Sample records for adaptive pressure control

  1. International Space Station Environmental Control and Life Support System Acceptance Testing for the Pressurized Mating Adapters

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2008-01-01

    The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMAs 1 and 2 flew to ISS on Flight 2A and Pressurized Mating Adapter (PMA) 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and a detailed discussion of the ISS ECLS Acceptance Testing methodologies utilized for the PMAs.

  2. Adaptive management for subsurface pressure and plume control in application to geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Gonzalez-Nicolas, A.; Cihan, A.; Birkholzer, J. T.; Petrusak, R.; Zhou, Q.; Riestenberg, D. E.; Trautz, R. C.; Godec, M.

    2016-12-01

    Industrial-scale injection of CO2 into the subsurface can cause reservoir pressure increases that must be properly controlled to prevent any potential environmental impact. Excessive pressure buildup in reservoir may result in ground water contamination stemming from leakage through conductive pathways, such as improperly plugged abandoned wells or distant faults, and the potential for fault reactivation and possibly seal breaching. Brine extraction is a viable approach for managing formation pressure, effective stress, and plume movement during industrial-scale CO2 injection projects. The main objectives of this study are to investigate suitable different pressure management strategies involving active brine extraction and passive pressure relief wells. Adaptive optimized management of CO2 storage projects utilizes the advanced automated optimization algorithms and suitable process models. The adaptive management integrates monitoring, forward modeling, inversion modeling and optimization through an iterative process. In this study, we employ an adaptive framework to understand primarily the effects of initial site characterization and frequency of the model update (calibration) and optimization calculations for controlling extraction rates based on the monitoring data on the accuracy and the success of the management without violating pressure buildup constraints in the subsurface reservoir system. We will present results of applying the adaptive framework to test appropriateness of different management strategies for a realistic field injection project.

  3. Adaptive Working Memory Training Reduces the Negative Impact of Anxiety on Competitive Motor Performance.

    PubMed

    Ducrocq, Emmanuel; Wilson, Mark; Smith, Tim J; Derakshan, Nazanin

    2017-12-01

    Optimum levels of attentional control are essential to prevent athletes from experiencing performance breakdowns under pressure. The current study explored whether training attentional control using the adaptive dual n-back paradigm, designed to directly target processing efficiency of the main executive functions of working memory (WM), would result in transferrable effects on sports performance outcomes. A total of 30 tennis players were allocated to an adaptive WM training or active control group and underwent 10 days of training. Measures of WM capacity as well as performance and objective gaze indices of attentional control in a tennis volley task were assessed in low- and high-pressure posttraining conditions. Results revealed significant benefits of training on WM capacity, quiet eye offset, and tennis performance in the high-pressure condition. Our results confirm and extend previous findings supporting the transfer of cognitive training benefits to objective measures of sports performance under pressure.

  4. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, Thomas W.; Hamill, Jr., Paul E.; Ozgu, Mustafa R.; Padfield, Ralph C.; Rego, Donovan N.; Brita, Guido P.

    1990-01-01

    A pressurized tundish for controlling a continous flow of molten metal characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate.

  5. Adaptive support ventilation may deliver unwanted respiratory rate-tidal volume combinations in patients with acute lung injury ventilated according to an open lung concept.

    PubMed

    Dongelmans, Dave A; Paulus, Frederique; Veelo, Denise P; Binnekade, Jan M; Vroom, Margreeth B; Schultz, Marcus J

    2011-05-01

    With adaptive support ventilation, respiratory rate and tidal volume (V(T)) are a function of the Otis least work of breathing formula. We hypothesized that adaptive support ventilation in an open lung ventilator strategy would deliver higher V(T)s to patients with acute lung injury. Patients with acute lung injury were ventilated according to a local guideline advising the use of lower V(T) (6-8 ml/kg predicted body weight), high concentrations of positive end-expiratory pressure, and recruitment maneuvers. Ventilation parameters were recorded when the ventilator was switched to adaptive support ventilation, and after recruitment maneuvers. If V(T) increased more than 8 ml/kg predicted body weight, airway pressure was limited to correct for the rise of V(T). Ten patients with a mean (±SD) Pao(2)/Fio(2) of 171 ± 86 mmHg were included. After a switch from pressure-controlled ventilation to adaptive support ventilation, respiratory rate declined (from 31 ± 5 to 21 ± 6 breaths/min; difference = 10 breaths/min, 95% CI 3-17 breaths/min, P = 0.008) and V(T) increased (from 6.5 ± 0.8 to 9.0 ± 1.6 ml/kg predicted body weight; difference = 2.5 ml, 95% CI 0.4-4.6 ml/kg predicted body weight, P = 0.02). Pressure limitation corrected for the rise of V(T), but minute ventilation declined, forcing the user to switch back to pressure-controlled ventilation. Adaptive support ventilation, compared with pressure-controlled ventilation in an open lung strategy setting, delivers a lower respiratory rate-higher V(T) combination. Pressure limitation does correct for the rise of V(T), but leads to a decline in minute ventilation.

  6. Mechanics and applications of pressure adaptive honeycomb

    NASA Astrophysics Data System (ADS)

    Vos, Roelof

    A novel adaptive aerostructure is presented that relies on certified aerospace materials and can therefore be applied in conventional passenger aircraft. This structure consists of a honeycomb material which' cells extend over a significant length perpendicular to the plane of the cells. Each of the cells contains an inelastic pouch (or bladder) that forms a circular tube when the cell forms a perfect hexagon. By changing the cell differential pressure (CDP) the stiffness of the honeycomb can be altered. Using an external force or the elastic force within the honeycomb material, the honeycomb can be deformed such that the cells deviate from their perfect-hexagonal shape. It can be shown that by increasing the CDP, the structure eventually returns to a perfect hexagon. By doing so, a fully embedded pneumatic actuator is created that can perform work and substitute conventional low-bandwidth flight control actuators. It is shown that two approaches can be taken to regulate the stiffness of this embedded actuator: (1) The first approach relies on the pouches having a fixed amount of air in them and stiffness is altered by a change in ambient pressure. Coupled to the ambient pressure-altitude cycle that aircraft encounter during each flight, this approach yields a true adaptive aerostructure that operates independently of pilot input and is controlled solely by the altitude the aircraft is flying at. (2) The second approach relies on a controlled constant CDP. This CDP could be supplied from one of the compressor stages of the engine as a form of bleed air. Because of the air-tight pouches there would essentially be no mass flow, meaning engine efficiency would not be significantly affected due to this application. By means of a valve system the pilot could have direct control over the pressure and, consequently, the stiffness of the structure. This allows for much higher CDPs (on the order of 1MPa) than could physically be achieved by relying on the ambient pressure decrease with altitude. This option does require more infrastructure like tubing, valves, and supporting electronics from the cockpit. Applications of pressure adaptive honeycomb are tailored primarily towards low-bandwidth applications like secondary flight control. The most profound application is the morphing of an entire wing section, from leading to trailing edge, due to the adaptive honeycomb. On a smaller scale, other examples include a solid state pressure adaptive flap, a pressure adaptive droop nose, a pressure adaptive Gurney flap and a pressure adaptive engine inlet. Each of these applications is based on the same principle of stiffness alteration with pressure and can be used with either actuation option (constant mass or constant pressure). A model that relates the volumetric change of the honeycomb cells to the external blocked stress was shown to correlate well to experiments that were carried out on several test articles. Based on this model it was estimated that pressure adaptive honeycomb has a maximum mass-specific energy density of 12.4J/g, for the case of an externally applied CDP of 0.9MPa (can be supplied from a high-pressure compressor stage of a gas turbine). In addition, it was shown that a maximum strain of 76% can be achieved and that the maximum blocked stress amounts to 0.82MPa. In the case of a 40kPa drop in atmospheric pressure and constant mass of air in the pouches, the maximum mass specific energy amounts to 1.1J/g and a maximum blocked force of 70kPa can be attained. Pressure adaptive honeycomb was embedded into a 25%c adaptive flap on a NACA2412 wing section with a chord of 1.08m. Wind tunnel tests at Reynolds number of 1 million demonstrated a shift in the cl -- alpha curve upwards by an average of 0.3, thereby increasing the maximum lift coefficient from 1.27 to 1.52. This successfully demonstrated the application of pressure adaptive honeycomb embedded in a morphing aircraft structure.

  7. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, T.W.; Hamill, P.E. Jr.; Ozgu, M.R.; Padfield, R.C.; Rego, D.N.; Brita, G.P.

    1990-07-24

    A pressurized tundish for controlling a continuous flow of molten metal is characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate. 1 fig.

  8. Apparatus and method to inject a reductant into an exhaust gas feedstream

    DOEpatents

    Viola, Michael B [Macomb Township, MI

    2009-09-22

    An exhaust aftertreatment system for an internal combustion engine is provided including an apparatus and method to inject a reductant into the exhaust gas feedstream. Included is a fuel metering device adapted to inject reductant into the exhaust gas feedstream and a controllable pressure regulating device. A control module is operatively connected to the reductant metering device and the controllable pressure regulating device, and, adapted to effect flow of reductant into the exhaust gas feedstream over a controllable flow range.

  9. A computational analysis of the long-term regulation of arterial pressure

    PubMed Central

    Beard, Daniel A.

    2013-01-01

    The asserted dominant role of the kidneys in the chronic regulation of blood pressure and in the etiology of hypertension has been debated since the 1970s. At the center of the theory is the observation that the acute relationships between arterial pressure and urine production—the acute pressure-diuresis and pressure-natriuresis curves—physiologically adapt to perturbations in pressure and/or changes in the rate of salt and volume intake. These adaptations, modulated by various interacting neurohumoral mechanisms, result in chronic relationships between water and salt excretion and pressure that are much steeper than the acute relationships. While the view that renal function is the dominant controller of arterial pressure has been supported by computer models of the cardiovascular system known as the “Guyton-Coleman model”, no unambiguous description of a computer model capturing chronic adaptation of acute renal function in blood pressure control has been presented. Here, such a model is developed with the goals of: 1. representing the relevant mechanisms in an identifiable mathematical model; 2. identifying model parameters using appropriate data; 3. validating model predictions in comparison to data; and 4. probing hypotheses regarding the long-term control of arterial pressure and the etiology of primary hypertension. The developed model reveals: long-term control of arterial blood pressure is primarily through the baroreflex arc and the renin-angiotensin system; and arterial stiffening provides a sufficient explanation for the etiology of primary hypertension associated with ageing. Furthermore, the model provides the first consistent explanation of the physiological response to chronic stimulation of the baroreflex. PMID:24555102

  10. A computational analysis of the long-term regulation of arterial pressure.

    PubMed

    Beard, Daniel A; Pettersen, Klas H; Carlson, Brian E; Omholt, Stig W; Bugenhagen, Scott M

    2013-01-01

    The asserted dominant role of the kidneys in the chronic regulation of blood pressure and in the etiology of hypertension has been debated since the 1970s. At the center of the theory is the observation that the acute relationships between arterial pressure and urine production-the acute pressure-diuresis and pressure-natriuresis curves-physiologically adapt to perturbations in pressure and/or changes in the rate of salt and volume intake. These adaptations, modulated by various interacting neurohumoral mechanisms, result in chronic relationships between water and salt excretion and pressure that are much steeper than the acute relationships. While the view that renal function is the dominant controller of arterial pressure has been supported by computer models of the cardiovascular system known as the "Guyton-Coleman model", no unambiguous description of a computer model capturing chronic adaptation of acute renal function in blood pressure control has been presented. Here, such a model is developed with the goals of: 1. representing the relevant mechanisms in an identifiable mathematical model; 2. identifying model parameters using appropriate data; 3. validating model predictions in comparison to data; and 4. probing hypotheses regarding the long-term control of arterial pressure and the etiology of primary hypertension. The developed model reveals: long-term control of arterial blood pressure is primarily through the baroreflex arc and the renin-angiotensin system; and arterial stiffening provides a sufficient explanation for the etiology of primary hypertension associated with ageing. Furthermore, the model provides the first consistent explanation of the physiological response to chronic stimulation of the baroreflex.

  11. Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren

    2017-11-01

    The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.

  12. International Space Station Environmental Control and Life Support System: Verification for the Pressurized Mating Adapters

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMA 1 and PMA 2 flew to ISS on Flight 2A and PMA 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and the detailed Element Verification methodologies utilized during the Qualification phase for the PMAs.

  13. Organizational Leadership and Adaptive Reserve in Blood Pressure Control: The Heart Health NOW Study.

    PubMed

    Henderson, Kamal H; DeWalt, Darren A; Halladay, Jacquie; Weiner, Bryan J; Kim, Jung I; Fine, Jason; Cykert, Samuel

    2018-04-01

    Our purpose was to assess whether a practice's adaptive reserve and high leadership capability in quality improvement are associated with population blood pressure control. We divided practices into quartiles of blood pressure control performance and considered the top quartile as the benchmark for comparison. Using abstracted clinical data from electronic health records, we performed a cross-sectional study to assess the association of top quartile hypertension control and (1) the baseline practice adaptive reserve (PAR) scores and (2) baseline practice leadership scores, using modified Poisson regression models adjusting for practice-level characteristics. Among 181 practices, 46 were in the top quartile, which averaged 68% or better blood pressure control. Practices with higher PAR scores compared with lower PAR scores were not more likely to reside in the top quartile of performance (prevalence ratio [PR] = 1.92 for highest quartile; 95% CI, 0.9-4.1). Similarly, high quality improvement leadership capability compared with lower capability did not predict better blood pressure control performance (PR = 0.94; 95% CI, 0.57-1.56). Practices with higher proportions of commercially insured patients were more likely than practices with lower proportions of commercially insured patients to have top quartile performance (37% vs 26%, P =.002), whereas lower proportions of the uninsured (8% vs 14%, P =.055) were associated with better performance. Our findings show that adaptive reserve and leadership capability in quality improvement implementation are not statistically associated with achieving top quartile practice-level hypertension control at baseline in the Heart Health NOW project. Our findings, however, may be limited by a lack of patient-related factors and small sample size to preclude strong conclusions. © 2018 Annals of Family Medicine, Inc.

  14. Adaptive wing static aeroelastic roll control

    NASA Astrophysics Data System (ADS)

    Ehlers, Steven M.; Weisshaar, Terrence A.

    1993-09-01

    Control of the static aeroelastic characteristics of a swept uniform wing in roll using an adaptive structure is examined. The wing structure is modeled as a uniform beam with bending and torsional deformation freedom. Aerodynamic loads are obtained from strip theory. The structure model includes coefficients representing torsional and bending actuation provided by embedded piezoelectric material layers. The wing is made adaptive by requiring the electric field applied to the piezoelectric material layers to be proportional to the wing root loads. The proportionality factor, or feedback gain, is used to control static aeroelastic rolling properties. Example wing configurations are used to illustrate the capabilities of the adaptive structure. The results show that rolling power, damping-in-roll and aileron effectiveness can be controlled by adjusting the feedback gain. And that dynamic pressure affects the gain required. Gain scheduling can be used to set and maintain rolling properties over a range of dynamic pressures. An adaptive wing provides a method for active aeroelastic tailoring of structural response to meet changing structural performance requirements during a roll maneuver.

  15. Glucocorticoid receptor haploinsufficiency causes hypertension and attenuates hypothalamic-pituitary-adrenal axis and blood pressure adaptions to high-fat diet

    PubMed Central

    Michailidou, Z.; Carter, R. N.; Marshall, E.; Sutherland, H. G.; Brownstein, D. G.; Owen, E.; Cockett, K.; Kelly, V.; Ramage, L.; Al-Dujaili, E. A. S.; Ross, M.; Maraki, I.; Newton, K.; Holmes, M. C.; Seckl, J. R.; Morton, N. M.; Kenyon, C. J.; Chapman, K. E.

    2008-01-01

    Glucocorticoid hormones are critical to respond and adapt to stress. Genetic variations in the glucocorticoid receptor (GR) gene alter hypothalamic-pituitary-adrenal (HPA) axis activity and associate with hypertension and susceptibility to metabolic disease. Here we test the hypothesis that reduced GR density alters blood pressure and glucose and lipid homeostasis and limits adaption to obesogenic diet. Heterozygous GRβgeo/+ mice were generated from embryonic stem (ES) cells with a gene trap integration of a β-galactosidase-neomycin phosphotransferase (βgeo) cassette into the GR gene creating a transcriptionally inactive GR fusion protein. Although GRβgeo/+ mice have 50% less functional GR, they have normal lipid and glucose homeostasis due to compensatory HPA axis activation but are hypertensive due to activation of the renin-angiotensin-aldosterone system (RAAS). When challenged with a high-fat diet, weight gain, adiposity, and glucose intolerance were similarly increased in control and GRβgeo/+ mice, suggesting preserved control of intermediary metabolism and energy balance. However, whereas a high-fat diet caused HPA activation and increased blood pressure in control mice, these adaptions were attenuated or abolished in GRβgeo/+ mice. Thus, reduced GR density balanced by HPA activation leaves glucocorticoid functions unaffected but mineralocorticoid functions increased, causing hypertension. Importantly, reduced GR limits HPA and blood pressure adaptions to obesogenic diet.—Michailidou, Z., Carter, R. N., Marshall, E., Sutherland, H. G., Brownstein, D. G., Owen, E., Cockett, K., Kelly, V., Ramage, L., Al-Dujaili, E. A. S., Ross, M., Maraki, I., Newton, K., Holmes, M. C., Seckl, J. R., Morton, N. M., Kenyon, C. J., Chapman, K. E. Glucocorticoid receptor haploinsufficiency causes hypertension and attenuates hypothalamic-pituitary-adrenal axis and blood pressure adaptions to high-fat diet. PMID:18697839

  16. Measuring static seated pressure distributions and risk for skin pressure ulceration in ice sledge hockey players.

    PubMed

    Darrah, Shaun D; Dicianno, Brad E; Berthold, Justin; McCoy, Andrew; Haas, Matthew; Cooper, Rory A

    2016-01-01

    To determine whether sledge hockey players with physical disability have higher average seated pressures compared to non-disabled controls. Fifteen age-matched controls without physical disability and 15 experimental participants with physical disability were studied using a pressure mapping device to determine risk for skin pressure ulceration and the impact of cushioning and knee angle positioning on seated pressure distributions. Regardless of participant group, cushioning, or knee angle, average seated pressures exceeded clinically acceptable seated pressures. Controls had significantly higher average seated pressures than the disability group when knees were flexed, both with the cushion (p = 0.013) and without (p = 0.015). Knee extension showed significantly lower average pressures in controls, both with the cushion (p < 0.001) and without (p < 0.001). Placement of the cushion resulted in significantly lower average pressure in controls when knees were extended (p = 0.024) but not when flexed (p = 0.248). Placement of the cushion resulted in no difference in pressure (p = 0.443) in the disability group. Pressures recorded indicate high risk for skin ulceration. Cushioning was effective only in the control group with knees extended. That knee extension significantly lowered average seated pressures is important, as many sledge hockey players utilize positioning with larger knee flexion angles. Implications for Rehabilitation Ice sledge hockey is a fast growing adaptive sport. Adaptive sports have been associated with several positive improvements in overall health and quality of life, though may be putting players at risk for skin ulceration. Measured static seated pressure in sledges greatly exceeds current clinically accepted clinical guidelines. With modern improvements in wheelchair pressure relief/cushioning there are potential methods for improvement of elevated seated pressure in ice hockey sledges.

  17. Nonlinear model predictive control for chemical looping process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to amore » CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.« less

  18. Pressure-Transducer Simulator

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1987-01-01

    Simulation circuit operates under remote, automatic, or manual control to produce electrical outputs similar to pressure transducer. Specific circuit designed for simulations of Space Shuttle main engine. General circuit concept adaptable to other simulation and control systems involving several operating modes. Switches and amplifiers respond to external control signals and panel control settings to vary differential excitation of resistive bridge. Output voltage or passive terminal resistance made to equal pressure transducer in any of four operating modes.

  19. Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)

    DTIC Science & Technology

    2013-05-01

    combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh

  20. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  1. Adaptive Controls Method Demonstrated for the Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    An adaptive feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even the downstream turbine blades. This can significantly decrease the safe operating lives of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors under NASA's Propulsion and Power Program. This control methodology has been developed and tested in a partnership of the NASA Glenn Research Center, Pratt & Whitney, United Technologies Research Center, and the Georgia Institute of Technology. Initial combustor rig testing of the controls algorithm was completed during 2002. Subsequently, the test results were analyzed and improvements to the method were incorporated in 2003, which culminated in the final status of this controls algorithm. This control methodology is based on adaptive phase shifting. The combustor pressure oscillations are sensed and phase shifted, and a high-frequency fuel valve is actuated to put pressure oscillations into the combustor to cancel pressure oscillations produced by the instability.

  2. IFCPT S-Duct Grid-Adapted FUN3D Computations for the Third Propulsion Aerodynamics Works

    NASA Technical Reports Server (NTRS)

    Davis, Zach S.; Park, M. A.

    2017-01-01

    Contributions of the unstructured Reynolds-averaged Navier-Stokes code, FUN3D, to the 3rd AIAA Propulsion Aerodynamics Workshop are described for the diffusing IFCPT S-Duct. Using workshop-supplied grids, results for the baseline S-Duct, baseline S-Duct with Aerodynamic Interface Plane (AIP) rake hardware, and baseline S-Duct with flow control devices are compared with experimental data and results computed with output-based, off-body grid adaptation in FUN3D. Due to the absence of influential geometry components, total pressure recovery is overpredicted on the baseline S-Duct and S-Duct with flow control vanes when compared to experimental values. An estimate for the exact value of total pressure recovery is derived for these cases given an infinitely refined mesh. When results from output-based mesh adaptation are compared with those computed on workshop-supplied grids, a considerable improvement in predicting total pressure recovery is observed. By including more representative geometry, output-based mesh adaptation compares very favorably with experimental data in terms of predicting the total pressure recovery cost-function; whereas, results computed using the workshop-supplied grids are underpredicted.

  3. An experimental study of an adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Celik, Zeki; Roberts, Leonard

    1988-01-01

    A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.

  4. Spacecraft Maneuvering at the Sun/Earth-Moon L2 Libration Point

    NASA Astrophysics Data System (ADS)

    Shahid, Kamran

    Spacecraft formation flying in the vicinity of the Sun/Earth-Moon libration points offers many promising possibilities for space exploration. The concept of formation flying involves the distribution of the functionality of a single spacecraft among several smaller, cooperative spacecraft. The libration points are locations relative to two large orbiting bodies where a third body with relatively small mass can remain stationary relative to the two larger bodies. The most significant perturbation experienced by a spacecraft at the libration point is effect of solar radiation pressure. This thesis presents the development of nonlinear control techniques for maneuvering control at the Sun-Earth/Moon L2 libration point. A new thruster based formation control technique is presented. We also consider a leader/follower formation architecture, and examine the station keeping control of the leader spacecraft and the formation control of the follower spacecraft using solar radiation pressure. Reference trajectories of the leader spacecraft, halo and Lissajous orbits, are determined using a numerical technique in order to take into account all major gravitational perturbations. The nonlinear controllers are developed based on Lyapunov analysis, including non-adaptive and adaptive designs. Thruster based and solar radiation pressure based control laws for spacecraft maneuvering at the Sun-Earth/Moon libration point are developed. Higher order sliding mode control is utilized to address the non-affine structure of the solar sail control inputs. The reduced input solar radiation pressure problem is properly addressed as an underactuated control problem. The development of adaptive control for solar sail equipped spacecraft is an innovation and represents and advancement in solar sailing control technology. Controller performance is evaluated in a high fidelity ephemeris model to reflect a realistic simulated space environment. The numerical results demonstrate the effectiveness of the proposed control techniques for spacecraft maneuvering using solar radiation pressure at the L2 libration point. Stationkeeping accuracies of 50m and formation maintenance accuracies of less than 1m are possible using solar radiation pressure at a sub-L2 libration point. The benefits of these control techniques include increasing libration point mission lifetimes and doubling payload mass fractions as compared to conventional propulsion methods.

  5. Design of the Electronic Brake Pressure Modulator Using a Direct Adaptive Fuzzy Controller in Commercial Vehicles for the Safety of Braking in Fail

    NASA Astrophysics Data System (ADS)

    Kim, Hunmo

    In the brake systems, it is important to reduce the rear brake pressure in order to secure the safety of the vehicle in braking. So, there was some research that reduced and controlled the rear brake pressure exactly like a L. S. P. V and a E. L. S. P. V. However, the previous research has some weaknesses: the L. S. P. V is a mechanical system and its brake efficiency is lower than the efficiency of E. L. S. P. V. But, the cost of E. L. S. P. V is very higher so its application to the vehicle is very difficult. Additionally, when a fail appears in the circuit which controls the valves, the fail results in some wrong operation of the valves. But, the previous researchers didn't take the effect of fail into account. Hence, the efficiency of them is low and the safety of the vehicle is not confirmed. So, in this paper we develop a new economical pressure modulator that exactly controls brake pressure and confirms the safety of the vehicle in any case using a direct adaptive fuzzy controller.

  6. Real-Time Adaptive Control of Flow-Induced Cavity Tones

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; Cabell, Randolph H.; Cattafesta, Louis N.

    2004-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. The adaptive control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. The algorithm was also able t o maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Controller performance was evaluated with a measure of output disturbance rejection and an input sensitivity transfer function. The results suggest that disturbances entering the cavity flow are colocated with the control input at the cavity leading edge. In that case, only tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary broadband pressure reduction is not possible. In the control-algorithm development, the cavity dynamics are treated as linear and time invariant (LTI) for a fixed Mach number. The experimental results lend support this treatment.

  7. Integrated Flight/Structural Mode Control for Very Flexible Aircraft Using L1 Adaptive Output Feedback Controller

    NASA Technical Reports Server (NTRS)

    Che, Jiaxing; Cao, Chengyu; Gregory, Irene M.

    2012-01-01

    This paper explores application of adaptive control architecture to a light, high-aspect ratio, flexible aircraft configuration that exhibits strong rigid body/flexible mode coupling. Specifically, an L(sub 1) adaptive output feedback controller is developed for a semi-span wind tunnel model capable of motion. The wind tunnel mount allows the semi-span model to translate vertically and pitch at the wing root, resulting in better simulation of an aircraft s rigid body motion. The control objective is to design a pitch control with altitude hold while suppressing body freedom flutter. The controller is an output feedback nominal controller (LQG) augmented by an L(sub 1) adaptive loop. A modification to the L(sub 1) output feedback is proposed to make it more suitable for flexible structures. The new control law relaxes the required bounds on the unmatched uncertainty and allows dependence on the state as well as time, i.e. a more general unmatched nonlinearity. The paper presents controller development and simulated performance responses. Simulation is conducted by using full state flexible wing models derived from test data at 10 different dynamic pressure conditions. An L(sub 1) adaptive output feedback controller is designed for a single test point and is then applied to all the test cases. The simulation results show that the L(sub 1) augmented controller can stabilize and meet the performance requirements for all 10 test conditions ranging from 30 psf to 130 psf dynamic pressure.

  8. Ion transport membrane module and vessel system with directed internal gas flow

    DOEpatents

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  9. Optical fiber pressure sensors for adaptive wings

    NASA Astrophysics Data System (ADS)

    Duncan, Paul G.; Jones, Mark E.; Shinpaugh, Kevin A.; Poland, Stephen H.; Murphy, Kent A.; Claus, Richard O.

    1997-06-01

    Optical fiber pressure sensors have been developed for use on a structurally-adaptive `smart wing'; further details of the design, fabrication and testing of the smart wing concept are presented in companion papers. This paper describes the design, construction, and performance of the pressure sensor and a combined optical and electronic signal processing system implemented to permit the measurement of a large number of sensors distributed over the control surfaces of a wing. Optical fiber pressure sensors were implemented due to anticipated large electromagnetic interference signals within the operational environment. The sensors utilized the principle of the extrinsic Fabry-Perot interferometer (EFPI) already developed for the measurement of strain and temperature. Here, the cavity is created inside a micromachined hollow-core tube with a silicon diaphragm at one end. The operation of the sensor is similar to that of the EFPI strain gage also discussed in several papers at this conference. The limitations placed upon the performance of the digital signal processing system were determined by the required pressure range of the sensors and the cycle time of the control system used to adaptively modify the shape of the wing. Sensor calibration and the results of testing performed are detailed.

  10. Adaptive plasticity in vestibular influences on cardiovascular control

    NASA Technical Reports Server (NTRS)

    Yates, B. J.; Holmes, M. J.; Jian, B. J.

    2000-01-01

    Data collected in both human subjects and animal models indicate that the vestibular system influences the control of blood pressure. In animals, peripheral vestibular lesions diminish the capacity to rapidly and accurately make cardiovascular adjustments to changes in posture. Thus, one role of vestibulo-cardiovascular influences is to elicit changes in blood distribution in the body so that stable blood pressure is maintained during movement. However, deficits in correcting blood pressure following vestibular lesions diminish over time, and are less severe when non-labyrinthine sensory cues regarding body position in space are provided. These observations show that pathways that mediate vestibulo-sympathetic reflexes can be subject to plastic changes. This review considers the adaptive plasticity in cardiovascular responses elicited by the central vestibular system. Recent data indicate that the posterior cerebellar vermis may play an important role in adaptation of these responses, such that ablation of the posterior vermis impairs recovery of orthostatic tolerance following subsequent vestibular lesions. Furthermore, recent experiments suggest that non-labyrinthine inputs to the central vestibular system may be important in controlling blood pressure during movement, particularly following vestibular dysfunction. A number of sensory inputs appear to be integrated to produce cardiovascular adjustments during changes in posture. Although loss of any one of these inputs does not induce lability in blood pressure, it is likely that maximal blood pressure stability is achieved by the integration of a variety of sensory cues signaling body position in space.

  11. Attractive manifold-based adaptive solar attitude control of satellites in elliptic orbits

    NASA Astrophysics Data System (ADS)

    Lee, Keum W.; Singh, Sahjendra N.

    2011-01-01

    The paper presents a novel noncertainty-equivalent adaptive (NCEA) control system for the pitch attitude control of satellites in elliptic orbits using solar radiation pressure (SRP). The satellite is equipped with two identical solar flaps to produce control moments. The adaptive law is based on the attractive manifold design using filtered signals for synthesis, which is a modification of the immersion and invariance (I&I) method. The control system has a modular controller-estimator structure and has separate tunable gains. A special feature of this NCEA law is that the trajectories of the satellite converge to a manifold in an extended state space, and the adaptive law recovers the performance of a deterministic controller. This recovery of performance cannot be obtained with certainty-equivalent adaptive (CEA) laws. Simulation results are presented which show that the NCEA law accomplishes precise attitude control of the satellite in an elliptic orbit, despite large parameter uncertainties.

  12. Adaptive control with self-tuning for non-invasive beat-by-beat blood pressure measurement.

    PubMed

    Nogawa, Masamichi; Ogawa, Mitsuhiro; Yamakoshi, Takehiro; Tanaka, Shinobu; Yamakoshi, Ken-ichi

    2011-01-01

    Up to now, we have successfully carried out the non-invasive beat-by-beat measurement of blood pressure (BP) in the root of finger, superficial temporal and radial artery based on the volume-compensation technique with reasonable accuracy. The present study concerns with improvement of control method for this beat-by-beat BP measurement. The measurement system mainly consists of a partial pressurization cuff with a pair of LED and photo-diode for the detection of arterial blood volume, and a digital self-tuning control method. Using healthy subjects, the performance and accuracy of this system were evaluated through comparison experiments with the system using a conventional empirically tuned PID controller. The significant differences of BP measured in finger artery were not showed in systolic (SBP), p=0.52, and diastolic BP (DBP), p=0.35. With the advantage of the adaptive control with self-tuning method, which can tune the control parameters without disturbing the control system, the application area of the non-invasive beat-by-beat measurement method will be broadened.

  13. Adaptive Control System of Hydraulic Pressure Based on The Mathematical Modeling

    NASA Astrophysics Data System (ADS)

    Pilipenko, A. V.; Pilipenko, A. P.; Kanatnikov, N. V.

    2016-04-01

    In this paper, the authors highlight the problem of replacing an old heavy industrial equipment, and offer the replacement of obsolete control systems on the modern adaptive control system, which takes into account changes in the hydraulic system of the press and compensates them with a corrective action. The proposed system can reduce a water hammer and thereby increase the durability of the hydraulic system and tools.

  14. Low back pain and postural control, effects of task difficulty on centre of pressure and spinal kinematics.

    PubMed

    Schelldorfer, Sarah; Ernst, Markus Josef; Rast, Fabian Marcel; Bauer, Christoph Michael; Meichtry, André; Kool, Jan

    2015-01-01

    Association of low back pain and standing postural control (PC) deficits are reported inconsistently. Demands on PC adaptation strategies are increased by restraining the input of visual or somatosensory senses. The objectives of the current study are, to investigate whether PC adaptations of the spine, hip and the centre of pressure (COP) differ between patients reporting non-specific low back pain (NSLBP) and asymptomatic controls. The PC adaption strategies of the thoracic and lumbar spine, the hip and the COP were measured in fifty-seven NSLBP patients and 22 asymptomatic controls. We tested three "feet together" conditions with increasing demands on PC strategies, using inertial measurement units (IMUs) on the spine and a Wii balance board for centre of pressure (COP) parameters. The differences between NSLBP patients and controls were most apparent when the participants were blindfolded, but remaining on a firm surface. While NSLBP patients had larger thoracic and lumbar spine mean absolute deviations of position (MADpos) in the frontal plane, the same parameters decreased in control subjects (relative change (RC): 0.23, 95% confidence interval: 0.03 to 0.45 and 0.03 to 0.48). The Mean absolute deviation of velocity (MADvel) of the thoracic spine in the frontal plane showed a similar and significant effect (RC: 0.12 95% CI: 0.01 to 0.25). Gender, age and pain during the measurements affected some parameters significantly. PC adaptions differ between NSLBP patients and asymptomatic controls. The differences are most apparent for the thoracic and lumbar parameters of MADpos, in the frontal plane and while the visual condition was removed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Evolutionary game based control for biological systems with applications in drug delivery.

