Science.gov

Sample records for adaptive poisson-boltzmann solver

  1. Mathematical and Numerical Aspects of the Adaptive Fast Multipole Poisson-Boltzmann Solver

    SciTech Connect

    Zhang, Bo; Lu, Benzhuo; Huang, Jingfang; Pitsianis, Nikos P.; Sun, Xiaobai; McCammon, J. Andrew

    2013-01-01

    This paper summarizes the mathematical and numerical theories and computational elements of the adaptive fast multipole Poisson-Boltzmann (AFMPB) solver. We introduce and discuss the following components in order: the Poisson-Boltzmann model, boundary integral equation reformulation, surface mesh generation, the nodepatch discretization approach, Krylov iterative methods, the new version of fast multipole methods (FMMs), and a dynamic prioritization technique for scheduling parallel operations. For each component, we also remark on feasible approaches for further improvements in efficiency, accuracy and applicability of the AFMPB solver to large-scale long-time molecular dynamics simulations. Lastly, the potential of the solver is demonstrated with preliminary numerical results.

  2. iAPBS: a programming interface to Adaptive Poisson-Boltzmann Solver

    SciTech Connect

    Konecny, Robert; Baker, Nathan A.; McCammon, J. A.

    2012-07-26

    The Adaptive Poisson-Boltzmann Solver (APBS) is a state-of-the-art suite for performing Poisson-Boltzmann electrostatic calculations on biomolecules. The iAPBS package provides a modular programmatic interface to the APBS library of electrostatic calculation routines. The iAPBS interface library can be linked with a Fortran or C/C++ program thus making all of the APBS functionality available from within the application. Several application modules for popular molecular dynamics simulation packages -- Amber, NAMD and CHARMM are distributed with iAPBS allowing users of these packages to perform implicit solvent electrostatic calculations with APBS.

  3. Mathematical and Numerical Aspects of the Adaptive Fast Multipole Poisson-Boltzmann Solver

    DOE PAGES

    Zhang, Bo; Lu, Benzhuo; Cheng, Xiaolin; ...

    2013-01-01

    This paper summarizes the mathematical and numerical theories and computational elements of the adaptive fast multipole Poisson-Boltzmann (AFMPB) solver. We introduce and discuss the following components in order: the Poisson-Boltzmann model, boundary integral equation reformulation, surface mesh generation, the nodepatch discretization approach, Krylov iterative methods, the new version of fast multipole methods (FMMs), and a dynamic prioritization technique for scheduling parallel operations. For each component, we also remark on feasible approaches for further improvements in efficiency, accuracy and applicability of the AFMPB solver to large-scale long-time molecular dynamics simulations. Lastly, the potential of the solver is demonstrated with preliminary numericalmore » results.« less

  4. Features of CPB: a Poisson-Boltzmann solver that uses an adaptive Cartesian grid.

    PubMed

    Fenley, Marcia O; Harris, Robert C; Mackoy, Travis; Boschitsch, Alexander H

    2015-02-05

    The capabilities of an adaptive Cartesian grid (ACG)-based Poisson-Boltzmann (PB) solver (CPB) are demonstrated. CPB solves various PB equations with an ACG, built from a hierarchical octree decomposition of the computational domain. This procedure decreases the number of points required, thereby reducing computational demands. Inside the molecule, CPB solves for the reaction-field component (ϕrf ) of the electrostatic potential (ϕ), eliminating the charge-induced singularities in ϕ. CPB can also use a least-squares reconstruction method to improve estimates of ϕ at the molecular surface. All surfaces, which include solvent excluded, Gaussians, and others, are created analytically, eliminating errors associated with triangulated surfaces. These features allow CPB to produce detailed surface maps of ϕ and compute polar solvation and binding free energies for large biomolecular assemblies, such as ribosomes and viruses, with reduced computational demands compared to other Poisson-Boltzmann equation solvers. The reader is referred to http://www.continuum-dynamics.com/solution-mm.html for how to obtain the CPB software.

  5. AFMPB: An Adaptive Fast Multipole Poisson-Boltzmann Solver for Calculating Electrostatics in Biomolecular Systems

    PubMed Central

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, J. Andrew

    2010-01-01

    A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole to local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage. PMID:20532187

  6. AFMPB: An adaptive fast multipole Poisson Boltzmann solver for calculating electrostatics in biomolecular systems

    SciTech Connect

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, Jonathan

    2010-01-01

    A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage.

  7. AFMPB: An adaptive fast multipole Poisson-Boltzmann solver for calculating electrostatics in biomolecular systems

    NASA Astrophysics Data System (ADS)

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, J. Andrew

    2010-06-01

    A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/~lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage. Program summaryProgram title: AFMPB: Adaptive fast multipole Poisson-Boltzmann solver Catalogue identifier: AEGB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL 2.0 No. of lines in distributed program, including test data, etc.: 453 649 No. of bytes in distributed program, including test data, etc.: 8 764 754 Distribution format: tar.gz Programming language: Fortran Computer: Any Operating system: Any RAM: Depends on the size of the discretized biomolecular system Classification: 3 External routines: Pre- and post-processing tools are required for generating the boundary elements and for visualization. Users can use MSMS ( http://www.scripps.edu/~sanner/html/msms_home.html) for pre-processing, and VMD ( http://www.ks.uiuc.edu/Research/vmd/) for visualization. Sub-programs included: An iterative Krylov subspace solvers package from SPARSKIT by Yousef Saad ( http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html), and the fast multipole methods subroutines from FMMSuite ( http

  8. A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.

    PubMed

    Boschitsch, Alexander H; Fenley, Marcia O

    2011-05-10

    An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous

  9. A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids

    PubMed Central

    Boschitsch, Alexander H.; Fenley, Marcia O.

    2011-01-01

    An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent – analytical solutions are available for this case, thus allowing rigorous

  10. AFMPB: An adaptive fast multipole Poisson-Boltzmann solver for calculating electrostatics in biomolecular systems

    NASA Astrophysics Data System (ADS)

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, J. Andrew

    2013-11-01

    A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of the fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/~lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage. Restrictions: Only three or six significant digits options are provided in this version. Unusual features: Most of the codes are in Fortran77 style. Memory allocation functions from Fortran90 and above are used in a few subroutines. Additional comments: The current version of the codes is designed and written for single core/processor desktop machines. Check http://lsec.cc.ac.cn/lubz/afmpb.html for updates and changes. Running time: The running time varies with the number of discretized elements (N) in the system and their distributions. In most cases, it scales linearly as a function of N.

  11. Assessment of Linear Finite-Difference Poisson-Boltzmann Solvers

    PubMed Central

    Wang, Jun; Luo, Ray

    2009-01-01

    CPU time and memory usage are two vital issues that any numerical solvers for the Poisson-Boltzmann equation have to face in biomolecular applications. In this study we systematically analyzed the CPU time and memory usage of five commonly used finite-difference solvers with a large and diversified set of biomolecular structures. Our comparative analysis shows that modified incomplete Cholesky conjugate gradient and geometric multigrid are the most efficient in the diversified test set. For the two efficient solvers, our test shows that their CPU times increase approximately linearly with the numbers of grids. Their CPU times also increase almost linearly with the negative logarithm of the convergence criterion at very similar rate. Our comparison further shows that geometric multigrid performs better in the large set of tested biomolecules. However, modified incomplete Cholesky conjugate gradient is superior to geometric multigrid in molecular dynamics simulations of tested molecules. We also investigated other significant components in numerical solutions of the Poisson-Boltzmann equation. It turns out that the time-limiting step is the free boundary condition setup for the linear systems for the selected proteins if the electrostatic focusing is not used. Thus, development of future numerical solvers for the Poisson-Boltzmann equation should balance all aspects of the numerical procedures in realistic biomolecular applications. PMID:20063271

  12. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver

    SciTech Connect

    Felberg, Lisa E.; Brookes, David H.; Yap, Eng-Hui; Jurrus, Elizabeth; Baker, Nathan A.; Head-Gordon, Teresa

    2016-11-02

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized Poisson Boltzmann equation. The PB-AM software package includes the generation of outputs files appropriate for visualization using VMD, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmann Solver (APBS) software package to make it more accessible to a larger group of scientists, educators and students that are more familiar with the APBS framework.

  13. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver.

    PubMed

    Felberg, Lisa E; Brookes, David H; Yap, Eng-Hui; Jurrus, Elizabeth; Baker, Nathan A; Head-Gordon, Teresa

    2016-11-02

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized PB equation, for molecules represented as non-overlapping spherical cavities. The PB-AM software package includes the generation of outputs files appropriate for visualization using visual molecular dynamics, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmann Solver (APBS) software package to make it more accessible to a larger group of scientists, educators, and students that are more familiar with the APBS framework. © 2016 Wiley Periodicals, Inc.

  14. Optimizing electrostatic field calculations with the adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces. I. Sampling and focusing.

    PubMed

    Ritchie, Andrew W; Webb, Lauren J

    2013-10-03

    Continuum electrostatics methods are commonly used to calculate electrostatic potentials in proteins and at protein-protein interfaces to aid many types of biophysical studies. Despite their ubiquity throughout the biophysical literature, these calculations are difficult to test against experimental data to determine their accuracy and validity. To address this, we have calculated the Boltzmann-weighted electrostatic field at the midpoint of a nitrile bond placed at a variety of locations on the surface of the protein RalGDS, both in its monomeric form as well as when docked to four different constructs of the protein Rap, and compared the computation results to vibrational absorption energy measurements of the nitrile oscillator. This was done by generating a statistical ensemble of protein structures using enhanced molecular dynamics sampling with the Amber03 force field, followed by solving the linear Poisson-Boltzmann equation for each structure using the Applied Poisson-Boltzmann Solver (APBS) software package. Using a two-stage focusing strategy, we examined numerous second stage box dimensions, grid point densities, box locations, and compared the numerical result to the result obtained from the sum of the numeric reaction field and the analytic Coulomb field. It was found that the reaction field method yielded higher correlation with experiment for the absolute calculation of fields, while the numeric solutions yielded higher correlation with experiment for the relative field calculations. Finer grid spacing typically improved the calculation, although this effect was less pronounced in the reaction field method. These sorts of calculations were also very sensitive to the box location, particularly for the numeric calculations of absolute fields using a 10(3) Å(3) box.

  15. AQUASOL: An efficient solver for the dipolar Poisson-Boltzmann-Langevin equation.

    PubMed

    Koehl, Patrice; Delarue, Marc

    2010-02-14

    The Poisson-Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson-Boltzmann-Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE

  16. Optimizing electrostatic field calculations with the Adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces II: explicit near-probe and hydrogen-bonding water molecules.

    PubMed

    Ritchie, Andrew W; Webb, Lauren J

    2014-07-17

    We have examined the effects of including explicit, near-probe solvent molecules in a continuum electrostatics strategy using the linear Poisson-Boltzmann equation with the Adaptive Poisson-Boltzmann Solver (APBS) to calculate electric fields at the midpoint of a nitrile bond both at the surface of a monomeric protein and when docked at a protein-protein interface. Results were compared to experimental vibrational absorption energy measurements of the nitrile oscillator. We examined three methods for selecting explicit water molecules: (1) all water molecules within 5 Å of the nitrile nitrogen; (2) the water molecule closest to the nitrile nitrogen; and (3) any single water molecule hydrogen-bonding to the nitrile. The correlation between absolute field strengths with experimental absorption energies were calculated and it was observed that method 1 was only an improvement for the monomer calculations, while methods 2 and 3 were not significantly different from the purely implicit solvent calculations for all protein systems examined. Upon taking the difference in calculated electrostatic fields and comparing to the difference in absorption frequencies, we typically observed an increase in experimental correlation for all methods, with method 1 showing the largest gain, likely due to the improved absolute monomer correlations using that method. These results suggest that, unlike with quantum mechanical methods, when calculating absolute fields using entirely classical models, implicit solvent is typically sufficient and additional work to identify hydrogen-bonding or nearest waters does not significantly impact the results. Although we observed that a sphere of solvent near the field of interest improved results for relative field calculations, it should not be consider a panacea for all situations.

  17. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    SciTech Connect

    Fisicaro, G. Goedecker, S.; Genovese, L.; Andreussi, O.; Marzari, N.

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  18. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.

    PubMed

    Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  19. Progress in developing Poisson-Boltzmann equation solvers

    PubMed Central

    Li, Chuan; Li, Lin; Petukh, Marharyta; Alexov, Emil

    2013-01-01

    This review outlines the recent progress made in developing more accurate and efficient solutions to model electrostatics in systems comprised of bio-macromolecules and nano-objects, the last one referring to objects that do not have biological function themselves but nowadays are frequently used in biophysical and medical approaches in conjunction with bio-macromolecules. The problem of modeling macromolecular electrostatics is reviewed from two different angles: as a mathematical task provided the specific definition of the system to be modeled and as a physical problem aiming to better capture the phenomena occurring in the real experiments. In addition, specific attention is paid to methods to extend the capabilities of the existing solvers to model large systems toward applications of calculations of the electrostatic potential and energies in molecular motors, mitochondria complex, photosynthetic machinery and systems involving large nano-objects. PMID:24199185

  20. Progress in developing Poisson-Boltzmann equation solvers.

    PubMed

    Li, Chuan; Li, Lin; Petukh, Marharyta; Alexov, Emil

    2013-03-01

    This review outlines the recent progress made in developing more accurate and efficient solutions to model electrostatics in systems comprised of bio-macromolecules and nano-objects, the last one referring to objects that do not have biological function themselves but nowadays are frequently used in biophysical and medical approaches in conjunction with bio-macromolecules. The problem of modeling macromolecular electrostatics is reviewed from two different angles: as a mathematical task provided the specific definition of the system to be modeled and as a physical problem aiming to better capture the phenomena occurring in the real experiments. In addition, specific attention is paid to methods to extend the capabilities of the existing solvers to model large systems toward applications of calculations of the electrostatic potential and energies in molecular motors, mitochondria complex, photosynthetic machinery and systems involving large nano-objects.

  1. An Adaptive Fast Multipole Boundary Element Method for Poisson-Boltzmann Electrostatics.

    PubMed

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, J Andrew

    2009-06-09

    The numerical solution of the Poisson-Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the computational cost and memory usage. Here, we present an updated version of the solver by using an adaptive FMM for accelerating the convolution type matrix-vector multiplications. The adaptive algorithm, when compared to our previous nonadaptive one, not only significantly improves the performance of the overall memory usage but also remarkably speeds the calculation because of an improved load balancing between the local- and far-field calculations. We have also implemented a node-patch discretization scheme that leads to a reduction of unknowns by a factor of 2 relative to the constant element method without sacrificing accuracy. As a result of these improvements, the new solver makes the PB calculation truly feasible for large-scale biomolecular systems such as a 30S ribosome molecule even on a typical 2008 desktop computer.

  2. An Adaptive Fast Multipole Boundary Element Method for Poisson-Boltzmann Electrostatics

    SciTech Connect

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, Jonathan

    2009-01-01

    The numerical solution of the Poisson Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the computational cost and memory usage. Here, we present an updated version of the solver by using an adaptive FMM for accelerating the convolution type matrix-vector multiplications. The adaptive algorithm, when compared to our previous nonadaptive one, not only significantly improves the performance of the overall memory usage but also remarkably speeds the calculation because of an improved load balancing between the local- and far-field calculations. We have also implemented a node-patch discretization scheme that leads to a reduction of unknowns by a factor of 2 relative to the constant element method without sacrificing accuracy. As a result of these improvements, the new solver makes the PB calculation truly feasible for large-scale biomolecular systems such as a 30S ribosome molecule even on a typical 2008 desktop computer.

  3. SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation.

    PubMed

    Xie, Yang; Ying, Jinyong; Xie, Dexuan

    2017-03-30

    SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc.

  4. A nonlocal modified Poisson-Boltzmann equation and finite element solver for computing electrostatics of biomolecules

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan; Jiang, Yi

    2016-10-01

    The nonlocal dielectric approach has been studied for more than forty years but only limited to water solvent until the recent work of Xie et al. (2013) [20]. As the development of this recent work, in this paper, a nonlocal modified Poisson-Boltzmann equation (NMPBE) is proposed to incorporate nonlocal dielectric effects into the classic Poisson-Boltzmann equation (PBE) for protein in ionic solvent. The focus of this paper is to present an efficient finite element algorithm and a related software package for solving NMPBE. Numerical results are reported to validate this new software package and demonstrate its high performance for protein molecules. They also show the potential of NMPBE as a better predictor of electrostatic solvation and binding free energies than PBE.

  5. ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION.

    PubMed

    Holst, Michael; McCammon, James Andrew; Yu, Zeyun; Zhou, Youngcheng; Zhu, Yunrong

    2012-01-01

    We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L(∞) estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme

  6. ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION

    PubMed Central

    HOLST, MICHAEL; MCCAMMON, JAMES ANDREW; YU, ZEYUN; ZHOU, YOUNGCHENG; ZHU, YUNRONG

    2011-01-01

    We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme

  7. Adapting Poisson-Boltzmann to the self-consistent mean field theory: Application to protein side-chain modeling

    NASA Astrophysics Data System (ADS)

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-08-01

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.

  8. Adapting Poisson-Boltzmann to the self-consistent mean field theory: application to protein side-chain modeling.

    PubMed

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-08-07

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ(1) for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.

  9. Adapting Poisson-Boltzmann to the self-consistent mean field theory: Application to protein side-chain modeling

    PubMed Central

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-01-01

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains. PMID:21823735

  10. On removal of charge singularity in Poisson-Boltzmann equation.

    PubMed

    Cai, Qin; Wang, Jun; Zhao, Hong-Kai; Luo, Ray

    2009-04-14

    The Poisson-Boltzmann theory has become widely accepted in modeling electrostatic solvation interactions in biomolecular calculations. However the standard practice of atomic point charges in molecular mechanics force fields introduces singularity into the Poisson-Boltzmann equation. The finite-difference/finite-volume discretization approach to the Poisson-Boltzmann equation alleviates the numerical difficulty associated with the charge singularity but introduces discretization error into the electrostatic potential. Decomposition of the electrostatic potential has been explored to remove the charge singularity explicitly to achieve higher numerical accuracy in the solution of the electrostatic potential. In this study, we propose an efficient method to overcome the charge singularity problem. In our framework, two separate equations for two different potentials in two different regions are solved simultaneously, i.e., the reaction field potential in the solute region and the total potential in the solvent region. The proposed method can be readily implemented with typical finite-difference Poisson-Boltzmann solvers and return the singularity-free reaction field potential with a single run. Test runs on 42 small molecules and 4 large proteins show a very high agreement between the reaction field energies computed by the proposed method and those by the classical finite-difference Poisson-Boltzmann method. It is also interesting to note that the proposed method converges faster than the classical method, though additional time is needed to compute Coulombic potential on the dielectric boundary. The higher precision, accuracy, and efficiency of the proposed method will allow for more robust electrostatic calculations in molecular mechanics simulations of complex biomolecular systems.

  11. Numerical Difficulties Computing Electrostatic Potentials Near Interfaces with the Poisson-Boltzmann Equation.

    PubMed

    Harris, Robert C; Boschitsch, Alexander H; Fenley, Marcia O

    2017-08-08

    Many researchers compute surface maps of the electrostatic potential (φ) with the Poisson-Boltzmann (PB) equation to relate the structural information obtained from X-ray and NMR experiments to biomolecular functions. Here we demonstrate that the usual method of obtaining these surface maps of φ, by interpolating from neighboring grid points on the solution grid generated by a PB solver, generates large errors because of the large discontinuity in the dielectric constant (and thus in the normal derivative of φ) at the surface. The Cartesian Poisson-Boltzmann solver contains several features that reduce the numerical noise in surface maps of φ: First, CPB introduces additional mesh points at the Cartesian grid/surface intersections where the PB equation is solved. This procedure ensures that the solution for interior mesh points only references nodes on the interior or on the surfaces; similarly for exterior points. Second, for added points on the surface, a second order least-squares reconstruction (LSR) is implemented that analytically incorporates the discontinuities at the surface. LSR is used both during the solution phase to compute φ at the surface and during postprocessing to obtain φ, induced charges, and ionic pressures. Third, it uses an adaptive grid where the finest grid cells are located near the molecular surface.

  12. Ion-conserving Poisson-Boltzmann theory.

    PubMed

    Sugioka, Hideyuki

    2012-07-01

    It is well known that the Poisson-Nernst-Planck (PNP) theory and the classical Gouy-Chapman theory are inconsistent at a high applied voltage. For solving this problem, we propose an ion-conserving Poisson-Boltzmann theory, which shows remarkable agreement with the numerical PNP solutions, even at a high applied voltage. In other words, we have found the exact analytical solutions for steady PNP equations; we believe that this finding greatly contributes to understanding surface science between solids and liquids.

  13. Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.

    PubMed

    Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew

    2014-12-26

    Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.

  14. Poisson-Boltzmann-Nernst-Planck model

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Wei, Guo-Wei

    2011-05-01

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  15. Poisson-Boltzmann-Nernst-Planck model.

    PubMed

    Zheng, Qiong; Wei, Guo-Wei

    2011-05-21

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  16. Poisson-Boltzmann-Nernst-Planck model

    SciTech Connect

    Zheng Qiong; Wei Guowei

    2011-05-21

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  17. Electrostatic forces in the Poisson-Boltzmann systems.

    PubMed

    Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2013-09-07

    Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.

  18. A combined MPI-CUDA parallel solution of linear and nonlinear Poisson-Boltzmann equation.

    PubMed

    Colmenares, José; Galizia, Antonella; Ortiz, Jesús; Clematis, Andrea; Rocchia, Walter

    2014-01-01

    The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.

  19. A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

    PubMed Central

    Colmenares, José; Galizia, Antonella; Ortiz, Jesús; Clematis, Andrea; Rocchia, Walter

    2014-01-01

    The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs. PMID:25013789

  20. A Poisson-Boltzmann dynamics method with nonperiodic boundary condition

    NASA Astrophysics Data System (ADS)

    Lu, Qiang; Luo, Ray

    2003-12-01

    We have developed a well-behaved and efficient finite difference Poisson-Boltzmann dynamics method with a nonperiodic boundary condition. This is made possible, in part, by a rather fine grid spacing used for the finite difference treatment of the reaction field interaction. The stability is also made possible by a new dielectric model that is smooth both over time and over space, an important issue in the application of implicit solvents. In addition, the electrostatic focusing technique facilitates the use of an accurate yet efficient nonperiodic boundary condition: boundary grid potentials computed by the sum of potentials from individual grid charges. Finally, the particle-particle particle-mesh technique is adopted in the computation of the Coulombic interaction to balance accuracy and efficiency in simulations of large biomolecules. Preliminary testing shows that the nonperiodic Poisson-Boltzmann dynamics method is numerically stable in trajectories at least 4 ns long. The new model is also fairly efficient: it is comparable to that of the pairwise generalized Born solvent model, making it a strong candidate for dynamics simulations of biomolecules in dilute aqueous solutions. Note that the current treatment of total electrostatic interactions is with no cutoff, which is important for simulations of biomolecules. Rigorous treatment of the Debye-Hückel screening is also possible within the Poisson-Boltzmann framework: its importance is demonstrated by a simulation of a highly charged protein.

  1. Poisson-Boltzmann theory for two parallel uniformly charged plates

    SciTech Connect

    Xing Xiangjun

    2011-04-15

    We solve the nonlinear Poisson-Boltzmann equation for two parallel and like-charged plates both inside a symmetric electrolyte, and inside a 2:1 asymmetric electrolyte, in terms of Weierstrass elliptic functions. From these solutions we derive the functional relation between the surface charge density, the plate separation, and the pressure between plates. For the one plate problem, we obtain exact expressions for the electrostatic potential and for the renormalized surface charge density, both in symmetric and in asymmetric electrolytes. For the two plate problems, we obtain new exact asymptotic results in various regimes.

  2. Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation.

    PubMed

    Botello-Smith, Wesley M; Luo, Ray

    2015-10-26

    Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membranes into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multigrid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations.

  3. Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation

    PubMed Central

    Botello-Smith, Wesley M.; Luo, Ray

    2016-01-01

    Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membrane into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multi-grid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations. PMID:26389966

  4. AN EFFICIENT HIGHER-ORDER FAST MULTIPOLE BOUNDARY ELEMENT SOLUTION FOR POISSON-BOLTZMANN BASED MOLECULAR ELECTROSTATICS

    PubMed Central

    Bajaj, Chandrajit; Chen, Shun-Chuan; Rand, Alexander

    2011-01-01

    In order to compute polarization energy of biomolecules, we describe a boundary element approach to solving the linearized Poisson-Boltzmann equation. Our approach combines several important features including the derivative boundary formulation of the problem and a smooth approximation of the molecular surface based on the algebraic spline molecular surface. State of the art software for numerical linear algebra and the kernel independent fast multipole method is used for both simplicity and efficiency of our implementation. We perform a variety of computational experiments, testing our method on a number of actual proteins involved in molecular docking and demonstrating the effectiveness of our solver for computing molecular polarization energy. PMID:21660123

  5. Non-linear Poisson-Boltzmann theory for swollen clays

    NASA Astrophysics Data System (ADS)

    Leote de Carvalho, R. J. F.; Trizac, E.; Hansen, J.-P.

    1998-08-01

    The non-linear Poisson-Boltzmann (PB) equation for a circular, uniformly char ged platelet, confined together with co- and counter-ions to a cylindrical cell, is solved semi-analytically by transforming it into an integral equation and solving the latter iteratively. This method proves efficient and robust, and can be readily generalized to other problems based on cell models, treated within non-linear Poisson-like theory. The solution to the PB equation is computed over a wide range of physical conditions, and the resulting osmotic equation of state is shown to be in semi-quantitative agreement with recent experimental data for Laponite clay suspensions, in the concentrated gel phase.

  6. Poisson-Boltzmann Calculations: van der Waals or Molecular Surface?

    PubMed Central

    Pang, Xiaodong; Zhou, Huan-Xiang

    2012-01-01

    The Poisson-Boltzmann equation is widely used for modeling the electrostatics of biomolecules, but the calculation results are sensitive to the choice of the boundary between the low solute dielectric and the high solvent dielectric. The default choice for the dielectric boundary has been the molecular surface, but the use of the van der Waals surface has also been advocated. Here we review recent studies in which the two choices are tested against experimental results and explicit-solvent calculations. The assignment of the solvent high dielectric constant to interstitial voids in the solute is often used as a criticism against the van der Waals surface. However, this assignment may not be as unrealistic as previously thought, since hydrogen exchange and other NMR experiments have firmly established that all interior parts of proteins are transiently accessible to the solvent. PMID:23293674

  7. Poisson-Boltzmann Calculations: van der Waals or Molecular Surface?

    PubMed

    Pang, Xiaodong; Zhou, Huan-Xiang

    2013-01-01

    The Poisson-Boltzmann equation is widely used for modeling the electrostatics of biomolecules, but the calculation results are sensitive to the choice of the boundary between the low solute dielectric and the high solvent dielectric. The default choice for the dielectric boundary has been the molecular surface, but the use of the van der Waals surface has also been advocated. Here we review recent studies in which the two choices are tested against experimental results and explicit-solvent calculations. The assignment of the solvent high dielectric constant to interstitial voids in the solute is often used as a criticism against the van der Waals surface. However, this assignment may not be as unrealistic as previously thought, since hydrogen exchange and other NMR experiments have firmly established that all interior parts of proteins are transiently accessible to the solvent.

  8. Ionic size effects on the Poisson-Boltzmann theory

    NASA Astrophysics Data System (ADS)

    Colla, Thiago; Nunes Lopes, Lucas; dos Santos, Alexandre P.

    2017-07-01

    In this paper, we develop a simple theory to study the effects of ionic size on ionic distributions around a charged spherical particle. We include a correction to the regular Poisson-Boltzmann equation in order to take into account the size of ions in a mean-field regime. The results are compared with Monte Carlo simulations and a density functional theory based on the fundamental measure approach and a second-order bulk expansion which accounts for electrostatic correlations. The agreement is very good even for multivalent ions. Our results show that the theory can be applied with very good accuracy in the description of ions with highly effective ionic radii and low concentration, interacting with a colloid or a nanoparticle in an electrolyte solution.

  9. Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum

    NASA Astrophysics Data System (ADS)

    Schnieders, Michael J.; Baker, Nathan A.; Ren, Pengyu; Ponder, Jay W.

    2007-03-01

    Modeling the change in the electrostatics of organic molecules upon moving from vacuum into solvent, due to polarization, has long been an interesting problem. In vacuum, experimental values for the dipole moments and polarizabilities of small, rigid molecules are known to high accuracy; however, it has generally been difficult to determine these quantities for a polar molecule in water. A theoretical approach introduced by Onsager [J. Am. Chem. Soc. 58, 1486 (1936)] used vacuum properties of small molecules, including polarizability, dipole moment, and size, to predict experimentally known permittivities of neat liquids via the Poisson equation. Since this important advance in understanding the condensed phase, a large number of computational methods have been developed to study solutes embedded in a continuum via numerical solutions to the Poisson-Boltzmann equation. Only recently have the classical force fields used for studying biomolecules begun to include explicit polarization in their functional forms. Here the authors describe the theory underlying a newly developed polarizable multipole Poisson-Boltzmann (PMPB) continuum electrostatics model, which builds on the atomic multipole optimized energetics for biomolecular applications (AMOEBA) force field. As an application of the PMPB methodology, results are presented for several small folded proteins studied by molecular dynamics in explicit water as well as embedded in the PMPB continuum. The dipole moment of each protein increased on average by a factor of 1.27 in explicit AMOEBA water and 1.26 in continuum solvent. The essentially identical electrostatic response in both models suggests that PMPB electrostatics offers an efficient alternative to sampling explicit solvent molecules for a variety of interesting applications, including binding energies, conformational analysis, and pKa prediction. Introduction of 150mM salt lowered the electrostatic solvation energy between 2 and 13kcal /mole, depending on

  10. Polarizable Atomic Multipole Solutes in a Poisson-Boltzmann Continuum

    PubMed Central

    Schnieders, Michael J.; Baker, Nathan A.; Ren, Pengyu; Ponder, Jay W.

    2008-01-01

    Modeling the change in the electrostatics of organic molecules upon moving from vacuum into solvent, due to polarization, has long been an interesting problem. In vacuum, experimental values for the dipole moments and polarizabilities of small, rigid molecules are known to high accuracy; however, it has generally been difficult to determine these quantities for a polar molecule in water. A theoretical approach introduced by Onsager used vacuum properties of small molecules, including polarizability, dipole moment and size, to predict experimentally known permittivities of neat liquids via the Poisson equation. Since this important advance in understanding the condensed phase, a large number of computational methods have been developed to study solutes embedded in a continuum via numerical solutions to the Poisson-Boltzmann equation (PBE). Only recently have the classical force fields used for studying biomolecules begun to include explicit polarization in their functional forms. Here we describe the theory underlying a newly developed Polarizable Multipole Poisson-Boltzmann (PMPB) continuum electrostatics model, which builds on the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field. As an application of the PMPB methodology, results are presented for several small folded proteins studied by molecular dynamics in explicit water as well as embedded in the PMPB continuum. The dipole moment of each protein increased on average by a factor of 1.27 in explicit water and 1.26 in continuum solvent. The essentially identical electrostatic response in both models suggests that PMPB electrostatics offers an efficient alternative to sampling explicit solvent molecules for a variety of interesting applications, including binding energies, conformational analysis, and pKa prediction. Introduction of 150 mM salt lowered the electrostatic solvation energy between 2–13 kcal/mole, depending on the formal charge of the protein, but had only a

  11. Using pseudo transient continuation and the finite element method to solve the nonlinear Poisson-Boltzmann equation

    SciTech Connect

    Shestakov, A I; Milovich, J L; Noy, A

    2000-12-27

    The nonlinear Poisson-Boltzmann (PB) equation is solved using Pseudo Transient Continuation. The PB solver is constructed by modifying the nonlinear diffusion module of a 3D, massively parallel, unstructured-grid, finite element, radiation-hydrodynamics code. The solver also computes the electrostatic energy and evaluates the force on a user-specified contour. Either Dirichlet or mixed boundary conditions are allowed. The latter specifies surface charges, approximates far-field conditions, or linearizes conditions ''regulating'' the surface charge. The code may be run in either Cartesian, cylindrical, or spherical coordinates. The potential and force due to a conical probe interacting with a flat plate is computed and the result compared with direct force measurements by chemical force microscopy.

  12. Counterion condensation and shape within Poisson-Boltzmann theory.

    PubMed

    Lamm, Gene; Pack, George R

    2010-07-01

    An analytical approximation to the nonlinear Poisson-Boltzmann (PB) equation is applied to charged macromolecules that possess one-dimensional symmetry and can be modeled by a plane, infinite cylinder, or sphere. A functional substitution allows the nonlinear PB equation subject to linear boundary conditions to be transformed into an approximate linear (Debye-Hückel-type) equation subject to nonlinear boundary conditions. A simple analytical result for the surface potential of such polyelectrolytes follows, leading to expressions for the amount of condensed (or renormalized) charge and the electrostatic Helmholtz energy for polyelectrolytes. Analytical high-charge/low-salt and low-charge/high-salt limits are shown to be similar to results obtained by others based on PB or counterion condensation theory. Several important general observations concerning polyelectrolytes treated within the context of PB theory can be made including: (1) all charged surfaces display some counterion condensation for finite electrolyte concentration, (2) the effect of surface geometry is described primarily by the sum of the Debye constant and the mean curvature of the surface, (3) two surfaces with the same surface charge density and mean curvature condense approximately identical fractions of counterions, (4) the amount of condensation is not determined by a predefined "condensation distance" although such a distance can be determined uniquely from it, and (5) substantial condensation occurs if the Debye constant of the electrolyte is much less than the mean curvature of a highly charged polyelectrolyte.

  13. A Dynamic Poisson-Boltzmann Method of Simulating Polypeptides

    NASA Astrophysics Data System (ADS)

    Campbell, Victoria S.; Grayce, Christopher J.

    1998-03-01

    We present a method of performing molecular dynamics simulations of charged polymeric species in solution such as polypeptides that takes into account the instantaneous response of the ionic atmosphere to fluctuations in polymer conformation without employing explicit solvent and salt ions. Using density functional theory we write the free energy of the ionic atmosphere around the polymer as a functional of its density in the linearized Poisson-Boltzmann limit. We then add to a normal MD simulation of a charged polymer extra degrees of freedom, namely the parameters describing the instantaneous ion atomosphere density. These parameters vary dynamically under the influence of the coupled mechanical and thermodynamic forces, so that the instantaneous variations in the ionic atmosphere as the polymer conformation fluctuates are described. Using this method MD simulations were carried out on a model polypeptide system and both conformational properties as well as the electric field generated by this method were compared to results obtained by using fixed Debye-Huckel potentials.

  14. Analytical solutions of the Poisson-Boltzmann equation: biological applications

    NASA Astrophysics Data System (ADS)

    Fenley, Andrew; Gordon, John; Onufriev, Alexey

    2006-03-01

    Electrostatic interactions are a key factor for determining many properties of bio-molecules. The ability to compute the electrostatic potential generated by a molecule is often essential in understanding the mechanism behind its biological function such as catalytic activity, ligand binding, and macromolecular association. We propose an approximate analytical solution to the (linearized) Poisson-Boltzmann (PB) equation that is suitable for computing electrostatic potential around realistic biomolecules. The approximation is tested against the numerical solutions of the PB equation on a test set of 600 representative structures including proteins, DNA, and macromolecular complexes. The approach allows one to generate, with the power of a desktop PC, electrostatic potential maps of virtually any molecule of interest, from single proteins to large protein complexes such as viral capsids. The new approach is orders of magnitude less computationally intense than its numerical counterpart, yet is almost equal in accuracy. When studying very large molecular systems, our method is a practical and inexpensive way of computing bio- molecular potential at atomic resolution. We demonstrate the usefullnes of the new approach by exploring the details of electrostatic potentials generated by two of such systems: the nucleosome core particle (25,000 atoms) and tobacco ring spot virus (500,000 atoms). Biologically relevant insights are generated.

  15. pK(A) in proteins solving the Poisson-Boltzmann equation with finite elements.

    PubMed

    Sakalli, Ilkay; Knapp, Ernst-Walter

    2015-11-05

    Knowledge on pK(A) values is an eminent factor to understand the function of proteins in living systems. We present a novel approach demonstrating that the finite element (FE) method of solving the linearized Poisson-Boltzmann equation (lPBE) can successfully be used to compute pK(A) values in proteins with high accuracy as a possible replacement to finite difference (FD) method. For this purpose, we implemented the software molecular Finite Element Solver (mFES) in the framework of the Karlsberg+ program to compute pK(A) values. This work focuses on a comparison between pK(A) computations obtained with the well-established FD method and with the new developed FE method mFES, solving the lPBE using protein crystal structures without conformational changes. Accurate and coarse model systems are set up with mFES using a similar number of unknowns compared with the FD method. Our FE method delivers results for computations of pK(A) values and interaction energies of titratable groups, which are comparable in accuracy. We introduce different thermodynamic cycles to evaluate pK(A) values and we show for the FE method how different parameters influence the accuracy of computed pK(A) values.

  16. Accurate, robust, and reliable calculations of Poisson-Boltzmann binding energies.

    PubMed

    Nguyen, Duc D; Wang, Bao; Wei, Guo-Wei

    2017-05-15

    Poisson-Boltzmann (PB) model is one of the most popular implicit solvent models in biophysical modeling and computation. The ability of providing accurate and reliable PB estimation of electrostatic solvation free energy, ΔGel, and binding free energy, ΔΔGel, is important to computational biophysics and biochemistry. In this work, we investigate the grid dependence of our PB solver (MIBPB) with solvent excluded surfaces for estimating both electrostatic solvation free energies and electrostatic binding free energies. It is found that the relative absolute error of ΔGel obtained at the grid spacing of 1.0 Å compared to ΔGel at 0.2 Å averaged over 153 molecules is less than 0.2%. Our results indicate that the use of grid spacing 0.6 Å ensures accuracy and reliability in ΔΔGel calculation. In fact, the grid spacing of 1.1 Å appears to deliver adequate accuracy for high throughput screening. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation.

    PubMed

    Boschitsch, Alexander H; Fenley, Marcia O

    2007-04-15

    The nonlinear Poisson-Boltzmann equation (PBE) has been successfully used for the prediction of numerous electrostatic properties of highly charged biopolyelectrolytes immersed in aqueous salt solutions. While numerous numerical solvers for the 3D PBE have been developed, the formulation of the outer boundary treatments used in these methods has only been loosely addressed, especially in the nonlinear case. The de facto standard in current nonlinear PBE implementations is to either set the potential at the outer boundaries to zero or estimate it using the (linear) Debye-Hückel (DH) approximation. However, an assessment of how these outer boundary treatments affect the overall solution accuracy does not appear to have been previously made. As will be demonstrated here, both approximations can, under certain conditions, produce completely erroneous estimates of the potential and energy salt dependencies. A related concern for calculations carried out on grids of finite extent (e.g., all current finite difference and finite element implementations) is the contribution to the energy and salt dependence from the exterior region outside the computational grid. This too is shown to be significant, especially at low salt concentration where essentially all of the contributions to the excess osmotic pressure and ion stress energies originate from this exterior region. In this paper the authors introduce a new outer boundary treatment that is valid for both the linear and nonlinear PBE. The authors also formulate energy corrections to account for contributions from outside the computational domain. Finally, the authors also consider the effects of general ion exclusion layers upon biomolecular electrostatics. It is shown that while these layers tend to increase the surface electrostatic potential, under physiological salt conditions and high net charges their effect on the excess osmotic pressure term, which is a measure of the salt dependence of the total electrostatic

  18. Solution of the nonlinear Poisson-Boltzmann equation: Application to ionic diffusion in cementitious materials

    SciTech Connect

    Arnold, J.; Kosson, D.S.; Garrabrants, A.; Meeussen, J.C.L.; Sloot, H.A. van der

    2013-02-15

    A robust numerical solution of the nonlinear Poisson-Boltzmann equation for asymmetric polyelectrolyte solutions in discrete pore geometries is presented. Comparisons to the linearized approximation of the Poisson-Boltzmann equation reveal that the assumptions leading to linearization may not be appropriate for the electrochemical regime in many cementitious materials. Implications of the electric double layer on both partitioning of species and on diffusive release are discussed. The influence of the electric double layer on anion diffusion relative to cation diffusion is examined.

  19. Structural interactions in ionic liquids linked to higher-order Poisson-Boltzmann equations.

    PubMed

    Blossey, R; Maggs, A C; Podgornik, R

    2017-06-01

    We present a derivation of generalized Poisson-Boltzmann equations starting from classical theories of binary fluid mixtures, employing an approach based on the Legendre transform as recently applied to the case of local descriptions of the fluid free energy. Under specific symmetry assumptions, and in the linearized regime, the Poisson-Boltzmann equation reduces to a phenomenological equation introduced by Bazant et al. [Phys. Rev. Lett. 106, 046102 (2011)]PRLTAO0031-900710.1103/PhysRevLett.106.046102, whereby the structuring near the surface is determined by bulk coefficients.

  20. Incorporation of solvation effects into the fragment molecular orbital calculations with the Poisson-Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Watanabe, Hirofumi; Okiyama, Yoshio; Nakano, Tatsuya; Tanaka, Shigenori

    2010-11-01

    We developed FMO-PB method, which incorporates solvation effects into the Fragment Molecular Orbital calculation with the Poisson-Boltzmann equation. This method retains good accuracy in energy calculations with reduced computational time. We calculated the solvation free energies for polyalanines, Alpha-1 peptide, tryptophan cage, and complex of estrogen receptor and 17 β-estradiol to show the applicability of this method for practical systems. From the calculated results, it has been confirmed that the FMO-PB method is useful for large biomolecules in solution. We also discussed the electric charges which are used in solving the Poisson-Boltzmann equation.

  1. Comparison of a hydrogel model to the Poisson-Boltzmann cell model

    NASA Astrophysics Data System (ADS)

    Claudio, Gil C.; Kremer, Kurt; Holm, Christian

    2009-09-01

    We have investigated a single charged microgel in aqueous solution with a combined simulational model and Poisson-Boltzmann theory. In the simulations we use a coarse-grained charged bead-spring model in a dielectric continuum, with explicit counterions and full electrostatic interactions under periodic and nonperiodic boundary conditions. The Poisson-Boltzmann hydrogel model is that of a single charged colloid confined to a spherical cell where the counterions are allowed to enter the uniformly charged sphere. In order to investigate the origin of the differences these two models may give, we performed a variety of simulations of different hydrogel models which were designed to test for the influence of charge correlations, excluded volume interactions, arrangement of charges along the polymer chains, and thermal fluctuations in the chains of the gel. These intermediate models systematically allow us to connect the Poisson-Boltzmann cell model to the bead-spring model hydrogel model in a stepwise manner thereby testing various approximations. Overall, the simulational results of all these hydrogel models are in good agreement, especially for the number of confined counterions within the gel. Our results support the applicability of the Poisson-Boltzmann cell model to study ionic properties of hydrogels under dilute conditions.

  2. Comparison of a hydrogel model to the Poisson-Boltzmann cell model.

    PubMed

    Claudio, Gil C; Kremer, Kurt; Holm, Christian

    2009-09-07

    We have investigated a single charged microgel in aqueous solution with a combined simulational model and Poisson-Boltzmann theory. In the simulations we use a coarse-grained charged bead-spring model in a dielectric continuum, with explicit counterions and full electrostatic interactions under periodic and nonperiodic boundary conditions. The Poisson-Boltzmann hydrogel model is that of a single charged colloid confined to a spherical cell where the counterions are allowed to enter the uniformly charged sphere. In order to investigate the origin of the differences these two models may give, we performed a variety of simulations of different hydrogel models which were designed to test for the influence of charge correlations, excluded volume interactions, arrangement of charges along the polymer chains, and thermal fluctuations in the chains of the gel. These intermediate models systematically allow us to connect the Poisson-Boltzmann cell model to the bead-spring model hydrogel model in a stepwise manner thereby testing various approximations. Overall, the simulational results of all these hydrogel models are in good agreement, especially for the number of confined counterions within the gel. Our results support the applicability of the Poisson-Boltzmann cell model to study ionic properties of hydrogels under dilute conditions.

  3. The Poisson-Boltzmann theory for the two-plates problem: some exact results.

    PubMed

    Xing, Xiang-Jun

    2011-12-01

    The general solution to the nonlinear Poisson-Boltzmann equation for two parallel charged plates, either inside a symmetric electrolyte, or inside a 2q:-q asymmetric electrolyte, is found in terms of Weierstrass elliptic functions. From this we derive some exact asymptotic results for the interaction between charged plates, as well as the exact form of the renormalized surface charge density.

  4. Beyond Poisson-Boltzmann: fluctuations and fluid structure in a self-consistent theory

    NASA Astrophysics Data System (ADS)

    Buyukdagli, S.; Blossey, R.

    2016-09-01

    Poisson-Boltzmann (PB) theory is the classic approach to soft matter electrostatics and has been applied to numerous physical chemistry and biophysics problems. Its essential limitations are in its neglect of correlation effects and fluid structure. Recently, several theoretical insights have allowed the formulation of approaches that go beyond PB theory in a systematic way. In this topical review, we provide an update on the developments achieved in the self-consistent formulations of correlation-corrected Poisson-Boltzmann theory. We introduce a corresponding system of coupled non-linear equations for both continuum electrostatics with a uniform dielectric constant, and a structured solvent—a dipolar Coulomb fluid—including non-local effects. While the approach is only approximate and also limited to corrections in the so-called weak fluctuation regime, it allows us to include physically relevant effects, as we show for a range of applications of these equations.

  5. Ion-Conserving Modified Poisson-Boltzmann Theory Considering a Steric Effect in an Electrolyte

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2016-12-01

    The modified Poisson-Nernst-Planck (MPNP) and modified Poisson-Boltzmann (MPB) equations are well known as fundamental equations that consider a steric effect, which prevents unphysical ion concentrations. However, it is unclear whether they are equivalent or not. To clarify this problem, we propose an improved free energy formulation that considers a steric limit with an ion-conserving condition and successfully derive the ion-conserving modified Poisson-Boltzmann (IC-MPB) equations that are equivalent to the MPNP equations. Furthermore, we numerically examine the equivalence by comparing between the IC-MPB solutions obtained by the Newton method and the steady MPNP solutions obtained by the finite-element finite-volume method. A surprising aspect of our finding is that the MPB solutions are much different from the MPNP (IC-MPB) solutions in a confined space. We consider that our findings will significantly contribute to understanding the surface science between solids and liquids.

  6. Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics.

    PubMed

    Paillusson, Fabien; Blossey, Ralf

    2010-11-01

    Polar liquids like water carry a characteristic nanometric length scale, the correlation length of orientation polarizations. Continuum theories that can capture this feature commonly run under the name of "nonlocal" electrostatics since their dielectric response is characterized by a scale-dependent dielectric function ε(q), where q is the wave vector; the Poisson(-Boltzmann) equation then turns into an integro-differential equation. Recently, "local" formulations have been put forward for these theories and applied to water, solvated ions, and proteins. We review the local formalism and show how it can be applied to a structured liquid in slit and plate geometries, and solve the Poisson-Boltzmann theory for a charged plate in a structured solvent with counterions. Our results establish a coherent picture of the local version of nonlocal electrostatics and show its ease of use when compared to the original formulation.

  7. Beyond Poisson-Boltzmann: fluctuations and fluid structure in a self-consistent theory.

    PubMed

    Buyukdagli, S; Blossey, R

    2016-09-01

    Poisson-Boltzmann (PB) theory is the classic approach to soft matter electrostatics and has been applied to numerous physical chemistry and biophysics problems. Its essential limitations are in its neglect of correlation effects and fluid structure. Recently, several theoretical insights have allowed the formulation of approaches that go beyond PB theory in a systematic way. In this topical review, we provide an update on the developments achieved in the self-consistent formulations of correlation-corrected Poisson-Boltzmann theory. We introduce a corresponding system of coupled non-linear equations for both continuum electrostatics with a uniform dielectric constant, and a structured solvent-a dipolar Coulomb fluid-including non-local effects. While the approach is only approximate and also limited to corrections in the so-called weak fluctuation regime, it allows us to include physically relevant effects, as we show for a range of applications of these equations.

  8. Phase coexistence in colloidal suspensions: an analytic Poisson-Boltzmann treatment.

    PubMed

    Knott, M; Ford, I J

    2001-03-01

    We solve the linearized Poisson-Boltzmann equation analytically, subject to justifiable approximations, for a suspension containing a large number of identical spherical macroions under conditions of constant surface charge and zero added salt, in order to investigate the phase behavior of charge-stabilized colloidal suspensions. Our results for the electrostatic part of the Helmholtz free energy lead to an interaction which resembles the intermolecular interaction in the theory of molecular fluids. When combined with the ideal gas free energy of the counterions, this produces a van der Waals loop in the pV diagram, indicating coexistence between phases with different densities, for certain values of the macroion radius and charge. We also derive an expression for the surface potential of the macroions, and clarify the interpretation of the Poisson-Boltzmann equation.

  9. Reducing grid-dependence in finite-difference Poisson-Boltzmann calculations

    PubMed Central

    Wang, Jun; Cai, Qin; Xiang, Ye; Luo, Ray

    2012-01-01

    Grid dependence in numerical reaction field energies and solvation forces is a well-known limitation in the finite-difference Poisson-Boltzmann methods. In this study we have investigated several numerical strategies to overcome the limitation. Specifically, we have included trimer arc dots during analytical molecular surface generation to improve the convergence of numerical reaction field energies and solvation forces. We have also utilized the level set function to trace the molecular surface implicitly to simplify the numerical mapping of the grid-independent solvent excluded surface. We have further explored to combine the weighted harmonic averaging of boundary dielectrics with a charge-based approach to improve the convergence and stability of numerical reaction field energies and solvation forces. Our test data show that the convergence and stability in both numerical energies and forces can be improved significantly when the combined strategy is applied to either the Poisson equation or the full Poisson-Boltzmann equation. PMID:23185142

  10. The dependence of electrostatic solvation energy on dielectric constants in Poisson-Boltzmann calculations.

    PubMed

    Tjong, Harianto; Zhou, Huang-Xiang

    2006-11-28

    The Poisson-Boltzmann equation gives the electrostatic free energy of a solute molecule (with dielectric constant epsilon(l)) solvated in a continuum solvent (with dielectric constant epsilon(s)). Here a simple formula is presented that accurately predicts the electrostatic free energy for all combinations of epsilon(l) and epsilon(s) from the calculation on a single set of epsilon(l) and epsilon(s) values.

  11. Between algorithm and model: different Molecular Surface definitions for the Poisson-Boltzmann based electrostatic characterization of biomolecules in solution

    PubMed Central

    Decherchi, Sergio; Colmenares, José; Catalano, Chiara Eva; Spagnuolo, Michela; Alexov, Emil; Rocchia, Walter

    2011-01-01

    The definition of a molecular surface which is physically sound and computationally efficient is a very interesting and long standing problem in the implicit solvent continuum modeling of biomolecular systems as well as in the molecular graphics field. In this work, two molecular surfaces are evaluated with respect to their suitability for electrostatic computation as alternatives to the widely used Connolly-Richards surface: the blobby surface, an implicit Gaussian atom centered surface, and the skin surface. As figures of merit, we considered surface differentiability and surface area continuity with respect to atom positions, and the agreement with explicit solvent simulations. Geometric analysis seems to privilege the skin to the blobby surface, and points to an unexpected relationship between the non connectedness of the surface, caused by interstices in the solute volume, and the surface area dependence on atomic centers. In order to assess the ability to reproduce explicit solvent results, specific software tools have been developed to enable the use of the skin surface in Poisson-Boltzmann calculations with the DelPhi solver. Results indicate that the skin and Connolly surfaces have a comparable performance from this last point of view. PMID:23519863

  12. The charge conserving Poisson-Boltzmann equations: Existence, uniqueness, and maximum principle

    SciTech Connect

    Lee, Chiun-Chang

    2014-05-15

    The present article is concerned with the charge conserving Poisson-Boltzmann (CCPB) equation in high-dimensional bounded smooth domains. The CCPB equation is a Poisson-Boltzmann type of equation with nonlocal coefficients. First, under the Robin boundary condition, we get the existence of weak solutions to this equation. The main approach is variational, based on minimization of a logarithm-type energy functional. To deal with the regularity of weak solutions, we establish a maximum modulus estimate for the standard Poisson-Boltzmann (PB) equation to show that weak solutions of the CCPB equation are essentially bounded. Then the classical solutions follow from the elliptic regularity theorem. Second, a maximum principle for the CCPB equation is established. In particular, we show that in the case of global electroneutrality, the solution achieves both its maximum and minimum values at the boundary. However, in the case of global non-electroneutrality, the solution may attain its maximum value at an interior point. In addition, under certain conditions on the boundary, we show that the global non-electroneutrality implies pointwise non-electroneutrality.

