers are adapted to exploit level fluctuations of natural soundscapes in recognizing communication signals.
Vélez, Alejandro; Bee, Mark A.
2013-01-01
This study tested three hypotheses about the ability of female frogs to exploit temporal fluctuations in the level of background noise to overcome the problem of recognizing male advertisement calls in noisy breeding choruses. Phonotaxis tests with green treefrogs (Hyla cinerea) and Cope’s gray treefrogs (Hyla chrysoscelis) were used to measure thresholds for recognizing calls in the presence of noise maskers with (i) no level fluctuations, (ii) random fluctuations, or level fluctuations characteristic of (iii) conspecific choruses and (iv) heterospecific choruses. The dip-listening hypothesis predicted lower signal recognition thresholds in the presence of fluctuating maskers compared with non-fluctuating maskers. Support for the dip listening hypothesis was weak; only Cope’s gray treefrogs experienced dip listening and only in the presence of randomly fluctuating maskers. The natural soundscapes advantage hypothesis predicted lower recognition thresholds when level fluctuations resembled those of natural soundscapes compared with artificial fluctuations. This hypothesis was rejected. In noise backgrounds with natural fluctuations, the species-specific advantage hypothesis predicted lower recognition thresholds when fluctuations resembled species-specific patterns of conspecific soundscapes. No evidence was found to support this hypothesis. These results corroborate previous findings showing that Cope’s gray treefrogs, but not green treefrogs, experience dip listening under some noise conditions. Together, the results suggest level fluctuations in the soundscape of natural breeding choruses may present few dip-listening opportunities. The findings of this study provide little support for the hypothesis that receivers are adapted to exploit level fluctuations of natural soundscapes in recognizing communication signals. PMID:23106802
Foundations for a syntatic pattern recognition system for genomic DNA sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searles, D.B.
1993-03-01
The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.
The time course of individual face recognition: A pattern analysis of ERP signals.
Nemrodov, Dan; Niemeier, Matthias; Mok, Jenkin Ngo Yin; Nestor, Adrian
2016-05-15
An extensive body of work documents the time course of neural face processing in the human visual cortex. However, the majority of this work has focused on specific temporal landmarks, such as N170 and N250 components, derived through univariate analyses of EEG data. Here, we take on a broader evaluation of ERP signals related to individual face recognition as we attempt to move beyond the leading theoretical and methodological framework through the application of pattern analysis to ERP data. Specifically, we investigate the spatiotemporal profile of identity recognition across variation in emotional expression. To this end, we apply pattern classification to ERP signals both in time, for any single electrode, and in space, across multiple electrodes. Our results confirm the significance of traditional ERP components in face processing. At the same time though, they support the idea that the temporal profile of face recognition is incompletely described by such components. First, we show that signals associated with different facial identities can be discriminated from each other outside the scope of these components, as early as 70ms following stimulus presentation. Next, electrodes associated with traditional ERP components as well as, critically, those not associated with such components are shown to contribute information to stimulus discriminability. And last, the levels of ERP-based pattern discrimination are found to correlate with recognition accuracy across subjects confirming the relevance of these methods for bridging brain and behavior data. Altogether, the current results shed new light on the fine-grained time course of neural face processing and showcase the value of novel methods for pattern analysis to investigating fundamental aspects of visual recognition. Copyright © 2016 Elsevier Inc. All rights reserved.