    PubMed

    Li, Xiaobo; Lenaghan, Scott C; Zhang, Mingjun

    2013-06-07

    Control engineering and analysis of biological systems have become increasingly important for systems and synthetic biology. Unfortunately, no widely accepted control framework is currently available for these systems, especially at the cell and molecular levels. This is partially due to the lack of appropriate mathematical models to describe the unique dynamics of biological systems, and the lack of implementation techniques, such as ultra-fast and ultra-small devices and corresponding control algorithms. This paper proposes a control framework for biological systems subject to dynamics that exhibit adaptive behavior under evolutionary pressures. The control framework was formulated based on evolutionary game based modeling, which integrates both the internal dynamics and the population dynamics. In the proposed control framework, the adaptive behavior was characterized as an internal dynamic, and the external environment was regarded as an external control input. The proposed open-interface control framework can be integrated with additional control algorithms for control of biological systems. To demonstrate the effectiveness of the proposed framework, an optimal control strategy was developed and validated for drug delivery using the pathogen Giardia lamblia as a test case. In principle, the proposed control framework can be applied to any biological system exhibiting adaptive behavior under evolutionary pressures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Topology optimization of pressure adaptive honeycomb for a morphing flap

    NASA Astrophysics Data System (ADS)

    Vos, Roelof; Scheepstra, Jan; Barrett, Ron

    2011-03-01

    The paper begins with a brief historical overview of pressure adaptive materials and structures. By examining avian anatomy, it is seen that pressure-adaptive structures have been used successfully in the Natural world to hold structural positions for extended periods of time and yet allow for dynamic shape changes from one flight state to the next. More modern pneumatic actuators, including FAA certified autopilot servoactuators are frequently used by aircraft around the world. Pneumatic artificial muscles (PAM) show good promise as aircraft actuators, but follow the traditional model of load concentration and distribution commonly found in aircraft. A new system is proposed which leaves distributed loads distributed and manipulates structures through a distributed actuator. By using Pressure Adaptive Honeycomb (PAH), it is shown that large structural deformations in excess of 50% strains can be achieved while maintaining full structural integrity and enabling secondary flight control mechanisms like flaps. The successful implementation of pressure-adaptive honeycomb in the trailing edge of a wing section sparked the motivation for subsequent research into the optimal topology of the pressure adaptive honeycomb within the trailing edge of a morphing flap. As an input for the optimization two known shapes are required: a desired shape in cruise configuration and a desired shape in landing configuration. In addition, the boundary conditions and load cases (including aerodynamic loads and internal pressure loads) should be specified for each condition. Finally, a set of six design variables is specified relating to the honeycomb and upper skin topology of the morphing flap. A finite-element model of the pressure-adaptive honeycomb structure is developed specifically tailored to generate fast but reliable results for a given combination of external loading, input variables, and boundary conditions. Based on two bench tests it is shown that this model correlates well to experimental results. The optimization process finds the skin and honeycomb topology that minimizes the error between the acquired shape and the desired shape in each configuration.

  17. Development of HIDEC adaptive engine control systems

    NASA Technical Reports Server (NTRS)

    Landy, R. J.; Yonke, W. A.; Stewart, J. F.

    1986-01-01

    The purpose of NASA's Highly Integrated Digital Electronic Control (HIDEC) flight research program is the development of integrated flight propulsion control modes, and the evaluation of their benefits aboard an F-15 test aircraft. HIDEC program phases are discussed, with attention to the Adaptive Engine Control System (ADECS I); this involves the upgrading of PW1128 engines for operation at higher engine pressure ratios and the production of greater thrust. ADECS II will involve the development of a constant thrust mode which will significantly reduce turbine operating temperatures.

  18. A Workflow for Subsurface Pressure Control in Geological CO2 Storage: Optimization of Brine Extraction

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.; Gonzalez-Nicolas, A.; Cihan, A.

    2017-12-01

    Industrial-scale injection of CO2 into the subsurface increases the fluid pressure in the reservoir, sometimes to the point that the resulting stress increases must be properly controlled to prevent potential damaging impacts such as fault activation, leakage through abandoned wells, or caprock fracturing. Brine extraction is one approach for managing formation pressure, effective stress, and plume movement in response to CO2 injection. However, the management of the extracted brine adds cost to the carbon capture and sequestration operations; therefore optimizing (minimizing) the extraction volume of brine is of great importance. In this study, we apply an adaptive management approach that optimizes extraction rates of brine for pressure control in an integrated optimization framework involving site monitoring, model calibration, and optimization. We investigate the optimization performance as affected by initial site characterization data and introduction of newly acquired data during the injection phase. More accurate initial reservoir characterization data reduce the risk of pressure buildup damage with better estimations of initial extraction rates, which results in better control of pressure during the overall injection time periods. Results also show that low frequencies of model calibration and optimization with the new data, especially at early injection periods, may lead to optimization problems, either that pressure buildup constraints are violated or excessively high extraction rates are proposed. These optimization problems can be eliminated if more frequent data collection and model calibration are conducted, especially at early injection time periods. Approaches such as adaptive pressure management may constitute an effective tool to manage pressure buildup under uncertain and unknown reservoir conditions by minimizing the brine extraction volumes while not exceeding critical pressure buildups of the reservoir.

  19. Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems

    NASA Astrophysics Data System (ADS)

    Volyanskyy, Kostyantyn Y.

    Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance rejection and noise suppression for nonnegative and compartmental dynamical systems with noise and exogenous system disturbances. We then use the developed framework to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for surgery in the face of continuing hemorrhage and hemodilution. Critical care patients, whether undergoing surgery or recovering in intensive care units, require drug administration to regulate physiological variables such as blood pressure, cardiac output, heart rate, and degree of consciousness. The rate of infusion of each administered drug is critical, requiring constant monitoring and frequent adjustments. In this dissertation, we develop a neuroadaptive output feedback control framework for nonlinear uncertain nonnegative and compartmental systems with nonnegative control inputs and noisy measurements. The proposed framework is Lyapunov-based and guarantees ultimate boundedness of the error signals. In addition, the neuroadaptive controller guarantees that the physical system states remain in the nonnegative orthant of the state space. Finally, the developed approach is used to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for surgery in the face of noisy electroencephalographic (EEG) measurements. Clinical trials demonstrate excellent regulation of unconsciousness allowing for a safe and effective administration of the anesthetic agent propofol. Furthermore, a neuroadaptive output feedback control architecture for nonlinear nonnegative dynamical systems with input amplitude and integral constraints is developed. Specifically, the neuroadaptive controller guarantees that the imposed amplitude and integral input constraints are satisfied and the physical system states remain in the nonnegative orthant of the state space. The proposed approach is used to control the infusion of the anesthetic drug propofol for maintaining a desired constant level of depth of anesthesia for noncardiac surgery in the face of infusion rate constraints and a drug dosing constraint over a specified period. In addition, the aforementioned control architecture is used to control lung volume and minute ventilation with input pressure constraints that also accounts for spontaneous breathing by the patient. Specifically, we develop a pressure- and work-limited neuroadaptive controller for mechanical ventilation based on a nonlinear multi-compartmental lung model. The control framework does not rely on any averaged data and is designed to automatically adjust the input pressure to the patient's physiological characteristics capturing lung resistance and compliance modeling uncertainty. Moreover, the controller accounts for input pressure constraints as well as work of breathing constraints. The effect of spontaneous breathing is incorporated within the lung model and the control framework. Finally, a neural network hybrid adaptive control framework for nonlinear uncertain hybrid dynamical systems is developed. The proposed hybrid adaptive control framework is Lyapunov-based and guarantees partial asymptotic stability of the closed-loop hybrid system; that is, asymptotic stability with respect to part of the closed-loop system states associated with the hybrid plant states. A numerical example is provided to demonstrate the efficacy of the proposed hybrid adaptive stabilization approach.

  20. Thermal, cardiac and adrenergic responses to repeated local cooling.

    PubMed

    Janský, L; Matousková, E; Vávra, V; Vybíral, S; Janský, P; Jandová, D; Knízková, I; Kunc, P

    2006-01-01

    The aim of this study was to ascertain whether repeated local cooling induces the same or different adaptational responses as repeated whole body cooling. Repeated cooling of the legs (immersion into 12 degrees C water up to the knees for 30 min, 20 times during 4 weeks = local cold adaptation - LCA) attenuated the initial increase in heart rate and blood pressure currently observed in control subjects immersed in cold water up to the knees. After LCA the initial skin temperature decrease tended to be lower, indicating reduced vasoconstriction. Heart rate and systolic blood pressure appeared to be generally lower during rest and during the time course of cooling in LCA humans, when compared to controls. All these changes seem to indicate attenuation of the sympathetic tone. In contrast, the sustained skin temperature in different areas of the body (finger, palm, forearm, thigh, chest) appeared to be generally lower in LCA subjects than in controls (except for temperatures on the forehead). Plasma levels of catecholamines (measured 20 and 40 min after the onset of cooling) were also not influenced by local cold adaptation. Locally cold adapted subjects, when exposed to whole body cold water immersion test, showed no change in the threshold temperature for induction of cold thermogenesis. This indicates that the hypothermic type of cold adaptation, typically occurring after systemic cold adaptation, does not appear after local cold adaptation of the intensity used. It is concluded that in humans the cold adaptation due to repeated local cooling of legs induces different physiological changes than systemic cold adaptation.

  1. Adaptation of postural recovery responses to a vestibular sensory illusion in individuals with Parkinson disease and healthy controls.

    PubMed

    Lester, Mark E; Cavanaugh, James T; Foreman, K Bo; Shaffer, Scott W; Marcus, Robin; Dibble, Leland E

    2017-10-01

    The ability to adapt postural responses to sensory illusions diminishes with age and is further impaired by Parkinson disease. However, limited information exists regarding training-related adaptions of sensory reweighting in these populations. This study sought to determine whether Parkinson disease or age would differentially affect acute postural recovery or adaptive postural responses to novel or repeated exposure to sensory illusions using galvanic vestibular stimulation during quiet stance. Acutely, individuals with Parkinson disease demonstrated larger center of pressure coefficient of variation compared to controls. Unlike individuals with Parkinson disease and asymptomatic older adults, healthy young adults acutely demonstrated a reduction in Sample Entropy to the sensory illusion. Following a period of consolidation Sample Entropy increased in the healthy young group, which coincided with a decreased center of pressure coefficient of variation. Similar changes were not observed in the Parkinson disease or older adult groups. Taken together, these results suggest that young adults learn to adapt to vestibular illusion in a more robust manner than older adults or those with Parkinson disease. Further investigation into the nature of this adaptive difference is warranted. Published by Elsevier Ltd.

  2. Hybrid Feedforward-Feedback Noise Control Using Virtual Sensors

    NASA Technical Reports Server (NTRS)

    Bean, Jacob; Fuller, Chris; Schiller, Noah

    2016-01-01

    Several approaches to active noise control using virtual sensors are evaluated for eventual use in an active headrest. Specifically, adaptive feedforward, feedback, and hybrid control structures are compared. Each controller incorporates the traditional filtered-x least mean squares algorithm. The feedback controller is arranged in an internal model configuration to draw comparisons with standard feedforward control theory results. Simulation and experimental results are presented that illustrate each controllers ability to minimize the pressure at both physical and virtual microphone locations. The remote microphone technique is used to obtain pressure estimates at the virtual locations. It is shown that a hybrid controller offers performance benefits over the traditional feedforward and feedback controllers. Stability issues associated with feedback and hybrid controllers are also addressed. Experimental results show that 15-20 dB reduction in broadband disturbances can be achieved by minimizing the measured pressure, whereas 10-15 dB reduction is obtained when minimizing the estimated pressure at a virtual location.

  3. Pressure control valve. [inflating flexible bladders

    NASA Technical Reports Server (NTRS)

    Lambson, K. H. (Inventor)

    1980-01-01

    A control valve is provided which is adapted to be connected between a pressure source, such as a vacuum pump, and a pressure vessel so as to control the pressure in the vessel. The valve comprises a housing having a longitudinal bore which is connected between the pump and vessel, and a transversely movable valve body which controls the air flow through an air inlet in the housing. The valve body includes cylindrical and conical shaped portions which cooperate with reciprocally shaped portions of the housing to provide flow control. A filter in the air inlet removes foreign matter from the air. The bottom end of the valve body is screwed into the valve housing control knob formed integrally with the valve body and controls translation of the valve body, and the opening and closing of the valve.

  4. Infant born preterm have delayed development of adaptive postural control in the first 5 months of life.

    PubMed

    Dusing, Stacey C; Thacker, Leroy R; Galloway, James C

    2016-08-01

    Infants born preterm are at increased risk of developmental disabilities, that may be attributed to their early experiences and ability to learn. The purpose of this paper was to evaluate the ability of infants born preterm to adapt their postural control to changing task demands. This study included 18 infants born at 32 weeks of gestation or less whose posture was compared in supine under 2 conditions, with and without a visual stimulus presented. The postural variability, measured with root mean squared displacement of the center of pressure, and postural complexity, measured with the approximate entropy of the center of pressure displacement were measured longitudinally from 2.5 to 5 months of age. The infants looked at the toys in midline for several months prior to adapting their postural variability in a manner similar to full term infants. Only after postural variability was reduced in both the caudal cephalic and medial lateral direction in the toy condition did the infants learn to reach for the toy. Postural complexity did not vary between conditions. These findings suggest that infants used a variety of strategies to control their posture. In contrast to research with infants born full term, the infants born preterm in this study did not identify the successful strategy of reducing movement of the center of pressure until months after showing interest in the toy. This delayed adaptation may impact the infants ability to learn over time. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Turbulent Output-Based Anisotropic Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Carlson, Jan-Renee

    2010-01-01

    Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.

  6. Model-free adaptive control of advanced power plants

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  7. Adaptive style and physiological reactivity during a laboratory stress paradigm in children with cancer and healthy controls.

    PubMed

    Williams, Natalie A; Allen, Michael T; Phipps, Sean

    2011-10-01

    Repressive adaptation has been conceptualized as one pathway to psychological resilience in children with cancer, but the physiological costs of maintaining a repressive adaptive style are currently unknown. The goal of this study was to examine physiological functioning as a function of adaptive style in children with cancer (N = 120) and healthy controls (N = 120). Children completed self-report measures of state anxiety and defensiveness prior to participating in three verbal stress tasks while monitoring blood pressure, electrocardiogram, and electrodermal response, and rated their anxiety following each task. Findings indicated no consistent differences in baseline indices and physiological reactivity as a function of adaptive style or health status (cancer vs. control). In addition, children identified as having a repressive adaptive style did not exhibit greater verbal-autonomic discrepancy than low-anxious children. In contrast to findings with adults, children with a repressive adaptive style do not appear to experience adverse effects of this coping style in terms of physiological reactivity.

  8. Mechanics of pressure-adaptive honeycomb and its application to wing morphing

    NASA Astrophysics Data System (ADS)

    Vos, Roelof; Barrett, Ron

    2011-09-01

    Current, highly active classes of adaptive materials have been considered for use in many different aerospace applications. From adaptive flight control surfaces to wing surfaces, shape-memory alloy (SMA), piezoelectric and electrorheological fluids are making their way into wings, stabilizers and rotor blades. Despite the benefits which can be seen in many classes of aircraft, some profound challenges are ever present, including low power and energy density, high power consumption, high development and installation costs and outright programmatic blockages due to a lack of a materials certification database on FAR 23/25 and 27/29 certified aircraft. Three years ago, a class of adaptive structure was developed to skirt these daunting challenges. This pressure-adaptive honeycomb (PAH) is capable of extremely high performance and is FAA/EASA certifiable because it employs well characterized materials arranged in ways that lend a high level of adaptivity to the structure. This study is centered on laying out the mechanics, analytical models and experimental test data describing this new form of adaptive material. A directionally biased PAH system using an external (spring) force acting on the PAH bending structure was examined. The paper discusses the mechanics of pressure adaptive honeycomb and describes a simple reduced order model that can be used to simplify the geometric model in a finite element environment. The model assumes that a variable stiffness honeycomb results in an overall deformation of the honeycomb. Strains in excess of 50% can be generated through this mechanism without encountering local material (yield) limits. It was also shown that the energy density of pressure-adaptive honeycomb is akin to that of shape-memory alloy, while exhibiting strains that are an order of magnitude greater with an energy efficiency close to 100%. Excellent correlation between theory and experiment is demonstrated in a number of tests. A proof-of-concept wing section test was conducted on a 12% thick wing section representative of a modern commercial aircraft winglet or flight control surface with a 35% PAH trailing edge. It was shown that camber variations in excess of 5% can be generated by a pressure differential of 40 kPa. Results of subsequent wind tunnel test show an increase in lift coefficient of 0.3 at 23 m s - 1 through an angle of attack from - 6° to + 20°. This paper was originally presented at the 2010 ASME SMASIS conference, as paper 'SMASIS 2010-3634'. Despite the substantial changes that have been made to the paper, there are still various figures and text stemming from the original.

  9. Compressed gas fuel storage system

    DOEpatents

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  10. Neural Control of the Cardiovascular System in Space

    NASA Technical Reports Server (NTRS)

    Levine, Benjamin D.; Pawelczyk, James A.; Zuckerman, Julie; Zhang, Rong; Fu, Qi; Iwasaki, Kenichi; Ray, Chet; Blomqvist, C. Gunnar; Lane, Lynda D.; Giller, Cole A.

    2003-01-01

    During the acute transition from lying supine to standing upright, a large volume of blood suddenly moves from the chest into the legs. To prevent fainting, the blood pressure control system senses this change immediately, and rapidly adjusts flow (by increasing heart rate) and resistance to flow (by constricting the blood vessels) to restore blood pressure and maintain brain blood flow. If this system is inadequate, the brain has a backup plan. Blood vessels in the brain can adjust their diameter to keep blood flow constant. If blood pressure drops, the brain blood vessels dilate; if blood pressure increases, the brain blood vessels constrict. This process, which is called autoregulation, allows the brain to maintain a steady stream of oxygen, even when blood pressure changes. We examined what changes in the blood pressure control system or cerebral autoregulation contribute to the blood pressure control problems seen after spaceflight. We asked: (1) does the adaptation to spaceflight cause an adaptation in the blood pressure control system that impairs the ability of the system to constrict blood vessels on return to Earth?; (2) if such a defect exists, could we pinpoint the neural pathways involved?; and (3) does cerebral autoregulation become abnormal during spaceflight, impairing the body s ability to maintain constant brain blood flow when standing upright on Earth? We stressed the blood pressure control system using lower body negative pressure, upright tilt, handgrip exercise, and cold stimulation of the hand. Standard cardiovascular parameters were measured along with sympathetic nerve activity (the nerve activity causing blood vessels to constrict) and brain blood flow. We confirmed that the primary cardiovascular effect of spaceflight was a postflight reduction in upright stroke volume (the amount of blood the heart pumps per beat). Heart rate increased appropriately for the reduction in stroke volume, thereby showing that changes in heart rate regulation alone cannot be responsible for orthostatic hypotension after spaceflight. All of the astronauts in our study had an increase in sympathetic nerve activity during upright tilting on Earth postflight. This increase was well calibrated for the reduction in stroke volume induced by the upright posture. The results obtained from stimulating the sympathetic nervous system using handgrip exercise or cold stress were also entirely normal during and after spaceflight. No astronaut had reduced cerebral blood flow during upright tilt, and cerebral autoregulation was normal or even enhanced inflight. These experiments show that the cardiovascular adaptation to spaceflight does not lead to a defect in the regulation of blood vessel constriction via sympathetic nerve activity. In addition, cerebral autoregulation is well-maintained. It is possible that despite the increased sympathetic nerve activity, blood vessels did not respond with a greater degree of constriction than occurred preflight, possibly uncovering a limit of vasoconstrictor reserve.

  11. Simulation to coating weight control for galvanizing

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Yan, Zhang; Wu, Kunkui; Song, Lei

    2013-05-01

    Zinc coating weight control is one of the most critical issues for continuous galvanizing line. The process has the characteristic of variable-time large time delay, nonlinear, multivariable. It can result in seriously coating weight error and non-uniform coating. We develop a control system, which can automatically control the air knives pressure and its position to give a constant and uniform zinc coating, in accordance with customer-order specification through an auto-adaptive empirical model-based feed forward adaptive controller, and two model-free adaptive feedback controllers . The proposed models with controller were applied to continuous galvanizing line (CGL) at Angang Steel Works. By the production results, the precise and stability of the control model reduces over-coating weight and improves coating uniform. The product for this hot dip galvanizing line does not only satisfy the customers' quality requirement but also save the zinc consumption.

  12. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.

    PubMed

    Kwon, Ronald Y; Meays, Diana R; Meilan, Alexander S; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading. Collectively, these studies indicate that structural adaptation to ImP-driven IFF can proceed unimpeded following a significant depletion in osteocytes, consistent with the potential existence of a non-osteocytic bone cell population that senses ImP-driven IFF independently and potentially parallel to osteocytic sensation of poroelasticity-derived IFF.

  13. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    PubMed

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  14. Exploring Heart and Lung Function in Space: ARMS Experiments

    NASA Technical Reports Server (NTRS)

    Kuipers, Andre; Cork, Michael; LeGouic, Marine

    2002-01-01

    The Advanced Respiratory Monitoring System (ARMS) is a suite of monitoring instruments and supplies used to study the heart, lungs, and metabolism. Many experiments sponsored by the European Space Agency (ESA) will be conducted using ARMS during STS-107. The near-weightless environment of space causes the body to undergo many physiological adaptations, and the regulation of blood pressure is no exception. Astronauts also experience a decrease in blood volume as an adaptation to microgravity. Reduced blood volume may not provide enough blood pressure to the head during entry or landing. As a result, astronauts often experience light-headedness, and sometimes even fainting, when they stand shortly after returning to Earth. To help regulate blood pressure and heart rate, baroreceptors, sensors located in artery walls in the neck and near the heart, control blood pressure by sending information to the brain and ensuring blood flow to organs. These mechanisms work properly in Earth's gravity but must adapt in the microgravity environment of space. However, upon return to Earth during entry and landing, the cardiovascular system must readjust itself to gravity, which can cause fluctuation in the control of blood pressure and heart rate. Although the system recovers in hours or days, these occurrences are not easily predicted or understood - a puzzle investigators will study with the ARMS equipment. In space, researchers can focus on aspects of the cardiovascular system normally masked by gravity. The STS-107 experiments using ARMS will provide data on how the heart and lungs function in space, as well as how the nervous system controls them. Exercise will also be combined with breath holding and straining (the Valsalva maneuver) to test how heart rate and blood pressure react to different stresses. This understanding will improve astronauts' cardiopulmonary function after return to Earth, and may well help Earthbound patients who experience similar effects after long-term bed rest.

  15. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  16. Advanced positive airway pressure modes: adaptive servo ventilation and volume assured pressure support.

    PubMed

    Selim, Bernardo; Ramar, Kannan

    2016-09-01

    Volume assured pressure support (VAPS) and adaptive servo ventilation (ASV) are non-invasive positive airway pressure (PAP) modes with sophisticated negative feedback control systems (servomechanism), having the capability to self-adjust in real time its respiratory controlled variables to patient's respiratory fluctuations. However, the widespread use of VAPS and ASV is limited by scant clinical experience, high costs, and the incomplete understanding of propriety algorithmic differences in devices' response to patient's respiratory changes. Hence, we will review and highlight similarities and differences in technical aspects, control algorithms, and settings of each mode, focusing on the literature search published in this area. One hundred twenty relevant articles were identified by Scopus, PubMed, and Embase databases from January 2010 to 2016, using a combination of MeSH terms and keywords. Articles were further supplemented by pearling. Recommendations were based on the literature review and the authors' expertise in this area. Expert commentary: ASV and VAPS differ in their respiratory targets and response to a respiratory fluctuation. The VAPS mode targets a more consistent minute ventilation, being recommended in the treatment of sleep related hypoventilation disorders, while ASV mode attempts to provide a more steady breathing airflow pattern, treating successfully most central sleep apnea syndromes.

  17. Effects of age, blood pressure and antihypertensive treatments on retinal arterioles remodeling assessed by adaptive optics.

    PubMed

    Rosenbaum, David; Mattina, Alessandro; Koch, Edouard; Rossant, Florence; Gallo, Antonio; Kachenoura, Nadjia; Paques, Michel; Redheuil, Alban; Girerd, Xavier

    2016-06-01

    In humans, adaptive optics camera enables precise large-scale noninvasive retinal microcirculation evaluation to assess ageing, blood pressure and antihypertensive treatments respective roles on retinal arterioles anatomy. We used adaptive optics camera rtx1 (Imagine-Eyes, Orsay, France) to measure wall thickness, internal diameter and to calculate wall-to-lumen ratio (WLR) and wall cross-sectional area of retinal arterioles. This assessment was repeated within a short period in two subgroups of hypertensive individuals without or with a drug-induced blood pressure drop. In 1000 individuals, mean wall thickness, lumen diameter and WLR were 23.2 ± 3.9, 78.0 ± 10.9 and 0.300 ± 0.054 μm, respectively. Blood pressure and age both independently increased WLR by thickening arterial wall. In opposite, hypertension narrowed lumen in younger as compared to older individuals (73.2 ± 9.0 vs. 81.7 ± 10.2 μm; P < 0.001), whereas age exerted no influence on lumen diameter. Short-term blood pressure drop (-29.3 ± 17.3/-14.4 ± 10.0 mmHg) induced a WLR decrease (-6.0 ± 8.0%) because of lumen dilatation (+4.4 ± 5.9%) without wall thickness changes. By contrast, no modifications were observed in individuals with stable blood pressure. In treated and controlled hypertensives under monotherapy WLR normalization was observed because of combined wall decrease and lumen dilatation independently of antihypertensive pharmacological classes. In multivariate analysis, hypertension drug regimen was not an independent predictor of any retinal anatomical indices. Retinal arteriolar remodeling comprised blood pressure and age-driven wall thickening as well as blood pressure-triggered lumen narrowing in younger individuals. Remodeling reversal observed in controlled hypertensives seems to include short-term functional and long-term structural changes.

  18. Intermittent cardiac overload results in adaptive hypertrophy and provides protection against left ventricular acute pressure overload insult.

    PubMed

    Moreira-Gonçalves, Daniel; Henriques-Coelho, Tiago; Fonseca, Hélder; Ferreira, Rita; Padrão, Ana Isabel; Santa, Cátia; Vieira, Sara; Silva, Ana Filipa; Amado, Francisco; Leite-Moreira, Adelino; Duarte, José Alberto

    2015-09-01

    The present study aimed to test whether a chronic intermittent workload could induce an adaptive cardiac phenotype Chronic intermittent workload induced features of adaptive hypertrophy This was paralleled by protection against acute pressure overload insult The heart may adapt favourably to balanced demands, regardless of the nature of the stimuli. The present study aimed to test whether submitting the healthy heart to intermittent and tolerable amounts of workload, independently of its nature, could result in an adaptive cardiac phenotype. Male Wistar rats were subjected to treadmill running (Ex) (n = 20), intermittent cardiac overload with dobutamine (ITO) (2 mg kg(-1) , s.c.; n = 20) or placebo administration (Cont) (n = 20) for 5 days week(-1) for 8 weeks. Animals were then killed for histological and biochemical analysis or subjected to left ventricular haemodynamic evaluation under baseline conditions, in response to isovolumetric contractions and to sustained LV acute pressure overload (35% increase in peak systolic pressure maintained for 2 h). Baseline cardiac function was enhanced only in Ex, whereas the response to isovolumetric heartbeats was improved in both ITO and Ex. By contrast to the Cont group, in which rats developed diastolic dysfunction with sustained acute pressure overload, ITO and Ex showed increased tolerance to this stress test. Both ITO and Ex developed cardiomyocyte hypertrophy without fibrosis, no overexpression of osteopontin-1 or β-myosin heavy chain, and increased expression of sarcoplasmic reticulum Ca(2+) protein. Regarding hypertrophic pathways, ITO and Ex showed activation of the protein kinase B/mammalian target of rapamycin pathway but not calcineurin. Mitochondrial complex IV and V activities were also increased in ITO and Ex. Chronic submission to controlled intermittent cardiac overload, independently of its nature, results in an adaptive cardiac phenotype. Features of the cardiac overload, such as the duration and magnitude of the stimuli, may play a role in the development of an adaptive or maladaptive phenotype. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  19. Structural integrated sensor and actuator systems for active flow control

    NASA Astrophysics Data System (ADS)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  20. Chronic N(G)-nitro-L-arginine methyl ester-induced hypertension : novel molecular adaptation to systolic load in absence of hypertrophy

    NASA Technical Reports Server (NTRS)

    Bartunek, J.; Weinberg, E. O.; Tajima, M.; Rohrbach, S.; Katz, S. E.; Douglas, P. S.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    BACKGROUND: Chronic N(G)-nitro-L-arginine methyl ester (L-NAME), which inhibits nitric oxide synthesis, causes hypertension and would therefore be expected to induce robust cardiac hypertrophy. However, L-NAME has negative metabolic effects on protein synthesis that suppress the increase in left ventricular (LV) mass in response to sustained pressure overload. In the present study, we used L-NAME-induced hypertension to test the hypothesis that adaptation to pressure overload occurs even when hypertrophy is suppressed. METHODS AND RESULTS: Male rats received L-NAME (50 mg. kg(-1). d(-1)) or no drug for 6 weeks. Rats with L-NAME-induced hypertension had levels of systolic wall stress similar to those of rats with aortic stenosis (85+/-19 versus 92+/-16 kdyne/cm). Rats with aortic stenosis developed a nearly 2-fold increase in LV mass compared with controls. In contrast, in the L-NAME rats, no increase in LV mass (1. 00+/-0.03 versus 1.04+/-0.04 g) or hypertrophy of isolated myocytes occurred (3586+/-129 versus 3756+/-135 microm(2)) compared with controls. Nevertheless, chronic pressure overload was not accompanied by the development of heart failure. LV systolic performance was maintained by mechanisms of concentric remodeling (decrease of in vivo LV chamber dimension relative to wall thickness) and augmented myocardial calcium-dependent contractile reserve associated with preserved expression of alpha- and beta-myosin heavy chain isoforms and sarcoplasmic reticulum Ca(2+) ATPase (SERCA-2). CONCLUSIONS: When the expected compensatory hypertrophic response is suppressed during L-NAME-induced hypertension, severe chronic pressure overload is associated with a successful adaptation to maintain systolic performance; this adaptation depends on both LV remodeling and enhanced contractility in response to calcium.

  1. WE-G-BRF-09: Force- and Image-Adaptive Strategies for Robotised Placement of 4D Ultrasound Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlemann, I; Graduate School for Computing in Life Science, University of Luebeck, Luebeck; Bruder, R

    2014-06-15

    Purpose: To allow continuous acquisition of high quality 4D ultrasound images for non-invasive live tracking of tumours for IGRT, image- and force-adaptive strategies for robotised placement of 4D ultrasound probes are developed and evaluated. Methods: The developed robotised ultrasound system is based on a 6-axes industrial robot (adept Viper s850) carrying a 4D ultrasound transducer with a mounted force-torque sensor. The force-adaptive placement strategies include probe position control using artificial potential fields and contact pressure regulation by a PD controller strategy. The basis for live target tracking is a continuous minimum contact pressure to ensure good image quality and highmore » patient comfort. This contact pressure can be significantly disturbed by respiratory movements and has to be compensated. All measurements were performed on human subjects under realistic conditions. When performing cardiac ultrasound, rib- and lung shadows are a common source of interference and can disrupt the tracking. To ensure continuous tracking, these artefacts had to be detected to automatically realign the probe. The detection is realised by multiple algorithms based on entropy calculations as well as a determination of the image quality. Results: Through active contact pressure regulation it was possible to reduce the variance of the contact pressure by 89.79% despite respiratory motion of the chest. The results regarding the image processing clearly demonstrate the feasibility to detect image artefacts like rib shadows in real-time. Conclusion: In all cases, it was possible to stabilise the image quality by active contact pressure control and automatically detected image artefacts. This fact enables the possibility to compensate for such interferences by realigning the probe and thus continuously optimising the ultrasound images. This is a huge step towards fully automated transducer positioning and opens the possibility for stable target tracking in ultrasoundguided radiation therapy requiring contact pressure of 5–10 N. This work was supported by the Graduate School for Computing in Medicine and Life Sciences funded by Germany's Excellence Initiative [DFG GSC 235/1].« less

  2. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli

    PubMed Central

    Green, Daniel J.; Hopman, Maria T. E.; Padilla, Jaume; Laughlin, M. Harold; Thijssen, Dick H. J.

    2017-01-01

    On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on “hemodynamic” forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity. PMID:28151424

  3. The contributions of renin and vasopressin to the adaptation of the Australian spinifex hopping mouse (Notomys alexis) to free water deprivation.

    PubMed

    Weaver, D; Walker, L; Alcorn, D; Skinner, S

    1994-05-01

    Xeric-adaptation was studied during 28 days of total water deprivation (TWD) in Notomys alexis. Beyond 7 days, the initial reductions in body weight and increases in haematocrit, plasma renin and juxtaglomerular (JG) cell morphological activity returned to normal. Mus musculus showed similar changes at 7 days but could not be maintained thereafter. TWD decreased the blood pressure of Notomys but endogenous angiotensin and vasopressin did not support pressure to a greater extent than controls, as revealed by selective antagonists. The normal morphology of the JG apparatus in Notomys was similar to other rodents. Fluid volume and blood pressure maintenance during TWD in Notomys do not depend upon enhanced activities of the renin-angiotensin and antidiuretic hormonal systems.

  4. Measure of librarian pressure using fuzzy inference system: A case study in Longyan University

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Jing

    2014-10-01

    As the hierarchy of middle managers in college's librarian. They may own much work pressure from their mind. How to adapt psychological problem, control the emotion and keep a good relationship in their work place, it becomes an important issue. Especially, they work in China mainland environment. How estimate the librarians work pressure and improve the quality of service in college libraries. Those are another serious issues. In this article, the authors would like discuss how can we use fuzzy inference to test librarian work pressure.

  5. Flow Cage Assemblies

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor)

    2017-01-01

    Apparatus, systems and methods for implementing flow cages and flow cage assemblies in association with high pressure fluid flows and fluid valves are provided. Flow cages and flow assemblies are provided to dissipate the energy of a fluid flow, such as by reducing fluid flow pressure and/or fluid flow velocity. In some embodiments the dissipation of the fluid flow energy is adapted to reduce erosion, such as from high-pressure jet flows, to reduce cavitation, such as by controllably increasing the flow area, and/or to reduce valve noise associated with pressure surge.

  6. Voss in PMA2

    NASA Image and Video Library

    2001-04-27

    ISS002-E-6140 (27 April 2001) --- James S. Voss, Expedition Two flight engineer, discusses procedures with Mission Control while working in Pressurized Mating Adapter 2 (PMA2). The image was taken with a digital still camera.

  7. Development of a process control computer device for the adaptation of flexible wind tunnel walls

    NASA Technical Reports Server (NTRS)

    Barg, J.

    1982-01-01

    In wind tunnel tests, the problems arise of determining the wall pressure distribution, calculating the wall contour, and controlling adjustment of the walls. This report shows how these problems have been solved for the high speed wind tunnel of the Technical University of Berlin.

  8. Design and adaptation of a novel supercritical extraction facility for operation in a glove box for recovery of radioactive elements

    NASA Astrophysics Data System (ADS)

    Kumar, V. Suresh; Kumar, R.; Sivaraman, N.; Ravisankar, G.; Vasudeva Rao, P. R.