  13. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels.

    PubMed

    Park, H M; Lee, J S; Kim, T W

    2007-11-15

    In the analysis of electroosmotic flows, the internal electric potential is usually modeled by the Poisson-Boltzmann equation. The Poisson-Boltzmann equation is derived from the assumption of thermodynamic equilibrium where the ionic distributions are not affected by fluid flows. Although this is a reasonable assumption for steady electroosmotic flows through straight microchannels, there are some important cases where convective transport of ions has nontrivial effects. In these cases, it is necessary to adopt the Nernst-Planck equation instead of the Poisson-Boltzmann equation to model the internal electric field. In the present work, the predictions of the Nernst-Planck equation are compared with those of the Poisson-Boltzmann equation for electroosmotic flows in various microchannels where the convective transport of ions is not negligible.

  14. A simple algorithm for calculating electrical double layer interactions in asymmetric electrolytes-Poisson-Boltzmann theory.

    PubMed

    Chan, Derek Y C

    2002-01-15

    A simple, general, and numerically robust algorithm is presented for calculating the disjoining pressure and interaction free energy per unit area between two identically charged flat plates due to electrical double layer interactions according to the nonlinear Poisson-Boltzmann theory. The result is applicable to electrolytes with any number of ionic species having any combination of valencies as well as to constant potential, constant charge, or charge regulation boundary conditions on the plates. The algorithm is very simple to implement on commonly available numerical software environments and is therefore particularly suitable for use in data analysis.

  15. Nonlinear Poisson-Boltzmann model of charged lipid membranes: Accounting for the presence of zwitterionic lipids

    NASA Astrophysics Data System (ADS)

    Mengistu, Demmelash H.; May, Sylvio

    2008-09-01

    The nonlinear Poisson-Boltzmann model is used to derive analytical expressions for the free energies of both mixed anionic-zwitterionic and mixed cationic-zwitterionic lipid membranes as function of the mole fraction of charged lipids. Accounting explicitly for the electrostatic properties of the zwitterionic lipid species affects the free energy of anionic and cationic membranes in a qualitatively different way: That of an anionic membrane changes monotonously as a function of the mole fraction of charged lipids, whereas it passes through a pronounced minimum for a cationic membrane.

  16. Elliptic Solvers for Adaptive Mesh Refinement Grids

    SciTech Connect

    Quinlan, D.J.; Dendy, J.E., Jr.; Shapira, Y.

    1999-06-03

    We are developing multigrid methods that will efficiently solve elliptic problems with anisotropic and discontinuous coefficients on adaptive grids. The final product will be a library that provides for the simplified solution of such problems. This library will directly benefit the efforts of other Laboratory groups. The focus of this work is research on serial and parallel elliptic algorithms and the inclusion of our black-box multigrid techniques into this new setting. The approach applies the Los Alamos object-oriented class libraries that greatly simplify the development of serial and parallel adaptive mesh refinement applications. In the final year of this LDRD, we focused on putting the software together; in particular we completed the final AMR++ library, we wrote tutorials and manuals, and we built example applications. We implemented the Fast Adaptive Composite Grid method as the principal elliptic solver. We presented results at the Overset Grid Conference and other more AMR specific conferences. We worked on optimization of serial and parallel performance and published several papers on the details of this work. Performance remains an important issue and is the subject of continuing research work.

  17. Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Linearized Poisson-Boltzmann Solvent.

    PubMed

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P

    2017-06-13

    We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.

  18. Solution of the nonlinear Poisson-Boltzmann equation using pseudo-transient continuation and the finite element method.

    PubMed

    Shestakov, A I; Milovich, J L; Noy, A

    2002-03-01

    The nonlinear Poisson-Boltzmann (PB) equation is solved using Newton-Krylov iterations coupled with pseudo-transient continuation. The PB potential is used to compute the electrostatic energy and evaluate the force on a user-specified contour. The PB solver is embedded in a existing, 3D, massively parallel, unstructured-grid, finite element code. Either Dirichlet or mixed boundary conditions are allowed. The latter specifies surface charges, approximates far-field conditions, or linearizes conditions "regulating" the surface charge. Stability and robustness are proved using results for backward Euler differencing of diffusion equations. Potentials and energies of charged spheres and plates are computed and results compared to analysis. An approximation to the potential of the nonlinear, spherical charge is derived by combining two analytic formulae. The potential and force due to a conical probe interacting with a flat plate are computed for two types of boundary conditions: constant potential and constant charge. The second case is compared with direct force measurements by chemical force microscopy. The problem is highly nonlinear-surface potentials of the linear and nonlinear PB equations differ by over an order of magnitude. Comparison of the simulated and experimentally measured forces shows that approximately half of the surface carboxylic acid groups, of density 1/(0.2 nm2), ionize in the electrolyte implying surface charges of 0.4 C/m2, surface potentials of 0.27 V, and a force of 0.6 nN when the probe and plate are 8.7 nm apart.

  19. Optimal linearized Poisson-Boltzmann theory applied to the simulation of flexible polyelectrolytes in solution.

    PubMed

    Bathe, M; Grodzinsky, A J; Tidor, B; Rutledge, G C

    2004-10-22

    Optimal linearized Poisson-Boltzmann (OLPB) theory is applied to the simulation of flexible polyelectrolytes in solution. As previously demonstrated in the contexts of the cell model [H. H. von Grunberg, R. van Roij, and G. Klein, Europhys. Lett. 55, 580 (2001)] and a particle-based model [B. Beresfordsmith, D. Y. C. Chan, and D. J. Mitchell, J. Colloid Interface Sci. 105, 216 (1985)] of charged colloids, OLPB theory is applicable to thermodynamic states at which conventional, Debye-Huckel (DH) linearization of the Poisson-Boltzmann equation is rendered invalid by violation of the condition that the electrostatic coupling energy of a mobile ion be much smaller than its thermal energy throughout space, |nu(alpha)e psi(r)|

  20. Surface Tension of Acid Solutions: Fluctuations beyond the Nonlinear Poisson-Boltzmann Theory.

    PubMed

    Markovich, Tomer; Andelman, David; Podgornik, Rudi

    2017-01-10

    We extend our previous study of surface tension of ionic solutions and apply it to acids (and salts) with strong ion-surface interactions, as described by a single adhesivity parameter for the ionic species interacting with the interface. We derive the appropriate nonlinear boundary condition with an effective surface charge due to the adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero loop (mean field) corresponds of the full nonlinear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension and the one-loop contribution gives a generalization of the Onsager-Samaras result. Adhesivity significantly affects both contributions to the surface tension, as can be seen from the dependence of surface tension on salt concentration for strongly absorbing ions. Comparison with available experimental data on a wide range of different acids and salts allows the fitting of the adhesivity parameter. In addition, it identifies the regime(s) where the hypotheses on which the theory is based are outside their range of validity.

  1. Sensitivities to parameterization in the size-modified Poisson-Boltzmann equation.

    PubMed

    Harris, Robert C; Boschitsch, Alexander H; Fenley, Marcia O

    2014-02-21

    Experimental results have demonstrated that the numbers of counterions surrounding nucleic acids differ from those predicted by the nonlinear Poisson-Boltzmann equation, NLPBE. Some studies have fit these data against the ion size in the size-modified Poisson-Boltzmann equation, SMPBE, but the present study demonstrates that other parameters, such as the Stern layer thickness and the molecular surface definition, can change the number of bound ions by amounts comparable to varying the ion size. These parameters will therefore have to be fit simultaneously against experimental data. In addition, the data presented here demonstrate that the derivative, SK, of the electrostatic binding free energy, ΔGel, with respect to the logarithm of the salt concentration is sensitive to these parameters, and experimental measurements of SK could be used to parameterize the model. However, although better values for the Stern layer thickness and ion size and better molecular surface definitions could improve the model's predictions of the numbers of ions around biomolecules and SK, ΔGel itself is more sensitive to parameters, such as the interior dielectric constant, which in turn do not significantly affect the distributions of ions around biomolecules. Therefore, improved estimates of the ion size and Stern layer thickness to use in the SMPBE will not necessarily improve the model's predictions of ΔGel.

  2. Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies.

    PubMed

    Bertonati, Claudia; Honig, Barry; Alexov, Emil

    2007-03-15

    The salt dependence of the binding free energy of five protein-protein hetero-dimers and two homo-dimers/tetramers was calculated from numerical solutions to the Poisson-Boltzmann equation. Overall, the agreement with experimental values is very good. In all cases except one involving the highly charged lactoglobulin homo-dimer, increasing the salt concentration is found both experimentally and theoretically to decrease the binding affinity. To clarify the source of salt effects, the salt-dependent free energy of binding is partitioned into screening terms and to self-energy terms that involve the interaction of the charge distribution of a monomer with its own ion atmosphere. In six of the seven complexes studied, screening makes the largest contribution but self-energy effects can also be significant. The calculated salt effects are found to be insensitive to force-field parameters and to the internal dielectric constant assigned to the monomers. Nonlinearities due to high charge densities, which are extremely important in the binding of proteins to negatively charged membrane surfaces and to nucleic acids, make much smaller contributions to the protein-protein complexes studied here, with the exception of highly charged lactoglobulin dimers. Our results indicate that the Poisson-Boltzmann equation captures much of the physical basis of the nonspecific salt dependence of protein-protein complexation.

  3. Sensitivities to parameterization in the size-modified Poisson-Boltzmann equation

    PubMed Central

    Harris, Robert C.; Boschitsch, Alexander H.; Fenley, Marcia O.

    2014-01-01

    Experimental results have demonstrated that the numbers of counterions surrounding nucleic acids differ from those predicted by the nonlinear Poisson-Boltzmann equation, NLPBE. Some studies have fit these data against the ion size in the size-modified Poisson-Boltzmann equation, SMPBE, but the present study demonstrates that other parameters, such as the Stern layer thickness and the molecular surface definition, can change the number of bound ions by amounts comparable to varying the ion size. These parameters will therefore have to be fit simultaneously against experimental data. In addition, the data presented here demonstrate that the derivative, SK, of the electrostatic binding free energy, ΔGel, with respect to the logarithm of the salt concentration is sensitive to these parameters, and experimental measurements of SK could be used to parameterize the model. However, although better values for the Stern layer thickness and ion size and better molecular surface definitions could improve the model's predictions of the numbers of ions around biomolecules and SK, ΔGel itself is more sensitive to parameters, such as the interior dielectric constant, which in turn do not significantly affect the distributions of ions around biomolecules. Therefore, improved estimates of the ion size and Stern layer thickness to use in the SMPBE will not necessarily improve the model's predictions of ΔGel. PMID:24559370

  4. How accurate is Poisson-Boltzmann theory for monovalent ions near highly charged interfaces?

    PubMed

    Bu, Wei; Vaknin, David; Travesset, Alex

    2006-06-20

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface. A lipid phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the air-water interface to control surface charge density. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. Five decades in bulk concentrations are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. The increase of Cs+ concentration modifies the contact value potential, thereby causing proton release. This process effectively modifies surface charge density and enables exploration of ion distributions as a function of effective surface charge-density. The experimentally obtained ion distributions are compared to distributions calculated by Poisson-Boltzmann theory accounting for the variation of surface charge density due to proton release and binding. We also discuss the accuracy of our experimental results in discriminating possible deviations from Poisson-Boltzmann theory.

  5. Membrane potential and ion partitioning in an erythrocyte using the Poisson-Boltzmann equation.

    PubMed

    Barbosa, Nathalia S V; Lima, Eduardo R A; Boström, Mathias; Tavares, Frederico W

    2015-05-28

    In virtually all mammal cells, we can observe a much higher concentration of potassium ions inside the cell and vice versa for sodium ions. Classical theories ignore the specific ion effects and the difference in the thermodynamic reference states between intracellular and extracellular environments. Usually, this differential ion partitioning across a cell membrane is attributed exclusively to the active ion transport. Our aim is to investigate how much the dispersion forces contribute to active ion pumps in an erythrocyte (red blood cell) as well as the correction of chemical potential reference states between intracellular and extracellular environments. The ionic partition and the membrane potential in an erythrocyte are analyzed by the modified Poisson-Boltzmann equation, considering nonelectrostatic interactions between ions and macromolecules. Results show that the nonelectrostatic potential calculated by Lifshitz theory has only a small influence with respect to the high concentration of K(+) in the intracellular environment in comparison with Na(+).

  6. Analytic Thermodynamic Calculations for an Immobilized Molecule under Poisson-Boltzmann Interactions using a Spheroidal Geometry

    NASA Astrophysics Data System (ADS)

    Ambia-Garrido, Joaquin; Pettitt, Montgomery

    2008-03-01

    The change in some thermodynamic quantities such as Gibbs' free energy, entropy and enthalpy of the binding of a particle tethered to a surface or particle are analytically calculated. These particles are considered ellipsoids and submerged in a liquid. The ionic strength of the media allows the linearized version of the Poisson-Boltzmann equation (from the theory of the double layer interaction) to properly describe the interactions between an ion penetrable spheroid and a hard plate. We believe that this is an adequate model for a DNA chip and the predicted electrostatic effects suggest the feasibility of electronic control and detection of DNA hybridization and design of chips underline avoiding the DNA folding problem.

  7. Analitic Thermodynamic Calculations for an Immobilized Molecule under Poisson-Boltzmann Interactions using a Spheroidal Geometry

    NASA Astrophysics Data System (ADS)

    Ambia-Garrido, Joaquin; Montgomery Pettitt, Bernard

    2007-10-01

    The change in some thermodynamic quantities such as Gibbs' free energy, entropy and enthalpy of the binding of a particle tethered to a surface or particle are analytically calculated. These particles are considered ellipsoids and submerged in a liquid. The ionic strength of the media allows the linearized version of the Poisson-Boltzmann equation (from the theory of the double layer interaction) to properly describe the interactions between an ion penetrable spheroid and a hard plate. We believe that this is an adequate model for a DNA chip and the predicted electrostatic effects suggest the feasibility of electronic control and detection of DNA hybridization and design of chips, avoiding the DNA folding problem.

  8. Protein molecular dynamics with electrostatic force entirely determined by a single Poisson-Boltzmann calculation.

    PubMed

    Lu, Ben Zhuo; Chen, Wei Zu; Wang, Cun Xin; Xu, Xiao-jie

    2002-08-15

    The electrostatic force including the intramolecular Coulombic interactions and the electrostatic contribution of solvation effect were entirely calculated by using the finite difference Poisson-Boltzmann method (FDPB), which was incorporated into the GROMOS96 force field to complete a new finite difference stochastic dynamics procedure (FDSD). Simulations were performed on an insulin dimer. Different relative dielectric constants were successively assigned to the protein interior; a value of 17 was selected as optimal for our system. The simulation data were analyzed and compared with those obtained from 500-ps molecular dynamics (MD) simulation with explicit water and a 500-ps conventional stochastic dynamics (SD) simulation without the mean solvent force. The results indicate that the FDSD method with GROMOS96 force field is suitable to study the dynamics and structure of proteins in solution if used with the optimal protein dielectric constant. Copyright 2002 Wiley-Liss, Inc.

  9. Improved Boundary Element Methods for Poisson-Boltzmann Electrostatic Potential and Force Calculations.

    PubMed

    Lu, Benzhuo; McCammon, J Andrew

    2007-05-01

    A patch representation differing from the traditional treatments in the boundary element method (BEM) is presented, which we call the constant "node patch" method. Its application to solving the Poisson-Boltzmann equation (PBE) demonstrates considerable improvement in speed compared with the constant element and linear element methods. In addition, for the node-based BEMs, we propose an efficient interpolation method for the calculation of the electrostatic stress tensor and PB force on the solvated molecular surface. This force calculation is simply an O(N) algorithm (N is the number of elements). Moreover, our calculations also show that the geometric factor correction in the boundary integral equations significantly increases the accuracy of the potential solution on the boundary, and thereby the PB force calculation.

  10. Langevin Poisson-Boltzmann equation: point-like ions and water dipoles near a charged surface.

    PubMed

    Gongadze, Ekaterina; van Rienen, Ursula; Kralj-Iglič, Veronika; Iglič, Aleš

    2011-06-01

    Water ordering near a charged membrane surface is important for many biological processes such as binding of ligands to a membrane or transport of ions across it. In this work, the mean-field Poisson-Boltzmann theory for point-like ions, describing an electrolyte solution in contact with a planar charged surface, is modified by including the orientational ordering of water. Water molecules are considered as Langevin dipoles, while the number density of water is assumed to be constant everywhere in the electrolyte solution. It is shown that the dielectric permittivity of an electrolyte close to a charged surface is decreased due to the increased orientational ordering of water dipoles. The dielectric permittivity close to the charged surface is additionally decreased due to the finite size of ions and dipoles.

  11. Incorporation of excluded-volume correlations into Poisson-Boltzmann theory.

    PubMed

    Antypov, Dmytro; Barbosa, Marcia C; Holm, Christian

    2005-06-01

    We investigate the effect of excluded-volume interactions on the electrolyte distribution around a charged macroion. First, we introduce a criterion for determining when hard-core effects should be taken into account beyond standard mean-field Poisson-Boltzmann (PB) theory. Next, we demonstrate that several commonly proposed local-density-functional approaches for excluded-volume interactions cannot be used for this purpose. Instead, we employ a nonlocal excess free energy by using a simple constant-weight approach. We compare the ion distribution and osmotic pressure predicted by this theory with Monte Carlo simulations. They agree very well for weakly developed correlations and give the correct layering effect for stronger ones. In all investigated cases our simple weighted-density theory yields more realistic results than the standard PB approach, whereas all local density theories do not improve on the PB density profiles, but on the contrary, deviate even more from the simulation results.

  12. Incorporating headgroup structure into the Poisson-Boltzmann model of charged lipid membranes

    NASA Astrophysics Data System (ADS)

    Wang, Muyang; Chen, Er-Qiang; Yang, Shuang; May, Sylvio

    2013-07-01

    Charged lipids often possess a complex headgroup structure with several spatially separated charges and internal conformational degrees of freedom. We propose a headgroup model consisting of two rod-like segments of the same length that form a flexible joint, with three charges of arbitrary sign and valence located at the joint and the two terminal positions. One terminal charge is firmly anchored at the polar-apolar interface of the lipid layer whereas the other two benefit from the orientational degrees of freedom of the two headgroup segments. This headgroup model is incorporated into the mean-field continuum Poisson-Boltzmann formalism of the electric double layer. For sufficiently small lengths of the two rod-like segments a closed-form expression of the charging free energy is calculated. For three specific examples—a zwitterionic headgroup with conformational freedom and two headgroups that carry an excess charge—we analyze and discuss conformational properties and electrostatic free energies.

  13. Parallel Newton-Krylov-Schwarz algorithms for the three-dimensional Poisson-Boltzmann equation in numerical simulation of colloidal particle interactions

    NASA Astrophysics Data System (ADS)

    Hwang, Feng-Nan; Cai, Shang-Rong; Shao, Yun-Long; Wu, Jong-Shinn

    2010-09-01

    We investigate fully parallel Newton-Krylov-Schwarz (NKS) algorithms for solving the large sparse nonlinear systems of equations arising from the finite element discretization of the three-dimensional Poisson-Boltzmann equation (PBE), which is often used to describe the colloidal phenomena of an electric double layer around charged objects in colloidal and interfacial science. The NKS algorithm employs an inexact Newton method with backtracking (INB) as the nonlinear solver in conjunction with a Krylov subspace method as the linear solver for the corresponding Jacobian system. An overlapping Schwarz method as a preconditioner to accelerate the convergence of the linear solver. Two test cases including two isolated charged particles and two colloidal particles in a cylindrical pore are used as benchmark problems to validate the correctness of our parallel NKS-based PBE solver. In addition, a truly three-dimensional case, which models the interaction between two charged spherical particles within a rough charged micro-capillary, is simulated to demonstrate the applicability of our PBE solver to handle a problem with complex geometry. Finally, based on the result obtained from a PC cluster of parallel machines, we show numerically that NKS is quite suitable for the numerical simulation of interaction between colloidal particles, since NKS is robust in the sense that INB is able to converge within a small number of iterations regardless of the geometry, the mesh size, the number of processors. With help of an additive preconditioned Krylov subspace method NKS achieves parallel efficiency of 71% or better on up to a hundred processors for a 3D problem with 5 million unknowns.

  14. Poisson-Boltzmann model for protein-surface electrostatic interactions and grid-convergence study using the PyGBe code

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher D.; Barba, Lorena A.

    2016-05-01

    Interactions between surfaces and proteins occur in many vital processes and are crucial in biotechnology: the ability to control specific interactions is essential in fields like biomaterials, biomedical implants and biosensors. In the latter case, biosensor sensitivity hinges on ligand proteins adsorbing on bioactive surfaces with a favorable orientation, exposing reaction sites to target molecules. Protein adsorption, being a free-energy-driven process, is difficult to study experimentally. This paper develops and evaluates a computational model to study electrostatic interactions of proteins and charged nanosurfaces, via the Poisson-Boltzmann equation. We extended the implicit-solvent model used in the open-source code PyGBe to include surfaces of imposed charge or potential. This code solves the boundary integral formulation of the Poisson-Boltzmann equation, discretized with surface elements. PyGBe has at its core a treecode-accelerated Krylov iterative solver, resulting in O(N log N) scaling, with further acceleration on hardware via multi-threaded execution on GPUs. It computes solvation and surface free energies, providing a framework for studying the effect of electrostatics on adsorption. We derived an analytical solution for a spherical charged surface interacting with a spherical dielectric cavity, and used it in a grid-convergence study to build evidence on the correctness of our approach. The study showed the error decaying with the average area of the boundary elements, i.e., the method is O(1 / N) , which is consistent with our previous verification studies using PyGBe. We also studied grid-convergence using a real molecular geometry (protein G B1 D4‧), in this case using Richardson extrapolation (in the absence of an analytical solution) and confirmed the O(1 / N) scaling. With this work, we can now access a completely new family of problems, which no other major bioelectrostatics solver, e.g. APBS, is capable of dealing with. PyGBe is open

  15. Adaptive kinetic-fluid solvers for heterogeneous computing architectures

    NASA Astrophysics Data System (ADS)

    Zabelok, Sergey; Arslanbekov, Robert; Kolobov, Vladimir

    2015-12-01

    We show feasibility and benefits of porting an adaptive multi-scale kinetic-fluid code to CPU-GPU systems. Challenges are due to the irregular data access for adaptive Cartesian mesh, vast difference of computational cost between kinetic and fluid cells, and desire to evenly load all CPUs and GPUs during grid adaptation and algorithm refinement. Our Unified Flow Solver (UFS) combines Adaptive Mesh Refinement (AMR) with automatic cell-by-cell selection of kinetic or fluid solvers based on continuum breakdown criteria. Using GPUs enables hybrid simulations of mixed rarefied-continuum flows with a million of Boltzmann cells each having a 24 × 24 × 24 velocity mesh. We describe the implementation of CUDA kernels for three modules in UFS: the direct Boltzmann solver using the discrete velocity method (DVM), the Direct Simulation Monte Carlo (DSMC) solver, and a mesoscopic solver based on the Lattice Boltzmann Method (LBM), all using adaptive Cartesian mesh. Double digit speedups on single GPU and good scaling for multi-GPUs have been demonstrated.

  16. Free-energy functionals of the electrostatic potential for Poisson-Boltzmann theory.

    PubMed

    Jadhao, Vikram; Solis, Francisco J; de la Cruz, Monica Olvera

    2013-08-01

    In simulating charged systems, it is often useful to treat some ionic components of the system at the mean-field level and solve the Poisson-Boltzmann (PB) equation to get their respective density profiles. The numerically intensive task of solving the PB equation at each step of the simulation can be bypassed using variational methods that treat the electrostatic potential as a dynamic variable. But such approaches require the access to a true free-energy functional: a functional that not only provides the correct solution of the PB equation upon extremization, but also evaluates to the true free energy of the system at its minimum. Moreover, the numerical efficiency of such procedures is further enhanced if the free-energy functional is local and is expressed in terms of the electrostatic potential. Existing PB functionals of the electrostatic potential, while possessing the local structure, are not free-energy functionals. We present a variational formulation with a local free-energy functional of the potential. In addition, we also construct a nonlocal free-energy functional of the electrostatic potential. These functionals are suited for employment in simulation schemes based on the ideas of dynamical optimization.

  17. Poisson-Boltzmann model of electrolytes containing uniformly charged spherical nanoparticles

    NASA Astrophysics Data System (ADS)

    Bohinc, Klemen; Volpe Bossa, Guilherme; Gavryushov, Sergei; May, Sylvio

    2016-12-01

    Like-charged macromolecules typically repel each other in aqueous solutions that contain small mobile ions. The interaction tends to turn attractive if mobile ions with spatially extended charge distributions are added. Such systems can be modeled within the mean-field Poisson-Boltzmann formalism by explicitly accounting for charge-charge correlations within the spatially extended ions. We consider an aqueous solution that contains a mixture of spherical nanoparticles with uniform surface charge density and small mobile salt ions, sandwiched between two like-charged planar surfaces. We perform the minimization of an appropriate free energy functional, which leads to a non-linear integral-differential equation for the electrostatic potential that we solve numerically and compare with predictions from Monte Carlo simulations. Nanoparticles with uniform surface charge density are contrasted with nanoparticles that have all their charges relocated at the center. Our mean-field model predicts that only the former (especially when large and highly charged particles) but not the latter are able to mediate attractive interactions between like-charged planar surfaces. We also demonstrate that at high salt concentration attractive interactions between like-charged planar surfaces turn into repulsion.

  18. Binding of phosphorus-containing inhibitors to thermolysin studied by the Poisson-Boltzmann method.

    PubMed Central

    Shen, J.; Wendoloski, J.

    1995-01-01

    Zinc endopeptidase thermolysin can be inhibited by a series of phosphorus-containing peptide analogues, Cbz-Gly-psi (PO2)-X-Leu-Y-R (ZGp(X)L(y)R), where X = NH, O, or CH2; Y = NH or O; R = Leu, Ala, Gly, Phe, H, or CH3. The affinity correlation as well as an X-ray crystallography study suggest that these inhibitors bind to thermolysin in an identical mode. In this work, we calculate the electrostatic binding free energies for a series of 13 phosphorus-containing inhibitors with modifications at X, Y, and R moieties using finite difference solution to the Poisson-Boltzmann equation. A method has been developed to include the solvation entropy changes due to binding different ligands to a macromolecule. We demonstrate that the electrostatic energy and empirically derived solvation entropy can account for most of the binding energy differences in this series. By analyzing the binding contribution from individual residues, we show that the energy of a hydrogen bond is not confined to the donor and acceptor. In particular, the positive charges on Zn and Arg 203, which are not the acceptors, contribute significantly to the hydrogen bonds between two amides of ZGpLL and the thermolysin. PMID:7795520

  19. Asymptotic analysis of the Poisson-Boltzmann equation describing electrokinetics in porous media

    NASA Astrophysics Data System (ADS)

    Allaire, Grégoire; Dufrêche, Jean-François; Mikelić, Andro; Piatnitski, Andrey

    2013-03-01

    We consider the Poisson-Boltzmann equation in a periodic cell, representative of a porous medium. It is a model for the electrostatic distribution of N chemical species diluted in a liquid at rest, occupying the pore space with charged solid boundaries. We study the asymptotic behaviour of its solution depending on a parameter β, which is the square of the ratio between a characteristic pore length and the Debye length. For small β we identify the limit problem which is still a nonlinear Poisson equation involving only one species with maximal valence, opposite to the average of the given surface charge density. This result justifies the Donnan effect, observing that the ions for which the charge is that of the solid phase are expelled from the pores. For large β we prove that the solution behaves like a boundary layer near the pore walls and is constant far away in the bulk. Our analysis is valid for Neumann boundary conditions (namely for imposed surface charge densities) and establishes rigorously that solid interfaces are uncoupled from the bulk fluid so that simplified additive theories, such as the popular Derjaguin, Landau, Verwey and Overbeek approach, can be used. We show that the asymptotic behaviour is completely different in the case of Dirichlet boundary conditions (namely for imposed surface potential).

  20. The Ionic Atmosphere around A-RNA: Poisson-Boltzmann and Molecular Dynamics Simulations

    PubMed Central

    Kirmizialtin, Serdal; Silalahi, Alexander R.J.; Elber, Ron; Fenley, Marcia O.

    2012-01-01

    The distributions of different cations around A-RNA are computed by Poisson-Boltzmann (PB) equation and replica exchange molecular dynamics (MD). Both the nonlinear PB and size-modified PB theories are considered. The number of ions bound to A-RNA, which can be measured experimentally, is well reproduced in all methods. On the other hand, the radial ion distribution profiles show differences between MD and PB. We showed that PB results are sensitive to ion size and functional form of the solvent dielectric region but not the solvent dielectric boundary definition. Size-modified PB agrees with replica exchange molecular dynamics much better than nonlinear PB when the ion sizes are chosen from atomistic simulations. The distribution of ions 14 Å away from the RNA central axis are reasonably well reproduced by size-modified PB for all ion types with a uniform solvent dielectric model and a sharp dielectric boundary between solvent and RNA. However, this model does not agree with MD for shorter distances from the A-RNA. A distance-dependent solvent dielectric function proposed by another research group improves the agreement for sodium and strontium ions, even for shorter distances from the A-RNA. However, Mg2+ distributions are still at significant variances for shorter distances. PMID:22385854

  1. Ca/Na selectivity coefficients from the Poisson-Boltzmann theory

    NASA Astrophysics Data System (ADS)

    Hedström, Magnus; Karnland, Ola

    As a model for ion equilibrium in montmorillonite, the Poisson-Boltzmann (PB) equation was solved for two parallel charged surfaces in contact with an external NaCl/CaCl 2 mixed solution. The ion concentration profiles in the montmorillonite interlayer were obtained from the PB equation and integration of those gave the occupancy of Na + and Ca 2+ in the clay. That information together with the composition of the external electrolyte were then used for the calculation of the Gaines-Thomas selectivity coefficient K GT. The predictions from the model were compared to experimental data from batch as well as compacted conditions, and the agreement was generally good. With a surface layer-charge density of one unit charge per 145 Å 2, which is close to the value for Wyoming-type montmorillonite, the calculated selectivity coefficients were found to vary from about 4 in batch to 8 in compacted montmorillonite with dry density ∼1700 kg/m 3. From the point of view of assessing the evolution, with regard to sodium-calcium ion exchange, of the bentonite buffer in a repository for spent nuclear fuel, these results justify the use of data obtained in batch experiments.

  2. Poisson-Boltzmann model of electrolytes containing uniformly charged spherical nanoparticles.

    PubMed

    Bohinc, Klemen; Volpe Bossa, Guilherme; Gavryushov, Sergei; May, Sylvio

    2016-12-21

    Like-charged macromolecules typically repel each other in aqueous solutions that contain small mobile ions. The interaction tends to turn attractive if mobile ions with spatially extended charge distributions are added. Such systems can be modeled within the mean-field Poisson-Boltzmann formalism by explicitly accounting for charge-charge correlations within the spatially extended ions. We consider an aqueous solution that contains a mixture of spherical nanoparticles with uniform surface charge density and small mobile salt ions, sandwiched between two like-charged planar surfaces. We perform the minimization of an appropriate free energy functional, which leads to a non-linear integral-differential equation for the electrostatic potential that we solve numerically and compare with predictions from Monte Carlo simulations. Nanoparticles with uniform surface charge density are contrasted with nanoparticles that have all their charges relocated at the center. Our mean-field model predicts that only the former (especially when large and highly charged particles) but not the latter are able to mediate attractive interactions between like-charged planar surfaces. We also demonstrate that at high salt concentration attractive interactions between like-charged planar surfaces turn into repulsion.

  3. Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics.

    PubMed Central

    Moy, G; Corry, B; Kuyucak, S; Chung, S H

    2000-01-01

    Continuum theories of electrolytes are widely used to describe physical processes in various biological systems. Although these are well-established theories in macroscopic situations, it is not clear from the outset that they should work in small systems whose dimensions are comparable to or smaller than the Debye length. Here, we test the validity of the mean-field approximation in Poisson-Boltzmann theory by comparing its predictions with those of Brownian dynamics simulations. For this purpose we use spherical and cylindrical boundaries and a catenary shape similar to that of the acetylcholine receptor channel. The interior region filled with electrolyte is assumed to have a high dielectric constant, and the exterior region representing protein a low one. Comparisons of the force on a test ion obtained with the two methods show that the shielding effect due to counterions is overestimated in Poisson-Boltzmann theory when the ion is within a Debye length of the boundary. As the ion gets closer to the boundary, the discrepancy in force grows rapidly. The implication for membrane channels, whose radii are typically smaller than the Debye length, is that Poisson-Boltzmann theory cannot be used to obtain reliable estimates of the electrostatic potential energy and force on an ion in the channel environment. PMID:10777732

  4. Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics.

    PubMed

    Moy, G; Corry, B; Kuyucak, S; Chung, S H

    2000-05-01

    Continuum theories of electrolytes are widely used to describe physical processes in various biological systems. Although these are well-established theories in macroscopic situations, it is not clear from the outset that they should work in small systems whose dimensions are comparable to or smaller than the Debye length. Here, we test the validity of the mean-field approximation in Poisson-Boltzmann theory by comparing its predictions with those of Brownian dynamics simulations. For this purpose we use spherical and cylindrical boundaries and a catenary shape similar to that of the acetylcholine receptor channel. The interior region filled with electrolyte is assumed to have a high dielectric constant, and the exterior region representing protein a low one. Comparisons of the force on a test ion obtained with the two methods show that the shielding effect due to counterions is overestimated in Poisson-Boltzmann theory when the ion is within a Debye length of the boundary. As the ion gets closer to the boundary, the discrepancy in force grows rapidly. The implication for membrane channels, whose radii are typically smaller than the Debye length, is that Poisson-Boltzmann theory cannot be used to obtain reliable estimates of the electrostatic potential energy and force on an ion in the channel environment.

  5. Scalable Adaptive Multilevel Solvers for Multiphysics Problems

    SciTech Connect

    Xu, Jinchao

    2014-11-26

    In this project, we carried out many studies on adaptive and parallel multilevel methods for numerical modeling for various applications, including Magnetohydrodynamics (MHD) and complex fluids. We have made significant efforts and advances in adaptive multilevel methods of the multiphysics problems: multigrid methods, adaptive finite element methods, and applications.

  6. An adaptive fast multipole accelerated Poisson solver for complex geometries

    NASA Astrophysics Data System (ADS)

    Askham, T.; Cerfon, A. J.

    2017-09-01

    We present a fast, direct and adaptive Poisson solver for complex two-dimensional geometries based on potential theory and fast multipole acceleration. More precisely, the solver relies on the standard decomposition of the solution as the sum of a volume integral to account for the source distribution and a layer potential to enforce the desired boundary condition. The volume integral is computed by applying the FMM on a square box that encloses the domain of interest. For the sake of efficiency and convergence acceleration, we first extend the source distribution (the right-hand side in the Poisson equation) to the enclosing box as a C0 function using a fast, boundary integral-based method. We demonstrate on multiply connected domains with irregular boundaries that this continuous extension leads to high accuracy without excessive adaptive refinement near the boundary and, as a result, to an extremely efficient ;black box; fast solver.

  7. Ionic screening of charged impurities in electrolytically gated graphene: A partially linearized Poisson-Boltzmann model.

    PubMed

    Sharma, P; Mišković, Z L

    2015-10-07

    We present a model describing the electrostatic interactions across a structure that consists of a single layer of graphene with large area, lying above an oxide substrate of finite thickness, with its surface exposed to a thick layer of liquid electrolyte containing salt ions. Our goal is to analyze the co-operative screening of the potential fluctuation in a doped graphene due to randomness in the positions of fixed charged impurities in the oxide by the charge carriers in graphene and by the mobile ions in the diffuse layer of the electrolyte. In order to account for a possibly large potential drop in the diffuse later that may arise in an electrolytically gated graphene, we use a partially linearized Poisson-Boltzmann (PB) model of the electrolyte, in which we solve a fully nonlinear PB equation for the surface average of the potential in one dimension, whereas the lateral fluctuations of the potential in graphene are tackled by linearizing the PB equation about the average potential. In this way, we are able to describe the regime of equilibrium doping of graphene to large densities for arbitrary values of the ion concentration without restrictions to the potential drop in the electrolyte. We evaluate the electrostatic Green's function for the partially linearized PB model, which is used to express the screening contributions of the graphene layer and the nearby electrolyte by means of an effective dielectric function. We find that, while the screened potential of a single charged impurity at large in-graphene distances exhibits a strong dependence on the ion concentration in the electrolyte and on the doping density in graphene, in the case of a spatially correlated two-dimensional ensemble of impurities, this dependence is largely suppressed in the autocovariance of the fluctuating potential.

  8. Ion strength limit of computed excess functions based on the linearized Poisson-Boltzmann equation.

    PubMed

    Fraenkel, Dan

    2015-12-05

    The linearized Poisson-Boltzmann (L-PB) equation is examined for its κ-range of validity (κ, Debye reciprocal length). This is done for the Debye-Hückel (DH) theory, i.e., using a single ion size, and for the SiS treatment (D. Fraenkel, Mol. Phys. 2010, 108, 1435), which extends the DH theory to the case of ion-size dissimilarity (therefore dubbed DH-SiS). The linearization of the PB equation has been claimed responsible for the DH theory's failure to fit with experiment at > 0.1 m; but DH-SiS fits with data of the mean ionic activity coefficient, γ± (molal), against m, even at m > 1 (κ > 0.33 Å(-1) ). The SiS expressions combine the overall extra-electrostatic potential energy of the smaller ion, as central ion-Ψa>b (κ), with that of the larger ion, as central ion-Ψb>a (κ); a and b are, respectively, the counterion and co-ion distances of closest approach. Ψa>b and Ψb>a are derived from the L-PB equation, which appears to conflict with their being effective up to moderate electrolyte concentrations (≈1 m). However, the L-PB equation can be valid up to κ ≥ 1.3 Å(-1) if one abandons the 1/κ criterion for its effectiveness and, instead, use, as criterion, the mean-field electrostatic interaction potential of the central ion with its ion cloud, at a radial distance dividing the cloud charge into two equal parts. The DH theory's failure is, thus, not because of using the L-PB equation; the lethal approximation is assigning a single size to the positive and negative ions. © 2015 Wiley Periodicals, Inc.

  9. Multigrid solution of the nonlinear Poisson-Boltzmann equation and calculation of titration curves.

    PubMed Central

    Oberoi, H; Allewell, N M

    1993-01-01

    Although knowledge of the pKa values and charge states of individual residues is critical to understanding the role of electrostatic effects in protein structure and function, calculating these quantities is challenging because of the sensitivity of these parameters to the position and distribution of charges. Values for many different proteins which agree well with experimental results have been obtained with modified Tanford-Kirkwood theory in which the protein is modeled as a sphere (reviewed in Ref. 1); however, convergence is more difficult to achieve with finite difference methods, in which the protein is mapped onto a grid and derivatives of the potential function are calculated as differences between the values of the function at grid points (reviewed in Ref. 6). Multigrid methods, in which the size of the grid is varied from fine to coarse in several cycles, decrease computational time, increase rates of convergence, and improve agreement with experiment. Both the accuracy and computational advantage of the multigrid approach increase with grid size, because the time required to achieve a solution increases slowly with grid size. We have implemented a multigrid procedure for solving the nonlinear Poisson-Boltzmann equation, and, using lysozyme as a test case, compared calculations for several crystal forms, different refinement procedures, and different charge assignment schemes. The root mean square difference between calculated and experimental pKa values for the crystal structure which yields best agreement with experiment (1LZT) is 1.1 pH units, with the differences in calculated and experimental pK values being less than 0.6 pH units for 16 out of 21 residues. The calculated titration curves of several residues are biphasic. Images FIGURE 8 PMID:8369451

  10. Poisson-Boltzmann theory of charged colloids: limits of the cell model for salty suspensions

    NASA Astrophysics Data System (ADS)

    Denton, A. R.

    2010-09-01

    Thermodynamic properties of charge-stabilized colloidal suspensions and polyelectrolyte solutions are commonly modelled by implementing the mean-field Poisson-Boltzmann (PB) theory within a cell model. This approach models a bulk system by a single macroion, together with counterions and salt ions, confined to a symmetrically shaped, electroneutral cell. While easing numerical solution of the nonlinear PB equation, the cell model neglects microion-induced interactions and correlations between macroions, precluding modelling of macroion ordering phenomena. An alternative approach, which avoids the artificial constraints of cell geometry, exploits the mapping of a macroion-microion mixture onto a one-component model of pseudo-macroions governed by effective interparticle interactions. In practice, effective-interaction models are usually based on linear-screening approximations, which can accurately describe strong nonlinear screening only by incorporating an effective (renormalized) macroion charge. Combining charge renormalization and linearized PB theories, in both the cell model and an effective-interaction (cell-free) model, we compute osmotic pressures of highly charged colloids and monovalent microions, in Donnan equilibrium with a salt reservoir, over a range of concentrations. By comparing predictions with primitive model simulation data for salt-free suspensions, and with predictions from nonlinear PB theory for salty suspensions, we chart the limits of both the cell model and linear-screening approximations in modelling bulk thermodynamic properties. Up to moderately strong electrostatic couplings, the cell model proves accurate for predicting osmotic pressures of deionized (counterion-dominated) suspensions. With increasing salt concentration, however, the relative contribution of macroion interactions to the osmotic pressure grows, leading predictions from the cell and effective-interaction models to deviate. No evidence is found for a liquid

  11. Dipolar Poisson-Boltzmann approach to ionic solutions: a mean field and loop expansion analysis.

    PubMed

    Levy, Amir; Andelman, David; Orland, Henri

    2013-10-28

    We study the variation of the dielectric response of ionic aqueous solutions as function of their ionic strength. The effect of salt on the dielectric constant appears through the coupling between ions and dipolar water molecules. On a mean-field level, we account for any internal charge distribution of particles. The dipolar degrees of freedom are added to the ionic ones and result in a generalization of the Poisson-Boltzmann (PB) equation called the Dipolar PB (DPB). By looking at the DPB equation around a fixed point-like ion, a closed-form formula for the dielectric constant is obtained. We express the dielectric constant using the "hydration length" that characterizes the hydration shell of dipoles around ions, and thus the strength of the dielectric decrement. The DPB equation is then examined for three additional cases: mixture of solvents, polarizable medium, and ions of finite size. Employing field-theoretical methods, we expand the Gibbs free-energy to first order in a loop expansion and calculate self-consistently the dielectric constant. For pure water, the dipolar fluctuations represent an important correction to the mean-field value and good agreement with the water dielectric constant is obtained. For ionic solutions we predict analytically the dielectric decrement that depends on the ionic strength in a nonlinear way. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles. A linear dependence of the dielectric constant on the salt concentration is observed at low salinity, and a noticeable deviation from linearity can be seen for ionic strength above 1 M, in agreement with experiments.

  12. Quantitative analysis of Poisson-Boltzmann implicit solvent in molecular dynamics.

    PubMed

    Wang, Jun; Tan, Chunhu; Chanco, Emmanuel; Luo, Ray

    2010-02-07

    A critical issue in the development of implicit solvent models is their quality in realistic simulations of non-trivial systems. In a previous study, we quantitatively compared the reaction field energies of static structures calculated with the Poisson-Boltzmann implicit solvent and the TIP3P explicit solvent and found an overall agreement, though a discrepancy was also observed in the electrostatic potentials of mean force for salt-bridging and hydrogen-bonding dimers (see J. Phys. Chem. B, 2006, 110, 18680). In this study, we are interested in how the implicit solvent performs in molecular dynamics simulations. To guarantee sampling convergence in simulated observables in the explicit solvent, we explored to use a high-temperature constant-volume simulation setting at 450 K but with the water density at 300 K. The relevance of the artificial simulation setting to room-temperature simulations of biomolecules was first investigated by systematic comparisons of the polar and nonpolar solvation free energies of 23 amino acid analogues at 300 K and 450 K, respectively. Assisted by the artificial simulation setting, we found the simulated secondary structure populations agree very well between the implicit and explicit solvents for tested dipeptides and peptides. In addition, the agreement in the populations of hydrophobic contacts is reasonable. However, our analysis also shows that the populations of the salt bridges are too low in the implicit solvent. The low salt-bridge population perhaps results from a combination of the atomic-centered modified van der Waals surface and the small solvent probe radius optimized to best reproduce the polar potential of mean force profiles. In addition, the lower accuracy of the electrostatic forces and the lack of water-bridged minima in the implicit solvents may also contribute to the instability of the salt bridge populations.

  13. Incorporating dipolar solvents with variable density in Poisson-Boltzmann electrostatics.

    PubMed

    Azuara, Cyril; Orland, Henri; Bon, Michael; Koehl, Patrice; Delarue, Marc

    2008-12-15

    We describe a new way to calculate the electrostatic properties of macromolecules that goes beyond the classical Poisson-Boltzmann treatment with only a small extra CPU cost. The solvent region is no longer modeled as a homogeneous dielectric media but rather as an assembly of self-orienting interacting dipoles of variable density. The method effectively unifies both the Poisson-centric view and the Langevin Dipole model. The model results in a variable dielectric constant epsilon(r) in the solvent region and also in a variable solvent density rho(r) that depends on the nature of the closest exposed solute atoms. The model was calibrated using small molecules and ions solvation data with only two adjustable parameters, namely the size and dipolar moment of the solvent. Hydrophobicity scales derived from the solvent density profiles agree very well with independently derived hydrophobicity scales, both at the atomic or residue level. Dimerization interfaces in homodimeric proteins or lipid-binding regions in membrane proteins clearly appear as poorly solvated patches on the solute accessible surface. Comparison of the thermally averaged solvent density of this model with the one derived from molecular dynamics simulations shows qualitative agreement on a coarse-grained level. Because this calculation is much more rapid than that from molecular dynamics, applications of a density-profile-based solvation energy to the identification of the true structure among a set of decoys become computationally feasible. Various possible improvements of the model are discussed, as well as extensions of the formalism to treat mixtures of dipolar solvents of different sizes.

  14. Elliptic Solvers with Adaptive Mesh Refinement on Complex Geometries

    SciTech Connect

    Phillip, B.

    2000-07-24

    Adaptive Mesh Refinement (AMR) is a numerical technique for locally tailoring the resolution computational grids. Multilevel algorithms for solving elliptic problems on adaptive grids include the Fast Adaptive Composite grid method (FAC) and its parallel variants (AFAC and AFACx). Theory that confirms the independence of the convergence rates of FAC and AFAC on the number of refinement levels exists under certain ellipticity and approximation property conditions. Similar theory needs to be developed for AFACx. The effectiveness of multigrid-based elliptic solvers such as FAC, AFAC, and AFACx on adaptively refined overlapping grids is not clearly understood. Finally, a non-trivial eye model problem will be solved by combining the power of using overlapping grids for complex moving geometries, AMR, and multilevel elliptic solvers.

  15. WAKES: Wavelet Adaptive Kinetic Evolution Solvers

    NASA Astrophysics Data System (ADS)

    Mardirian, Marine; Afeyan, Bedros; Larson, David

    2016-10-01

    We are developing a general capability to adaptively solve phase space evolution equations mixing particle and continuum techniques in an adaptive manner. The multi-scale approach is achieved using wavelet decompositions which allow phase space density estimation to occur with scale dependent increased accuracy and variable time stepping. Possible improvements on the SFK method of Larson are discussed, including the use of multiresolution analysis based Richardson-Lucy Iteration, adaptive step size control in explicit vs implicit approaches. Examples will be shown with KEEN waves and KEEPN (Kinetic Electrostatic Electron Positron Nonlinear) waves, which are the pair plasma generalization of the former, and have a much richer span of dynamical behavior. WAKES techniques are well suited for the study of driven and released nonlinear, non-stationary, self-organized structures in phase space which have no fluid, limit nor a linear limit, and yet remain undamped and coherent well past the drive period. The work reported here is based on the Vlasov-Poisson model of plasma dynamics. Work supported by a Grant from the AFOSR.

  16. A modified Poisson-Boltzmann analysis of the capacitance behavior of the electric double layer at low temperatures.

    PubMed

    Bhuiyan, L B; Outhwaite, C W; Henderson, D

    2005-07-15

    The modified Poisson-Boltzmann theory is used to analyze the anomalous behavior of the electric double layer capacitance for small surface charge at low temperatures and densities. Good agreement is found with simulation and recent density-functional theory results. Negative adsorption is also found in line with theory and simulation. An unsatisfactory feature is the relatively poor structure in this region due to the inherent approximations in the theory. This feature is unimportant in relation to the capacitance results but has implications when calculating adsorption properties.

  17. Salt-mediated electrostatics in the association of TATA binding proteins to DNA: a combined molecular mechanics/Poisson-Boltzmann study.

    PubMed

    Bredenberg, Johan H; Russo, Cristina; Fenley, Marcia O

    2008-06-01

    The TATA-binding protein (TBP) is a key component of the archaea ternary preinitiation transcription assembly. The archaeon TBP, from the halophile/hyperthermophile organism Pyrococcus woesei, is adapted to high concentrations of salt and high-temperature environments. Although most eukaryotic TBPs are mesophilic and adapted to physiological conditions of temperature and salt, they are very similar to their halophilic counterparts in sequence and fold. However, whereas the binding affinity to DNA of halophilic TBPs increases with increasing salt concentration, the opposite is observed for mesophilic TBPs. We investigated these differences in nonspecific salt-dependent DNA-binding behavior of halophilic and mesophilic TBPs by using a combined molecular mechanics/Poisson-Boltzmann approach. Our results are qualitatively in good agreement with experimentally observed salt-dependent DNA-binding for mesophilic and halophilic TBPs, and suggest that the distribution and the total number of charged residues may be the main underlying contributor in the association process. Therefore, the difference in the salt-dependent binding behavior of mesophilic and halophilic TBPs to DNA may be due to the very unique charge and electrostatic potential distribution of these TBPs, which consequently alters the number of repulsive and attractive electrostatic interactions.

  18. Boltzmann Solver with Adaptive Mesh in Velocity Space

    SciTech Connect

    Kolobov, Vladimir I.; Arslanbekov, Robert R.; Frolova, Anna A.

    2011-05-20

    We describe the implementation of direct Boltzmann solver with Adaptive Mesh in Velocity Space (AMVS) using quad/octree data structure. The benefits of the AMVS technique are demonstrated for the charged particle transport in weakly ionized plasmas where the collision integral is linear. We also describe the implementation of AMVS for the nonlinear Boltzmann collision integral. Test computations demonstrate both advantages and deficiencies of the current method for calculations of narrow-kernel distributions.

  19. Comparing the Predictions of the Nonlinear Poisson-Boltzmann Equation and the Ion Size-Modified Poisson-Boltzmann Equation for a Low-Dielectric Charged Spherical Cavity in an Aqueous Salt Solution

    PubMed Central

    Silalahi, Alexander R.J.; Boschitsch, Alexander H.; Harris, Robert C.; Fenley, Marcia O.

    2011-01-01

    The ion size-modified Poisson Boltzmann equation (SMPBE) is applied to the simple model problem of a low-dielectric spherical cavity containing a central charge, in an aqueous salt solution to investigate the finite ion size effect upon the electrostatic free energy and its sensitivity to changes in salt concentration. The SMPBE is shown to predict a very different electrostatic free energy than the nonlinear Poisson-Boltzmann equation (NLPBE) due to the additional entropic cost of placing ions in solution. Although the energy predictions of the SMPBE can be reproduced by fitting an appropriatelysized Stern layer, or ion-exclusion layer to the NLPBE calculations, the size of the Stern layer is difficult to estimate a priori. The SMPBE also produces a saturation layer when the central charge becomes sufficiently large. Ion-competition effects on various integrated quantities such the total number of ions predicted by the SMPBE are qualitatively similar to those given by the NLPBE and those found in available experimental results. PMID:22723750

  20. Accurate solution of multi-region continuum biomolecule electrostatic problems using the linearized Poisson-Boltzmann equation with curved boundary elements.