Generating Control Commands From Gestures Sensed by EMG
NASA Technical Reports Server (NTRS)
Wheeler, Kevin R.; Jorgensen, Charles
2006-01-01
An effort is under way to develop noninvasive neuro-electric interfaces through which human operators could control systems as diverse as simple mechanical devices, computers, aircraft, and even spacecraft. The basic idea is to use electrodes on the surface of the skin to acquire electromyographic (EMG) signals associated with gestures, digitize and process the EMG signals to recognize the gestures, and generate digital commands to perform the actions signified by the gestures. In an experimental prototype of such an interface, the EMG signals associated with hand gestures are acquired by use of several pairs of electrodes mounted in sleeves on a subject s forearm (see figure). The EMG signals are sampled and digitized. The resulting time-series data are fed as input to pattern-recognition software that has been trained to distinguish gestures from a given gesture set. The software implements, among other things, hidden Markov models, which are used to recognize the gestures as they are being performed in real time. Thus far, two experiments have been performed on the prototype interface to demonstrate feasibility: an experiment in synthesizing the output of a joystick and an experiment in synthesizing the output of a computer or typewriter keyboard. In the joystick experiment, the EMG signals were processed into joystick commands for a realistic flight simulator for an airplane. The acting pilot reached out into the air, grabbed an imaginary joystick, and pretended to manipulate the joystick to achieve left and right banks and up and down pitches of the simulated airplane. In the keyboard experiment, the subject pretended to type on a numerical keypad, and the EMG signals were processed into keystrokes. The results of the experiments demonstrate the basic feasibility of this method while indicating the need for further research to reduce the incidence of errors (including confusion among gestures). Topics that must be addressed include the numbers and arrangements of electrodes needed to acquire sufficient data; refinements in the acquisition, filtering, and digitization of EMG signals; and methods of training the pattern- recognition software. The joystick and keyboard simulations were chosen for the initial experiments because they are familiar to many computer users. It is anticipated that, ultimately, interfaces would utilize EMG signals associated with movements more nearly natural than those associated with joysticks or keyboards. Future versions of the pattern-recognition software are planned to be capable of adapting to the preferences and day-today variations in EMG outputs of individual users; this capability for adaptation would also make it possible to select gestures that, to a given user, feel the most nearly natural for generating control signals for a given task (provided that there are enough properly positioned electrodes to acquire the EMG signals from the muscles involved in the gestures).
Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts
ERIC Educational Resources Information Center
Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang
2010-01-01
Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…
ERIC Educational Resources Information Center
Welk, Dorette Sugg
2002-01-01
Sophomore nursing students (n=162) examined scenarios depicting typical and atypical signs of heart attack. Examples were structured to include essential and nonessential symptoms, enabling pattern recognition and improved performance. The method provides a way to prepare students to anticipate and recognize life-threatening situations. (Contains…
PATTERN RECOGNITION APPROACH TO MEDICAL DIAGNOSIS,
A sequential method of pattern recognition was used to recognize hyperthyroidism in a sample of 2219 patients being treated at the Straub Clinic in...the most prominent class features are selected. Thus, the symptoms which best distinguish hyperthyroidism are extracted at every step and the number of tests required to reach a diagnosis is reduced. (Author)
Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates.
Nakatsuka, Nako; Cao, Huan H; Deshayes, Stephanie; Melkonian, Arin Lucy; Kasko, Andrea M; Weiss, Paul S; Andrews, Anne M
2018-05-31
Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or L-tryptophan were selectively recognized by previously identified dopamine or L-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though slightly greater than the previously determined solution dissociation constant. Using pre-functionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with L-DOPA, L-DOPS, and L-5-HTP enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons, and future identification and characterization of novel aptamers targeting neurotransmitters or other important small-molecules.
Classifier dependent feature preprocessing methods
NASA Astrophysics Data System (ADS)
Rodriguez, Benjamin M., II; Peterson, Gilbert L.
2008-04-01
In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.
Complex auditory behaviour emerges from simple reactive steering
NASA Astrophysics Data System (ADS)
Hedwig, Berthold; Poulet, James F. A.
2004-08-01
The recognition and localization of sound signals is fundamental to acoustic communication. Complex neural mechanisms are thought to underlie the processing of species-specific sound patterns even in animals with simple auditory pathways. In female crickets, which orient towards the male's calling song, current models propose pattern recognition mechanisms based on the temporal structure of the song. Furthermore, it is thought that localization is achieved by comparing the output of the left and right recognition networks, which then directs the female to the pattern that most closely resembles the species-specific song. Here we show, using a highly sensitive method for measuring the movements of female crickets, that when walking and flying each sound pulse of the communication signal releases a rapid steering response. Thus auditory orientation emerges from reactive motor responses to individual sound pulses. Although the reactive motor responses are not based on the song structure, a pattern recognition process may modulate the gain of the responses on a longer timescale. These findings are relevant to concepts of insect auditory behaviour and to the development of biologically inspired robots performing cricket-like auditory orientation.