    2010-09-01

    The design and development of a novel supercritical extraction experimental facility adapted for safe operation in a glove box for the recovery of radioactive elements from waste is described. The apparatus incorporates a high pressure extraction vessel, reciprocating pumps for delivering supercritical fluid and reagent, a back pressure regulator, and a collection chamber. All these components of the system have been specially designed for glove box adaptation and made modular to facilitate their replacement. Confinement of these materials must be ensured in a glove box to protect the operator and prevent contamination to the work area. Since handling of radioactive materials under high pressure (30 MPa) and temperature (up to 333 K) is involved in this process, the apparatus needs elaborate safety features in the design of the equipment, as well as modification of a standard glove box to accommodate the system. As a special safety feature to contain accidental leakage of carbon dioxide from the extraction vessel, a safety vessel has been specially designed and placed inside the glove box. The extraction vessel was enclosed in the safety vessel. The safety vessel was also incorporated with pressure sensing and controlling device.

  9. Skeletal Adaptation to Intramedullary Pressure-Induced Interstitial Fluid Flow Is Enhanced in Mice Subjected to Targeted Osteocyte Ablation

    PubMed Central

    Kwon, Ronald Y.; Meays, Diana R.; Meilan, Alexander S.; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A.

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading. Collectively, these studies indicate that structural adaptation to ImP-driven IFF can proceed unimpeded following a significant depletion in osteocytes, consistent with the potential existence of a non-osteocytic bone cell population that senses ImP-driven IFF independently and potentially parallel to osteocytic sensation of poroelasticity-derived IFF. PMID:22413015

  10. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOEpatents

    Hubbell, J.M.; Mattson, E.D.; Sisson, J.B.

    1998-06-02

    A tensiometer to in-situ determine below-grade soil moisture, potential of earthen soil includes, (a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; (b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; (c) a first fluid conduit extending outwardly of the first fluid chamber; (d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and (e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: (1) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and (2) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus. 6 figs.

  11. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOEpatents

    Hubbell, Joel M.; Mattson, Earl D.; Sisson, James B.

    1998-01-01

    A tensiometer to in situ determine below-grade soil moisture, potential of earthen soil includes, a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; c) a first fluid conduit extending outwardly of the first fluid chamber; d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: i) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and ii) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus.

  12. Motor pattern of the sphincter of Oddi in patients with bilioenteric shunt: a manometric study.

    PubMed

    Ponce, J; Garrigues, V; Pertejo, V; Sala, T; Berenguer, J

    1988-10-01

    An endoscopic biliary manometry was performed on 11 patients with a surgical bilioenteric shunt--choledochoduodenostomy--and no pressure gradient between common bile duct and duodenum. Basal pressure and frequency of the phasic waves of the sphincter of Oddi were significantly higher in these patients than in controls or in patients with retained common bile duct stones. These results suggest a functional adaptation of the sphincter of Oddi in an attempt to recover the normal pressure in the biliary tract.

  13. Pneumatic Control Device for the Pershing 2 Adaption Kit

    DTIC Science & Technology

    1979-03-14

    forward force to main- tain a pressure seal (this, versus an-I6-to 25 pound maximum reverse .force component due to pressure). In all probability, initial...stem forward force to main- tain a pressure seal (this, versus an 48-to-25-pound maximum " reverse.force, component due-topressue). In-all probability...PII Li L! Ramn Eniern Inc Contrato . 2960635 GAS GENERATOR COMPATIBILITY U TEST REPORT 1.j Requirement s The requirements for the Pershing II, Phase I

  14. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure.

    PubMed

    Cowie, Martin R; Woehrle, Holger; Wegscheider, Karl; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut

    2015-09-17

    Central sleep apnea is associated with poor prognosis and death in patients with heart failure. Adaptive servo-ventilation is a therapy that uses a noninvasive ventilator to treat central sleep apnea by delivering servo-controlled inspiratory pressure support on top of expiratory positive airway pressure. We investigated the effects of adaptive servo-ventilation in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea. We randomly assigned 1325 patients with a left ventricular ejection fraction of 45% or less, an apnea-hypopnea index (AHI) of 15 or more events (occurrences of apnea or hypopnea) per hour, and a predominance of central events to receive guideline-based medical treatment with adaptive servo-ventilation or guideline-based medical treatment alone (control). The primary end point in the time-to-event analysis was the first event of death from any cause, lifesaving cardiovascular intervention (cardiac transplantation, implantation of a ventricular assist device, resuscitation after sudden cardiac arrest, or appropriate lifesaving shock), or unplanned hospitalization for worsening heart failure. In the adaptive servo-ventilation group, the mean AHI at 12 months was 6.6 events per hour. The incidence of the primary end point did not differ significantly between the adaptive servo-ventilation group and the control group (54.1% and 50.8%, respectively; hazard ratio, 1.13; 95% confidence interval [CI], 0.97 to 1.31; P=0.10). All-cause mortality and cardiovascular mortality were significantly higher in the adaptive servo-ventilation group than in the control group (hazard ratio for death from any cause, 1.28; 95% CI, 1.06 to 1.55; P=0.01; and hazard ratio for cardiovascular death, 1.34; 95% CI, 1.09 to 1.65; P=0.006). Adaptive servo-ventilation had no significant effect on the primary end point in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea, but all-cause and cardiovascular mortality were both increased with this therapy. (Funded by ResMed and others; SERVE-HF ClinicalTrials.gov number, NCT00733343.).

  15. Effect of Treatment Education Based on the Roy Adaptation Model on Adjustment of Hemodialysis Patients.

    PubMed

    Kacaroglu Vicdan, Ayse; Gulseven Karabacak, Bilgi

    2016-01-01

    The Roy Adaptation Model examines the individual in 4 fields: physiological mode, self-concept mode, role function mode, and interdependence mode. Hemodialysis treatment is associated with the Roy Adaptation Model as it involves fields that might be needed by the individual with chronic renal disease. This research was conducted as randomized controlled experiment with the aim of determining the effect of the education given in accordance with the Roy Adaptation Model on physiological, psychological, and social adaptation of individuals undergoing hemodialysis treatment. This was a random controlled experimental study. The study was conducted at a dialysis center in Konya-Aksehir in Turkey between July 1 and December 31, 2012. The sample was composed of 82 individuals-41 experimental and 41 control. In the second interview, there was a decrease in the systolic blood pressures and body weights of the experimental group, an increase in the scores of functional performance and self-respect, and a decrease in the scores of psychosocial adaptation. In the control group, on the other hand, there was a decrease in the scores of self-respect and an increase in the scores of psychosocial adaptation. The 2 groups were compared in terms of adaptation variables and a difference was determined on behalf of the experimental group. The training that was provided and evaluated for individuals receiving hemodialysis according to 4 modes of the Roy Adaptation Model increased physical, psychological, and social adaptation.

  16. HIDEC adaptive engine control system flight evaluation results

    NASA Technical Reports Server (NTRS)

    Yonke, W. A.; Landy, R. J.; Stewart, J. F.

    1987-01-01

    An integrated flight propulsion control mode, the Adaptive Engine Control System (ADECS), has been developed and flight tested on an F-15 aircraft as part of the NASA Highly Integrated Digital Electronic Control program. The ADECS system realizes additional engine thrust by increasing the engine pressure ratio (EPR) at intermediate and afterburning power, with the amount of EPR uptrim modulated using a predictor scheme for angle-of-attack and sideslip angle. Substantial improvement in aircraft and engine performance was demonstrated, with a 16 percent rate of climb increase, a 14 percent reduction in time to climb, and a 15 percent reduction in time to accelerate. Significant EPR uptrim capability was found with angles-of-attack up to 20 degrees.

  17. A two-dimensional adaptive-wall test section with ventilated walls in the Ames 2- by 2-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Lee, George; Mcdevitt, T. Kevin

    1989-01-01

    The first tests conducted in the adaptive-wall test section of the Ames Research Center's 2- by 2-Foot Transonic Wind Tunnel are described. A procedure was demonstrated for reducing wall interference in transonic flow past a two-dimensional airfoil by actively controlling flow through the slotted walls of the test section. Flow through the walls was controlled by adjusting pressures in compartments of plenums above and below the test section. Wall interference was assessed by measuring (with a laser velocimeter) velocity distributions along a contour surrounding the model, and then checking those measurements for their compatibility with free-air far-field boundary conditions. Plenum pressures for minimum wall interference were determined from empirical influence coefficients. An NACA 0012 airfoil was tested at angles of attach of 0 and 2, and at Mach numbers between 0.70 and 0.85. In all cases the wall-setting procedure greatly reduced wall interference. Wall interference, however, was never completely eliminated, primarily because the effect of plenum pressure changes on the velocities along the contour could not be accurately predicted.

  18. Action to Support Practices Implement Research Evidence (ASPIRE): protocol for a cluster-randomised evaluation of adaptable implementation packages targeting 'high impact' clinical practice recommendations in general practice.

    PubMed

    Willis, Thomas A; Hartley, Suzanne; Glidewell, Liz; Farrin, Amanda J; Lawton, Rebecca; McEachan, Rosemary R C; Ingleson, Emma; Heudtlass, Peter; Collinson, Michelle; Clamp, Susan; Hunter, Cheryl; Ward, Vicky; Hulme, Claire; Meads, David; Bregantini, Daniele; Carder, Paul; Foy, Robbie

    2016-02-29

    There are recognised gaps between evidence and practice in general practice, a setting which provides particular challenges for implementation. We earlier screened clinical guideline recommendations to derive a set of 'high impact' indicators based upon criteria including potential for significant patient benefit, scope for improved practice and amenability to measurement using routinely collected data. We aim to evaluate the effectiveness and cost-effectiveness of a multifaceted, adaptable intervention package to implement four targeted, high impact recommendations in general practice. The research programme Action to Support Practice Implement Research Evidence (ASPIRE) includes a pair of pragmatic cluster-randomised trials which use a balanced incomplete block design. Clusters are general practices in West Yorkshire, United Kingdom (UK), recruited using an 'opt-out' recruitment process. The intervention package adapted to each recommendation includes combinations of audit and feedback, educational outreach visits and computerised prompts with embedded behaviour change techniques selected on the basis of identified needs and barriers to change. In trial 1, practices are randomised to adapted interventions targeting either diabetes control or risky prescribing and those in trial 2 to adapted interventions targeting either blood pressure control in patients at risk of cardiovascular events or anticoagulation in atrial fibrillation. The respective primary endpoints comprise achievement of all recommended target levels of haemoglobin A1c (HbA1c), blood pressure and cholesterol in patients with type 2 diabetes, a composite indicator of risky prescribing, achievement of recommended blood pressure targets for specific patient groups and anticoagulation prescribing in patients with atrial fibrillation. We are also randomising practices to a fifth, non-intervention control group to further assess Hawthorne effects. Outcomes will be assessed using routinely collected data extracted 1 year after randomisation. Economic modelling will estimate intervention cost-effectiveness. A process evaluation involving eight non-trial practices will examine intervention delivery, mechanisms of action and unintended consequences. ASPIRE will provide 'real-world' evidence about the effects, cost-effectiveness and delivery of adapted intervention packages targeting high impact recommendations. By implementing our adaptable intervention package across four distinct clinical topics, and using 'opt-out' recruitment, our findings will provide evidence of wider generalisability. ISRCTN91989345.

  19. Rapid evolution leads to differential population dynamics and top-down control in resurrected Daphnia populations.

    PubMed

    Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc

    2018-01-01

    There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.

  20. Adaptive Development

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The goal of this research is to develop and demonstrate innovative adaptive seal technologies that can lead to dramatic improvements in engine performance, life, range, and emissions, and enhance operability for next generation gas turbine engines. This work is concentrated on the development of self-adaptive clearance control systems for gas turbine engines. Researchers have targeted the high-pressure turbine (HPT) blade tip seal location for following reasons: Current active clearance control (ACC) systems (e.g., thermal case-cooling schemes) cannot respond to blade tip clearance changes due to mechanical, thermal, and aerodynamic loads. As such they are prone to wear due to the required tight running clearances during operation. Blade tip seal wear (increased clearances) reduces engine efficiency, performance, and service life. Adaptive sealing technology research has inherent impact on all envisioned 21st century propulsion systems (e.g. distributed vectored, hybrid and electric drive propulsion concepts).

  1. What is the Optimal Strategy for Adaptive Servo-Ventilation Therapy?

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro

    2018-05-23

    Clinical advantages in the adaptive servo-ventilation (ASV) therapy have been reported in selected heart failure patients with/without sleep-disorder breathing, whereas multicenter randomized control trials could not demonstrate such advantages. Considering this discrepancy, optimal patient selection and device setting may be a key for the successful ASV therapy. Hemodynamic and echocardiographic parameters indicating pulmonary congestion such as elevated pulmonary capillary wedge pressure were reported as predictors of good response to ASV therapy. Recently, parameters indicating right ventricular dysfunction also have been reported as good predictors. Optimal device setting with appropriate pressure setting during appropriate time may also be a key. Large-scale prospective trial with optimal patient selection and optimal device setting is warranted.

  2. Control algorithms for aerobraking in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Ward, Donald T.; Shipley, Buford W., Jr.

    1991-01-01

    The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.

  3. Surface tension determination using liquid sample micromirror property

    NASA Astrophysics Data System (ADS)

    Hošek, Jan

    2007-05-01

    This paper presents an application of adaptive optics principle onto small sample of liquid surface tension measurement. The principle of experimental method devised by Ferguson (1924) is based on measurement of pressure difference across a liquid sample placed into small diameter capillary on condition of one flat meniscus of the liquid sample. Planarity or curvature radius of the capillary tip meniscus has to be measured and controlled, in order to fulfill this condition during measurement. Two different optical set-ups using liquid meniscus micromirror property are presented and its suitability for meniscus profile determination is compared. Meniscus radius optical measurement, data processing and control algorithm of the adaptive micromirror profile set are presented too. The presented adaptive optics system can be used for focal length control of microsystems based on liquid micromirrors or microlenses with long focal distances especially.

  4. Dynamic diamond anvil cell (dDAC): A novel device for studying the dynamic-pressure properties of materials

    NASA Astrophysics Data System (ADS)

    Evans, William J.; Yoo, Choong-Shik; Lee, Geun Woo; Cynn, Hyunchae; Lipp, Magnus J.; Visbeck, Ken

    2007-07-01

    We have developed a unique device, a dynamic diamond anvil cell (dDAC), which repetitively applies a time-dependent load/pressure profile to a sample. This capability allows studies of the kinetics of phase transitions and metastable phases at compression (strain) rates of up to 500GPa/s (˜0.16s-1 for a metal). Our approach adapts electromechanical piezoelectric actuators to a conventional diamond anvil cell design, which enables precise specification and control of a time-dependent applied load/pressure. Existing DAC instrumentation and experimental techniques are easily adapted to the dDAC to measure the properties of a sample under the varying load/pressure conditions. This capability addresses the sparsely studied regime of dynamic phenomena between static research (diamond anvil cells and large volume presses) and dynamic shock-driven experiments (gas guns, explosive, and laser shock). We present an overview of a variety of experimental measurements that can be made with this device.

  5. Smart Adaptive Socket to Improve Fit and Relieve Pain in Wounded Warriors

    DTIC Science & Technology

    2016-10-01

    applications were developed for wireless interaction with the socket system firmware. A control algorithm was designed and tested. Clinical trial...interface, Dynamic segmental volume control, Wireless connection, Pressure control system. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...charging jack, and power button are included in the design. A Bluetooth 4 radio is also included to allow for advanced user control via smartphone. The

  6. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, Kenneth R.

    1986-09-02

    A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.

  7. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, Kenneth R.

    1986-01-01

    A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.

  8. Control of sound radiation from a wavepacket over a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; El Hady, Nabil M.

    1989-01-01

    Active control of acoustic pressure in the far field resulting from the growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is investigated numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. The acoustic far field exhibits directivity type of behavior that points upstream to the flow direction. A fixed control algorithm is used where the attenuation signal is synthesized by a filter which actively adapt it to the amplitude-time response of the outgoing acoustic wave.

  9. Methods and systems for integrating fluid dispensing technology with stereolithography

    DOEpatents

    Medina, Francisco; Wicker, Ryan; Palmer, Jeremy A.; Davis, Don W.; Chavez, Bart D.; Gallegos, Phillip L.

    2010-02-09

    An integrated system and method of integrating fluid dispensing technologies (e.g., direct-write (DW)) with rapid prototyping (RP) technologies (e.g., stereolithography (SL)) without part registration comprising: an SL apparatus and a fluid dispensing apparatus further comprising a translation mechanism adapted to translate the fluid dispensing apparatus along the Z-, Y- and Z-axes. The fluid dispensing apparatus comprises: a pressurized fluid container; a valve mechanism adapted to control the flow of fluid from the pressurized fluid container; and a dispensing nozzle adapted to deposit the fluid in a desired location. To aid in calibration, the integrated system includes a laser sensor and a mechanical switch. The method further comprises building a second part layer on top of the fluid deposits and optionally accommodating multi-layered circuitry by incorporating a connector trace. Thus, the present invention is capable of efficiently building single and multi-material SL fabricated parts embedded with complex three-dimensional circuitry using DW.

  10. High Frequency Adaptive Instability Suppression Controls in a Liquid-Fueled Combustor

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2003-01-01

    This effort extends into high frequency (>500 Hz), an earlier developed adaptive control algorithm for the suppression of thermo-acoustic instabilities in a liquidfueled combustor. The earlier work covered the development of a controls algorithm for the suppression of a low frequency (280 Hz) combustion instability based on simulations, with no hardware testing involved. The work described here includes changes to the simulation and controller design necessary to control the high frequency instability, augmentations to the control algorithm to improve its performance, and finally hardware testing and results with an experimental combustor rig developed for the high frequency case. The Adaptive Sliding Phasor Averaged Control (ASPAC) algorithm modulates the fuel flow in the combustor with a control phase that continuously slides back and forth within the phase region that reduces the amplitude of the instability. The results demonstrate the power of the method - that it can identify and suppress the instability even when the instability amplitude is buried in the noise of the combustor pressure. The successful testing of the ASPAC approach helped complete an important NASA milestone to demonstrate advanced technologies for low-emission combustors.

  11. Design of a new controller to treat the obstructive sleep apnea

    NASA Astrophysics Data System (ADS)

    Netzel, Thomas

    2002-06-01

    The obstructive sleep apnoea (OSA) is a sleep related breathing disorder caused by a relaxation of the upper airway structure during the sleep that leads to a complete closure of the upper airway. The most successful therapy is the nasal continuous positive airway pressure (nCPAP) treatment that keeps the airway opened. More recent devices use an automatic adaptation of the applied pressure. Either the forced oscillation technique (FOT) or the evaluation of the inspiration flow contour are used to evaluate the severity of obstructions. Both methods have disadvantages that may lead to wrong applied pressures. Based on the precise measurement of airflow and mask pressure during nCPAP with a Weinmann SOMNOsmart and additional polysomnography a new parameter set is presented that uses the advantage of both methods to detect the obstructive sleep apnoea. To evaluate the applicability of this parameter set to control Auto-nCPAP-devices a fuzzy-controller is designed under MATLAB/Simulink using an A/D-D/A-converter to control the blower of the SOMNOsmart during Auto-nCPAP-therapy. Obstructive events are detected and treated with a rise of nCPAP-pressure depending on the inspiratory flow requirement. The pressure is lowered after the end of flow limited phases. Although temporary low pressures no oxygen desaturation is recognized by the pulse oxymeter.

  12. Integrated flight/propulsion control - Adaptive engine control system mode

    NASA Technical Reports Server (NTRS)

    Yonke, W. A.; Terrell, L. A.; Meyers, L. P.

    1985-01-01

    The adaptive engine control system mode (ADECS) which is developed and tested on an F-15 aircraft with PW1128 engines, using the NASA sponsored highly integrated digital electronic control program, is examined. The operation of the ADECS mode, as well as the basic control logic, the avionic architecture, and the airframe/engine interface are described. By increasing engine pressure ratio (EPR) additional thrust is obtained at intermediate power and above. To modulate the amount of EPR uptrim and to prevent engine stall, information from the flight control system is used. The performance benefits, anticipated from control integration are shown for a range of flight conditions and power settings. It is found that at higher altitudes, the ADECS mode can increase thrust as much as 12 percent, which is used for improved acceleration, improved turn rate, or sustained turn angle.

  13. Adaptive servo ventilation for central sleep apnoea in heart failure: SERVE-HF on-treatment analysis.

    PubMed

    Woehrle, Holger; Cowie, Martin R; Eulenburg, Christine; Suling, Anna; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut; Wegscheider, Karl

    2017-08-01

    This on-treatment analysis was conducted to facilitate understanding of mechanisms underlying the increased risk of all-cause and cardiovascular mortality in heart failure patients with reduced ejection fraction and predominant central sleep apnoea randomised to adaptive servo ventilation versus the control group in the SERVE-HF trial.Time-dependent on-treatment analyses were conducted (unadjusted and adjusted for predictive covariates). A comprehensive, time-dependent model was developed to correct for asymmetric selection effects (to minimise bias).The comprehensive model showed increased cardiovascular death hazard ratios during adaptive servo ventilation usage periods, slightly lower than those in the SERVE-HF intention-to-treat analysis. Self-selection bias was evident. Patients randomised to adaptive servo ventilation who crossed over to the control group were at higher risk of cardiovascular death than controls, while control patients with crossover to adaptive servo ventilation showed a trend towards lower risk of cardiovascular death than patients randomised to adaptive servo ventilation. Cardiovascular risk did not increase as nightly adaptive servo ventilation usage increased.On-treatment analysis showed similar results to the SERVE-HF intention-to-treat analysis, with an increased risk of cardiovascular death in heart failure with reduced ejection fraction patients with predominant central sleep apnoea treated with adaptive servo ventilation. Bias is inevitable and needs to be taken into account in any kind of on-treatment analysis in positive airway pressure studies. Copyright ©ERS 2017.

  14. Artificial blood circulation: stabilization, physiological control, and optimization.

    PubMed

    Lerner, A Y

    1990-04-01

    The requirements for creating an efficient Artificial Blood Circulation System (ABCS) have been determined. A hierarchical three-level adaptive control system is suggested for ABCS to solve the following problems: stabilization of the circulation conditions, left and right pump coordination, physiological control for maintaining a proper relation between the cardiac output and the level of gas exchange required for metabolism, and optimization of the system behavior. The adaptations to varying load and body parameters will be accomplished using the signals which characterize the real-time computer-processed values of correlations between the changes in hydraulic resistance of blood vessels, or the changes in aortic pressure, and the oxygen (or carbon dioxide) concentration.

  15. Cardio-renal and metabolic adaptations during pregnancy in female rats born small: implications for maternal health and second generation fetal growth.

    PubMed

    Gallo, Linda A; Tran, Melanie; Moritz, Karen M; Mazzuca, Marc Q; Parry, Laura J; Westcott, Kerryn T; Jefferies, Andrew J; Cullen-McEwen, Luise A; Wlodek, Mary E

    2012-02-01

    Intrauterine growth restriction caused by uteroplacental insufficiency increases risk of cardiovascular and metabolic disease in offspring. Cardio-renal and metabolic responses to pregnancy are critical determinants of immediate and long-term maternal health. However, no studies to date have investigated the renal and metabolic adaptations in growth restricted offspring when they in turn become pregnant. We hypothesised that the physiological challenge of pregnancy in growth restricted females exacerbates disease outcome and compromises next generation fetal growth. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) on day 18 of gestation in WKY rats and F1 female offspring birth and postnatal body weights were recorded. F1 Control and Restricted females were mated at 4 months and blood pressure, renal and metabolic parameters were measured in late pregnancy and F2 fetal and placental weights recorded. Age-matched non-pregnant Control and Restricted F1 females were also studied. F1 Restricted females were born 10-15% lighter than Controls. Basal insulin secretion and pancreatic β-cell mass were reduced in non-pregnant Restricted females but restored in pregnancy. Pregnant Restricted females, however, showed impaired glucose tolerance and compensatory glomerular hypertrophy, with a nephron deficit but normal renal function and blood pressure. F2 fetuses from Restricted mothers exposed to physiological measures during pregnancy were lighter than Controls highlighting additive adverse effects when mothers born small experience stress during pregnancy. Female rats born small exhibit mostly normal cardio-renal adaptations but altered glucose control during late pregnancy making them vulnerable to lifestyle challenges.

  16. Adaptive guidance for an aero-assisted boost vehicle

    NASA Astrophysics Data System (ADS)

    Pamadi, Bandu N.; Taylor, Lawrence W., Jr.; Price, Douglas B.

    An adaptive guidance system incorporating dynamic pressure constraint is studied for a single stage to low earth orbit (LEO) aero-assist booster with thrust gimbal angle as the control variable. To derive an adaptive guidance law, cubic spline functions are used to represent the ascent profile. The booster flight to LEO is divided into initial and terminal phases. In the initial phase, the ascent profile is continuously updated to maximize the performance of the boost vehicle enroute. A linear feedback control is used in the terminal phase to guide the aero-assisted booster onto the desired LEO. The computer simulation of the vehicle dynamics considers a rotating spherical earth, inverse square (Newtonian) gravity field and an exponential model for the earth's atmospheric density. This adaptive guidance algorithm is capable of handling large deviations in both atmospheric conditions and modeling uncertainties, while ensuring maximum booster performance.

  17. Controlled Aeroelastic Response and Airfoil Shaping Using Adaptive Materials and Integrated Systems

    NASA Technical Reports Server (NTRS)

    Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer

    1996-01-01

    This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the Adaptive Neural Control of Aeroelastic Response (ANCAR) program; the Actively Controlled Response of Buffet Affected Tails (ACROBAT) program; and the Airfoil THUNDER Testing to Ascertain Characteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant rcductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. Th,e ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using Thin-Layer Composite-Uimorph Piezoelectric Driver and Sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.

  18. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas); Implications for Dive Physiology and Health

    PubMed Central

    Thompson, Laura A.; Romano, Tracy A.

    2016-01-01

    Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples (n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska (n = 9). Human blood samples (n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals to fight infection or avoid dive related pathologies. PMID:27746745

  19. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas); Implications for Dive Physiology and Health.

    PubMed

    Thompson, Laura A; Romano, Tracy A

    2016-01-01

    Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples ( n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska ( n = 9). Human blood samples ( n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals to fight infection or avoid dive related pathologies.

  20. Reproductive adaptation in Drosophila exposed to oxygen-enriched atmospheres

    NASA Technical Reports Server (NTRS)

    Kloek, G.; Winkle, L.

    1979-01-01

    Ten successive generations of a Drosophila melanogaster population were exposed to an atmospheric mix of 50% oxygen/50% nitrogen at standard pressure. This atmospheric mix has been shown to be toxic to this species and causes significantly shortened life span. By the fifth generation, survivorship and life span for the first 25-30 days were identical to control populations and total life span was shorter by only a few days. Egg-laying rates were stable in the experimental populations but below those of the controls. Hatching success was identical between experimental and control populations. Even though the egg-laying rates were lower in 50% oxygen, it was concluded that the population had adapted and could maintain a stable population in these conditions. The near-normal life spans, normal hatching rates, and overall population stability, exhibited following five generations of adaptation, were considered sufficient to allow continued reproduction in spite of a reduced egg-laying rate.

  1. Reproductive adaptation in Drosophila exposed to oxygen-enriched atmospheres.

    PubMed

    Kloek, G; Winkle, L

    1979-04-01

    Ten successive generations of a Drosophila melanogaster population were exposed to an atmospheric mix of 50% oxygen/50% nitrogen at standard pressure. This atmospheric mix has been shown to be toxic to this species and causes significantly shortened life span. By the fifth generation, survivorship and life span for the first 25-30 days were identical to control populations and total life span was shorter by only a few days. Egg-laying rates were stable in the experimental populations but below those of the controls. Hatching success was identical between experimental and control populations. Even though the egg-laying rates were lower in 50% oxygen, it was concluded that the population had adapted and could maintain a stable population in these conditions. The near-normal life spans, normal hatching rates, and overall population stability, exhibited following five generations of adaptation, were considered sufficient to allow continued reproduction in spite of a reduced egg-laying rate.

  2. Fail-fixed servovalve with positive fluid feedback

    NASA Technical Reports Server (NTRS)

    Kast, Howard B. (Inventor)

    1984-01-01

    The servovalve includes a primary jet of fluid. A variable control signal is adapted to vary the angular position of the primary jet from its maximum recovery position. A first fluid path is adapted to supply fluid to a servopiston at a variable pressure determined at least in part by the control signal. A second fluid path is adapted to receive a predetermined portion of the primary jet fluid when the control signal reaches a predetermined value. The second fluid path terminates in the vicinity of the primary jet and is adapted to direct a secondary jet of fluid at the primary jet to deflect the primary jet toward the input orifice of the second fluid path. The resultant positive fluid feedback in the second fluid path causes the primary jet to latch in a first angular position relative to the maximum recovery position when the control signal reaches a predetermined value. The servovalve may further include a means to discharge the fluid and a means to block the first fluid path to the servopiston when the control signal falls below a second predetermined value. A method of operating a fail-fixed servovalve is also described.

  3. In-shoe plantar pressure measurements for the evaluation and adaptation of foot orthoses in patients with rheumatoid arthritis: A proof of concept study.

    PubMed

    Tenten-Diepenmaat, Marloes; Dekker, Joost; Steenbergen, Menno; Huybrechts, Elleke; Roorda, Leo D; van Schaardenburg, Dirkjan; Bus, Sicco A; van der Leeden, Marike

    2016-03-01

    Improving foot orthoses (FOs) in patients with rheumatoid arthritis (RA) by using in-shoe plantar pressure measurements seems promising. The objectives of this study were to evaluate (1) the outcome on plantar pressure distribution of FOs that were adapted using in-shoe plantar pressure measurements according to a protocol and (2) the protocol feasibility. Forty-five RA patients with foot problems were included in this observational proof-of concept study. FOs were custom-made by a podiatrist according to usual care. Regions of Interest (ROIs) for plantar pressure reduction were selected. According to a protocol, usual care FOs were evaluated using in-shoe plantar pressure measurements and, if necessary, adapted. Plantar pressure-time integrals at the ROIs were compared between the following conditions: (1) no-FO versus usual care FO and (2) usual care FO versus adapted FO. Semi-structured interviews were held with patients and podiatrists to evaluate the feasibility of the protocol. Adapted FOs were developed in 70% of the patients. In these patients, usual care FOs showed a mean 9% reduction in pressure-time integral at forefoot ROIs compared to no-FOs (p=0.01). FO adaptation led to an additional mean 3% reduction in pressure-time integral (p=0.05). The protocol was considered feasible by patients. Podiatrists considered the protocol more useful to achieve individual rather than general treatment goals. A final protocol was proposed. Using in-shoe plantar pressure measurements for adapting foot orthoses for patients with RA leads to a small additional plantar pressure reduction in the forefoot. Further research on the clinical relevance of this outcome is required. Copyright © 2016. Published by Elsevier B.V.

  4. Spiral drawing performance as an indicator of fine motor function in people with multiple sclerosis.

    PubMed

    Longstaff, M G; Heath, R A

    2006-10-01

    This study investigated spiral drawing performance as an indicator of fine motor function, as well as to gain insight into adaptive movement strategies used by people with multiple sclerosis (MS). Seven people with MS, nine younger controls (mean age of 20) and eight older controls (mean age of 40) drew spirals on a graphics tablet at a comfortable speed and size. Spirography (i.e., a subjective visual assessment of the static trace) revealed indications of reduced control of the pen for people with MS. Analysis of the movements showed that people with MS tended to draw the spirals slower and with less pen pressure than controls. All groups increased their speed and pressure along with spiral size, but this increase was much steeper for the controls. MS participants drew spirals with more variability around an ideal trajectory, highlighting fine motor control degradation. MS patients tended to use a smaller scaling ratio, resulting in smaller spirals for a given number of revolutions. The younger and older control groups drew the spirals in a similar manner, and age was not a significant factor in any of the analyses. It is argued that the relatively lower pressure used, and slower, smaller movements (particularly during the more difficult outer sections of the spiral) are in part an adaptive strategy used to reduce movement variability. These results demonstrate the utility of the analysis of spiral movements as an objective technique for assessing motor control degradation, which can compliment the subjective rating based on the static pen trace. As such, it can provide further insight into the biomechanical strategies used when performing fine movements.

  5. A Biological Condition Gradient Model for Historical Assessment of Estuarine Habitat Structure

    EPA Science Inventory

    Coastal ecosystems are affected by ever increasing natural and human pressures. Because the physical, chemical, and biological characteristics unique to each ecosystem control the ways that biological resources respond to ecosystem stressors, we recommend a flexible and adaptable...

  6. Engine cylinder pressure reconstruction using crank kinematics and recurrently-trained neural networks

    NASA Astrophysics Data System (ADS)

    Bennett, C.; Dunne, J. F.; Trimby, S.; Richardson, D.

    2017-02-01

    A recurrent non-linear autoregressive with exogenous input (NARX) neural network is proposed, and a suitable fully-recurrent training methodology is adapted and tuned, for reconstructing cylinder pressure in multi-cylinder IC engines using measured crank kinematics. This type of indirect sensing is important for cost effective closed-loop combustion control and for On-Board Diagnostics. The challenge addressed is to accurately predict cylinder pressure traces within the cycle under generalisation conditions: i.e. using data not previously seen by the network during training. This involves direct construction and calibration of a suitable inverse crank dynamic model, which owing to singular behaviour at top-dead-centre (TDC), has proved difficult via physical model construction, calibration, and inversion. The NARX architecture is specialised and adapted to cylinder pressure reconstruction, using a fully-recurrent training methodology which is needed because the alternatives are too slow and unreliable for practical network training on production engines. The fully-recurrent Robust Adaptive Gradient Descent (RAGD) algorithm, is tuned initially using synthesised crank kinematics, and then tested on real engine data to assess the reconstruction capability. Real data is obtained from a 1.125 l, 3-cylinder, in-line, direct injection spark ignition (DISI) engine involving synchronised measurements of crank kinematics and cylinder pressure across a range of steady-state speed and load conditions. The paper shows that a RAGD-trained NARX network using both crank velocity and crank acceleration as input information, provides fast and robust training. By using the optimum epoch identified during RAGD training, acceptably accurate cylinder pressures, and especially accurate location-of-peak-pressure, can be reconstructed robustly under generalisation conditions, making it the most practical NARX configuration and recurrent training methodology for use on production engines.

  7. Band-pass filtering algorithms for adaptive control of compressor pre-stall modes in aircraft gas-turbine engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2018-05-01

    The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.

  8. Blood pressure reprogramming adapter assists signal recording

    NASA Technical Reports Server (NTRS)

    Vick, H. A.

    1967-01-01

    Blood pressure reprogramming adapter separates the two components of a blood pressure signal, a dc pressure signal and an ac Korotkoff sounds signal, so that the Korotkoff sounds are recorded on one channel as received while the dc pressure signal is converted to FM and recorded on a second channel.

  9. Effects of a Worksite Supervised Adapted Physical Activity Program on Trunk Muscle Endurance, Flexibility, and Pain Sensitivity Among Vineyard Workers.