    PubMed

    Altman, Michael D; Bardhan, Jaydeep P; White, Jacob K; Tidor, Bruce

    2009-01-15

    We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson-Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Fourth, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as nonrigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry, such as

  1. Protein-ion binding process on finite macromolecular concentration. A Poisson-Boltzmann and Monte Carlo study.

    PubMed

    de Carvalho, Sidney Jurado; Fenley, Márcia O; da Silva, Fernando Luís Barroso

    2008-12-25

    Electrostatic interactions are one of the key driving forces for protein-ligands complexation. Different levels for the theoretical modeling of such processes are available on the literature. Most of the studies on the Molecular Biology field are performed within numerical solutions of the Poisson-Boltzmann Equation and the dielectric continuum models framework. In such dielectric continuum models, there are two pivotal questions: (a) how the protein dielectric medium should be modeled, and (b) what protocol should be used when solving this effective Hamiltonian. By means of Monte Carlo (MC) and Poisson-Boltzmann (PB) calculations, we define the applicability of the PB approach with linear and nonlinear responses for macromolecular electrostatic interactions in electrolyte solution, revealing some physical mechanisms and limitations behind it especially due the raise of both macromolecular charge and concentration out of the strong coupling regime. A discrepancy between PB and MC for binding constant shifts is shown and explained in terms of the manner PB approximates the excess chemical potentials of the ligand, and not as a consequence of the nonlinear thermal treatment and/or explicit ion-ion interactions as it could be argued. Our findings also show that the nonlinear PB predictions with a low dielectric response well reproduce the pK shifts calculations carried out with an uniform dielectric model. This confirms and completes previous results obtained by both MC and linear PB calculations.

  2. The Numerical Solution of the Nonlinear Poisson-Boltzmann Equation Under the Anisotropic Boundary Condition for Colloidal Plasmas

    NASA Astrophysics Data System (ADS)

    Cai, Huanqing; Ye, Qizheng

    2010-04-01

    Based on the model of the Wigner-Seitz cell, the surface potential of the spherical macroparticle (radius a) expands in terms of the monopole (q). A dipole (p) model is assumed for an anisotropic boundary condition of the nonlinear Poisson-Boltzmann equation. Using the finite element method implemented by the FlexPDE software, the potential distribution around the macroparticle is obtained for different ratios p/qa. The calculated results for the potential show that there is an attractive region in the vicinity of the macroparticle when |p/qa|>1.1, and noticeably there is a potential well behind the macroparticle when |p/qa| = 1.1, i.e., there exists both an attractive region and a repulsive region simultaneously. This means that the attractive interaction between macroparticles may arise from the anisotropic distribution of the surrounding plasmas, which well explains some experimental observations.

  3. Polarizable Poisson-Boltzmann equation: the study of polarizability effects on the structure of a double layer.

    PubMed

    Frydel, Derek

    2011-06-21

    We incorporate ion polarizabilities into the Poisson-Boltzmann equation by modifying the effective dielectric constant and the Boltzmann distribution of ions. The extent of the polarizability effects is controlled by two parameters, γ(1) and γ(2); γ(1) determines the polarization effects in a dilute system and γ(2) regulates the dependence of the polarizability effects on the concentration of ions. For a polarizable ion in an aqueous solution γ(1) ≈ 0.01 and the polarizability effects are negligible. The conditions where γ(1) and/or γ(2) are large and the polarizability is relevant involve the low dielectric constant media, high surface charge, and/or large ionic concentrations. © 2011 American Institute of Physics

  4. AN ADAPTIVE PARTICLE-MESH GRAVITY SOLVER FOR ENZO

    SciTech Connect

    Passy, Jean-Claude; Bryan, Greg L.

    2014-11-01

    We describe and implement an adaptive particle-mesh algorithm to solve the Poisson equation for grid-based hydrodynamics codes with nested grids. The algorithm is implemented and extensively tested within the astrophysical code Enzo against the multigrid solver available by default. We find that while both algorithms show similar accuracy for smooth mass distributions, the adaptive particle-mesh algorithm is more accurate for the case of point masses, and is generally less noisy. We also demonstrate that the two-body problem can be solved accurately in a configuration with nested grids. In addition, we discuss the effect of subcycling, and demonstrate that evolving all the levels with the same timestep yields even greater precision.

  5. DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON-BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT.

    PubMed

    Li, B O; Liu, Yuan

    A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.

  6. Simplifications of the Poisson-Boltzmann Equation for the Electrostatic Interaction of Close Hydrophilic Surfaces in Water.

    PubMed

    Biesheuvel, P. Maarten

    2001-06-15

    Simple solutions of the Poisson-Boltzmann (PB) equation for the electrostatic double-layer interaction of close, planar hydrophilic surfaces in water are evaluated. Four routes, being the weak overlap approximation, the Debye-Hückel linearization based on low electrostatic potentials, the Ettelaie-Buscall linearization based on small variations in the potential, and a new approach based on the fact that concentrations are virtually constant in the gap between close surfaces, are discussed. The Ettelaie-Buscall and constant-concentration approach become increasingly accurate for closer surfaces and are exact for touching surfaces, while the weak overlap approximation is exact for an isolated surface. The Debye-Hückel linearization is valid as long as potentials remain low, independent of separation. In contrast to the Ettelaie-Buscall approach and the weak overlap approximation, the Debye-Hückel linearization and constant-concentration approach can also be used for systems containing multivalent ions. Simulations in which the four approaches are compared with the PB equation for the constant-charge model, the constant-potential model, as being used in the DLVO theory, and the charge-regulation model are presented. Copyright 2001 Academic Press.

  7. Poisson-Boltzmann description of interaction forces and aggregation rates involving charged colloidal particles in asymmetric electrolytes.

    PubMed

    Trefalt, Gregor; Szilagyi, Istvan; Borkovec, Michal

    2013-09-15

    Forces and aggregation rates involving spherical particles are studied numerically within the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) for asymmetric and mixed electrolytes. Thereby, the double layer interactions are treated at the Debye-Hückel (DH) and Poisson-Boltzmann (PB) levels. The DH model is applicable for weakly charged systems, and effects of ion valence enter only implicitly through the ionic strength. The PB model is necessary for more highly charged systems, and depends on the actual ionic composition. One finds that forces in asymmetric electrolytes at fixed ionic strength weaken when the valence of the counterions is increased or when the valence of the coions is decreased. In symmetric electrolytes, the effect of counterions is more important than the one of the coions. For weakly charged systems, the critical coagulation concentration (CCC) decreases with the square of the valence in symmetric electrolytes, while this decrease is weaker in asymmetric ones. With increasing charge density, the dependence of the CCC on the valence becomes stronger, but the classical Schulze-Hardy decrease with the sixths power of the valence is only recovered for unrealistically high charge densities. Mixtures of electrolytes are treated within the same framework, and one observes that already small amounts of multivalent ions affect the system considerably. An empirical mixing rule is proposed to describe the calculated CCCs. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. A perspective on streaming current in silica nanofluidic channels: Poisson-Boltzmann model versus Poisson-Nernst-Planck model.

    PubMed

    Chang, Chih-Chang; Yang, Ruey-Jen

    2009-11-15

    Choi and Kim [J. Colloid Interface Sci. 333 (2009) 672] proposed a new wall boundary condition for zeta-potential and surface charge density to describe the electrokinetic flow-induced currents in silica nanofluidic channels using the Poisson-Boltzmann (PB) model and the Poisson-Nernst-Planck (PNP) model. They showed that the results from the PNP model are in close agreement with the experimental data reported by van der Heyden et al. [Phys. Rev. Lett. 95 (2005) 116104]. In this paper, a theoretical model based on the PB model incorporating their proposed boundary condition is presented, which does not necessitate highly expensive computational effort. The results from our proposed model are shown to be in agreement with their numerical results of the PNP model. The present model also addresses the importance of the electrical resistance of reservoirs or the position of the electrodes for the measurement of the streaming current. Further, we point out that there is a misinterpretation in a comparison between their numerical results and those of van der Heyden et al.'s experiments. Finally, we conclude that the experimental data still cannot be predicted accurately by their proposed boundary condition and model, especially for the electrolyte concentration C(0)<10(-3)M.

  9. Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels.

    PubMed

    Corry, Ben; Kuyucak, Serdar; Chung, Shin-Ho

    2003-06-01

    We demonstrated previously that the two continuum theories widely used in modeling biological ion channels give unreliable results when the radius of the conduit is less than two Debye lengths. The reason for this failure is the neglect of surface charges on the protein wall induced by permeating ions. Here we attempt to improve the accuracy of the Poisson-Boltzmann and Poisson-Nernst-Planck theories, when applied to channel-like environments, by including a specific dielectric self-energy term to overcome spurious shielding effects inherent in these theories. By comparing results with Brownian dynamics simulations, we show that the inclusion of an additional term in the equations yields significant qualitative improvements. The modified theories perform well in very wide and very narrow channels, but are less successful at intermediate sizes. The situation is worse in multi-ion channels because of the inability of the continuum theories to handle the ion-to-ion interactions correctly. Thus, further work is required if these continuum theories are to be reliably salvaged for quantitative studies of biological ion channels in all situations.

  10. Dielectric Self-Energy in Poisson-Boltzmann and Poisson-Nernst-Planck Models of Ion Channels

    PubMed Central

    Corry, Ben; Kuyucak, Serdar; Chung, Shin-Ho

    2003-01-01

    We demonstrated previously that the two continuum theories widely used in modeling biological ion channels give unreliable results when the radius of the conduit is less than two Debye lengths. The reason for this failure is the neglect of surface charges on the protein wall induced by permeating ions. Here we attempt to improve the accuracy of the Poisson-Boltzmann and Poisson-Nernst-Planck theories, when applied to channel-like environments, by including a specific dielectric self-energy term to overcome spurious shielding effects inherent in these theories. By comparing results with Brownian dynamics simulations, we show that the inclusion of an additional term in the equations yields significant qualitative improvements. The modified theories perform well in very wide and very narrow channels, but are less successful at intermediate sizes. The situation is worse in multi-ion channels because of the inability of the continuum theories to handle the ion-to-ion interactions correctly. Thus, further work is required if these continuum theories are to be reliably salvaged for quantitative studies of biological ion channels in all situations. PMID:12770869

  11. PDB_Hydro: incorporating dipolar solvents with variable density in the Poisson-Boltzmann treatment of macromolecule electrostatics.

    PubMed

    Azuara, Cyril; Lindahl, Erik; Koehl, Patrice; Orland, Henri; Delarue, Marc

    2006-07-01

    We describe a new way to calculate the electrostatic properties of macromolecules which eliminates the assumption of a constant dielectric value in the solvent region, resulting in a Generalized Poisson-Boltzmann-Langevin equation (GPBLE). We have implemented a web server (http://lorentz.immstr.pasteur.fr/pdb_hydro.php) that both numerically solves this equation and uses the resulting water density profiles to place water molecules at preferred sites of hydration. Surface atoms with high or low hydration preference can be easily displayed using a simple PyMol script, allowing for the tentative prediction of the dimerization interface in homodimeric proteins, or lipid binding regions in membrane proteins. The web site includes options that permit mutations in the sequence as well as reconstruction of missing side chain and/or main chain atoms. These tools are accessible independently from the electrostatics calculation, and can be used for other modeling purposes. We expect this web server to be useful to structural biologists, as the knowledge of solvent density should prove useful to get better fits at low resolution for X-ray diffraction data and to computational biologists, for whom these profiles could improve the calculation of interaction energies in water between ligands and receptors in docking simulations.

  12. Transferable ionic parameters for first-principles Poisson-Boltzmann solvation calculations: Neutral solutes in aqueous monovalent salt solutions

    NASA Astrophysics Data System (ADS)

    Ringe, Stefan; Oberhofer, Harald; Reuter, Karsten

    2017-04-01

    Implicit solvation calculations based on a Stern-layer corrected size-modified Poisson-Boltzmann (SMPB) model are an effective approach to capture electrolytic effects in first-principles electronic structure calculations. For a given salt solution, they require a range of ion-specific parameters, which describe the size of the dissolved ions as well as thickness and shape of the Stern layer. Out of this defined parameter space, we show that the Stern layer thickness expressed in terms of the solute's electron density and the resulting ionic cavity volume completely determine ion effects on the stability of neutral solutes. Using the efficient SMPB functionality of the full-potential density-functional theory package FHI-aims, we derive optimized such Stern layer parameters for neutral solutes in various aqueous monovalent electrolytes. The parametrization protocol relies on fitting to reference Setschenow coefficients that describe solvation free energy changes with ionic strength at low to medium concentrations. The availability of such data for NaCl solutions yields a highly predictive SMPB model that allows to recover the measured Setschenow coefficients with an accuracy that is comparable to prevalent quantitative regression models. Correspondingly derived SMPB parameters for other salts suffer from a much scarcer experimental data base but lead to Stern layer properties that follow a physically reasonable trend with ionic hydration numbers.

  13. Cooperative solutions coupling a geometry engine and adaptive solver codes

    NASA Technical Reports Server (NTRS)

    Dickens, Thomas P.

    1995-01-01

    Follow-on work has progressed in using Aero Grid and Paneling System (AGPS), a geometry and visualization system, as a dynamic real time geometry monitor, manipulator, and interrogator for other codes. In particular, AGPS has been successfully coupled with adaptive flow solvers which iterate, refining the grid in areas of interest, and continuing on to a solution. With the coupling to the geometry engine, the new grids represent the actual geometry much more accurately since they are derived directly from the geometry and do not use refits to the first-cut grids. Additional work has been done with design runs where the geometric shape is modified to achieve a desired result. Various constraints are used to point the solution in a reasonable direction which also more closely satisfies the desired results. Concepts and techniques are presented, as well as examples of sample case studies. Issues such as distributed operation of the cooperative codes versus running all codes locally and pre-calculation for performance are discussed. Future directions are considered which will build on these techniques in light of changing computer environments.

  14. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.

    PubMed

    Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran

    2014-12-15

    Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Physical scoring function based on AMBER force field and Poisson-Boltzmann implicit solvent for protein structure prediction.

    PubMed

    Hsieh, Meng-Juei; Luo, Ray

    2004-08-15

    A well-behaved physics-based all-atom scoring function for protein structure prediction is analyzed with several widely used all-atom decoy sets. The scoring function, termed AMBER/Poisson-Boltzmann (PB), is based on a refined AMBER force field for intramolecular interactions and an efficient PB model for solvation interactions. Testing on the chosen decoy sets shows that the scoring function, which is designed to consider detailed chemical environments, is able to consistently discriminate all 62 native crystal structures after considering the heteroatom groups, disulfide bonds, and crystal packing effects that are not included in the decoy structures. When NMR structures are considered in the testing, the scoring function is able to discriminate 8 out of 10 targets. In the more challenging test of selecting near-native structures, the scoring function also performs very well: for the majority of the targets studied, the scoring function is able to select decoys that are close to the corresponding native structures as evaluated by ranking numbers and backbone Calpha root mean square deviations. Various important components of the scoring function are also studied to understand their discriminative contributions toward the rankings of native and near-native structures. It is found that neither the nonpolar solvation energy as modeled by the surface area model nor a higher protein dielectric constant improves its discriminative power. The terms remaining to be improved are related to 1-4 interactions. The most troublesome term is found to be the large and highly fluctuating 1-4 electrostatics term, not the dihedral-angle term. These data support ongoing efforts in the community to develop protein structure prediction methods with physics-based potentials that are competitive with knowledge-based potentials.

  16. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    PubMed

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  17. Revisiting the association of cationic groove-binding drugs to DNA using a Poisson-Boltzmann approach.

    PubMed

    Fenley, Marcia O; Harris, Robert C; Jayaram, B; Boschitsch, Alexander H

    2010-08-04

    Proper modeling of nonspecific salt-mediated electrostatic interactions is essential to understanding the binding of charged ligands to nucleic acids. Because the linear Poisson-Boltzmann equation (PBE) and the more approximate generalized Born approach are applied routinely to nucleic acids and their interactions with charged ligands, the reliability of these methods is examined vis-à-vis an efficient nonlinear PBE method. For moderate salt concentrations, the negative derivative, SK(pred), of the electrostatic binding free energy, DeltaG(el), with respect to the logarithm of the 1:1 salt concentration, [M(+)], for 33 cationic minor groove drugs binding to AT-rich DNA sequences is shown to be consistently negative and virtually constant over the salt range considered (0.1-0.4 M NaCl). The magnitude of SK(pred) is approximately equal to the charge on the drug, as predicted by counterion condensation theory (CCT) and observed in thermodynamic binding studies. The linear PBE is shown to overestimate the magnitude of SK(pred), whereas the nonlinear PBE closely matches the experimental results. The PBE predictions of SK(pred) were not correlated with DeltaG(el) in the presence of a dielectric discontinuity, as would be expected from the CCT. Because this correlation does not hold, parameterizing the PBE predictions of DeltaG(el) against the reported experimental data is not possible. Moreover, the common practice of extracting the electrostatic and nonelectrostatic contributions to the binding of charged ligands to biopolyelectrolytes based on the simple relation between experimental SK values and the electrostatic binding free energy that is based on CCT is called into question by the results presented here. Although the rigid-docking nonlinear PB calculations provide reliable predictions of SK(pred), at least for the charged ligand-nucleic acid complexes studied here, accurate estimates of DeltaG(el) will require further development in theoretical and experimental

  18. Accuracy assessment of the linear Poisson-Boltzmann equation and reparametrization of the OBC generalized Born model for nucleic acids and nucleic acid-protein complexes.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2015-04-05

    The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson-Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev-Bashford-Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson-Boltzmann model.

  19. Exact Analytic Result of Contact Value for the Density in a Modified Poisson-Boltzmann Theory of an Electrical Double Layer.

    PubMed

    Lou, Ping; Lee, Jin Yong

    2009-04-14

    For a simple modified Poisson-Boltzmann (SMPB) theory, taking into account the finite ionic size, we have derived the exact analytic expression for the contact values of the difference profile of the counterion and co-ion, as well as of the sum (density) and product profiles, near a charged planar electrode that is immersed in a binary symmetric electrolyte. In the zero ionic size or dilute limit, these contact values reduce to the contact values of the Poisson-Boltzmann (PB) theory. The analytic results of the SMPB theory, for the difference, sum, and product profiles were compared with the results of the Monte-Carlo (MC) simulations [ Bhuiyan, L. B.; Outhwaite, C. W.; Henderson, D. J. Electroanal. Chem. 2007, 607, 54 ; Bhuiyan, L. B.; Henderson, D. J. Chem. Phys. 2008, 128, 117101 ], as well as of the PB theory. In general, the analytic expression of the SMPB theory gives better agreement with the MC data than the PB theory does. For the difference profile, as the electrode charge increases, the result of the PB theory departs from the MC data, but the SMPB theory still reproduces the MC data quite well, which indicates the importance of including steric effects in modeling diffuse layer properties. As for the product profile, (i) it drops to zero as the electrode charge approaches infinity; (ii) the speed of the drop increases with the ionic size, and these behaviors are in contrast with the predictions of the PB theory, where the product is identically 1.

  20. Adaptively truncated Hilbert space based impurity solver for dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Go, Ara; Millis, Andrew J.

    2017-08-01

    We present an impurity solver based on adaptively truncated Hilbert spaces. The solver is particularly suitable for dynamical mean-field theory in circumstances where quantum Monte Carlo approaches are ineffective. It exploits the sparsity structure of quantum impurity models, in which the interactions couple only a small subset of the degrees of freedom. We further introduce an adaptive truncation of the particle or hole excited spaces, which enables computations of Green functions with an accuracy needed to avoid unphysical (sign change of imaginary part) self-energies. The method is benchmarked on the one-dimensional Hubbard model.

  1. An assessment of the adaptive unstructured tetrahedral grid, Euler Flow Solver Code FELISA

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Erickson, Larry L.

    1994-01-01

    A three-dimensional solution-adaptive Euler flow solver for unstructured tetrahedral meshes is assessed, and the accuracy and efficiency of the method for predicting sonic boom pressure signatures about simple generic models are demonstrated. Comparison of computational and wind tunnel data and enhancement of numerical solutions by means of grid adaptivity are discussed. The mesh generation is based on the advancing front technique. The FELISA code consists of two solvers, the Taylor-Galerkin and the Runge-Kutta-Galerkin schemes, both of which are spacially discretized by the usual Galerkin weighted residual finite-element methods but with different explicit time-marching schemes to steady state. The solution-adaptive grid procedure is based on either remeshing or mesh refinement techniques. An alternative geometry adaptive procedure is also incorporated.

  2. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.

    PubMed

    Archontis, G; Simonson, T; Karplus, M

    2001-02-16

    Specific amino acid binding by aminoacyl-tRNA synthetases (aaRS) is necessary for correct translation of the genetic code. Engineering a modified specificity into aminoacyl-tRNA synthetases has been proposed as a means to incorporate artificial amino acid residues into proteins in vivo. In a previous paper, the binding to aspartyl-tRNA synthetase of the substrate Asp and the analogue Asn were compared by molecular dynamics free energy simulations. Molecular dynamics combined with Poisson-Boltzmann free energy calculations represent a less expensive approach, suitable for examining multiple active site mutations in an engineering effort. Here, Poisson-Boltzmann free energy calculations for aspartyl-tRNA synthetase are first validated by their ability to reproduce selected molecular dynamics binding free energy differences, then used to examine the possibility of Asn binding to native and mutant aspartyl-tRNA synthetase. A component analysis of the Poisson-Boltzmann free energies is employed to identify specific interactions that determine the binding affinities. The combined use of molecular dynamics free energy simulations to study one binding process thoroughly, followed by molecular dynamics and Poisson-Boltzmann free energy calculations to study a series of related ligands or mutations is proposed as a paradigm for protein or ligand design. The binding of Asn in an alternate, "head-to-tail" orientation observed in the homologous asparagine synthetase is analyzed, and found to be more stable than the "Asp-like" orientation studied earlier. The new orientation is probably unsuitable for catalysis. A conserved active site lysine (Lys198 in Escherichia coli) that recognizes the Asp side-chain is changed to a leucine residue, found at the corresponding position in asparaginyl-tRNA synthetase. It is interesting that the binding of Asp is calculated to increase slightly (rather than to decrease), while that of Asn is calculated, as expected, to increase strongly, to

  3. Algorithms and data structures for adaptive multigrid elliptic solvers

    NASA Technical Reports Server (NTRS)

    Vanrosendale, J.

    1983-01-01

    Adaptive refinement and the complicated data structures required to support it are discussed. These data structures must be carefully tuned, especially in three dimensions where the time and storage requirements of algorithms are crucial. Another major issue is grid generation. The options available seem to be curvilinear fitted grids, constructed on iterative graphics systems, and unfitted Cartesian grids, which can be constructed automatically. On several grounds, including storage requirements, the second option seems preferrable for the well behaved scalar elliptic problems considered here. A variety of techniques for treatment of boundary conditions on such grids are reviewed. A new approach, which may overcome some of the difficulties encountered with previous approaches, is also presented.

  4. Boltzmann equation solver adapted to emergent chemical non-equilibrium

    SciTech Connect

    Birrell, Jeremiah; Wilkening, Jon; Rafelski, Johann

    2015-01-15

    We present a novel method to solve the spatially homogeneous and isotropic relativistic Boltzmann equation. We employ a basis set of orthogonal polynomials dynamically adapted to allow for emergence of chemical non-equilibrium. Two time dependent parameters characterize the set of orthogonal polynomials, the effective temperature T(t) and phase space occupation factor ϒ(t). In this first paper we address (effectively) massless fermions and derive dynamical equations for T(t) and ϒ(t) such that the zeroth order term of the basis alone captures the particle number density and energy density of each particle distribution. We validate our method and illustrate the reduced computational cost and the ability to easily represent final state chemical non-equilibrium by studying a model problem that is motivated by the physics of the neutrino freeze-out processes in the early Universe, where the essential physical characteristics include reheating from another disappearing particle component (e{sup ±}-annihilation)

  5. Feasibility of Applying the Finite Element Adaptive Research Solver (FEARS) Program to the Plate Bending Problem.

    DTIC Science & Technology

    1983-05-01

    AD-A129 395 FEASIBILITY OF APPLYING THE FINITE ELEMENT ADAPTIVE 1 / 1 RESEARCH SOLVER (FEAR..(U) MARYLAND UNIV COLLEGE PARK INST FOR PHYSICAL SCIENCE...DEPAR .MENT 17 18 1 A PROPULSION AND SHIP ACOUSTICS AUXILIARY SYSTEMS DEPARTMENT jDEPARTMENT 19 27 SHIP MATERIALS CENTRAL ENGINEERING INSTRUMENTATION...DOCUMENTATION PAGE 331033 COMPLETNG FORM 1 . REPORTNUIIIr. VT ACCESPON 00 S. RECIPINTS CATALOG WU1MSER DTNSRDC/CMLD-83/ 1 / 4. TITLE (nd Subtite) S. TYPE OF

  6. An Adaptive Flow Solver for Air-Borne Vehicles Undergoing Time-Dependent Motions/Deformations

    NASA Technical Reports Server (NTRS)

    Singh, Jatinder; Taylor, Stephen

    1997-01-01

    This report describes a concurrent Euler flow solver for flows around complex 3-D bodies. The solver is based on a cell-centered finite volume methodology on 3-D unstructured tetrahedral grids. In this algorithm, spatial discretization for the inviscid convective term is accomplished using an upwind scheme. A localized reconstruction is done for flow variables which is second order accurate. Evolution in time is accomplished using an explicit three-stage Runge-Kutta method which has second order temporal accuracy. This is adapted for concurrent execution using another proven methodology based on concurrent graph abstraction. This solver operates on heterogeneous network architectures. These architectures may include a broad variety of UNIX workstations and PCs running Windows NT, symmetric multiprocessors and distributed-memory multi-computers. The unstructured grid is generated using commercial grid generation tools. The grid is automatically partitioned using a concurrent algorithm based on heat diffusion. This results in memory requirements that are inversely proportional to the number of processors. The solver uses automatic granularity control and resource management techniques both to balance load and communication requirements, and deal with differing memory constraints. These ideas are again based on heat diffusion. Results are subsequently combined for visualization and analysis using commercial CFD tools. Flow simulation results are demonstrated for a constant section wing at subsonic, transonic, and a supersonic case. These results are compared with experimental data and numerical results of other researchers. Performance results are under way for a variety of network topologies.

  7. Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers

    NASA Technical Reports Server (NTRS)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2014-01-01

    This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.

  8. ASIS v1.0: an adaptive solver for the simulation of atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Cariolle, Daniel; Moinat, Philippe; Teyssèdre, Hubert; Giraud, Luc; Josse, Béatrice; Lefèvre, Franck

    2017-04-01

    This article reports on the development and tests of the adaptive semi-implicit scheme (ASIS) solver for the simulation of atmospheric chemistry. To solve the ordinary differential equation systems associated with the time evolution of the species concentrations, ASIS adopts a one-step linearized implicit scheme with specific treatments of the Jacobian of the chemical fluxes. It conserves mass and has a time-stepping module to control the accuracy of the numerical solution. In idealized box-model simulations, ASIS gives results similar to the higher-order implicit schemes derived from the Rosenbrock's and Gear's methods and requires less computation and run time at the moderate precision required for atmospheric applications. When implemented in the MOCAGE chemical transport model and the Laboratoire de Météorologie Dynamique Mars general circulation model, the ASIS solver performs well and reveals weaknesses and limitations of the original semi-implicit solvers used by these two models. ASIS can be easily adapted to various chemical schemes and further developments are foreseen to increase its computational efficiency, and to include the computation of the concentrations of the species in aqueous-phase in addition to gas-phase chemistry.

  9. Investigating the dielectric effects of channel pore water on the electrostatic barriers of the permeation ion by the finite difference Poisson-Boltzmann method.

    PubMed

    Cheng, W; Wang, C X; Chen, W Z; Xu, Y W; Shi, Y Y

    1998-01-01

    In this paper, the finite difference Poisson-Boltzmann (FDPB) method with four dielectric constants is developed to study the effect of dielectric saturation on the electrostatic barriers of the permeation ion. In this method, the inner shape of the channel pore is explicitly represented, and the fact that the dielectric constant inside the channel pore is different from that of bulk water is taken into account. A model channel system which is a righthanded twist bundle with four alpha-helical segments is provided for this study. From the FDPB calculations, it is found that the difference of the ionic electrostatic solvation energy for wider domains depends strongly on the pore radius in the vicinity of the ion when the pore dielectric constant is changed from 78 to 5. However, the electrostatic solvation energy of the permeation ion can not be significantly affected by the dielectric constant in regions with small pore radii. Our results indicate that the local electrostatic interactions inside the ion channel are of major importance for ion electrostatic solvation energies, and the effect of dielectric saturation on the electrostatic barriers is coupled to the interior channel dimensions.

  10. On the use of different dielectric constants for computing individual and pairwise terms in poisson-boltzmann studies of protein ionization equilibrium.

    PubMed

    Teixeira, Vitor H; Cunha, Carlos A; Machuqueiro, Miguel; Oliveira, A Sofia F; Victor, Bruno L; Soares, Cláudio M; Baptista, António M

    2005-08-04

    Poisson-Boltzmann (PB) models are a fast and common tool for studying electrostatic processes in proteins, particularly their ionization equilibrium (protonation and/or reduction), often yielding quite good results when compared with more detailed models. Yet, they are conceptually very simple and necessarily approximate, their empirical character being most evident when it comes to the choice of the dielectric constant assigned to the protein region. The present study analyzes several factors affecting the ability of PB-based methods to model protein ionization equilibrium. We give particular attention to a suggestion made by Warshel and co-workers (e.g., Sham et al. J. Phys. Chem. B 1997, 101, 4458) of using different protein dielectric constants for computing the individual (site) and the pairwise (site-site) terms of the ionization free energies. Our prediction of pK(a) values for several proteins indicates that no advantage is obtained by such a procedure, even for sites that are buried and/or display large pK(a) shifts relative to the solution values. In particular, the present methodology gives the best predictions using a dielectric constant around 20, for shifted/buried and nonshifted/exposed sites alike. The similarities and differences between the PB model and Warshel's PDLD/S model are discussed, as well as the reasons behind their apparently discrepant results. The present PB model is shown to predict also good reduction potentials in redox proteins.

  11. A modified Poisson-Boltzmann model including charge regulation for the adsorption of ionizable polyelectrolytes to charged interfaces, applied to lysozyme adsorption on silica.

    PubMed

    Biesheuvel, P Maarten; van der Veen, Marijn; Norde, Willem

    2005-03-10

    The equilibrium adsorption of polyelectrolytes with multiple types of ionizable groups is described using a modified Poisson-Boltzmann equation including charge regulation of both the polymer and the interface. A one-dimensional mean-field model is used in which the electrostatic potential is assumed constant in the lateral direction parallel to the surface. The electrostatic potential and ionization degrees of the different ionizable groups are calculated as function of the distance from the surface after which the electric and chemical contributions to the free energy are obtained. The various interactions between small ions, surface and polyelectrolyte are self-consistently considered in the model, such as the increase in charge of polyelectrolyte and surface upon adsorption as well as the displacement of small ions and the decrease of permittivity. These interactions may lead to complex dependencies of the adsorbed amount of polyelectrolyte on pH, ionic strength, and properties of the polymer (volume, permittivity, number, and type of ionizable groups) and of the surface (number of ionizable groups, pK, Stern capacity). For the adsorption of lysozyme on silica, the model qualitatively describes the gradual increase of adsorbed amount with pH up to a maximum value at pHc, which is below the iso-electric point, as well as the sharp decrease of adsorbed amount beyond pHc. With increasing ionic strength the adsorbed amount decreases (for pH > pHc), and pHc shifts to lower values.

  12. Energetic decomposition with the generalized-born and Poisson-Boltzmann solvent models: lessons from association of G-protein components.

    PubMed

    Carrascal, Noel; Green, David F

    2010-04-22

    Continuum electrostatic models have been shown to be powerful tools in providing insight into the energetics of biomolecular processes. While the Poisson-Boltzmann (PB) equation provides a theoretically rigorous approach to computing electrostatic free energies of solution in such a model, computational cost makes its use for large ensembles of states impractical. The generalized-Born (GB) approximation provides a much faster alternative, although with a weaker theoretical framework. While much attention has been given to how GB recapitulates PB energetics for the overall stability of a biomolecule or the affinity of a complex, little attention has been given to how the contributions of individual functional groups are captured by the two methods. Accurately capturing these individual electrostatic components is essential both for the development of a mechanistic understanding of biomolecular processes and for the design of variant sequences and structures with desired properties. Here, we present a detailed comparison of the group-wise decomposition of both PB and GB electrostatic free energies of binding, using association of various components of the heterotrimeric-G-protein complex as a model. We find that, while net binding free energies are strongly correlated in the two models, the correlations of individual group contributions are highly variable; in some cases, strong correlation is seen, while in others, there is essentially none. Structurally, the GB model seems to capture the magnitude of direct, short-range electrostatic interactions quite well but performs more poorly with moderate-range "action-at-a-distance" interactions--GB has a tendency to overestimate solvent screening over moderate distances, and to underestimate the costs of desolvating charged groups somewhat removed from the binding interface. Despite this, however, GB does seem to be quite effective as a predictor of those groups that will be computed to be most significant in a PB

  13. Using Correlated Monte Carlo Sampling for Efficiently Solving the Linearized Poisson-Boltzmann Equation Over a Broad Range of Salt Concentration.

    PubMed

    Fenley, Marcia O; Mascagni, Michael; McClain, James; Silalahi, Alexander R J; Simonov, Nikolai A

    2010-01-01

    Dielectric continuum or implicit solvent models provide a significant reduction in computational cost when accounting for the salt-mediated electrostatic interactions of biomolecules immersed in an ionic environment. These models, in which the solvent and ions are replaced by a dielectric continuum, seek to capture the average statistical effects of the ionic solvent, while the solute is treated at the atomic level of detail. For decades, the solution of the three-dimensional Poisson-Boltzmann equation (PBE), which has become a standard implicit-solvent tool for assessing electrostatic effects in biomolecular systems, has been based on various deterministic numerical methods. Some deterministic PBE algorithms have drawbacks, which include a lack of properly assessing their accuracy, geometrical difficulties caused by discretization, and for some problems their cost in both memory and computation time. Our original stochastic method resolves some of these difficulties by solving the PBE using the Monte Carlo method (MCM). This new approach to the PBE is capable of efficiently solving complex, multi-domain and salt-dependent problems in biomolecular continuum electrostatics to high precision. Here we improve upon our novel stochastic approach by simultaneouly computating of electrostatic potential and solvation free energies at different ionic concentrations through correlated Monte Carlo (MC) sampling. By using carefully constructed correlated random walks in our algorithm, we can actually compute the solution to a standard system including the linearized PBE (LPBE) at all salt concentrations of interest, simultaneously. This approach not only accelerates our MCPBE algorithm, but seems to have cost and accuracy advantages over deterministic methods as well. We verify the effectiveness of this technique by applying it to two common electrostatic computations: the electrostatic potential and polar solvation free energy for calcium binding proteins that are compared

  14. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Liu, Zhen; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2012-04-01

    Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ17-42 protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ17-42 protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ17-42 are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ17-42 protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

  15. Implementation of Implicit Adaptive Mesh Refinement in an Unstructured Finite-Volume Flow Solver

    NASA Technical Reports Server (NTRS)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2013-01-01

    This paper explores the implementation of adaptive mesh refinement in an unstructured, finite-volume solver. Unsteady and steady problems are considered. The effect on the recovery of high-order numerics is explored and the results are favorable. Important to this work is the ability to provide a path for efficient, implicit time advancement. A method using a simple refinement sensor based on undivided differences is discussed and applied to a practical problem: a shock-shock interaction on a hypersonic, inviscid double-wedge. Cases are compared to uniform grids without the use of adapted meshes in order to assess error and computational expense. Discussion of difficulties, advances, and future work prepare this method for additional research. The potential for this method in more complicated flows is described.

  16. A forward-in-time advection scheme and adaptive multilevel flow solver for nearly incompressible atmospheric flow

    SciTech Connect

    Stevens, D.E.; Bretherton, S.

    1996-12-01

    This paper presents a new forward-in-time advection method for nearly incompressible flow, MU, and its application to an adaptive multilevel flow solver for atmospheric flows. MU is a modification of Leonard et al.`s UTOPIA scheme. MU, like UTOPIA, is based on third-order accurate semi-Lagrangian multidimensional upwinding for constant velocity flows. for varying velocity fields, MU is a second-order conservative method. MU has greater stability and accuracy than UTOPIA and naturally decomposes into a monotone low-order method and a higher-order accurate correction for use with flux limiting. Its stability and accuracy make it a computationally efficient alternative to current finite-difference advection methods. We present a fully second-order accurate flow solver for the anelastic equations, a prototypical low Mach number flow. The flow solver is based on MU which is used for both momentum and scalar transport equations. This flow solver can also be implemented with any forward-in-time advection scheme. The multilevel flow solver conserves discrete global integrals of advected quantities and includes adaptive mesh refinements. Its second-order accuracy is verified using a nonlinear energy conservation integral for the anelastic equations. For a typical geophysical problem in which the flow is most rapidly varying in a small part of the domain, the multilevel flow solver achieves global accuracy comparable to uniform-resolution simulation for 10% of the computational cost. 36 refs., 10 figs.

  17. Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure

    NASA Astrophysics Data System (ADS)

    Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.

    2014-08-01

    Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver

  18. a Non-Linear Adapted Tri-Tree Multigrid Solver for Finite Element Formulation of the Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Wille, S. Ø.

    1996-06-01

    An iterative adaptive equation multigrid solver for solving the implicit Navier-Stokes equations simultaneously with tri-tree grid generation is developed. The tri-tree grid generator builds a hierarchical grid structur e which is mapped to a finite element grid at each hierarchical level. For each hierarchical finite element multigrid the Navier-Stokes equations are solved approximately. The solution at each level is projected onto the next finer grid and used as a start vector for the iterative equation solver at the finer level. When the finest grid is reached, the equation solver is iterated until a tolerated solution is reached. The iterative multigrid equation solver is preconditioned by incomplete LU factorization with coupled node fill-in.The non-linear Navier-Stokes equations are linearized by both the Newton method and grid adaption. The efficiency and behaviour of the present adaptive method are compared with those of the previously developed iterative equation solver which is preconditioned by incomplete LU factorization with coupled node fill-in.

  19. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.

    2010-03-01

    Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species

  20. Statistical Analysis on the Performance of Molecular Mechanics Poisson-Boltzmann Surface Area versus Absolute Binding Free Energy Calculations: Bromodomains as a Case Study.

    PubMed

    Aldeghi, Matteo; Bodkin, Michael J; Knapp, Stefan; Biggin, Philip C

    2017-09-25

    Binding free energy calculations that make use of alchemical pathways are becoming increasingly feasible thanks to advances in hardware and algorithms. Although relative binding free energy (RBFE) calculations are starting to find widespread use, absolute binding free energy (ABFE) calculations are still being explored mainly in academic settings due to the high computational requirements and still uncertain predictive value. However, in some drug design scenarios, RBFE calculations are not applicable and ABFE calculations could provide an alternative. Computationally cheaper end-point calculations in implicit solvent, such as molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations, could too be used if one is primarily interested in a relative ranking of affinities. Here, we compare MMPBSA calculations to previously performed absolute alchemical free energy calculations in their ability to correlate with experimental binding free energies for three sets of bromodomain-inhibitor pairs. Different MMPBSA approaches have been considered, including a standard single-trajectory protocol, a protocol that includes a binding entropy estimate, and protocols that take into account the ligand hydration shell. Despite the improvements observed with the latter two MMPBSA approaches, ABFE calculations were found to be overall superior in obtaining correlation with experimental affinities for the test cases considered. A difference in weighted average Pearson ([Formula: see text]) and Spearman ([Formula: see text]) correlations of 0.25 and 0.31 was observed when using a standard single-trajectory MMPBSA setup ([Formula: see text] = 0.64 and [Formula: see text] = 0.66 for ABFE; [Formula: see text] = 0.39 and [Formula: see text] = 0.35 for MMPBSA). The best performing MMPBSA protocols returned weighted average Pearson and Spearman correlations that were about 0.1 inferior to ABFE calculations: [Formula: see text] = 0.55 and [Formula: see text] = 0.56 when including

  1. Wing tip vortex calculations with an unstructured adaptive-grid Euler solver

    NASA Technical Reports Server (NTRS)

    Strawn, Roger C.

    1991-01-01

    A solution-adaptive grid method has been developed for computing tip-vortex flowfields around rectangular wings. This method uses subdivision in order to locally refine the grid in regions with high vorticity. Two different flow solvers are used. Each solves the three-dimensional Euler equations on unstructured grids. Computed results are compared to experimentally measured surface pressures and vortex velocities on a NACA 0015 rectangular wing. Predicted results for surface pressures and integrated lift agree well with the experimental data. The predicted size of the rotational vortex core is larger than the experimentally-measured value and the peak velocities are less. This discrepancy appears to be caused by deficiencies in the inviscid Euler-equation model. This model cannot capture the complex viscous effects at the tip that determine the detailed structure of the resulting vortex. In spite of this limitation, the present Euler unstructured adaptive-grid method demonstrates the ability to convert vortical flows with low numerical diffusion. Applications for modeling helicopter rotor wake systems are discussed.

  2. Wing tip vortex calculations with an unstructured adaptive-grid Euler solver

    NASA Technical Reports Server (NTRS)

    Strawn, Roger C.

    1991-01-01

    A solution-adaptive grid method has been developed for computing tip-vortex flowfields around rectangular wings. This method uses subdivision in order to locally refine the grid in regions with high vorticity. Two different flow solvers are used. Each solves the three-dimensional Euler equations on unstructured grids. Computed results are compared to experimentally measured surface pressures and vortex velocities on a NACA 0015 rectangular wing. Predicted results for surface pressures and integrated lift agree well with the experimental data. The predicted size of the rotational vortex core is larger than the experimentally-measured value and the peak velocities are less. This discrepancy appears to be caused by deficiencies in the inviscid Euler-equation model. This model cannot capture the complex viscous effects at the tip that determine the detailed structure of the resulting vortex. In spite of this limitation, the present Euler unstructured adaptive-grid method demonstrates the ability to convert vortical flows with low numerical diffusion. Applications for modeling helicopter rotor wake systems are discussed.

  3. Effects of model dimensionality on seismic amplification using an adaptive time-integration forward solver

    NASA Astrophysics Data System (ADS)

    Poursartip, B.; Kallivokas, L.

    2016-12-01

    The interest to understand and quantify the seismic motion, particularly in regions with surface irregularities (such as hills, valleys, and alluvial basins), is strong among seismologists since discrepancies still exist between the recorded surface motion from strong earthquakes and numerical simulations. In this study, we are concerned to identify the main factors that contribute to the discrepancies. There are many reasons for the discrepancies, but chief among them are the effect of topographic irregularities on the ground motion, the lack of adequate representation of topographic features, uncertainties about the velocity models, and uncertainties in quantifying the seismic source. To this end, we discuss components of the integrated approach that deploys best-practice tools for accurately simulating seismic events in arbitrarily heterogeneous formations. That consists of: (i) the forward wave simulator which is based on a recently developed hybrid finite element approach, where it couples a single-field formulation for the computational domain with an unsplit mixed-field formulation for Perfectly-Matched-Layers (PMLs or M-PMLs), used to limit the computational domain; (ii) the Domain-Reduction-Method along with the simulation of fault rupture that permits placement of the seismic source within the computational domain, thus allowing consideration of realistic seismic scenarios; and, more importantly, (iii) due to the material heterogeneity and the contrasting discretization needs it imposes, an adaptive time solver is adopted. We use a Runge-Kutta-Fehlberg time-marching scheme that adjusts optimally the time step such that the local truncation error rests below a predefined tolerance.We report numerical experiments in two and three dimensions, for various prototype layered domains, and compare the results with one-dimensional simulations, i.e., flat surface earth model, that is still accepted in many seismic codes. Particularly, we study the effects of

  4. Adaptation of a Multi-Block Structured Solver for Effective Use in a Hybrid CPU/GPU Massively Parallel Environment

    NASA Astrophysics Data System (ADS)

    Gutzwiller, David; Gontier, Mathieu; Demeulenaere, Alain

    2014-11-01

    Multi-Block structured solvers hold many advantages over their unstructured counterparts, such as a smaller memory footprint and efficient serial performance. Historically, multi-block structured solvers have not been easily adapted for use in a High Performance Computing (HPC) environment, and the recent trend towards hybrid GPU/CPU architectures has further complicated the situation. This paper will elaborate on developments and innovations applied to the NUMECA FINE/Turbo solver that have allowed near-linear scalability with real-world problems on over 250 hybrid GPU/GPU cluster nodes. Discussion will focus on the implementation of virtual partitioning and load balancing algorithms using a novel meta-block concept. This implementation is transparent to the user, allowing all pre- and post-processing steps to be performed using a simple, unpartitioned grid topology. Additional discussion will elaborate on developments that have improved parallel performance, including fully parallel I/O with the ADIOS API and the GPU porting of the computationally heavy CPUBooster convergence acceleration module. Head of HPC and Release Management, Numeca International.

  5. Parallel adaptive mesh-refining scheme on a three-dimensional unstructured tetrahedral mesh and its applications

    NASA Astrophysics Data System (ADS)

    Lian, Y.-Y.; Hsu, K.-H.; Shao, Y.-L.; Lee, Y.-M.; Jeng, Y.-W.; Wu, J.-S.

    2006-12-01

    The development of a parallel three-dimensional (3-D) adaptive mesh refinement (PAMR) scheme for an unstructured tetrahedral mesh using dynamic domain decomposition on a memory-distributed machine is presented in detail. A memory-saving cell-based data structure is designed such that the resulting mesh information can be readily utilized in both node- or cell-based numerical methods. The general procedures include isotropic refinement from one parent cell into eight child cells and then followed by anisotropic refinement which effectively removes hanging nodes. A simple but effective mesh-quality control mechanism is employed to preserve the mesh quality. The resulting parallel performance of this PAMR is found to scale approximately as N for N⩽32. Two test cases, including a particle method (parallel DSMC solver for rarefied gas dynamics) and an equation-based method (parallel Poisson-Boltzmann equation solver for electrostatic field), are used to demonstrate the generality of the PAMR module. It is argued that this PAMR scheme can be applied in any numerical method if the unstructured tetrahedral mesh is adopted.

  6. Adaptation of the anelastic solver EULAG to high performance computing architectures.

    NASA Astrophysics Data System (ADS)

    Wójcik, Damian; Ciżnicki, Miłosz; Kopta, Piotr; Kulczewski, Michał; Kurowski, Krzysztof; Piotrowski, Zbigniew; Rojek, Krzysztof; Rosa, Bogdan; Szustak, Łukasz; Wyrzykowski, Roman

    2014-05-01

    In recent years there has been widespread interest in employing heterogeneous and hybrid supercomputing architectures for geophysical research. Especially promising application for the modern supercomputing architectures is the numerical weather prediction (NWP). Adopting traditional NWP codes to the new machines based on multi- and many-core processors, such as GPUs allows to increase computational efficiency and decrease energy consumption. This offers unique opportunity to develop simulations with finer grid resolutions and computational domains larger than ever before. Further, it enables to extend the range of scales represented in the model so that the accuracy of representation of the simulated atmospheric processes can be improved. Consequently, it allows to improve quality of weather forecasts. Coalition of Polish scientific institutions launched a project aimed at adopting EULAG fluid solver for future high-performance computing platforms. EULAG is currently being implemented as a new dynamical core of COSMO Consortium weather prediction framework. The solver code combines features of a stencil and point wise computations. Its communication scheme consists of both halo exchange subroutines and global reduction functions. Within the project, two main modules of EULAG, namely MPDATA advection and iterative GCR elliptic solver are analyzed and optimized. Relevant techniques have been chosen and applied to accelerate code execution on modern HPC architectures: stencil decomposition, block decomposition (with weighting analysis between computation and communication), reduction of inter-cache communication by partitioning of cores into independent teams, cache reusing and vectorization. Experiments with matching computational domain topology to cluster topology are performed as well. The parallel formulation was extended from pure MPI to hybrid MPI - OpenMP approach. Porting to GPU using CUDA directives is in progress. Preliminary results of performance of the

  7. An Immersed Boundary - Adaptive Mesh Refinement solver (IB-AMR) for high fidelity fully resolved wind turbine simulations

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2015-11-01

    The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.

  8. Understanding of the Effects of Ionic Strength on the Bimolecular Rate Constant between Structurally Identified Redox Enzymes and Charged Substrates Using Numerical Simulations on the Basis of the Poisson-Boltzmann Equation.

    PubMed

    Sugimoto, Yu; Kitazumi, Yuki; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji

    2016-03-31

    To understand electrostatic interactions in biomolecules, the bimolecular rate constants (k) between redox enzymes and charged substrates (in this study, redox mediators in the electrode reaction) were evaluated at various ionic strengths (I) for the mediated bioelectrocatalytic reaction. The k value between bilirubin oxidase (BOD) and positively charged mediators increased with I, while that between BOD and negatively charged mediators decreased with I. The opposite trend was observed for the reaction of glucose oxidase (GOD). In the case of noncharged mediators, the k value was independent of I for both BOD and GOD. These results reflect the electrostatic interactions between the enzymes and the mediators. Furthermore, we estimated k/k° (k° being the thermodynamic rate constant) by numerical simulation (finite element method) based on the Poisson-Boltzmann (PB) equation. By considering the charges of individual atoms involved in the amino acids around the substrate binding sites in the enzymes, the simulated k/k° values well reproduced the experimental data. In conclusion, k/k° can be predicted by PB-based simulation as long as the crystal structure of the enzyme and the substrate binding site are known.

  9. Adaptive solver of a Kohn-Sham equation for an atom

    NASA Astrophysics Data System (ADS)

    Romanowski, Zbigniew

    2009-06-01

    An adaptive numerical algorithm solving a Kohn-Sham equation for an atom confined in a spherical cavity is presented. The Kohn-Sham equation is solved by the high order finite element method with Lobatto polynomials as the basis set. Based on this method the adaptive algorithm is proposed, which leads to a simple and efficient algorithm. The details of the adaptive algorithm are discussed. Numerical results for N, Al, Ga and In atoms are provided. Using this procedure very high accuracy was obtained with a very small number of mesh nodes.

  10. Wavelet-Based Adaptive Solvers on Multi-core Architectures for the Simulation of Complex Systems

    NASA Astrophysics Data System (ADS)

    Rossinelli, Diego; Bergdorf, Michael; Hejazialhosseini, Babak; Koumoutsakos, Petros

    We build wavelet-based adaptive numerical methods for the simulation of advection dominated flows that develop multiple spatial scales, with an emphasis on fluid mechanics problems. Wavelet based adaptivity is inherently sequential and in this work we demonstrate that these numerical methods can be implemented in software that is capable of harnessing the capabilities of multi-core architectures while maintaining their computational efficiency. Recent designs in frameworks for multi-core software development allow us to rethink parallelism as task-based, where parallel tasks are specified and automatically mapped into physical threads. This way of exposing parallelism enables the parallelization of algorithms that were considered inherently sequential, such as wavelet-based adaptive simulations. In this paper we present a framework that combines wavelet-based adaptivity with the task-based parallelism. We demonstrate good scaling performance obtained by simulating diverse physical systems on different multi-core and SMP architectures using up to 16 cores.

  11. Dielectric saturation of the ion hydration shell and interaction between two double helices of DNA in mono- and multivalent electrolyte solutions: foundations of the epsilon-modified Poisson-Boltzmann theory.