Adaptive Changes in Grain-Size in Morphological Processing
ERIC Educational Resources Information Center
Lee, Chang H.
2008-01-01
Substantial neurobiological data indicate that the dominant cortical region for printed-word recognition shifts from a temporo-parietal (dorsal) to an occipito-temporal (ventral) locus with increasing recognition experience. The circuits also have different characteristic speeds of response and word preferences. Previous evidence suggested that…
Arcos-García, Álvaro; Álvarez-García, Juan A; Soria-Morillo, Luis M
2018-03-01
This paper presents a Deep Learning approach for traffic sign recognition systems. Several classification experiments are conducted over publicly available traffic sign datasets from Germany and Belgium using a Deep Neural Network which comprises Convolutional layers and Spatial Transformer Networks. Such trials are built to measure the impact of diverse factors with the end goal of designing a Convolutional Neural Network that can improve the state-of-the-art of traffic sign classification task. First, different adaptive and non-adaptive stochastic gradient descent optimisation algorithms such as SGD, SGD-Nesterov, RMSprop and Adam are evaluated. Subsequently, multiple combinations of Spatial Transformer Networks placed at distinct positions within the main neural network are analysed. The recognition rate of the proposed Convolutional Neural Network reports an accuracy of 99.71% in the German Traffic Sign Recognition Benchmark, outperforming previous state-of-the-art methods and also being more efficient in terms of memory requirements. Copyright © 2018 Elsevier Ltd. All rights reserved.
Beato, Maria Soledad
2016-01-01
Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection processes, which are later supported by monitoring processes. Results are discussed in terms of Activation-Monitoring Framework and Fuzzy Trace-Theory, the most prominent explanatory theories of false memory raised with the Deese/Roediger-McDermott paradigm. PMID:27711125
Cadavid, Sara; Beato, Maria Soledad
2016-01-01
Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection processes, which are later supported by monitoring processes. Results are discussed in terms of Activation-Monitoring Framework and Fuzzy Trace-Theory, the most prominent explanatory theories of false memory raised with the Deese/Roediger-McDermott paradigm.
NASA Astrophysics Data System (ADS)
Kuznetsov, Michael V.
2006-05-01
For reliable teamwork of various systems of automatic telecommunication including transferring systems of optical communication networks it is necessary authentic recognition of signals for one- or two-frequency service signal system. The analysis of time parameters of an accepted signal allows increasing reliability of detection and recognition of the service signal system on a background of speech.
Real-Time Reconfigurable Adaptive Speech Recognition Command and Control Apparatus and Method
NASA Technical Reports Server (NTRS)
Salazar, George A. (Inventor); Haynes, Dena S. (Inventor); Sommers, Marc J. (Inventor)
1998-01-01
An adaptive speech recognition and control system and method for controlling various mechanisms and systems in response to spoken instructions and in which spoken commands are effective to direct the system into appropriate memory nodes, and to respective appropriate memory templates corresponding to the voiced command is discussed. Spoken commands from any of a group of operators for which the system is trained may be identified, and voice templates are updated as required in response to changes in pronunciation and voice characteristics over time of any of the operators for which the system is trained. Provisions are made for both near-real-time retraining of the system with respect to individual terms which are determined not be positively identified, and for an overall system training and updating process in which recognition of each command and vocabulary term is checked, and in which the memory templates are retrained if necessary for respective commands or vocabulary terms with respect to an operator currently using the system. In one embodiment, the system includes input circuitry connected to a microphone and including signal processing and control sections for sensing the level of vocabulary recognition over a given period and, if recognition performance falls below a given level, processing audio-derived signals for enhancing recognition performance of the system.
Ma, Zhiyuan; Luo, Guangchun; Qin, Ke; Wang, Nan; Niu, Weina
2018-03-01
Sensor drift is a common issue in E-Nose systems and various drift compensation methods have received fruitful results in recent years. Although the accuracy for recognizing diverse gases under drift conditions has been largely enhanced, few of these methods considered online processing scenarios. In this paper, we focus on building online drift compensation model by transforming two domain adaptation based methods into their online learning versions, which allow the recognition models to adapt to the changes of sensor responses in a time-efficient manner without losing the high accuracy. Experimental results using three different settings confirm that the proposed methods save large processing time when compared with their offline versions, and outperform other drift compensation methods in recognition accuracy.