    PubMed

    Balaguier, Romain; Madeleine, Pascal; Rose-Dulcina, Kévin; Vuillerme, Nicolas

    2017-01-01

    In viticulture, the prevalence of low back pain is particularly high among vineyard workers exposed to sustained and awkward postures. One promising setting for low back pain prevention resides in the implementation of workplace physical activity. This nonrandomized pilot study aims at evaluating the effects of a worksite supervised adapted physical activity program among 17 vineyard workers volunteered to enter either an intervention group (n = 10) or a control group (n = 7).The intervention group followed a physical activity program for 8 weeks involving (1) 15 minutes of warm-up every working day and (2) two weekly 1-hour adapted physical activity sessions targeting trunk muscle endurance and flexibility. The control group was advised to continue normal physical activity. Evaluations were carried out at weeks 0, 4, 8, and 12. Physical capacity was assessed using flexibility tests for the trunk, along with trunk muscle flexor and extensor endurance tests. Finally, pain sensitivity was evaluated by assessing pressure pain thresholds over 14 anatomical locations in the low back region. For the intervention group, the endurance of the trunk extensor and flexor significantly increased from baseline to week 8 as well as the pressure pain thresholds. No change was observed for the control group over the same period. These encouraging results in combination with the high adherence rate set interesting foundations for the promotion of worksite supervised adapted physical activity and, most likely, offer a new promising approach to prevent low back pain among vineyard workers.

  10. Retinal arteriolar remodeling evaluated with adaptive optics camera: Relationship with blood pressure levels.

    PubMed

    Gallo, A; Mattina, A; Rosenbaum, D; Koch, E; Paques, M; Girerd, X

    2016-06-01

    To research a retinal arterioles wall-to-lumen ratio or lumen diameter cut-off that would discriminate hypertensive from normal subjects using adaptive optics camera. One thousand and five hundred subjects were consecutively recruited and Adaptive Optics Camera rtx1™ (Imagine-Eyes, Orsay, France) was used to measure wall thickness, internal diameter, to calculate wall-to-lumen ratio (WLR) and wall cross-sectional area of retinal arterioles. Sitting office blood pressure was measured once, just before retinal measurements and office blood pressure was defined as systolic blood pressure>=140mmHg and diastolic blood pressure>=90mmHg. ROC curves were constructed to determine cut-off values for retinal parameters to diagnose office hypertension. In another population of 276 subjects office BP, retinal arterioles evaluation and home blood pressure monitoring were obtained. The applicability of retinal WLR or diameter cut-off values were compared in patients with controlled, masked, white-coat and sustained hypertension. In 1500 patients, a WLR>0.31 discriminated office hypertensive subjects with a 0.57 sensitivity and 0.71 specificity. Lumen diameter<78.2μm discriminated office hypertension with a 0.73 sensitivity and a 0.52 specificity. In the other 276 patients, WLR was higher in sustained hypertension vs normotensive patients (0.330±0.06 vs 0.292±0.05; P<0.001) and diameter was narrower in masked hypertensive vs normotensive subjects (73.0±11.2 vs 78.5±11.6μm; P<0.005). A WLR higher than 0.31 is in favour of office arterial hypertension; a diameter under<78μm may indicate a masked hypertension. Retinal arterioles analysis through adaptive optics camera may help the diagnosis of arterial hypertension, in particular in case of masked hypertension. Copyright © 2016. Published by Elsevier SAS.

  11. Bi-level positive pressure ventilation and adaptive servo ventilation in patients with heart failure and Cheyne-Stokes respiration.

    PubMed

    Fietze, Ingo; Blau, Alexander; Glos, Martin; Theres, Heinz; Baumann, Gert; Penzel, Thomas

    2008-08-01

    Nocturnal positive pressure ventilation (PPV) has been shown to be effective in patients with impaired left ventricular ejection fraction (LVEF) and Cheyne-Stokes respiration (CSR). We investigated the effect of a bi-level PPV and adaptive servo ventilation on LVEF, CSR, and quantitative sleep quality. Thirty-seven patients (New York heart association [NYHA] II-III) with LVEF<45% and CSR were investigated by electrocardiography (ECG), echocardiography and polysomnography. The CSR index (CSRI) was 32.3+/-16.2/h. Patients were randomly treated with bi-level PPV using the standard spontaneous/timed (S/T) mode or with adaptive servo ventilation mode (AutoSetCS). After 6 weeks, 30 patients underwent control investigations with ECG, echocardiography, and polysomnography. The CSRI decreased significantly to 13.6+/-13.4/h. LVEF increased significantly after 6 weeks of ventilation (from 25.1+/-8.5 to 28.8+/-9.8%, p<0.01). The number of respiratory-related arousals decreased significantly. Other quantitative sleep parameters did not change. The Epworth sleepiness score improved slightly. Daytime blood pressure and heart rate did not change. There were some differences between bi-level PPV and adaptive servo ventilation: the CSRI decreased more in the AutoSetCS group while the LVEF increased more in the bi-level PPV group. Administration of PPV can successfully attenuate CSA. Reduced CSA may be associated with improved LVEF; however, this may depend on the mode of PPV. Changed LVEF is evident even in the absence of significant changes in blood pressure.

  12. Blood pressure regulation V: in vivo mechanical properties of precapillary vessels as affected by long-term pressure loading and unloading.

    PubMed

    Eiken, Ola; Mekjavic, Igor B; Kölegård, Roger

    2014-03-01

    Recent studies are reviewed, concerning the in vivo wall stiffness of arteries and arterioles in healthy humans, and how these properties adapt to iterative increments or sustained reductions in local intravascular pressure. A novel technique was used, by which arterial and arteriolar stiffness was determined as changes in arterial diameter and flow, respectively, during graded increments in distending pressure in the blood vessels of an arm or a leg. Pressure-induced increases in diameter and flow were smaller in the lower leg than in the arm, indicating greater stiffness in the arteries/arterioles of the leg. A 5-week period of intermittent intravascular pressure elevations in one arm reduced pressure distension and pressure-induced flow in the brachial artery by about 50%. Conversely, prolonged reduction of arterial/arteriolar pressure in the lower body by 5 weeks of sustained horizontal bedrest, induced threefold increases of the pressure-distension and pressure-flow responses in a tibial artery. Thus, the wall stiffness of arteries and arterioles are plastic properties that readily adapt to changes in the prevailing local intravascular pressure. The discussion concerns mechanisms underlying changes in local arterial/arteriolar stiffness as well as whether stiffness is altered by changes in myogenic tone and/or wall structure. As regards implications, regulation of local arterial/arteriolar stiffness may facilitate control of arterial pressure in erect posture and conditions of exaggerated intravascular pressure gradients. That increased intravascular pressure leads to increased arteriolar wall stiffness also supports the notion that local pressure loading may constitute a prime mover in the development of vascular changes in hypertension.

  13. Lung volumes and maximal respiratory pressures in collegiate swimmers and runners.

    PubMed

    Cordain, L; Tucker, A; Moon, D; Stager, J M

    1990-03-01

    To determine whether respiratory muscle strength is related to pulmonary volume differences in athletes and nonathletes, 11 intercollegiate female swimmers, 11 female cross-country runners, and two nonathletic control groups, matched to the athletes in height and age, were evaluated for pulmonary parameters including maximal inspiratory pressure (PImax) and maximal expiratory pressure (PEmax). Swimmers exhibited larger (p less than .05) vital capacities (VC), residual lung volumes (RV), inspiratory capacities (IC), and functional residual capacities (FRC) than both the runners or the controls but no difference (p greater than .05) in either PImax or inspiratory flow (FIV 25%-75%). Timed expiratory volumes (FEV 0.5 and FEV 1.0) were significantly (p less than .05) lower in the swimmers than in the controls. These data suggest that an adaptational growth may be responsible, in part, for the augmented static lung volumes demonstrated in swimmers.

  14. Retrospective, nonrandomized controlled study on autoadjusting, dual-pressure positive airway pressure therapy for a consecutive series of complex insomnia disorder patients

    PubMed Central

    Krakow, Barry; McIver, Natalia D; Ulibarri, Victor A; Nadorff, Michael R

    2017-01-01

    Purpose Emerging evidence shows that positive airway pressure (PAP) treatment of obstructive sleep apnea (OSA) and upper airway resistance syndrome (UARS) in chronic insomnia patients (proposed “complex insomnia” disorder) leads to substantial decreases in insomnia severity. Although continuous PAP (CPAP) is the pressure mode most widely researched, intolerance to fixed pressurized air is rarely investigated or described in comorbidity patients. This retrospective study examined dual pressure, autoadjusting PAP modes in chronic, complex insomnia disorder patients. Patients and methods Chronic insomnia disorder patients (mean [SD] insomnia severity index [ISI] =19.11 [3.34]) objectively diagnosed with OSA or UARS and using either autobilevel PAP device or adaptive servoventilation (ASV) device after failing CPAP therapy (frequently due to intolerance to pressurized air, poor outcomes, or emergence of CSA) were divided into PAP users (≥20 h/wk) and partial users (<20 h/wk) for comparison. Subjective and objective baseline and follow-up measures were analyzed. Results Of the 302 complex insomnia patients, PAP users (n=246) averaged 6.10 (1.78) nightly hours and 42.71 (12.48) weekly hours and partial users (n=56) averaged 1.67 (0.76) nightly hours and 11.70 (5.31) weekly hours. For mean (SD) decreases in total ISI scores, a significant (group × time) interaction was observed (F[1,300]=13.566; P<0.0001) with PAP users (–7.59 [5.92]; d=1.63) showing superior results to partial users (−4.34 [6.13]; d=0.81). Anecdotally, patients reported better tolerability with advanced PAP compared to previous experience with CPAP. Both adaptive servoventilation and autobilevel PAP showed similar ISI score improvement without statistical differences between devices. Total weekly hours of PAP use correlated inversely with change in insomnia symptoms (r=−0.256, P<0.01). Conclusion Insomnia severity significantly decreased in patients using autoadjusting PAP devices, but the study design restricts interpretation to an association. Future research must elucidate the interaction between insomnia and OSA/UARS as well as the adverse influence of pressure intolerance on PAP adaptation in complex insomnia patients. Randomized controlled studies must determine whether advanced PAP modes provide benefits over standard CPAP modes in these comorbidity patients. PMID:28331381

  15. Age-related changes and sex differences in postural control adaptability in children during periodic floor oscillation with eyes closed.

    PubMed

    Fujiwara, Katsuo; Kiyota, Takeo; Mammadova, Aida; Yaguchi, Chie

    2011-01-01

    We investigated age-related changes and sex differences in adaptability of anticipatory postural control in children. Subjects comprised 449 children (4-12 years old) and 109 young adults (18-29 years old). Subjects stood with eyes closed on a force-platform fixed to a floor oscillator. We conducted five trials of 1-minute oscillation (0.5 Hz frequency, 2.5 cm amplitude) in the anteroposterior direction. Postural steadiness was quantified as the mean speed of the center of pressure in the anteroposterior direction (CoPy). In young adults, CoPy speed decreased rapidly until the third trial for both sexes. Adaptability was evaluated by changes in steadiness. The adaptability of children was categorized as "good," "moderate," and "poor," compared with a standard variation of the mean CoPy speed regression line between the first and fifth trials in young adults. Results were as follows: (1) anticipatory postural control adaptability starts to develop from age 6 in boys and 5 in girls, and greatly improves at age 7-8 in boys and 6 in girls; (2) the adaptability of children at age 11-12 (74% of boys and 63% of girls were categorized as "good") has not yet reached the same level as for young adults; (3) the adaptability at age 11-12 for girls is temporarily disturbed due to early puberty.

  16. An Adaptive Monitoring Scheme for Automatic Control of Anaesthesia in dynamic surgical environments based on Bispectral Index and Blood Pressure.

    PubMed

    Yu, Yu-Ning; Doctor, Faiyaz; Fan, Shou-Zen; Shieh, Jiann-Shing

    2018-04-13

    During surgical procedures, bispectral index (BIS) is a well-known measure used to determine the patient's depth of anesthesia (DOA). However, BIS readings can be subject to interference from many factors during surgery, and other parameters such as blood pressure (BP) and heart rate (HR) can provide more stable indicators. However, anesthesiologist still consider BIS as a primary measure to determine if the patient is correctly anaesthetized while relaying on the other physiological parameters to monitor and ensure the patient's status is maintained. The automatic control of administering anesthesia using intelligent control systems has been the subject of recent research in order to alleviate the burden on the anesthetist to manually adjust drug dosage in response physiological changes for sustaining DOA. A system proposed for the automatic control of anesthesia based on type-2 Self Organizing Fuzzy Logic Controllers (T2-SOFLCs) has been shown to be effective in the control of DOA under simulated scenarios while contending with uncertainties due to signal noise and dynamic changes in pharmacodynamics (PD) and pharmacokinetic (PK) effects of the drug on the body. This study considers both BIS and BP as part of an adaptive automatic control scheme, which can adjust to the monitoring of either parameter in response to changes in the availability and reliability of BIS signals during surgery. The simulation of different control schemes using BIS data obtained during real surgical procedures to emulate noise and interference factors have been conducted. The use of either or both combined parameters for controlling the delivery Propofol to maintain safe target set points for DOA are evaluated. The results show that combing BIS and BP based on the proposed adaptive control scheme can ensure the target set points and the correct amount of drug in the body is maintained even with the intermittent loss of BIS signal that could otherwise disrupt an automated control system.

  17. Does teacher evaluation based on student performance predict motivation, well-being, and ill-being?

    PubMed

    Cuevas, Ricardo; Ntoumanis, Nikos; Fernandez-Bustos, Juan G; Bartholomew, Kimberley

    2018-06-01

    This study tests an explanatory model based on self-determination theory, which posits that pressure experienced by teachers when they are evaluated based on their students' academic performance will differentially predict teacher adaptive and maladaptive motivation, well-being, and ill-being. A total of 360 Spanish physical education teachers completed a multi-scale inventory. We found support for a structural equation model that showed that perceived pressure predicted teacher autonomous motivation negatively, predicted amotivation positively, and was unrelated to controlled motivation. In addition, autonomous motivation predicted vitality positively and exhaustion negatively, whereas controlled motivation and amotivation predicted vitality negatively and exhaustion positively. Amotivation significantly mediated the relation between pressure and vitality and between pressure and exhaustion. The results underline the potential negative impact of pressure felt by teachers due to this type of evaluation on teacher motivation and psychological health. Copyright © 2018 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  18. High pressure flow-rate switch

    NASA Technical Reports Server (NTRS)

    Gale, G. P.

    1970-01-01

    Flow-rate switch adjusts easily over a wide switching range and operates uniformly over many cycles. It adapts easily to control of various fluids and has the possibility of introducing multi-point switching. Novel design features include the tapered spool, balanced porting, capillary-bypass lubrication, and capillary-restriction damping.

  19. Optofluidic lens with tunable focal length and asphericity

    PubMed Central

    Mishra, Kartikeya; Murade, Chandrashekhar; Carreel, Bruno; Roghair, Ivo; Oh, Jung Min; Manukyan, Gor; van den Ende, Dirk; Mugele, Frieder

    2014-01-01

    Adaptive micro-lenses enable the design of very compact optical systems with tunable imaging properties. Conventional adaptive micro-lenses suffer from substantial spherical aberration that compromises the optical performance of the system. Here, we introduce a novel concept of liquid micro-lenses with superior imaging performance that allows for simultaneous and independent tuning of both focal length and asphericity. This is achieved by varying both hydrostatic pressures and electric fields to control the shape of the refracting interface between an electrically conductive lens fluid and a non-conductive ambient fluid. Continuous variation from spherical interfaces at zero electric field to hyperbolic ones with variable ellipticity for finite fields gives access to lenses with positive, zero, and negative spherical aberration (while the focal length can be tuned via the hydrostatic pressure). PMID:25224851

  20. CONTROLLING STUDENT RESPONSES DURING VISUAL PRESENTATIONS--STUDIES IN TELEVISED INSTRUCTION, THE ROLE OF VISUALS IN VERBAL LEARNING, REPORT 2.

    ERIC Educational Resources Information Center

    GROPPER, GEORGE L.

    THIS IS A REPORT OF TWO STUDIES IN WHICH PRINCIPLES OF PROGRAMED INSTRUCTION WERE ADAPTED FOR VISUAL PRESENTATIONS. SCIENTIFIC DEMONSTRATIONS WERE PREPARED WITH A VISUAL PROGRAM AND A VERBAL PROGRAM ON--(1) ARCHIMEDES' LAW AND (2) FORCE AND PRESSURE. RESULTS SUGGESTED THAT RESPONSES ARE MORE READILY BROUGHT UNDER THE CONTROL OF VISUAL PRESENTATION…

  1. Functional adaptations of the coronary microcirculation to anaemia in fetal sheep.

    PubMed

    Jonker, Sonnet S; Davis, Lowell; Soman, Divya; Belcik, J Todd; Davidson, Brian P; Atkinson, Tamara M; Wilburn, Adrienne; Louey, Samantha; Giraud, George D; Lindner, Jonathan R

    2016-11-01

    In fetuses, chronic anaemia stimulates cardiac growth; simultaneously, blood flow to the heart muscle itself is increased, and reserve blood flow capacity of the coronary vascular bed is preserved. Here we examined functional adaptations of the capillaries and small blood vessels responsible for delivering oxygen to the anaemic fetal heart muscle using contrast-enhanced echocardiography. We demonstrate that coronary microvascular flux rate doubled in anaemic fetuses compared to control fetuses, both at rest and during maximal flow, suggesting reduced microvascular resistance consistent with capillary widening. Cardiac fractional microvascular blood volume was not greater in anaemic fetuses, suggesting that growth of new microvascular vessels does not contribute to the increased flow per volume of myocardium. These unusual changes in microvascular function during anaemia may indicate novel adaptive strategies in the fetal heart. Fetal anaemia causes cardiac adaptations that have immediate and life-long repercussions on heart function and health. It is known that resting and maximal coronary conductance both increase during chronic fetal anaemia, but the coronary microvascular changes responsible for the adaptive response are unknown. Until recently, technical limitations have prevented quantifying functional capillary-level adaptations in the in vivo fetal heart. Our objective was to characterise functional microvascular adaptations in chronically anaemic fetal sheep. Chronically instrumented fetuses were randomized to a control group (n = 11) or were made anaemic by isovolumetric haemorrhage (n = 12) for 1 week prior to myocardial contrast echocardiography at 85% of gestation. Anaemia augmented cardiac mass by 23% without changing body weight. In anaemic fetuses, microvascular blood flow per volume of myocardium was twice that of control fetuses at rest, during vasodilatory hyperaemia, and during hyperaemia plus increased aortic pressure. The elevated blood flow was attributable almost entirely to an increase in microvascular blood flux rate whereas microvascular blood volumes were not different between groups at baseline, during hyperaemia, or with hyperaemia plus increased aortic pressure. Increased coronary microvascular flux rate in response to chronic fetal anaemia is consistent with expected reductions in capillary resistance from capillary diameter widening detected in earlier histological studies. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  2. Understanding the Clausius-Clapeyron Equation by Employing an Easily Adaptable Pressure Cooker

    ERIC Educational Resources Information Center

    Galleano, Monica; Boveris, Alberto; Puntarulo, Susana

    2008-01-01

    This article describes a simple and inexpensive laboratory exercise developed to understand the effect of pressure on phase equilibrium as described by the Clausius-Clapeyron equation. The only piece of equipment required is a pressure cooker adapted with a pressure gauge and a thermometer in the lid, allowing the measurement of the pressure and…

  3. Apparatus for stopping a vehicle

    DOEpatents

    Wattenburg, Willard H [Walnut Creek, CA; McCallen, David B [Livermore, CA

    2007-03-20

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  4. Adapter assembly prevents damage to tubing during high pressure tests

    NASA Technical Reports Server (NTRS)

    Stinett, L. L.

    1965-01-01

    Portable adapter assembly prevents damage to tubing and injury to personnel when pressurizing a system or during high pressure tests. The assembly is capable of withstanding high pressure. It is securely attached to the tubing stub end and may be removed without brazing, cutting or cleaning the tube.

  5. Robot Drills Holes To Relieve Excess Tire Pressures

    NASA Technical Reports Server (NTRS)

    Carrott, David T.

    1996-01-01

    Small, relatively inexpensive, remotely controlled robot called "tire assault vehicle" (TAV) developed to relieve excess tire pressures to protect ground crew, aircraft equipment, and nearby vehicles engaged in landing tests of CV-990 Landing System Research Aircraft. Reduces costs and saves time in training, maintenance, and setup related to "yellow" and "red" tire conditions. Adapted to any heavy-aircraft environment in which ground-crew safety at risk because of potential for tire explosions. Also ideal as scout vehicle for performing inspections in hazardous locations.

  6. Charge control switch responsive to cell casing deflection

    NASA Technical Reports Server (NTRS)

    Fischell, Robert E. (Inventor)

    1981-01-01

    A switch structure, adapted for sensing the state-of-charge of a rechargeable cell, includes a contact element which detects cell casing deflection that occurs as a result of an increase in gaseous pressure within the cell when the cell is returned to its fully charged state during a recharging operation.

  7. A Vowel-Based Method for Vocal Tract Control in Clarinet Pedagogy

    ERIC Educational Resources Information Center

    González, Darleny; Payri, Blas

    2017-01-01

    Our review of scientific literature shows that the activity inside the clarinetist's vocal tract (VT) affects pitch and timbre, while also facilitating technical exercises. Clarinetists adapt their VT intuitively and, in some cases, may compensate an inadequate VT configuration through unnecessary pressure, resulting in technical blockage,…

  8. 40 CFR 53.3 - General requirements for an equivalent method determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature and pressure sensors, outdoor enclosure, electrical power supply, control devices and operator... rate cut-off; operation following power interruptions; effect of variations in power line voltage... other tests, full wind-tunnel tests similar to those described in § 53.62, or to special tests adapted...

  9. Does smooth muscle in an intact airway undergo length adaptation during a sustained change in transmural pressure?

    PubMed

    Ansell, Thomas K; McFawn, Peter K; McLaughlin, Robert A; Sampson, David D; Eastwood, Peter R; Hillman, David R; Mitchell, Howard W; Noble, Peter B

    2015-03-01

    In isolated airway smooth muscle (ASM) strips, an increase or decrease in ASM length away from its current optimum length causes an immediate reduction in force production followed by a gradual time-dependent recovery in force, a phenomenon termed length adaptation. In situ, length adaptation may be initiated by a change in transmural pressure (Ptm), which is a primary physiological determinant of ASM length. The present study sought to determine the effect of sustained changes in Ptm and therefore, ASM perimeter, on airway function. We measured contractile responses in whole porcine bronchial segments in vitro before and after a sustained inflation from a baseline Ptm of 5 cmH2O to 25 cmH2O, or deflation to -5 cmH2O, for ∼50 min in each case. In one group of airways, lumen narrowing and stiffening in response to electrical field stimulation (EFS) were assessed from volume and pressure signals using a servo-controlled syringe pump with pressure feedback. In a second group of airways, lumen narrowing and the perimeter of the ASM in situ were determined by anatomical optical coherence tomography. In a third group of airways, active tension was determined under isovolumic conditions. Both inflation and deflation reduced the contractile response to EFS. Sustained Ptm change resulted in a further decrease in contractile response, which returned to baseline levels upon return to the baseline Ptm. These findings reaffirm the importance of Ptm in regulating airway narrowing. However, they do not support a role for ASM length adaptation in situ under physiological levels of ASM lengthening and shortening. Copyright © 2015 the American Physiological Society.

  10. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh, K.

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductorsmore » under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.« less

  11. Application of simple adaptive control to water hydraulic servo cylinder system

    NASA Astrophysics Data System (ADS)

    Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji

    2012-09-01

    Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.

  12. Volumetric Deformation of Live Cells Induced by Pressure-Activated Cross-Membrane Ion Transport

    NASA Astrophysics Data System (ADS)

    Hui, T. H.; Zhou, Z. L.; Qian, J.; Lin, Y.; Ngan, A. H. W.; Gao, H.

    2014-09-01

    In this work, we developed a method that allows precise control over changes in the size of a cell via hydrostatic pressure changes in the medium. Specifically, we show that a sudden increase, or reduction, in the surrounding pressure, in the physiologically relevant range, triggers cross-membrane fluxes of sodium and potassium ions in leukemia cell lines K562 and HL60, resulting in reversible volumetric deformation with a characteristic time of around 30 min. Interestingly, healthy leukocytes do not respond to pressure shocks, suggesting that the cancer cells may have evolved the ability to adapt to pressure changes in their microenvironment. A model is also proposed to explain the observed cell deformation, which highlights how the apparent viscoelastic response of cells is governed by the microscopic cross-membrane transport.

  13. Adaptive Suction and Blowing for Twin-Tail Buffet Control

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Yang, Zhi

    1999-01-01

    Adaptive active flow control for twin-tail buffet alleviation is investigated. The concept behind this technique is to place control ports on the tail outer and inner surfaces with flow suction or blowing applied through these ports in order to minimize the pressure difference across the tail. The suction or blowing volume flow rate from each port is proportional to the pressure difference across the tail at this location. A parametric study of the effects of the number and location of these ports on the buffet response is carried out. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, using a dynamic multi-block grid structure. The computational model is pitched at 30 deg angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span. Comparison of the time history and power spectral density responses of the tails for various distributions of the control ports are presented and discussed.

  14. Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle

    PubMed Central

    Cardamone, L.; Valentín, A.; Eberth, J. F.; Humphrey, J. D.

    2010-01-01

    Motivated by recent clinical and laboratory findings of important effects of pulsatile pressure and flow on arterial adaptations, we employ and extend an established constrained mixture framework of growth (change in mass) and remodelling (change in structure) to include such dynamical effects. New descriptors of cell and tissue behavior (constitutive relations) are postulated and refined based on new experimental data from a transverse aortic arch banding model in the mouse that increases pulsatile pressure and flow in one carotid artery. In particular, it is shown that there was a need to refine constitutive relations for the active stress generated by smooth muscle, to include both stress- and stress rate-mediated control of the turnover of cells and matrix and to account for a cyclic stress-mediated loss of elastic fibre integrity and decrease in collagen stiffness in order to capture the reported evolution, over 8 weeks, of luminal radius, wall thickness, axial force and in vivo axial stretch of the hypertensive mouse carotid artery. We submit, therefore, that complex aspects of adaptation by elastic arteries can be predicted by constrained mixture models wherein individual constituents are produced or removed at individual rates and to individual extents depending on changes in both stress and stress rate from normal values. PMID:20484365

  15. Aeroelasticity of morphing wings using neural networks

    NASA Astrophysics Data System (ADS)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to represent the aerodynamic loading over the bump. A second neural network is trained for calculating the actuator loads, bump displacement and lift, drag forces over the airfoil using the finite element solver, ANSYS and the previously trained neural network. This non-linear aeroelastic model of the deforming bump on an airfoil surface using neural networks can serve as a fore-runner for other non-linear aeroelastic problems.

  16. Cardiovascular adaptation to spaceflight

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Watenpaugh, D. E.

    1996-01-01

    This article reviews recent flight and ground-based studies of cardiovascular adaptation to spaceflight. Prominent features of microgravity exposure include loss of gravitational pressures, relatively low venous pressures, headward fluid shifts, plasma volume loss, and postflight orthostatic intolerance and reduced exercise capacity. Many of these short-term responses to microgravity extend themselves during long-duration microgravity exposure and may be explained by altered pressures (blood and tissue) and fluid balance in local tissues nourished by the cardiovascular system. In this regard, it is particularly noteworthy that tissues of the lower body (e.g., foot) are well adapted to local hypertension on Earth, whereas tissues of the upper body (e.g., head) are not as well adapted to increase in local blood pressure. For these and other reasons, countermeasures for long-duration flight should include reestablishment of higher, Earth-like blood pressures in the lower body.

  17. The functional basis of adaptive evolution in chemostats.

    PubMed

    Gresham, David; Hong, Jungeui

    2015-01-01

    Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  18. Hydrostatic pressure and shear stress affect endothelin-1 and nitric oxide release by endothelial cells in bioreactors.

    PubMed

    Vozzi, Federico; Bianchi, Francesca; Ahluwalia, Arti; Domenici, Claudio

    2014-01-01

    Abundant experimental evidence demonstrates that endothelial cells are sensitive to flow; however, the effect of fluid pressure or pressure gradients that are used to drive viscous flow is not well understood. There are two principal physical forces exerted on the blood vessel wall by the passage of intra-luminal blood: pressure and shear. To analyze the effects of pressure and shear independently, these two stresses were applied to cultured cells in two different types of bioreactors: a pressure-controlled bioreactor and a laminar flow bioreactor, in which controlled levels of pressure or shear stress, respectively, can be generated. Using these bioreactor systems, endothelin-1 (ET-1) and nitric oxide (NO) release from human umbilical vein endothelial cells were measured under various shear stress and pressure conditions. Compared to the controls, a decrease of ET-1 production by the cells cultured in both bioreactors was observed, whereas NO synthesis was up-regulated in cells under shear stress, but was not modulated by hydrostatic pressure. These results show that the two hemodynamic forces acting on blood vessels affect endothelial cell function in different ways, and that both should be considered when planning in vitro experiments in the presence of flow. Understanding the individual and synergic effects of the two forces could provide important insights into physiological and pathological processes involved in vascular remodeling and adaptation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Adaptive compliant structures for flow regulation

    PubMed Central

    Brinkmeyer, Alex; Theunissen, Raf; M. Weaver, Paul; Pirrera, Alberto

    2017-01-01

    This paper introduces conceptual design principles for a novel class of adaptive structures that provide both flow regulation and control. While of general applicability, these design principles, which revolve around the idea of using the instabilities and elastically nonlinear behaviour of post-buckled panels, are exemplified through a case study: the design of a shape-adaptive air inlet. The inlet comprises a deformable post-buckled member that changes shape depending on the pressure field applied by the surrounding fluid, thereby regulating the inlet aperture. By tailoring the stress field in the post-buckled state and the geometry of the initial, stress-free configuration, the deformable section can snap through to close or open the inlet completely. Owing to its inherent ability to change shape in response to external stimuli—i.e. the aerodynamic loads imposed by different operating conditions—the inlet does not have to rely on linkages and mechanisms for actuation, unlike conventional flow-controlling devices. PMID:28878567

  20. Adaptive compliant structures for flow regulation.

    PubMed

    Arena, Gaetano; M J Groh, Rainer; Brinkmeyer, Alex; Theunissen, Raf; M Weaver, Paul; Pirrera, Alberto

    2017-08-01

    This paper introduces conceptual design principles for a novel class of adaptive structures that provide both flow regulation and control. While of general applicability, these design principles, which revolve around the idea of using the instabilities and elastically nonlinear behaviour of post-buckled panels, are exemplified through a case study: the design of a shape-adaptive air inlet. The inlet comprises a deformable post-buckled member that changes shape depending on the pressure field applied by the surrounding fluid, thereby regulating the inlet aperture. By tailoring the stress field in the post-buckled state and the geometry of the initial, stress-free configuration, the deformable section can snap through to close or open the inlet completely. Owing to its inherent ability to change shape in response to external stimuli-i.e. the aerodynamic loads imposed by different operating conditions-the inlet does not have to rely on linkages and mechanisms for actuation, unlike conventional flow-controlling devices.

  1. Influence of lifestyle, coping, and job stress on blood pressure in men and women.

    PubMed

    Lindquist, T L; Beilin, L J; Knuiman, M W

    1997-01-01

    We designed this study to clarify the role of work stress on long-term blood pressure control and in particular to investigate whether perceived work stress directly affected resting blood pressure levels or whether there were indirect effects mediated by coping mechanisms and lifestyle. Men (n = 337) and women (n = 317) working in a government tax office completed questionnaires for assessment of work-related stress, coping strategies, and lifestyle. Seven resting blood pressure measurements were recorded serially on each of two occasions a week apart. Men had higher blood pressures (119.6/68.6 versus 110.9/65.6 mm Hg) than women; they used more "maladaptive" coping strategies, drank more alcohol, and ate less healthily but exercised more than women. There were no direct associations between measures of work stress and blood pressure. In univariate and regression analyses, both body mass index and lifestyle factors in the form of alcohol consumption, exercise, and diet were related to blood pressure in men and women. Various "adaptive" or "maladaptive" coping mechanisms were identified and independently related to both job stress and blood pressure levels. Women were more likely to use "healthier" or adaptive coping mechanisms than men. Thus, work stress per se had no direct effect on blood pressure, but the ways that individuals reported coping with stress were significantly related to blood pressure, with blood pressure elevation effects appearing to be mediated largely by dietary and drinking habits and physical inactivity. The results point to the need to target individual coping strategies and lifestyle as much as the working environment in workplace cardiovascular health promotion programs.

  2. Selection of Phototransduction Genes in Homo sapiens.

    PubMed

    Christopher, Mark; Scheetz, Todd E; Mullins, Robert F; Abràmoff, Michael D

    2013-08-13

    We investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level. SNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively. Six of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes. There is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies.

  3. Air actuated clutch for four wheel drive vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clohessy, K.E.

    1986-12-09

    A control system is described for selectively engaging and disengaging a vehicle wheel and a vehicle drive mechanism comprising; a spindle having inside and outside rotative support surfaces, the spindle adapted to be mounted to a vehicle frame, an axle portion rotatably supported on the inside support surface, and drive means for selectively and rotatively driving the axle portion relative to the spindle; a wheel hub assembly adapted to carry a vehicle wheel, the hub assembly rotatively supported on the outside support surface of the spindle; a sealed expansion chamber defined in part by the spindle, the axle portion, themore » hub assembly and a movable wall carried by the hub assembly, venting means venting the outer side of the movable wall to atmospheric pressure, the clutch ring engaged by the movable wall for movement of the clutch ring with movement of the movable wall as induced by a pressure difference generated within the chamber, and pressurizing means for selectively pressurizing and depressurizing the expansion chamber to thereby selectively shift the clutch ring between the positions of interlocking the axle portion and hub assembly and unlocking the axle portion and hub assembly.« less

  4. Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    A method of feedback control has been proposed as a means of suppressing thermo-acoustic instabilities in a liquid- fueled combustor of a type used in an aircraft engine. The basic principle of the method is one of (1) sensing combustor pressure oscillations associated with instabilities and (2) modulating the rate of flow of fuel to the combustor with a control phase that is chosen adaptively so that the pressure oscillations caused by the modulation oppose the sensed pressure oscillations. The need for this method arises because of the planned introduction of advanced, lean-burning aircraft gas turbine engines, which promise to operate with higher efficiencies and to emit smaller quantities of nitrogen oxides, relative to those of present aircraft engines. Unfortunately, the advanced engines are more susceptible to thermoacoustic instabilities. These instabilities are hard to control because they include large dead-time phase shifts, wide-band noise characterized by amplitudes that are large relative to those of the instabilities, exponential growth of the instabilities, random net phase walks, and amplitude fluctuations. In this method (see figure), the output of a combustion-pressure sensor would be wide-band-pass filtered and then further processed to generate a control signal that would be applied to a fast-actuation valve to modulate the flow of fuel. Initially, the controller would rapidly take large phase steps in order to home in, within a fraction of a second, to a favorable phase region within which the instability would be reduced. Then the controller would restrict itself to operate within this phase region and would further restrict itself to operate within a region of stability, as long as the power in the instability signal was decreasing. In the phase-shifting scheme of this method, the phase of the control vector would be made to continuously bounce back and forth from one boundary of an effective stability region to the other. Computationally, this scheme would be implemented by the adaptive sliding phaser averaged control (ASPAC) algorithm, which requires very little detailed knowledge of the combustor dynamics. In the ASPAC algorithm, the power of the instability signal would be calculated from the wide-bandpass- filtered combustion-pressure signal and averaged over a period of time (typically of the order of a few hundredths of a second) corresponding to the controller updating cycle [not to be confused with the controller sampling cycle, which would be much shorter (typically of the order of 10(exp -4) second)].