    PubMed

    Gavryushov, Sergei

    2007-05-17

    Potentials of mean force between single Na+, Ca2+, and Mg2+ cations and a highly charged spherical macroion in SPC/E water have been determined using molecular dynamics simulations. Results are compared to the electrostatic energy calculations for the primitive polarization model (PPM) of hydrated cations describing the ion hydration shell as a dielectric sphere of low permittivity (Gavryushov, S.; Linse, P. J. Phys. Chem. B 2003, 107, 7135). Parameters of the ion dielectric sphere and radius of the macroion/water dielectric boundary were extracted by means of this comparison to approximate the short-range repulsion of ions near the interface. To explore the counterion distributions around a simplified model of DNA, the obtained PPM parameters for Na+ and Ca2+ have been substituted into the modified Poisson-Boltzmann (MPB) equations derived for the PPM and named the epsilon-MPB (epsilon-MPB) theory. epsilon-MPB results for DNA suggest that such polarization effects are important in the case of 2:1 electrolyte and highly charged macromolecules. The three-dimensional implementation of the epsilon-MPB theory was also applied to calculation of the energies of interaction between two parallel macromolecules of DNA in solutions of NaCl and CaCl2. Being compared to results of MPB calculations without the ion polarization effects, it suggests that the ion hydration shell polarization and inhomogeneous solvent permittivity might be essential factors in the experimentally known hydration forces acting between charged macromolecules and bilayers at separations of less than 20 A between their surfaces.

  12. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking.

    PubMed

    Hou, Tingjun; Wang, Junmei; Li, Youyong; Wang, Wei

    2011-04-15

    In molecular docking, it is challenging to develop a scoring function that is accurate to conduct high-throughput screenings. Most scoring functions implemented in popular docking software packages were developed with many approximations for computational efficiency, which sacrifices the accuracy of prediction. With advanced technology and powerful computational hardware nowadays, it is feasible to use rigorous scoring functions, such as molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) and molecular mechanics/generalized Born surface area (MM/GBSA) in molecular docking studies. Here, we systematically investigated the performance of MM/PBSA and MM/GBSA to identify the correct binding conformations and predict the binding free energies for 98 protein-ligand complexes. Comparison studies showed that MM/GBSA (69.4%) outperformed MM/PBSA (45.5%) and many popular scoring functions to identify the correct binding conformations. Moreover, we found that molecular dynamics simulations are necessary for some systems to identify the correct binding conformations. Based on our results, we proposed the guideline for MM/GBSA to predict the binding conformations. We then tested the performance of MM/GBSA and MM/PBSA to reproduce the binding free energies of the 98 protein-ligand complexes. The best prediction of MM/GBSA model with internal dielectric constant 2.0, produced a Spearman's correlation coefficient of 0.66, which is better than MM/PBSA (0.49) and almost all scoring functions used in molecular docking. In summary, MM/GBSA performs well for both binding pose predictions and binding free-energy estimations and is efficient to re-score the top-hit poses produced by other less-accurate scoring functions. Copyright © 2010 Wiley Periodicals, Inc.

  13. Integration of hp-Adaptivity and a Two Grid Solver. II. Electromagnetic Problems

    DTIC Science & Technology

    2005-01-01

    for lower order FE spaces. More precisely, let T be a grid,M the associated lowest order Nedelec subspaces ofHD(curl; Ω) of the first kind [24], and W... Nedelec , Mixed finite elements in IR3., Numer. Math., 35 (1980), pp. 315–341. [25] D. Pardo and L. Demkowicz, Integration of hp-adaptivity with a two

  14. An Adaptive Fourier Filter for Relaxing Time Stepping Constraints for Explicit Solvers

    SciTech Connect

    Gelb, Anne; Archibald, Richard K

    2015-01-01

    Filtering is necessary to stabilize piecewise smooth solutions. The resulting diffusion stabilizes the method, but may fail to resolve the solution near discontinuities. Moreover, high order filtering still requires cost prohibitive time stepping. This paper introduces an adaptive filter that controls spurious modes of the solution, but is not unnecessarily diffusive. Consequently we are able to stabilize the solution with larger time steps, but also take advantage of the accuracy of a high order filter.

  15. JCMmode: an adaptive finite element solver for the computation of leaky modes

    NASA Astrophysics Data System (ADS)

    Zschiedrich, Lin W.; Burger, Sven; Klose, Roland; Schaedle, Achim; Schmidt, Frank

    2005-03-01

    We present our simulation tool JCMmode for calculating propagating modes of an optical waveguide. As ansatz functions we use higher order, vectorial elements (Nedelec elements, edge elements). Further we construct transparent boundary conditions to deal with leaky modes even for problems with inhomogeneous exterior domains as for integrated hollow core Arrow waveguides. We have implemented an error estimator which steers the adaptive mesh refinement. This allows the precise computation of singularities near the metal's corner of a Plasmon-Polariton waveguide even for irregular shaped metal films on a standard personal computer.

  16. An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system

    NASA Astrophysics Data System (ADS)

    Hintermüller, M.; Hinze, M.; Kahle, C.

    2013-02-01

    An adaptive a posteriori error estimator based finite element method for the numerical solution of a coupled Cahn-Hilliard/Navier-Stokes system with a double-obstacle homogenous free (interfacial) energy density is proposed. A semi-implicit Euler scheme for the time-integration is applied which results in a system coupling a quasi-Stokes or Oseen-type problem for the fluid flow to a variational inequality for the concentration and the chemical potential according to the Cahn-Hilliard model [16]. A Moreau-Yosida regularization is employed which relaxes the constraints contained in the variational inequality and, thus, enables semi-smooth Newton solvers with locally superlinear convergence in function space. Moreover, upon discretization this yields a mesh independent method for a fixed relaxation parameter. For the finite dimensional approximation of the concentration and the chemical potential piecewise linear and globally continuous finite elements are used, and for the numerical approximation of the fluid velocity Taylor-Hood finite elements are employed. The paper ends by a report on numerical examples showing the efficiency of the new method.

  17. Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments

    DOE PAGES

    Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec; ...

    2015-06-01

    A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instabilitymore » test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.« less

  18. Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments

    SciTech Connect

    Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec; Peng, Ivy Bo; Laure, Erwin; Markidis, Stefano

    2015-06-01

    A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instability test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.

  19. Development of a scalable gas-dynamics solver with adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Korkut, Burak

    There are various computational physics areas in which Direct Simulation Monte Carlo (DSMC) and Particle in Cell (PIC) methods are being employed. The accuracy of results from such simulations depend on the fidelity of the physical models being used. The computationally demanding nature of these problems make them ideal candidates to make use of modern supercomputers. The software developed to run such simulations also needs special attention so that the maintainability and extendability is considered with the recent numerical methods and programming paradigms. Suited for gas-dynamics problems, a software called SUGAR (Scalable Unstructured Gas dynamics with Adaptive mesh Refinement) has recently been developed and written in C++ and MPI. Physical and numerical models were added to this framework to simulate ion thruster plumes. SUGAR is used to model the charge-exchange (CEX) reactions occurring between the neutral and ion species as well as the induced electric field effect due to ions. Multiple adaptive mesh refinement (AMR) meshes were used in order to capture different physical length scales present in the flow. A multiple-thruster configuration was run to extend the studies to cases for which there is no axial or radial symmetry present that could only be modeled with a three-dimensional simulation capability. The combined plume structure showed interactions between individual thrusters where AMR capability captured this in an automated way. The back flow for ions was found to occur when CEX and momentum-exchange (MEX) collisions are present and strongly enhanced when the induced electric field is considered. The ion energy distributions in the back flow region were obtained and it was found that the inclusion of the electric field modeling is the most important factor in determining its shape. The plume back flow structure was also examined for a triple-thruster, 3-D geometry case and it was found that the ion velocity in the back flow region appears to be

  20. ColDICE: A parallel Vlasov-Poisson solver using moving adaptive simplicial tessellation

    NASA Astrophysics Data System (ADS)

    Sousbie, Thierry; Colombi, Stéphane

    2016-09-01

    Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65-67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a "warm" dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.

  1. ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation

    SciTech Connect

    Sousbie, Thierry; Colombi, Stéphane

    2016-09-15

    Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.

  2. An Open Hybrid Plasma Solver

    NASA Astrophysics Data System (ADS)

    Holmström, M.; Nilsson, H.

    2012-09-01

    We present a hybrid plasma solver (particle ions, fluid mass-less electrons). The software is built on the public available FLASH software, developed at the University of Chicago [1], that provide adaptive grids and is fully parallelized. FLASH is a general parallel solver for compressible flow problems. It is written in Fortran 90, well structured into modules, has good support, and is open source. The parallelization is done using a block-structured adaptive cartesian grid with the Message-Passing Interface (MPI) library as the underlying communication layer. The hybrid solver in FLASH uses cell centered finite differences [2] and conserves energy well [3]. Recently we have added to the hybrid solver the capability of handling vacuum regions, non-uniform resistivity, external fields, and hyperresistivity. We also present an application of the solver to the interaction between the Moon and the solar wind [4], as illustrated in Fig. 1.

  3. Lift coefficient calculation using a geometric/solution adaptive Navier Stokes solver on two-dimensional cartesian grids for compressible and turbulent flows

    NASA Astrophysics Data System (ADS)

    Kara, Emre; Kutlar, Ahmet Ihsan; Aksel, Mehmet Haluk

    2017-09-01

    In this study, two-dimensional geometric and solution adaptive refinement/coarsening scheme codes are generated by the use of Cartesian grid generation techniques. In the solution of compressible, turbulent flows one-equation Spalart-Allmaras turbulence model is implemented. The performance of the flow solver is tested on the case of high Reynolds number, steady flow around NACA 0012 airfoil. The lift coefficient solution for the airfoil at a real-life-flight Reynolds number is compared with the experimental study in literature.

  4. Adaptive and iterative methods for simulations of nanopores with the PNP-Stokes equations

    NASA Astrophysics Data System (ADS)

    Mitscha-Baude, Gregor; Buttinger-Kreuzhuber, Andreas; Tulzer, Gerhard; Heitzinger, Clemens

    2017-06-01

    We present a 3D finite element solver for the nonlinear Poisson-Nernst-Planck (PNP) equations for electrodiffusion, coupled to the Stokes system of fluid dynamics. The model serves as a building block for the simulation of macromolecule dynamics inside nanopore sensors. The source code is released online at http://github.com/mitschabaude/nanopores. We add to existing numerical approaches by deploying goal-oriented adaptive mesh refinement. To reduce the computation overhead of mesh adaptivity, our error estimator uses the much cheaper Poisson-Boltzmann equation as a simplified model, which is justified on heuristic grounds but shown to work well in practice. To address the nonlinearity in the full PNP-Stokes system, three different linearization schemes are proposed and investigated, with two segregated iterative approaches both outperforming a naive application of Newton's method. Numerical experiments are reported on a real-world nanopore sensor geometry. We also investigate two different models for the interaction of target molecules with the nanopore sensor through the PNP-Stokes equations. In one model, the molecule is of finite size and is explicitly built into the geometry; while in the other, the molecule is located at a single point and only modeled implicitly - after solution of the system - which is computationally favorable. We compare the resulting force profiles of the electric and velocity fields acting on the molecule, and conclude that the point-size model fails to capture important physical effects such as the dependence of charge selectivity of the sensor on the molecule radius.

  5. Adaptive finite volume methods with well-balanced Riemann solvers for modeling floods in rugged terrain: Application to the Malpasset dam-break flood (France, 1959)

    USGS Publications Warehouse

    George, D.L.

    2011-01-01

    The simulation of advancing flood waves over rugged topography, by solving the shallow-water equations with well-balanced high-resolution finite volume methods and block-structured dynamic adaptive mesh refinement (AMR), is described and validated in this paper. The efficiency of block-structured AMR makes large-scale problems tractable, and allows the use of accurate and stable methods developed for solving general hyperbolic problems on quadrilateral grids. Features indicative of flooding in rugged terrain, such as advancing wet-dry fronts and non-stationary steady states due to balanced source terms from variable topography, present unique challenges and require modifications such as special Riemann solvers. A well-balanced Riemann solver for inundation and general (non-stationary) flow over topography is tested in this context. The difficulties of modeling floods in rugged terrain, and the rationale for and efficacy of using AMR and well-balanced methods, are presented. The algorithms are validated by simulating the Malpasset dam-break flood (France, 1959), which has served as a benchmark problem previously. Historical field data, laboratory model data and other numerical simulation results (computed on static fitted meshes) are shown for comparison. The methods are implemented in GEOCLAW, a subset of the open-source CLAWPACK software. All the software is freely available at. Published in 2010 by John Wiley & Sons, Ltd.

  6. Adaptive unstructured triangular mesh generation and flow solvers for the Navier-Stokes equations at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Ashford, Gregory A.; Powell, Kenneth G.

    1995-01-01

    A method for generating high quality unstructured triangular grids for high Reynolds number Navier-Stokes calculations about complex geometries is described. Careful attention is paid in the mesh generation process to resolving efficiently the disparate length scales which arise in these flows. First the surface mesh is constructed in a way which ensures that the geometry is faithfully represented. The volume mesh generation then proceeds in two phases thus allowing the viscous and inviscid regions of the flow to be meshed optimally. A solution-adaptive remeshing procedure which allows the mesh to adapt itself to flow features is also described. The procedure for tracking wakes and refinement criteria appropriate for shock detection are described. Although at present it has only been implemented in two dimensions, the grid generation process has been designed with the extension to three dimensions in mind. An implicit, higher-order, upwind method is also presented for computing compressible turbulent flows on these meshes. Two recently developed one-equation turbulence models have been implemented to simulate the effects of the fluid turbulence. Results for flow about a RAE 2822 airfoil and a Douglas three-element airfoil are presented which clearly show the improved resolution obtainable.

  7. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers.

    PubMed

    Cooper, Christopher D; Bardhan, Jaydeep P; Barba, L A

    2014-03-01

    The continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known apbs finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2% in solvation energy, then the simpler, single-surface model can be used. When calculating binding energies, the need for a multi-surface model is problem-dependent, becoming more critical when ligand and receptor are of comparable size. Comparing with the apbs solver, the boundary-element solver is faster when the accuracy requirements are higher. The cross-over point for the PyGBe code is in the order of 1-2% error, when running on one gpu card (nvidia Tesla C2075), compared with apbs running on six Intel Xeon cpu cores. PyGBe achieves algorithmic acceleration of the boundary element method using a treecode, and hardware acceleration using gpus via PyCuda from a user-visible code that is all Python. The code is open-source under MIT license.

  8. Continuum Polarizable Force Field within the Poisson-Boltzmann Framework

    PubMed Central

    Tan, Yu-Hong; Tan, Chunhu; Wang, Junmei; Luo, Ray

    2008-01-01

    We have developed and tested a complete set of nonbonded parameters for a continuum polarizable force field. Our analysis shows that the new continuum polarizable model is consistent with B3LYP/cc-pVTZ in modeling electronic response upon variation of dielectric environment. Comparison with experiment also shows that the new continuum polarizable model is reasonable, with similar accuracy as B3LYP/cc-pVTZ in reproduction of dipole moments of selected organic molecules in the gas phase. We have further tested the validity to interchange the Amber van der Waals parameters between the explicit and continuum polarizable force fields with a series of dimers. It can be found that the continuum polarizable model agrees well with MP2/cc-pVTZ, with deviations in dimer binding energies less than 0.9 kcal/mol in the aqueous dielectric environment. Finally we have optimized atomic cavity radii with respect to experimental solvation free energies of 177 training molecules. To validate the optimized cavity radii, we have tested these parameters against 176 test molecules. It is found that the optimized PB atomic cavity radii transfer well from the training set to the test set, with an overall root-mean-squared deviation of 1.30 kcal/mol, unsigned average error of 1.07 kacl/mol, and correlation coefficient of 92% for all 353 molecules in both the training and test sets. Given the development documented here, the next natural step is the construction of a full protein/nucleic acid force field within the new continuum polarization framework. PMID:18507452

  9. Gerris Flow Solver: Implementation and Application

    DTIC Science & Technology

    2013-05-12

    Zienkiewicz, 1966). It is the solver for the Imperial College Ocean Model (ICOM), which uses 3D adaptive mesh methods (Ford et al., 2004). The finite...method (Popinet, 2003). The 3D Gerris model was used to study air turbulence associated with a complex shape with good match to observations (Popinet...et al., 2004). The Ocean module of Gerris was described by Popinet and Rickard (2004) as an adaptive, finite-volume, 3D , incompressible, N-S fluid

  10. Parallel Multigrid Equation Solver

    SciTech Connect

    Adams, Mark

    2001-09-07

    Prometheus is a fully parallel multigrid equation solver for matrices that arise in unstructured grid finite element applications. It includes a geometric and an algebraic multigrid method and has solved problems of up to 76 mullion degrees of feedom, problems in linear elasticity on the ASCI blue pacific and ASCI red machines.

  11. A perspective on unstructured grid flow solvers

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.

    1995-01-01

    This survey paper assesses the status of compressible Euler and Navier-Stokes solvers on unstructured grids. Different spatial and temporal discretization options for steady and unsteady flows are discussed. The integration of these components into an overall framework to solve practical problems is addressed. Issues such as grid adaptation, higher order methods, hybrid discretizations and parallel computing are briefly discussed. Finally, some outstanding issues and future research directions are presented.

  12. GPU accelerated kinetic solvers for rarefied gas dynamics

    NASA Astrophysics Data System (ADS)

    Zabelok, Sergey A.; Kolobov, Vladimir I.; Arslanbekov, Robert R.

    2012-11-01

    GPU-acceleration is applied to the Boltzmann solver with adaptive Cartesian mesh in the Unified Flow Solver framework. NVIDIA CUDA technology is used with threads being grouped in thread blocks by points of Korobov sequences in each cell for computing the collision integral and by points in coordinate space for the free-molecular flow stage. GPU-accelerated Boltzmann solver with octree Cartesian mesh has been tested on several computer systems. Speedup of several times for GPU-based code compared to single-core CPU computations on the same machines has been observed.

  13. Scalable solvers and applications

    SciTech Connect

    Ribbens, C J

    2000-10-27

    The purpose of this report is to summarize research activities carried out under Lawrence Livermore National Laboratory (LLNL) research subcontract B501073. This contract supported the principal investigator (P1), Dr. Calvin Ribbens, during his sabbatical visit to LLNL from August 1999 through June 2000. Results and conclusions from the work are summarized below in two major sections. The first section covers contributions to the Scalable Linear Solvers and hypre projects in the Center for Applied Scientific Computing (CASC). The second section describes results from collaboration with Patrice Turchi of LLNL's Chemistry and Materials Science Directorate (CMS). A list of publications supported by this subcontract appears at the end of the report.

  14. Parallel tridiagonal equation solvers

    NASA Technical Reports Server (NTRS)

    Stone, H. S.

    1974-01-01

    Three parallel algorithms were compared for the direct solution of tridiagonal linear systems of equations. The algorithms are suitable for computers such as ILLIAC 4 and CDC STAR. For array computers similar to ILLIAC 4, cyclic odd-even reduction has the least operation count for highly structured sets of equations, and recursive doubling has the least count for relatively unstructured sets of equations. Since the difference in operation counts for these two algorithms is not substantial, their relative running times may be more related to overhead operations, which are not measured in this paper. The third algorithm, based on Buneman's Poisson solver, has more arithmetic operations than the others, and appears to be the least favorable. For pipeline computers similar to CDC STAR, cyclic odd-even reduction appears to be the most preferable algorithm for all cases.

  15. Euler solvers for transonic applications

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1989-01-01

    The 1980s may well be called the Euler era of applied aerodynamics. Computer codes based on discrete approximations of the Euler equations are now routinely used to obtain solutions of transonic flow problems in which the effects of entropy and vorticity production are significant. Such codes can even predict separation from a sharp edge, owing to the inclusion of artificial dissipation, intended to lend numerical stability to the calculation but at the same time enforcing the Kutta condition. One effect not correctly predictable by Euler codes is the separation from a smooth surface, and neither is viscous drag; for these some form of the Navier-Stokes equation is needed. It, therefore, comes as no surprise to observe that the Navier-Stokes has already begun before Euler solutions were fully exploited. Moreover, most numerical developments for the Euler equations are now constrained by the requirement that the techniques introduced, notably artificial dissipation, must not interfere with the new physics added when going from an Euler to a full Navier-Stokes approximation. In order to appreciate the contributions of Euler solvers to the understanding of transonic aerodynamics, it is useful to review the components of these computational tools. Space discretization, time- or pseudo-time marching and boundary procedures, the essential constituents are discussed. The subject of grid generation and grid adaptation to the solution are touched upon only where relevant. A list of unanswered questions and an outlook for the future are covered.

  16. Parallel, Implicit, Finite Element Solver

    NASA Astrophysics Data System (ADS)

    Lowrie, Weston; Shumlak, Uri; Meier, Eric; Marklin, George

    2007-11-01

    A parallel, implicit, finite element solver is described for solutions to the ideal MHD equations and the Pseudo-1D Euler equations. The solver uses the conservative flux source form of the equations. This helps simplify the discretization of the finite element method by keeping the specification of the physics separate. An implicit time advance is used to allow sufficiently large time steps. The Portable Extensible Toolkit for Scientific Computation (PETSc) is implemented for parallel matrix solvers and parallel data structures. Results for several test cases are described as well as accuracy of the method.

  17. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  18. Sherlock Holmes, Master Problem Solver.

    ERIC Educational Resources Information Center

    Ballew, Hunter

    1994-01-01

    Shows the connections between Sherlock Holmes's investigative methods and mathematical problem solving, including observations, characteristics of the problem solver, importance of data, questioning the obvious, learning from experience, learning from errors, and indirect proof. (MKR)

  19. Sherlock Holmes, Master Problem Solver.

    ERIC Educational Resources Information Center

    Ballew, Hunter

    1994-01-01

    Shows the connections between Sherlock Holmes's investigative methods and mathematical problem solving, including observations, characteristics of the problem solver, importance of data, questioning the obvious, learning from experience, learning from errors, and indirect proof. (MKR)

  20. Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Krishna, Lala

    1986-01-01

    To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.

  1. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model -- GMG Linear Equation Solver Package Documentation

    USGS Publications Warehouse

    Wilson, John D.; Naff, Richard L.

    2004-01-01

    A geometric multigrid solver (GMG), based in the preconditioned conjugate gradient algorithm, has been developed for solving systems of equations resulting from applying the cell-centered finite difference algorithm to flow in porous media. This solver has been adapted to the U.S. Geological Survey ground-water flow model MODFLOW-2000. The documentation herein is a description of the solver and the adaptation to MODFLOW-2000.

  2. Numerical System Solver Developed for the National Cycle Program

    NASA Technical Reports Server (NTRS)

    Binder, Michael P.

    1999-01-01

    As part of the National Cycle Program (NCP), a powerful new numerical solver has been developed to support the simulation of aeropropulsion systems. This software uses a hierarchical object-oriented design. It can provide steady-state and time-dependent solutions to nonlinear and even discontinuous problems typically encountered when aircraft and spacecraft propulsion systems are simulated. It also can handle constrained solutions, in which one or more factors may limit the behavior of the engine system. Timedependent simulation capabilities include adaptive time-stepping and synchronization with digital control elements. The NCP solver is playing an important role in making the NCP a flexible, powerful, and reliable simulation package.

  3. Scalable Parallel Algebraic Multigrid Solvers

    SciTech Connect

    Bank, R; Lu, S; Tong, C; Vassilevski, P

    2005-03-23

    The authors propose a parallel algebraic multilevel algorithm (AMG), which has the novel feature that the subproblem residing in each processor is defined over the entire partition domain, although the vast majority of unknowns for each subproblem are associated with the partition owned by the corresponding processor. This feature ensures that a global coarse description of the problem is contained within each of the subproblems. The advantages of this approach are that interprocessor communication is minimized in the solution process while an optimal order of convergence rate is preserved; and the speed of local subproblem solvers can be maximized using the best existing sequential algebraic solvers.

  4. Self-correcting Multigrid Solver

    SciTech Connect

    Jerome L.V. Lewandowski

    2004-06-29

    A new multigrid algorithm based on the method of self-correction for the solution of elliptic problems is described. The method exploits information contained in the residual to dynamically modify the source term (right-hand side) of the elliptic problem. It is shown that the self-correcting solver is more efficient at damping the short wavelength modes of the algebraic error than its standard equivalent. When used in conjunction with a multigrid method, the resulting solver displays an improved convergence rate with no additional computational work.

  5. Wicked Problem Solvers.

    PubMed

    Edmondson, Amy C

    2016-06-01

    Companies today increasingly rely on teams that span many industries for radical innovation, especially to solve "wicked problems." So leaders have to understand how to promote collaboration when roles are uncertain, goals are shifting, expertise and organizational cultures are varied, and participants have clashing or even antagonistic perspectives. HBS professor Amy Edmondson has studied more than a dozen cross-industry innovation projects, among them the creation of a new city, a mango supply-chain transformation, and the design and construction of leading-edge buildings. She has identified the leadership practices that make successful cross-industry teams work: fostering an adaptable vision, promoting psychological safety, enabling knowledge sharing, and encouraging collaborative innovation. Though these practices are broadly familiar, their application within cross-industry teams calls for unique leadership approaches that combine flexibility, open-mindedness, humility, and fierce resolve.

  6. Linear iterative solvers for implicit ODE methods

    NASA Technical Reports Server (NTRS)

    Saylor, Paul E.; Skeel, Robert D.

    1990-01-01

    The numerical solution of stiff initial value problems, which lead to the problem of solving large systems of mildly nonlinear equations are considered. For many problems derived from engineering and science, a solution is possible only with methods derived from iterative linear equation solvers. A common approach to solving the nonlinear equations is to employ an approximate solution obtained from an explicit method. The error is examined to determine how it is distributed among the stiff and non-stiff components, which bears on the choice of an iterative method. The conclusion is that error is (roughly) uniformly distributed, a fact that suggests the Chebyshev method (and the accompanying Manteuffel adaptive parameter algorithm). This method is described, also commenting on Richardson's method and its advantages for large problems. Richardson's method and the Chebyshev method with the Mantueffel algorithm are applied to the solution of the nonlinear equations by Newton's method.

  7. On unstructured grids and solvers

    NASA Technical Reports Server (NTRS)

    Barth, T. J.

    1990-01-01

    The fundamentals and the state-of-the-art technology for unstructured grids and solvers are highlighted. Algorithms and techniques pertinent to mesh generation are discussed. It is shown that grid generation and grid manipulation schemes rely on fast multidimensional searching. Flow solution techniques for the Euler equations, which can be derived from the integral form of the equations are discussed. Sample calculations are also provided.

  8. A New Block Solver for Large, Full, Unsymmetric, Complex Systems of Linear Algebraic Equations.

    DTIC Science & Technology

    1988-02-01

    THE COEFFICIENT C MATRIX IN THAT ORDER. ON OUTPUT, UTI CONTAINS THE SOLUTION C MATRIX. C C THE NASTRAN DMAP INSTRUCTIONS TO INTERFACE WITH ’OCSOLVE...developed. Although OCSOLVE was developed for use with the finite element program NASTRAN , it is designed t,) be easily adapted for other applications...solve such a system of 500 equations with complex- valued coefficients to about 5% of the time required by the equation solver in NASTRAN . The solver

  9. Finite Element Interface to Linear Solvers

    SciTech Connect

    Williams, Alan

    2005-03-18

    Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on the problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.

  10. A survey of SAT solver

    NASA Astrophysics Data System (ADS)

    Gong, Weiwei; Zhou, Xu

    2017-06-01

    In Computer Science, the Boolean Satisfiability Problem(SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. SAT is one of the first problems that was proven to be NP-complete, which is also fundamental to artificial intelligence, algorithm and hardware design. This paper reviews the main algorithms of the SAT solver in recent years, including serial SAT algorithms, parallel SAT algorithms, SAT algorithms based on GPU, and SAT algorithms based on FPGA. The development of SAT is analyzed comprehensively in this paper. Finally, several possible directions for the development of the SAT problem are proposed.

  11. Analysis Tools for CFD Multigrid Solvers

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Thomas, James L.; Diskin, Boris

    2004-01-01

    Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.

  12. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS

    SciTech Connect

    Zhang, W.; Almgren, A.; Bell, J.; Howell, L.; Burrows, A.

    2011-10-01

    We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunov scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.

  13. Newton Solver Stabilization for Stokes Solvers in Geodynamic Problems

    NASA Astrophysics Data System (ADS)

    Fraters, Menno; Bangerth, Wolfgang; Thieulot, Cedric; Spakman, Wim

    2017-04-01

    The most commonly used method by the geodynamical community for solving non-linear equations is the Picard fixed-point iteration. However, the Newton method has recently gained interest within this community because it formally leads to quadratic convergence close to the solution as compared to the global linear convergence of the Picard iteration. In mantle dynamics, a blend of pressure and strain-rate dependent visco-plastic rheologies is often used. While for power-law rheologies the Jacobian is guaranteed to be Symmetric Positive Definite (SPD), for more complex (compressible) rheologies, the Jacobian may become non-SPD. Here we present a new method for efficiently enforce the Jacobian to be SPD, necessary for our current highly efficient Stokes solvers, with a minimum loss in convergence rate. Furthermore, we show results for both incompressible and compressible models.

  14. A Fast Poisson Solver with Periodic Boundary Conditions for GPU Clusters in Various Configurations

    NASA Astrophysics Data System (ADS)

    Rattermann, Dale Nicholas

    Fast Poisson solvers using the Fast Fourier Transform on uniform grids are especially suited for parallel implementation, making them appropriate for portability on graphical processing unit (GPU) devices. The goal of the following work was to implement, test, and evaluate a fast Poisson solver for periodic boundary conditions for use on a variety of GPU configurations. The solver used in this research was FLASH, an immersed-boundary-based method, which is well suited for complex, time-dependent geometries, has robust adaptive mesh refinement/de-refinement capabilities to capture evolving flow structures, and has been successfully implemented on conventional, parallel supercomputers. However, these solvers are still computationally costly to employ, and the total solver time is dominated by the solution of the pressure Poisson equation using state-of-the-art multigrid methods. FLASH improves the performance of its multigrid solvers by integrating a parallel FFT solver on a uniform grid during a coarse level. This hybrid solver could then be theoretically improved by replacing the highly-parallelizable FFT solver with one that utilizes GPUs, and, thus, was the motivation for my research. In the present work, the CPU-utilizing parallel FFT solver (PFFT) used in the base version of FLASH for solving the Poisson equation on uniform grids has been modified to enable parallel execution on CUDA-enabled GPU devices. New algorithms have been implemented to replace the Poisson solver that decompose the computational domain and send each new block to a GPU for parallel computation. One-dimensional (1-D) decomposition of the computational domain minimizes the amount of network traffic involved in this bandwidth-intensive computation by limiting the amount of all-to-all communication required between processes. Advanced techniques have been incorporated and implemented in a GPU-centric code design, while allowing end users the flexibility of parameter control at runtime in

  15. MACSYMA's symbolic ordinary differential equation solver

    NASA Technical Reports Server (NTRS)

    Golden, J. P.

    1977-01-01

    The MACSYMA's symbolic ordinary differential equation solver ODE2 is described. The code for this routine is delineated, which is of interest because it is written in top-level MACSYMA language, and may serve as a good example of programming in that language. Other symbolic ordinary differential equation solvers are mentioned.

  16. A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure

    NASA Astrophysics Data System (ADS)

    Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie

    2016-07-01

    We describe a high-order numerical magnetohydrodynamics (MHD) solver built upon a novel non-linear entropy stable numerical flux function that supports eight travelling wave solutions. By construction the solver conserves mass, momentum, and energy and is entropy stable. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver described herein is especially well-suited for flows involving strong discontinuities. Furthermore, we present a new formulation to guarantee positivity of the pressure. We present the underlying theory and implementation of the new solver into the multi-physics, multi-scale adaptive mesh refinement (AMR) simulation code FLASH (http://flash.uchicago.edu).

  17. An immersed interface vortex particle-mesh solver

    NASA Astrophysics Data System (ADS)

    Marichal, Yves; Chatelain, Philippe; Winckelmans, Gregoire

    2014-11-01

    An immersed interface-enabled vortex particle-mesh (VPM) solver is presented for the simulation of 2-D incompressible viscous flows, in the framework of external aerodynamics. Considering the simulation of free vortical flows, such as wakes and jets, vortex particle-mesh methods already provide a valuable alternative to standard CFD methods, thanks to the interesting numerical properties arising from its Lagrangian nature. Yet, accounting for solid bodies remains challenging, despite the extensive research efforts that have been made for several decades. The present immersed interface approach aims at improving the consistency and the accuracy of one very common technique (based on Lighthill's model) for the enforcement of the no-slip condition at the wall in vortex methods. Targeting a sharp treatment of the wall calls for substantial modifications at all computational levels of the VPM solver. More specifically, the solution of the underlying Poisson equation, the computation of the diffusion term and the particle-mesh interpolation are adapted accordingly and the spatial accuracy is assessed. The immersed interface VPM solver is subsequently validated on the simulation of some challenging impulsively started flows, such as the flow past a cylinder and that past an airfoil. Research Fellow (PhD student) of the F.R.S.-FNRS of Belgium.

  18. A robust multilevel simultaneous eigenvalue solver

    NASA Technical Reports Server (NTRS)

    Costiner, Sorin; Taasan, Shlomo

    1993-01-01

    Multilevel (ML) algorithms for eigenvalue problems are often faced with several types of difficulties such as: the mixing of approximated eigenvectors by the solution process, the approximation of incomplete clusters of eigenvectors, the poor representation of solution on coarse levels, and the existence of close or equal eigenvalues. Algorithms that do not treat appropriately these difficulties usually fail, or their performance degrades when facing them. These issues motivated the development of a robust adaptive ML algorithm which treats these difficulties, for the calculation of a few eigenvectors and their corresponding eigenvalues. The main techniques used in the new algorithm include: the adaptive completion and separation of the relevant clusters on different levels, the simultaneous treatment of solutions within each cluster, and the robustness tests which monitor the algorithm's efficiency and convergence. The eigenvectors' separation efficiency is based on a new ML projection technique generalizing the Rayleigh Ritz projection, combined with a technique, the backrotations. These separation techniques, when combined with an FMG formulation, in many cases lead to algorithms of O(qN) complexity, for q eigenvectors of size N on the finest level. Previously developed ML algorithms are less focused on the mentioned difficulties. Moreover, algorithms which employ fine level separation techniques are of O(q(sub 2)N) complexity and usually do not overcome all these difficulties. Computational examples are presented where Schrodinger type eigenvalue problems in 2-D and 3-D, having equal and closely clustered eigenvalues, are solved with the efficiency of the Poisson multigrid solver. A second order approximation is obtained in O(qN) work, where the total computational work is equivalent to only a few fine level relaxations per eigenvector.

  19. SUDOKU A STORY & A SOLVER

    SciTech Connect

    GARDNER, P.R.

    2006-04-01

    Sudoku, also known as Number Place, is a logic-based placement puzzle. The aim of the puzzle is to enter a numerical digit from 1 through 9 in each cell of a 9 x 9 grid made up of 3 x 3 subgrids (called ''regions''), starting with various digits given in some cells (the ''givens''). Each row, column, and region must contain only one instance of each numeral. Completing the puzzle requires patience and logical ability. Although first published in a U.S. puzzle magazine in 1979, Sudoku initially caught on in Japan in 1986 and attained international popularity in 2005. Last fall, after noticing Sudoku puzzles in some newspapers and magazines, I attempted a few just to see how hard they were. Of course, the difficulties varied considerably. ''Obviously'' one could use Trial and Error but all the advice was to ''Use Logic''. Thinking to flex, and strengthen, those powers, I began to tackle the puzzles systematically. That is, when I discovered a new tactical rule, I would write it down, eventually generating a list of ten or so, with some having overlap. They served pretty well except for the more difficult puzzles, but even then I managed to develop an additional three rules that covered all of them until I hit the Oregonian puzzle shown. With all of my rules, I could not seem to solve that puzzle. Initially putting my failure down to rapid mental fatigue (being unable to hold a sufficient quantity of information in my mind at one time), I decided to write a program to implement my rules and see what I had failed to notice earlier. The solver, too, failed. That is, my rules were insufficient to solve that particular puzzle. I happened across a book written by a fellow who constructs such puzzles and who claimed that, sometimes, the only tactic left was trial and error. With a trial and error routine implemented, my solver successfully completed the Oregonian puzzle, and has successfully solved every puzzle submitted to it since.

  20. ALPS - A LINEAR PROGRAM SOLVER

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  1. SIERRA framework version 4 : solver services.

    SciTech Connect

    Williams, Alan B.

    2005-02-01

    Several SIERRA applications make use of third-party libraries to solve systems of linear and nonlinear equations, and to solve eigenproblems. The classes and interfaces in the SIERRA framework that provide linear system assembly services and access to solver libraries are collectively referred to as solver services. This paper provides an overview of SIERRA's solver services including the design goals that drove the development, and relationships and interactions among the various classes. The process of assembling and manipulating linear systems will be described, as well as access to solution methods and other operations.

  2. A chemical reaction network solver for the astrophysics code NIRVANA

    NASA Astrophysics Data System (ADS)

    Ziegler, U.

    2016-02-01

    . In combination with NIRVANA's self-gravity solver, its efficient solver for dissipation terms and its adaptive mesh refinement capability challenging astrophysical problems come into reach with the code.

  3. ALPS: A Linear Program Solver

    NASA Technical Reports Server (NTRS)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  4. A finite-volume Euler solver for computing rotary-wing aerodynamics on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Strawn, Roger C.; Barth, Timothy J.

    1992-01-01

    An unstructured-grid solver for the unsteady Euler equations has been developed for predicting the aerodynamics of helicopter rotor blades. This flow solver is a finite-volume scheme that computes flow quantities at the vertices of the mesh. Special treatments are used for the flux differencing and boundary conditions in order to compute rotary-wing flowfields, and these are detailed in the paper. The unstructured-grid solver permits adaptive grid refinement in order to improve the resolution of flow features such as shocks, rotor wakes and acoustic waves. These capabilities are demonstrated in the paper. Example calculations are presented for two hovering rotors. In both cases, adaptive-grid refinement is used to resolve high gradients near the rotor surface and also to capture the vortical regions in the rotor wake. The computed results show good agreement with experimental results for surface airloads and wake geometry.

  5. Parallelizing alternating direction implicit solver on GPUs

    USDA-ARS?s Scientific Manuscript database

    We present a parallel Alternating Direction Implicit (ADI) solver on GPUs. Our implementation significantly improves existing implementations in two aspects. First, we address the scalability issue of existing Parallel Cyclic Reduction (PCR) implementations by eliminating their hardware resource con...

  6. Improved Stiff ODE Solvers for Combustion CFD

    NASA Astrophysics Data System (ADS)

    Imren, A.; Haworth, D. C.

    2016-11-01

    Increasingly large chemical mechanisms are needed to predict autoignition, heat release and pollutant emissions in computational fluid dynamics (CFD) simulations of in-cylinder processes in compression-ignition engines and other applications. Calculation of chemical source terms usually dominates the computational effort, and several strategies have been proposed to reduce the high computational cost associated with realistic chemistry in CFD. Central to most strategies is a stiff ordinary differential equation (ODE) solver to compute the change in composition due to chemical reactions over a computational time step. Most work to date on stiff ODE solvers for computational combustion has focused on backward differential formula (BDF) methods, and has not explicitly considered the implications of how the stiff ODE solver couples with the CFD algorithm. In this work, a fresh look at stiff ODE solvers is taken that includes how the solver is integrated into a turbulent combustion CFD code, and the advantages of extrapolation-based solvers in this regard are demonstrated. Benefits in CPU time and accuracy are demonstrated for homogeneous systems and compression-ignition engines, for chemical mechanisms that range in size from fewer than 50 to more than 7,000 species.

  7. A parallel PCG solver for MODFLOW.

    PubMed

    Dong, Yanhui; Li, Guomin

    2009-01-01

    In order to simulate large-scale ground water flow problems more efficiently with MODFLOW, the OpenMP programming paradigm was used to parallelize the preconditioned conjugate-gradient (PCG) solver with in this study. Incremental parallelization, the significant advantage supported by OpenMP on a shared-memory computer, made the solver transit to a parallel program smoothly one block of code at a time. The parallel PCG solver, suitable for both MODFLOW-2000 and MODFLOW-2005, is verified using an 8-processor computer. Both the impact of compilers and different model domain sizes were considered in the numerical experiments. Based on the timing results, execution times using the parallel PCG solver are typically about 1.40 to 5.31 times faster than those using the serial one. In addition, the simulation results are the exact same as the original PCG solver, because the majority of serial codes were not changed. It is worth noting that this parallelizing approach reduces cost in terms of software maintenance because only a single source PCG solver code needs to be maintained in the MODFLOW source tree.

  8. A comparison of viscous-plastic sea ice solvers with and without replacement pressure

    NASA Astrophysics Data System (ADS)

    Kimmritz, Madlen; Losch, Martin; Danilov, Sergey

    2017-07-01

    Recent developments of the explicit elastic-viscous-plastic (EVP) solvers call for a new comparison with implicit solvers for the equations of viscous-plastic sea ice dynamics. In Arctic sea ice simulations, the modified and the adaptive EVP solvers, and the implicit Jacobian-free Newton-Krylov (JFNK) solver are compared against each other. The adaptive EVP method shows convergence rates that are generally similar or even better than those of the modified EVP method, but the convergence of the EVP methods is found to depend dramatically on the use of the replacement pressure (RP). Apparently, using the RP can affect the pseudo-elastic waves in the EVP methods by introducing extra non-physical oscillations so that, in the extreme case, convergence to the VP solution can be lost altogether. The JFNK solver also suffers from higher failure rates with RP implying that with RP the momentum equations are stiffer and more difficult to solve. For practical purposes, both EVP methods can be used efficiently with an unexpectedly low number of sub-cycling steps without compromising the solutions. The differences between the RP solutions and the NoRP solutions (when the RP is not being used) can be reduced with lower thresholds of viscous regularization at the cost of increasing stiffness of the equations, and hence the computational costs of solving them.

  9. GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules.

    PubMed

    Bertelshofer, Franziska; Sun, Liping; Greiner, Günther; Böckmann, Rainer A

    2015-01-01

    Knowledge about the electrostatic potential on the surface of biomolecules or biomembranes under physiological conditions is an important step in the attempt to characterize the physico-chemical properties of these molecules and, in particular, also their interactions with each other. Additionally, knowledge about solution electrostatics may also guide the design of molecules with specified properties. However, explicit water models come at a high computational cost, rendering them unsuitable for large design studies or for docking purposes. Implicit models with the water phase treated as a continuum require the numerical solution of the Poisson-Boltzmann equation (PBE). Here, we present a new flexible program for the numerical solution of the PBE, allowing for different geometries, and the explicit and implicit inclusion of membranes. It involves a discretization of space and the computation of the molecular surface. The PBE is solved using finite differences, the resulting set of equations is solved using a Gauss-Seidel method. It is shown for the example of the sucrose transporter ScrY that the implicit inclusion of a surrounding membrane has a strong effect also on the electrostatics within the pore region and, thus, needs to be carefully considered, e.g., in design studies on membrane proteins.

  10. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  11. Inductive ionospheric solver for magnetospheric MHD simulations

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.

    2011-01-01

    We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances) and similar output is produced (ionospheric electric field). The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km-1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current) in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981).

  12. An approximate Riemann solver for hypervelocity flows

    NASA Technical Reports Server (NTRS)

    Jacobs, Peter A.

    1991-01-01

    We describe an approximate Riemann solver for the computation of hypervelocity flows in which there are strong shocks and viscous interactions. The scheme has three stages, the first of which computes the intermediate states assuming isentropic waves. A second stage, based on the strong shock relations, may then be invoked if the pressure jump across either wave is large. The third stage interpolates the interface state from the two initial states and the intermediate states. The solver is used as part of a finite-volume code and is demonstrated on two test cases. The first is a high Mach number flow over a sphere while the second is a flow over a slender cone with an adiabatic boundary layer. In both cases the solver performs well.

  13. Using SPARK as a Solver for Modelica

    SciTech Connect

    Wetter, Michael; Wetter, Michael; Haves, Philip; Moshier, Michael A.; Sowell, Edward F.

    2008-06-30

    Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulation environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica.

  14. New iterative solvers for the NAG Libraries

    SciTech Connect

    Salvini, S.; Shaw, G.

    1996-12-31

    The purpose of this paper is to introduce the work which has been carried out at NAG Ltd to update the iterative solvers for sparse systems of linear equations, both symmetric and unsymmetric, in the NAG Fortran 77 Library. Our current plans to extend this work and include it in our other numerical libraries in our range are also briefly mentioned. We have added to the Library the new Chapter F11, entirely dedicated to sparse linear algebra. At Mark 17, the F11 Chapter includes sparse iterative solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-definite and indefinite) linear systems. Mark 18 will add solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems: the development of these has already been completed.

  15. FoSSI: the family of simplified solver interfaces for the rapid development of parallel numerical atmosphere and ocean models

    NASA Astrophysics Data System (ADS)

    Frickenhaus, Stephan; Hiller, Wolfgang; Best, Meike

    The portable software FoSSI is introduced that—in combination with additional free solver software packages—allows for an efficient and scalable parallel solution of large sparse linear equations systems arising in finite element model codes. FoSSI is intended to support rapid model code development, completely hiding the complexity of the underlying solver packages. In particular, the model developer need not be an expert in parallelization and is yet free to switch between different solver packages by simple modifications of the interface call. FoSSI offers an efficient and easy, yet flexible interface to several parallel solvers, most of them available on the web, such as PETSC, AZTEC, MUMPS, PILUT and HYPRE. FoSSI makes use of the concept of handles for vectors, matrices, preconditioners and solvers, that is frequently used in solver libraries. Hence, FoSSI allows for a flexible treatment of several linear equations systems and associated preconditioners at the same time, even in parallel on separate MPI-communicators. The second special feature in FoSSI is the task specifier, being a combination of keywords, each configuring a certain phase in the solver setup. This enables the user to control a solver over one unique subroutine. Furthermore, FoSSI has rather similar features for all solvers, making a fast solver intercomparison or exchange an easy task. FoSSI is a community software, proven in an adaptive 2D-atmosphere model and a 3D-primitive equation ocean model, both formulated in finite elements. The present paper discusses perspectives of an OpenMP-implementation of parallel iterative solvers based on domain decomposition methods. This approach to OpenMP solvers is rather attractive, as the code for domain-local operations of factorization, preconditioning and matrix-vector product can be readily taken from a sequential implementation that is also suitable to be used in an MPI-variant. Code development in this direction is in an advanced state under

  16. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  17. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. III. MULTIGROUP RADIATION HYDRODYNAMICS

    SciTech Connect

    Zhang, W.; Almgren, A.; Bell, J.; Howell, L.; Burrows, A.; Dolence, J.

    2013-01-15

    We present a formulation for multigroup radiation hydrodynamics that is correct to order O(v/c) using the comoving-frame approach and the flux-limited diffusion approximation. We describe a numerical algorithm for solving the system, implemented in the compressible astrophysics code, CASTRO. CASTRO uses a Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. In our multigroup radiation solver, the system is split into three parts: one part that couples the radiation and fluid in a hyperbolic subsystem, another part that advects the radiation in frequency space, and a parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem and the frequency space advection are solved explicitly with high-order Godunov schemes, whereas the parabolic part is solved implicitly with a first-order backward Euler method. Our multigroup radiation solver works for both neutrino and photon radiation.

  18. Novel Scalable 3-D MT Inverse Solver

    NASA Astrophysics Data System (ADS)

    Kuvshinov, A. V.; Kruglyakov, M.; Geraskin, A.

    2016-12-01

    We present a new, robust and fast, three-dimensional (3-D) magnetotelluric (MT) inverse solver. As a forward modelling engine a highly-scalable solver extrEMe [1] is used. The (regularized) inversion is based on an iterative gradient-type optimization (quasi-Newton method) and exploits adjoint sources approach for fast calculation of the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT (single-site and/or inter-site) responses, and supports massive parallelization. Different parallelization strategies implemented in the code allow for optimal usage of available computational resources for a given problem set up. To parameterize an inverse domain a mask approach is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to high-performance clusters demonstrate practically linear scalability of the code up to thousands of nodes. 1. Kruglyakov, M., A. Geraskin, A. Kuvshinov, 2016. Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method, Computers and Geosciences, in press.

  19. Equation solvers for distributed-memory computers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1994-01-01

    A large number of scientific and engineering problems require the rapid solution of large systems of simultaneous equations. The performance of parallel computers in this area now dwarfs traditional vector computers by nearly an order of magnitude. This talk describes the major issues involved in parallel equation solvers with particular emphasis on the Intel Paragon, IBM SP-1 and SP-2 processors.

  20. Implicit solvers for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, Dimitri J.

    1991-01-01

    Implicit methods were developed and tested for unstructured mesh computations. The approximate system which arises from the Newton linearization of the nonlinear evolution operator is solved by using the preconditioned GMRES (Generalized Minimum Residual) technique. Three different preconditioners were studied, namely, the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over relaxation (SSOR). The preconditioners were optimized to have good vectorization properties. SSOR and ILU were also studied as iterative schemes. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also studied. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.

  1. Polyurethanes: versatile materials and sustainable problem solvers for today's challenges.

    PubMed

    Engels, Hans-Wilhelm; Pirkl, Hans-Georg; Albers, Reinhard; Albach, Rolf W; Krause, Jens; Hoffmann, Andreas; Casselmann, Holger; Dormish, Jeff

    2013-09-02

    Polyurethanes are the only class of polymers that display thermoplastic, elastomeric, and thermoset behavior depending on their chemical and morphological makeup. In addition to compact polyurethanes, foamed variations in particular are very widespread, and they achieve their targeted properties at very low weights. The simple production of sandwich structures and material composites in a single processing step is a key advantage of polyurethane technology. The requirement of energy and resource efficiency increasingly demands lightweight structures. Polyurethanes can serve this requirement by acting as matrix materials or as flexible adhesives for composites. Polyurethanes are indispensable when it comes to high-quality decorative coatings or maintaining the value of numerous objects. They are extremely adaptable and sustainable problem solvers for today's challenges facing our society, all of which impose special demands on materials.

  2. Implicit compressible flow solvers on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Nagaoka, Makoto; Horinouchi, Nariaki

    1993-09-01

    An implicit solver for compressible flows using Bi-CGSTAB method is proposed. The Euler equations are discretized with the delta-form by the finite volume method on the cell-centered triangular unstructured meshes. The numerical flux is calculated by Roe's upwind scheme. The linearized simultaneous equations with the irregular nonsymmetric sparse matrix are solved by the Bi-CGSTAB method with the preconditioner of incomplete LU factorization. This method is also vectorized by the multi-colored ordering. Although the solver requires more computational memory, it shows faster and more robust convergence than the other conventional methods: three-stage Runge-Kutta method, point Gauss-Seidel method, and Jacobi method for two-dimensional inviscid steady flows.

  3. Implicit Riemann solvers for the Pn equations.

    SciTech Connect

    Mehlhorn, Thomas Alan; McClarren, Ryan; Brunner, Thomas A.; Holloway, James Paul

    2005-03-01

    The spherical harmonics (P{sub n}) approximation to the transport equation for time dependent problems has previously been treated using Riemann solvers and explicit time integration. Here we present an implicit time integration method for the P n equations using Riemann solvers. Both first-order and high-resolution spatial discretization schemes are detailed. One facet of the high-resolution scheme is that a system of nonlinear equations must be solved at each time step. This nonlinearity is the result of slope reconstruction techniques necessary to avoid the introduction of artifical extrema in the numerical solution. Results are presented that show auspicious agreement with analytical solutions using time steps well beyond the CFL limit.

  4. Aleph Field Solver Challenge Problem Results Summary

    SciTech Connect

    Hooper, Russell; Moore, Stan Gerald

    2015-01-01

    Aleph models continuum electrostatic and steady and transient thermal fields using a finite-element method. Much work has gone into expanding the core solver capability to support enriched modeling consisting of multiple interacting fields, special boundary conditions and two-way interfacial coupling with particles modeled using Aleph's complementary particle-in-cell capability. This report provides quantitative evidence for correct implementation of Aleph's field solver via order- of-convergence assessments on a collection of problems of increasing complexity. It is intended to provide Aleph with a pedigree and to establish a basis for confidence in results for more challenging problems important to Sandia's mission that Aleph was specifically designed to address.