A Decade of Neural Networks: Practical Applications and Prospects
NASA Technical Reports Server (NTRS)
Kemeny, Sabrina E.
1994-01-01
The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization.
Decision making and problem solving with computer assistance
NASA Technical Reports Server (NTRS)
Kraiss, F.
1980-01-01
In modern guidance and control systems, the human as manager, supervisor, decision maker, problem solver and trouble shooter, often has to cope with a marginal mental workload. To improve this situation, computers should be used to reduce the operator from mental stress. This should not solely be done by increased automation, but by a reasonable sharing of tasks in a human-computer team, where the computer supports the human intelligence. Recent developments in this area are summarized. It is shown that interactive support of operator by intelligent computer is feasible during information evaluation, decision making and problem solving. The applied artificial intelligence algorithms comprehend pattern recognition and classification, adaptation and machine learning as well as dynamic and heuristic programming. Elementary examples are presented to explain basic principles.
St. Hilaire, Melissa A.; Sullivan, Jason P.; Anderson, Clare; Cohen, Daniel A.; Barger, Laura K.; Lockley, Steven W.; Klerman, Elizabeth B.
2012-01-01
There is currently no “gold standard” marker of cognitive performance impairment resulting from sleep loss. We utilized pattern recognition algorithms to determine which features of data collected under controlled laboratory conditions could most reliably identify cognitive performance impairment in response to sleep loss using data from only one testing session, such as would occur in the “real world” or field conditions. A training set for testing the pattern recognition algorithms was developed using objective Psychomotor Vigilance Task (PVT) and subjective Karolinska Sleepiness Scale (KSS) data collected from laboratory studies during which subjects were sleep deprived for 26 – 52 hours. The algorithm was then tested in data from both laboratory and field experiments. The pattern recognition algorithm was able to identify performance impairment with a single testing session in individuals studied under laboratory conditions using PVT, KSS, length of time awake and time of day information with sensitivity and specificity as high as 82%. When this algorithm was tested on data collected under real-world conditions from individuals whose data were not in the training set, accuracy of predictions for individuals categorized with low performance impairment were as high as 98%. Predictions for medium and severe performance impairment were less accurate. We conclude that pattern recognition algorithms may be a promising method for identifying performance impairment in individuals using only current information about the individual’s behavior. Single testing features (e.g., number of PVT lapses) with high correlation with performance impairment in the laboratory setting may not be the best indicators of performance impairment under real-world conditions. Pattern recognition algorithms should be further tested for their ability to be used in conjunction with other assessments of sleepiness in real-world conditions to quantify performance impairment in response to sleep loss. PMID:22959616
Imaging in gynaecology: How good are we in identifying endometriomas?
Van Holsbeke, C.; Van Calster, B.; Guerriero, S.; Savelli, L.; Leone, F.; Fischerova, D; Czekierdowski, A.; Fruscio, R.; Veldman, J.; Van de Putte, G.; Testa, A.C.; Bourne, T.; Valentin, L.; Timmerman, D.