  5. Sport Skill-Specific Expertise Biases Sensory Integration for Spatial Referencing and Postural Control.

    PubMed

    Thalassinos, Michalis; Fotiadis, Giorgos; Arabatzi, Fotini; Isableu, Brice; Hatzitaki, Vassilia

    2017-09-15

    The authors asked how sport expertise modulates visual field dependence and sensory reweighting for controlling posture. Experienced soccer athletes, ballet dancers, and nonathletes performed (a) a Rod and Frame test and (b) a 100-s bipedal stance task during which vision and proprioception were successively or concurrently disrupted in 20-s blocks. Postural adaptation was assessed in the mean center of pressure displacement, root mean square of center of pressure velocity and ankle muscles integrated electromyography activity. Soccer athletes were more field dependent than were nonathletes. During standing, dancers were more destabilized by vibration and required more time to reweigh sensory information compared with the other 2 groups. These findings reveal a sport skill-specific bias in the reweighing of sensory inputs for spatial orientation and postural control.

  6. Entry vehicle performance analysis and atmospheric guidance algorithm for precision landing on Mars. M.S. Thesis - Massachusetts Inst. of Technology

    NASA Technical Reports Server (NTRS)

    Dieriam, Todd A.

    1990-01-01

    Future missions to Mars may require pin-point landing precision, possibly on the order of tens of meters. The ability to reach a target while meeting a dynamic pressure constraint to ensure safe parachute deployment is complicated at Mars by low atmospheric density, high atmospheric uncertainty, and the desire to employ only bank angle control. The vehicle aerodynamic performance requirements and guidance necessary for 0.5 to 1.5 lift drag ratio vehicle to maximize the achievable footprint while meeting the constraints are examined. A parametric study of the various factors related to entry vehicle performance in the Mars environment is undertaken to develop general vehicle aerodynamic design requirements. The combination of low lift drag ratio and low atmospheric density at Mars result in a large phugoid motion involving the dynamic pressure which complicates trajectory control. Vehicle ballistic coefficient is demonstrated to be the predominant characteristic affecting final dynamic pressure. Additionally, a speed brake is shown to be ineffective at reducing the final dynamic pressure. An adaptive precision entry atmospheric guidance scheme is presented. The guidance uses a numeric predictor-corrector algorithm to control downrange, an azimuth controller to govern crossrange, and analytic control law to reduce the final dynamic pressure. Guidance performance is tested against a variety of dispersions, and the results from selected tests are presented. Precision entry using bank angle control only is demonstrated to be feasible at Mars.

  7. Elucidating Microbial Adaptation Dynamics via Autonomous Exposure and Sampling

    NASA Technical Reports Server (NTRS)

    Grace, Joseph M.; Verseux, Cyprien; Gentry, Diana; Moffet, Amy; Thayabaran, Ramanen; Wong, Nathan; Rothschild, Lynn

    2013-01-01

    The adaptation of micro-organisms to their environments is a complex process of interaction between the pressures of the environment and of competition. Reducing this multifactorial process to environmental exposure in the laboratory is a common tool for elucidating individual mechanisms of evolution, such as mutation rates. Although such studies inform fundamental questions about the way adaptation and even speciation occur, they are often limited by labor-intensive manual techniques. Current methods for controlled study of microbial adaptation limit the length of time, the depth of collected data, and the breadth of applied environmental conditions. Small idiosyncrasies in manual techniques can have large effects on outcomes; for example, there are significant variations in induced radiation resistances following similar repeated exposure protocols. We describe here a project under development to allow rapid cycling of multiple types of microbial environmental exposure. The system allows continuous autonomous monitoring and data collection of both single species and sampled communities, independently and concurrently providing multiple types of controlled environmental pressure (temperature, radiation, chemical presence or absence, and so on) to a microbial community in dynamic response to the ecosystem's current status. When combined with DNA sequencing and extraction, such a controlled environment can cast light on microbial functional development, population dynamics, inter- and intra-species competition, and microbe-environment interaction. The project's goal is to allow rapid, repeatable iteration of studies of both natural and artificial microbial adaptation. As an example, the same system can be used both to increase the pH of a wet soil aliquot over time while periodically sampling it for genetic activity analysis, or to repeatedly expose a culture of bacteria to the presence of a toxic metal, automatically adjusting the level of toxicity based on the number or growth rate of surviving cells. We are on our second prototype iteration, with demonstrated functions of microbial growth monitoring and dynamic exposure to UV-C radiation and temperature. We plan to add functionality for general chemical presence or absence by Nov. 2013. By making the project low-cost and open-source, we hope to encourage others to use it as a basis for future development of a common microbial environmental adaptation testbed.

  8. Marketing therapeutic recreation services.

    PubMed

    Thorn, B E

    1984-01-01

    The use of marketing strategies can enhance the delivery of therapeutic recreation services. This article discusses how agencies can adapt marketing techniques and use them to identify potential markets, improve image, evaluate external pressures, and maximize internal strengths. Four variables that can be controlled and manipulated in a proposed marketing plan are product, price, place and promotion.

  9. Wearable sensors for human health monitoring

    NASA Astrophysics Data System (ADS)

    Asada, H. Harry; Reisner, Andrew

    2006-03-01

    Wearable sensors for continuous monitoring of vital signs for extended periods of weeks or months are expected to revolutionize healthcare services in the home and workplace as well as in hospitals and nursing homes. This invited paper describes recent research progress in wearable health monitoring technology and its clinical applications, with emphasis on blood pressure and circulatory monitoring. First, a finger ring-type wearable blood pressure sensor based on photo plethysmogram is presented. Technical issues, including motion artifact reduction, power saving, and wearability enhancement, will be addressed. Second, sensor fusion and sensor networking for integrating multiple sensors with diverse modalities will be discussed for comprehensive monitoring and diagnosis of health status. Unlike traditional snap-shot measurements, continuous monitoring with wearable sensors opens up the possibility to treat the physiological system as a dynamical process. This allows us to apply powerful system dynamics and control methodologies, such as adaptive filtering, single- and multi-channel system identification, active noise cancellation, and adaptive control, to the monitoring and treatment of highly complex physiological systems. A few clinical trials illustrate the potentials of the wearable sensor technology for future heath care services.

  10. Adaptation of mesenteric lymphatic vessels to prolonged changes in transmural pressure.

    PubMed

    Dongaonkar, R M; Nguyen, T L; Quick, C M; Hardy, J; Laine, G A; Wilson, E; Stewart, R H

    2013-07-15

    In vitro studies have revealed that acute increases in transmural pressure increase lymphatic vessel contractile function. However, adaptive responses to prolonged changes in transmural pressure in vivo have not been reported. Therefore, we developed a novel bovine mesenteric lymphatic partial constriction model to test the hypothesis that lymphatic vessels exposed to higher transmural pressures adapt functionally to become stronger pumps than vessels exposed to lower transmural pressures. Postnodal mesenteric lymphatic vessels were partially constricted for 3 days. On postoperative day 3, constricted vessels were isolated, and divided into upstream (UP) and downstream (DN) segment groups, and instrumented in an isolated bath. Although there were no differences between the passive diameters of the two groups, both diastolic diameter and systolic diameter were significantly larger in the UP group than in the DN group. The pump index of the UP group was also higher than that in the DN group. In conclusion, this is the first work to report how lymphatic vessels adapt to prolonged changes in transmural pressure in vivo. Our results suggest that vessel segments upstream of the constriction adapt to become both better fluid conduits and lymphatic pumps than downstream segments.

  11. Experimental Studies on Pressure and Temperature Effects on Deep Dea Organisms.

    DTIC Science & Technology

    1980-02-28

    SUPPLEMENTARY NOTES Research published in two papers: (a) George, R.Y. 1979. What Adaptive Strategies Promote Immig ration and Speciation in Deep Sea...Environment. Sarsia 64(1-2):61-65. (b) George, R.Y. 1979. Behavorial and 4etabolic Adaptations o Polar and Deep Sea Crustaceans. Bull. Biol. Soc. W ch #3...pages 283-296. 19. KE WORDS (Continue on reverse side If noeemy and Identify by block nuimber) Pressure adaptation , temperature-pressure interaction

  12. Adaptation of a zero-dimensional cylinder pressure model for diesel engines using the crankshaft rotational speed

    NASA Astrophysics Data System (ADS)

    Weißenborn, E.; Bossmeyer, T.; Bertram, T.

    2011-08-01

    Tighter emission regulations are driving the development of advanced engine control strategies relying on feedback information from the combustion chamber. In this context, it is especially seeked for alternatives to expensive in-cylinder pressure sensors. The present study addresses these issues by pursuing a simulation-based approach. It focuses on the extension of an empirical, zero-dimensional cylinder pressure model using the engine speed signal in order to detect cylinder-wise variations in combustion. As a special feature, only information available from the standard sensor configuration are utilized. Within the study, different methods for the model-based reconstruction of the combustion pressure including nonlinear Kalman filtering are compared. As a result, the accuracy of the cylinder pressure model can be enhanced. At the same time, the inevitable limitations of the proposed methods are outlined.

  13. Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures.

    PubMed

    Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu

    2017-08-01

    Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism.

  14. Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures

    PubMed Central

    Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu

    2017-01-01

    Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata. Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata. The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism. PMID:28673971

  15. Essential hypertension--is erroneous receptor output to blame?

    PubMed

    Ufnal, Marcin

    2012-04-01

    Hypertension is a chronic medical condition in which systemic arterial blood pressure is elevated. About 80-90% of diagnosed hypertension is considered essential (idiopathic), which means there is no obvious cause of the increase in blood pressure. My hypothesis states that part of idiopathic hypertension results from erroneous information that the brain receives from receptors involved in the regulation of arterial blood pressure, i.e. if, despite high systemic blood pressure, the brain receives false "low-arterial pressure input" from cardiovascular receptors. As a result the brain centres which control blood pressure reset and produce an inappropriate output to the effectors (heart, blood vessels, kidneys and glands). The information errors may result from: (i) structural and/or functional impairment of cardiovascular receptors, (ii) changes in cardiovascular receptors activity, which are caused by other factors than changes in blood pressure, and (iii) impaired transmission in afferent fibres. I assume that in contrast to the lack of input from damaged or denervated cardiovascular receptors, an erroneous input will impair the control of arterial blood pressure. This will apply especially to false input which imitates "low-arterial pressure input". Higher priority of "low-arterial pressure input" over "high-arterial pressure input" or none input may be explained by the evolutionary adaptation, i.e. low blood pressure, mostly due to haemorrhage, used to be a more common condition than high blood pressure and constitute a major threat to humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Preliminary flight results of an adaptive engine control system of an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Walsh, Kevin R.

    1987-01-01

    Results of the flight demonstration of the adaptive engine control system (ADECS), an integrated flight and propulsion control system, are reported. The ADECS system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power, with the amount of EPR uptrim modulated in accordance with the maneuver requirements, flight conditions, and engine information. As a result of EPR uptrimming, engine thrust has increased by as much as 10.5 percent, rate of climb has increased by 10 percent, and the time to climb from 10,000 to 40,000 ft has been reduced by 12.5 percent. Increases in acceleration of 9.3 and 13 percent have been obtained at intermediate and maximum power, respectively. No engine anomalies have been detected for EPR increases up to 12 percent.

  17. Computational network model prediction of hemodynamic alterations due to arteriolar remodeling in interval sprint trained skeletal muscle.

    PubMed

    Binder, Kyle W; Murfee, Walter L; Song, Ji; Laughlin, M Harold; Price, Richard J

    2007-01-01

    Exercise training is known to enhance skeletal muscle blood flow capacity, with high-intensity interval sprint training (IST) primarily affecting muscles with a high proportion of fast twitch glycolytic fibers. The objective of this study was to determine the relative contributions of new arteriole formation and lumenal arteriolar remodeling to enhanced flow capacity and the impact of these adaptations on local microvascular hemodynamics deep within the muscle. The authors studied arteriolar adaptation in the white/mixed-fiber portion of gastrocnemius muscles of IST (6 bouts of running/day; 2.5 min/bout; 60 m/min speed; 15% grade; 4.5 min rest between bouts; 5 training days/wk; 10 wks total) and sedentary (SED) control rats using whole-muscle Microfil casts. Dimensional and topological data were then used to construct a series of computational hemodynamic network models that incorporated physiological red blood cell distributions and hematocrit and diameter dependent apparent viscosities. In comparison to SED controls, IST elicited a significant increase in arterioles/order in the 3A through 6A generations. Predicted IST and SED flows through the 2A generation agreed closely with in vivo measurements made in a previous study, illustrating the accuracy of the model. IST shifted the bulk of the pressure drop across the network from the 3As to the 4As and 5As, and flow capacity increased from 0.7 mL/min in SED to 1.5 mL/min in IST when a driving pressure of 80 mmHg was applied. The primary adaptation to IST is an increase in arterioles in the 3A through 6A generations, which, in turn, creates an approximate doubling of flow capacity and a deeper penetration of high pressure into the arteriolar network.

  18. Innovative Adaptive Control Method Demonstrated for Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2005-01-01

    This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.

  19. Lunar Balance and Locomotion

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2008-01-01

    Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.

  20. Simulating the Impact of Improved Cardiovascular Risk Interventions on Clinical and Economic Outcomes in Russia

    PubMed Central

    Shum, Kenny; Alperin, Peter; Shalnova, Svetlana; Boytsov, Sergey; Kontsevaya, Anna; Vigdorchik, Alexey; Guetz, Adam; Eriksson, Jennifer; Hughes, David

    2014-01-01

    Objectives Russia faces a high burden of cardiovascular disease. Prevalence of all cardiovascular risk factors, especially hypertension, is high. Elevated blood pressure is generally poorly controlled and medication usage is suboptimal. With a disease-model simulation, we forecast how various treatment programs aimed at increasing blood pressure control would affect cardiovascular outcomes. In addition, we investigated what additional benefit adding lipid control and smoking cessation to blood pressure control would generate in terms of reduced cardiovascular events. Finally, we estimated the direct health care costs saved by treating fewer cardiovascular events. Methods The Archimedes Model, a detailed computer model of human physiology, disease progression, and health care delivery was adapted to the Russian setting. Intervention scenarios of achieving systolic blood pressure control rates (defined as systolic blood pressure <140 mmHg) of 40% and 60% were simulated by modifying adherence rates of an antihypertensive medication combination and compared with current care (23.9% blood pressure control rate). Outcomes of major adverse cardiovascular events; cerebrovascular event (stroke), myocardial infarction, and cardiovascular death over a 10-year time horizon were reported. Direct health care costs of strokes and myocardial infarctions were derived from official Russian statistics and tariff lists. Results To achieve systolic blood pressure control rates of 40% and 60%, adherence rates to the antihypertensive treatment program were 29.4% and 65.9%. Cardiovascular death relative risk reductions were 13.2%, and 29.6%, respectively. For the current estimated 43,855,000-person Russian hypertensive population, each control-rate scenario resulted in an absolute reduction of 1.0 million and 2.4 million cardiovascular deaths, and a reduction of 1.2 million and 2.7 million stroke/myocardial infarction diagnoses, respectively. Averted direct costs from current care levels ($7.6 billion [in United States dollars]) were $1.1 billion and $2.6 billion, respectively. PMID:25141122

  1. Evolution of Drosophila resistance against different pathogens and infection routes entails no detectable maintenance costs.

    PubMed

    Faria, Vítor G; Martins, Nelson E; Paulo, Tânia; Teixeira, Luís; Sucena, Élio; Magalhães, Sara

    2015-11-01

    Pathogens exert a strong selective pressure on hosts, entailing host adaptation to infection. This adaptation often affects negatively other fitness-related traits. Such trade-offs may underlie the maintenance of genetic diversity for pathogen resistance. Trade-offs can be tested with experimental evolution of host populations adapting to parasites, using two approaches: (1) measuring changes in immunocompetence in relaxed-selection lines and (2) comparing life-history traits of evolved and control lines in pathogen-free environments. Here, we used both approaches to examine trade-offs in Drosophila melanogaster populations evolving for over 30 generations under infection with Drosophila C Virus or the bacterium Pseudomonas entomophila, the latter through different routes. We find that resistance is maintained after up to 30 generations of relaxed selection. Moreover, no differences in several classical life-history traits between control and evolved populations were found in pathogen-free environments, even under stresses such as desiccation, nutrient limitation, and high densities. Hence, we did not detect any maintenance costs associated with resistance to pathogens. We hypothesize that extremely high selection pressures commonly used lead to the disproportionate expression of costs relative to their actual occurrence in natural systems. Still, the maintenance of genetic variation for pathogen resistance calls for an explanation. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  2. Orthostatic stress is necessary to maintain the dynamic range of cardiovascular control in space

    NASA Technical Reports Server (NTRS)

    Baisch, J. F.; Wolfram, G.; Beck, L.; Drummer, C.; Stormer, I.; Buckey, J.; Blomqvist, G.

    2000-01-01

    In the upright position, gravity fills the low-pressure systems of human circulation with blood and interstitial fluid in the sections below the diaphragm. Without gravity one pressure component in the vessels disappears and the relationship between hydrostatic pressure and oncotic pressure, which regulates fluid passage across the capillary endothelium in the terminal vascular bed, shifts constantly. The visible consequences of this are a puffy face and "bird" legs. The plasma volume shrinks in space and the range of cardiovascular control is reduced. When they stand up for the first time after landing, 30-50% of astronauts suffer from orthostatic intolerance. It remains unclear whether microgravity impairs cardiovascular reflexes, or whether it is the altered volume status that causes the cardiovascular instability following space flight. Lower body negative pressure was used in several space missions to stimulate the cardiovascular reflexes before, during and after a space flight. The results show that cardiovascular reflexes are maintained in microgravity. However, the astronauts' volume status changed in space, towards a volume-retracted state, as measurements of fluid-regulating hormones have shown. It can be hypothesized that the control of circulation and body fluid homeostasis in humans is adapted to their upright posture in the Earth's gravitational field. Autonomic control regulates fluid distribution to maintain the blood pressure in that posture, which most of us have to cope with for two-thirds of the day. A determined amount of interstitial volume is necessary to maintain the dynamic range of cardiovascular control in the upright posture; otherwise orthostatic intolerance may occur more often.

  3. Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension.

    PubMed

    Ragot, Hélène; Monfort, Astrid; Baudet, Mathilde; Azibani, Fériel; Fazal, Loubina; Merval, Régine; Polidano, Evelyne; Cohen-Solal, Alain; Delcayre, Claude; Vodovar, Nicolas; Chatziantoniou, Christos; Samuel, Jane-Lise

    2016-08-01

    Hypertension, which is a risk factor of heart failure, provokes adaptive changes at the vasculature and cardiac levels. Notch3 signaling plays an important role in resistance arteries by controlling the maturation of vascular smooth muscle cells. Notch3 deletion is protective in pulmonary hypertension while deleterious in arterial hypertension. Although this latter phenotype was attributed to renal and cardiac alterations, the underlying mechanisms remained unknown. To investigate the role of Notch3 signaling in the cardiac adaptation to hypertension, we used mice with either constitutive Notch3 or smooth muscle cell-specific conditional RBPJκ knockout. At baseline, both genotypes exhibited a cardiac arteriolar rarefaction associated with oxidative stress. In response to angiotensin II-induced hypertension, the heart of Notch3 knockout and SM-RBPJκ knockout mice did not adapt to pressure overload and developed heart failure, which could lead to an early and fatal acute decompensation of heart failure. This cardiac maladaptation was characterized by an absence of media hypertrophy of the media arteries, the transition of smooth muscle cells toward a synthetic phenotype, and an alteration of angiogenic pathways. A subset of mice exhibited an early fatal acute decompensated heart failure, in which the same alterations were observed, although in a more rapid timeframe. Altogether, these observations indicate that Notch3 plays a major role in coronary adaptation to pressure overload. These data also show that the hypertrophy of coronary arterial media on pressure overload is mandatory to initially maintain a normal cardiac function and is regulated by the Notch3/RBPJκ pathway. © 2016 American Heart Association, Inc.

  4. Physiological adaptation to recurrent social stress of extraversion.

    PubMed

    Lu, Wei; Wang, Zhenhong

    2017-02-01

    The present studies examined the influence of extraversion on physiological reactivity, recovery, and physiological habituation-sensitization to repeated social stressors. In Study 1, subjective and physiological data were collected from 97 college students who were categorized as high (n = 51) and low (n = 46) on extraversion (NEO-FFI) across five laboratory stages: baseline, stress 1, poststress 1, stress 2, and poststress 2. Results indicated high extraversion (HE) participants exhibited relative lesser heart rate (HR) reactivity and respiratory sinus arrhythmia (RSA) withdrawals to, and more complete HR and RSA recovery after the first social stress, and also exhibited relative lesser HR reactivity to the second social stress. When repeatedly exposed to a social stressor, HE participants showed pronounced systolic blood pressure (SBP) adaptation, low extraversion (LE) participants displayed diastolic blood pressure (DBP) sensitization. In Study 2, data were collected from another 78 participants (HE: n = 40, LE: n = 38) across the same laboratory stages with speech performance videotaped. After controlling for the speech styles, Study 2 found the same HR response and SBP/DBP adaptation pattern across extraversion groups to social stress as Study 1 but not RSA reactivity. These findings suggest extraverts exhibit more adaptive physiological reactivity to recurrent social stressors, which thus might benefit their health. © 2016 Society for Psychophysiological Research.

  5. Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2004-01-01

    This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the mechanism of intra-harmonic coupling.

  6. CONTROLLING FOR NATURAL VARIABILITY IN ASSESSING THE RESPONSE OF FISH METRICS TO HUMAN PRESSURES FOR LAKES IN NORTHEAST USA

    EPA Science Inventory

    1 While fish-based Indices of Biotic Integrity (IBIs) have been developed for a wide array of lotic systems, equivalent tools have seldom been adapted to the monitoring and assessment of lakes. Major difficulties arise in such work: (i) collecting data that allow statistically robus...

  7. Closed-Cycle Nutrient Supply For Hydroponics

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.

    1991-01-01

    Hydroponic system controls composition and feed rate of nutrient solution and recovers and recycles excess solution. Uses air pressure on bladders to transfer aqueous nutrient solution. Measures and adjusts composition of solution before it goes to hydroponic chamber. Eventually returns excess solution to one of tanks. Designed to operate in microgravity, also adaptable to hydroponic plant-growing systems on Earth.

  8. Translation, Cross-Cultural Adaptation and Validation of an HIV/AIDS Knowledge and Attitudinal Instrument

    ERIC Educational Resources Information Center

    Zometa, Carlos S.; Dedrick, Robert; Knox, Michael D.; Westhoff, Wayne; Siman Siri, Rodrigo; Debaldo, Ann

    2007-01-01

    An instrument developed in the United States by the Centers for Disease Control and Prevention to assess HIV/AIDS knowledge and four attitudinal dimensions (Peer Pressure, Abstinence, Drug Use, and Threat of HIV Infection) and an instrument developed by Basen-Engquist et al. (1999) to measure abstinence and condom use were translated,…

  9. Acute hemodynamic effects of adaptive servo-ventilation in patients with heart failure.

    PubMed

    Yamada, Shiro; Sakakibara, Mamoru; Yokota, Takashi; Kamiya, Kiwamu; Asakawa, Naoya; Iwano, Hiroyuki; Yamada, Satoshi; Oba, Koji; Tsutsui, Hiroyuki

    2013-01-01

    Adaptive servo-ventilation (ASV) improves cardiac function in patients with heart failure (HF). We compared the hemodynamics of control and HF patients, and identified the predictors for acute effects of ASV in HF. We performed baseline echocardiographic measurements and hemodynamic measurements at baseline and after 15 min of ASV during cardiac catheterization in 11 control and 34 HF patients. Heart rate and blood pressure did not change after ASV in either the control or HF group. Stroke volume index (SVI) decreased from 49.3±7.6 to 41.3±7.6 ml/m2 in controls (P<0.0001) but did not change in the HF patients (from 34.8±11.5 to 32.8±8.9 ml/m2, P=0.148). In the univariate analysis, pulmonary capillary wedge pressure (PCWP), mitral regurgitation (MR)/left atrial (LA) area, E/A, E/e', and the sphericity index defined by the ratio between the short-axis and long-axis dimensions of the left ventricle significantly correlated with % change of SVI from baseline during ASV. PCWP and MR/LA area were independent predictors by multivariate analysis. Moreover, responders (15 of 34 HF patients; 44%) categorized by an increase in SVI showed significantly higher PCWP, MR, and sphericity index. Left ventricular structure and MR, as well as PCWP, could predict acute favorable effects on hemodynamics by ASV therapy in HF patients. 

  10. Synergistic effects of low-intensity exercise conditioning and β-blockade on cardiovascular and autonomic adaptation in pre- and postmenopausal women with hypertension.

    PubMed

    Goldie, Catherine L; Brown, C Ann; Hains, Sylvia M J; Parlow, Joel L; Birtwhistle, Richard

    2013-10-01

    The effects of a 12-week low-intensity exercise conditioning program (walking) on blood pressure (BP), heart rate (HR), rate-pressure product (RPP), and cardiac autonomic function were measured in 40 sedentary women with hypertension. Women were assigned to either an exercise group (n = 20) or a control group (n = 20), matched for β-blockade treatment. They underwent testing at the beginning and at the end of the 12-week study period in three conditions: supine rest, standing, and low-intensity steady state exercise. The exercise group participated in a 12-week, low-intensity walking program, while the control group continued with usual sedentary activity. Compared with the control group, women in the exercise group showed reductions in systolic and diastolic BP and RPP (i.e., the estimated cardiac workload). β-Blockers increased baroreflex sensitivity and lowered BP and HR in all participants; however, those in the exercise group showed the effects of both treatments: a greater reduction in HR and RPP. The combination of exercise training and β-blockade produces cardiac and autonomic adaptations that are not observed with either treatment alone, suggesting that β-blockade enhances the conditioning effects of low-intensity exercise in women with hypertension.

  11. Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation

    PubMed Central

    Li, Suyi; Wang, K. W.

    2015-01-01

    Inspired by the impulsive movements in plants, this research investigates the physics of a novel fluidic origami concept for its pressure-dependent multi-stability. In this innovation, fluid-filled tubular cells are synthesized by integrating different Miura-Ori sheets into a three-dimensional topological system, where the internal pressures are strategically controlled similar to the motor cells in plants. Fluidic origami incorporates two crucial physiological features observed in nature: one is distributed, pressurized cellular organization, and the other is embedded multi-stability. For a single fluidic origami cell, two stable folding configurations can coexist due to the nonlinear relationships among folding, crease material deformation and internal volume change. When multiple origami cells are integrated, additional multi-stability characteristics could occur via the interactions between pressurized cells. Changes in the fluid pressure can tailor the existence and shapes of these stable folding configurations. As a result, fluidic origami can switch between being mono-stable, bistable and multi-stable with pressure control, and provide a rapid ‘snap-through’ type of shape change based on the similar principles as in plants. The outcomes of this research could lead to the development of new adaptive materials or structures, and provide insights for future plant physiology studies at the cellular level. PMID:26400197

  12. Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation.

    PubMed

    Li, Suyi; Wang, K W

    2015-10-06

    Inspired by the impulsive movements in plants, this research investigates the physics of a novel fluidic origami concept for its pressure-dependent multi-stability. In this innovation, fluid-filled tubular cells are synthesized by integrating different Miura-Ori sheets into a three-dimensional topological system, where the internal pressures are strategically controlled similar to the motor cells in plants. Fluidic origami incorporates two crucial physiological features observed in nature: one is distributed, pressurized cellular organization, and the other is embedded multi-stability. For a single fluidic origami cell, two stable folding configurations can coexist due to the nonlinear relationships among folding, crease material deformation and internal volume change. When multiple origami cells are integrated, additional multi-stability characteristics could occur via the interactions between pressurized cells. Changes in the fluid pressure can tailor the existence and shapes of these stable folding configurations. As a result, fluidic origami can switch between being mono-stable, bistable and multi-stable with pressure control, and provide a rapid 'snap-through' type of shape change based on the similar principles as in plants. The outcomes of this research could lead to the development of new adaptive materials or structures, and provide insights for future plant physiology studies at the cellular level. © 2015 The Author(s).

  13. A controlled variation scheme for convection treatment in pressure-based algorithm

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Thakur, Siddharth; Tucker, Kevin

    1993-01-01

    Convection effect and source terms are two primary sources of difficulties in computing turbulent reacting flows typically encountered in propulsion devices. The present work intends to elucidate the individual as well as the collective roles of convection and source terms in the fluid flow equations, and to devise appropriate treatments and implementations to improve our current capability of predicting such flows. A controlled variation scheme (CVS) has been under development in the context of a pressure-based algorithm, which has the characteristics of adaptively regulating the amount of numerical diffusivity, relative to central difference scheme, according to the variation in local flow field. Both the basic concepts and a pragmatic assessment will be presented to highlight the status of this work.

  14. Systems and methods for measuring component matching

    NASA Technical Reports Server (NTRS)

    Courter, Kelly J. (Inventor); Slenk, Joel E. (Inventor)

    2006-01-01

    Systems and methods for measuring a contour match between adjacent components are disclosed. In one embodiment, at least two pressure sensors are located between adjacent components. Each pressure sensor is adapted to obtain a pressure measurement at a location a predetermined distance away from the other pressure sensors, and to output a pressure measurement for each sensor location. An output device is adapted to receive the pressure measurements from at least two pressure sensors and display the pressure measurements. In one aspect, the pressure sensors include flexible thin film pressure sensors. In accordance with other aspects of the invention, a method is provided for measuring a contour match between two interfacing components including measuring at least one pressure applied to at least one sensor between the interfacing components.

  15. Development of model reference adaptive control theory for electric power plant control applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mabius, L.E.

    1982-09-15

    The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis.more » An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.« less

  16. Evaluation of the Stress Adjustment and Adaptation Model among Families Reporting Economic Pressure

    ERIC Educational Resources Information Center

    Vandsburger, Etty; Biggerstaff, Marilyn A.

    2004-01-01

    This research evaluates the Stress Adjustment and Adaptation Model (double ABCX model) examining the effects resiliency resources on family functioning when families experience economic pressure. Families (N = 128) with incomes at or below the poverty line from a rural area of a southern state completed measures of perceived economic pressure,…

  17. Pressure and shear stress in trabecular bone marrow during whole bone loading.

    PubMed

    Metzger, Thomas A; Schwaner, Stephen A; LaNeve, Anthony J; Kreipke, Tyler C; Niebur, Glen L

    2015-09-18

    Skeletal adaptation to mechanical loading is controlled by mechanobiological signaling. Osteocytes are highly responsive to applied strains, and are the key mechanosensory cells in bone. However, many cells residing in the marrow also respond to mechanical cues such as hydrostatic pressure and shear stress, and hence could play a role in skeletal adaptation. Trabecular bone encapsulates marrow, forming a poroelastic solid. According to the mechanical theory, deformation of the pores induces motion in the fluid-like marrow, resulting in pressure and velocity gradients. The latter results in shear stress acting between the components of the marrow. To characterize the mechanical environment of trabecular bone marrow in situ, pore pressure within the trabecular compartment of whole porcine femurs was measured with miniature pressure transducers during stress-relaxation and cyclic loading. Pressure gradients ranging from 0.013 to 0.46 kPa/mm were measured during loading. This range was consistent with calculated pressure gradients from continuum scale poroelastic models with the same permeability. Micro-scale computational fluid dynamics models created from computed tomography images were used to calculate the micromechanical stress in the marrow using the measured pressure differentials as boundary conditions. The volume averaged shear stress in the marrow ranged from 1.67 to 24.55 Pa during cyclic loading, which exceeds the mechanostimulatory threshold for mesenchymal lineage cells. Thus, the loading of bone through activities of daily living may be an essential component of bone marrow health and mechanobiology. Additional studies of cell-level interactions during loading in healthy and disease conditions will provide further incite into marrow mechanobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Functional Sub-states by High-pressure Macromolecular Crystallography.

    PubMed

    Dhaussy, Anne-Claire; Girard, Eric

    2015-01-01

    At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.

  19. Preliminary investigations of design philosophies and features applicable to large magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.

    1979-01-01

    The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.

  20. Tani in the U.S. Laboratory during Node 2/PMA-2 Relocation

    NASA Image and Video Library

    2007-11-14

    ISS016-E-011253 (14 Nov. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, works the controls of the space station's robotic Canadarm2 in the Destiny laboratory of the International Space Station, during the relocation of the Harmony node and Pressurized Mating Adapter 2 (PMA2) from the Unity node to the front of Destiny.

  1. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    PubMed

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  2. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms.

    PubMed

    Yancey, Paul H; Siebenaller, Joseph F

    2015-06-01

    Organisms experience a wide range of environmental factors such as temperature, salinity and hydrostatic pressure, which pose challenges to biochemical processes. Studies on adaptations to such factors have largely focused on macromolecules, especially intrinsic adaptations in protein structure and function. However, micromolecular cosolutes can act as cytoprotectants in the cellular milieu to affect biochemical function and they are now recognized as important extrinsic adaptations. These solutes, both inorganic and organic, have been best characterized as osmolytes, which accumulate to reduce osmotic water loss. Singly, and in combination, many cosolutes have properties beyond simple osmotic effects, e.g. altering the stability and function of proteins in the face of numerous stressors. A key example is the marine osmolyte trimethylamine oxide (TMAO), which appears to enhance water structure and is excluded from peptide backbones, favoring protein folding and stability and counteracting destabilizers like urea and temperature. Co-evolution of intrinsic and extrinsic adaptations is illustrated with high hydrostatic pressure in deep-living organisms. Cytosolic and membrane proteins and G-protein-coupled signal transduction in fishes under pressure show inhibited function and stability, while revealing a number of intrinsic adaptations in deep species. Yet, intrinsic adaptations are often incomplete, and those fishes accumulate TMAO linearly with depth, suggesting a role for TMAO as an extrinsic 'piezolyte' or pressure cosolute. Indeed, TMAO is able to counteract the inhibitory effects of pressure on the stability and function of many proteins. Other cosolutes are cytoprotective in other ways, such as via antioxidation. Such observations highlight the importance of considering the cellular milieu in biochemical and cellular adaptation. © 2015. Published by The Company of Biologists Ltd.