  5. Domain decomposition for the SPN solver MINOS

    SciTech Connect

    Jamelot, Erell; Baudron, Anne-Marie; Lautard, Jean-Jacques

    2012-07-01

    In this article we present a domain decomposition method for the mixed SPN equations, discretized with Raviart-Thomas-Nedelec finite elements. This domain decomposition is based on the iterative Schwarz algorithm with Robin interface conditions to handle communications. After having described this method, we give details on how to optimize the convergence. Finally, we give some numerical results computed in a realistic 3D domain. The computations are done with the MINOS solver of the APOLLO3 (R) code. (authors)

  6. The Openpipeflow Navier-Stokes solver

    NASA Astrophysics Data System (ADS)

    Willis, Ashley P.

    Pipelines are used in a huge range of industrial processes involving fluids, and the ability to accurately predict properties of the flow through a pipe is of fundamental engineering importance. Armed with parallel MPI, Arnoldi and Newton-Krylov solvers, the Openpipeflow code can be used in a range of settings, from large-scale simulation of highly turbulent flow, to the detailed analysis of nonlinear invariant solutions (equilibria and periodic orbits) and their influence on the dynamics of the flow.

  7. Domain Decomposition for the SPN Solver MINOS

    NASA Astrophysics Data System (ADS)

    Jamelot, Erell; Baudron, Anne-Marie; Lautard, Jean-Jacques

    2012-12-01

    In this article we present a domain decomposition method for the mixed SPN equations, discretized with Raviart-Thomas-Nédélec finite elements. This domain decomposition is based on the iterative Schwarz algorithm with Robin interface conditions to handle communications. After having described this method, we give details on how to optimize the convergence. Finally, we give some numerical results computed in a realistic 3D domain. The computations are done with the MINOS solver of the APOLLO3® code.

  8. A multigrid solver for the semiconductor equations

    NASA Technical Reports Server (NTRS)

    Bachmann, Bernhard

    1993-01-01

    We present a multigrid solver for the exponential fitting method. The solver is applied to the current continuity equations of semiconductor device simulation in two dimensions. The exponential fitting method is based on a mixed finite element discretization using the lowest-order Raviart-Thomas triangular element. This discretization method yields a good approximation of front layers and guarantees current conservation. The corresponding stiffness matrix is an M-matrix. 'Standard' multigrid solvers, however, cannot be applied to the resulting system, as this is dominated by an unsymmetric part, which is due to the presence of strong convection in part of the domain. To overcome this difficulty, we explore the connection between Raviart-Thomas mixed methods and the nonconforming Crouzeix-Raviart finite element discretization. In this way we can construct nonstandard prolongation and restriction operators using easily computable weighted L(exp 2)-projections based on suitable quadrature rules and the upwind effects of the discretization. The resulting multigrid algorithm shows very good results, even for real-world problems and for locally refined grids.

  9. Galerkin CFD solvers for use in a multi-disciplinary suite for modeling advanced flight vehicles

    NASA Astrophysics Data System (ADS)

    Moffitt, Nicholas J.

    This work extends existing Galerkin CFD solvers for use in a multi-disciplinary suite. The suite is proposed as a means of modeling advanced flight vehicles, which exhibit strong coupling between aerodynamics, structural dynamics, controls, rigid body motion, propulsion, and heat transfer. Such applications include aeroelastics, aeroacoustics, stability and control, and other highly coupled applications. The suite uses NASA STARS for modeling structural dynamics and heat transfer. Aerodynamics, propulsion, and rigid body dynamics are modeled in one of the five CFD solvers below. Euler2D and Euler3D are Galerkin CFD solvers created at OSU by Cowan (2003). These solvers are capable of modeling compressible inviscid aerodynamics with modal elastics and rigid body motion. This work reorganized these solvers to improve efficiency during editing and at run time. Simple and efficient propulsion models were added, including rocket, turbojet, and scramjet engines. Viscous terms were added to the previous solvers to create NS2D and NS3D. The viscous contributions were demonstrated in the inertial and non-inertial frames. Variable viscosity (Sutherland's equation) and heat transfer boundary conditions were added to both solvers but not verified in this work. Two turbulence models were implemented in NS2D and NS3D: Spalart-Allmarus (SA) model of Deck, et al. (2002) and Menter's SST model (1994). A rotation correction term (Shur, et al., 2000) was added to the production of turbulence. Local time stepping and artificial dissipation were adapted to each model. CFDsol is a Taylor-Galerkin solver with an SA turbulence model. This work improved the time accuracy, far field stability, viscous terms, Sutherland?s equation, and SA model with NS3D as a guideline and added the propulsion models from Euler3D to CFDsol. Simple geometries were demonstrated to utilize current meshing and processing capabilities. Air-breathing hypersonic flight vehicles (AHFVs) represent the ultimate

  10. AQUASOL: An efficient solver for the dipolar Poisson–Boltzmann–Langevin equation

    PubMed Central

    Koehl, Patrice; Delarue, Marc

    2010-01-01

    The Poisson–Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson–Boltzmann–Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on

  11. Cartesian-cell based grid generation and adaptive mesh refinement

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1993-01-01

    Viewgraphs on Cartesian-cell based grid generation and adaptive mesh refinement are presented. Topics covered include: grid generation; cell cutting; data structures; flow solver formulation; adaptive mesh refinement; and viscous flow.

  12. Approximate Riemann solvers for the Godunov SPH (GSPH)

    NASA Astrophysics Data System (ADS)

    Puri, Kunal; Ramachandran, Prabhu

    2014-08-01

    The Godunov Smoothed Particle Hydrodynamics (GSPH) method is coupled with non-iterative, approximate Riemann solvers for solutions to the compressible Euler equations. The use of approximate solvers avoids the expensive solution of the non-linear Riemann problem for every interacting particle pair, as required by GSPH. In addition, we establish an equivalence between the dissipative terms of GSPH and the signal based SPH artificial viscosity, under the restriction of a class of approximate Riemann solvers. This equivalence is used to explain the anomalous “wall heating” experienced by GSPH and we provide some suggestions to overcome it. Numerical tests in one and two dimensions are used to validate the proposed Riemann solvers. A general SPH pairing instability is observed for two-dimensional problems when using unequal mass particles. In general, Ducowicz Roe's and HLLC approximate Riemann solvers are found to be suitable replacements for the iterative Riemann solver in the original GSPH scheme.

  13. Updates to the NEQAIR Radiation Solver

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Brandis, Aaron M.

    2014-01-01

    The NEQAIR code is one of the original heritage solvers for radiative heating prediction in aerothermal environments, and is still used today for mission design purposes. This paper discusses the implementation of the first major revision to the NEQAIR code in the last five years, NEQAIR v14.0. The most notable features of NEQAIR v14.0 are the parallelization of the radiation computation, reducing runtimes by about 30×, and the inclusion of mid-wave CO2 infrared radiation.

  14. Some topics of Navier-Stokes solvers

    NASA Astrophysics Data System (ADS)

    Honma, H.; Nishikawa, N.

    1990-03-01

    The process of numerical simulation consists of selection of some items: a mathematical model, a numerical scheme, the level of the computer, and post processing. From this point of view, recent numerical studies of viscous flows are described especially for the fluid engineering laboratories in the Chiba University. The examples of simulations are Mach reflection on a wedge using a kinetic model equation and a cylinder-plate juncture flow using incompressible Navier Stokes equation. Some attempts at graphic monitoring of fluid mechanical calculations are also shown for some combinations of computers with Computational Fluid Dynamics (CFD) solvers.

  15. A finite different field solver for dipole modes

    SciTech Connect

    Nelson, E.M.

    1992-08-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL.

  16. A 3D approximate maximum likelihood localization solver

    SciTech Connect

    2016-09-23

    A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with acoustic transmitters and vocalizing marine mammals to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives and support Marine Renewable Energy. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  17. Explicit solvers in an implicit code

    NASA Astrophysics Data System (ADS)

    Martinez Montesinos, Beatriz; Kaus, Boris J. P.; Popov, Anton

    2017-04-01

    Many geodynamic processes occur over long timescales (millions of years), and are best solved with implicit solvers. Yet, some processes, such as hydrofracking, or wave propagation, occur over smaller timescales. In those cases, it might be advantageous to use an explicit rather than an implicit approach as it requires significantly less memory and computational costs. Here, we discuss our ongoing work to include explicit solvers in the parallel software package LaMEM (Lithosphere and Mantle Evolution Model). As a first step, we focus on modelling seismic wave propagation in heterogeneous 3D poro-elasto-plastic models. To do that, we add inertial terms to the momentum equations as well as elastic compressibility to the mass conservation equations in an explicit way using the staggered grid finite difference discretization method. Results are similar to that of existing wave propagation codes and are capable to simulate wave propagation in heterogeneous media. To simulate geomechanical problems, timestep restrictions posed by the seismic wave speed are usually too severe to allow simulating deformation on a timescale of months-years. The classical (FLAC) method introduces a mass-density scaling in which a non-physical (larger) density is employed in the momentum equations. We will discuss how this method fits simple benchmarks for elastic and elastoplastic deformation. As an application, we use the code to model different complex media subject to compression and we investigate how mass scaling influence in our results.

  18. A GPU-enabled Finite Volume solver for global magnetospheric simulations on unstructured grids

    NASA Astrophysics Data System (ADS)

    Lani, Andrea; Yalim, Mehmet Sarp; Poedts, Stefaan

    2014-10-01

    This paper describes an ideal Magnetohydrodynamics (MHD) solver for global magnetospheric simulations based on a B1 +B0 splitting approach, which has been implemented within the COOLFluiD platform and adapted to run on modern heterogeneous architectures featuring General Purpose Graphical Processing Units (GPGPUs). The code is based on a state-of-the-art Finite Volume discretization for unstructured grids and either explicit or implicit time integration, suitable for both steady and time accurate problems. Innovative object-oriented design and coding techniques mixing C++ and CUDA are discussed. Performance results of the modified code on single and multiple processors are presented and compared with those provided by the original solver.

  19. Experiences with linear solvers for oil reservoir simulation problems

    SciTech Connect

    Joubert, W.; Janardhan, R.; Biswas, D.; Carey, G.

    1996-12-31

    This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.

  20. A real-time impurity solver for DMFT

    NASA Astrophysics Data System (ADS)

    Kim, Hyungwon; Aron, Camille; Han, Jong E.; Kotliar, Gabriel

    Dynamical mean-field theory (DMFT) offers a non-perturbative approach to problems with strongly correlated electrons. The method heavily relies on the ability to numerically solve an auxiliary Anderson-type impurity problem. While powerful Matsubara-frequency solvers have been developed over the past two decades to tackle equilibrium situations, the status of real-time impurity solvers that could compete with Matsubara-frequency solvers and be readily generalizable to non-equilibrium situations is still premature. We present a real-time solver which is based on a quantum Master equation description of the dissipative dynamics of the impurity and its exact diagonalization. As a benchmark, we illustrate the strengths of our solver in the context of the equilibrium Mott-insulator transition of the one-band Hubbard model and compare it with iterative perturbation theory (IPT) method. Finally, we discuss its direct application to a nonequilibrium situation.

  1. Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers

    NASA Technical Reports Server (NTRS)

    Guru Prasad, K.; Kane, J. H.

    1992-01-01

    The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.

  2. General purpose nonlinear system solver based on Newton-Krylov method.

    SciTech Connect

    2013-12-01

    KINSOL is part of a software family called SUNDIALS: SUite of Nonlinear and Differential/Algebraic equation Solvers [1]. KINSOL is a general-purpose nonlinear system solver based on Newton-Krylov and fixed-point solver technologies [2].

  3. Optimising a parallel conjugate gradient solver

    SciTech Connect

    Field, M.R.

    1996-12-31

    This work arises from the introduction of a parallel iterative solver to a large structural analysis finite element code. The code is called FEX and it was developed at Hitachi`s Mechanical Engineering Laboratory. The FEX package can deal with a large range of structural analysis problems using a large number of finite element techniques. FEX can solve either stress or thermal analysis problems of a range of different types from plane stress to a full three-dimensional model. These problems can consist of a number of different materials which can be modelled by a range of material models. The structure being modelled can have the load applied at either a point or a surface, or by a pressure, a centrifugal force or just gravity. Alternatively a thermal load can be applied with a given initial temperature. The displacement of the structure can be constrained by having a fixed boundary or by prescribing the displacement at a boundary.

  4. Monte Carlo, density functional theory, and Poisson-Boltzmann theory study of the structure of an electrolyte near an electrode

    NASA Astrophysics Data System (ADS)

    Boda, Dezsö; Fawcett, W. Ronald; Henderson, Douglas; Sokołowski, Stefan

    2002-04-01

    Monte Carlo (MC) and density functional theory (DFT) results are reported for an electrolyte, consisting of charged hard spheres of diameter 3 Å with the solvent modeled as a dielectric continuum, near a charged flat uniformly charged electrode. These results are more interesting than the earlier MC results of Torrie and Valleau [J. Chem. Phys. 73, 5807 (1980); J. Phys. Chem. 86, 3251 (1982)] for 4.25 Å spheres because the popular Gouy-Chapman (GC) theory is less successful for this system. The DFT results are in good agreement with the MC results. Both the MC and DFT results show particularly interesting features when the counterions are divalent. For such divalent counterions, the diffuse layer potential passes through a maximum magnitude, then declines, and ultimately has a sign that is opposite to that of the electrode charge. The consequences of this behavior are discussed. In contrast, the well-known GC theory consistently overestimates the magnitude of the diffuse layer potential, does not have any unusual behavior, and is in poor agreement with the simulation results.

  5. Modified Poisson-Boltzmann Equation in the Electric Double Layer Theory for an Electrolyte with Size Asymmetric Ions

    DTIC Science & Technology

    1988-09-26

    curves. The latter two features are routinely observed in experiments. Results have been published in the literature in the Journal of Chemical Physics and...accurately for 1:1 valency electrolytes and satisfactorily for higher valency systems. An article on this has been published in the Journal of Chemical Physics . We

  6. Roles of boundary conditions in DNA simulations: analysis of ion distributions with the finite-difference Poisson-Boltzmann method.

    PubMed

    Ye, Xiang; Cai, Qin; Yang, Wei; Luo, Ray

    2009-07-22

    The wide use of lattice-sum strategies in biomolecular simulations has raised many questions on potential artifacts in these strategies. One interesting question is the artifacts in the counterion distributions of highly charged systems. As one would anticipate, Coulombic interactions under the periodic boundary condition may deviate noticeably from those under the free boundary condition in the highly charged systems, significantly influencing their counterion distributions. On the other hand, the electrostatic screening due to water molecules and mobile ions may effectively damp the possible periodic distortions in Coulombic interactions. Therefore, the magnitude of periodicity-induced artifacts in counterion distributions is not straightforward to dissect without detailed analyses. In this study, we have developed a hybrid explicit counterion/implicit salt representation of mobile ions to address this question. We have chosen a well-studied DNA for easy validation of the minimal hybrid ion representation. Our detailed analysis of continuum ion distributions, explicit ion distributions, radial counterion distribution functions, and sequence-dependent counterion distributions, however, indicates that periodicity artifacts are not apparent at the surface of the tested DNA. Nevertheless, influence of boundary conditions does show up starting at the second solvation shell and becomes apparent at the cell boundary.

  7. Diffusiophoresis of concentrated suspensions of spherical particles with charge-regulated surface: polarization effect with nonlinear poisson-Boltzmann equation.

    PubMed

    Lou, James; Shih, Chun-Yu; Lee, Eric

    2010-01-05

    Diffusiophoresis in concentrated suspensions of spherical colloids with charge-regulated surface is investigated theoretically. The charge-regulated surface considered here is the generalization of conventional constant surface potential and constant surface charge density situations. Kuwabara's unit cell model is adopted to describe the system and a pseudospectral method based on Chebyshev polynomial is employed to solve the governing general electrokinetic equations. Excellent agreements with experimental data available in literature were obtained for the limiting case of constant surface potential and very dilute suspension. It is found, among other things, that in general the larger the number of dissociated functional groups on particle surface is, the higher the particle surface potential, hence the larger the magnitude of the particle mobility. The electric potential on particle surface depends on both the concentration of dissociated hydrogen ions and the concentration of electrolyte in the solution. The electric potential on particle surface turns out to be the dominant factor in the determination of the eventual particle diffusiophoretic mobility. Local maximum of diffusiophoretic mobility as a function of double layer thickness is observed. Its reason and influence is discussed. Corresponding behavior for the constant potential situation, however, may yield a monotonously increasing profile.

  8. A point implicit unstructured grid solver for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Thareja, Rajiv R.; Stewart, James R.; Hassan, Obey; Morgan, Ken; Peraire, Jaime

    1988-01-01

    An upwind finite element technique that uses cell centered quantities and implicit and/or explicit time marching has been developed for computing hypersonic laminar viscous flows using adaptive unstructured triangular grids. A structured grid of quadrilaterals is laid out near the body surface. For inviscid flows the method is stable at Courant numbers of over 100,000. A first order basic scheme and a higher order flux corrected transport (FCT) scheme have been implemented. This technique has been applied to the problem of predicting type III and IV shock wave interactions on a cylinder, with a view of simulating the pressure and heating rate augmentation caused by an impinging shock on the leading edge of a cowl lip of an engine inlet. The predictions of wall pressure and heating rates compare very well with experimental data. The flow features are very distinctly captured with a sequence of adaptively generated grids. The adaptive mesh generator and the upwind Navier-Stokes solver are combined in a set of programs called LARCNESS, an acronym for Langley Adaptive Remeshing Code and Navier-Stokes Solver.

  9. A point implicit unstructured grid solver for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Thareja, Rajiv R.; Stewart, James R.; Hassan, Obey; Morgan, Ken; Peraire, Jaime

    1988-01-01

    An upwind finite element technique that uses cell centered quantities and implicit and/or explicit time marching has been developed for computing hypersonic laminar viscous flows using adaptive unstructured triangular grids. A structured grid of quadrilaterals is laid out near the body surface. For inviscid flows the method is stable at Courant numbers of over 100,000. A first order basic scheme and a higher order flux corrected transport (FCT) scheme have been implemented. This technique has been applied to the problem of predicting type III and IV shock wave interactions on a cylinder, with a view of simulating the pressure and heating rate augmentation caused by an impinging shock on the leading edge of a cowl lip of an engine inlet. The predictions of wall pressure and heating rates compare very well with experimental data. The flow features are very distinctly captured with a sequence of adaptively generated grids. The adaptive mesh generator and the upwind Navier-Stokes solver are combined in a set of programs called LARCNESS, an acronym for Langley Adaptive Remeshing Code and Navier-Stokes Solver.

  10. Coordinate-Space Hartree-Fock-Bogoliubov Solvers for Superfluid Fermi Systems in Large Boxes

    SciTech Connect

    Pei, J. C.; Fann, George I; Harrison, Robert J; Nazarewicz, W.; Hill, Judith C; Galindo, Diego A; Jia, Jun

    2012-01-01

    The self-consistent Hartree-Fock-Bogoliubov problem in large boxes can be solved accurately in the coordinate space with the recently developed solvers HFB-AX (2D) and MADNESS-HFB (3D). This is essential for the description of superfluid Fermi systems with complicated topologies and significant spatial extend, such as fissioning nuclei, weakly-bound nuclei, nuclear matter in the neutron star rust, and ultracold Fermi atoms in elongated traps. The HFB-AX solver based on B-spline techniques uses a hybrid MPI and OpenMP programming model for parallel computation for distributed parallel computation, within a node multi-threaded LAPACK and BLAS libraries are used to further enable parallel calculations of large eigensystems. The MADNESS-HFB solver uses a novel multi-resolution analysis based adaptive pseudo-spectral techniques to enable fully parallel 3D calculations of very large systems. In this work we present benchmark results for HFB-AX and MADNESS-HFB on ultracold trapped fermions.

  11. Computational Framework for a Fully-Coupled, Collocated-Arrangement Flow Solver Applicable at all Speeds

    NASA Astrophysics Data System (ADS)

    Xiao, Cheng-Nian; Denner, Fabian; van Wachem, Berend

    2015-11-01

    A pressure-based Navier-Stokes solver which is applicable to fluid flow problems of a wide range of speeds is presented. The novel solver is based on collocated variable arrangement and uses a modified Rhie-Chow interpolation method to assure implicit pressure-velocity coupling. A Mach number biased modification to the continuity equation as well as coupling of flow and thermodynamic variables via an energy equation and equation of state enable the simulation of compressible flows belonging to transonic or supersonic Mach number regimes. The flow equation systems are all solved simultaneously, thus guaranteeing strong coupling between pressure and velocity at each iteration step. Shock-capturing is accomplished via nonlinear spatial discretisation schemes which adaptively apply an appropriate blending of first-order upwind and second-order central schemes depending on the local smoothness of the flow field. A selection of standard test problems will be presented to demonstrate the solver's capability of handling incompressible as well as compressible flow fields of vastly different speed regimes on structured as well as unstructured meshes. The authors are grateful for the financial support of Shell.

  12. Comparison of open-source linear programming solvers.

    SciTech Connect

    Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.; Jones, Katherine A.; Martin, Nathaniel; Detry, Richard Joseph

    2013-10-01

    When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modular In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.

  13. An iterative solver for the 3D Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Belonosov, Mikhail; Dmitriev, Maxim; Kostin, Victor; Neklyudov, Dmitry; Tcheverda, Vladimir

    2017-09-01

    We develop a frequency-domain iterative solver for numerical simulation of acoustic waves in 3D heterogeneous media. It is based on the application of a unique preconditioner to the Helmholtz equation that ensures convergence for Krylov subspace iteration methods. Effective inversion of the preconditioner involves the Fast Fourier Transform (FFT) and numerical solution of a series of boundary value problems for ordinary differential equations. Matrix-by-vector multiplication for iterative inversion of the preconditioned matrix involves inversion of the preconditioner and pointwise multiplication of grid functions. Our solver has been verified by benchmarking against exact solutions and a time-domain solver.

  14. A non-conforming 3D spherical harmonic transport solver

    SciTech Connect

    Van Criekingen, S.

    2006-07-01

    A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

  15. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations

    NASA Astrophysics Data System (ADS)

    Vergara-Perez, Sandra; Marucho, Marcelo

    2016-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson-Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post-analysis of structural and electrical properties of biomolecules.

  16. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations.

    PubMed

    Vergara-Perez, Sandra; Marucho, Marcelo

    2016-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post- analysis of structural and electrical properties of biomolecules.

  17. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations

    PubMed Central

    Vergara-Perez, Sandra; Marucho, Marcelo

    2015-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post- analysis of structural and electrical properties of biomolecules. PMID:26924848

  18. A speciation solver for cement paste modeling and the semismooth Newton method

    SciTech Connect

    Georget, Fabien; Prévost, Jean H.; Vanderbei, Robert J.

    2015-02-15

    The mineral assemblage of a cement paste may vary considerably with its environment. In addition, the water content of a cement paste is relatively low and the ionic strength of the interstitial solution is often high. These conditions are extreme conditions with respect to the common assumptions made in speciation problem. Furthermore the common trial and error algorithm to find the phase assemblage does not provide any guarantee of convergence. We propose a speciation solver based on a semismooth Newton method adapted to the thermodynamic modeling of cement paste. The strong theoretical properties associated with these methods offer practical advantages. Results of numerical experiments indicate that the algorithm is reliable, robust, and efficient.

  19. Efficient and spurious-free integral-equation-based optical waveguide mode solver.

    PubMed

    Hochman, Amit; Leviatan, Yehuda

    2007-10-29

    Modal analysis of waveguides and resonators by integra-lequation formulations can be hindered by the existence of spurious solutions. In this paper, spurious solutions are shown to be eliminated by introduction of a Rayleigh-quotient based matrix singularity measure. Once the spurious solutions are eliminated, the true modes may be determined efficiently and reliably, even in the presence of degeneracy, by an adaptive search algorithm. Analysis examples that demonstrate the efficacy of the method include an elliptical dielectric waveguide, two unequal touching dielectric cylinders, a plasmonic waveguide, and a realistic micro-structured optical fiber. A freely downloadable version of an optical waveguide mode solver based on this article is available.

  20. A Fourier-based elliptic solver for vortical flows with periodic and unbounded directions

    NASA Astrophysics Data System (ADS)

    Chatelain, Philippe; Koumoutsakos, Petros

    2010-04-01

    We present a computationally efficient, adaptive solver for the solution of the Poisson and Helmholtz equation used in flow simulations in domains with combinations of unbounded and periodic directions. The method relies on using FFTs on an extended domain and it is based on the method proposed by Hockney and Eastwood for plasma simulations. The method is well-suited to problems with dynamically growing domains and in particular flow simulations using vortex particle methods. The efficiency of the method is demonstrated in simulations of trailing vortices.

  1. Flow Solver for Incompressible Rectangular Domains

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia L.

    2008-01-01

    This is an extension of the Flow Solver for Incompressible 2-D Drive Cavity software described in the preceding article. It solves the Navier-Stokes equations for incompressible flow using finite differencing on a uniform, staggered grid. There is a runtime choice of either central differencing or modified upwinding for the convective term. The domain must be rectangular, but may have a rectangular walled region within it. Currently, the position of the interior region and exterior boundary conditions are changed by modifying parameters in the code and recompiling. These features make it possible to solve a variety of classical fluid flow problems such as an L-shaped cavity, channel flow, or wake flow past a square cylinder. The code uses fourth-order Runge-Kutta time-stepping and overall second-order spatial accuracy. This software permits the walled region to be positioned such that flow past a square cylinder, an L-shaped cavity, and the flow over a back-facing step can all be solved by reconfiguration. Also, this extension has an automatic detection of periodicity, as well as use of specialized data structure for ease of configuring domain decomposition and computing convergence in overlap regions.

  2. Advanced Multigrid Solvers for Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Brandt, Achi

    1999-01-01

    The main objective of this project has been to support the development of multigrid techniques in computational fluid dynamics that can achieve "textbook multigrid efficiency" (TME), which is several orders of magnitude faster than current industrial CFD solvers. Toward that goal we have assembled a detailed table which lists every foreseen kind of computational difficulty for achieving it, together with the possible ways for resolving the difficulty, their current state of development, and references. We have developed several codes to test and demonstrate, in the framework of simple model problems, several approaches for overcoming the most important of the listed difficulties that had not been resolved before. In particular, TME has been demonstrated for incompressible flows on one hand, and for near-sonic flows on the other hand. General approaches were advanced for the relaxation of stagnation points and boundary conditions under various situations. Also, new algebraic multigrid techniques were formed for treating unstructured grid formulations. More details on all these are given below.

  3. Generic task problem solvers in Soar

    NASA Technical Reports Server (NTRS)

    Johnson, Todd R.; Smith, Jack W., Jr.; Chandrasekaran, B.

    1989-01-01

    Two trends can be discerned in research in problem solving architectures in the last few years. On one hand, interest in task-specific architectures has grown, wherein types of problems of general utility are identified, and special architectures that support the development of problem solving systems for those types of problems are proposed. These architectures help in the acquisition and specification of knowledge by providing inference methods that are appropriate for the type of problem. However, knowledge based systems which use only one type of problem solving method are very brittle, and adding more types of methods requires a principled approach to integrating them in a flexible way. Contrasting with this trend is the proposal for a flexible, general architecture contained in the work on Soar. Soar has features which make it attractive for flexible use of all potentially relevant knowledge or methods. But as the theory Soar does not make commitments to specific types of problem solvers or provide guidance for their construction. It was investigated how task-specific architectures can be constructed in Soar to retain as many of the advantages as possible of both approaches. Examples were used from the Generic Task approach for building knowledge based systems. Though this approach was developed and applied for a number of problems, the ideas are applicable to other task-specific approaches as well.

  4. LSPRAY: Lagrangian Spray Solver for Applications With Parallel Computing and Unstructured Gas-Phase Flow Solvers

    NASA Technical Reports Server (NTRS)

    Raju, Manthena S.

    1998-01-01

    Sprays occur in a wide variety of industrial and power applications and in the processing of materials. A liquid spray is a phase flow with a gas as the continuous phase and a liquid as the dispersed phase (in the form of droplets or ligaments). Interactions between the two phases, which are coupled through exchanges of mass, momentum, and energy, can occur in different ways at different times and locations involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the rate-controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as other phenomena. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on sprays to unstructured grids and parallel computing. LSPRAY, which was developed by M.S. Raju of Nyma, Inc., is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo probability density function (PDF) solver. The LSPRAY solver accommodates the use of an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements in the gas-phase solvers. It is used specifically for fuel sprays within gas turbine combustors, but it has many other uses. The spray model used in LSPRAY provided favorable results when applied to stratified-charge rotary combustion (Wankel) engines and several other confined and unconfined spray flames. The source code will be available with the National Combustion Code (NCC) as a complete package.

  5. Parallel iterative solvers and preconditioners using approximate hierarchical methods

    SciTech Connect

    Grama, A.; Kumar, V.; Sameh, A.

    1996-12-31

    In this paper, we report results of the performance, convergence, and accuracy of a parallel GMRES solver for Boundary Element Methods. The solver uses a hierarchical approximate matrix-vector product based on a hybrid Barnes-Hut / Fast Multipole Method. We study the impact of various accuracy parameters on the convergence and show that with minimal loss in accuracy, our solver yields significant speedups. We demonstrate the excellent parallel efficiency and scalability of our solver. The combined speedups from approximation and parallelism represent an improvement of several orders in solution time. We also develop fast and paralellizable preconditioners for this problem. We report on the performance of an inner-outer scheme and a preconditioner based on truncated Green`s function. Experimental results on a 256 processor Cray T3D are presented.

  6. Performance of NASA Equation Solvers on Computational Mechanics Applications

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1996-01-01

    This paper describes the performance of a new family of NASA-developed equation solvers used for large-scale (i.e. 551,705 equations) structural analysis. To minimize computer time and memory, the solvers are divided by application and matrix characteristics (sparse/dense, real/complex, symmetric/nonsymmetric, size: in-core/out of core) and exploit the hardware features of current and future computers. In this paper, the equation solvers, which are written in FORTRAN, and are therefore easily transportable, are shown to be faster than specialized computer library routines utilizing assembly code. Twenty NASA structural benchmark models with NASA solver timings reside on World Wide Web with a challenge to beat them.

  7. Experiences Running a Parallel Answer Set Solver on Blue Gene

    NASA Astrophysics Data System (ADS)

    Schneidenbach, Lars; Schnor, Bettina; Gebser, Martin; Kaminski, Roland; Kaufmann, Benjamin; Schaub, Torsten

    This paper presents the concept of parallelisation of a solver for Answer Set Programming (ASP). While there already exist some approaches to parallel ASP solving, there was a lack of a parallel version of the powerful clasp solver. We implemented a parallel version of clasp based on message-passing. Experimental results on Blue Gene P/L indicate the potential of such an approach.

  8. RELATIVISTIC MAGNETOHYDRODYNAMICS: RENORMALIZED EIGENVECTORS AND FULL WAVE DECOMPOSITION RIEMANN SOLVER

    SciTech Connect

    Anton, Luis; MartI, Jose M; Ibanez, Jose M; Aloy, Miguel A.; Mimica, Petar; Miralles, Juan A.

    2010-05-01

    We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.

  9. Relativistic Magnetohydrodynamics: Renormalized Eigenvectors and Full Wave Decomposition Riemann Solver

    NASA Astrophysics Data System (ADS)

    Antón, Luis; Miralles, Juan A.; Martí, José M.; Ibáñez, José M.; Aloy, Miguel A.; Mimica, Petar

    2010-05-01

    We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.

  10. Benchmarking transport solvers for fracture flow problems

    NASA Astrophysics Data System (ADS)

    Olkiewicz, Piotr; Dabrowski, Marcin

    2015-04-01

    Fracture flow may dominate in rocks with low porosity and it can accompany both industrial and natural processes. Typical examples of such processes are natural flows in crystalline rocks and industrial flows in geothermal systems or hydraulic fracturing. Fracture flow provides an important mechanism for transporting mass and energy. For example, geothermal energy is primarily transported by the flow of the heated water or steam rather than by the thermal diffusion. The geometry of the fracture network and the distribution of the mean apertures of individual fractures are the key parameters with regard to the fracture network transmissivity. Transport in fractures can occur through the combination of advection and diffusion processes like in the case of dissolved chemical components. The local distribution of the fracture aperture may play an important role for both flow and transport processes. In this work, we benchmark various numerical solvers for flow and transport processes in a single fracture in 2D and 3D. Fracture aperture distributions are generated by a number of synthetic methods. We examine a single-phase flow of an incompressible viscous Newtonian fluid in the low Reynolds number limit. Periodic boundary conditions are used and a pressure difference is imposed in the background. The velocity field is primarly found using the Stokes equations. We systematically compare the obtained velocity field to the results obtained by solving the Reynolds equation. This allows us to examine the impact of the aperture distribution on the permeability of the medium and the local velocity distribution for two different mathematical descriptions of the fracture flow. Furthermore, we analyse the impact of aperture distribution on the front characteristics such as the standard deviation and the fractal dimension for systems in 2D and 3D.

  11. An advanced implicit solver for MHD

    NASA Astrophysics Data System (ADS)

    Udrea, Bogdan

    A new implicit algorithm has been developed for the solution of the time-dependent, viscous and resistive single fluid magnetohydrodynamic (MHD) equations. The algorithm is based on an approximate Riemann solver for the hyperbolic fluxes and central differencing applied on a staggered grid for the parabolic fluxes. The algorithm employs a locally aligned coordinate system that allows the solution to the Riemann problems to be solved in a natural direction, normal to cell interfaces. The result is an original scheme that is robust and reduces the complexity of the flux formulas. The evaluation of the parabolic fluxes is also implemented using a locally aligned coordinate system, this time on the staggered grid. The implicit formulation employed by WARP3 is a two level scheme that was applied for the first time to the single fluid MHD model. The flux Jacobians that appear in the implicit scheme are evaluated numerically. The linear system that results from the implicit discretization is solved using a robust symmetric Gauss-Seidel method. The code has an explicit mode capability so that implementation and test of new algorithms or new physics can be performed in this simpler mode. Last but not least the code was designed and written to run on parallel computers so that complex, high resolution runs can be per formed in hours rather than days. The code has been benchmarked against analytical and experimental gas dynamics and MHD results. The benchmarks consisted of one-dimensional Riemann problems and diffusion dominated problems, two-dimensional supersonic flow over a wedge, axisymmetric magnetoplasmadynamic (MPD) thruster simulation and three-dimensional supersonic flow over intersecting wedges and spheromak stability simulation. The code has been proven to be robust and the results of the simulations showed excellent agreement with analytical and experimental results. Parallel performance studies showed that the code performs as expected when run on parallel

  12. A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing

    NASA Technical Reports Server (NTRS)

    Takaki, Mitsuo; Cavalcanti, Diego; Gheyi, Rohit; Iyoda, Juliano; dAmorim, Marcelo; Prudencio, Ricardo

    2009-01-01

    The complexity of constraints is a major obstacle for constraint-based software verification. Automatic constraint solvers are fundamentally incomplete: input constraints often build on some undecidable theory or some theory the solver does not support. This paper proposes and evaluates several randomized solvers to address this issue. We compare the effectiveness of a symbolic solver (CVC3), a random solver, three hybrid solvers (i.e., mix of random and symbolic), and two heuristic search solvers. We evaluate the solvers on two benchmarks: one consisting of manually generated constraints and another generated with a concolic execution of 8 subjects. In addition to fully decidable constraints, the benchmarks include constraints with non-linear integer arithmetic, integer modulo and division, bitwise arithmetic, and floating-point arithmetic. As expected symbolic solving (in particular, CVC3) subsumes the other solvers for the concolic execution of subjects that only generate decidable constraints. For the remaining subjects the solvers are complementary.

  13. Smoothed aggregation adaptive spectral element-based algebraic multigrid

    SciTech Connect

    2015-01-20

    SAAMGE provides parallel methods for building multilevel hierarchies and solvers that can be used for elliptic equations with highly heterogeneous coefficients. Additionally, hierarchy adaptation is implemented allowing solving multiple problems with close coefficients without rebuilding the hierarchy.

  14. Quantitative analysis of numerical solvers for oscillatory biomolecular system models

    PubMed Central

    Quo, Chang F; Wang, May D

    2008-01-01

    Background This article provides guidelines for selecting optimal numerical solvers for biomolecular system models. Because various parameters of the same system could have drastically different ranges from 10-15 to 1010, the ODEs can be stiff and ill-conditioned, resulting in non-unique, non-existing, or non-reproducible modeling solutions. Previous studies have not examined in depth how to best select numerical solvers for biomolecular system models, which makes it difficult to experimentally validate the modeling results. To address this problem, we have chosen one of the well-known stiff initial value problems with limit cycle behavior as a test-bed system model. Solving this model, we have illustrated that different answers may result from different numerical solvers. We use MATLAB numerical solvers because they are optimized and widely used by the modeling community. We have also conducted a systematic study of numerical solver performances by using qualitative and quantitative measures such as convergence, accuracy, and computational cost (i.e. in terms of function evaluation, partial derivative, LU decomposition, and "take-off" points). The results show that the modeling solutions can be drastically different using different numerical solvers. Thus, it is important to intelligently select numerical solvers when solving biomolecular system models. Results The classic Belousov-Zhabotinskii (BZ) reaction is described by the Oregonator model and is used as a case study. We report two guidelines in selecting optimal numerical solver(s) for stiff, complex oscillatory systems: (i) for problems with unknown parameters, ode45 is the optimal choice regardless of the relative error tolerance; (ii) for known stiff problems, both ode113 and ode15s are good choices under strict relative tolerance conditions. Conclusions For any given biomolecular model, by building a library of numerical solvers with quantitative performance assessment metric, we show that it is possible

  15. A Comparison of Stiff ODE Solvers for Astrochemical Kinetics Problems

    NASA Astrophysics Data System (ADS)

    Nejad, Lida A. M.

    2005-09-01

    The time dependent chemical rate equations arising from astrochemical kinetics problems are described by a system of stiff ordinary differential equations (ODEs). In this paper, using three astrochemical models of varying physical and computational complexity, and hence different degrees of stiffness, we present a comprehensive performance survey of a set of well-established ODE solver packages from the ODEPACK collection, namely LSODE, LSODES, VODE and VODPK. For completeness, we include results from the GEAR package in one of the test models. The results demonstrate that significant performance improvements can be obtained over GEAR which is still being used by many astrochemists by default. We show that a simple appropriate ordering of the species set results in a substantial improvement in the performance of the tested ODE solvers. The sparsity of the associated Jacobian matrix can be exploited and results using the sparse direct solver routine LSODES show an extensive reduction in CPU time without any loss in accuracy. We compare the performance and the computed abundances of one model with a 175 species set and a reduced set of 88 species, keeping all physical and chemical parameters identical with both sets.We found that the calculated abundances using two different size models agree quite well. However, with no extra computational effort and more reliable results, it is possible for the computation to be many times faster with the larger species set than the reduced set, depending on the use of solvers, the ordering and the chosen options. It is also shown that though a particular solver with certain chosen parameters may have severe difficulty or even fail to complete a run over the required integration time, another solver can easily complete the run with a wider range of control parameters and options. As a result of the superior performance of LSODES for the solution of astrochemical kinetics systems, we have tailor-made a sparse version of the VODE

  16. Euler/Navier-Stokes Solvers Applied to Ducted Fan Configurations

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    1997-01-01

    Due to noise considerations, ultra high bypass ducted fans have become a more viable design. These ducted fans typically consist of a rotor stage containing a wide chord fan and a stator stage. One of the concerns for this design is the classical flutter that keeps occurring in various unducted fan blade designs. These flutter are catastrophic and are to be avoided in the flight envelope of the engine. Some numerical investigations by Williams, Cho and Dalton, have suggested that a duct around a propeller makes it more unstable. This needs to be further investigated. In order to design an engine to safely perform a set of desired tasks, accurate information of the stresses on the blade during the entire cycle of blade motion is required. This requirement in turn demands that accurate knowledge of steady and unsteady blade loading be available. Aerodynamic solvers based on unsteady three-dimensional analysis will provide accurate and fast solutions and are best suited for aeroelastic analysis. The Euler solvers capture significant physics of the flowfield and are reasonably fast. An aerodynamic solver Ref. based on Euler equations had been developed under a separate grant from NASA Lewis in the past. Under the current grant, this solver has been modified to calculate the aeroelastic characteristics of unducted and ducted rotors. Even though, the aeroelastic solver based on three-dimensional Euler equations is computationally efficient, it is still very expensive to investigate the effects of multiple stages on the aeroelastic characteristics. In order to investigate the effects of multiple stages, a two-dimensional multi stage aeroelastic solver was also developed under this task, in collaboration with Dr. T. S. R. Reddy of the University of Toledo. Both of these solvers were applied to several test cases and validated against experimental data, where available.

  17. Parallel adaptive mesh refinement for electronic structure calculations

    SciTech Connect

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1996-12-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradients with multigrid preconditioning. We have parallelized our solver using an object-oriented adaptive mesh refinement framework.

  18. The Search for the Adaptable ICT Student

    ERIC Educational Resources Information Center

    Van Der Vyver, Glen

    2009-01-01

    The "new" ICT professional should be an articulate problem-solver who understands business and technology, in particular how technology can solve business problems. Furthermore, the ideal ICT student should be adaptable. The adaptable student embraces change, learns quickly, understands the job market, thrives on variety, is autonomous,…

  19. The Search for the Adaptable ICT Student

    ERIC Educational Resources Information Center

    Van Der Vyver, Glen

    2009-01-01

    The "new" ICT professional should be an articulate problem-solver who understands business and technology, in particular how technology can solve business problems. Furthermore, the ideal ICT student should be adaptable. The adaptable student embraces change, learns quickly, understands the job market, thrives on variety, is autonomous,…

  20. Performance Models for the Spike Banded Linear System Solver

    DOE PAGES

    Manguoglu, Murat; Saied, Faisal; Sameh, Ahmed; ...

    2011-01-01

    With availability of large-scale parallel platforms comprised of tens-of-thousands of processors and beyond, there is significant impetus for the development of scalable parallel sparse linear system solvers and preconditioners. An integral part of this design process is the development of performance models capable of predicting performance and providing accurate cost models for the solvers and preconditioners. There has been some work in the past on characterizing performance of the iterative solvers themselves. In this paper, we investigate the problem of characterizing performance and scalability of banded preconditioners. Recent work has demonstrated the superior convergence properties and robustness of banded preconditioners,more » compared to state-of-the-art ILU family of preconditioners as well as algebraic multigrid preconditioners. Furthermore, when used in conjunction with efficient banded solvers, banded preconditioners are capable of significantly faster time-to-solution. Our banded solver, the Truncated Spike algorithm is specifically designed for parallel performance and tolerance to deep memory hierarchies. Its regular structure is also highly amenable to accurate performance characterization. Using these characteristics, we derive the following results in this paper: (i) we develop parallel formulations of the Truncated Spike solver, (ii) we develop a highly accurate pseudo-analytical parallel performance model for our solver, (iii) we show excellent predication capabilities of our model – based on which we argue the high scalability of our solver. Our pseudo-analytical performance model is based on analytical performance characterization of each phase of our solver. These analytical models are then parameterized using actual runtime information on target platforms. An important consequence of our performance models is that they reveal underlying performance bottlenecks in both serial and parallel formulations. All of our results are validated

  1. Virtual Petaflop Simulation: Parallel Potential Solvers and New Integrators for Gravitational Systems

    NASA Technical Reports Server (NTRS)

    Lake, George; Quinn, Thomas; Richardson, Derek C.; Stadel, Joachim

    1999-01-01

    "The orbit of any one planet depends on the combined motion of all the planets, not to mention the actions of all these on each other. To consider simultaneously all these causes of motion and to define these motions by exact laws allowing of convenient calculation exceeds, unless I am mistaken, the forces of the entire human intellect" -Isaac Newton 1687. Epochal surveys are throwing down the gauntlet for cosmological simulation. We describe three keys to meeting the challenge of N-body simulation: adaptive potential solvers, adaptive integrators and volume renormalization. With these techniques and a dedicated Teraflop facility, simulation can stay even with observation of the Universe. We also describe some problems in the formation and stability of planetary systems. Here, the challenge is to perform accurate integrations that retain Hamiltonian properties for 10(exp 13) timesteps.

  2. A robust HLLC-type Riemann solver for strong shock

    NASA Astrophysics Data System (ADS)

    Shen, Zhijun; Yan, Wei; Yuan, Guangwei

    2016-03-01

    It is well known that for the Eulerian equations the numerical schemes that can accurately capture contact discontinuity usually suffer from some disastrous carbuncle phenomenon, while some more dissipative schemes, such as the HLL scheme, are free from this kind of shock instability. Hybrid schemes to combine a dissipative flux with a less dissipative flux can cure the shock instability, but also may lead to other problems, such as certain arbitrariness of choosing switching parameters or contact interface becoming smeared. In order to overcome these drawbacks, this paper proposes a simple and robust HLLC-type Riemann solver for inviscid, compressible gas flows, which is capable of preserving sharp contact surface and is free from instability. The main work is to construct a HLL-type Riemann solver and a HLLC-type Riemann solver by modifying the shear viscosity of the original HLL and HLLC methods. Both of the two new schemes are positively conservative under some typical wavespeed estimations. Moreover, a linear matrix stability analysis for the proposed schemes is accomplished, which illustrates the HLLC-type solver with shear viscosity is stable whereas the HLL-type solver with vorticity wave is unstable. Our arguments and numerical experiments demonstrate that the inadequate dissipation associated to the shear wave may be a unique reason to cause the instability.

  3. The novel high-performance 3-D MT inverse solver

    NASA Astrophysics Data System (ADS)

    Kruglyakov, Mikhail; Geraskin, Alexey; Kuvshinov, Alexey

    2016-04-01

    We present novel, robust, scalable, and fast 3-D magnetotelluric (MT) inverse solver. The solver is written in multi-language paradigm to make it as efficient, readable and maintainable as possible. Separation of concerns and single responsibility concepts go through implementation of the solver. As a forward modelling engine a modern scalable solver extrEMe, based on contracting integral equation approach, is used. Iterative gradient-type (quasi-Newton) optimization scheme is invoked to search for (regularized) inverse problem solution, and adjoint source approach is used to calculate efficiently the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT responses, and supports massive parallelization. Moreover, different parallelization strategies implemented in the code allow optimal usage of available computational resources for a given problem statement. To parameterize an inverse domain the so-called mask parameterization is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to HPC Piz Daint (6th supercomputer in the world) demonstrate practically linear scalability of the code up to thousands of nodes.

  4. Overset Techniques for Hypersonic Multibody Configurations with the DPLR Solver

    NASA Technical Reports Server (NTRS)

    Hyatt, Andrew James; Prabhu, Dinesh K.; Boger, David A.

    2010-01-01

    Three unit problems in shock-shock/shock-boundary layer interactions are considered in the evaluation overset techniques with the Data Parallel Line Relaxation (DPLR) computational fluid dynamics solver, a three dimensional Navier-Stokes solver . The unit problems considered are those of two stacked hemispherical cylinders (of different diameters and lengths, and at various orientations relative to each other or relative to the nozzle axis) tested in a hypersonic wind tunnel. These problems are taken as representative of a Two-Stage-To-Orbit design. The objective of the present presentation would be to discuss the techniques used to develop suitable overset grid systems and then evaluate their respective solutions by comparing to corresponding point matched grid solutions and experimental data. Both successful and unsuccessful techniques would be discussed. All solutions would be calculated using the DPLR solver and SUGGAR will be used to develop the domain connectivity information.

  5. General Equation Set Solver for Compressible and Incompressible Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas L.; Dorney, Daniel J.

    2002-01-01

    Turbomachines for propulsion applications operate with many different working fluids and flow conditions. The flow may be incompressible, such as in the liquid hydrogen pump in a rocket engine, or supersonic, such as in the turbine which may drive the hydrogen pump. Separate codes have traditionally been used for incompressible and compressible flow solvers. The General Equation Set (GES) method can be used to solve both incompressible and compressible flows, and it is not restricted to perfect gases, as are many compressible-flow turbomachinery solvers. An unsteady GES turbomachinery flow solver has been developed and applied to both air and water flows through turbines. It has been shown to be an excellent alternative to maintaining two separate codes.

  6. Advanced Fast 3D Electromagnetic Solver for Microwave Tomography Imaging.

    PubMed

    Simonov, Nikolai; Kim, Bo-Ra; Lee, Kwang-Jae; Jeon, Soon-Ik; Son, Seong-Ho

    2017-06-07

    This paper describes a fast forward electromagnetic solver (FFS) for the image reconstruction algorithm of our microwave tomography (MT) system. Our apparatus is a preclinical prototype of a biomedical imaging system, designed for the purpose of early breast cancer detection. It operates in the 3-6 GHz frequency band using a circular array of probe antennas immersed in a matching liquid; it produces image reconstructions of the permittivity and conductivity profiles of the breast under examination. Our reconstruction algorithm solves the electromagnetic inverse problem and takes into account the real electromagnetic properties of the probe antenna array as well as the influence of the patient's body and that of the upper metal screen sheet. This FFS algorithm is much faster than conventional electromagnetic simulation solvers. In comparison, in the same PC, the CST solver takes ~45 min, while the FFS takes ~1 s of effective simulation time for the same electromagnetic model of a numerical breast phantom.

  7. Numerical comparison of Riemann solvers for astrophysical hydrodynamics

    NASA Astrophysics Data System (ADS)

    Klingenberg, Christian; Schmidt, Wolfram; Waagan, Knut

    2007-11-01

    The idea of this work is to compare a new positive and entropy stable approximate Riemann solver by Francois Bouchut with a state-of the-art algorithm for astrophysical fluid dynamics. We implemented the new Riemann solver into an astrophysical PPM-code, the Prometheus code, and also made a version with a different, more theoretically grounded higher order algorithm than PPM. We present shock tube tests, two-dimensional instability tests and forced turbulence simulations in three dimensions. We find subtle differences between the codes in the shock tube tests, and in the statistics of the turbulence simulations. The new Riemann solver increases the computational speed without significant loss of accuracy.

  8. Two Solvers for Tractable Temporal Constraints with Preferences

    NASA Technical Reports Server (NTRS)

    Rossi, F.; Khatib,L.; Morris, P.; Morris, R.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    A number of reasoning problems involving the manipulation of temporal information can naturally be viewed as implicitly inducing an ordering of potential local decisions involving time on the basis of preferences. Soft temporal constraints problems allow to describe in a natural way scenarios where events happen over time and preferences are associated to event distances and durations. In general, solving soft temporal problems require exponential time in the worst case, but there are interesting subclasses of problems which are polynomially solvable. We describe two solvers based on two different approaches for solving the same tractable subclass. For each solver we present the theoretical results it stands on, a description of the algorithm and some experimental results. The random generator used to build the problems on which tests are performed is also described. Finally, we compare the two solvers highlighting the tradeoff between performance and representational power.

  9. A Multi-Level Parallelization Concept for High-Fidelity Multi-Block Solvers

    NASA Technical Reports Server (NTRS)

    Hatay, Ferhat F.; Jespersen, Dennis C.; Guruswamy, Guru P.; Rizk, Yehia M.; Byun, Chansup; Gee, Ken; VanDalsem, William R. (Technical Monitor)

    1997-01-01

    The integration of high-fidelity Computational Fluid Dynamics (CFD) analysis tools with the industrial design process benefits greatly from the robust implementations that are transportable across a wide range of computer architectures. In the present work, a hybrid domain-decomposition and parallelization concept was developed and implemented into the widely-used NASA multi-block Computational Fluid Dynamics (CFD) packages implemented in ENSAERO and OVERFLOW. The new parallel solver concept, PENS (Parallel Euler Navier-Stokes Solver), employs both fine and coarse granularity in data partitioning as well as data coalescing to obtain the desired load-balance characteristics on the available computer platforms. This multi-level parallelism implementation itself introduces no changes to the numerical results, hence the original fidelity of the packages are identically preserved. The present implementation uses the Message Passing Interface (MPI) library for interprocessor message passing and memory accessing. By choosing an appropriate combination of the available partitioning and coalescing capabilities only during the execution stage, the PENS solver becomes adaptable to different computer architectures from shared-memory to distributed-memory platforms with varying degrees of parallelism. The PENS implementation on the IBM SP2 distributed memory environment at the NASA Ames Research Center obtains 85 percent scalable parallel performance using fine-grain partitioning of single-block CFD domains using up to 128 wide computational nodes. Multi-block CFD simulations of complete aircraft simulations achieve 75 percent perfect load-balanced executions using data coalescing and the two levels of parallelism. SGI PowerChallenge, SGI Origin 2000, and a cluster of workstations are the other platforms where the robustness of the implementation is tested. The performance behavior on the other computer platforms with a variety of realistic problems will be included as this on

  10. MPDATA error estimator for mesh adaptivity

    NASA Astrophysics Data System (ADS)

    Szmelter, Joanna; Smolarkiewicz, Piotr K.