2009-01-01
Aim: To evaluate the performance of subjective evaluation of ultrasound findings (pattern recognition) to discriminate endometriomas from other types of adnexal masses and to compare the demographic and ultrasound characteristics of the true positive cases with those cases that were presumed to be an endometrioma but proved to have a different histology (false positive cases) and the endometriomas missed by pattern recognition (false negative cases). Methods: All patients in the International Ovarian Tumor Analysis (IOTA ) studies were included for analysis. In the IOTA studies, patients with an adnexal mass that were preoperatively examined by expert sonologists following the same standardized ultrasound protocol were prospectively included in 21 international centres. Sensitivity and specificity to discriminate endometriomas from other types of adnexal masses using pattern recognition were calculated. Ultrasound and some demographic variables of the masses presumed to be an endometrioma were analysed (true positives and false positives) and compared with the variables of the endometriomas missed by pattern recognition (false negatives) as well as the true negatives. Results: IOTA phase 1, 1b and 2 included 3511 patients of which 2560 were benign (73%) and 951 malignant (27%). The dataset included 713 endometriomas. Sensitivity and specificity for pattern recognition were 81% (577/713) and 97% (2723/2798). The true positives were more often unilocular with ground glass echogenicity than the masses in any other category. Among the 75 false positive cases, 66 were benign but 9 were malignant (5 borderline tumours, 1 rare primary invasive tumour and 3 endometrioid adenocarcinomas). The presumed diagnosis suggested by the sonologist in case of a missed endometrioma was mostly functional cyst or cystadenoma. Conclusion: Expert sonologists can quite accurately discriminate endometriomas from other types of adnexal masses, but in this dataset 1% of the masses that were classified as endometrioma by pattern recognition proved to be malignancies. PMID:25478066
Remote Video Monitor of Vehicles in Cooperative Information Platform
NASA Astrophysics Data System (ADS)
Qin, Guofeng; Wang, Xiaoguo; Wang, Li; Li, Yang; Li, Qiyan
Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. An auto- recognition system in cooperative information platform is studied. In the cooperative platform, 3G wireless network, including GPS, GPRS (CDMA), Internet (Intranet), remote video monitor and M-DMB networks are integrated. The remote video information can be taken from the terminals and sent to the cooperative platform, then detected by the auto-recognition system. The images are pretreated and segmented, including feature extraction, template matching and pattern recognition. The system identifies different models and gets vehicular traffic statistics. Finally, the implementation of the system is introduced.
ERIC Educational Resources Information Center
Lazzaro, Joseph J.
1993-01-01
Describes adaptive technology for personal computers that accommodate disabled users and may require special equipment including hardware, memory, expansion slots, and ports. Highlights include vision aids, including speech synthesizers, magnification, braille, and optical character recognition (OCR); hearing adaptations; motor-impaired…
Kofi Akamani
2014-01-01
There is growing recognition that the sustainable governance of water resources requires building social-ecological resilience against future surprises. Adaptive comanagement, a distinct institutional mechanism that combines the learning focus of adaptive management with the multilevel linkages of comanagement, has recently emerged as a promising mechanism for building...
Mechanism of HSV infection through soluble adapter-mediated virus bridging to the EGF receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, Kenji, E-mail: kenakano@med.kyushu-u.ac.j; Kobayashi, Masatoshi; Nakamura, Kei-ichiro
2011-04-25
Herpes simplex virus entry into cells requires the binding of envelope glycoprotein D (gD) to an entry receptor. Depending on the cell, entry occurs by different mechanisms, including fusion at the cell surface or endocytosis. Here we examined the entry mechanism through a non-HSV receptor mediated by a soluble bi-specific adapter protein composed of recognition elements for gD and the EGF receptor (EGFR). Virus entered into endosomes using either EGF or an EGFR-specific single chain antibody (scFv) for receptor recognition. Infection was less efficient with the EGF adapter which could be attributed to its weaker binding to a viral gD.more » Infection mediated by the scFv adapter was pH sensitive, indicating that gD-EGFR bridging alone was insufficient for capsid release from endosomes. We also show that the scFv adapter enhanced infection of EGFR-expressing tumor tissue in vivo. Our results indicate that adapters may retarget HSV infection without drastically changing the entry mechanism.« less
NASA Astrophysics Data System (ADS)
Yi, Juan; Du, Qingyu; Zhang, Hong jiang; Zhang, Yao lei
2017-11-01
Target recognition is a leading key technology in intelligent image processing and application development at present, with the enhancement of computer processing ability, autonomous target recognition algorithm, gradually improve intelligence, and showed good adaptability. Taking the airport target as the research object, analysis the airport layout characteristics, construction of knowledge model, Gabor filter and Radon transform based on the target recognition algorithm of independent design, image processing and feature extraction of the airport, the algorithm was verified, and achieved better recognition results.
Non-branched β-1,3-glucan oligosaccharides trigger immune responses in Arabidopsis.