  3. Evaluation of biofeedback seat insert for improving active sitting posture in children with cerebral palsy. A clinical report.

    PubMed

    Bertoti, D B; Gross, A L

    1988-07-01

    Biofeedback devices have been used successfully to improve head control and symmetrical standing in children with cerebral palsy. This clinical report describes a biofeedback seat insert developed to improve erect sitting posture in children with cerebral palsy who have inadequate trunk control. The seat insert is easily placed against the back of any seating device. A momentary-contact pressure switch on the seat insert is activated when the child exerts pressure on it by extending his trunk. The pressure switch then activates a videocassette recorder or can be adapted to activate a television or radio. Five children with spastic cerebral palsy participated in this evaluation of the biofeedback seat insert. The results of this evaluation show that the children used the biofeedback seat insert effectively to actively improve their sitting posture by voluntarily extending their trunk against the pressure switch. The biofeedback seat insert offers physical therapists a valuable therapeutic training tool to encourage carry-over of improved sitting posture away from the clinical setting for children with cerebral palsy.

  4. Comparison of 4-Layer Bandages and an Adaptive Compression Therapy Device on Intended Pressure Delivery.

    PubMed

    Mayrovitz, Harvey N; Partsch, Hugo; Vanscheidt, Wolfgang

    2015-01-01

    To characterize and compare interface pressure profiles of an adaptive compression therapy (ACT) device and a traditional 4-layer bandage (4LB) system. A prospective, randomized, open-label, 1-arm, active controlled study. The sample comprised 12 healthy volunteers. Subjects wore both devices for 8 hours on 3 consecutive days. Treatments were randomized to left and right legs. One clinician performed all applications and was experienced in the clinical use of both devices. Pressures were measured in seated and standing positions at the lower, mid, and upper calf immediately post application and after 1, 4, and 8 hours. Pressures achieved with the ACT were closer to targeted 40/30/20 mmHg graduated pressure values and were significantly less than the 4LB for corresponding sites/postures (P < .001). In the seated position, initial interface pressures (mean ± SD) for the ACT were 36.9 ± 4.9, 30.5 ± 4.5, and 21.0 ± 3.6 mmHg. Corresponding interface pressures for the 4LB were 52.5 ± 8.4, 57.5 ± 10.3, and 53.5 ± 12.9 mmHg. In the standing position, initial interface pressures for the ACT were 40.7 ± 4.8, 35.6 ± 4.5, and 21.1 ± 4.6 compared to 54.6 ± 12.5, 64.4 ± 10.9, and 53.7 ± 14.3 for the 4LB. At 1, 4, and 8 hours after application, the 4LB showed a significant progressive decline in interface pressure in both seated and standing positions (P < .001). Conversely, the ACT did not decrease over time and there was a slight but significant increase for lower and mid-calf sites in the seated position (P < .001). The ACT device provided more consistent interface pressures than the 4LB and the pressures achieved were consistent with contemporary venous ulcer therapy standards.

  5. Active Control Of Structure-Borne Noise

    NASA Astrophysics Data System (ADS)

    Elliott, S. J.

    1994-11-01

    The successful practical application of active noise control requires an understanding of both its acoustic limitations and the limitations of the electrical control strategy used. This paper is concerned with the active control of sound in enclosures. First, a review is presented of the fundamental physical limitations of using loudspeakers to achieve either global or local control. Both approaches are seen to have a high frequency limit, due to either the acoustic modal overlap, or the spatial correlation function of the pressure field. These physical performance limits could, in principle, be achieved with either a feedback or a feedforward control strategy. These strategies are reviewed and the use of adaptive digital filters is discussed for both approaches. The application of adaptive feedforward control in the control of engine and road noise in cars is described. Finally, an indirect approach to the active control of sound is discussed, in which the vibration is suppressed in the structural paths connecting the source of vibration to the enclosure. Two specific examples of this strategy are described, using an active automotive engine mount and the incorporation of actuators into helicopter struts to control gear-meshing tones. In both cases good passive design can minimize the complexity of the active controller.

  6. Effect of Spinal Manipulation of Upper Cervical Vertebrae on Blood Pressure: Results of a Pilot Sham-Controlled Trial.

    PubMed

    Goertz, Christine M; Salsbury, Stacie A; Vining, Robert D; Long, Cynthia R; Pohlman, Katherine A; Weeks, William B; Lamas, Gervasio A

    2016-06-01

    The purpose of this pilot sham-controlled clinical trial was to estimate the treatment effect and safety of toggle recoil spinal manipulation for blood pressure management. Fifty-one participants with prehypertension or stage 1 hypertension (systolic blood pressure ranging from 135 to 159 mm Hg or diastolic blood pressure ranging from 85 to 99 mm Hg) were allocated by an adaptive design to 2 treatments: toggle recoil spinal manipulation or a sham procedure. Participants were seen by a doctor of chiropractic twice weekly for 6 weeks and remained on their antihypertensive medications, as prescribed, throughout the trial. Blood pressure was assessed at baseline and after study visits 1, 6 (week 3), and 12 (week 6), with the primary end point at week 6. Analysis of covariance was used to compare mean blood pressure changes from baseline between groups at each end point, controlling for sex, age, body mass index, and baseline blood pressure. Adjusted mean change from baseline to week 6 was greater in the sham group (systolic, -4.2 mm Hg; diastolic, -1.6 mm Hg) than in the spinal manipulation group (systolic, 0.6 mm Hg; diastolic, 0.7 mm Hg), but the difference was not statistically significant. No serious and few adverse events were noted. Six weeks of toggle recoil spinal manipulation did not lower systolic or diastolic blood pressure when compared with a sham procedure. No serious adverse events from either treatment were reported. Our results do not support a larger clinical trial. Further research to understand the potential mechanisms of action involving upper cervical manipulation on blood pressure is warranted before additional clinical investigations are conducted. Copyright © 2016. Published by Elsevier Inc.

  7. Metamorphosing reef fishes avoid predator scent when choosing a home.

    PubMed

    Vail, Alexander L; McCormick, Mark I

    2011-12-23

    Most organisms possess anti-predator adaptations to reduce their risk of being consumed, but little is known of the adaptations prey employ during vulnerable life-history transitions when predation pressures can be extreme. We demonstrate the use of a transition-specific anti-predator adaptation by coral reef fishes as they metamorphose from pelagic larvae to benthic juveniles, when over half are consumed within 48 h. Our field experiment shows that naturally settling damselfish use olfactory, and most likely innate, predator recognition to avoid settling to habitat patches manipulated to emit predator odour. Settlement to patches emitting predator odour was on average 24-43% less than to control patches. Evidence strongly suggests that this avoidance of sedentary and patchily distributed predators by nocturnal settlers will gain them a survival advantage, but also lead to non-lethal predator effects: the costs of exhibiting anti-predator adaptations. Transition-specific anti-predator adaptations, such as demonstrated here, may be widespread among organisms with complex life cycles and play an important role in prey population dynamics.

  8. Adaptive nonlinear polynomial neural networks for control of boundary layer/structural interaction

    NASA Technical Reports Server (NTRS)

    Parker, B. Eugene, Jr.; Cellucci, Richard L.; Abbott, Dean W.; Barron, Roger L.; Jordan, Paul R., III; Poor, H. Vincent

    1993-01-01

    The acoustic pressures developed in a boundary layer can interact with an aircraft panel to induce significant vibration in the panel. Such vibration is undesirable due to the aerodynamic drag and structure-borne cabin noises that result. The overall objective of this work is to develop effective and practical feedback control strategies for actively reducing this flow-induced structural vibration. This report describes the results of initial evaluations using polynomial, neural network-based, feedback control to reduce flow induced vibration in aircraft panels due to turbulent boundary layer/structural interaction. Computer simulations are used to develop and analyze feedback control strategies to reduce vibration in a beam as a first step. The key differences between this work and that going on elsewhere are as follows: that turbulent and transitional boundary layers represent broadband excitation and thus present a more complex stochastic control scenario than that of narrow band (e.g., laminar boundary layer) excitation; and secondly, that the proposed controller structures are adaptive nonlinear infinite impulse response (IIR) polynomial neural network, as opposed to the traditional adaptive linear finite impulse response (FIR) filters used in most studies to date. The controllers implemented in this study achieved vibration attenuation of 27 to 60 dB depending on the type of boundary layer established by laminar, turbulent, and intermittent laminar-to-turbulent transitional flows. Application of multi-input, multi-output, adaptive, nonlinear feedback control of vibration in aircraft panels based on polynomial neural networks appears to be feasible today. Plans are outlined for Phase 2 of this study, which will include extending the theoretical investigation conducted in Phase 2 and verifying the results in a series of laboratory experiments involving both bum and plate models.

  9. Offset shock mounted recorder carrier including overpressure gauge protector and balance joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, D.K.

    1990-12-25

    This patent describes a recorder carrier adapted to be included within a well tool. The carrier adapted to include at least one recorder, the recorder being movable within the recorder carrier when the carrier includes the recorder, the well tool adapted to be disposed in a borehole containing well annulus fluid, the recorder carrier adapted to receive well fluid from a formation in the borehole. It comprises overpressure protection means for preventing the well fluid from entering the recorder carrier when a pressure of the well fluid is greater than a predetermined amount above a pressure of the well annulusmore » fluid thereby protecting the recorder from the pressure of the well fluid.« less

  10. Translation and cultural adaptation of the Hill-Bone Compliance to High Blood Pressure Therapy Scale to Portuguese.

    PubMed

    Nogueira-Silva, Luís; Sá-Sousa, Ana; Lima, Maria João; Monteiro, Agostinho; Dennison-Himmelfarb, Cheryl; Fonseca, João A

    2016-02-01

    Hypertension is an extremely prevalent disease worldwide and hypertension control rates remain low. Lack of adherence contributes to poor control and to cardiovascular events. No questionnaire in Portuguese is readily available for the assessment of adherence to antihypertensive drugs. We aimed to perform a translation and cultural adaptation to Portuguese of the Hill-Bone Compliance to High Blood Pressure Therapy Scale, a validated instrument to measure adherence in hypertensive patients. A formal process was employed, consisting of a forward translation by two independent translators and a back translation by a third translator. Discrepancies were resolved after each step. Hypertensive patients were involved to identify and resolve phrasing and wording difficulties and misunderstandings. The forward and back translation did not produce significant discrepancies. However, important issues were identified when the questionnaire was presented to patients, which led to changes in the wording of the questions and in the format of the questionnaire. Questionnaires are important instruments to assess adherence to therapy, particularly in hypertension. A formal translation and cultural adaptation process ensures that the new version maintains the same concepts as the original. After translation, several changes were necessary to ensure that the questionnaire was understandable by elderly, low literacy patients, such as the majority of hypertensive patients. We propose a Portuguese version of the Hill-Bone Compliance Scale, which will require validation in further studies. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  11. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification

    PubMed Central

    Schlüter, Lothar; Lohbeck, Kai T.; Gröger, Joachim P.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2016-01-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2–adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  12. Path tracking control of an omni-directional walker considering pressures from a user.

    PubMed

    Tan, Renpeng; Wang, Shuoyu; Jiang, Yinlai; Ishida, Kenji; Fujie, Masakatsu G

    2013-01-01

    An omni-directional walker (ODW) is being developed to support the people with walking disabilities to do walking rehabilitation. The training paths, which the user follows in the rehabilitation, are defined by physical therapists and stored in the ODW. In order to obtain a good training effect, the defined training paths need to be performed accurately. However, the ODW deviates from the training path in real rehabilitation, which is caused by the variation of the whole system's parameters due to the force from the user. In this paper, the characteristics of pressures from a user are measured, based on which an adaptive controller is proposed to deal with this problem, and validated in an experiment in which a pseudo handicapped person follows the ODW. The experimental results show that the proposed method can control the ODW to accurately follow the defined path with or without a user.

  13. Neural rotational speed control for wave energy converters

    NASA Astrophysics Data System (ADS)

    Amundarain, M.; Alberdi, M.; Garrido, A. J.; Garrido, I.

    2011-02-01

    Among the benefits arising from an increasing use of renewable energy are: enhanced security of energy supply, stimulation of economic growth, job creation and protection of the environment. In this context, this study analyses the performance of an oscillating water column device for wave energy conversion in function of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose, a model of neural rotational speed control system is presented, simulated and implemented. This scheme is employed to appropriately adapt the speed of the doubly-fed induction generator coupled to the turbine according to the pressure drop entry, so as to avoid the undesired stalling behaviour. It is demonstrated that the proposed neural rotational speed control design adequately matches the desired relationship between the slip of the doubly-fed induction generator and the pressure drop input, improving the power generated by the turbine generator module.

  14. Six-degree-of-freedom guidance and control-entry analysis of the HL-20

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.

    1993-01-01

    The ability of the HL-20 lifting body to fly has been evaluated for an automated entry from atmospheric interface to landing. This evaluation was required to demonstrate that not only successful touchdown conditions would be possible for this low lift-to-drag-ratio vehicle, but also the vehicle would not exceed its design dynamic pressure limit of 400 psf during entry. This dynamic pressure constraint limit, coupled with limited available pitch-control authority at low supersonic speeds, restricts the available maneuvering capability for the HL-20 to acquire the runway. One result of this analysis was that this restrictive maneuvering capability does not allow the use of a model-following atmospheric entry-guidance algorithm, such as that used by the Space Shuttle, but instead requires a more adaptable guidance algorithm. Therefore, for this analysis, a predictor-corrector guidance algorithm was developed that would provide successful touchdown conditions while not violating the dynamic pressure constraint. A flight-control system was designed and incorporated, along with the predictor-corrector guidance algorithm, into a six-DOF simulation. which showed that the HL-20 remained controllable and could reach the landing site and execute a successful landing under all off-nominal conditions simulated.

  15. Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture?

    PubMed

    Gehlen, Manuel; Eklund, Anders; Kurtcuoglu, Vartan; Malm, Jan; Schmid Daners, Marianne

    2017-08-01

    Three different types of anti-siphon devices (ASDs) have been developed to counteract siphoning-induced overdrainage in upright posture. However, it is not known how the different ASDs affect CSF dynamics under the complex pressure environment seen in clinic due to postural changes. We investigated which ASDs can avoid overdrainage in upright posture best without leading to CSF accumulation. Three shunts each of the types Codman Hakim with SiphonGuard (flow-regulated), Miethke miniNAV with proSA (gravitational), and Medtronic Delta (membrane controlled) were tested. The shunts were compared on a novel in vitro setup that actively emulates the physiology of a shunted patient. This testing method allows determining the CSF drainage rates, resulting CSF volume, and intracranial pressure in the supine, sitting, and standing posture. The flow-regulated ASDs avoided increased drainage by closing their primary flow path when drainage exceeded 1.39 ± 0.42 mL/min. However, with intraperitoneal pressure increased in standing posture, we observed reopening of the ASD in 3 out of 18 experiment repetitions. The adjustable gravitational ASDs allow independent opening pressures in horizontal and vertical orientation, but they did not provide constant drainage in upright posture (0.37 ± 0.03 mL/min and 0.26 ± 0.03 mL/min in sitting and standing posture, respectively). Consequently, adaptation to the individual patient is critical. The membrane-controlled ASDs stopped drainage in upright posture. This eliminates the risk of overdrainage, but leads to CSF accumulation up to the volume observed without shunting when the patient is upright. While all tested ASDs reduced overdrainage, their actual performance will depend on a patient's specific needs because of the large variation in the way the ASDs influence CSF dynamics: while the flow-regulated shunts provide continuous drainage in upright posture, the gravitational ASDs allow and require additional adaptation, and the membrane-controlled ASDs show robust siphon prevention by a total stop of drainage.

  16. PRESSURE TRANSDUCER

    DOEpatents

    Sander, H.H.

    1959-10-01

    A pressure or mechanical force transducer particularly adaptable to miniature telemetering systems is described. Basically the device consists of a transistor located within a magnetic field adapted to change in response to mechanical force. The conduction characteristics of the transistor in turn vary proportionally with changes in the magnetic flux across the transistor such that the output (either frequency of amplitude) of the transistor circuit is proportional to mechanical force or pressure.

  17. Toric focusing for radiation force applications using a toric lens coupled to a spherically focused transducer.

    PubMed

    Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew

    2014-12-01

    Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization.

  18. [A randomized controlled trial: acclimatization training on the prevention of motion sickness in hot-humid environment].

    PubMed

    Zhang, Lei; Mao, Jun-Feng; Wu, Xiao-Nong; Bao, Ying-Chun

    2014-05-01

    Incidence and severity of motion sickness (MS) in hot-humid environment are extremely high. We tried to know the effect of two-stage training for reducing incidence and severity of ms. Sixty male subjects were divided into experimental group and control group randomly. Subjects in experimental group received: (2) adaptation training including sitting, walking and running in hot lab. After adaptation confirmation based on subjective feeling, rectal temperature, heart rate, blood Pressure, sweat rates and sweat salt concentration, we tested both groups by Coriolis acceleration revolving chair test and recorded Graybiel's score and grading of severity to evaluate whether adaptation training was useful; (2) Anti-dizzy training 3m later of deacclimatization contained revolving chair training for 10 times. Then we did the same test as mentioned above to evaluate effect of anti-dizzy training. RESULST: Graybiel' s score and grading of severity had no difference between two groups through acclimatization training (P > 0.05). While they had difference through anti-dizzy training (P < 0.01). Adaptation training seems useless for reducing incidence and severity of MS in hot-humid environment, but anti-dizzy training is useful.

  19. Translation, cross-cultural adaptation and validation of an HIV/AIDS knowledge and attitudinal instrument.

    PubMed

    Zometa, Carlos S; Dedrick, Robert; Knox, Michael D; Westhoff, Wayne; Siri, Rodrigo Simán; Debaldo, Ann

    2007-06-01

    An instrument developed in the United States by the Centers for Disease Control and Prevention to assess HIV/AIDS knowledge and four attitudinal dimensions (Peer Pressure, Abstinence, Drug Use, and Threat of HIV Infection) and an instrument developed by Basen-Engquist et al. (1999) to measure abstinence and condom use were translated, cross-culturally adapted, and validated for use with Spanish-speaking high school students in El Salvador. A back-translation of the English version was cross-culturally adapted using two different review panels and pilot-tested with Salvadorian students. An expert panel established content validity, and confirmatory factor analysis provided support for construct validity. Results indicated that the methodology was successful in cross-culturally adapting the instrument developed by the Centers for Disease Control and Prevention and the instrument developed by Basen-Engquist et al. The psychometric properties of the knowledge section were acceptable and there was partial support for the four-factor attitudinal model underlying the CDC instrument and the two-factor model underlying the Basen-Engquist et al. instrument. Additional studies with Spanish-speaking populations (either in the United States or Latin America) are needed to evaluate the generalizability of the present results.

  20. Multi-Element Unstructured Analyses of Complex Valve Systems

    NASA Technical Reports Server (NTRS)

    Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy

    2004-01-01

    The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.

  1. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload

    PubMed Central

    Scallan, Joshua P.; Wolpers, John H.; Muthuchamy, Mariappan; Gashev, Anatoliy A.; Zawieja, David C.

    2012-01-01

    Collecting lymphatic vessels share functional and biochemical characteristics with cardiac muscle; thus, we hypothesized that the lymphatic vessel pump would exhibit behavior analogous to homeometric regulation of the cardiac pump in its adaptation to elevated afterload, i.e., an increase in contractility. Single lymphangions containing two valves were isolated from the rat mesenteric microcirculation, cannulated, and pressurized for in vitro study. Pressures at either end of the lymphangion [input pressure (Pin), preload; output pressure (Pout), afterload] were set by a servo controller. Intralymphangion pressure (PL) was measured using a servo-null micropipette while internal diameter and valve positions were monitored using video methods. The responses to step- and ramp-wise increases in Pout (at low, constant Pin) were determined. PL and diameter data recorded during single contraction cycles were used to generate pressure-volume (P-V) relationships for the subsequent analysis of lymphangion pump behavior. Ramp-wise Pout elevation led to progressive vessel constriction, a rise in end-systolic diameter, and an increase in contraction frequency. Step-wise Pout elevation produced initial vessel distention followed by time-dependent declines in end-systolic and end-diastolic diameters. Significantly, a 30% leftward shift in the end-systolic P-V relationship accompanied an 84% increase in dP/dt after a step increase in Pout, consistent with an increase in contractility. Calculations of stroke work from the P-V loop area revealed that robust pumps produced net positive work to expel fluid throughout the entire afterload range, whereas weaker pumps exhibited progressively more negative work as gradual afterload elevation led to pump failure. We conclude that lymphatic muscle adapts to output pressure elevation with an intrinsic increase in contractility and that this compensatory mechanism facilitates the maintenance of lymph pump output in the face of edemagenic and/or gravitational loads. PMID:22886407

  2. HIF isoforms in the skin differentially regulate systemic arterial pressure

    PubMed Central

    Cowburn, Andrew S.; Takeda, Norihiko; Boutin, Adam T.; Kim, Jung-Whan; Sterling, Jane C.; Nakasaki, Manando; Southwood, Mark; Goldrath, Ananda W.; Jamora, Colin; Nizet, Victor; Chilvers, Edwin R.; Johnson, Randall S.

    2013-01-01

    Vascular flow through tissues is regulated via a number of homeostatic mechanisms. Localized control of tissue blood flow, or autoregulation, is a key factor in regulating tissue perfusion and oxygenation. We show here that the net balance between two hypoxia-inducible factor (HIF) transcription factor isoforms, HIF-1α and HIF-2α, is an essential mechanism regulating both local and systemic blood flow in the skin of mice. We also show that balance of HIF isoforms in keratinocyte-specific mutant mice affects thermal adaptation, exercise capacity, and systemic arterial pressure. The two primary HIF isoforms achieve these effects in opposing ways that are associated with HIF isoform regulation of nitric oxide production. We also show that a correlation exists between altered levels of HIF isoforms in the skin and the degree of idiopathic hypertension in human subjects. Thus, the balance between HIF-1α and HIF-2α expression in keratinocytes is a control element of both tissue perfusion and systemic arterial pressure, with potential implications in human hypertension. PMID:24101470

  3. Adaptive Changes in Membrane Lipids of Barophilic Bacteria in Response to Changes in Growth Pressure

    PubMed Central

    Yano, Yutaka; Nakayama, Akihiko; Ishihara, Kenji; Saito, Hiroaki

    1998-01-01

    The lipid compositions of barophilic bacterial strains which contained docosahexaenoic acid (DHA [22:6n-3]) were examined, and the adaptive changes of these compositions were analyzed in response to growth pressure. In the facultatively barophilic strain 16C1, phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) were major components which had the same fatty acid chains. However, in PE, monounsaturated fatty acids such as hexadecenoic acid were major components, and DHA accounted for only 3.7% of the total fatty acids, while in PG, DHA accounted for 29.6% of the total fatty acids. In response to an increase in growth pressure in strain 16C1, the amounts of saturated fatty acids in PE were reduced, and these decreases were mainly balanced by an increase in unsaturated fatty acids, including DHA. In PG, the decrease in saturated fatty acids was mainly balanced by an increase in DHA. Similar adaptive changes in fatty acid composition were observed in response to growth pressure in obligately barophilic strain 2D2. Furthermore, these adaptive changes in response were also observed in response to low temperature in strain 16C1. These results confirm that the general shift from saturated to unsaturated fatty acids including DHA is one of the adaptive changes in response to increases in pressure and suggest that DHA may play a role in maintaining the proper fluidity of membrane lipids under high pressure. PMID:16349499

  4. Effectiveness of an e-learning tool for education on pressure ulcer evaluation.

    PubMed

    Morente, Laura; Morales-Asencio, José M; Veredas, Francisco J

    2014-07-01

    To evaluate the effectiveness of information and communication technologies in the undergraduate students' pressure ulcer training as a learning tool, compared with traditional teaching methods. Pressure ulcers constitute one of the great challenges faced by nursing professionals. Currently, pressure ulcer training is based on traditional on-campus teaching, involving lecture-style classes with frequent use of photographs of the wounds. This traditional training has some important weaknesses that can put the efficacy of the training at risk. A randomised controlled trial was developed including undergraduate nursing students. The intervention group used an adaptive self-learning e-learning tool developed by the research team (ePULab) for pressure ulcer assessment and treatment. The control group received a traditional on-campus class on the same topic. Pretest and post-test questionnaires were designed to assess the students' ability in pressure ulcer diagnosis and treatment. The educational intervention based on the use of the ePULab tool produced significantly better learning acquisition results than those obtained by traditional lecture-style classes: the total score improved in the control group from 8·23 (SD 1·23)-11·6 (SD 2·52) after the lecture, whereas in the intervention group, the knowledge score changed from 8·27 (SD 1·39)-15·83 (SD 2·52) (p = 0·01) with the use of ePULab. The results show a higher effectiveness of the devised e-learning approach for education on management of pressure ulcers. Our results reveal the suitability of the ePULab e-learning tool as an effective instrument for training on assessment of and treatment for pressure ulcers and its potential impact on clinical decision-making. © 2013 John Wiley & Sons Ltd.

  5. Space Shuttle Discovery Docked to the Pressurized Mating Adapter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Space Shuttle Discovery, docked to the Pressurized Mating Adapter (PMA-2) on the International Space Station (ISS), is featured in this image photographed by a space walker during the second session of extravehicular activity (EVA) for the STS-120 mission on October 28, 2007.

  6. Development of the Aortic Baroreflex in Microgravity

    NASA Technical Reports Server (NTRS)

    Shimizu, Tsuyoshi; Yamasaki, Masao; Waki, Hidefumi; Katsuda, Shin-ichiro; Oishi, Hirotaka; Katahira, Kiyoaki; Nagayama, Tadanori; Miyake, Masao; Miyamoto, Yukako

    2003-01-01

    Baroreceptors sense pressure in blood vessels and send this information to the brain. The primary baroreceptors are located in the main blood vessel leaving the heart (the aorta) and in the arteries in the neck (the carotid arteries). The brain uses information from the baroreceptors to determine whether blood pressure should be raised or lowered. These reflex responses are called baroreflexes. Changing position within a gravity field (i.e., moving from lying to sitting or standing) powerfully stimulates the baroreflexes. In weightlessness, the amount of stimuli that the baroreflexes receive is dramatically reduced. If this reduction occurs when the pathways that control the baroreflexes are being formed, it is possible that either the structure or function of the baroreceptors may be permanently changed. To study the effect of microgravity on structural and functional development of the aortic baroreflex system, we studied young rats (eight days old at launch) that flew on the Space Shuttle Columbia for 16 days. Six rats were studied on landing day; another six were studied after re-adapting to Earth's gravity for 30 days. On both landing day and 30 days after landing, we tested the sensitivity of the rats' baroreflex response. While the rats were anaesthetized, we recorded their arterial pressure, heart rate, and aortic nerve activity. After the tissues were preserved with perfusion fixation, we also examined the baroreflex structures. On landing day, we found that, compared to the controls, the flight rats had: fewer unmyelinated nerve fibers in their aortic nerves lower baroreflex sensitivity significantly lower contraction ability and wall tension of the aorta a reduced number of smooth muscle cells in the aorta. In the 30-day recovery group, the sensitivity of the baroreflex showed no difference between the flight rats and the control groups, although the unmyelinated fibers of the aortic nerve remained reduced in the flight rats. The results show that spaceflight does affect the development of the aortic baroreflex. The sensitivity of the reflex may be suppressed; however, the function of the blood pressure control system can re-adapt to Earth's gravity if the rats return before maturation. The structural differences in the input pathway of the reflex (Le., the reduction in nerve fibers) may remain permanently.

  7. The effects of bupivacaine, L-nitro-L-arginine-methyl ester, and phenylephrine on cardiovascular adaptations to asphyxia in the preterm fetal lamb.

    PubMed

    Santos, A C; Yun, E M; Bobby, P D; Noble, G; Arthur, G R; Finster, M

    1997-12-01

    The preterm fetal lamb that is exposed to clinically relevant plasma concentrations of lidocaine loses its cardiovascular adaptations to asphyxia, and its condition deteriorates further. Nitric oxide (NO) is an important regulator of vascular tone, and local anesthetics are known to inhibit endothelium-dependent vasodilation. The purpose of the present study was to determine whether the adverse effects of lidocaine noted in the preterm fetal lamb also occur with bupivacaine and whether the inhibition of NO results in effects similar to those of bupivacaine. Thirty-two chronically prepared pregnant sheep were studied at 117-119 days' gestation. Maternal and fetal blood pressure, heart rate, and acid-base state were evaluated. Fetal organ blood flows were determined using 15-microM diameter dye-labeled microspheres. After a control period, mild to moderate asphyxia (fetal PaO2 15 mm Hg) was induced by partial umbilical cord occlusion and maintained throughout the experiment. Ewes in Group I (n = 13) were given a two-step intravenous infusion of bupivacaine for 180 min. Fetuses in Group II (n = 12) received an intravenous injection of L-nitro-L-arginine-methyl ester (L-NAME) (25 mg/kg), and measurements were taken 10 and 30 min after the injection. A third group (Group III) of fetuses (n = 7) were given an intravenous infusion of phenylephrine to mimic the blood pressure increases noted in L-NAME-treated fetuses. At 90 min of stable asphyxia, there was a significant decrease in fetal PaO2 and pHa and an increase in PaCO2 and mean arterial blood pressure. There was also an increase in blood flow to the adrenals, myocardium, and cerebral cortex, whereas blood flow to the placenta decreased. Administration of bupivacaine during asphyxia did not affect the changes in mean arterial blood pressure and acid-base state but did abolish the increases in blood flows to the myocardium and cerebral cortex. Injection of L-NAME to the asphyxiated fetus resulted in an increase in mean arterial blood pressure above the level noted at 90 min of cord occlusion, and an increase in fetal PaO2 toward control levels. This was accompanied by a reduction in organ blood flows to preasphyxia levels. In asphyxiated Group III fetuses, titration of the phenylephrine infusion to achieve blood pressure increases similar to those noted with L-NAME were also associated with an increase in fetal PaO2. These data indicate that bupivacaine abolishes some of the circulatory adaptations to mild to moderate asphyxia induced by partial cord occlusion in the preterm fetal lamb. It is not clear whether these effects of bupivacaine are due to inhibition of NO. In the preterm fetal lamb, clinically relevant plasma concentrations of bupivacaine achieved by intravenous infusion to the pregnant ewe (80% gestation) abolished some of the fetal cardiovascular adaptations to asphyxia induced by partial umbilical cord occlusion.

  8. Cardiovascular results from a rhesus monkey flown aboard the Cosmos 1514 spaceflight

    NASA Technical Reports Server (NTRS)

    Sandler, H.; Hines, J.; Benjamin, B. A.; Halpryn, B. M.; Krotov, V. P.

    1987-01-01

    The results of the Cosmos 1514 cardiovascular experiment, in which the blood flow to the head and the carotid pressure of a rhesus monkey were measured during the 5-d spaceflight, are reported. A single cylindrical probe containing both pressure and flow transducers was chronically implanted as a cuff around the left common carotid artery; measurements were obtained for 4 min every 2 h and compared to identical recordings obtained during a preflight control period and during 12 h on a launch pad. Immediately on its insertion into orbit, mean arterial pressure increased by 10 percent and has maintained a 16-27 percent increase over the first few hours of flight before returning to baseline level. Blood flow showed reciprocal changes to pressure on orbital insertion. Cardiovascular system changes persisted into the second day of flight, with the signs of adaptation appearing on days 3-5.

  9. Plant adaptation or acclimation to rising CO2 ? Insight from first multigenerational RNA-Seq transcriptome.

    PubMed

    Watson-Lazowski, Alexander; Lin, Yunan; Miglietta, Franco; Edwards, Richard J; Chapman, Mark A; Taylor, Gail

    2016-11-01

    Atmospheric carbon dioxide (CO 2 ) directly determines the rate of plant photosynthesis and indirectly effects plant productivity and fitness and may therefore act as a selective pressure driving evolution, but evidence to support this contention is sparse. Using Plantago lanceolata L. seed collected from a naturally high CO 2 spring and adjacent ambient CO 2 control site, we investigated multigenerational response to future, elevated atmospheric CO 2 . Plants were grown in either ambient or elevated CO 2 (700 μmol mol -1 ), enabling for the first time, characterization of the functional and population genomics of plant acclimation and adaptation to elevated CO 2 . This revealed that spring and control plants differed significantly in phenotypic plasticity for traits underpinning fitness including above-ground biomass, leaf size, epidermal cell size and number and stomatal density and index. Gene expression responses to elevated CO 2 (acclimation) were modest [33-131 genes differentially expressed (DE)], whilst those between control and spring plants (adaptation) were considerably larger (689-853 DE genes). In contrast, population genomic analysis showed that genetic differentiation between spring and control plants was close to zero, with no fixed differences, suggesting that plants are adapted to their native CO 2 environment at the level of gene expression. An unusual phenotype of increased stomatal index in spring but not control plants in elevated CO 2 correlated with altered expression of stomatal patterning genes between spring and control plants for three loci (YODA, CDKB1;1 and SCRM2) and between ambient and elevated CO 2 for four loci (ER, YODA, MYB88 and BCA1). We propose that the two positive regulators of stomatal number (SCRM2) and CDKB1;1 when upregulated act as key controllers of stomatal adaptation to elevated CO 2 . Combined with significant transcriptome reprogramming of photosynthetic and dark respiration and enhanced growth in spring plants, we have identified the potential basis of plant adaptation to high CO 2 likely to occur over coming decades. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  10. Effect of gender on training-induced vascular remodeling in SHR.

    PubMed

    Amaral, S L; Michelini, L C

    2011-09-01

    There is accumulating evidence that physical inactivity, associated with the modern sedentary lifestyle, is a major determinant of hypertension. It represents the most important modifiable risk factor for cardiovascular diseases, which are the leading cause of morbidity and mortality for both men and women. In addition to involving sympathetic overactivity that alters hemodynamic parameters, hypertension is accompanied by several abnormalities in the skeletal muscle circulation including vessel rarefaction and increased arteriole wall-to-lumen ratio, which contribute to increased total peripheral resistance. Low-intensity aerobic training is a promising tool for the prevention, treatment and control of high blood pressure, but its efficacy may differ between men and women and between male and female animals. This review focuses on peripheral training-induced adaptations that contribute to a blood pressure-lowering effect, with special attention to differential responses in male and female spontaneously hypertensive rats (SHR). Heart, diaphragm and skeletal muscle arterioles (but not kidney arterioles) undergo eutrophic outward remodeling in trained male SHR, which contributed to a reduction of peripheral resistance and to a pressure fall. In contrast, trained female SHR showed no change in arteriole wall-to-lumen ratio and no pressure fall. On the other hand, training-induced adaptive changes in capillaries and venules (increased density) were similar in male and female SHR, supporting a similar hyperemic response to exercise.