    2006-04-01

    In multidimensional positive definite advection transport algorithm (MPDATA) the leading error as well as the first- and second-order solutions are known explicitly by design. This property is employed to construct refinement indicators for mesh adaptivity. Recent progress with the edge-based formulation of MPDATA facilitates the use of the method in an unstructured-mesh environment. In particular, the edge-based data structure allows for flow solvers to operate on arbitrary hybrid meshes, thereby lending itself to implementations of various mesh adaptivity techniques. A novel unstructured-mesh nonoscillatory forward-in-time (NFT) solver for compressible Euler equations is used to illustrate the benefits of adaptive remeshing as well as mesh movement and enrichment for the efficacy of MPDATA-based flow solvers. Validation against benchmark test cases demonstrates robustness and accuracy of the approach.

  11. Nonlinear Least Squares Curve Fitting with Microsoft Excel Solver

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    1998-01-01

    "Solver" is a powerful tool in the Microsoft Excel spreadsheet that provides a simple means of fitting experimental data to nonlinear functions. The procedure is so easy to use and its mode of operation is so obvious that it is excellent for students to learn the underlying principle of lease squares curve fitting. This article introduces the method of fitting nonlinear functions with Solver and extends the treatment to weighted least squares and to the estimation of uncertainties in the least-squares parameters.

  12. An Easy Method To Accelerate An Iterative Algebraic Equation Solver

    SciTech Connect

    Yao, Jin

    2014-01-06

    This article proposes to add a simple term to an iterative algebraic equation solver with an order n convergence rate, and to raise the order of convergence to (2n - 1). In particular, a simple algebraic equation solver with the 5th order convergence but uses only 4 function values in each iteration, is described in details. When this scheme is applied to a Newton-Raphson method of the quadratic convergence for a system of algebraic equations, a cubic convergence can be achieved with an low overhead cost of function evaluation that can be ignored as the size of the system increases.

  13. Toward robust scalable algebraic multigrid solvers.

    SciTech Connect

    Waisman, Haim; Schroder, Jacob; Olson, Luke; Hiriyur, Badri; Gaidamour, Jeremie; Siefert, Christopher; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2010-10-01

    This talk highlights some multigrid challenges that arise from several application areas including structural dynamics, fluid flow, and electromagnetics. A general framework is presented to help introduce and understand algebraic multigrid methods based on energy minimization concepts. Connections between algebraic multigrid prolongators and finite element basis functions are made to explored. It is shown how the general algebraic multigrid framework allows one to adapt multigrid ideas to a number of different situations. Examples are given corresponding to linear elasticity and specifically in the solution of linear systems associated with extended finite elements for fracture problems.

  14. Solving Upwind-Biased Discretizations. 2; Multigrid Solver Using Semicoarsening

    NASA Technical Reports Server (NTRS)

    Diskin, Boris

    1999-01-01

    This paper studies a novel multigrid approach to the solution for a second order upwind biased discretization of the convection equation in two dimensions. This approach is based on semi-coarsening and well balanced explicit correction terms added to coarse-grid operators to maintain on coarse-grid the same cross-characteristic interaction as on the target (fine) grid. Colored relaxation schemes are used on all the levels allowing a very efficient parallel implementation. The results of the numerical tests can be summarized as follows: 1) The residual asymptotic convergence rate of the proposed V(0, 2) multigrid cycle is about 3 per cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid algorithms using full coarsening. The reported efficiency does not deteriorate with increasing the cycle, depth (number of levels) and/or refining the target-grid mesh spacing. 2) The full multi-grid algorithm (FMG) with two V(0, 2) cycles on the target grid and just one V(0, 2) cycle on all the coarse grids always provides an approximate solution with the algebraic error less than the discretization error. Estimates of the total work in the FMG algorithm are ranged between 18 and 30 minimal work units (depending on the target (discretizatioin). Thus, the overall efficiency of the FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency. 3) A novel approach to deriving a discrete solution approximating the true continuous solution with a relative accuracy given in advance is developed. An adaptive multigrid algorithm (AMA) using comparison of the solutions on two successive target grids to estimate the accuracy of the current target-grid solution is defined. A desired relative accuracy is accepted as an input parameter. The final target grid on which this accuracy can be achieved is chosen automatically in the solution process. the actual relative accuracy of the discrete solution approximation

  15. Energy consumption optimization of the total-FETI solver by changing the CPU frequency

    NASA Astrophysics Data System (ADS)

    Horak, David; Riha, Lubomir; Sojka, Radim; Kruzik, Jakub; Beseda, Martin; Cermak, Martin; Schuchart, Joseph

    2017-07-01

    The energy consumption of supercomputers is one of the critical problems for the upcoming Exascale supercomputing era. The awareness of power and energy consumption is required on both software and hardware side. This paper deals with the energy consumption evaluation of the Finite Element Tearing and Interconnect (FETI) based solvers of linear systems, which is an established method for solving real-world engineering problems. We have evaluated the effect of the CPU frequency on the energy consumption of the FETI solver using a linear elasticity 3D cube synthetic benchmark. In this problem, we have evaluated the effect of frequency tuning on the energy consumption of the essential processing kernels of the FETI method. The paper provides results for two types of frequency tuning: (1) static tuning and (2) dynamic tuning. For static tuning experiments, the frequency is set before execution and kept constant during the runtime. For dynamic tuning, the frequency is changed during the program execution to adapt the system to the actual needs of the application. The paper shows that static tuning brings up 12% energy savings when compared to default CPU settings (the highest clock rate). The dynamic tuning improves this further by up to 3%.

  16. Parallel adaptive Cartesian upwind methods for shock-driven multiphysics simulation

    SciTech Connect

    Deiterding, Ralf

    2011-01-01

    The multiphysics fluid-structure interaction simulation of shock-loaded thin-walled structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. By combining a Cartesian embedded boundary approach with dynamic mesh adaptation a generic software framework for such flow solvers has been constructed that allows easy exchange of the specific hydrodynamic finite volume upwind scheme and coupling to various explicit finite element solid dynamics solvers. The paper gives an overview of the computational approach and presents first simulations that couple the software to the general purpose solid dynamics code DYNA3D.

  17. Intellectual Abilities That Discriminate Good and Poor Problem Solvers.

    ERIC Educational Resources Information Center

    Meyer, Ruth Ann

    1981-01-01

    This study compared good and poor fourth-grade problem solvers on a battery of 19 "reference" tests for verbal, induction, numerical, word fluency, memory, perceptual speed, and simple visualization abilities. Results suggest verbal, numerical, and especially induction abilities are important to successful mathematical problem solving.…

  18. Navier-Stokes Solvers and Generalizations for Reacting Flow Problems

    SciTech Connect

    Elman, Howard C

    2013-01-27

    This is an overview of our accomplishments during the final term of this grant (1 September 2008 -- 30 June 2012). These fall mainly into three categories: fast algorithms for linear eigenvalue problems; solution algorithms and modeling methods for partial differential equations with uncertain coefficients; and preconditioning methods and solvers for models of computational fluid dynamics (CFD).

  19. Intellectual Abilities That Discriminate Good and Poor Problem Solvers.

    ERIC Educational Resources Information Center

    Meyer, Ruth Ann

    1981-01-01

    This study compared good and poor fourth-grade problem solvers on a battery of 19 "reference" tests for verbal, induction, numerical, word fluency, memory, perceptual speed, and simple visualization abilities. Results suggest verbal, numerical, and especially induction abilities are important to successful mathematical problem solving.…

  20. PSH3D fast Poisson solver for petascale DNS

    NASA Astrophysics Data System (ADS)

    Adams, Darren; Dodd, Michael; Ferrante, Antonino

    2016-11-01

    Direct numerical simulation (DNS) of high Reynolds number, Re >= O (105) , turbulent flows requires computational meshes >= O (1012) grid points, and, thus, the use of petascale supercomputers. DNS often requires the solution of a Helmholtz (or Poisson) equation for pressure, which constitutes the bottleneck of the solver. We have developed a parallel solver of the Helmholtz equation in 3D, PSH3D. The numerical method underlying PSH3D combines a parallel 2D Fast Fourier transform in two spatial directions, and a parallel linear solver in the third direction. For computational meshes up to 81923 grid points, our numerical results show that PSH3D scales up to at least 262k cores of Cray XT5 (Blue Waters). PSH3D has a peak performance 6 × faster than 3D FFT-based methods when used with the 'partial-global' optimization, and for a 81923 mesh solves the Poisson equation in 1 sec using 128k cores. Also, we have verified that the use of PSH3D with the 'partial-global' optimization in our DNS solver does not reduce the accuracy of the numerical solution of the incompressible Navier-Stokes equations.

  1. Development of multiphase CFD flow solver in OpenFOAM

    NASA Astrophysics Data System (ADS)

    Rollins, Chad; Luo, Hong; Dinh, Nam

    2016-11-01

    We are developing a pressure-based multiphase (Eulerian) CFD solver using OpenFOAM with Reynolds-averaged turbulence stress modeling. Our goal is the evaluation and improvement of the current OpenFOAM two-fluid (Eulerian) solver in boiling channels with a motivation to produce a more consistent modeling and numerics treatment. The difficulty lies in the prescense of the many forces and models that are tightly non-linearly coupled in the solver. Therefore, the solver platform will allow not only the modeling, but the tracking as well, of the effects of the individual components (various interfacial forces/heat transfer models) and their interactions. This is essential for the development of a robust and efficient solution method. There has be a lot of work already performed in related areas that generally indicates a lack of robustness of the solution methods. The objective here is therefore to identify and develop remedies for numerical/modeling issues through a systematic approach to verification and validation, taking advantage of the open source nature of OpenFOAM. The presentation will discuss major findings, and suggest strategies for robust and consistent modeling (probably, a more consistent treatment of heat transfer models with two-fluid models in the near-wall cells).

  2. Thinking Process of Naive Problem Solvers to Solve Mathematical Problems

    ERIC Educational Resources Information Center

    Mairing, Jackson Pasini

    2017-01-01

    Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…

  3. Hypersonic simulations using open-source CFD and DSMC solvers

    NASA Astrophysics Data System (ADS)

    Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.

    2016-11-01

    Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.

  4. A new fast direct solver for the boundary element method

    NASA Astrophysics Data System (ADS)

    Huang, S.; Liu, Y. J.

    2017-04-01

    A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman-Morrison-Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.

  5. Coordinate Projection-based Solver for ODE with Invariants

    SciTech Connect

    Serban, Radu

    2008-04-08

    CPODES is a general purpose (serial and parallel) solver for systems of ordinary differential equation (ODE) with invariants. It implements a coordinate projection approach using different types of projection (orthogonal or oblique) and one of several methods for the decompositon of the Jacobian of the invariant equations.

  6. Time-varying Riemann solvers for conservation laws on networks

    NASA Astrophysics Data System (ADS)

    Garavello, Mauro; Piccoli, Benedetto

    We consider a conservation law on a network and generic Riemann solvers at nodes depending on parameters, which can be seen as control functions. Assuming that the parameters have bounded variation as functions of time, we prove existence of solutions to Cauchy problems on the whole network.

  7. Parallel Solver for H(div) Problems Using Hybridization and AMG

    SciTech Connect

    Lee, Chak S.; Vassilevski, Panayot S.

    2016-01-15

    In this paper, a scalable parallel solver is proposed for H(div) problems discretized by arbitrary order finite elements on general unstructured meshes. The solver is based on hybridization and algebraic multigrid (AMG). Unlike some previously studied H(div) solvers, the hybridization solver does not require discrete curl and gradient operators as additional input from the user. Instead, only some element information is needed in the construction of the solver. The hybridization results in a H1-equivalent symmetric positive definite system, which is then rescaled and solved by AMG solvers designed for H1 problems. Weak and strong scaling of the method are examined through several numerical tests. Our numerical results show that the proposed solver provides a promising alternative to ADS, a state-of-the-art solver [12], for H(div) problems. In fact, it outperforms ADS for higher order elements.

  8. Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Kudo, Shuhei; Bian, Xin; Li, Zhen; Karniadakis, George Em

    2015-09-01

    Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM).

  9. Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers

    SciTech Connect

    Tang, Yu-Hang; Kudo, Shuhei; Bian, Xin; Li, Zhen; Karniadakis, George Em

    2015-09-15

    Graphical abstract: - Abstract: Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM)

  10. Migration of vectorized iterative solvers to distributed memory architectures

    SciTech Connect

    Pommerell, C.; Ruehl, R.

    1994-12-31

    Both necessity and opportunity motivate the use of high-performance computers for iterative linear solvers. Necessity results from the size of the problems being solved-smaller problems are often better handled by direct methods. Opportunity arises from the formulation of the iterative methods in terms of simple linear algebra operations, even if this {open_quote}natural{close_quotes} parallelism is not easy to exploit in irregularly structured sparse matrices and with good preconditioners. As a result, high-performance implementations of iterative solvers have attracted a lot of interest in recent years. Most efforts are geared to vectorize or parallelize the dominating operation-structured or unstructured sparse matrix-vector multiplication, or to increase locality and parallelism by reformulating the algorithm-reducing global synchronization in inner products or local data exchange in preconditioners. Target architectures for iterative solvers currently include mostly vector supercomputers and architectures with one or few optimized (e.g., super-scalar and/or super-pipelined RISC) processors and hierarchical memory systems. More recently, parallel computers with physically distributed memory and a better price/performance ratio have been offered by vendors as a very interesting alternative to vector supercomputers. However, programming comfort on such distributed memory parallel processors (DMPPs) still lags behind. Here the authors are concerned with iterative solvers and their changing computing environment. In particular, they are considering migration from traditional vector supercomputers to DMPPs. Application requirements force one to use flexible and portable libraries. They want to extend the portability of iterative solvers rather than reimplementing everything for each new machine, or even for each new architecture.

  11. Decision Engines for Software Analysis Using Satisfiability Modulo Theories Solvers

    NASA Technical Reports Server (NTRS)

    Bjorner, Nikolaj

    2010-01-01

    The area of software analysis, testing and verification is now undergoing a revolution thanks to the use of automated and scalable support for logical methods. A well-recognized premise is that at the core of software analysis engines is invariably a component using logical formulas for describing states and transformations between system states. The process of using this information for discovering and checking program properties (including such important properties as safety and security) amounts to automatic theorem proving. In particular, theorem provers that directly support common software constructs offer a compelling basis. Such provers are commonly called satisfiability modulo theories (SMT) solvers. Z3 is a state-of-the-art SMT solver. It is developed at Microsoft Research. It can be used to check the satisfiability of logical formulas over one or more theories such as arithmetic, bit-vectors, lists, records and arrays. The talk describes some of the technology behind modern SMT solvers, including the solver Z3. Z3 is currently mainly targeted at solving problems that arise in software analysis and verification. It has been applied to various contexts, such as systems for dynamic symbolic simulation (Pex, SAGE, Vigilante), for program verification and extended static checking (Spec#/Boggie, VCC, HAVOC), for software model checking (Yogi, SLAM), model-based design (FORMULA), security protocol code (F7), program run-time analysis and invariant generation (VS3). We will describe how it integrates support for a variety of theories that arise naturally in the context of the applications. There are several new promising avenues and the talk will touch on some of these and the challenges related to SMT solvers. Proceedings

  12. Efficient three-dimensional Poisson solvers in open rectangular conducting pipe

    NASA Astrophysics Data System (ADS)

    Qiang, Ji

    2016-06-01

    Three-dimensional (3D) Poisson solver plays an important role in the study of space-charge effects on charged particle beam dynamics in particle accelerators. In this paper, we propose three new 3D Poisson solvers for a charged particle beam in an open rectangular conducting pipe. These three solvers include a spectral integrated Green function (IGF) solver, a 3D spectral solver, and a 3D integrated Green function solver. These solvers effectively handle the longitudinal open boundary condition using a finite computational domain that contains the beam itself. This saves the computational cost of using an extra larger longitudinal domain in order to set up an appropriate finite boundary condition. Using an integrated Green function also avoids the need to resolve rapid variation of the Green function inside the beam. The numerical operational cost of the spectral IGF solver and the 3D IGF solver scales as O(N log(N)) , where N is the number of grid points. The cost of the 3D spectral solver scales as O(Nn N) , where Nn is the maximum longitudinal mode number. We compare these three solvers using several numerical examples and discuss the advantageous regime of each solver in the physical application.

  13. Sequentially Optimized Meshfree Approximation as a New Computational Fluid Dynamics Solver

    NASA Astrophysics Data System (ADS)

    Wilkinson, Matthew

    This thesis presents the Sequentially Optimized Meshfree Approximation (SOMA) method, a new and powerful Computational Fluid Dynamics (CFD) solver. While standard computational methods can be faster and cheaper that physical experimentation, both in cost and work time, these methods do have some time and user interaction overhead which SOMA eliminates. As a meshfree method which could use adaptive domain refinement methods, SOMA avoids the need for user generated and/or analyzed grids, volumes, and meshes. Incremental building of a feed-forward artificial neural network through machine learning to solve the flow problem significantly reduces user interaction and reduces computational cost. This is done by avoiding the creation and inversion of possibly dense block diagonal matrices and by focusing computational work on regions where the flow changes and ignoring regions where no changes occur.

  14. Benchmarking ICRF Full-wave Solvers for ITER

    SciTech Connect

    R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R. J. Dumont, A. Fukuyama, R. Harvey, E. F. Jaeger, K. Indireshkumar, E. Lerche, D. McCune, C. K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS

    2011-01-06

    Abstract Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by six full-wave solver groups to simulate the ICRF electromagnetic fields and heating, and by three of these groups to simulate the current-drive. Approximate agreement is achieved for the predicted heating power for the DT and He4 cases. Factor of two disagreements are found for the cases with second harmonic He3 heating in bulk H cases. Approximate agreement is achieved simulating the ICRF current drive.

  15. A Nonlinear Modal Aeroelastic Solver for FUN3D

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.

    2016-01-01

    A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.

  16. Verification and Validation Studies for the LAVA CFD Solver

    NASA Technical Reports Server (NTRS)

    Moini-Yekta, Shayan; Barad, Michael F; Sozer, Emre; Brehm, Christoph; Housman, Jeffrey A.; Kiris, Cetin C.

    2013-01-01

    The verification and validation of the Launch Ascent and Vehicle Aerodynamics (LAVA) computational fluid dynamics (CFD) solver is presented. A modern strategy for verification and validation is described incorporating verification tests, validation benchmarks, continuous integration and version control methods for automated testing in a collaborative development environment. The purpose of the approach is to integrate the verification and validation process into the development of the solver and improve productivity. This paper uses the Method of Manufactured Solutions (MMS) for the verification of 2D Euler equations, 3D Navier-Stokes equations as well as turbulence models. A method for systematic refinement of unstructured grids is also presented. Verification using inviscid vortex propagation and flow over a flat plate is highlighted. Simulation results using laminar and turbulent flow past a NACA 0012 airfoil and ONERA M6 wing are validated against experimental and numerical data.

  17. Parallel Auxiliary Space AMG Solver for $H(div)$ Problems

    SciTech Connect

    Kolev, Tzanio V.; Vassilevski, Panayot S.

    2012-12-18

    We present a family of scalable preconditioners for matrices arising in the discretization of $H(div)$ problems using the lowest order Raviart--Thomas finite elements. Our approach belongs to the class of “auxiliary space''--based methods and requires only the finite element stiffness matrix plus some minimal additional discretization information about the topology and orientation of mesh entities. Also, we provide a detailed algebraic description of the theory, parallel implementation, and different variants of this parallel auxiliary space divergence solver (ADS) and discuss its relations to the Hiptmair--Xu (HX) auxiliary space decomposition of $H(div)$ [SIAM J. Numer. Anal., 45 (2007), pp. 2483--2509] and to the auxiliary space Maxwell solver AMS [J. Comput. Math., 27 (2009), pp. 604--623]. Finally, an extensive set of numerical experiments demonstrates the robustness and scalability of our implementation on large-scale $H(div)$ problems with large jumps in the material coefficients.

  18. An Upwind Solver for the National Combustion Code

    NASA Technical Reports Server (NTRS)

    Sockol, Peter M.

    2011-01-01

    An upwind solver is presented for the unstructured grid National Combustion Code (NCC). The compressible Navier-Stokes equations with time-derivative preconditioning and preconditioned flux-difference splitting of the inviscid terms are used. First order derivatives are computed on cell faces and used to evaluate the shear stresses and heat fluxes. A new flux limiter uses these same first order derivatives in the evaluation of left and right states used in the flux-difference splitting. The k-epsilon turbulence equations are solved with the same second-order method. The new solver has been installed in a recent version of NCC and the resulting code has been tested successfully in 2D on two laminar cases with known solutions and one turbulent case with experimental data.

  19. On improving linear solver performance: a block variant of GMRES

    SciTech Connect

    Baker, A H; Dennis, J M; Jessup, E R

    2004-05-10

    The increasing gap between processor performance and memory access time warrants the re-examination of data movement in iterative linear solver algorithms. For this reason, we explore and establish the feasibility of modifying a standard iterative linear solver algorithm in a manner that reduces the movement of data through memory. In particular, we present an alternative to the restarted GMRES algorithm for solving a single right-hand side linear system Ax = b based on solving the block linear system AX = B. Algorithm performance, i.e. time to solution, is improved by using the matrix A in operations on groups of vectors. Experimental results demonstrate the importance of implementation choices on data movement as well as the effectiveness of the new method on a variety of problems from different application areas.

  20. LDRD report : parallel repartitioning for optimal solver performance.

    SciTech Connect

    Heaphy, Robert; Devine, Karen Dragon; Preis, Robert; Hendrickson, Bruce Alan; Heroux, Michael Allen; Boman, Erik Gunnar

    2004-02-01

    We have developed infrastructure, utilities and partitioning methods to improve data partitioning in linear solvers and preconditioners. Our efforts included incorporation of data repartitioning capabilities from the Zoltan toolkit into the Trilinos solver framework, (allowing dynamic repartitioning of Trilinos matrices); implementation of efficient distributed data directories and unstructured communication utilities in Zoltan and Trilinos; development of a new multi-constraint geometric partitioning algorithm (which can generate one decomposition that is good with respect to multiple criteria); and research into hypergraph partitioning algorithms (which provide up to 56% reduction of communication volume compared to graph partitioning for a number of emerging applications). This report includes descriptions of the infrastructure and algorithms developed, along with results demonstrating the effectiveness of our approaches.

  1. A 3-D upwind Euler solver for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    1991-01-01

    A three-dimensional finite-volume upwind Euler solver is developed for unstructured meshes. The finite-volume scheme solves for solution variables at vertices of the mesh and satisfies the integral conservation law on nonoverlapping polyhedral control volumes surrounding vertices of the mesh. The schene achieves improved solution accuracy by assuming a piecewise linear variation of the solution in each control volume. This improved spatial accuracy hinges heavily upon the calculation of the solution gradient in each control volume given pointwise values of the solution at vertices of the mesh. Several algorithms are discussed for obtaining these gradients. Details concerning implementation procedures and data structures are discussed. Sample calculations for inviscid Euler flow about isolated aircraft wings at subsonic and transonic speeds are compared with established Euler solvers as well as experiment.

  2. A spectral Poisson solver for kinetic plasma simulation

    NASA Astrophysics Data System (ADS)

    Szeremley, Daniel; Obberath, Jens; Brinkmann, Ralf

    2011-10-01

    Plasma resonance spectroscopy is a well established plasma diagnostic method, realized in several designs. One of these designs is the multipole resonance probe (MRP). In its idealized - geometrically simplified - version it consists of two dielectrically shielded, hemispherical electrodes to which an RF signal is applied. A numerical tool is under development which is capable of simulating the dynamics of the plasma surrounding the MRP in electrostatic approximation. In this contribution we concentrate on the specialized Poisson solver for that tool. The plasma is represented by an ensemble of point charges. By expanding both the charge density and the potential into spherical harmonics, a largely analytical solution of the Poisson problem can be employed. For a practical implementation, the expansion must be appropriately truncated. With this spectral solver we are able to efficiently solve the Poisson equation in a kinetic plasma simulation without the need of introducing a spatial discretization.

  3. A functional implementation of the Jacobi eigen-solver

    SciTech Connect

    Boehm, A.P.W.; Hiromoto, R.E.

    1993-02-01

    In this paper, we describe the systematic development of two implementations of the Jacobi eigen-solver and give performance results for the MIT/Motorola Monsoon dataflow machine. Our study is carried out using MINT, the MIT Monsoon simulator. The design of these implementations follows from the mathematics of the Jacobi method, and not from a translation of an existing sequential code. The functional semantics with respect to array updates, which cause excessive array copying, has lead us to a new implementation of a parallel ``group-rotations`` algorithm first described by Sameh. Our version of this algorithm requires 0(n{sup 3}) operations, whereas Sameh`s original version requires 0(n{sup 4}) operations. The implementations are programmed in the language Id, and although Id has non-functional features, we have restricted the development of our eigen-solvers to the functional sub-set of the language.

  4. A functional implementation of the Jacobi eigen-solver

    SciTech Connect

    Boehm, A.P.W. . Dept. of Computer Science); Hiromoto, R.E. )

    1993-01-01

    In this paper, we describe the systematic development of two implementations of the Jacobi eigen-solver and give performance results for the MIT/Motorola Monsoon dataflow machine. Our study is carried out using MINT, the MIT Monsoon simulator. The design of these implementations follows from the mathematics of the Jacobi method, and not from a translation of an existing sequential code. The functional semantics with respect to array updates, which cause excessive array copying, has lead us to a new implementation of a parallel group-rotations'' algorithm first described by Sameh. Our version of this algorithm requires 0(n[sup 3]) operations, whereas Sameh's original version requires 0(n[sup 4]) operations. The implementations are programmed in the language Id, and although Id has non-functional features, we have restricted the development of our eigen-solvers to the functional sub-set of the language.

  5. Scalable Out-of-Core Solvers on Xeon Phi Cluster

    SciTech Connect

    D'Azevedo, Ed F; Chan, Ki Shing; Su, Shiquan; Wong, Kwai

    2015-01-01

    This paper documents the implementation of a distributive out-of-core (OOC) solver for performing LU and Cholesky factorizations of a large dense matrix on clusters of many-core programmable co-processors. The out-of- core algorithm combines both the left-looking and right-looking schemes aimed to minimize the movement of data between the CPU host and the co-processor, optimizing data locality as well as computing throughput. The OOC solver is built to align with the format of the ScaLAPACK software library, making it readily portable to any existing codes using ScaLAPACK. A runtime analysis conducted on Beacon (an Intel Xeon plus Intel Xeon Phi cluster which composed of 48 nodes of multi-core CPU and MIC) at the Na- tional Institute for Computational Sciences is presented. Comparison of the performance on the Intel Xeon Phi and GPU clusters are also provided.

  6. Brittle Solvers: Lessons and insights into effective solvers for visco-plasticity in geodynamics

    NASA Astrophysics Data System (ADS)

    Spiegelman, M. W.; May, D.; Wilson, C. R.

    2014-12-01

    Plasticity/Fracture and rock failure are essential ingredients in geodynamic models as terrestrial rocks do not possess an infinite yield strength. Numerous physical mechanisms have been proposed to limit the strength of rocks, including low temperature plasticity and brittle fracture. While ductile and creep behavior of rocks at depth is largely accepted, the constitutive relations associated with brittle failure, or shear localisation, are more controversial. Nevertheless, there are really only a few macroscopic constitutive laws for visco-plasticity that are regularly used in geodynamics models. Independent of derivation, all of these can be cast as simple effective viscosities which act as stress limiters with different choices for yield surfaces; the most common being a von Mises (constant yield stress) or Drucker-Prager (pressure dependent yield-stress) criterion. The choice of plasticity model, however, can have significant consequences for the degree of non-linearity in a problem and the choice and efficiency of non-linear solvers. Here we describe a series of simplified 2 and 3-D model problems to elucidate several issues associated with obtaining accurate description and solution of visco-plastic problems. We demonstrate that1) Picard/Successive substitution schemes for solution of the non-linear problems can often stall at large values of the non-linear residual, thus producing spurious solutions2) Combined Picard/Newton schemes can be effective for a range of plasticity models, however, they can produce serious convergence problems for strongly pressure dependent plasticity models such as Drucker-Prager.3) Nevertheless, full Drucker-Prager may not be the plasticity model of choice for strong materials as the dynamic pressures produced in these layers can develop pathological behavior with Drucker-Prager, leading to stress strengthening rather than stress weakening behavior.4) In general, for any incompressible Stoke's problem, it is highly advisable to

  7. A contribution to the great Riemann solver debate

    NASA Technical Reports Server (NTRS)

    Quirk, James J.

    1992-01-01

    The aims of this paper are threefold: to increase the level of awareness within the shock capturing community to the fact that many Godunov-type methods contain subtle flaws that can cause spurious solutions to be computed; to identify one mechanism that might thwart attempts to produce very high resolution simulations; and to proffer a simple strategy for overcoming the specific failings of individual Riemann solvers.

  8. Menu-Driven Solver Of Linear-Programming Problems

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Ferencz, D.

    1992-01-01

    Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).

  9. Direct linear programming solver in C for structural applications

    NASA Astrophysics Data System (ADS)

    Damkilde, L.; Hoyer, O.; Krenk, S.

    1994-08-01

    An optimization problem can be characterized by an object-function, which is maximized, and restrictions, which limit the variation of the variables. A subclass of optimization is Linear Programming (LP), where both the object-function and the restrictions are linear functions of the variables. The traditional solution methods for LP problems are based on the simplex method, and it is customary to allow only non-negative variables. Compared to other optimization routines the LP solvers are more robust and the optimum is reached in a finite number of steps and is not sensitive to the starting point. For structural applications many optimization problems can be linearized and solved by LP routines. However, the structural variables are not always non-negative, and this requires a reformation, where a variable x is substituted by the difference of two non-negative variables, x(sup + ) and x(sup - ). The transformation causes a doubling of the number of variables, and in a computer implementation the memory allocation doubles and for a typical problem the execution time at least doubles. This paper describes a LP solver written in C, which can handle a combination of non-negative variables and unlimited variables. The LP solver also allows restart, and this may reduce the computational costs if the solution to a similar LP problem is known a priori. The algorithm is based on the simplex method, and differs only in the logical choices. Application of the new LP solver will at the same time give both a more direct problem formulation and a more efficient program.

  10. Scaling Algebraic Multigrid Solvers: On the Road to Exascale

    SciTech Connect

    Baker, A H; Falgout, R D; Gamblin, T; Kolev, T; Schulz, M; Yang, U M

    2010-12-12

    Algebraic Multigrid (AMG) solvers are an essential component of many large-scale scientific simulation codes. Their continued numerical scalability and efficient implementation is critical for preparing these codes for exascale. Our experiences on modern multi-core machines show that significant challenges must be addressed for AMG to perform well on such machines. We discuss our experiences and describe the techniques we have used to overcome scalability challenges for AMG on hybrid architectures in preparation for exascale.

  11. Transonic Drag Prediction Using an Unstructured Multigrid Solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Levy, David W.

    2001-01-01

    This paper summarizes the results obtained with the NSU-3D unstructured multigrid solver for the AIAA Drag Prediction Workshop held in Anaheim, CA, June 2001. The test case for the workshop consists of a wing-body configuration at transonic flow conditions. Flow analyses for a complete test matrix of lift coefficient values and Mach numbers at a constant Reynolds number are performed, thus producing a set of drag polars and drag rise curves which are compared with experimental data. Results were obtained independently by both authors using an identical baseline grid and different refined grids. Most cases were run in parallel on commodity cluster-type machines while the largest cases were run on an SGI Origin machine using 128 processors. The objective of this paper is to study the accuracy of the subject unstructured grid solver for predicting drag in the transonic cruise regime, to assess the efficiency of the method in terms of convergence, cpu time, and memory, and to determine the effects of grid resolution on this predictive ability and its computational efficiency. A good predictive ability is demonstrated over a wide range of conditions, although accuracy was found to degrade for cases at higher Mach numbers and lift values where increasing amounts of flow separation occur. The ability to rapidly compute large numbers of cases at varying flow conditions using an unstructured solver on inexpensive clusters of commodity computers is also demonstrated.

  12. A Survey of Solver-Related Geometry and Meshing Issues

    NASA Technical Reports Server (NTRS)

    Masters, James; Daniel, Derick; Gudenkauf, Jared; Hine, David; Sideroff, Chris

    2016-01-01

    There is a concern in the computational fluid dynamics community that mesh generation is a significant bottleneck in the CFD workflow. This is one of several papers that will help set the stage for a moderated panel discussion addressing this issue. Although certain general "rules of thumb" and a priori mesh metrics can be used to ensure that some base level of mesh quality is achieved, inadequate consideration is often given to the type of solver or particular flow regime on which the mesh will be utilized. This paper explores how an analyst may want to think differently about a mesh based on considerations such as if a flow is compressible vs. incompressible or hypersonic vs. subsonic or if the solver is node-centered vs. cell-centered. This paper is a high-level investigation intended to provide general insight into how considering the nature of the solver or flow when performing mesh generation has the potential to increase the accuracy and/or robustness of the solution and drive the mesh generation process to a state where it is no longer a hindrance to the analysis process.

  13. NONLINEAR MULTIGRID SOLVER EXPLOITING AMGe COARSE SPACES WITH APPROXIMATION PROPERTIES

    SciTech Connect

    Christensen, Max La Cour; Villa, Umberto E.; Engsig-Karup, Allan P.; Vassilevski, Panayot S.

    2016-01-22

    The paper introduces a nonlinear multigrid solver for mixed nite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstruc- tured problems is the guaranteed approximation property of the AMGe coarse spaces that were developed recently at Lawrence Livermore National Laboratory. These give the ability to derive stable and accurate coarse nonlinear discretization problems. The previous attempts (including ones with the original AMGe method, [5, 11]), were less successful due to lack of such good approximation properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on un- structured meshes should be as powerful/successful as FAS on geometrically re ned meshes. For comparison, Newton's method and Picard iterations with an inner state-of-the-art linear solver is compared to FAS on a nonlinear saddle point problem with applications to porous media ow. It is demonstrated that FAS is faster than Newton's method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate, providing a solver with the potential for mesh-independent convergence on general unstructured meshes.

  14. Error control of iterative linear solvers for integrated groundwater models.

    PubMed

    Dixon, Matthew F; Bai, Zhaojun; Brush, Charles F; Chung, Francis I; Dogrul, Emin C; Kadir, Tariq N

    2011-01-01

    An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient method or Generalized Minimum RESidual (GMRES) method, is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models, which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of "forward error bound estimation" to explain the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed by the US Geological Survey and the California State Department of Water Resources, we observe that this error bound guides the choice of a practical measure for controlling the error in linear systems. We implemented a preconditioned GMRES algorithm and benchmarked it against the Successive Over-Relaxation (SOR) method, the most widely known iterative solver for nonsymmetric coefficient matrices. With forward error control, GMRES can easily replace the SOR method in legacy groundwater modeling packages, resulting in the overall simulation speedups as large as 7.74×. This research is expected to broadly impact groundwater modelers through the demonstration of a practical and general approach for setting the residual tolerance in line with the solution error tolerance and presentation of GMRES performance benchmarking results.

  15. QED multi-dimensional vacuum polarization finite-difference solver

    NASA Astrophysics Data System (ADS)

    Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo

    2015-11-01

    The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph

  16. NITSOL: A Newton iterative solver for nonlinear systems

    SciTech Connect

    Pernice, M.; Walker, H.F.

    1996-12-31

    Newton iterative methods, also known as truncated Newton methods, are implementations of Newton`s method in which the linear systems that characterize Newton steps are solved approximately using iterative linear algebra methods. Here, we outline a well-developed Newton iterative algorithm together with a Fortran implementation called NITSOL. The basic algorithm is an inexact Newton method globalized by backtracking, in which each initial trial step is determined by applying an iterative linear solver until an inexact Newton criterion is satisfied. In the implementation, the user can specify inexact Newton criteria in several ways and select an iterative linear solver from among several popular {open_quotes}transpose-free{close_quotes} Krylov subspace methods. Jacobian-vector products used by the Krylov solver can be either evaluated analytically with a user-supplied routine or approximated using finite differences of function values. A flexible interface permits a wide variety of preconditioning strategies and allows the user to define a preconditioner and optionally update it periodically. We give details of these and other features and demonstrate the performance of the implementation on a representative set of test problems.

  17. Non-linear curve fitting using Microsoft Excel solver.

    PubMed

    Walsh, S; Diamond, D

    1995-04-01

    Solver, an analysis tool incorporated into Microsoft Excel V 5.0 for Windows, has been evaluated for solving non-linear equations. Test and experimental data sets have been processed, and the results suggest that solver can be successfully used for modelling data obtained in many analytical situations (e.g. chromatography and FIA peaks, fluorescence decays and ISE response characteristics). The relatively simple user interface, and the fact that Excel is commonly bundled free with new PCs makes it an ideal tool for those wishing to experiment with solving non-linear equations without having to purchase and learn a completely new package. The dynamic display of the iterative search process enables the user to monitor location of the optimum solution by the search algorithm. This, together with the almost universal availability of Excel, makes solver an ideal vehicle for teaching the principles of iterative non-linear curve fitting techniques. In addition, complete control of the modelling process lies with the user, who must present the raw data and enter the equation of the model, in contrast to many commercial packages bundled with instruments which perform these operations with a 'black-box' approach.

  18. IGA-ADS: Isogeometric analysis FEM using ADS solver

    NASA Astrophysics Data System (ADS)

    Łoś, Marcin M.; Woźniak, Maciej; Paszyński, Maciej; Lenharth, Andrew; Hassaan, Muhamm Amber; Pingali, Keshav

    2017-08-01

    In this paper we present a fast explicit solver for solution of non-stationary problems using L2 projections with isogeometric finite element method. The solver has been implemented within GALOIS framework. It enables parallel multi-core simulations of different time-dependent problems, in 1D, 2D, or 3D. We have prepared the solver framework in a way that enables direct implementation of the selected PDE and corresponding boundary conditions. In this paper we describe the installation, implementation of exemplary three PDEs, and execution of the simulations on multi-core Linux cluster nodes. We consider three case studies, including heat transfer, linear elasticity, as well as non-linear flow in heterogeneous media. The presented package generates output suitable for interfacing with Gnuplot and ParaView visualization software. The exemplary simulations show near perfect scalability on Gilbert shared-memory node with four Intel® Xeon® CPU E7-4860 processors, each possessing 10 physical cores (for a total of 40 cores).

  19. An AMR capable finite element diffusion solver for ALE hydrocodes [An AMR capable diffusion solver for ALE-AMR

    SciTech Connect

    Fisher, A. C.; Bailey, D. S.; Kaiser, T. B.; Eder, D. C.; Gunney, B. T. N.; Masters, N. D.; Koniges, A. E.; Anderson, R. W.

    2015-02-01

    Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L2 norm.

  20. Software abstractions and computational issues in parallel structure adaptive mesh methods for electronic structure calculations

    SciTech Connect

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1997-05-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradient with FAC multigrid preconditioning. We have parallelized our solver using an object- oriented adaptive mesh refinement framework.

  1. Extension of the Time-Spectral Approach to Overset Solvers for Arbitrary Motion

    NASA Technical Reports Server (NTRS)

    Leffell, Joshua Isaac; Murman, Scott M.; Pulliam, Thomas H.

    2012-01-01

    Forced periodic flows arise in a broad range of aerodynamic applications such as rotorcraft, turbomachinery, and flapping wing configurations. Standard practice involves solving the unsteady flow equations forward in time until the initial transient exits the domain and a statistically stationary flow is achieved. It is often required to simulate through several periods to remove the initial transient making unsteady design optimization prohibitively expensive for most realistic problems. An effort to reduce the computational cost of these calculations led to the development of the Harmonic Balance method [1, 2] which capitalizes on the periodic nature of the solution. The approach exploits the fact that forced temporally periodic flow, while varying in the time domain, is invariant in the frequency domain. Expanding the temporal variation at each spatial node into a Fourier series transforms the unsteady governing equations into a steady set of equations in integer harmonics that can be tackled with the acceleration techniques afforded to steady-state flow solvers. Other similar approaches, such as the Nonlinear Frequency Domain [3,4,5], Reduced Frequency [6] and Time-Spectral [7, 8, 9] methods, were developed shortly thereafter. Additionally, adjoint-based optimization techniques can be applied [10, 11] as well as frequency-adaptive methods [12, 13, 14] to provide even more flexibility to the method. The Fourier temporal basis functions imply spectral convergence as the number of harmonic modes, and correspondingly number of time samples, N, is increased. Some elect to solve the equations in the frequency domain directly, while others choose to transform the equations back into the time domain to simplify the process of adding this capability to existing solvers, but each harnesses the underlying steady solution in the frequency domain. These temporal projection methods will herein be collectively referred to as Time-Spectral methods. Time-Spectral methods have

  2. Adaptive Algebraic Smoothers

    SciTech Connect

    Philip, Bobby; Chartier, Dr Timothy

    2012-01-01

    methods based on Local Sensitivity Analysis (LSA). The method can be used in the context of geometric and algebraic multigrid methods for constructing smoothers, and in the context of Krylov methods for constructing block preconditioners. It is suitable for both constant and variable coecient problems. Furthermore, the method can be applied to systems arising from both scalar and coupled system partial differential equations (PDEs), as well as linear systems that do not arise from PDEs. The simplicity of the method will allow it to be easily incorporated into existing multigrid and Krylov solvers while providing a powerful tool for adaptively constructing methods tuned to a problem.

  3. Adaptive Navier-Stokes calculations for vortical flow

    NASA Astrophysics Data System (ADS)

    Murman, Earll M.

    1993-03-01

    Brief summaries are given of research performed in the following areas: (1) adaptive Euler equation solvers; (2) adaptation parameters for vortical flow; (3) vortex breakdown calculations; (4) calculations for the F-117A; (5) normal force hysteresis; (6) visualization of vortical flows on unstructured grids; and (7) modeling of vortex breakdown. The reference list gives reports with detailed results.

  4. Moving and adaptive grid methods for compressible flows

    NASA Technical Reports Server (NTRS)

    Trepanier, Jean-Yves; Camarero, Ricardo

    1995-01-01

    This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.

  5. Using Analytic Techniques to Resolve Numerical Issues in a Pseudo Spectral Solver for a Black Hole Scalar Field

    NASA Astrophysics Data System (ADS)

    Munro, Eugene

    2013-12-01

    In this paper, we will solve the Hamiltonian constraint describing a curved general relativistic spacetime to find initial data describing how a black hole exists in vacuum. This has been done before by other researchers [Ansorg, 2004], and we will be adapting our own methods to an existing pseudo spectral Poisson solver [Gourgoulhon, 2001]. The need for this adaptation arises from improper numerical handling, done by pseudo spectral-methods, of a large part the Hamiltonian constraint equation due to the presence of the black hole singularity. To resolve a portion of this issue up to a given order, we will determine irregularities by executing a polynomial expansion on the Hamiltonian constraint, analytically solving the troublesome components of the equation and subtracting those out of the numerical process. This technique will increase the equation's differentiability and allow the numerical solver to run more efficiently. We will cover all the calculations needed to describe one black hole with arbitrary spin and linear momentum. Our process is easily expanded into cases with n black holes [Brandt, 1997], which we will show in chapter 2. We will implement a spherical harmonic decomposition of the black hole conformal factor, using them as basis functions by which to further expand and dissect the Hamiltonian Constraint equation. In the end, the expansion and subtraction method will be done out to the order of r4, where r is the spherical radius assuming the black hole is at the coordinate origin, making the Hamiltonian equation, which, unaltered, is a C 2 equation, become a C7 equation. Smoothing the Hamiltonian improves numerical precision, especially near the BH where the most interesting physics occurs. The method used in this paper can be further implemented to higher orders of r to yield even smoother conditions. We will test the numerical results of using this method against the existing solver that uses the publicly available Lorene numerical libraries

  6. Robust parallel iterative solvers for linear and least-squares problems, Final Technical Report

    SciTech Connect

    Saad, Yousef

    2014-01-16

    The primary goal of this project is to study and develop robust iterative methods for solving linear systems of equations and least squares systems. The focus of the Minnesota team is on algorithms development, robustness issues, and on tests and validation of the methods on realistic problems. 1. The project begun with an investigation on how to practically update a preconditioner obtained from an ILU-type factorization, when the coefficient matrix changes. 2. We investigated strategies to improve robustness in parallel preconditioners in a specific case of a PDE with discontinuous coefficients. 3. We explored ways to adapt standard preconditioners for solving linear systems arising from the Helmholtz equation. These are often difficult linear systems to solve by iterative methods. 4. We have also worked on purely theoretical issues related to the analysis of Krylov subspace methods for linear systems. 5. We developed an effective strategy for performing ILU factorizations for the case when the matrix is highly indefinite. The strategy uses shifting in some optimal way. The method was extended to the solution of Helmholtz equations by using complex shifts, yielding very good results in many cases. 6. We addressed the difficult problem of preconditioning sparse systems of equations on GPUs. 7. A by-product of the above work is a software package consisting of an iterative solver library for GPUs based on CUDA. This was made publicly available. It was the first such library that offers complete iterative solvers for GPUs. 8. We considered another form of ILU which blends coarsening techniques from Multigrid with algebraic multilevel methods. 9. We have released a new version on our parallel solver - called pARMS [new version is version 3]. As part of this we have tested the code in complex settings - including the solution of Maxwell and Helmholtz equations and for a problem of crystal growth.10. As an application of polynomial preconditioning we considered the

  7. A Robust Compressible Flow Solver for Studies on Solar Fuel Production in Microwave Plasma

    NASA Astrophysics Data System (ADS)

    Tadayon Mousavi, Samaneh; Koelman, Peter; Groen, Pieter Willem; van Dijk, Jan; Epg/ Applied Physics/ Eindhoven University Of Technology Team; Dutch InstituteFundamental Energy Research (Differ) Team

    2016-09-01

    n order to simulate the dissociation of CO2 with H2O admixture by microwave plasma for the production of solar fuels, we need a multicomponent solver that is able to capture the complex nature of the plasma by combining the chemistry, flow, and electromagnetic field. To achieve this goal, first we developed a robust finite volume compressible flow solver in C++. The solver is implemented in the framework of the PLASIMO software and will be used in complete plasma simulations later on. Due to the compressible nature of the solver, it can be used for simulation of dissociation of CO2 with H2O admixture by supersonic expansion in microwave plasmas. A spatially second order version of this solver is able to reveal the vortex flow structure of the plasmas. Capabilities of this solver are presented by benchmarking against well-established analytical and numerical test cases.

  8. Auto-adaptive finite element meshes

    NASA Technical Reports Server (NTRS)

    Richter, Roland; Leyland, Penelope

    1995-01-01

    Accurate capturing of discontinuities within compressible flow computations is achieved by coupling a suitable solver with an automatic adaptive mesh algorithm for unstructured triangular meshes. The mesh adaptation procedures developed rely on non-hierarchical dynamical local refinement/derefinement techniques, which hence enable structural optimization as well as geometrical optimization. The methods described are applied for a number of the ICASE test cases are particularly interesting for unsteady flow simulations.

  9. Code Verification of the HIGRAD Computational Fluid Dynamics Solver

    SciTech Connect

    Van Buren, Kendra L.; Canfield, Jesse M.; Hemez, Francois M.; Sauer, Jeremy A.

    2012-05-04

    The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verification test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.

  10. A New Robust Solver for Saturated-Unsaturated Richards' Equation

    NASA Astrophysics Data System (ADS)

    Barajas-Solano, D. A.; Tartakovsky, D. M.

    2012-12-01

    We present a novel approach for the numerical integration of the saturated-unsaturated Richards' equation, a degenerate parabolic partial differential equation that models flow in porous media. The method is based on the mixed (pore pressure-water content) form of RE, written as a set of differential algebraic equations (DAEs) of index-1 for the fully saturated case and index-2 for the partially saturated case. A DAE-based approach allows us to overcome the numerical challenges posed by the degenerate nature of the Richards' equation. The resulting set of DAEs is solved using the stiffly-accurate, single-step, 3-stage implicit Runge-Kutta method Radau IIA, chosen for its favorable accuracy and stability properties, and its ease of implementation. For each time step a nonlinear system of equations on the intermediate Runge-Kutta states of the pore pressure is solved, written so to ensure that the next step pore pressure and water content correspond to one another correctly. The implementation of our approach compares favorably to state-of-the-art DAE-based solvers in both one- and two-dimensional simulations. These solvers use multi-step backward difference formulas together with a pressure-based form of Richards' equation. To the best of our knowledge, our method is the first instance of a successful DAE-based solver that uses the mixed form of Richards' equation. We consider this a promising line of research, with future work to be done on the use of globally convergent methods for the solution of the occurring nonlinear systems of equations.

  11. Application of Aeroelastic Solvers Based on Navier Stokes Equations

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2001-01-01

    The propulsion element of the NASA Advanced Subsonic Technology (AST) initiative is directed towards increasing the overall efficiency of current aircraft engines. This effort requires an increase in the efficiency of various components, such as fans, compressors, turbines etc. Improvement in engine efficiency can be accomplished through the use of lighter materials, larger diameter fans and/or higher-pressure ratio compressors. However, each of these has the potential to result in aeroelastic problems such as flutter or forced response. To address the aeroelastic problems, the Structural Dynamics Branch of NASA Glenn has been involved in the development of numerical capabilities for analyzing the aeroelastic stability characteristics and forced response of wide chord fans, multi-stage compressors and turbines. In order to design an engine to safely perform a set of desired tasks, accurate information of the stresses on the blade during the entire cycle of blade motion is required. This requirement in turn demands that accurate knowledge of steady and unsteady blade loading is available. To obtain the steady and unsteady aerodynamic forces for the complex flows around the engine components, for the flow regimes encountered by the rotor, an advanced compressible Navier-Stokes solver is required. A finite volume based Navier-Stokes solver has been developed at Mississippi State University (MSU) for solving the flow field around multistage rotors. The focus of the current research effort, under NASA Cooperative Agreement NCC3- 596 was on developing an aeroelastic analysis code (entitled TURBO-AE) based on the Navier-Stokes solver developed by MSU. The TURBO-AE code has been developed for flutter analysis of turbomachine components and delivered to NASA and its industry partners. The code has been verified. validated and is being applied by NASA Glenn and by aircraft engine manufacturers to analyze the aeroelastic stability characteristics of modem fans, compressors

  12. Hierarchically Parallelized Constrained Nonlinear Solvers with Automated Substructuring

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Kwang, Abel

    1994-01-01

    This paper develops a parallelizable multilevel multiple constrained nonlinear equation solver. The substructuring process is automated to yield appropriately balanced partitioning of each succeeding level. Due to the generality of the procedure,_sequential, as well as partially and fully parallel environments can be handled. This includes both single and multiprocessor assignment per individual partition. Several benchmark examples are presented. These illustrate the robustness of the procedure as well as its capability to yield significant reductions in memory utilization and calculational effort due both to updating and inversion.

  13. Preconditioned CG-solvers and finite element grids

    SciTech Connect

    Bauer, R.; Selberherr, S.

    1994-12-31

    To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.

  14. Evaluating Sparse Linear System Solvers on Scalable Parallel Architectures

    DTIC Science & Technology

    2008-10-01

    iterations will be necessary to assure sufficient accuracy whenever we do not use a direct method to solve (1.3) or (1.5). The overall SPIKE algorithm...boosting is activated, SPIKE is not used as a direct solver but rather as a preconditioner. In this case outer iterations via a Krylov subspace method ...robustness. Preconditioning aims to improve the robustness of iterative methods by transforming the system into M−1Ax = M−1f, or AM−1(Mx) = f. (3.2

  15. Algorithms for parallel flow solvers on message passing architectures

    NASA Technical Reports Server (NTRS)

    Vanderwijngaart, Rob F.