Mélida, Hugo; Sopeña-Torres, Sara; Bacete, Laura; Garrido-Arandia, María; Jordá, Lucía; López, Gemma; Muñoz-Barrios, Antonio; Pacios, Luis F; Molina, Antonio
2018-01-01
Fungal cell walls, which are essential for environmental adaptation and host colonization by the fungus, have been evolutionarily selected by plants and animals as a source of microbe-associated molecular patterns (MAMPs) that, upon recognition by host pattern recognition receptors (PRRs), trigger immune responses conferring disease resistance. Chito-oligosaccharides [β-1,4-N-acetylglucosamine oligomers, (GlcNAc) n ] are the only glycosidic structures from fungal walls that have been well-demonstrated to function as MAMPs in plants. Perception of (GlcNAc) 4-8 by Arabidopsis involves CERK1, LYK4 and LYK5, three of the eight members of the LysM PRR family. We found that a glucan-enriched wall fraction from the pathogenic fungus Plectosphaerella cucumerina which was devoid of GlcNAc activated immune responses in Arabidopsis wild-type plants but not in the cerk1 mutant. Using this differential response, we identified the non-branched 1,3-β-d-(Glc) hexasaccharide as a major fungal MAMP. Recognition of 1,3-β-d-(Glc) 6 was impaired in cerk1 but not in mutants defective in either each of the LysM PRR family members or in the PRR-co-receptor BAK1. Transcriptomic analyses of Arabidopsis plants treated with 1,3-β-d-(Glc) 6 further demonstrated that this fungal MAMP triggers the expression of immunity-associated genes. In silico docking analyses with molecular mechanics and solvation energy calculations corroborated that CERK1 can bind 1,3-β-d-(Glc) 6 at effective concentrations similar to those of (GlcNAc) 4 . These data support that plants, like animals, have selected as MAMPs the linear 1,3-β-d-glucans present in the walls of fungi and oomycetes. Our data also suggest that CERK1 functions as an immune co-receptor for linear 1,3-β-d-glucans in a similar way to its proposed function in the recognition of fungal chito-oligosaccharides and bacterial peptidoglycan MAMPs. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zhou, Zheng; Liu, Chen; Shen, Wensheng; Dong, Zhen; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2017-04-01
A binary spike-time-dependent plasticity (STDP) protocol based on one resistive-switching random access memory (RRAM) device was proposed and experimentally demonstrated in the fabricated RRAM array. Based on the STDP protocol, a novel unsupervised online pattern recognition system including RRAM synapses and CMOS neurons is developed. Our simulations show that the system can efficiently compete the handwritten digits recognition task, which indicates the feasibility of using the RRAM-based binary STDP protocol in neuromorphic computing systems to obtain good performance.
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)
2002-01-01
Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.
Kubinak, Jason L; Ruff, James S; Hyzer, Cornelius Whitney; Slev, Patricia R; Potts, Wayne K
2012-02-28
The unprecedented genetic diversity found at vertebrate MHC (major histocompatibility complex) loci influences susceptibility to most infectious and autoimmune diseases. The evolutionary explanation for how these polymorphisms are maintained has been controversial. One leading explanation, antagonistic coevolution (also known as the Red Queen), postulates a never-ending molecular arms race where pathogens evolve to evade immune recognition by common MHC alleles, which in turn provides a selective advantage to hosts carrying rare MHC alleles. This cyclical process leads to negative frequency-dependent selection and promotes MHC diversity if two conditions are met: (i) pathogen adaptation must produce trade-offs that result in pathogen fitness being higher in familiar (i.e., host MHC genotype adapted to) vs. unfamiliar host MHC genotypes; and (ii) this adaptation must produce correlated patterns of virulence (i.e., disease severity). Here we test these fundamental assumptions using an experimental evolutionary approach (serial passage). We demonstrate rapid adaptation and virulence evolution of a mouse-specific retrovirus to its mammalian host across multiple MHC genotypes. Critically, this adaptive response results in trade-offs (i.e., antagonistic pleiotropy) between host MHC genotypes; both viral fitness and virulence is substantially higher in familiar versus unfamiliar MHC genotypes. These data are unique in experimentally confirming the requisite conditions of the antagonistic coevolution model of MHC evolution and providing quantification of fitness effects for pathogen and host. These data help explain the unprecedented diversity of MHC genes, including how disease-causing alleles are maintained.
Shape Adaptive, Robust Iris Feature Extraction from Noisy Iris Images
Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah
2013-01-01
In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801