  11. Numerical investigation of unsteady cavitation around a NACA 66 hydrofoil using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Hidalgo, V. H.; Luo, X. W.; Escaler, X.; Ji, J.; Aguinaga, A.

    2014-03-01

    The prediction and control of cavitation damage in pumps, propellers, hydro turbines and fluid machinery in general is necessary during the design stage. The present paper deals with a numerical investigation of unsteady cloud cavitation around a NACA 66 hydrofoil. The current study is focused on understanding the dynamic pressures generated during the cavity collapses as a fundamental characteristic in cavitation erosion. A 2D and 3D unsteady flow simulation has been carried out using OpenFOAM. Then, Paraview and Python programming language have been used to characterize dynamic pressure field. Adapted Large Eddy Simulation (LES) and Zwart cavitation model have been implemented to improve the analysis of cloud motion and to visualize the bubble expansions. Additional results also confirm the correlation between cavity formation and generated pressures.

  12. Two ways to feel the pressure: an endothelial Ca(2+) entry channel with dual mechanosensitivity.

    PubMed

    Groschner, Klaus

    2002-01-01

    One impressive function of the vascular endothelium is its ability to adjust the release of vasoactive mediators such as NO and PGI(2) almost instantaneously to changes in blood flow or blood pressure. Besides this fast feedback response to hemodynamic alterations, the endothelium is subject to long-term adaptations that are crucial for prevention of pathological processes such as atherogenesis. Among the various signals that are sensed by endothelial cells, mechanical forces which arise from pulsatile blood flow are probably most important for fast as well as long-term control of blood vessel function by the endothelium.

  13. Advanced instrumentation for research in diving and hyperbaric medicine.

    PubMed

    Sieber, Arne; L'Abbate, Antonio; Kuch, Benjamin; Wagner, Matthias; Benassi, Antonio; Passera, Mirko; Bedini, Remo

    2010-01-01

    Improving the safety of diving and increasing knowledge about the adaptation of the human body to underwater and hyperbaric environment require specifically developed underwater instrumentation for physiological measurements. In fact, none of the routine clinical devices for health control is suitable for in-water and/or under-pressure operation. The present paper addresses novel technological acquisitions and the development of three dedicated devices: * an underwater data logger for recording O2 saturation (reflective pulsoxymetry), two-channel ECG, depth and temperature; * an underwater blood pressure meter based on the oscillometric method; and * an underwater echography system. Moreover, examples of recordings are presented and discussed.

  14. Computational Network Model Prediction of Hemodynamic Alterations Due to Arteriolar Remodeling in Interval Sprint Trained Skeletal Muscle

    PubMed Central

    BINDER, KYLE W.; MURFEE, WALTER L.; SONG, JI; LAUGHLIN, M. HAROLD; PRICE, RICHARD J.

    2009-01-01

    Objectives Exercise training is known to enhance skeletal muscle blood flow capacity, with high-intensity interval sprint training (IST) primarily affecting muscles with a high proportion of fast twitch glycolytic fibers. The objective of this study was to determine the relative contributions of new arteriole formation and lumenal arteriolar remodeling to enhanced flow capacity and the impact of these adaptations on local microvascular hemodynamics deep within the muscle. Methods The authors studied arteriolar adaptation in the white/mixed-fiber portion of gastrocnemius muscles of IST (6 bouts of running/day; 2.5 min/bout; 60 m/min speed; 15% grade; 4.5 min rest between bouts; 5 training days/wk; 10 wks total) and sedentary (SED) control rats using whole-muscle Microfil casts. Dimensional and topological data were then used to construct a series of computational hemodynamic network models that incorporated physiological red blood cell distributions and hematocrit and diameter dependent apparent viscosities. Results In comparison to SED controls, IST elicited a significant increase in arterioles/order in the 3A through 6A generations. Predicted IST and SED flows through the 2A generation agreed closely with in vivo measurements made in a previous study, illustrating the accuracy of the model. IST shifted the bulk of the pressure drop across the network from the 3As to the 4As and 5As, and flow capacity increased from 0.7 mL/min in SED to 1.5 mL/min in IST when a driving pressure of 80 mmHg was applied. Conclusions The primary adaptation to IST is an increase in arterioles in the 3A through 6A generations, which, in turn, creates an approximate doubling of flow capacity and a deeper penetration of high pressure into the arteriolar network. PMID:17454671

  15. A theoretical stochastic control framework for adapting radiotherapy to hypoxia

    NASA Astrophysics Data System (ADS)

    Saberian, Fatemeh; Ghate, Archis; Kim, Minsun

    2016-10-01

    Hypoxia, that is, insufficient oxygen partial pressure, is a known cause of reduced radiosensitivity in solid tumors, and especially in head-and-neck tumors. It is thus believed to adversely affect the outcome of fractionated radiotherapy. Oxygen partial pressure varies spatially and temporally over the treatment course and exhibits inter-patient and intra-tumor variation. Emerging advances in non-invasive functional imaging offer the future possibility of adapting radiotherapy plans to this uncertain spatiotemporal evolution of hypoxia over the treatment course. We study the potential benefits of such adaptive planning via a theoretical stochastic control framework using computer-simulated evolution of hypoxia on computer-generated test cases in head-and-neck cancer. The exact solution of the resulting control problem is computationally intractable. We develop an approximation algorithm, called certainty equivalent control, that calls for the solution of a sequence of convex programs over the treatment course; dose-volume constraints are handled using a simple constraint generation method. These convex programs are solved using an interior point algorithm with a logarithmic barrier via Newton’s method and backtracking line search. Convexity of various formulations in this paper is guaranteed by a sufficient condition on radiobiological tumor-response parameters. This condition is expected to hold for head-and-neck tumors and for other similarly responding tumors where the linear dose-response parameter is larger than the quadratic dose-response parameter. We perform numerical experiments on four test cases by using a first-order vector autoregressive process with exponential and rational-quadratic covariance functions from the spatiotemporal statistics literature to simulate the evolution of hypoxia. Our results suggest that dynamic planning could lead to a considerable improvement in the number of tumor cells remaining at the end of the treatment course. Through these simulations, we also gain insights into when and why dynamic planning is likely to yield the largest benefits.

  16. Effect of chronic mitral valve damage on activity of pulmonary rapidly adapting receptors in the rabbit

    PubMed Central

    Gunawardena, S; Bravo, E; Kappagoda, C T

    1998-01-01

    The effects of acute pulmonary venous congestion on the activity of rapidly adapting receptors (RARs) were determined in intact (control and sham-operated) rabbits and in rabbits 6 and 12 weeks after surgical destruction of the mitral valve.Destruction of the mitral valve increased the mean left atrial pressure (LAP) by approximately 2·6 and 3·8 mmHg, 6 and 12 weeks after surgery, respectively. These changes were accompanied by significant increases in left ventricular weight. The effect of acute increments in LAP on RAR activity was examined against this background of chronic pulmonary venous congestion.In intact control and sham-operated animals RAR activity increased from 48·8 ± 0·9 to 83·5 ± 3·6 and 121·1 ± 4·7 action potentials min−1 when the LAP was raised by 5 and 10 mmHg, respectively, above control values. Six weeks after surgery only 40 % of RARs were activated in this way.In animals maintained for 12 weeks after surgery, RAR activity at LAPs of 6·6 ± 1·2 (control), 11·6 ± 1·2 and 16·6 ± 1·2 (mmHg) were 35·5 ± 2·3, 33·8 ± 14·4 and 34·0 ± 3·4 action potentials min−1, respectively. These changes were statistically not significant.Slowly adapting receptors (SARs) in the lung showed a small but statistically significant increase in activity when the left atrial pressure was acutely elevated in both intact and mitral valve damaged animals.It is concluded that chronic pulmonary venous congestion resulting from destruction of the mitral valve attenuates the ability of RARs to respond to acute moderate elevations of LAP. PMID:9679165

  17. Design of Life Extending Controls Using Nonlinear Parameter Optimization

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok

    1998-01-01

    This report presents the conceptual development of a life extending control system where the objective is to achieve high performance and structural durability of the plant. A life extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel and oxidizer turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. This design approach makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life extending controller module to augment a conventional performance controller of a rocket engine. The nonlinear aspect of the design is achieved using nonlinear parameter optimization of a prescribed control structure.

  18. [Adaptation of control mechanisms involved in upright undisturbed stance maintenance during prolonged darkness].

    PubMed

    Rougier, P

    2003-04-01

    To assess to which extent the non visual somato-sensorial information may, through a recalibration process, induce a reorganisation by the central nervous system to control undisturbed upright stance. Ten healthy adults were placed in complete darkness for a 24 min period. Their postural performance was recorded through a force platform on which they were required to stand still at regular intervals. Centre of Pressure (CP) displacements, recorded from the platform, were modelled as fractional brownian motion. Through this analysis, one may objectively assess from which distance and for how long the corrective process is initiated with the aim of slowing and retrace its steps. In addition, the degree to which the CP trajectories are successively controlled was determined. Once in complete darkness, an increase of the mean time intervals (Delta(t)) before the corrective process intervenes was observed, the effect being mostly significant for the mediolateral direction. In parallel, the mean distances covered at this Delta(t) were slightly affected for both mediolateral and anteroposterior directions. Lastly, the degree to which the CP trajectories are controlled tended to decrease. These data suggest a reorganisation of the control mechanisms called into play for maintaining an undisturbed upright stance, thus implying participation of the central nervous system. This short-term adaptation is discussed on the basis of our knowledge of long term adaptations previously observed in blind individuals, and also in a rehabilitation perspective.

  19. KSC-98pc151

    NASA Image and Video Library

    1998-01-14

    The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved past a Pressurized Mating Adapter in Kennedy Space Center’s Space Station Processing Facility (SSPF) toward the workstand where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF

  20. Research on Rapid Initial Adaption to the Environment of a Plateau.

    PubMed

    Wang, Bin Hua; Cao, Zheng Tao; Wu, Feng; Yang, Jun; Liu, Yuan Yuan; Yu, Meng Sun

    2016-09-01

    We designed two types of pre-adaption plans for this study. One was a pre-adaption training with progressive intermittent hypoxia, with a constant lower pressure oxygen tank used in the plain before arriving at the plateau (PG). The other was by progressively increasing the time of exposure to hypoxia with oxygen supplied in stages after radical plateau (RG). By testing the blood oxygen saturation (SpO2), heart rate (HR), and quality of sleep after arriving at the 3800 m high plateau, results showed that the pre-acclimatization and radical groups performed better than the control group (CG). Both strategies were equivalent in terms of effects and principles in providing more flexible choices for acclimatization. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. A New Type of Motor: Pneumatic Step Motor

    PubMed Central

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2011-01-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  2. A multi-scale residual-based anti-hourglass control for compatible staggered Lagrangian hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucharik, M.; Scovazzi, Guglielmo; Shashkov, Mikhail Jurievich

    Hourglassing is a well-known pathological numerical artifact affecting the robustness and accuracy of Lagrangian methods. There exist a large number of hourglass control/suppression strategies. In the community of the staggered compatible Lagrangian methods, the approach of sub-zonal pressure forces is among the most widely used. However, this approach is known to add numerical strength to the solution, which can cause potential problems in certain types of simulations, for instance in simulations of various instabilities. To avoid this complication, we have adapted the multi-scale residual-based stabilization typically used in the finite element approach for staggered compatible framework. In this study, wemore » describe two discretizations of the new approach and demonstrate their properties and compare with the method of sub-zonal pressure forces on selected numerical problems.« less

  3. Diet and Blood Pressure Control in Chinese Canadians: Cultural Considerations.

    PubMed

    Zou, Ping

    2017-04-01

    Hypertension is highly prevalent in Chinese Canadians and diet has been identified as an important modifiable risk factor for hypertension. The current anti-hypertensive dietary recommendations in hypertension care guidelines lack examination of cultural factors, are not culturally sensitive to ethnic populations, and cannot be translated to Chinese Canadian populations without cultural considerations. Guided by Leininger's Sunrise Model of culture care theory, this paper investigates how cultural factors impact Chinese Canadians' dietary practice. It is proposed that English language proficiency, health literacy, traditional Chinese diet, migration and acculturation, and Traditional Chinese Medicine influence Chinese Canadians' dietary practices. A culturally congruent nursing intervention should be established and tailored according to related cultural factors to facilitate Chinese Canadians' blood pressure control. In addition, further study is needed to test the model adapted from Sunrise Model and understand its mechanism.

  4. A multi-scale residual-based anti-hourglass control for compatible staggered Lagrangian hydrodynamics

    DOE PAGES

    Kucharik, M.; Scovazzi, Guglielmo; Shashkov, Mikhail Jurievich; ...

    2017-10-28

    Hourglassing is a well-known pathological numerical artifact affecting the robustness and accuracy of Lagrangian methods. There exist a large number of hourglass control/suppression strategies. In the community of the staggered compatible Lagrangian methods, the approach of sub-zonal pressure forces is among the most widely used. However, this approach is known to add numerical strength to the solution, which can cause potential problems in certain types of simulations, for instance in simulations of various instabilities. To avoid this complication, we have adapted the multi-scale residual-based stabilization typically used in the finite element approach for staggered compatible framework. In this study, wemore » describe two discretizations of the new approach and demonstrate their properties and compare with the method of sub-zonal pressure forces on selected numerical problems.« less

  5. Optical Measurement Technology For Aluminium Extrusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Per Thomas; Willa-Hansen, Arnfinn; Stoeren, Sigurd

    2007-04-07

    Optical measurement techniques such as laser scanning, structured light scanning and photogrammetry can be used for accurate shape control for aluminum extrusion and downstream processes. The paper presents the fundamentals of optical shape measurement. Furthermore, it focuses on how full-field in- and off-line shape measurement during pure-bending of aluminum extrusions has been performed with stripe projection (structured light) using white light. Full field shape measurement is difficult to implement industrially, but is very useful as a laboratory tool. For example, it has been clearly shown how moderate internal air pressure (less than 5 bars) can significantly reduce undesirable cross-sectional shapemore » distortions during pure bending, and how buckling of the compressive flange occurs at an early stage. Finally, a stretch-bending set-up with adaptive shape control using internal gas pressure and optical techniques is presented.« less

  6. Enhancement of gold recovery using bioleaching from gold concentrate

    NASA Astrophysics Data System (ADS)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  7. Pressure mapping to assess seated pressure distributions and the potential risk for skin ulceration in a population of sledge hockey players and control subjects.

    PubMed

    Berthold, Justin; Dicianno, Brad E; Cooper, Rory A

    2013-09-01

    Ice sledge (or sled) hockey is a fast-paced sport that enables individuals with physical disabilities to play ice hockey. As the attraction to the sport continues to rise, the need for developing better equipment and installing preventative measures for injury will become increasingly important. One such injury includes skin pressure ulceration. A total of 26 subjects including active controls and those with spinal cord injury, multiple sclerosis, limb amputation and traumatic brain injury were studied using a pressure mapping device at the 2012 National Disabled Veterans Winter Sports Clinic to determine the risk for skin pressure ulceration and the impact of cushioning and knee angle positioning on seated pressure distributions. Sledge hockey athletes may be at increased risk for skin pressure ulceration based on seated pressure distribution data. This experiment failed to demonstrate a benefit for specialty cushioning in either group. Interestingly, knee angle positioning, particularly, knee extension significantly lowered the average seated pressures. When considering the risk for skin pressure ulceration, knee angle positioning is of particular clinical importance. More research is warranted, specifically targeting novel cushion and sledge designs and larger groups of individuals with sensory loss and severe spinal deformities. Implications for Rehabilitation Ice sledge (or sled) hockey is a fast-paced and growing adaptive sport played at the Paralympic level. Rehabilitation professionals should consider the potential for skin ulceration in this population of athletes. The effects of cushioning used in the sledge design warrants further investigation. Knee angle positioning; particularly, knee extension significantly lowers seated pressures and may reduce the potential for skin ulceration.

  8. Altered baroreflex control of forearm vascular resistance during simulated microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Doerr, D. F.; Vernikos, J.

    1994-01-01

    Reflex peripheral vasoconstriction induced by activation of cardiopulmonary baroreceptors in response to reduced central venous pressure (CVP) is a basic mechanism for elevating systemic vascular resistance and defending arterial blood pressure during orthostatically-induced reductions in cardiac filling and output. The sensitivity of the cardiopulmonary baroreflex response [defined as the slope of the relationship between changes in forearm vascular resistance (FVR) and CVP] and the resultant vasoconstriction are closely and inversely associated with the amount of circulating blood volume. Thus, a high-gain FVR response will be elicited by a hypovolemic state. Exposure to microgravity during spaceflight results in reduced plasma volume. It is therefore reasonable to expect that the FVR response to cardiopulmonary baroreceptor unloading would be accentuated following adaptation to microgravity. Such data could provide better insight about the physiological mechanisms underlying alterations in blood pressure control following spaceflight. We therefore exposed eleven men to 6 degrees head-down bedrest for 7 days and measured specific hemodynamic responses to low levels of the lower body negative pressure to determine if there are alterations in cardiopulmonary baroreceptor stimulus-FVR reflex response relationship during prolonged exposure to an analog of microgravity.

  9. Blood Pressure Regulation: Every Adaptation is an Integration?

    PubMed Central

    Joyner, Michael J.; Limberg, Jacqueline K.

    2013-01-01

    This focused review serves to explore relevant issues in regard to blood pressure regulation and by doing so, provides the initial stimulus paper for the Thematic Review series “Blood Pressure Regulation” to be published in the European Journal of Applied Physiology over the coming months. In this introduction, we highlight how variable normal blood pressure can be and challenge the reader to take another look at some key concepts related to blood pressure regulation. We point out that there is frequently an underappreciated balance between peripheral vasodilation and systemic blood pressure regulation and ask the question: Are changes in blood pressure, in effect, reasonable and integrated adaptations to the physiological challenge at hand? We conclude with the idea that blood pressure regulatory systems are both flexible and redundant; ensuring a wide variety of activities associated with life can be accompanied by a perfusion pressure that can serve multiple masters. PMID:23558925

  10. Reduction of hip joint reaction force via medio-lateral foot center of pressure manipulation in bilateral hip osteoarthritis patients.

    PubMed

    Solomonow-Avnon, Deborah; Haim, Amir; Levin, Daniel; Elboim-Gabyzon, Michal; Rozen, Nimrod; Peled, Eli; Wolf, Alon

    2016-10-01

    Loading/excessive loading of the hip joint has been linked to onset and progression of hip osteoarthritis. Footwear-generated biomechanical manipulation in the frontal plane has been previously shown in a cohort of healthy subjects to cause a specific gait adaption when the foot center of pressure trajectory was shifted medially, which thereby significantly reduced hip joint reaction force. The objective of the present study was to validate these results in a cohort of female bilateral hip osteoarthritis patients. Sixteen patients underwent gait analysis while using a footworn biomechanical device, allowing controlled foot center of pressure manipulation, in three para-sagittal configurations: medial, lateral, and neutral. Hip osteoarthritis patients exhibited similar results to those observed in healthy subjects in that a medial center of pressure led to an increase in inter-maleolar distance while step width (i.e., distance between right and left foot center of pressure) remained constant. This adaptation, which we speculate subjects adopt to maintain base of support, was associated with significantly greater hip abduction, significantly decreased hip adduction moment, and significantly reduced joint reaction force compared to the neutral and lateral configurations. Recommendations for treatment of hip osteoarthritis emphasize reduction of loads on the pathological joint(s) during daily activities and especially in gait. Our results show that a medially deviated center of pressure causes a reduction in hip joint reaction force. The present study does not prove, but rather suggests, clinical significance, and further investigation is required to assess clinical implications. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1762-1771, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. The genome landscape of indigenous African cattle.

    PubMed

    Kim, Jaemin; Hanotte, Olivier; Mwai, Okeyo Ally; Dessie, Tadelle; Bashir, Salim; Diallo, Boubacar; Agaba, Morris; Kim, Kwondo; Kwak, Woori; Sung, Samsun; Seo, Minseok; Jeong, Hyeonsoo; Kwon, Taehyung; Taye, Mengistie; Song, Ki-Duk; Lim, Dajeong; Cho, Seoae; Lee, Hyun-Jeong; Yoon, Duhak; Oh, Sung Jong; Kemp, Stephen; Lee, Hak-Kyo; Kim, Heebal

    2017-02-20

    The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems. We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/or pathways controlling anemia and feeding behavior in the trypanotolerant N'Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds. Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent.

  12. Postural control and perceptive configuration: influence of expertise in gymnastics.

    PubMed

    Gautier, Geoffroy; Thouvarecq, Régis; Vuillerme, Nicolas

    2008-07-01

    The purpose of the present experiment was to investigate how postural adaptations to the perceptive configuration are modified by specific gymnastics experience. Two groups, one expert in gymnastics and the other non-expert, had to maintain the erected posture while optical flow was imposed as follows: 20s motionless, 30s approaching motion, and 20s motionless. The centre of pressure and head displacements were analysed. The postural adaptations were characterised by the variability of movements for the flow conditions and by the postural latencies for the flow transitions. The results showed that the gymnasts tended to minimise their body movements and were more stationary (head) but not more stable (COP) than the non-gymnasts. These results suggest that gymnastics experience develops a specific postural adaptability relative to the perceptive configuration. We conclude that a specific postural experience could be considered as an intrinsic constraint, which leads to modification in the patterns of functional adaptation in the perceptive motor space.

  13. Climate Change and the Los Alamos National Laboratory. The Adaptation Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kimberly M.; Hjeresen, Dennis; Silverman, Josh

    2015-02-01

    The Los Alamos National Laboratory (LANL) has been adapting to climate change related impacts that have been occurring on decadal time scales. The region where LANL is located has been subject to a cascade of climate related impacts: drought, devastating wildfires, and historic flooding events. Instead of buckling under the pressure, LANL and the surrounding communities have integrated climate change mitigation strategies into their daily operations and long-term plans by increasing coordination and communication between the Federal, State, and local agencies in the region, identifying and aggressively managing forested areas in need of near-term attention, addressing flood control and retentionmore » issues, and more.« less

  14. A modular approach to adaptive structures.

    PubMed

    Pagitz, Markus; Pagitz, Manuel; Hühne, Christian

    2014-10-07

    A remarkable property of nastic, shape changing plants is their complete fusion between actuators and structure. This is achieved by combining a large number of cells whose geometry, internal pressures and material properties are optimized for a given set of target shapes and stiffness requirements. An advantage of such a fusion is that cell walls are prestressed by cell pressures which increases, decreases the overall structural stiffness, weight. Inspired by the nastic movement of plants, Pagitz et al (2012 Bioinspir. Biomim. 7) published a novel concept for pressure actuated cellular structures. This article extends previous work by introducing a modular approach to adaptive structures. An algorithm that breaks down any continuous target shapes into a small number of standardized modules is presented. Furthermore it is shown how cytoskeletons within each cell enhance the properties of adaptive modules. An adaptive passenger seat and an aircrafts leading, trailing edge is used to demonstrate the potential of a modular approach.

  15. Pneumatic artificial muscle actuators for compliant robotic manipulators

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan Michael

    Robotic systems are increasingly being utilized in applications that require interaction with humans. In order to enable safe physical human-robot interaction, light weight and compliant manipulation are desirable. These requirements are problematic for many conventional actuation systems, which are often heavy, and typically use high stiffness to achieve high performance, leading to large impact forces upon collision. However, pneumatic artificial muscles (PAMs) are actuators that can satisfy these safety requirements while offering power-to-weight ratios comparable to those of conventional actuators. PAMs are extremely lightweight actuators that produce force in response to pressurization. These muscles demonstrate natural compliance, but have a nonlinear force-contraction profile that complicates modeling and control. This body of research presents solutions to the challenges associated with the implementation of PAMs as actuators in robotic manipulators, particularly with regard to modeling, design, and control. An existing PAM force balance model was modified to incorporate elliptic end geometry and a hyper-elastic constitutive relationship, dramatically improving predictions of PAM behavior at high contraction. Utilizing this improved model, two proof-of-concept PAM-driven manipulators were designed and constructed; design features included parallel placement of actuators and a tendon-link joint design. Genetic algorithm search heuristics were employed to determine an optimal joint geometry; allowing a manipulator to achieve a desired torque profile while minimizing the required PAM pressure. Performance of the manipulators was evaluated in both simulation and experiment employing various linear and nonlinear control strategies. These included output feedback techniques, such as proportional-integral-derivative (PID) and fuzzy logic, a model-based control for computed torque, and more advanced controllers, such as sliding mode, adaptive sliding mode, and adaptive neural network control. Results demonstrated the benefits of an accurate model in model-based control, and the advantages of adaptive neural network control when a model is unavailable or variations in payload are expected. Lastly, a variable recruitment strategy was applied to a group of parallel muscles actuating a common joint. Increased manipulator efficiency was observed when fewer PAMs were activated, justifying the use of variable recruitment strategies. Overall, this research demonstrates the benefits of pneumatic artificial muscles as actuators in robotics applications. It demonstrates that PAM-based manipulators can be well-modeled and can achieve high tracking accuracy over a wide range of payloads and inputs while maintaining natural compliance.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basher, A.M.H.

    Poor control of steam generator water level of a nuclear power plant may lead to frequent nuclear reactor shutdowns. These shutdowns are more common at low power where the plant exhibits strong non-minimum phase characteristics and flow measurements at low power are unreliable in many instances. There is need to investigate this problem and systematically design a controller for water level regulation. This work is concerned with the study and the design of a suitable controller for a U-Tube Steam Generator (UTSG) of a Pressurized Water Reactor (PWR) which has time varying dynamics. The controller should be suitable for themore » water level control of UTSG without manual operation from start-up to full load transient condition. Some preliminary simulation results are presented that demonstrate the effectiveness of the proposed controller. The development of the complete control algorithm includes components such as robust output tracking, and adaptively estimating both the system parameters and state variables simultaneously. At the present time all these components are not completed due to time constraints. A robust tracking component of the controller for water level control is developed and its effectiveness on the parameter variations is demonstrated in this study. The results appear encouraging and they are only preliminary. Additional work is warranted to resolve other issues such as robust adaptive estimation.« less

  17. mTOR-INDEPENDENT INDUCTION OF AUTOPHAGY IN TRABECULAR MESHWORK CELLS SUBJECTED TO BIAXIAL STRETCH

    PubMed Central

    Porter, Kristine M.; Jeyabalan, Nallathambi; Liton, Paloma B.

    2014-01-01

    The trabecular meshwork (TM) is part of a complex tissue that controls the exit of aqueous humor from the anterior chamber of the eye, and therefore helps maintaining intraocular pressure (IOP). Because of variations in IOP with changing pressure gradients and fluid movement, the TM and its contained cells undergo morphological deformations, resulting in distention and stretching. It is therefore essential for TM cells to continuously detect and respond to these mechanical forces and adapt their physiology to maintain proper cellular function and protect against mechanical injury. Here we demonstrate the activation of autophagy, a pro-survival pathway responsible for the degradation of long-lived proteins and organelles, in TM cells when subjected to biaxial static stretch (20 % elongation), as well as in high-pressure perfused eyes (30 mm Hg). Morphological and biochemical markers for autophagy found in the stretched cells include elevated LC3-II levels, increased autophagic flux, and the presence of autophagic figures in electron micrographs. Furthermore, our results indicate that the stretch-induced autophagy in TM cells occurs in an MTOR- and BAG3-independent manner. We hypothesize that activation of autophagy is part of the physiological response that allows TM cells to cope and adapt to mechanical forces. PMID:24583119

  18. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes

    PubMed Central

    Koch, Edouard; Rosenbaum, David; Brolly, Aurélie; Sahel, José-Alain; Chaumet-Riffaud, Philippe; Girerd, Xavier; Rossant, Florence; Paques, Michel

    2014-01-01

    Objectives: The wall-to-lumen ratio (WLR) of retinal arteries is a recognized surrogate of end-organ damage due to aging and/or arterial hypertension. However, parietal morphometry remains difficult to assess in vivo. Recently, it was shown that adaptive optics retinal imaging can resolve parietal structures of retinal arterioles in humans in vivo. Here, using adaptive optics retinal imaging, we investigated the variations of parietal thickness of small retinal arteries with blood pressure and focal vascular damage. Methods: Adaptive optics imaging of the superotemporal retinal artery was done in 49 treatment-naive individuals [mean age (±SD) 44.9 years (±14); mean systolic pressure 132 mmHg (±22)]. Semi-automated segmentation allowed extracting parietal thickness and lumen diameter. In a distinct cohort, adaptive optics images of arteriovenous nicking (AVN; n = 12) and focal arteriolar narrowing (FAN; n = 10) were also analyzed qualitatively and quantitatively. Results: In the cohort of treatment-naive individuals, by multiple regression taking into account age, body mass index, mean, systolic, diastolic and pulse blood pressure, the WLR was found positively correlated to mean blood pressure and age which in combination accounted for 43% of the variability of WLR. In the cohort of patients with focal vascular damage, neither FANs or AVNs showed evidence of parietal growth; instead, at sites of FANs, decreased outer diameter suggestive of vasoconstriction was consistently found, while at sites of AVNs venous narrowing could be seen in the absence of arteriovenous contact. Conclusion: High resolution imaging of retinal vessels by adaptive optics allows quantitative microvascular phenotyping, which may contribute to a better understanding and management of hypertensive retinopathy. PMID:24406779

  19. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes.

    PubMed

    Koch, Edouard; Rosenbaum, David; Brolly, Aurélie; Sahel, José-Alain; Chaumet-Riffaud, Philippe; Girerd, Xavier; Rossant, Florence; Paques, Michel

    2014-04-01

    The wall-to-lumen ratio (WLR) of retinal arteries is a recognized surrogate of end-organ damage due to aging and/or arterial hypertension. However, parietal morphometry remains difficult to assess in vivo. Recently, it was shown that adaptive optics retinal imaging can resolve parietal structures of retinal arterioles in humans in vivo. Here, using adaptive optics retinal imaging, we investigated the variations of parietal thickness of small retinal arteries with blood pressure and focal vascular damage. Adaptive optics imaging of the superotemporal retinal artery was done in 49 treatment-naive individuals [mean age (±SD) 44.9 years (±14); mean systolic pressure 132  mmHg (±22)]. Semi-automated segmentation allowed extracting parietal thickness and lumen diameter. In a distinct cohort, adaptive optics images of arteriovenous nicking (AVN; n = 12) and focal arteriolar narrowing (FAN; n = 10) were also analyzed qualitatively and quantitatively. In the cohort of treatment-naive individuals, by multiple regression taking into account age, body mass index, mean, systolic, diastolic and pulse blood pressure, the WLR was found positively correlated to mean blood pressure and age which in combination accounted for 43% of the variability of WLR. In the cohort of patients with focal vascular damage, neither FANs or AVNs showed evidence of parietal growth; instead, at sites of FANs, decreased outer diameter suggestive of vasoconstriction was consistently found, while at sites of AVNs venous narrowing could be seen in the absence of arteriovenous contact. High resolution imaging of retinal vessels by adaptive optics allows quantitative microvascular phenotyping, which may contribute to a better understanding and management of hypertensive retinopathy.

  20. Artificial Metamorphosis: Evolutionary Design of Transforming, Soft-Bodied Robots.

    PubMed

    Joachimczak, Michał; Suzuki, Reiji; Arita, Takaya

    2016-01-01

    We show how the concept of metamorphosis, together with a biologically inspired model of multicellular development, can be used to evolve soft-bodied robots that are adapted to two very different tasks, such as being able to move in an aquatic and in a terrestrial environment. Each evolved solution defines two pairs of morphologies and controllers, together with a process of transforming one pair into the other. Animats develop from a single cell and grow through cellular divisions and deaths until they reach an initial larval form adapted to a first environment. To obtain the adult form adapted to a second environment, the larva undergoes metamorphosis, during which new cells are added or removed and its controller is modified. Importantly, our approach assumes nothing about what morphologies or methods of locomotion are preferred. Instead, it successfully searches the vast space of possible designs and comes up with complex, surprising, lifelike solutions that are reminiscent of amphibian metamorphosis. We analyze obtained solutions and investigate whether the morphological changes during metamorphosis are indeed adaptive. We then compare the effectiveness of three different types of selective pressures used to evolve metamorphic individuals. Finally, we investigate potential advantages of using metamorphosis to automatically produce soft-bodied designs by comparing the performance of metamorphic individuals with their specialized counterparts and designs that are robust to both environments.

  1. Design of a Soft Robot with Multiple Motion Patterns Using Soft Pneumatic Actuators

    NASA Astrophysics Data System (ADS)

    Miao, Yu; Dong, Wei; Du, Zhijiang

    2017-11-01

    Soft robots are made of soft materials and have good flexibility and infinite degrees of freedom in theory. These properties enable soft robots to work in narrow space and adapt to external environment. In this paper, a 2-DOF soft pneumatic actuator is introduced, with two chambers symmetrically distributed on both sides and a jamming cylinder along the axis. Fibers are used to constrain the expansion of the soft actuator. Experiments are carried out to test the performance of the soft actuator, including bending and elongation characteristics. A soft robot is designed and fabricated by connecting four soft pneumatic actuators to a 3D-printed board. The soft robotic system is then established. The pneumatic circuit is built by pumps and solenoid valves. The control system is based on the control board Arduino Mega 2560. Relay modules are used to control valves and pressure sensors are used to measure pressure in the pneumatic circuit. Experiments are conducted to test the performance of the proposed soft robot.