    1995-01-01

    The purpose of this project has been to identify and test suitable technologies for implementation of fluid flow solvers -- possibly coupled with structures and heat equation solvers -- on MIMD parallel computers. In the course of this investigation much attention has been paid to efficient domain decomposition strategies for ADI-type algorithms. Multi-partitioning derives its efficiency from the assignment of several blocks of grid points to each processor in the parallel computer. A coarse-grain parallelism is obtained, and a near-perfect load balance results. In uni-partitioning every processor receives responsibility for exactly one block of grid points instead of several. This necessitates fine-grain pipelined program execution in order to obtain a reasonable load balance. Although fine-grain parallelism is less desirable on many systems, especially high-latency networks of workstations, uni-partition methods are still in wide use in production codes for flow problems. Consequently, it remains important to achieve good efficiency with this technique that has essentially been superseded by multi-partitioning for parallel ADI-type algorithms. Another reason for the concentration on improving the performance of pipeline methods is their applicability in other types of flow solver kernels with stronger implied data dependence. Analytical expressions can be derived for the size of the dynamic load imbalance incurred in traditional pipelines. From these it can be determined what is the optimal first-processor retardation that leads to the shortest total completion time for the pipeline process. Theoretical predictions of pipeline performance with and without optimization match experimental observations on the iPSC/860 very well. Analysis of pipeline performance also highlights the effect of uncareful grid partitioning in flow solvers that employ pipeline algorithms. If grid blocks at boundaries are not at least as large in the wall-normal direction as those

  16. Some fast elliptic solvers on parallel architectures and their complexities

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Youcef

    1989-01-01

    The discretization of separable elliptic partial differential equations leads to linear systems with special block triangular matrices. Several methods are known to solve these systems, the most general of which is the Block Cyclic Reduction (BCR) algorithm which handles equations with nonconsistant coefficients. A method was recently proposed to parallelize and vectorize BCR. Here, the mapping of BCR on distributed memory architectures is discussed, and its complexity is compared with that of other approaches, including the Alternating-Direction method. A fast parallel solver is also described, based on an explicit formula for the solution, which has parallel computational complexity lower than that of parallel BCR.

  17. Some fast elliptic solvers on parallel architectures and their complexities

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Y.

    1989-01-01

    The discretization of separable elliptic partial differential equations leads to linear systems with special block tridiagonal matrices. Several methods are known to solve these systems, the most general of which is the Block Cyclic Reduction (BCR) algorithm which handles equations with nonconstant coefficients. A method was recently proposed to parallelize and vectorize BCR. In this paper, the mapping of BCR on distributed memory architectures is discussed, and its complexity is compared with that of other approaches including the Alternating-Direction method. A fast parallel solver is also described, based on an explicit formula for the solution, which has parallel computational compelxity lower than that of parallel BCR.

  18. Advances in the hydrodynamics solver of CO5BOLD

    NASA Astrophysics Data System (ADS)

    Freytag, Bernd

    Many features of the Roe solver used in the hydrodynamics module of CO5BOLD have recently been added or overhauled, including the reconstruction methods (by adding the new second-order ``Frankenstein's method''), the treatment of transversal velocities, energy-flux averaging and entropy-wave treatment at small Mach numbers, the CTU scheme to combine the one-dimensional fluxes, and additional safety measures. All this results in a significantly better behavior at low Mach number flows, and an improved stability at larger Mach numbers requiring less (or no) additional tensor viscosity, which then leads to a noticeable increase in effective resolution.

  19. A Simple Quantum Integro-Differential Solver (SQuIDS)

    NASA Astrophysics Data System (ADS)

    Argüelles Delgado, Carlos A.; Salvado, Jordi; Weaver, Christopher N.

    2015-11-01

    Simple Quantum Integro-Differential Solver (SQuIDS) is a C++ code designed to solve semi-analytically the evolution of a set of density matrices and scalar functions. This is done efficiently by expressing all operators in an SU(N) basis. SQuIDS provides a base class from which users can derive new classes to include new non-trivial terms from the right hand sides of density matrix equations. The code was designed in the context of solving neutrino oscillation problems, but can be applied to any problem that involves solving the quantum evolution of a collection of particles with Hilbert space of dimension up to six.

  20. High Energy Boundary Conditions for a Cartesian Mesh Euler Solver

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir A.; Murman, Scott M.; Aftosmis, Michael J.

    2004-01-01

    Inlets and exhaust nozzles are often omitted or fared over in aerodynamic simulations of aircraft due to the complexities involving in the modeling of engine details such as complex geometry and flow physics. However, the assumption is often improper as inlet or plume flows have a substantial effect on vehicle aerodynamics. A tool for specifying inlet and exhaust plume conditions through the use of high-energy boundary conditions in an established inviscid flow solver is presented. The effects of the plume on the flow fields near the inlet and plume are discussed.

  1. A Navier-Stokes solver for cascade flows

    NASA Technical Reports Server (NTRS)

    Arnone, A.; Swanson, R. C.

    1988-01-01

    A computer code for solving the Reynolds averaged full Navier-Stokes equations has been developed and applied using sheared H-type grids. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. The integration in time is based on an explicit four-stage Runge-Kutta scheme. Local time stepping, variable coefficient implicit residual smoothing, and a full multigrid method have been implemented to accelerate steady state calculations. Comparisons with experimental data show that the code is an accurate viscous solver and can give very good blade-to-blade predictions for engineering applications in less than 100 multigrid cycles on the finest mesh.

  2. Reformulation of the Fourier-Bessel steady state mode solver

    NASA Astrophysics Data System (ADS)

    Gauthier, Robert C.

    2016-09-01

    The Fourier-Bessel resonator state mode solver is reformulated using Maxwell's field coupled curl equations. The matrix generating expressions are greatly simplified as well as a reduction in the number of pre-computed tables making the technique simpler to implement on a desktop computer. The reformulation maintains the theoretical equivalence of the permittivity and permeability and as such structures containing both electric and magnetic properties can be examined. Computation examples are presented for a surface nanoscale axial photonic resonator and hybrid { ε , μ } quasi-crystal resonator.

  3. Performance issues for iterative solvers in device simulation

    NASA Technical Reports Server (NTRS)

    Fan, Qing; Forsyth, P. A.; Mcmacken, J. R. F.; Tang, Wei-Pai

    1994-01-01

    Due to memory limitations, iterative methods have become the method of choice for large scale semiconductor device simulation. However, it is well known that these methods still suffer from reliability problems. The linear systems which appear in numerical simulation of semiconductor devices are notoriously ill-conditioned. In order to produce robust algorithms for practical problems, careful attention must be given to many implementation issues. This paper concentrates on strategies for developing robust preconditioners. In addition, effective data structures and convergence check issues are also discussed. These algorithms are compared with a standard direct sparse matrix solver on a variety of problems.

  4. Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method

    NASA Astrophysics Data System (ADS)

    Kruglyakov, M.; Geraskin, A.; Kuvshinov, A.

    2016-11-01

    We present a novel, open source 3-D MT forward solver based on a method of integral equations (IE) with contracting kernel. Special attention in the solver is paid to accurate calculations of Green's functions and their integrals which are cornerstones of any IE solution. The solver supports massive parallelization and is able to deal with highly detailed and contrasting models. We report results of a 3-D numerical experiment aimed at analyzing the accuracy and scalability of the code.

  5. On the implicit density based OpenFOAM solver for turbulent compressible flows

    NASA Astrophysics Data System (ADS)

    Fürst, Jiří

    The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.

  6. A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe solvers

    SciTech Connect

    Pelanti, Marica; Bouchut, Francois; Mangeney, Anne

    2011-02-01

    We present a Riemann solver derived by a relaxation technique for classical single-phase shallow flow equations and for a two-phase shallow flow model describing a mixture of solid granular material and fluid. Our primary interest is the numerical approximation of this two-phase solid/fluid model, whose complexity poses numerical difficulties that cannot be efficiently addressed by existing solvers. In particular, we are concerned with ensuring a robust treatment of dry bed states. The relaxation system used by the proposed solver is formulated by introducing auxiliary variables that replace the momenta in the spatial gradients of the original model systems. The resulting relaxation solver is related to Roe solver in that its Riemann solution for the flow height and relaxation variables is formally computed as Roe's Riemann solution. The relaxation solver has the advantage of a certain degree of freedom in the specification of the wave structure through the choice of the relaxation parameters. This flexibility can be exploited to handle robustly vacuum states, which is a well known difficulty of standard Roe's method, while maintaining Roe's low diffusivity. For the single-phase model positivity of flow height is rigorously preserved. For the two-phase model positivity of volume fractions in general is not ensured, and a suitable restriction on the CFL number might be needed. Nonetheless, numerical experiments suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and vacuum formation for a large range of flow conditions. As a corollary of our study, we show that for single-phase shallow flow equations the relaxation solver is formally equivalent to the VFRoe solver with conservative variables of Gallouet and Masella [T. Gallouet, J.-M. Masella, Un schema de Godunov approche C.R. Acad. Sci. Paris, Serie I, 323 (1996) 77-84]. The relaxation interpretation allows establishing positivity conditions for this VFRoe method.

  7. Riemann solvers and Alfven waves in black hole magnetospheres

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Balsara, Dinshaw; Kim, Jinho; Garain, Sudip

    2016-09-01

    In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. Thus, it is important for numerical simulations of black hole magnetospheres to minimize the dissipation of Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, numerical dissipation can affect how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. In order to help minimize dissipation of Alfven waves in relativistic numerical simulations we have formulated a one-dimensional Riemann solver, called HLLI, which incorporates the Alfven discontinuity and the contact discontinuity. We have also formulated a multidimensional Riemann solver, called MuSIC, that enables low dissipation propagation of Alfven waves in multiple dimensions. The importance of higher order schemes in lowering the numerical dissipation of Alfven waves is also catalogued.

  8. A massively parallel fractional step solver for incompressible flows

    SciTech Connect

    Houzeaux, G. Vazquez, M. Aubry, R. Cela, J.M.

    2009-09-20

    This paper presents a parallel implementation of fractional solvers for the incompressible Navier-Stokes equations using an algebraic approach. Under this framework, predictor-corrector and incremental projection schemes are seen as sub-classes of the same class, making apparent its differences and similarities. An additional advantage of this approach is to set a common basis for a parallelization strategy, which can be extended to other split techniques or to compressible flows. The predictor-corrector scheme consists in solving the momentum equation and a modified 'continuity' equation (namely a simple iteration for the pressure Schur complement) consecutively in order to converge to the monolithic solution, thus avoiding fractional errors. On the other hand, the incremental projection scheme solves only one iteration of the predictor-corrector per time step and adds a correction equation to fulfill the mass conservation. As shown in the paper, these two schemes are very well suited for massively parallel implementation. In fact, when compared with monolithic schemes, simpler solvers and preconditioners can be used to solve the non-symmetric momentum equations (GMRES, Bi-CGSTAB) and to solve the symmetric continuity equation (CG, Deflated CG). This gives good speedup properties of the algorithm. The implementation of the mesh partitioning technique is presented, as well as the parallel performances and speedups for thousands of processors.

  9. Agglomeration Multigrid for an Unstructured-Grid Flow Solver

    NASA Technical Reports Server (NTRS)

    Frink, Neal; Pandya, Mohagna J.

    2004-01-01

    An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.

  10. Matrix decomposition graphics processing unit solver for Poisson image editing

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Wei, Li

    2012-10-01

    In recent years, gradient-domain methods have been widely discussed in the image processing field, including seamless cloning and image stitching. These algorithms are commonly carried out by solving a large sparse linear system: the Poisson equation. However, solving the Poisson equation is a computational and memory intensive task which makes it not suitable for real-time image editing. A new matrix decomposition graphics processing unit (GPU) solver (MDGS) is proposed to settle the problem. A matrix decomposition method is used to distribute the work among GPU threads, so that MDGS will take full advantage of the computing power of current GPUs. Additionally, MDGS is a hybrid solver (combines both the direct and iterative techniques) and has two-level architecture. These enable MDGS to generate identical solutions with those of the common Poisson methods and achieve high convergence rate in most cases. This approach is advantageous in terms of parallelizability, enabling real-time image processing, low memory-taken and extensive applications.

  11. A Hybrid Stiff Solver for the Rayleigh-Plesset Equation

    NASA Astrophysics Data System (ADS)

    Alsayegh, Mutaz; Lee, Chung-Min

    2011-11-01

    We seek to apply efficient computational algorithms to investigate the locations of bubble concentrations in liquid flow. In flows with large velocities, bubbles tend to form in concentrated areas. Moreover, experiments show that bubbles formed at high velocities release large amount of energy once they collapse causing damage to equipment and objects that are in the path of the flow. To gain more insight on the formation of these bubbles, we will first study the dynamics of a single bubble and assume the bubble is a sphere. The dynamics of the bubble in terms of its radius and the driven pressure is modeled by the Rayleigh-Plesset (RP) equation. The RP equation is a second order nonlinear stiff ordinary differential equation (ode) and theoretically, its solution can be obtained numerically using Finite Difference (FD) methods. However, under large pressure variations, the rate of change of the bubble's radius approaches infinity when the bubble is collapsing. Explicit numerical integration methods require time steps of magnitude of (10-12 s) to achieve stable solutions. Iterations under this time scale are highly impractical and require immense CPU time. Therefore, a stiff ode solver is needed to alleviate the computation cost. Therefore, we would like to devise a hybrid algorithm that automatically selects between an explicit method and the stiff ode solver. Once we have a robust implementation, we will use it to process the data and analyze the relations between bubble locations and flow structures.

  12. Using computer algebra and SMT solvers in algebraic biology

    NASA Astrophysics Data System (ADS)

    Pineda Osorio, Mateo

    2014-05-01

    Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.

  13. Parallel adaptive fluid-structure interaction simulation of explosions impacting on building structures

    SciTech Connect

    Deiterding, Ralf; Wood, Stephen L

    2013-01-01

    We pursue a level set approach to couple an Eulerian shock-capturing fluid solver with space-time refinement to an explicit solid dynamics solver for large deformations and fracture. The coupling algorithms considering recursively finer fluid time steps as well as overlapping solver updates are discussed in detail. Our ideas are implemented in the AMROC adaptive fluid solver framework and are used for effective fluid-structure coupling to the general purpose solid dynamics code DYNA3D. Beside simulations verifying the coupled fluid-structure solver and assessing its parallel scalability, the detailed structural analysis of a reinforced concrete column under blast loading and the simulation of a prototypical blast explosion in a realistic multistory building are presented.

  14. User documentation for PVODE, an ODE solver for parallel computers

    SciTech Connect

    Hindmarsh, A.C., LLNL

    1998-05-01

    PVODE is a general purpose ordinary differential equation (ODE) solver for stiff and nonstiff ODES It is based on CVODE [5] [6], which is written in ANSI- standard C PVODE uses MPI (Message-Passing Interface) [8] and a revised version of the vector module in CVODE to achieve parallelism and portability PVODE is intended for the SPMD (Single Program Multiple Data) environment with distributed memory, in which all vectors are identically distributed across processors In particular, the vector module is designed to help the user assign a contiguous segment of a given vector to each of the processors for parallel computation The idea is for each processor to solve a certain fixed subset of the ODES To better understand PVODE, we first need to understand CVODE and its historical background The ODE solver CVODE, which was written by Cohen and Hindmarsh, combines features of two earlier Fortran codes, VODE [l] and VODPK [3] Those two codes were written by Brown, Byrne, and Hindmarsh. Both use variable-coefficient multi-step integration methods, and address both stiff and nonstiff systems (Stiffness is defined as the presence of one or more very small damping time constants ) VODE uses direct linear algebraic techniques to solve the underlying banded or dense linear systems of equations in conjunction with a modified Newton method in the stiff ODE case On the other hand, VODPK uses a preconditioned Krylov iterative method [2] to solve the underlying linear system User-supplied preconditioners directly address the dominant source of stiffness Consequently, CVODE implements both the direct and iterative methods Currently, with regard to the nonlinear and linear system solution, PVODE has three method options available. functional iteration, Newton iteration with a diagonal approximate Jacobian, and Newton iteration with the iterative method SPGMR (Scaled Preconditioned Generalized Minimal Residual method) Both CVODE and PVODE are written in such a way that other linear

  15. Axioms of adaptivity

    PubMed Central

    Carstensen, C.; Feischl, M.; Page, M.; Praetorius, D.

    2014-01-01

    This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. PMID:25983390

  16. Multi-level adaptive computations in fluid dynamics

    NASA Technical Reports Server (NTRS)

    Brandt, A.

    1979-01-01

    The multi-level adaptive technique (MLAT) is a general strategy of solving continuous problems by cycling between coarser and finer levels of discretization. It provides very fast solvers together with adaptive, nearly optimal discretization schemes to general boundary-value problems in general domains. Here the state of the art is surveyed, emphasizing steady-state fluid dynamics applications, from slow viscous flows to transonic ones. Various new techniques are briefly discussed, including distributive relaxation schemes, the treatment of evolution problems, the combined use of upstream and central differencing, local truncation extrapolations, and other 'super-solver' techniques.

  17. A fast solver for systems of reaction-diffusion equations.

    SciTech Connect

    Garbey, M.; Kaper, H. G.; Romanyukha, N.

    2001-04-20

    In this paper we present a fast algorithm for the numerical solution of systems of reaction-diffusion equations, {partial_derivative}{sub t} u + a {center_dot} {del}u = {Delta}u + f(x,t,u), and x element of {Omega} contained in R{sup 3}, t > 0. Here, u is a vector-valued function, u triple bond u(x,t) element of R{sup m} is large, and the corresponding system of ODEs, {partial_derivative}{sub t}u = F(x,t,u), is stiff. Typical examples arise in air pollution studies, where a is the given wind field and the nonlinear function F models the atmospheric chemistry. The time integration of Eq. (1) is best handled by the method of characteristics. The problem is thus reduced to designing for the reaction-diffusion part a fast solver that has good stability properties for the given time step and does not require the computation of the full Jacobi matrix. An operator-splitting technique, even a high-order one, combining a fast nonlinear ODE solver with an efficient solver for the diffusion operator is less effective when the reaction term is stiff. In fact, the classical Strang splitting method may underperform a first-order source splitting method. The algorithm we propose in this paper uses an a posteriori filtering technique to stabilize the computation of the diffusion term. The algorithm parallelizes well, because the solution of the large system of ODEs is done pointwise; however, the integration of the chemistry may lead to load-balancing problems. The Tchebycheff acceleration technique proposed in offers an alternative that complements the approach presented here. To facilitate the presentation, we limit the discussion to domains {Omega} that either admit a regular discretization grid or decompose into subdomains that admit regular discretization grids. We describe the algorithm for one-dimensional domains in Section 2 and for multidimensional domains in Section 3. Section 4 briefly outlines future work.

  18. Evaluation of linear solvers for oil reservoir simulation problems. Part 2: The fully implicit case

    SciTech Connect

    Joubert, W.; Janardhan, R.

    1997-12-01

    A previous paper [Joubert/Biswas 1997] contained investigations of linear solver performance for matrices arising from Amoco`s Falcon parallel oil reservoir simulation code using the IMPES formulation (implicit pressure, explicit saturation). In this companion paper, similar issues are explored for linear solvers applied to matrices arising from more difficult fully implicit problems. The results of numerical experiments are given.

  19. T2CG1, a package of preconditioned conjugate gradient solvers for TOUGH2

    SciTech Connect

    Moridis, G.; Pruess, K.; Antunez, E.

    1994-03-01

    Most of the computational work in the numerical simulation of fluid and heat flows in permeable media arises in the solution of large systems of linear equations. The simplest technique for solving such equations is by direct methods. However, because of large storage requirements and accumulation of roundoff errors, the application of direct solution techniques is limited, depending on matrix bandwidth, to systems of a few hundred to at most a few thousand simultaneous equations. T2CG1, a package of preconditioned conjugate gradient solvers, has been added to TOUGH2 to complement its direct solver and significantly increase the size of problems tractable on PCs. T2CG1 includes three different solvers: a Bi-Conjugate Gradient (BCG) solver, a Bi-Conjugate Gradient Squared (BCGS) solver, and a Generalized Minimum Residual (GMRES) solver. Results from six test problems with up to 30,000 equations show that T2CG1 (1) is significantly (and invariably) faster and requires far less memory than the MA28 direct solver, (2) it makes possible the solution of very large three-dimensional problems on PCs, and (3) that the BCGS solver is the fastest of the three in the tested problems. Sample problems are presented related to heat and fluid flow at Yucca Mountain and WIPP, environmental remediation by the Thermal Enhanced Vapor Extraction System, and geothermal resources.

  20. A Newton-Krylov solver for fast spin-up of online ocean tracers

    NASA Astrophysics Data System (ADS)

    Lindsay, Keith

    2017-01-01

    We present a Newton-Krylov based solver to efficiently spin up tracers in an online ocean model. We demonstrate that the solver converges, that tracer simulations initialized with the solution from the solver have small drift, and that the solver takes orders of magnitude less computational time than the brute force spin-up approach. To demonstrate the application of the solver, we use it to efficiently spin up the tracer ideal age with respect to the circulation from different time intervals in a long physics run. We then evaluate how the spun-up ideal age tracer depends on the duration of the physics run, i.e., on how equilibrated the circulation is.

  1. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. Dale, Jr.

    1990-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number of operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  2. Experimental validation of a coupled neutron-photon inverse radiation transport solver

    NASA Astrophysics Data System (ADS)

    Mattingly, John; Mitchell, Dean J.; Harding, Lee T.

    2011-10-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  3. A finite element Poisson solver for gyrokinetic particle simulations in a global field aligned mesh

    SciTech Connect

    Nishimura, Y. . E-mail: nishimuy@uci.edu; Lin, Z.; Lewandowski, J.L.V.; Ethier, S.

    2006-05-20

    A new finite element Poisson solver is developed and applied to a global gyrokinetic toroidal code (GTC) which employs the field aligned mesh and thus a logically non-rectangular grid in a general geometry. Employing test cases where the analytical solutions are known, the finite element solver has been verified. The CPU time scaling versus the matrix size employing portable, extensible toolkit for scientific computation (PETSc) to solve the sparse matrix is promising. Taking the ion temperature gradient modes (ITG) as an example, the solution from the new finite element solver has been compared to the solution from the original GTC's iterative solver which is only efficient for adiabatic electrons. Linear and nonlinear simulation results from the two different forms of the gyrokinetic Poisson equation (integral form and the differential form) coincide each other. The new finite element solver enables the implementation of advanced kinetic electron models for global electromagnetic simulations.

  4. Experimental validation of GADRAS's coupled neutron-photon inverse radiation transport solver.

    SciTech Connect

    Mattingly, John K.; Mitchell, Dean James; Harding, Lee T.

    2010-08-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of {alpha}-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  5. A High-Order Direct Solver for Helmholtz Equations with Neumann Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Zhuang, Yu

    1997-01-01

    In this study, a compact finite-difference discretization is first developed for Helmholtz equations on rectangular domains. Special treatments are then introduced for Neumann and Neumann-Dirichlet boundary conditions to achieve accuracy and separability. Finally, a Fast Fourier Transform (FFT) based technique is used to yield a fast direct solver. Analytical and experimental results show this newly proposed solver is comparable to the conventional second-order elliptic solver when accuracy is not a primary concern, and is significantly faster than that of the conventional solver if a highly accurate solution is required. In addition, this newly proposed fourth order Helmholtz solver is parallel in nature. It is readily available for parallel and distributed computers. The compact scheme introduced in this study is likely extendible for sixth-order accurate algorithms and for more general elliptic equations.

  6. Status Of The UPS Space-Marching Flow Solver

    NASA Technical Reports Server (NTRS)

    Lawerence, Scott L.; VanDalsem, William (Technical Monitor)

    1995-01-01

    The status of the three-dimensional parabolized Navier-Stokes solver UPS is described. The UPS code, initiated at NASA Ames Research Center in 1986, continues to develop and evolve through application to supersonic and hypersonic flow fields. Hypersonic applications have motivated enhancement of the physical modeling capabilities of the code, specifically real gas modeling, boundary conditions, and turbulence and transition modeling. The UPS code has also been modified to enhance robustness and efficiency in order to be practically used in concert with an optimization code for supersonic transport design. These developments are briefly described along with some relevant results for generic test problems obtained during verification of the enhancements. Included developments and results have previously been published and widely disseminated domestically.

  7. Workload Characterization of CFD Applications Using Partial Differential Equation Solvers

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Workload characterization is used for modeling and evaluating of computing systems at different levels of detail. We present workload characterization for a class of Computational Fluid Dynamics (CFD) applications that solve Partial Differential Equations (PDEs). This workload characterization focuses on three high performance computing platforms: SGI Origin2000, EBM SP-2, a cluster of Intel Pentium Pro bases PCs. We execute extensive measurement-based experiments on these platforms to gather statistics of system resource usage, which results in workload characterization. Our workload characterization approach yields a coarse-grain resource utilization behavior that is being applied for performance modeling and evaluation of distributed high performance metacomputing systems. In addition, this study enhances our understanding of interactions between PDE solver workloads and high performance computing platforms and is useful for tuning these applications.

  8. Workload Characterization of CFD Applications Using Partial Differential Equation Solvers

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Workload characterization is used for modeling and evaluating of computing systems at different levels of detail. We present workload characterization for a class of Computational Fluid Dynamics (CFD) applications that solve Partial Differential Equations (PDEs). This workload characterization focuses on three high performance computing platforms: SGI Origin2000, EBM SP-2, a cluster of Intel Pentium Pro bases PCs. We execute extensive measurement-based experiments on these platforms to gather statistics of system resource usage, which results in workload characterization. Our workload characterization approach yields a coarse-grain resource utilization behavior that is being applied for performance modeling and evaluation of distributed high performance metacomputing systems. In addition, this study enhances our understanding of interactions between PDE solver workloads and high performance computing platforms and is useful for tuning these applications.

  9. Performance evaluation of a parallel sparse lattice Boltzmann solver

    SciTech Connect

    Axner, L. Bernsdorf, J. Zeiser, T. Lammers, P. Linxweiler, J. Hoekstra, A.G.

    2008-05-01

    We develop a performance prediction model for a parallelized sparse lattice Boltzmann solver and present performance results for simulations of flow in a variety of complex geometries. A special focus is on partitioning and memory/load balancing strategy for geometries with a high solid fraction and/or complex topology such as porous media, fissured rocks and geometries from medical applications. The topology of the lattice nodes representing the fluid fraction of the computational domain is mapped on a graph. Graph decomposition is performed with both multilevel recursive-bisection and multilevel k-way schemes based on modified Kernighan-Lin and Fiduccia-Mattheyses partitioning algorithms. Performance results and optimization strategies are presented for a variety of platforms, showing a parallel efficiency of almost 80% for the largest problem size. A good agreement between the performance model and experimental results is demonstrated.

  10. GPU accelerated FDTD solver and its application in MRI.

    PubMed

    Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S

    2010-01-01

    The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.

  11. Large-scale linear nonparallel support vector machine solver.

    PubMed

    Tian, Yingjie; Ping, Yuan

    2014-02-01

    Twin support vector machines (TWSVMs), as the representative nonparallel hyperplane classifiers, have shown the effectiveness over standard SVMs from some aspects. However, they still have some serious defects restricting their further study and real applications: (1) They have to compute and store the inverse matrices before training, it is intractable for many applications where data appear with a huge number of instances as well as features; (2) TWSVMs lost the sparseness by using a quadratic loss function making the proximal hyperplane close enough to the class itself. This paper proposes a Sparse Linear Nonparallel Support Vector Machine, termed as L1-NPSVM, to deal with large-scale data based on an efficient solver-dual coordinate descent (DCD) method. Both theoretical analysis and experiments indicate that our method is not only suitable for large scale problems, but also performs as good as TWSVMs and SVMs.

  12. A Coupled Finite Volume Solver for Incompressible Flows

    NASA Astrophysics Data System (ADS)

    Moukalled, F.; Darwish, M.

    2008-09-01

    This paper reports on a pressure-based coupled algorithm for the solution of laminar incompressible flow problems. The implicit pressure-velocity coupling is accomplished by deriving a pressure equation in a way similar to a segregated SIMPLE algorithm with the extended set of equations solved simultaneously and having diagonally dominant coefficients. The superiority of the coupled approach over the segregated approach is demonstrated by solving the lid-driven flow in a square cavity problem using both methodologies and comparing their computational costs. Results indicate that the number of iterations needed by the coupled solver is grid independent. Moreover, recorded CPU time values reveal that the coupled approach substantially reduces the computational cost with the reduction rate for the problem solved increasing as the grid size increases and reaching a value as high as 115.

  13. Extending the QUDA Library with the eigCG Solver

    SciTech Connect

    Strelchenko, Alexei; Stathopoulos, Andreas

    2014-12-12

    While the incremental eigCG algorithm [ 1 ] is included in many LQCD software packages, its realization on GPU micro-architectures was still missing. In this session we report our experi- ence of the eigCG implementation in the QUDA library. In particular, we will focus on how to employ the mixed precision technique to accelerate solutions of large sparse linear systems with multiple right-hand sides on GPUs. Although application of mixed precision techniques is a well-known optimization approach for linear solvers, its utilization for the eigenvector com- puting within eigCG requires special consideration. We will discuss implementation aspects of the mixed precision deflation and illustrate its numerical behavior on the example of the Wilson twisted mass fermion matrix inversions

  14. Performance evaluation of a parallel sparse lattice Boltzmann solver

    NASA Astrophysics Data System (ADS)

    Axner, L.; Bernsdorf, J.; Zeiser, T.; Lammers, P.; Linxweiler, J.; Hoekstra, A. G.

    2008-05-01

    We develop a performance prediction model for a parallelized sparse lattice Boltzmann solver and present performance results for simulations of flow in a variety of complex geometries. A special focus is on partitioning and memory/load balancing strategy for geometries with a high solid fraction and/or complex topology such as porous media, fissured rocks and geometries from medical applications. The topology of the lattice nodes representing the fluid fraction of the computational domain is mapped on a graph. Graph decomposition is performed with both multilevel recursive-bisection and multilevel k-way schemes based on modified Kernighan-Lin and Fiduccia-Mattheyses partitioning algorithms. Performance results and optimization strategies are presented for a variety of platforms, showing a parallel efficiency of almost 80% for the largest problem size. A good agreement between the performance model and experimental results is demonstrated.

  15. Using parallel banded linear system solvers in generalized eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Zhang, Hong; Moss, William F.

    1993-01-01

    Subspace iteration is a reliable and cost effective method for solving positive definite banded symmetric generalized eigenproblems, especially in the case of large scale problems. This paper discusses an algorithm that makes use of two parallel banded solvers in subspace iteration. A shift is introduced to decompose the banded linear systems into relatively independent subsystems and to accelerate the iterations. With this shift, an eigenproblem is mapped efficiently into the memories of a multiprocessor and a high speed-up is obtained for parallel implementations. An optimal shift is a shift that balances total computation and communication costs. Under certain conditions, we show how to estimate an optimal shift analytically using the decay rate for the inverse of a banded matrix, and how to improve this estimate. Computational results on iPSC/2 and iPSC/860 multiprocessors are presented.

  16. Blade design and analysis using a modified Euler solver

    NASA Technical Reports Server (NTRS)

    Leonard, O.; Vandenbraembussche, R. A.

    1991-01-01

    An iterative method for blade design based on Euler solver and described in an earlier paper is used to design compressor and turbine blades providing shock free transonic flows. The method shows a rapid convergence, and indicates how much the flow is sensitive to small modifications of the blade geometry, that the classical iterative use of analysis methods might not be able to define. The relationship between the required Mach number distribution and the resulting geometry is discussed. Examples show how geometrical constraints imposed upon the blade shape can be respected by using free geometrical parameters or by relaxing the required Mach number distribution. The same code is used both for the design of the required geometry and for the off-design calculations. Examples illustrate the difficulty of designing blade shapes with optimal performance also outside of the design point.

  17. Accurate derivative evaluation for any Grad–Shafranov solver

    SciTech Connect

    Ricketson, L.F.; Cerfon, A.J.; Rachh, M.; Freidberg, J.P.

    2016-01-15

    We present a numerical scheme that can be combined with any fixed boundary finite element based Poisson or Grad–Shafranov solver to compute the first and second partial derivatives of the solution to these equations with the same order of convergence as the solution itself. At the heart of our scheme is an efficient and accurate computation of the Dirichlet to Neumann map through the evaluation of a singular volume integral and the solution to a Fredholm integral equation of the second kind. Our numerical method is particularly useful for magnetic confinement fusion simulations, since it allows the evaluation of quantities such as the magnetic field, the parallel current density and the magnetic curvature with much higher accuracy than has been previously feasible on the affordable coarse grids that are usually implemented.

  18. Interactive visualization of volumetric white matter connectivity in DT-MRI using a parallel-hardware Hamilton-Jacobi solver.

    PubMed

    Jeong, Won-Ki; Fletcher, P Thomas; Tao, Ran; Whitaker, Ross

    2007-01-01

    In this paper we present a method to compute and visualize volumetric white matter connectivity in diffusion tensor magnetic resonance imaging (DT-MRI) using a Hamilton-Jacobi (H-J) solver on the GPU (Graphics Processing Unit). Paths through the volume are assigned costs that are lower if they are consistent with the preferred diffusion directions. The proposed method finds a set of voxels in the DTI volume that contain paths between two regions whose costs are within a threshold of the optimal path. The result is a volumetric optimal path analysis, which is driven by clinical and scientific questions relating to the connectivity between various known anatomical regions of the brain. To solve the minimal path problem quickly, we introduce a novel numerical algorithm for solving H-J equations, which we call the Fast Iterative Method (FIM). This algorithm is well-adapted to parallel architectures, and we present a GPU-based implementation, which runs roughly 50-100 times faster than traditional CPU-based solvers for anisotropic H-J equations. The proposed system allows users to freely change the endpoints of interesting pathways and to visualize the optimal volumetric path between them at an interactive rate. We demonstrate the proposed method on some synthetic and real DT-MRI datasets and compare the performance with existing methods.

  19. A fast solver for systems of axisymmetric ring vortices

    SciTech Connect

    Strickland, J.H.; Amos, D.E.

    1990-09-01

    A method which is capable of efficient calculation of the axisymmetric flow field produced by a large system of ring vortices is presented in this report. The system of ring vortices can, in turn, be used to model body surfaces and wakes in incompressible unsteady axisymmetric flow fields. This method takes advantage of source point and field point series expansions which enables one to make calculations for interactions between groups of vortices which are in well separated spatial domains rather than having to consider interactions between every pair of vortices. In this work, series expansions for the stream function of the ring vortex system are obtained. Such expansions explicitly contain the radial and axial velocity components. A Fortran computer code RSOLV has been written to execute the fast solution technique to calculate the stream function and the axial and radial velocity components at points in the flow field. Test cases have been run to optimize the code and to benchmark the truncation errors and CPU time savings associated with the method. Non-dimensional truncation errors for the stream function and total velocity field are on the order of 5 {times} 10{sup {minus}5} and 3 {times} 10{sup {minus}3} respectively. Single precision accuracy produces errors in these quantities up to about 1 {times} 10{sup {minus}5}. For 100 vortices in the field, there is virtually no CPU time savings with the fast solver. For 10,000 vortices in the flow, the fast solver obtains solutions in about 1% to 3% of the time required for the direct solution technique. Simulations of vortices with square and circular cores were run in order to obtain expressions for the self-induced velocities of such vortices. 8 refs., 26 figs.

  20. Tightly Coupled Geodynamic Systems: Software, Implicit Solvers & Applications

    NASA Astrophysics Data System (ADS)

    May, D.; Le Pourhiet, L.; Brown, J.

    2011-12-01

    The generic term "multi-physics" is used to define physical processes which are described by a collection of partial differential equations, or "physics". Numerous processes in geodynamics fall into this category. For example, the evolution of viscous fluid flow and heat transport within the mantle (Stokes flow + energy conservation), the dynamics of melt migration (Stokes flow + Darcy flow + porosity evolution) and landscape evolution (Stokes + diffusion/advection over a surface). The development of software to numerically investigate processes that are described through the composition of different physics components are typically (a) designed for one particular set of physics and are never intended to be extended, or coupled to other processes (b) enforce that certain non-linearity's (or coupling) are explicitly removed from the system for reasons of computational efficiency, or due the lack of a robust non-linear solver (e.g. most models in the mantle convection community). We describe a software infrastructure which enables us to easily introduce new physics with minimal code modifications; tightly couple all physics without introducing splitting errors; exploit modern linear/non-linear solvers and permit the re-use of monolithic preconditioners for individual physics blocks (e.g. saddle point preconditioners for Stokes). Here we present a number of examples to illustrate the flexibility and importance of using this software infra-structure. Using the Stokes system as a prototype, we show results illustrating (i) visco-plastic shear banding experiments, (ii) how coupling Stokes flow with the evolution of the material coordinates can yield temporal stability in the free surface evolution and (iii) the discretisation error associated with decoupling Stokes equation from the heat transport equation in models of mantle convection with various rheologies.

  1. Domain decomposed preconditioners with Krylov subspace methods as subdomain solvers

    SciTech Connect

    Pernice, M.

    1994-12-31

    Domain decomposed preconditioners for nonsymmetric partial differential equations typically require the solution of problems on the subdomains. Most implementations employ exact solvers to obtain these solutions. Consequently work and storage requirements for the subdomain problems grow rapidly with the size of the subdomain problems. Subdomain solves constitute the single largest computational cost of a domain decomposed preconditioner, and improving the efficiency of this phase of the computation will have a significant impact on the performance of the overall method. The small local memory available on the nodes of most message-passing multicomputers motivates consideration of the use of an iterative method for solving subdomain problems. For large-scale systems of equations that are derived from three-dimensional problems, memory considerations alone may dictate the need for using iterative methods for the subdomain problems. In addition to reduced storage requirements, use of an iterative solver on the subdomains allows flexibility in specifying the accuracy of the subdomain solutions. Substantial savings in solution time is possible if the quality of the domain decomposed preconditioner is not degraded too much by relaxing the accuracy of the subdomain solutions. While some work in this direction has been conducted for symmetric problems, similar studies for nonsymmetric problems appear not to have been pursued. This work represents a first step in this direction, and explores the effectiveness of performing subdomain solves using several transpose-free Krylov subspace methods, GMRES, transpose-free QMR, CGS, and a smoothed version of CGS. Depending on the difficulty of the subdomain problem and the convergence tolerance used, a reduction in solution time is possible in addition to the reduced memory requirements. The domain decomposed preconditioner is a Schur complement method in which the interface operators are approximated using interface probing.

  2. High Energy Boundary Conditions for a Cartesian Mesh Euler Solver

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir; Murman, Scott; Aftosmis, Michael

    2003-01-01

    Inlets and exhaust nozzles are common place in the world of flight. Yet, many aerodynamic simulation packages do not provide a method of modelling such high energy boundaries in the flow field. For the purposes of aerodynamic simulation, inlets and exhausts are often fared over and it is assumed that the flow differences resulting from this assumption are minimal. While this is an adequate assumption for the prediction of lift, the lack of a plume behind the aircraft creates an evacuated base region thus effecting both drag and pitching moment values. In addition, the flow in the base region is often mis-predicted resulting in incorrect base drag. In order to accurately predict these quantities, a method for specifying inlet and exhaust conditions needs to be available in aerodynamic simulation packages. A method for a first approximation of a plume without accounting for chemical reactions is added to the Cartesian mesh based aerodynamic simulation package CART3D. The method consists of 3 steps. In the first step, a components approach where each triangle is assigned a component number is used. Here, a method for marking the inlet or exhaust plane triangles as separate components is discussed. In step two, the flow solver is modified to accept a reference state for the components marked inlet or exhaust. In the third step, the flow solver uses these separated components and the reference state to compute the correct flow condition at that triangle. The present method is implemented in the CART3D package which consists of a set of tools for generating a Cartesian volume mesh from a set of component triangulations. The Euler equations are solved on the resulting unstructured Cartesian mesh. The present methods is implemented in this package and its usefulness is demonstrated with two validation cases. A generic missile body is also presented to show the usefulness of the method on a real world geometry.

  3. A three-dimensional fast solver for arbitrary vorton distributions

    SciTech Connect

    Strickland, J.H.; Baty, R.S.

    1994-05-01

    A method which is capable of an efficient calculation of the three-dimensional flow field produced by a large system of vortons (discretized regions of vorticity) is presented in this report. The system of vortons can, in turn, be used to model body surfaces, container boundaries, free-surfaces, plumes, jets, and wakes in unsteady three-dimensional flow fields. This method takes advantage of multipole and local series expansions which enables one to make calculations for interactions between groups of vortons which are in well-separated spatial domains rather than having to consider interactions between every pair of vortons. In this work, series expansions for the vector potential of the vorton system are obtained. From such expansions, the three components of velocity can be obtained explicitly. A Fortran computer code FAST3D has been written to calculate the vector potential and the velocity components at selected points in the flow field. In this code, the evaluation points do not have to coincide with the location of the vortons themselves. Test cases have been run to benchmark the truncation errors and CPU time savings associated with the method. Non-dimensional truncation errors for the magnitudes of the vector potential and velocity fields are on the order of 10{sup {minus}4}and 10{sup {minus}3} respectively. Single precision accuracy produces errors in these quantities of up to 10{sup {minus}5}. For less than 1,000 to 2,000 vortons in the field, there is virtually no CPU time savings with the fast solver. For 100,000 vortons in the flow, the fast solver obtains solutions in 1 % to 10% of the time required for the direct solution technique depending upon the configuration.

  4. A New Equation Solver for Modeling Turbulent Flow in Coupled Matrix-Conduit Flow Models.

    PubMed

    Hubinger, Bernhard; Birk, Steffen; Hergarten, Stefan

    2016-07-01

    Karst aquifers represent dual flow systems consisting of a highly conductive conduit system embedded in a less permeable rock matrix. Hybrid models iteratively coupling both flow systems generally consume much time, especially because of the nonlinearity of turbulent conduit flow. To reduce calculation times compared to those of existing approaches, a new iterative equation solver for the conduit system is developed based on an approximated Newton-Raphson expression and a Gauß-Seidel or successive over-relaxation scheme with a single iteration step at the innermost level. It is implemented and tested in the research code CAVE but should be easily adaptable to similar models such as the Conduit Flow Process for MODFLOW-2005. It substantially reduces the computational effort as demonstrated by steady-state benchmark scenarios as well as by transient karst genesis simulations. Water balance errors are found to be acceptable in most of the test cases. However, the performance and accuracy may deteriorate under unfavorable conditions such as sudden, strong changes of the flow field at some stages of the karst genesis simulations.

  5. A multi-dimensional finite volume cell-centered direct ALE solver for hydrodynamics

    NASA Astrophysics Data System (ADS)

    Clair, G.; Ghidaglia, J.-M.; Perlat, J.-P.

    2016-12-01

    In this paper we describe a second order multi-dimensional scheme, belonging to the class of direct Arbitrary Lagrangian-Eulerian (ALE) methods, for the solution of non-linear hyperbolic systems of conservation law. The scheme is constructed upon a cell-centered explicit Lagrangian solver completed with an edge-based upwinded formulation of the numerical fluxes, computed from the MUSCL-Hancock method, to obtain a full ALE formulation. Numerical fluxes depend on nodal grid velocities which are either set or computed to avoid most of the mesh problems typically encountered in purely Lagrangian simulations. In order to assess the robustness of the scheme, most results proposed in this paper have been obtained by computing the grid velocities as a fraction of the Lagrangian nodal velocities, the ratio being set before running the test case. The last part of the paper describes preliminary results about the triple point test case run in the ALE framework by computing the grid velocities with the fully adaptive Large Eddy Limitation (L.E.L.) method proposed in [1]. Such a method automatically computes the grid velocities at each node defining the mesh from the local characteristics of the flow. We eventually discuss the advantages and the drawback of the coupling.

  6. The impact of improved sparse linear solvers on industrial engineering applications

    SciTech Connect

    Heroux, M.; Baddourah, M.; Poole, E.L.; Yang, Chao Wu

    1996-12-31

    There are usually many factors that ultimately determine the quality of computer simulation for engineering applications. Some of the most important are the quality of the analytical model and approximation scheme, the accuracy of the input data and the capability of the computing resources. However, in many engineering applications the characteristics of the sparse linear solver are the key factors in determining how complex a problem a given application code can solve. Therefore, the advent of a dramatically improved solver often brings with it dramatic improvements in our ability to do accurate and cost effective computer simulations. In this presentation we discuss the current status of sparse iterative and direct solvers in several key industrial CFD and structures codes, and show the impact that recent advances in linear solvers have made on both our ability to perform challenging simulations and the cost of those simulations. We also present some of the current challenges we have and the constraints we face in trying to improve these solvers. Finally, we discuss future requirements for sparse linear solvers on high performance architectures and try to indicate the opportunities that exist if we can develop even more improvements in linear solver capabilities.

  7. Oasis: A high-level/high-performance open source Navier-Stokes solver

    NASA Astrophysics Data System (ADS)

    Mortensen, Mikael; Valen-Sendstad, Kristian

    2015-03-01

    Oasis is a high-level/high-performance finite element Navier-Stokes solver written from scratch in Python using building blocks from the FEniCS project (fenicsproject.org). The solver is unstructured and targets large-scale applications in complex geometries on massively parallel clusters. Oasis utilizes MPI and interfaces, through FEniCS, to the linear algebra backend PETSc. Oasis advocates a high-level, programmable user interface through the creation of highly flexible Python modules for new problems. Through the high-level Python interface the user is placed in complete control of every aspect of the solver. A version of the solver, that is using piecewise linear elements for both velocity and pressure, is shown to reproduce very well the classical, spectral, turbulent channel simulations of Moser et al. (1999). The computational speed is strongly dominated by the iterative solvers provided by the linear algebra backend, which is arguably the best performance any similar implicit solver using PETSc may hope for. Higher order accuracy is also demonstrated and new solvers may be easily added within the same framework.

  8. Acceleration of FDTD mode solver by high-performance computing techniques.

    PubMed

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  9. A parallel 3D poisson solver for space charge simulation in cylindrical coordinates.

    SciTech Connect

    Xu, J.; Ostroumov, P. N.; Nolen, J.; Physics

    2008-02-01

    This paper presents the development of a parallel three-dimensional Poisson solver in cylindrical coordinate system for the electrostatic potential of a charged particle beam in a circular tube. The Poisson solver uses Fourier expansions in the longitudinal and azimuthal directions, and Spectral Element discretization in the radial direction. A Dirichlet boundary condition is used on the cylinder wall, a natural boundary condition is used on the cylinder axis and a Dirichlet or periodic boundary condition is used in the longitudinal direction. A parallel 2D domain decomposition was implemented in the (r,{theta}) plane. This solver was incorporated into the parallel code PTRACK for beam dynamics simulations. Detailed benchmark results for the parallel solver and a beam dynamics simulation in a high-intensity proton LINAC are presented. When the transverse beam size is small relative to the aperture of the accelerator line, using the Poisson solver in a Cartesian coordinate system and a Cylindrical coordinate system produced similar results. When the transverse beam size is large or beam center located off-axis, the result from Poisson solver in Cartesian coordinate system is not accurate because different boundary condition used. While using the new solver, we can apply circular boundary condition easily and accurately for beam dynamic simulations in accelerator devices.

  10. GORRAM: Introducing accurate operational-speed radiative transfer Monte Carlo solvers

    NASA Astrophysics Data System (ADS)

    Buras-Schnell, Robert; Schnell, Franziska; Buras, Allan

    2016-06-01

    We present a new approach for solving the radiative transfer equation in horizontally homogeneous atmospheres. The motivation was to develop a fast yet accurate radiative transfer solver to be used in operational retrieval algorithms for next generation meteorological satellites. The core component is the program GORRAM (Generator Of Really Rapid Accurate Monte-Carlo) which generates solvers individually optimized for the intended task. These solvers consist of a Monte Carlo model capable of path recycling and a representative set of photon paths. Latter is generated using the simulated annealing technique. GORRAM automatically takes advantage of limitations on the variability of the atmosphere. Due to this optimization the number of photon paths necessary for accurate results can be reduced by several orders of magnitude. For the shown example of a forward model intended for an aerosol satellite retrieval, comparison with an exact yet slow solver shows that a precision of better than 1% can be achieved with only 36 photons. The computational time is at least an order of magnitude faster than any other type of radiative transfer solver. Merely the lookup table approach often used in satellite retrieval is faster, but on the other hand suffers from limited accuracy. This makes GORRAM-generated solvers an eligible candidate as forward model in operational-speed retrieval algorithms and data assimilation applications. GORRAM also has the potential to create fast solvers of other integrable equations.

  11. Implementation of density-based solver for all speeds in the framework of OpenFOAM

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Sun, Fengxian; Xia, Xinlin

    2014-10-01

    In the framework of open source CFD code OpenFOAM, a density-based solver for all speeds flow field is developed. In this solver the preconditioned all speeds AUSM+(P) scheme is adopted and the dual time scheme is implemented to complete the unsteady process. Parallel computation could be implemented to accelerate the solving process. Different interface reconstruction algorithms are implemented, and their accuracy with respect to convection is compared. Three benchmark tests of lid-driven cavity flow, flow crossing over a bump, and flow over a forward-facing step are presented to show the accuracy of the AUSM+(P) solver for low-speed incompressible flow, transonic flow, and supersonic/hypersonic flow. Firstly, for the lid driven cavity flow, the computational results obtained by different interface reconstruction algorithms are compared. It is indicated that the one dimensional reconstruction scheme adopted in this solver possesses high accuracy and the solver developed in this paper can effectively catch the features of low incompressible flow. Then via the test cases regarding the flow crossing over bump and over forward step, the ability to capture characteristics of the transonic and supersonic/hypersonic flows are confirmed. The forward-facing step proves to be the most challenging for the preconditioned solvers with and without the dual time scheme. Nonetheless, the solvers described in this paper reproduce the main features of this flow, including the evolution of the initial transient.

  12. Extending the functionalities of Cartesian grid solvers: Viscous effects modeling and MPI parallelization

    NASA Astrophysics Data System (ADS)

    Marshall, David D.

    With the renewed interest in Cartesian gridding methodologies for the ease and speed of gridding complex geometries in addition to the simplicity of the control volumes used in the computations, it has become important to investigate ways of extending the existing Cartesian grid solver functionalities. This includes developing methods of modeling the viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and addressing the issues related to the distributed memory parallelization of Cartesian solvers. This research presents advances in two areas of interest in Cartesian grid solvers, viscous effects modeling and MPI parallelization. The development of viscous effects modeling using solely Cartesian grids has been hampered by the widely varying control volume sizes associated with the mesh refinement and the cut cells associated with the solid surface. This problem is being addressed by using physically based modeling techniques to update the state vectors of the cut cells and removing them from the finite volume integration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, with modifications to its cut cell functionality. The development of MPI parallelization addresses issues associated with utilizing Cartesian solvers on distributed memory parallel environments. This work is performed on an existing Cartesian grid solver, CART3D, with modifications to its parallelization methodology.

  13. An Adaptive Fast Direct Solver for Boundary Integral Equations in Two Dimensions

    DTIC Science & Technology

    2009-08-21

    described in Sections 5 and 6. In each of the experiments, we apply Nystrom discretization to one of the following boundary integral 19 I I I equations...7.5) via the Nystrom method with piecewise Gaussian quadrature displays high rates of convergence, so long as the kernel K(x,y) and the layer density...Analysis, Ann. of Math. Stud., 112 (1986), pp. 131-183. [17] R. KRESS, Integral Equations, Springer-Verlag, New York, 1999. [18] R. KRESS, A Nystrom method

  14. Parallel Unsteady Overset Mesh Methodology for Adaptive and Moving Grids with Multiple Solvers

    DTIC Science & Technology

    2010-01-01

    Runge - Kutta time-stepping framework and is capable of up to fifth-order accurate spatial discretizations. Further, the Cartesian grids in the off-body are...no user intervention or explicit hole-map specification is necessary. The capabilities and performance of the package are presented for several test...connectivity approaches have been investigated in the past by various research groups . The prominent among them are PEGASUS5 [5], OVERFLOW-DCF [6, 7], SUGGAR

  15. Parallel Unsteady Overset Mesh Methodology for a Multi-Solver Paradigm with Adaptive Cartesian Grids

    DTIC Science & Technology

    2008-08-21

    a multi-stage Runge - Kutta time-stepping framework and is capable of up to fifth-order accurate spatial discretizations. Further, the Cartesian grids...cutting methodology such that no user inter- vention or explicit hole-map specification is necessary. The capabilities and performance of the package are...application to rotorcraft aerodynamics. Several Domain-Connectivity approaches have been investigated in the past by various research groups . The

  16. Robust large-scale parallel nonlinear solvers for simulations.

    SciTech Connect

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any existing linear solver, which makes it simple to write

  17. A new set of direct and iterative solvers for the TOUGH2 family of codes

    SciTech Connect

    Moridis, G.J.

    1995-04-01

    Two new solvers are discussed. LUBAND, the first routine is a direct solver for banded systems and is based on a LU decomposition with partial pivoting and row interchange. BCGSTB, the second routine, is a Preconditioned Conjugate Gradient (PCG) solver with improved speed and convergence characteristics. Bandwidth minimization and gridblock ordering schemes are also introduced into TOUGH2 to improve speed and accuracy. TOUGH2 simulates fluid and heat flows in permeable media and is used for the evaluation of WIPP and TEVES (Thermal Enhanced Vapor Extraction System) that will be used to extract solvents from the Chemical Waste Landfill at Sandia National Laboratories.

  18. Application of an unstructured grid flow solver to planes, trains and automobiles

    NASA Technical Reports Server (NTRS)

    Spragle, Gregory S.; Smith, Wayne A.; Yadlin, Yoram

    1993-01-01

    Rampant, an unstructured flow solver developed at Fluent Inc., is used to compute three-dimensional, viscous, turbulent, compressible flow fields within complex solution domains. Rampant is an explicit, finite-volume flow solver capable of computing flow fields using either triangular (2d) or tetrahedral (3d) unstructured grids. Local time stepping, implicit residual smoothing, and multigrid techniques are used to accelerate the convergence of the explicit scheme. The paper describes the Rampant flow solver and presents flow field solutions about a plane, train, and automobile.

  19. A parallel explicit solver for unsteady compressible flows

    NASA Astrophysics Data System (ADS)

    Akay, H. U.; Ecer, A.; Kemle, W. B.

    A previously developed sequential solver for unsteady compressible Euler equations is implemented on INTEL iPSC/860 parallel computer. An explicit finite element formulation using Clebsch variable form of the Euler equations is presented. A streamwise upwinding technique is employed for introducing artificial diffusion to convective terms. Applications are presented for the solution of transonic potential equations. For parallel implementation of the method, the three-dimensional solution domain is partitioned into a number of subdomains requiring each subdomain to reside on a separate processor for parallel computations. The exchange of information between the solution blocks is due to overlapped boundaries at the block interfaces. The same algorithm can also be applied to steady flows by continuing the time integrations until the steady flow conditions are reached. It has been observed that the convergence rate to steady state is affected little with increased number of solution blocks. Efficiency curves for nearly-balanced loads are obtained for different partitioning algorithms. The partition efficiency is shown to affect the central processing unit (CPU) efficiency of the algorithm directly.

  20. Approximate Riemann solvers for the cosmic ray magnetohydrodynamical equations

    NASA Astrophysics Data System (ADS)

    Kudoh, Yuki; Hanawa, Tomoyuki

    2016-11-01

    We analyse the cosmic ray magnetohydrodynamic (CR MHD) equations to improve the numerical simulations. We propose to solve them in the fully conservation form, which is equivalent to the conventional CR MHD equations. In the fully conservation form, the CR energy equation is replaced with the CR `number' conservation, where the CR number density is defined as the three-fourths power of the CR energy density. The former contains an extra source term, while latter does not. An approximate Riemann solver is derived from the CR MHD equations in the fully conservation form. Based on the analysis, we propose a numerical scheme of which solutions satisfy the Rankine-Hugoniot relation at any shock. We demonstrate that it reproduces the Riemann solution derived by Pfrommer et al. for a 1D CR hydrodynamic shock tube problem. We compare the solution with those obtained by solving the CR energy equation. The latter solutions deviate from the Riemann solution seriously, when the CR pressure dominates over the gas pressure in the post-shocked gas. The former solutions converge to the Riemann solution and are of the second-order accuracy in space and time. Our numerical examples include an expansion of high-pressure sphere in a magnetized medium. Fast and slow shocks are sharply resolved in the example. We also discuss possible extension of the CR MHD equations to evaluate the average CR energy.

  1. An implicit-explicit flow solver for complex unsteady flows

    NASA Astrophysics Data System (ADS)

    Hsu, John Ming-Jey

    2005-12-01

    Current calculations of complex unsteady flows are prohibitively expensive for use in real engineering applications. Typical flow solvers for unsteady integration employ a fully implicit time stepping scheme, in which the equations are solved by an inner iteration. In order to achieve convergence within each physical time step, a substantial number of pseudo-time steps (typically between 30--100, depending on the case) are required. Another unfavorable characteristic of the dual time stepping method is that there are no available error estimates for time accuracy available unless the inner iterations are fully converged, although numerical experiments have demonstrated second order accuracy in time. The approach in this thesis is to construct hybrid type schemes by combining implicit and explicit schemes in a manner that guarantees second order accuracy in time. An initial time accurate ADI step is introduced, followed by a small number of cycles of the dual-time stepping scheme augmented by multigrid. The formal second order accuracy in time should be retained without the need for large numbers of inner iterations. The number of inner iterations required for convergence can thus be reduced while maintaining the same overall error levels. To investigate the effectiveness of the proposed scheme, several pitching airfoil test cases were examined, offering a close look at possible reductions in computational cost by adopting the present approach.

  2. Verification of continuum drift kinetic equation solvers in NIMROD

    NASA Astrophysics Data System (ADS)

    Held, E. D.; Kruger, S. E.; Ji, J.-Y.; Belli, E. A.; Lyons, B. C.

    2015-03-01

    Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speed coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.

  3. Verification of continuum drift kinetic equation solvers in NIMROD

    SciTech Connect

    Held, E. D.; Ji, J.-Y.; Kruger, S. E.; Belli, E. A.; Lyons, B. C.

    2015-03-15

    Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speed coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.

  4. An optimal iterative solver for the Stokes problem

    SciTech Connect

    Wathen, A.; Silvester, D.

    1994-12-31

    Discretisations of the classical Stokes Problem for slow viscous incompressible flow gives rise to systems of equations in matrix form for the velocity u and the pressure p, where the coefficient matrix is symmetric but necessarily indefinite. The square submatrix A is symmetric and positive definite and represents a discrete (vector) Laplacian and the submatrix C may be the zero matrix or more generally will be symmetric positive semi-definite. For `stabilised` discretisations (C {ne} 0) and descretisations which are inherently `stable` (C = 0) and so do not admit spurious pressure components even as the mesh size, h approaches zero, the Schur compliment of the matrix has spectral condition number independent of h (given also that B is bounded). Here the authors will show how this property together with a multigrid preconditioner only for the Laplacian block A yields an optimal solver for the Stokes problem through use of the Minimum Residual iteration. That is, combining Minimum Residual iteration for the matrix equation with a block preconditioner which comprises a small number of multigrid V-cycles for the Laplacian block A together with a simple diagonal scaling block provides an iterative solution procedure for which the computational work grows only linearly with the problem size.

  5. A multiblock multigrid three-dimensional Euler equation solver

    NASA Technical Reports Server (NTRS)

    Cannizzaro, Frank E.; Elmiligui, Alaa; Melson, N. Duane; Vonlavante, E.

    1990-01-01

    Current aerodynamic designs are often quite complex (geometrically). Flexible computational tools are needed for the analysis of a wide range of configurations with both internal and external flows. In the past, geometrically dissimilar configurations required different analysis codes with different grid topologies in each. The duplicity of codes can be avoided with the use of a general multiblock formulation which can handle any grid topology. Rather than hard wiring the grid topology into the program, it is instead dictated by input to the program. In this work, the compressible Euler equations, written in a body-fitted finite-volume formulation, are solved using a pseudo-time-marching approach. Two upwind methods (van Leer's flux-vector-splitting and Roe's flux-differencing) were investigated. Two types of explicit solvers (a two-step predictor-corrector and a modified multistage Runge-Kutta) were used with multigrid acceleration to enhance convergence. A multiblock strategy is used to allow greater geometric flexibility. A report on simple explicit upwind schemes for solving compressible flows is included.

  6. Incremental planning to control a blackboard-based problem solver

    NASA Technical Reports Server (NTRS)

    Durfee, E. H.; Lesser, V. R.

    1987-01-01

    To control problem solving activity, a planner must resolve uncertainty about which specific long-term goals (solutions) to pursue and about which sequences of actions will best achieve those goals. A planner is described that abstracts the problem solving state to recognize possible competing and compatible solutions and to roughly predict the importance and expense of developing these solutions. With this information, the planner plans sequences of problem solving activities that most efficiently resolve its uncertainty about which of the possible solutions to work toward. The planner only details actions for the near future because the results of these actions will influence how (and whether) a plan should be pursued. As problem solving proceeds, the planner adds new details to the plan incrementally, and monitors and repairs the plan to insure it achieves its goals whenever possible. Through experiments, researchers illustrate how these new mechanisms significantly improve problem solving decisions and reduce overall computation. They briefly discuss current research directions, including how these mechanisms can improve a problem solver's real-time response and can enhance cooperation in a distributed problem solving network.

  7. A generalized Poisson solver for first-principles device simulations

    SciTech Connect

    Bani-Hashemian, Mohammad Hossein; VandeVondele, Joost; Brück, Sascha; Luisier, Mathieu

    2016-01-28

    Electronic structure calculations of atomistic systems based on density functional theory involve solving the Poisson equation. In this paper, we present a plane-wave based algorithm for solving the generalized Poisson equation subject to periodic or homogeneous Neumann conditions on the boundaries of the simulation cell and Dirichlet type conditions imposed at arbitrary subdomains. In this way, source, drain, and gate voltages can be imposed across atomistic models of electronic devices. Dirichlet conditions are enforced as constraints in a variational framework giving rise to a saddle point problem. The resulting system of equations is then solved using a stationary iterative method in which the generalized Poisson operator is preconditioned with the standard Laplace operator. The solver can make use of any sufficiently smooth function modelling the dielectric constant, including density dependent dielectric continuum models. For all the boundary conditions, consistent derivatives are available and molecular dynamics simulations can be performed. The convergence behaviour of the scheme is investigated and its capabilities are demonstrated.

  8. Parallelizable approximate solvers for recursions arising in preconditioning

    SciTech Connect

    Shapira, Y.

    1996-12-31

    For the recursions used in the Modified Incomplete LU (MILU) preconditioner, namely, the incomplete decomposition, forward elimination and back substitution processes, a parallelizable approximate solver is presented. The present analysis shows that the solutions of the recursions depend only weakly on their initial conditions and may be interpreted to indicate that the inexact solution is close, in some sense, to the exact one. The method is based on a domain decomposition approach, suitable for parallel implementations with message passing architectures. It requires a fixed number of communication steps per preconditioned iteration, independently of the number of subdomains or the size of the problem. The overlapping subdomains are either cubes (suitable for mesh-connected arrays of processors) or constructed by the data-flow rule of the recursions (suitable for line-connected arrays with possibly SIMD or vector processors). Numerical examples show that, in both cases, the overhead in the number of iterations required for convergence of the preconditioned iteration is small relatively to the speed-up gained.

  9. Solute solver 'what if' module for modeling urea kinetics.

    PubMed

    Daugirdas, John T

    2016-11-01

    The publicly available Solute Solver module allows calculation of a variety of two-pool urea kinetic measures of dialysis adequacy using pre- and postdialysis plasma urea and estimated dialyzer clearance or estimated urea distribution volumes as inputs. However, the existing program does not have a 'what if' module, which would estimate the plasma urea values as well as commonly used measures of hemodialysis adequacy for a patient with a given urea distribution volume and urea nitrogen generation rate dialyzed according to a particular dialysis schedule. Conventional variable extracellular volume 2-pool urea kinetic equations were used. A javascript-HTML Web form was created that can be used on any personal computer equipped with internet browsing software, to compute commonly used Kt/V-based measures of hemodialysis adequacy for patients with differing amounts of residual kidney function and following a variety of treatment schedules. The completed Web form calculator may be particularly useful in computing equivalent continuous clearances for incremental hemodialysis strategies. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  10. Development and acceleration of unstructured mesh-based cfd solver

    NASA Astrophysics Data System (ADS)

    Emelyanov, V.; Karpenko, A.; Volkov, K.

    2017-06-01

    The study was undertaken as part of a larger effort to establish a common computational fluid dynamics (CFD) code for simulation of internal and external flows and involves some basic validation studies. The governing equations are solved with ¦nite volume code on unstructured meshes. The computational procedure involves reconstruction of the solution in each control volume and extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of Riemann problem for each face of the control volume, and evolution of the time step. The nonlinear CFD solver works in an explicit time-marching fashion, based on a three-step Runge-Kutta stepping procedure. Convergence to a steady state is accelerated by the use of geometric technique and by the application of Jacobi preconditioning for high-speed flows, with a separate low Mach number preconditioning method for use with low-speed flows. The CFD code is implemented on graphics processing units (GPUs). Speedup of solution on GPUs with respect to solution on central processing units (CPU) is compared with the use of different meshes and different methods of distribution of input data into blocks. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  11. Algorithmic Enhancements to the VULCAN Navier-Stokes Solver

    NASA Technical Reports Server (NTRS)

    Litton, D. K.; Edwards, J. R.; White, J. A.

    2003-01-01

    VULCAN (Viscous Upwind aLgorithm for Complex flow ANalysis) is a cell centered, finite volume code used to solve high speed flows related to hypersonic vehicles. Two algorithms are presented for expanding the range of applications of the current Navier-Stokes solver implemented in VULCAN. The first addition is a highly implicit approach that uses subiterations to enhance block to block connectivity between adjacent subdomains. The addition of this scheme allows more efficient solution of viscous flows on highly-stretched meshes. The second algorithm addresses the shortcomings associated with density-based schemes by the addition of a time-derivative preconditioning strategy. High speed, compressible flows are typically solved with density based schemes, which show a high level of degradation in accuracy and convergence at low Mach numbers (M less than or equal to 0.1). With the addition of preconditioning and associated modifications to the numerical discretization scheme, the eigenvalues will scale with the local velocity, and the above problems will be eliminated. With these additions, VULCAN now has improved convergence behavior for multi-block, highly-stretched meshes and also can solve the Navier-Stokes equations for very low Mach numbers.

  12. Shared Memory Parallelism for 3D Cartesian Discrete Ordinates Solver

    NASA Astrophysics Data System (ADS)

    Moustafa, Salli; Dutka-Malen, Ivan; Plagne, Laurent; Ponçot, Angélique; Ramet, Pierre

    2014-06-01

    This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multicore+SIMD) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node. For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular directions (S16), 46 × 106 spatial cells and 1 × 1012 DoFs within 11 hours on a single 32-core SMP node. This represents a sustained performance of 235 GFlops and 40:74% of the SMP node peak performance for the DOMINO sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a future many-nodes nuclear simulation tool.

  13. A `metric' semi-Lagrangian Vlasov-Poisson solver

    NASA Astrophysics Data System (ADS)

    Colombi, Stéphane; Alard, Christophe

    2017-06-01

    We propose a new semi-Lagrangian Vlasov-Poisson solver. It employs metric elements to follow locally the flow and its deformation, allowing one to find quickly and accurately the initial phase-space position of any test particle , by expanding at second order the geometry of the motion in the vicinity of the closest element. It is thus possible to reconstruct accurately the phase-space distribution function at any time and position by proper interpolation of initial conditions, following Liouville theorem. When distortion of the elements of metric becomes too large, it is necessary to create new initial conditions along with isotropic elements and repeat the procedure again until next resampling. To speed up the process, interpolation of the phase-space distribution is performed at second order during the transport phase, while third-order splines are used at the moments of remapping. We also show how to compute accurately the region of influence of each element of metric with the proper percolation scheme. The algorithm is tested here in the framework of one-dimensional gravitational dynamics but is implemented in such a way that it can be extended easily to four- or six-dimensional phase space. It can also be trivially generalised to plasmas.

  14. A New Parallel N-Body Gravity Solver: TPM

    NASA Astrophysics Data System (ADS)

    Xu, Guohong

    1995-05-01

    We have developed a gravity solver based on combining the particle-mesh (PM) method and TREE methods. It is designed for and has been implemented on parallel computer architectures. The new code can deal with tens of millions of particles on current computers, with the calculation done on a parallel super- computer or a group of workstations. Typically, the spatial resolution is enhanced by more than a factor of 20 over the pure PM code with mass resolution retained at nearly the PM level. This code runs much faster than a pure TREE code with the same number of particles and maintains almost the same resolution in high-density regions. Multiple time step integration has also been implemented with the code, with second-order time accuracy. The performance of the code has been checked in several kinds of parallel computer configurations, including IBM SP1, SGI Challenge, and a group of workstations, with the speedup of the parallel code on a 32 processor IBM SP2 supercomputer nearly linear (efficiency ≍ 80%) in the number of processors. The computation/communication ratio is also very high (˜50), which means the code spends 95% of its CPU time in computation.

  15. New numerical solver for flows at various Mach numbers

    NASA Astrophysics Data System (ADS)

    Miczek, F.; Röpke, F. K.; Edelmann, P. V. F.

    2015-04-01

    Context. Many problems in stellar astrophysics feature flows at low Mach numbers. Conventional compressible hydrodynamics schemes frequently used in the field have been developed for the transonic regime and exhibit excessive numerical dissipation for these flows. Aims: While schemes were proposed that solve hydrodynamics strictly in the low Mach regime and thus restrict their applicability, we aim at developing a scheme that correctly operates in a wide range of Mach numbers. Methods: Based on an analysis of the asymptotic behavior of the Euler equations in the low Mach limit we propose a novel scheme that is able to maintain a low Mach number flow setup while retaining all effects of compressibility. This is achieved by a suitable modification of the well-known Roe solver. Results: Numerical tests demonstrate the capability of this new scheme to reproduce slow flow structures even in moderate numerical resolution. Conclusions: Our scheme provides a promising approach to a consistent multidimensional hydrodynamical treatment of astrophysical low Mach number problems such as convection, instabilities, and mixing in stellar evolution.

  16. Two-Dimensional Ffowcs Williams/Hawkings Equation Solver

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2005-01-01

    FWH2D is a Fortran 90 computer program that solves a two-dimensional (2D) version of the equation, derived by J. E. Ffowcs Williams and D. L. Hawkings, for sound generated by turbulent flow. FWH2D was developed especially for estimating noise generated by airflows around such approximately 2D airframe components as slats. The user provides input data on fluctuations of pressure, density, and velocity on some surface. These data are combined with information about the geometry of the surface to calculate histories of thickness and loading terms. These histories are fast-Fourier-transformed into the frequency domain. For each frequency of interest and each observer position specified by the user, kernel functions are integrated over the surface by use of the trapezoidal rule to calculate a pressure signal. The resulting frequency-domain signals are inverse-fast-Fourier-transformed back into the time domain. The output of the code consists of the time- and frequency-domain representations of the pressure signals at the observer positions. Because of its approximate nature, FWH2D overpredicts the noise from a finite-length (3D) component. The advantage of FWH2D is that it requires a fraction of the computation time of a 3D Ffowcs Williams/Hawkings solver.

  17. Towards Batched Linear Solvers on Accelerated Hardware Platforms

    SciTech Connect

    Haidar, Azzam; Dong, Tingzing Tim; Tomov, Stanimire; Dongarra, Jack J

    2015-01-01

    As hardware evolves, an increasingly effective approach to develop energy efficient, high-performance solvers, is to design them to work on many small and independent problems. Indeed, many applications already need this functionality, especially for GPUs, which are known to be currently about four to five times more energy efficient than multicore CPUs for every floating-point operation. In this paper, we describe the development of the main one-sided factorizations: LU, QR, and Cholesky; that are needed for a set of small dense matrices to work in parallel. We refer to such algorithms as batched factorizations. Our approach is based on representing the algorithms as a sequence of batched BLAS routines for GPU-contained execution. Note that this is similar in functionality to the LAPACK and the hybrid MAGMA algorithms for large-matrix factorizations. But it is different from a straightforward approach, whereby each of GPU's symmetric multiprocessors factorizes a single problem at a time. We illustrate how our performance analysis together with the profiling and tracing tools guided the development of batched factorizations to achieve up to 2-fold speedup and 3-fold better energy efficiency compared to our highly optimized batched CPU implementations based on the MKL library on a two-sockets, Intel Sandy Bridge server. Compared to a batched LU factorization featured in the NVIDIA's CUBLAS library for GPUs, we achieves up to 2.5-fold speedup on the K40 GPU.

  18. Intrusive Method for Uncertainty Quantification in a Multiphase Flow Solver

    NASA Astrophysics Data System (ADS)

    Turnquist, Brian; Owkes, Mark

    2016-11-01

    Uncertainty quantification (UQ) is a necessary, interesting, and often neglected aspect of fluid flow simulations. To determine the significance of uncertain initial and boundary conditions, a multiphase flow solver is being created which extends a single phase, intrusive, polynomial chaos scheme into multiphase flows. Reliably estimating the impact of input uncertainty on design criteria can help identify and minimize unwanted variability in critical areas, and has the potential to help advance knowledge in atomizing jets, jet engines, pharmaceuticals, and food processing. Use of an intrusive polynomial chaos method has been shown to significantly reduce computational cost over non-intrusive collocation methods such as Monte-Carlo. This method requires transforming the model equations into a weak form through substitution of stochastic (random) variables. Ultimately, the model deploys a stochastic Navier Stokes equation, a stochastic conservative level set approach including reinitialization, as well as stochastic normals and curvature. By implementing these approaches together in one framework, basic problems may be investigated which shed light on model expansion, uncertainty theory, and fluid flow in general. NSF Grant Number 1511325.

  19. The fundamentals of adaptive grid movement

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1990-01-01

    Basic grid point movement schemes are studied. The schemes are referred to as adaptive grids. Weight functions and equidistribution in one dimension are treated. The specification of coefficients in the linear weight, attraction to a given grid or a curve, and evolutionary forces are considered. Curve by curve and finite volume methods are described. The temporal coupling of partial differential equations solvers and grid generators was discussed.

  20. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    SciTech Connect

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; Sun, Yannan; USA, Richland Washington; Martinez, Jayson J.; USA, Richland Washington; Fu, Tao; USA, Richland Washington; McMichael, Geoffrey A.; USA, Richland Washington; Carlson, Thomas J.; USA, Richland Washington

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  1. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    DOE PAGES

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; ...

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developedmore » using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.« less

  2. Fault tolerance in an inner-outer solver: A GVR-enabled case study

    SciTech Connect

    Zhang, Ziming; Chien, Andrew A.; Teranishi, Keita

    2015-04-18

    Resilience is a major challenge for large-scale systems. It is particularly important for iterative linear solvers, since they take much of the time of many scientific applications. We show that single bit flip errors in the Flexible GMRES iterative linear solver can lead to high computational overhead or even failure to converge to the right answer. Informed by these results, we design and evaluate several strategies for fault tolerance in both inner and outer solvers appropriate across a range of error rates. We implement them, extending Trilinos’ solver library with the Global View Resilience (GVR) programming model, which provides multi-stream snapshots, multi-version data structures with portable and rich error checking/recovery. Lastly, experimental results validate correct execution with low performance overhead under varied error conditions.

  3. Fault tolerance in an inner-outer solver: A GVR-enabled case study

    DOE PAGES

    Zhang, Ziming; Chien, Andrew A.; Teranishi, Keita

    2015-04-18

    Resilience is a major challenge for large-scale systems. It is particularly important for iterative linear solvers, since they take much of the time of many scientific applications. We show that single bit flip errors in the Flexible GMRES iterative linear solver can lead to high computational overhead or even failure to converge to the right answer. Informed by these results, we design and evaluate several strategies for fault tolerance in both inner and outer solvers appropriate across a range of error rates. We implement them, extending Trilinos’ solver library with the Global View Resilience (GVR) programming model, which provides multi-streammore » snapshots, multi-version data structures with portable and rich error checking/recovery. Lastly, experimental results validate correct execution with low performance overhead under varied error conditions.« less

  4. User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    2000-01-01

    PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.

  5. Cognitive Distance Learning Problem Solver Reduces Search Cost through Learning Processes

    NASA Astrophysics Data System (ADS)

    Yamakawa, Hiroshi; Miyamoto, Yuji; Baba, Takayuki; Okada, Hiroyuki

    Our proposed cognitive distance learning problem solver generates sequence of actions from initial state to goal states in problem state space. This problem solver learns cognitive distance (path cost) of arbitrary combination of two states. Action generation at each state is selection of next state that has minimum cognitive distance to the goal, like Q-learning agent. In this paper, first, we show that our proposed method reduces search cost than conventional search method by analytical simulation in spherical state space. Second, we show that an average search cost is more reduced more the prior learning term is long and our problem solver is familiar to the environment, by a computer simulation in a tile world state space. Third, we showed that proposed problem solver is superior to the reinforcement learning techniques when goal is changed by a computer simulation. Forth, we found that our simulation result consist with psychological experimental results.

  6. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters.

    PubMed

    Li, Xinya; Deng, Z Daniel; Sun, Yannan; Martinez, Jayson J; Fu, Tao; McMichael, Geoffrey A; Carlson, Thomas J

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  7. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    NASA Astrophysics Data System (ADS)

    Li, Xinya; Deng, Z. Daniel; Sun, Yannan; Martinez, Jayson J.; Fu, Tao; McMichael, Geoffrey A.; Carlson, Thomas J.

    2014-11-01

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  8. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    PubMed Central

    Li, Xinya; Deng, Z. Daniel; Sun, Yannan; Martinez, Jayson J.; Fu, Tao; McMichael, Geoffrey A.; Carlson, Thomas J.

    2014-01-01

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature. PMID:25427517

  9. Finite difference method accelerated with sparse solvers for structural analysis of the metal-organic complexes

    NASA Astrophysics Data System (ADS)

    Guda, A. A.; Guda, S. A.; Soldatov, M. A.; Lomachenko, K. A.; Bugaev, A. L.; Lamberti, C.; Gawelda, W.; Bressler, C.; Smolentsev, G.; Soldatov, A. V.; Joly, Y.

    2016-05-01

    Finite difference method (FDM) implemented in the FDMNES software [Phys. Rev. B, 2001, 63, 125120] was revised. Thorough analysis shows, that the calculated diagonal in the FDM matrix consists of about 96% zero elements. Thus a sparse solver would be more suitable for the problem instead of traditional Gaussian elimination for the diagonal neighbourhood. We have tried several iterative sparse solvers and the direct one MUMPS solver with METIS ordering turned out to be the best. Compared to the Gaussian solver present method is up to 40 times faster and allows XANES simulations for complex systems already on personal computers. We show applicability of the software for metal-organic [Fe(bpy)3]2+ complex both for low spin and high spin states populated after laser excitation.

  10. Development of a Flow Solver with Complex Kinetics on the Graphic Processing Units

    DTIC Science & Technology

    2011-09-22

    Physics 109, 11 (2011), 113308. [9] Klockner, A., Warburton, T., Bridge, J., and Hesthaven, J. Nodal Discontinuous Galerkin Methods on Graphics...Graphic Processing Units ( GPU ) to model reactive gas mixture with detailed chemical kinetics. The solver incorporates high-order finite volume methods...method. We explored different approaches in implementing a fast kinetics solver on the GPU . The detail of the implementation is discussed in the

  11. Eigenvalue calculation procedure for an Euler/Navier-Stokes solver with application to flows over airfoils

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Dowell, Earl H.; Bliss, Donald B.

    1991-01-01

    A Lanczos procedure is presently applied to a Navier-Stokes (N-S) solver for eigenvalues and eigenvectors associated with the small-perturbation analysis of the N-S equations' finite-difference representation for airfoil flows; the matrix used is very large, sparse, real, and nonsymmetric. The Lanczos procedure is shown to furnish complete spectral information for the eigenvalues, as required for transient-stability analysis of N-S solvers.

  12. The development of an intelligent interface to a computational fluid dynamics flow-solver code

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1988-01-01

    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, 3-D, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

  13. Implementation of a parallel unstructured Euler solver on the CM-5

    NASA Technical Reports Server (NTRS)

    Morano, Eric; Mavriplis, D. J.

    1995-01-01

    An efficient unstructured 3D Euler solver is parallelized on a Thinking Machine Corporation Connection Machine 5, distributed memory computer with vectoring capability. In this paper, the single instruction multiple data (SIMD) strategy is employed through the use of the CM Fortran language and the CMSSL scientific library. The performance of the CMSSL mesh partitioner is evaluated and the overall efficiency of the parallel flow solver is discussed.

  14. The development of an intelligent interface to a computational fluid dynamics flow-solver code

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1988-01-01

    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, three-dimensional, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

  15. THE USE OF CLASSICAL LAX-FRIEDRICHS RIEMANN SOLVERS WITH DISCONTINUOUS GALERKIN METHODS

    SciTech Connect

    W. J. RIDER; R. B. LOWRIE

    2001-03-01

    While conducting a von Neumann stability analysis of discontinuous Galerkin methods we found that the standard Lax-Friedrichs (LxF) Riemann solver is unstable for all time-step sizes. A simple modification of the Riemann solver's dissipation returns the method to stability. Furthermore, the method has a smaller truncation error than the corresponding method with an upwind flux for the RK2-DG(1) method. These results are confirmed upon testing.

  16. Wavelet-based Poisson solver for use in particle-in-cell simulations.

    PubMed

    Terzić, Balsa; Pogorelov, Ilya V

    2005-06-01

    We report on a successful implementation of a wavelet-based Poisson solver for use in three-dimensional particle-in-cell simulations. Our method harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and additional compression of relevant data sets. We present and discuss preliminary results relating to the application of the new solver to test problems in accelerator physics and astrophysics.

  17. Dynamic Linear Solver Selection for Transient Simulations Using Multi-label Classifiers

    DTIC Science & Technology

    2012-01-01

    Conference on Computational Science, ICCS 2012 Dynamic linear solver selection for transient simulations using multi-label classifiers Paul R. Eller ...preconditioned linear solver as the output. Email addresses: Paul.R.Eller@usace.army.mil (Paul R. Eller ), Ruth.C.Cheng@usace.army.mil (Jing-Ru C...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 1524 Paul R. Eller et al. / Procedia

  18. The development of an intelligent interface to a computational fluid dynamics flow-solver code

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1988-01-01

    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, three-dimensional, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

  19. A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method

    DTIC Science & Technology

    2013-06-01

    conservation in space and time without using a one-dimensional Riemann solver, (ii) genuinely multi-dimensional treatment without dimensional splitting (iii...of the original second-order CESE method, including: (i) flux conservation in space and time without using a one-dimensional Riemann solver, (ii...treated in a unified manner. The geometry for a three-dimensional CESE method is more difficult to visualize than the one- and two-dimensional methods

  20. A fast, robust, and simple implicit method for adaptive time-stepping on adaptive mesh-refinement grids

    NASA Astrophysics Data System (ADS)

    Commerçon, B.; Debout, V.; Teyssier, R.

    2014-03-01

    Context. Implicit solvers present strong limitations when used on supercomputing facilities and in particular for adaptive mesh-refinement codes. Aims: We present a new method for implicit adaptive time-stepping on adaptive mesh-refinement grids. We implement it in the radiation-hydrodynamics solver we designed for the RAMSES code for astrophysical purposes and, more particularly, for protostellar collapse. Methods: We briefly recall the radiation-hydrodynamics equations and the adaptive time-stepping methodology used for hydrodynamical solvers. We then introduce the different types of boundary conditions (Dirichlet, Neumann, and Robin) that are used at the interface between levels and present our implementation of the new method in the RAMSES code. The method is tested against classical diffusion and radiation-hydrodynamics tests, after which we present an application for protostellar collapse. Results: We show that using Dirichlet boundary conditions at level interfaces is a good compromise between robustness and accuracy and that it can be used in structure formation calculations. The gain in computational time over our former unique time step method ranges from factors of 5 to 50 depending on the level of adaptive time-stepping and on the problem. We successfully compare the old and new methods for protostellar collapse calculations that involve highly non linear physics. Conclusions: We have developed a simple but robust method for adaptive time-stepping of implicit scheme on adaptive mesh-refinement grids. It can be applied to a wide variety of physical problems that involve diffusion processes.

  1. Multithreaded Model for Dynamic Load Balancing Parallel Adaptive PDE Computations

    NASA Technical Reports Server (NTRS)

    Chrisochoides, Nikos

    1995-01-01

    We present a multithreaded model for the dynamic load-balancing of numerical, adaptive computations required for the solution of Partial Differential Equations (PDE's) on multiprocessors. Multithreading is used as a means of exploring concurrency in the processor level in order to tolerate synchronization costs inherent to traditional (non-threaded) parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers indicates that multithreading can be used an a mechanism to mask overheads required for the dynamic balancing of processor workloads with computations required for the actual numerical solution of the PDE's. Also, multithreading can simplify the implementation of dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify program complexity, often makes code re-usability not an easy task, and increases software complexity.

  2. A Wavelet Technique For Multi-grid Solver For Large Linear Systems

    NASA Astrophysics Data System (ADS)

    Keller, W.

    In general, large systems of linear equations cannot be solved directly. An iterative solver has to be applied instead. Unfortunately, iterative solvers have a notouriously slow convergence rate, which in the worst case can prevent convergence at all, due to the inavoidable rounding errors. Multi-grid iteration schemes are meant to guarantee a sufficiently high convergence rate, independent from the dimension of the linear system. The idea behind the multi-grid solvers is that the traditional iterative solvers eliminate only the short-wavelength error constituents in the initial guess for the solution. For the elimination of the remaining long-wavelength error constituents a much coarser grid is sufficient. On the coarse grid the dimension of the problem is much smaller so that the elimination can be done by a direct solver. The paper shows that wavelet techniques successfully can be applied for following steps of a multi-grid procedure: · Generation of an approximation of the proplem on a coarse grid from a given approximation on the fine grid. · Restriction of a signal on a fine grid to its approximation on a co grid. · Uplift of a signal from the coarse to the fine grid. The paper starts with a theoretical explanation of the links between wavelets and multi-grid solvers. Based on this investigation the class o operators, which are suitable for a multi-grid solution strategy can be characterized. The numerical efficiency of the approach will be tested for the Planar Stokes problem.

  3. Head and neck 192Ir HDR-brachytherapy dosimetry using a grid-based Boltzmann solver

    PubMed Central

    Wolf, Sabine; Kóvacs, George

    2013-01-01

    Purpose To compare dosimetry for head and neck cancer patients, calculated with TG-43 formalism and a commercially available grid-based Boltzmann solver. Material and methods This study included 3D-dosimetry of 49 consecutive brachytherapy head and neck cancer patients, computed by a grid-based Boltzmann solver that takes into account tissue inhomogeneities as well as TG-43 formalism. 3D-treatment planning was carried out by using computed tomography. Results Dosimetric indices D90 and V100 for target volume were about 3% lower (median value) for the grid-based Boltzmann solver relative to TG-43-based computation (p < 0.01). The V150 dose parameter showed 1.6% increase from grid-based Boltzmann solver to TG-43 (p < 0.01). Conclusions Dose differences between results of a grid-based Boltzmann solver and TG-43 formalism for high-dose-rate head and neck brachytherapy patients to the target volume were found. Distinctions in D90 of CTV were low (2.63 Gy for grid-based Boltzmann solver vs. 2.71 Gy TG-43 in mean). In our clinical practice, prescription doses remain unchanged for high-dose-rate head and neck brachytherapy for the time being. PMID:24474973

  4. Domain decomposition solvers for PDEs : some basics, practical tools, and new developments.

    SciTech Connect

    Dohrmann, Clark R.

    2010-11-01

    The first part of this talk provides a basic introduction to the building blocks of domain decomposition solvers. Specific details are given for both the classical overlapping Schwarz (OS) algorithm and a recent iterative substructuring (IS) approach called balancing domain decomposition by constraints (BDDC). A more recent hybrid OS-IS approach is also described. The success of domain decomposition solvers depends critically on the coarse space. Similarities and differences between the coarse spaces for OS and BDDC approaches are discussed, along with how they can be obtained from discrete harmonic extensions. Connections are also made between coarse spaces and multiscale modeling approaches from computational mechanics. As a specific example, details are provided on constructing coarse spaces for incompressible fluid problems. The next part of the talk deals with a variety of implementation details for domain decomposition solvers. These include mesh partitioning options, local and global solver options, reducing the coarse space dimension, dealing with constraint equations, residual weighting to accelerate the convergence of OS methods, and recycling of Krylov spaces to efficiently solve problems with multiple right hand sides. Some potential bottlenecks and remedies for domain decomposition solvers are also discussed. The final part of the talk concerns some recent theoretical advances, new algorithms, and open questions in the analysis of domain decomposition solvers. The focus will be primarily on the work of the speaker and his colleagues on elasticity, fluid mechanics, problems in H(curl), and the analysis of subdomains with irregular boundaries.

  5. A Parallel Multigrid Solver for High Frequency Electromagnetic Field Analyses with Small-scale PC Cluster

    NASA Astrophysics Data System (ADS)

    Yosui, Kuniaki; Iwashita, Takeshi; Mori, Michiya; Kobayashi, Eiichi

    Finite element analyses of electromagnetic field are commonly used for designing of various electronic devices. The scale of the analyses becomes larger and larger, therefore, a fast linear solver is needed to solve linear equations arising from the finite element method. Since a multigrid solver is the fastest linear solver for these problems, parallelization of a multigrid solver is a quite useful approach. From the viewpoint of industrial applications, an effective usage of a small-scale PC cluster is important due to initial cost for introducing parallel computers. In this paper, a distributed parallel multigrid solver for a small-scale PC cluster is developed. In high frequency electromagnetic field analyses, a special block Gauss-Seidel smoother is used for the multigrid solver instead of general smoothers such as Gauss-Seidel smoother or Jacobi smoother in order to improve a convergence rate. The block multicolor ordering technique is applied to parallelize the smoother. A numerical exsample shows that a 3.7-fold speed-up in computational time and a 3.0-fold increase in the scale of the analysis were attained when the number of CPU was increased from one to five.

  6. Head and neck (192)Ir HDR-brachytherapy dosimetry using a grid-based Boltzmann solver.

    PubMed

    Siebert, Frank-André; Wolf, Sabine; Kóvacs, George

    2013-12-01

    To compare dosimetry for head and neck cancer patients, calculated with TG-43 formalism and a commercially available grid-based Boltzmann solver. This study included 3D-dosimetry of 49 consecutive brachytherapy head and neck cancer patients, computed by a grid-based Boltzmann solver that takes into account tissue inhomogeneities as well as TG-43 formalism. 3D-treatment planning was carried out by using computed tomography. Dosimetric indices D90 and V100 for target volume were about 3% lower (median value) for the grid-based Boltzmann solver relative to TG-43-based computation (p < 0.01). The V150 dose parameter showed 1.6% increase from grid-based Boltzmann solver to TG-43 (p < 0.01). Dose differences between results of a grid-based Boltzmann solver and TG-43 formalism for high-dose-rate head and neck brachytherapy patients to the target volume were found. Distinctions in D90 of CTV were low (2.63 Gy for grid-based Boltzmann solver vs. 2.71 Gy TG-43 in mean). In our clinical practice, prescription doses remain unchanged for high-dose-rate head and neck brachytherapy for the time being.

  7. Fast Poisson, Fast Helmholtz and fast linear elastostatic solvers on rectangular parallelepipeds

    SciTech Connect

    Wiegmann, A.

    1999-06-01

    FFT-based fast Poisson and fast Helmholtz solvers on rectangular parallelepipeds for periodic boundary conditions in one-, two and three space dimensions can also be used to solve Dirichlet and Neumann boundary value problems. For non-zero boundary conditions, this is the special, grid-aligned case of jump corrections used in the Explicit Jump Immersed Interface method. Fast elastostatic solvers for periodic boundary conditions in two and three dimensions can also be based on the FFT. From the periodic solvers we derive fast solvers for the new 'normal' boundary conditions and essential boundary conditions on rectangular parallelepipeds. The periodic case allows a simple proof of existence and uniqueness of the solutions to the discretization of normal boundary conditions. Numerical examples demonstrate the efficiency of the fast elastostatic solvers for non-periodic boundary conditions. More importantly, the fast solvers on rectangular parallelepipeds can be used together with the Immersed Interface Method to solve problems on non-rectangular domains with general boundary conditions. Details of this are reported in the preprint The Explicit Jump Immersed Interface Method for 2D Linear Elastostatics by the author.

  8. Continuous-time quantum Monte Carlo impurity solvers

    NASA Astrophysics Data System (ADS)

    Gull, Emanuel; Werner, Philipp; Fuchs, Sebastian; Surer, Brigitte; Pruschke, Thomas; Troyer, Matthias

    2011-04-01

    Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states. Program summaryProgram title: dmft Catalogue identifier: AEIL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: ALPS LIBRARY LICENSE version 1.1 No. of lines in distributed program, including test data, etc.: 899 806 No. of bytes in distributed program, including test data, etc.: 32 153 916 Distribution format: tar.gz Programming language: C++ Operating system: The ALPS libraries have been tested on the following platforms and compilers: Linux with GNU Compiler Collection (g++ version 3.1 and higher), and Intel C++ Compiler (icc version 7.0 and higher) MacOS X with GNU Compiler (g++ Apple-version 3.1, 3.3 and 4.0) IBM AIX with Visual Age C++ (xlC version 6.0) and GNU (g++ version 3.1 and higher) compilers Compaq Tru64 UNIX with Compq C++ Compiler (cxx) SGI IRIX with MIPSpro C++ Compiler (CC) HP-UX with HP C++ Compiler (aCC) Windows with Cygwin or coLinux platforms and GNU Compiler Collection (g++ version 3.1 and higher) RAM: 10 MB-1 GB Classification: 7.3 External routines: ALPS [1], BLAS/LAPACK, HDF5 Nature of problem: (See [2].) Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as

  9. A parallel solver for huge dense linear systems

    NASA Astrophysics Data System (ADS)

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system

  10. The adaptive-loop-gain adaptive-scale CLEAN deconvolution of radio interferometric images

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Zhang, M.; Liu, X.

    2016-05-01

    CLEAN algorithms are a class of deconvolution solvers which are widely used to remove the effect of the telescope Point Spread Function (PSF). Loop gain is one important parameter in CLEAN algorithms. Currently the parameter is fixed during deconvolution, which restricts the performance of CLEAN algorithms. In this paper, we propose a new deconvolution algorithm with an adaptive loop gain scheme, which is referred to as the adaptive-loop-gain adaptive-scale CLEAN (Algas-Clean) algorithm. The test results show that the new algorithm can give a more accurate model with faster convergence.

  11. A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS

    SciTech Connect

    Davis, Shane W.; Stone, James M.; Jiang Yanfei

    2012-03-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

  12. A Radiation Transfer Solver for Athena Using Short Characteristics

    NASA Astrophysics Data System (ADS)

    Davis, Shane W.; Stone, James M.; Jiang, Yan-Fei

    2012-03-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

  13. Patients as partners, patients as problem-solvers.

    PubMed

    Young, Amanda; Flower, Linda

    2002-01-01

    This article reports our ongoing work in developing a model of health care communication called collaborative interpretation, which we define as a rhetorical practice that generates building blocks for a more complete and coherent diagnostic story and for a collaborative treatment plan. It does this by situating patients as problem-solvers. Our study begins with an analysis of provider-patient interactions in a specific setting-the emergency department (ED) of an urban trauma-level hospital- where we observed patients and providers miscommunicating in at least 3 distinct areas: over the meaning of key terms, in the framing of the immediate problem, and over the perceived role of the ED in serving the individual and the community. From our observations, we argue that all of these miscommunications and missed opportunities are rooted in mismatched expectations on the part of both provider and patient and the lack of explicit comparison and negotiation of expectations-in other words, a failure to see the patient-provider interaction as a rhetorical, knowledge-building event. In the process of observing interactions, conversing with patients and providers, and working with a team of providers and patients, we have developed an operational model of communication that could narrow the gap between the lay public and the medical profession-a gap that is especially critical in intercultural settings like the one we have studied. This model of collaborative interpretation (CI) provides strategies to help patients to represent their medical problems in the context of their life experiences and to share the logic behind their health care decisions. In addition, CI helps both patient and provider identify their goals and expectations in treatment, the obstacles that each party perceives, and the available options. It is adaptableto various settings, including short, structured conversations in the emergency room, extended dialogue between a health educator and a patient in a

  14. 3-D adaptive grid Navier-Stokes rocket plume calculations

    NASA Astrophysics Data System (ADS)

    Holcomb, J. Eric

    1991-01-01

    Three-dimensional adaptive-grid full Navier-Stokes calculations performed for the base region and plume of the Minuteman first stage and a simplified version of the Titan first stage are used to demonstrate the applicability of the Navier-Stokes flow solver, EAGLE adaptive grid generator, and k-epsilon turbulence model to rocket plume flowfields. The calculations include realistic exhaust gas thermodynamic properties, with frozen chemistry.

  15. Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo

    NASA Astrophysics Data System (ADS)

    Garcia, Alejandro L.; Bell, John B.; Crutchfield, William Y.; Alder, Berni J.

    1999-09-01

    Adaptive mesh and algorithm refinement (AMAR) embeds a particle method within a continuum method at the finest level of an adaptive mesh refinement (AMR) hierarchy. The coupling between the particle region and the overlaying continuum grid is algorithmically equivalent to that between the fine and coarse levels of AMR. Direct simulation Monte Carlo (DSMC) is used as the particle algorithm embedded within a Godunov-type compressible Navier-Stokes solver. Several examples are presented and compared with purely continuum calculations.

  16. An implicit and adaptive nonlinear frequency domain approach for periodic viscous flows

    NASA Astrophysics Data System (ADS)

    Mosahebi, A.; Nadarajah, S.

    2014-12-01

    An implicit nonlinear Lower-Upper symmetric Gauss-Seidel (LU-SGS) solver has been extended to the adaptive Nonlinear Frequency Domain method (adaptive NLFD) for periodic viscous flows. The discretized equations are linearized in both spatial and temporal directions, yielding an innovative segregate approach, where the effects of the neighboring cells are transferred to the right-hand-side and are updated iteratively. This property of the solver is aligned with the adaptive NLFD concept, in which different cells have different number of modes; hence, should be treated individually. The segregate analysis of the modal equations prevents assembling and inversion of a large left-hand-side matrix, when high number of modes are involved. This is an important characteristic for a selected flow solver of the adaptive NLFD method, where a high modal content may be required in highly unsteady parts of the flow field. The implicit nonlinear LU-SGS solver has demonstrated to be both robust and computationally efficient as the number of modes is increased. The developed solver is thoroughly validated for the laminar vortex shedding behind a stationary cylinder, high angle of attack NACA0012 airfoil, and a plunging NACA0012 airfoil. An order of magnitude improvement in the computational time is observed through the developed implicit approach over the classical modified 5-stage Runge-Kutta method.

  17. Fast multipole and space adaptive multiresolution methods for the solution of the Poisson equation

    NASA Astrophysics Data System (ADS)

    Bilek, Petr; Duarte, Max; Nečas, David; Bourdon, Anne; Bonaventura, Zdeněk

    2016-09-01

    This work focuses on the conjunction of the fast multipole method (FMM) with the space adaptive multiresolution (MR) technique for grid adaptation. Since both methods, MR and FMM provide a priori error estimates, both achieve O(N) computational complexity, and both operate on the same hierarchical space division, their conjunction represents a natural choice when designing a numerically efficient and robust strategy for time dependent problems. Special attention is given to the use of these methods in the simulation of streamer discharges in air. We have designed a FMM Poisson solver on multiresolution adapted grid in 2D. The accuracy and the computation complexity of the solver has been verified for a set of manufactured solutions. We confirmed that the developed solver attains desired accuracy and this accuracy is controlled only by the number of terms in the multipole expansion in combination with the multiresolution accuracy tolerance. The implementation has a linear computation complexity O(N).

  18. Adaptive angle and parallel multigrid for deterministic shielding problems

    NASA Astrophysics Data System (ADS)

    Dargaville, Steven; Buchan, Andrew; Smedley-Stevenson, Richard; Smith, Paul; Pain, Chris

    2017-09-01

    Traditionally, solver technology and the space/angle discretisations are intimately linked; sweep-based (wavefront) methods are typically used with DG FEM in space and Sn in angle to solve the Boltzmann-transport equation. These parallelise well (scaling to >100,000 cores) on structured grids, however achieving good scaling on unstructured grids is still an open problem. This talk will focus on alternate space/angle discretisations and solver technology we have been developing within the Applied Modelling and Computation Group (AMCG) at Imperial College. These approaches enables the use of traditional angular discretisations like Pn, Sn, along with new approaches based on linear and haar wavelets. We can use these angular discretisations to perform regular and goal-based anisotropic adaptivity in angle, focusing resolution in important directions. We have also been developing multigrid solver technology which does not require sweep-based methods, allowing the possibility of excellent scaling on unstructured grids.

  19. Efficient IMRT inverse planning with a new L1-solver: template for first-order conic solver

    NASA Astrophysics Data System (ADS)

    Kim, Hojin; Suh, Tae-Suk; Lee, Rena; Xing, Lei; Li, Ruijiang

    2012-07-01

    Intensity modulated radiation therapy (IMRT) inverse planning using total-variation (TV) regularization has been proposed to reduce the complexity of fluence maps and facilitate dose delivery. Conventionally, the optimization problem with L-1 norm is solved with quadratic programming (QP), which is time consuming and memory expensive due to the second-order Newton update. This study proposes to use a new algorithm, template for first-order conic solver (TFOCS), for fast and memory-efficient optimization in IMRT inverse planning. The TFOCS utilizes dual-variable updates and first-order approaches for TV minimization without the need to compute and store the enlarged Hessian matrix required for Newton update in the QP technique. To evaluate the effectiveness and efficiency of the proposed method, two clinical cases were used for IMRT inverse planning: a head and neck case and a prostate case. For comparison, the conventional QP-based method for the TV form was adopted to solve the fluence map optimization problem in the above two cases. The convergence criteria and algorithm parameters were selected to achieve similar dose conformity for a fair comparison between the two methods. Compared with conventional QP-based approach, the proposed TFOCS-based method shows a remarkable improvement in computational efficiency for fluence map optimization, while maintaining the conformal dose distribution. Compared with QP-based algorithms, the computational speed using TFOCS for fluence optimization is increased by a factor of 4 to 6, and at the same time the memory requirement is reduced by a factor of 3 to 4. Therefore, TFOCS provides an effective, fast and memory-efficient method for IMRT inverse planning. The unique features of the approach should be particularly important in inverse planning involving a large number of beams, such as in VMAT and dense angularly sampled and sparse intensity modulated radiation therapy (DASSIM-RT).

  20. Complex wet-environments in electronic-structure calculations

    NASA Astrophysics Data System (ADS)

    Fisicaro, Giuseppe; Genovese, Luigi; Andreussi, Oliviero; Marzari, Nicola; Goedecker, Stefan

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of an applied electrochemical potentials, including complex electrostatic screening coming from the solvent. In the present work we present a solver to handle both the Generalized Poisson and the Poisson-Boltzmann equation. A preconditioned conjugate gradient (PCG) method has been implemented for the Generalized Poisson and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations. On the other hand, a self-consistent procedure enables us to solve the Poisson-Boltzmann problem. The algorithms take advantage of a preconditioning procedure based on the BigDFT Poisson solver for the standard Poisson equation. They exhibit very high accuracy and parallel efficiency, and allow different boundary conditions, including surfaces. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and it will be released as a independent program, suitable for integration in other codes. We present test calculations for large proteins to demonstrate efficiency and performances. This work was done within the PASC and NCCR MARVEL projects. Computer resources were provided by the Swiss National Supercomputing Centre (CSCS) under Project ID s499. LG acknowledges also support from the EXTMOS EU project.