  2. Adult obstructive sleep apnoea

    PubMed Central

    Jordan, Amy S.; McSharry, David G.; Malhotra, Atul

    2013-01-01

    Obstructive sleep apnoea is an increasingly common disorder of repeated upper airway collapse during sleep, which leads to oxygen desaturation and disrupted sleep. Symptoms include snoring, witnessed apnoeas, and sleepiness. Pathogenesis varies; predisposing factors include small upper airway lumen, unstable respiratory control, low arousal threshold, small lung volume, and dysfunctional upper airway dilator muscles. Risk factors include obesity, male sex, age, menopause, fluid retention, adenotonsillar hypertrophy, and smoking. Obstructive sleep apnoea causes sleepiness, road traffic accidents, and probably systemic hypertension. It has also been linked to myocardial infarction, congestive heart failure, stroke, and diabetes mellitus though not definitively. Continuous positive airway pressure is the treatment of choice, with adherence of 60–70%. Bi-level positive airway pressure or adaptive servo-ventilation can be used for patients who are intolerant to continuous positive airway pressure. Other treatments include dental devices, surgery, and weight loss. PMID:23910433

  3. Cardiovascular and Postural Control Interactions during Hypergravity: Effects on Cerebral Autoregulation in Males and Females

    NASA Astrophysics Data System (ADS)

    Goswami, Nandu; Blaber, Andrew; Bareille, Marie-Pierre; Beck, Arnaud; Avan, Paul; Bruner, Michelle; Hinghofer-Szalkay, Helmut

    2012-07-01

    Orthostatic intolerance remains a problem upon return to Earth from the microgravity environment of spaceflight. A variety of conditions including hypovolemia, cerebral vasoconstriction, cerebral or peripheral vascular disease, or cardiac arrhythmias may result in syncope if the person remains upright. Current research indicates that there is a greater dependence on visual and somatosensory information at the beginning of space flight with a decreased otolith gain during prolonged space flight (Herault et al., 2002). The goal of the research is to further our understanding of the fundamental adaptive homeostatic mechanisms involved in gravity related changes in cardiovascular and postural function. Cardiovascular, cerebrovascular, and postural sensory motor control systems in male and female participants before, during, and after exposure to graded levels of hyper-G were investigated. Hypotheses: 1) Activation of skeletal muscle pump will be directly related to the degree of orthostatic stress. 2) Simultaneous measurement of heart rate, blood pressure and postural sway will predict cardio-postural stability. Blood pressure and heart rate (means and variability), postural sway, center of pressure (COP), baroreflex function, calf blood flow, middle cerebral artery blood flow, non-invasive intracranial pressure measurements, and two-breath CO2 were measured. Results from the study will be used to provide an integrated insight into mechanisms of cardio-postural control and cerebral autoregulation, which are important aspects of human health in flights to Moon, Mars and distant planets.

  4. Simple adaptation of the Bridgman high pressure technique for use with liquid media

    NASA Astrophysics Data System (ADS)

    Colombier, E.; Braithwaite, D.

    2007-09-01

    We present a simple novel technique to adapt a standard Bridgman cell for the use of a liquid pressure transmitting medium. The technique has been implemented in a compact cell, able to fit in a commercial Quantum Design PPMS system, and would also be easily adaptable to extreme conditions of very low temperatures or high magnetic fields. Several media have been tested and a mix of fluorinert FC84:FC87 has been shown to produce a considerable improvement over the pressure conditions in the standard steatite solid medium, while allowing a relatively easy setup procedure. For optimized hydrostatic conditions, the success rate is about 80% and the maximum pressure achieved so far is 7.1GPa. Results are shown for the heavy fermion system YbAl3 and for NaV6O15, an insulator showing charge order.

  5. Adaption of the LHC cold mass cooling system to the requirements of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Kotnig, C.; Tavian, L.; Brenn, G.

    2017-12-01

    The cooling of the superconducting magnet cold masses with superfluid helium (He II) is a well-established concept successfully in operation for years in the LHC. Consequently, its application for the cooling of FCC magnets is an obvious option. The 12-kW heat loads distributed over 10-km long sectors not only require an adaption of the magnet bayonet heat exchangers but also present new challenges to the cryogenic plants, the distribution system and the control strategy. This paper recalls the basic LHC cooling concept with superfluid helium and defines the main parameters for the adaption to the FCC requirements. Pressure drop and hydrostatic head are developed in the distribution and pumping systems; their impact on the magnet temperature profile and the corresponding cooling efficiency is presented and compared for different distribution and pumping schemes.

  6. Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.

    2016-01-01

    Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.

  7. Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frinks, Neal T.

    2016-01-01

    Several improvements to the mixed-elementUSM3Ddiscretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.

  8. The PILI@Work Program: a translation of the diabetes prevention program to Native Hawaiian-serving worksites in Hawai'i.

    PubMed

    Townsend, Claire K M; Miyamoto, Robin E S; Antonio, Mapuana; Zhang, Guangxing; Paloma, Diane; Basques, DeAnna; Braun, Kathryn L; Kaholokula, Joseph Keawe'aimoku

    2016-06-01

    A previously translated Diabetes Prevention Program Lifestyle Intervention (DPP-LI) was adapted for delivery as a worksite-based intervention, called PILI@Work, to address obesity disparities in Native Hawaiians/Pacific Islanders. This study examined the effectiveness of PILI@Work and factors associated with weight loss at post-intervention. Overweight/obese employees of 15 Native Hawaiian-serving organizations received the 3-month component of PILI@Work. Assessments included weight, systolic/diastolic blood pressure, physical activity and functioning, fat intake, locus of weight control, social support, and self-efficacy. Weight, systolic/diastolic blood pressure, physical functioning, physical activity frequency, fat intake, family support, and eating self-efficacy improved from pre- to post-intervention. Regression analysis indicated that worksite type, decreased diastolic blood pressure, increased physical activity, and more internalized locus of weight control were significantly associated with 3-month weight loss. PILI@Work initiated weight loss in Native Hawaiians/Pacific Islanders. DPP-LI translated to worksite settings and tailored for specific populations can be effective for addressing obesity.

  9. Combined non-adaptive light and smell stimuli lowered blood pressure, reduced heart rate and reduced negative affect.

    PubMed

    Dong, Shan; Jacob, Tim J C

    2016-03-15

    Bright light therapy has been shown to have a positive impact on seasonal affective disorder (SAD), depression and anxiety. Smell has also has been shown to have effects on mood, stress, anxiety and depression. The objective of this study was to investigate the effect of the combination of light and smell in a non-adaptive cycle. Human subjects were given smell (lemon, lavender or peppermint) and light stimuli in a triangular wave (60scycle) for 15min. Blood pressure and heart rate were monitored before and after each session for 5 consecutive days and a Profile of Mood States (POMS) test was administered before and after the sensory stimulation on days 1, 3 and 5. The light-smell stimulus lowered blood pressure, both systolic and diastolic, and reduced heart rate for all odours compared to control. Of the two sensory stimuli, the odour stimulus contributed most to this effect. The different aromas in the light-smell combinations could be distinguished by their different effects on the mood factors with lemon inducing the greatest mood changes in Dejection-Depression, Anger-Hostility, Tension-Anxiety. In conclusion, combined light and smell stimulation was effective in lowering blood pressure, reducing heart rate and improving mood. The combination was more effective than either smell or light stimuli alone, suggesting that a light-smell combination would be a more robust and efficacious alternative treatment for depression, anxiety and stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Linking Metabolism, Elemental Cycles, and Environmental Conditions in the Deep Biosphere: Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High-Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Oliver, G. C. M.; Cario, A.; Rogers, K. L.

    2015-12-01

    A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global-scale biogeochemical models.

  11. Hybrid Enhanced Epidermal SpaceSuit Design Approaches

    NASA Astrophysics Data System (ADS)

    Jessup, Joseph M.

    A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.

  12. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface

    PubMed Central

    Fichtel, Katja; Logemann, Jörn; Fichtel, Jörg; Rullkötter, Jürgen; Cypionka, Heribert; Engelen, Bert

    2015-01-01

    Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301). The organism was isolated at 20°C and atmospheric pressure from ~61°C-warm sediments approximately 5 m above the sediment–basement interface. In comparison to standard laboratory conditions (20°C and 0.1 MPa), faster growth was recorded when incubated at in situ pressure and high temperature (45°C), while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure. PMID:26500624

  13. Dual Rate Adaptive Control for an Industrial Heat Supply Process Using Signal Compensation Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Tianyou; Jia, Yao; Wang, Hong

    The industrial heat supply process (HSP) is a highly nonlinear cascaded process which uses a steam valve opening as its control input, the steam flow-rate as its inner loop output and the supply water temperature as its outer loop output. The relationship between the heat exchange rate and the model parameters, such as steam density, entropy, and fouling correction factor and heat exchange efficiency are unknown and nonlinear. Moreover, these model parameters vary in line with steam pressure, ambient temperature and the residuals caused by the quality variations of the circulation water. When the steam pressure and the ambient temperaturemore » are of high values and are subjected to frequent external random disturbances, the supply water temperature and the steam flow-rate would interact with each other and fluctuate a lot. This is also true when the process exhibits unknown characteristic variations of the process dynamics caused by the unexpected changes of the heat exchange residuals. As a result, it is difficult to control the supply water temperature and the rates of changes of steam flow-rate well inside their targeted ranges. In this paper, a novel compensation signal based dual rate adaptive controller is developed by representing the unknown variations of dynamics as unmodeled dynamics. In the proposed controller design, such a compensation signal is constructed and added onto the control signal obtained from the linear deterministic model based feedback control design. Such a compensation signal aims at eliminating the unmodeled dynamics and the rate of changes of the currently sample unmodeled dynamics. A successful industrial application is carried out, where it has been shown that both the supply water temperature and the rate of the changes of the steam flow-rate can be controlled well inside their targeted ranges when the process is subjected to unknown variations of its dynamics.« less

  14. Exploring factors that influence the spread and sustainability of a dysphagia innovation: an instrumental case study.

    PubMed

    Ilott, Irene; Gerrish, Kate; Eltringham, Sabrina A; Taylor, Carolyn; Pownall, Sue

    2016-08-18

    Swallowing difficulties challenge patient safety due to the increased risk of malnutrition, dehydration and aspiration pneumonia. A theoretically driven study was undertaken to examine the spread and sustainability of a locally developed innovation that involved using the Inter-Professional Dysphagia Framework to structure education for the workforce. A conceptual framework with 3 spread strategies (hierarchical control, participatory adaptation and facilitated evolution) was blended with a processual approach to sustaining organisational change. The aim was to understand the processes, mechanism and outcomes associated with the spread and sustainability of this safety initiative. An instrumental case study, prospectively tracked a dysphagia innovation for 34 months (April 2011 to January 2014) in a large health care organisation in England. A train-the-trainer intervention (as participatory adaptation) was deployed on care pathways for stroke and fractured neck of femur. Data were collected at the organisational and clinical level through interviews (n = 30) and document review. The coding frame combined the processual approach with the spread mechanisms. Pre-determined outcomes included the number of staff trained about dysphagia and impact related to changes in practice. The features and processes associated with hierarchical control and participatory adaptation were identified. Leadership, critical junctures, temporality and making the innovation routine were aspects of hierarchical control. Participatory adaptation was evident on the care pathways through stakeholder responses, workload and resource pressures. Six of the 25 ward based trainers cascaded the dysphagia training. The expected outcomes were achieved when the top-down mandate (hierarchical control) was supplemented by local engagement and support (participatory adaptation). Frameworks for spread and sustainability were combined to create a 'small theory' that described the interventions, the processes and desired outcomes a priori. This novel methodological approach confirmed what is known about spread and sustainability, highlighted the particularity of change and offered new insights into the factors associated with hierarchical control and participatory adaptation. The findings illustrate the dualities of organisational change as universal and context specific; as particular and amendable to theoretical generalisation. Appreciating these dualities may contribute to understanding why many innovations fail to become routine.

  15. A Robust Design Methodology for Optimal Microscale Secondary Flow Control in Compact Inlet Diffusers

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Keller, Dennis J.

    2001-01-01

    It is the purpose of this study to develop an economical Robust design methodology for microscale secondary flow control in compact inlet diffusers. To illustrate the potential of economical Robust Design methodology, two different mission strategies were considered for the subject inlet, namely Maximum Performance and Maximum HCF Life Expectancy. The Maximum Performance mission maximized total pressure recovery while the Maximum HCF Life Expectancy mission minimized the mean of the first five Fourier harmonic amplitudes, i.e., 'collectively' reduced all the harmonic 1/2 amplitudes of engine face distortion. Each of the mission strategies was subject to a low engine face distortion constraint, i.e., DC60<0.10, which is a level acceptable for commercial engines. For each of these missions strategies, an 'Optimal Robust' (open loop control) and an 'Optimal Adaptive' (closed loop control) installation was designed over a twenty degree angle-of-incidence range. The Optimal Robust installation used economical Robust Design methodology to arrive at a single design which operated over the entire angle-of-incident range (open loop control). The Optimal Adaptive installation optimized all the design parameters at each angle-of-incidence. Thus, the Optimal Adaptive installation would require a closed loop control system to sense a proper signal for each effector and modify that effector device, whether mechanical or fluidic, for optimal inlet performance. In general, the performance differences between the Optimal Adaptive and Optimal Robust installation designs were found to be marginal. This suggests, however, that Optimal Robust open loop installation designs can be very competitive with Optimal Adaptive close loop designs. Secondary flow control in inlets is inherently robust, provided it is optimally designed. Therefore, the new methodology presented in this paper, combined array 'Lower Order' approach to Robust DOE, offers the aerodynamicist a very viable and economical way of exploring the concept of Robust inlet design, where the mission variables are brought directly into the inlet design process and insensitivity or robustness to the mission variables becomes a design objective.

  16. Strength training reduces arterial blood pressure but not sympathetic neural activity in young normotensive subjects

    NASA Technical Reports Server (NTRS)

    Carter, Jason R.; Ray, Chester A.; Downs, Emily M.; Cooke, William H.

    2003-01-01

    The effects of resistance training on arterial blood pressure and muscle sympathetic nerve activity (MSNA) at rest have not been established. Although endurance training is commonly recommended to lower arterial blood pressure, it is not known whether similar adaptations occur with resistance training. Therefore, we tested the hypothesis that whole body resistance training reduces arterial blood pressure at rest, with concomitant reductions in MSNA. Twelve young [21 +/- 0.3 (SE) yr] subjects underwent a program of whole body resistance training 3 days/wk for 8 wk. Resting arterial blood pressure (n = 12; automated sphygmomanometer) and MSNA (n = 8; peroneal nerve microneurography) were measured during a 5-min period of supine rest before and after exercise training. Thirteen additional young (21 +/- 0.8 yr) subjects served as controls. Resistance training significantly increased one-repetition maximum values in all trained muscle groups (P < 0.001), and it significantly decreased systolic (130 +/- 3 to 121 +/- 2 mmHg; P = 0.01), diastolic (69 +/- 3 to 61 +/- 2 mmHg; P = 0.04), and mean (89 +/- 2 to 81 +/- 2 mmHg; P = 0.01) arterial blood pressures at rest. Resistance training did not affect MSNA or heart rate. Arterial blood pressures and MSNA were unchanged, but heart rate increased after 8 wk of relative inactivity for subjects in the control group (61 +/- 2 to 67 +/- 3 beats/min; P = 0.01). These results indicate that whole body resistance exercise training might decrease the risk for development of cardiovascular disease by lowering arterial blood pressure but that reductions of pressure are not coupled to resistance exercise-induced decreases of sympathetic tone.

  17. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation.

    PubMed

    Schranz, C; Becher, T; Schädler, D; Weiler, N; Möller, K

    2014-03-01

    Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (pI), inspiration and expiration time (tI, tE) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal pI and adequate tE can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's 'optimized' settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end-expiratory pressure.

  18. Results from the Joint US/Russian Sensory-Motor Investigations

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session FA3, the discussion focuses on the following topics: The Effect of Long Duration Space Flight on the Acquisition of Predictable Targets in Three Dimensional Space; Effects of Microgravity on Spinal Reflex Mechanisms; Three Dimensional Head Movement Control During Locomotion After Long-Duration Space Flight; Human Body Shock Wave Transmission Properties After Long Duration Space Flight; Adaptation of Neuromuscular Activation Patterns During Locomotion After Long Duration Space Flight; Balance Control Deficits Following Long-Duration Space Flight; Influence of Weightlessness on Postural Muscular Activity Coordination; and The Use of Inflight Foot Pressure as a Countermeasure to Neuromuscular Degradation.

  19. An adaptive spoiler to control the transonic shock

    NASA Astrophysics Data System (ADS)

    Bein, Th; Hanselka, H.; Breitbach, E.

    2000-04-01

    Market research predicts, for the aircraft industry, a large growth in the number of passengers as well as the airfreight rate with the result of this leading to increased competition for the European aircraft industry, the efficiency of new aircraft has to be improved drastically. One approach, among others, is the aerodynamic optimization of the wing. The fixed wing is designed optimally only for one flight condition. This flight condition is described by the parameters altitude, mach number and aircraft weight, all of which permanently vary during the mission of the aircraft. Therefore, the aircraft is just periodically near to the chosen design point. To compensate for this major disadvantage, an `adaptive wing' for optimal adaptation and variation of the profile geometry to the actual flight conditions will be developed. Daimler-Benz Aerospace Airbus, Daimler-Benz Research and the German Aerospace Center (DLR) are working as project partners on concepts for a variable camber and a local spoiler bump. In this paper a structural concept developed by the DLR for the adaptive spoiler will be presented. The concept is designed under the aspect of adaptive structural systems and requires a high integration of actuators, sensor and controllers in the structure. Special aspects of the design will be discussed and the first results, analytical, numerical as well as experimental, will be presented. Part of the concept design is also the development of new actuators optimized for the specific problem. A new actuator concept for the adaptive spoiler based on a cylindrical tube and activated either by pressure or multifunctional materials (e.g. shape memory alloys) will additionally be shown.

  20. Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses.

    PubMed

    Choi, Seung Tae; Son, Byeong Soo; Seo, Gye Won; Park, Si-Young; Lee, Kyung-Sick

    2014-03-10

    Nonlinear large deformation of a transparent elastomer membrane under hydraulic pressure was analyzed to investigate its optical performance for a variable-focus liquid-filled membrane microlens. In most membrane microlenses, actuators control the hydraulic pressure of optical fluid so that the elastomer membrane together with the internal optical fluid changes its shape, which alters the light path of the microlens to adapt its optical power. A fluid-structure interaction simulation was performed to estimate the transient behavior of the microlens under the operation of electroactive polymer actuators, demonstrating that the viscosity of the optical fluid successfully stabilizes the fluctuations within a fairly short period of time during dynamic operations. Axisymmetric nonlinear plate theory was used to calculate the deformation profile of the membrane under hydrostatic pressure, with which optical characteristics of the membrane microlens were estimated. The effects of gravitation and viscoelastic behavior of the elastomer membrane on the optical performance of the membrane microlens were also evaluated with finite element analysis.

  1. Plant adaptation to low atmospheric pressures: potential molecular responses

    NASA Technical Reports Server (NTRS)

    Ferl, Robert J.; Schuerger, Andrew C.; Paul, Anna-Lisa; Gurley, William B.; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  2. Airway compliance and dynamics explain the apparent discrepancy in length adaptation between intact airways and smooth muscle strips.

    PubMed

    Dowie, Jackson; Ansell, Thomas K; Noble, Peter B; Donovan, Graham M

    2016-01-01

    Length adaptation is a phenomenon observed in airway smooth muscle (ASM) wherein over time there is a shift in the length-tension curve. There is potential for length adaptation to play an important role in airway constriction and airway hyper-responsiveness in asthma. Recent results by Ansell et al., 2015 (JAP 2014 10.1152/japplphysiol.00724.2014) have cast doubt on this role by testing for length adaptation using an intact airway preparation, rather than strips of ASM. Using this technique they found no evidence for length adaptation in intact airways. Here we attempt to resolve this apparent discrepancy by constructing a minimal mathematical model of the intact airway, including ASM which follows the classic length-tension curve and undergoes length adaptation. This allows us to show that (1) no evidence of length adaptation should be expected in large, cartilaginous, intact airways; (2) even in highly compliant peripheral airways, or at more compliant regions of the pressure-volume curve of large airways, the effect of length adaptation would be modest and at best marginally detectable in intact airways; (3) the key parameters which control the appearance of length adaptation in intact airways are airway compliance and the relaxation timescale. The results of this mathematical simulation suggest that length adaptation observed at the level of the isolated ASM may not clearly manifest in the normal intact airway. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Leak test adapter for containers

    DOEpatents

    Hallett, Brian H.; Hartley, Michael S.

    1996-01-01

    An adapter is provided for facilitating the charging of containers and leak testing penetration areas. The adapter comprises an adapter body and stem which are secured to the container's penetration areas. The container is then pressurized with a tracer gas. Manipulating the adapter stem installs a penetration plug allowing the adapter to be removed and the penetration to be leak tested with a mass spectrometer. Additionally, a method is provided for using the adapter.

  4. High Selection Pressure Promotes Increase in Cumulative Adaptive Culture

    PubMed Central

    Vegvari, Carolin; Foley, Robert A.

    2014-01-01

    The evolution of cumulative adaptive culture has received widespread interest in recent years, especially the factors promoting its occurrence. Current evolutionary models suggest that an increase in population size may lead to an increase in cultural complexity via a higher rate of cultural transmission and innovation. However, relatively little attention has been paid to the role of natural selection in the evolution of cultural complexity. Here we use an agent-based simulation model to demonstrate that high selection pressure in the form of resource pressure promotes the accumulation of adaptive culture in spite of small population sizes and high innovation costs. We argue that the interaction of demography and selection is important, and that neither can be considered in isolation. We predict that an increase in cultural complexity is most likely to occur under conditions of population pressure relative to resource availability. Our model may help to explain why culture change can occur without major environmental change. We suggest that understanding the interaction between shifting selective pressures and demography is essential for explaining the evolution of cultural complexity. PMID:24489724

  5. Monocyte-derived extracellular Nampt-dependent biosynthesis of NAD+ protects the heart against pressure overload

    PubMed Central

    Yano, Masamichi; Akazawa, Hiroshi; Oka, Toru; Yabumoto, Chizuru; Kudo-Sakamoto, Yoko; Kamo, Takehiro; Shimizu, Yu; Yagi, Hiroki; Naito, Atsuhiko T.; Lee, Jong-Kook; Suzuki, Jun-ichi; Sakata, Yasushi; Komuro, Issei

    2015-01-01

    Nicotinamide phosphoribosyltransferase (Nampt) catalyzes the rate-limiting step in the salvage pathway for nicotinamide adenine dinucleotide (NAD+) biosynthesis, and thereby regulates the deacetylase activity of sirtuins. Here we show accommodative regulation of myocardial NAD+ by monocyte-derived extracellular Nampt (eNampt), which is essential for hemodynamic compensation to pressure overload. Although intracellular Nampt (iNampt) expression was decreased in pressure-overloaded hearts, myocardial NAD+ concentration and Sirt1 activity were preserved. In contrast, iNampt was up-regulated in spleen and monocytes, and circulating eNampt protein and nicotinamide mononucleotide (NMN), a key precursor of NAD+, were significantly increased. Pharmacological inhibition of Nampt by FK866 or depletion of monocytes/macrophages by clodronate liposomes disrupted the homeostatic mechanism of myocardial NAD+ levels and NAD+-dependent Sirt1 activity, leading to susceptibility to cardiomyocyte apoptosis and cardiac decompensation in pressure-overloaded mice. These biochemical and hemodynamic defects were prevented by systemic administration of NMN. Our studies uncover a crucial role of monocyte-derived eNampt in myocardial adaptation to pressure overload, and highlight a potential intervention controlling myocardial NAD+ against heart failure. PMID:26522369

  6. Chronic binge alcohol consumption during pregnancy alters rat maternal uterine artery pressure response.

    PubMed

    Naik, Vishal D; Lunde-Young, Emilie R; Davis-Anderson, Katie L; Orzabal, Marcus; Ivanov, Ivan; Ramadoss, Jayanth

    2016-11-01

    We aimed to investigate pressure-dependent maternal uterine artery responses and vessel remodeling following gestational binge alcohol exposure. Two groups of pregnant rats were used: the alcohol group (28.5% wt/v, 6.0 g/kg, once-daily orogastric gavage in a binge paradigm between gestational day (GD) 5-19) and pair-fed controls (isocalorically matched). On GD20, excised, pressurized primary uterine arteries were studied following equilibration (60 mm Hg) using dual chamber arteriograph. The uterine artery diameter stabilized at 20 mm Hg, showed passive distension at 40 mm Hg, and redeveloped tone at 60 mm Hg. An alcohol effect (P = 0.0025) was observed on the percent constriction of vessel diameter with greater pressure-dependent myogenic constriction. Similar alcohol effect was noted with lumen diameter response (P = 0.0020). The percent change in media:lumen ratio was higher in the alcohol group (P < 0.0001). Thus, gestational alcohol affects pressure-induced uterine artery reactivity, inward-hypotrophic remodeling, and adaptations critical for nutrient delivery to the fetus. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Gravity of Giraffe Physiology

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Holton, Emily M. (Technical Monitor)

    1997-01-01

    By virtue of its tallness and terrestrial environment, the giraffe is a uniquely sensitive African animal to investigate tissue adaptations to gravitational stress. One decade ago, we studied transcapillary fluid balance and local tissue adaptations to high cardiovascular and musculoskeletal loads in adult and fetal giraffes. Previous studies by Goetz, Pattersson, Van Citters, Warren and their colleagues revealed that arterial pressure near the giraffe heart is about twice that in humans, to provide more normal blood pressure and perfusion to the brain. Another important question is how giraffes avoid pooling of blood and tissue fluid (edema) in dependent tissue of the extremities. As monitored by radiotelemetry, the blood and tissue fluid pressures that govern transcapillary exchange vary greatly with exercise. These pressures, combined with a tight skin layer, move fluid upward against gravity. Other mechanisms that prevent edema include precapillary vasoconstriction and low permeability of capillaries to plasma proteins. Other anatomical adaptations in dependent tissues of giraffes represent developmental adjustments to high and variable gravitational forces. These include vascular wall hypertrophy, thickened capillary basement membrane and other connective tissue adaptations. Our results in giraffe suggest avenues of future gravitational research in other animals including humans.

  8. Involvement of the MAPK pathway in the pressure-induced synovial metaplasia procedure for the temporomandibular joint.

    PubMed

    Wu, M J; Lu, H P; Gu, Z Y; Zhou, Y Q

    2016-06-20

    Abnormal pressure is an important factor that contributes to bone adaptation in the temporomandibular joint (TMJ). We determined the effect of the mitogen-activated protein kinases (MAPK) pathway on the pressure-induced synovial metaplasia procedure for the TMJ, both in vitro and in vivo. Synovial fibroblasts (SFs) were exacted from rat TMJs and exposed to different hydrostatic pressures. The protein extracts were analyzed to determine the activation of ERK1/2, JNK, and p38. Surgical anterior disc displacement (ADD) was also performed on Japanese rabbits, and the proteins of TMJ were isolated to analyze pressure-induced MAPK activation after 1, 2, 4, and 8 weeks. The results showed that the activation of ERK1/2 and JNK in SFs significantly changed with increasing hydrostatic pressure, whereas p38 activation did not change. Moreover, p38 was activated in animals 1 week after surgical ADD. The levels of p38 gradually increased after 2 and 4 weeks, and then slightly decreased but remained higher than in the control 8 weeks after surgical ADD. Nevertheless, JNK was rarely activated after the ADD treatment. Our findings suggest the involvement of MAPK activation in the pressure-induced synovial metaplasia procedure with pressure loading in TMJ.

  9. Horizontal Advanced Tensiometer

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  10. Acoustic pressure reduction at rhythm deviants causes magnetoencephalographic response.

    PubMed

    Takeshita, Yuya; Yokosawa, Koichi

    2015-01-01

    Rhythm is an element of music and is important for determining the impression of the music. To investigate the mechanism by which musical rhythmic changes are perceived, magnetoencephalographic responses to rhythm deviants were recorded from 11 healthy volunteers. Auditory stimuli consisting of physically controlled tones were adapted from a song. The auditory stimuli had a steady rhythm, but "early" and "late" deviants were inserted. Only the "early" deviant, which was a tone with a short duration, caused N100m-like prominent transient responses at around the offset of the deviant tone. The latency of the prominent response depended on the descending sound pressure of the deviant tone and was 65 ms after 50% descent. The results suggest that unexpected shortening of tone in a continuous rhythm evokes a transient response and that the response is caused by descending sound pressure of the shortened tone itself, not by the following tones.

  11. Gravitational biology and the mammalian circadian timing system

    NASA Astrophysics Data System (ADS)

    Fuller, Charles A.; Murakami, Dean M.; Sulzman, Frank M.

    Mammals have evolved under the influence of many selective pressures. Two of these pressures have been the static force of gravity and the daily variations in the environment due to the rotation of the earth. It is now clear that each of these pressures has led to specific adaptations which influence how organisms respond to changes in either gravity or daily time cues. However, several unpredicted responses to altered gravitational environments occur within the homeostatic and circadian control systems. These results may be particularly relevant to biological and medical issues related to spaceflight. This paper demonstrates that the homeostatic regulation of rat body temperature, heart rate, and activity become depressed following exposure to a 2 G hyperdynamic field, and recovers within 5-6 days. In addition, the circadian rhythms of these same variables exhibit a depression of rhythm amplitude; however, recovery required a minimum of 7 days.

  12. Adult obstructive sleep apnoea.

    PubMed

    Jordan, Amy S; McSharry, David G; Malhotra, Atul

    2014-02-22

    Obstructive sleep apnoea is an increasingly common disorder of repeated upper airway collapse during sleep, leading to oxygen desaturation and disrupted sleep. Features include snoring, witnessed apnoeas, and sleepiness. Pathogenesis varies; predisposing factors include small upper airway lumen, unstable respiratory control, low arousal threshold, small lung volume, and dysfunctional upper airway dilator muscles. Risk factors include obesity, male sex, age, menopause, fluid retention, adenotonsillar hypertrophy, and smoking. Obstructive sleep apnoea causes sleepiness, road traffic accidents, and probably systemic hypertension. It has also been linked to myocardial infarction, congestive heart failure, stroke, and diabetes mellitus though not definitively. Continuous positive airway pressure is the treatment of choice, with adherence of 60-70%. Bi-level positive airway pressure or adaptive servo-ventilation can be used for patients who are intolerant to continuous positive airway pressure. Other treatments include dental devices, surgery, and weight loss. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The problem of the turbo-compressor

    NASA Technical Reports Server (NTRS)

    Devillers, Rene

    1920-01-01

    In terminating the study of the adaptation of the engine to the airplane, we will examine the problem of the turbo-compressor,the first realization of which dates from the war; this will form an addition to the indications already given on supercharging at various altitudes. This subject is of great importance for the application of the turbo-compressor worked by the exhaust gases. As a matter of fact, a compressor increasing the pressure in the admission manifold may be controlled by the engine shaft by means of multiplication gear or by a turbine operated by the exhaust gas. Assuming that the increase of pressure in the admission manifold is the same in both cases, the pressure in the exhaust manifold would be greater in the case in which the compressor is worked by the exhaust gas and there would result a certain reduction of engine power which we must be able to calculate. On the other hand , if the compressor is controlled by the engine shaft, a certain fraction of the excess power supplied is utilized for the rotation of the compressor. In order to compare the two systems, it is there-fore necessary to determine the value of the reduction of power due to back pressure when the turbine is employed.

  14. The effects of arousal reappraisal on stress responses, performance and attention.

    PubMed

    Sammy, Nadine; Anstiss, Paul A; Moore, Lee J; Freeman, Paul; Wilson, Mark R; Vine, Samuel J

    2017-11-01

    This study examined the effects of arousal reappraisal on cardiovascular responses, demand and resource evaluations, self-confidence, performance and attention under pressurized conditions. A recent study by Moore et al. [2015. Reappraising threat: How to optimize performance under pressure. Journal of Sport and Exercise Psychology, 37(3), 339-343. doi: 10.1123/jsep.2014-0186 ] suggested that arousal reappraisal is beneficial to the promotion of challenge states and leads to improvements in single-trial performance. This study aimed to further the work of Moore and colleagues (2015) by examining the effects of arousal reappraisal on cardiovascular responses, demand and resource evaluations, self-confidence, performance and attention in a multi-trial pressurized performance situation. Participants were randomly assigned to either an arousal reappraisal intervention or control condition, and completed a pressurized dart throwing task. The intervention encouraged participants to view their physiological arousal as facilitative rather than debilitative to performance. Measures of cardiovascular reactivity, demand and resource evaluations, self-confidence, task performance and attention were recorded. The reappraisal group displayed more favorable cardiovascular reactivity and reported higher resource evaluations and higher self-confidence than the control group but no task performance or attention effects were detected. These findings demonstrate the strength of arousal reappraisal in promoting adaptive stress responses, perceptions of resources and self-confidence.

  15. Cardiovascular autonomic adaptation in lunar and martian gravity during parabolic flight.

    PubMed

    Widjaja, Devy; Vandeput, Steven; Van Huffel, Sabine; Aubert, André E

    2015-06-01

    Weightlessness has a well-known effect on the autonomic control of the cardiovascular system. With future missions to Mars in mind, it is important to know what the effect of partial gravity is on the human body. We aim to study the autonomic response of the cardiovascular system to partial gravity levels, as present on the Moon and on Mars, during parabolic flight. ECG and blood pressure were continuously recorded during parabolic flight. A temporal analysis of blood pressure and heart rate to changing gravity was conducted to study the dynamic response. In addition, cardiovascular autonomic control was quantified by means of heart rate (HR) and blood pressure (BP) variability measures. Zero and lunar gravity presented a biphasic cardiovascular response, while a triphasic response was noted during martian gravity. Heart rate and blood pressure are positively correlated with gravity, while the general variability of HR and BP, as well as vagal indices showed negative correlations with increasing gravity. However, the increase in vagal modulation during weightlessness is not in proportion when compared to the increase during partial gravity. Correlations were found between the gravity level and modulations in the autonomic nervous system during parabolic flight. Nevertheless, with future Mars missions in mind, more studies are needed to use these findings to develop appropriate countermeasures.

  16. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations.

    PubMed

    Sobral, Mar; Veiga, Tania; Domínguez, Paula; Guitián, Javier A; Guitián, Pablo; Guitián, José M

    2015-01-01

    Flower color variation among plant populations might reflect adaptation to local conditions such as the interacting animal community. In the northwest Iberian Peninsula, flower color of Gentiana lutea varies longitudinally among populations, ranging from orange to yellow. We explored whether flower color is locally adapted and the role of pollinators and seed predators as agents of selection by analyzing the influence of flower color on (i) pollinator visitation rate and (ii) escape from seed predation and (iii) by testing whether differences in pollinator communities correlate with flower color variation across populations. Finally, (iv) we investigated whether variation in selective pressures explains flower color variation among 12 G. lutea populations. Flower color influenced pollinator visits and differences in flower color among populations were related to variation in pollinator communities. Selective pressures on flower color vary among populations and explain part of flower color differences among populations of G. lutea. We conclude that flower color in G. lutea is locally adapted and that pollinators play a role in this adaptation.

  17. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations

    PubMed Central

    Domínguez, Paula; Guitián, Javier A.; Guitián, Pablo; Guitián, José M.

    2015-01-01

    Flower color variation among plant populations might reflect adaptation to local conditions such as the interacting animal community. In the northwest Iberian Peninsula, flower color of Gentiana lutea varies longitudinally among populations, ranging from orange to yellow. We explored whether flower color is locally adapted and the role of pollinators and seed predators as agents of selection by analyzing the influence of flower color on (i) pollinator visitation rate and (ii) escape from seed predation and (iii) by testing whether differences in pollinator communities correlate with flower color variation across populations. Finally, (iv) we investigated whether variation in selective pressures explains flower color variation among 12 G. lutea populations. Flower color influenced pollinator visits and differences in flower color among populations were related to variation in pollinator communities. Selective pressures on flower color vary among populations and explain part of flower color differences among populations of G. lutea. We conclude that flower color in G. lutea is locally adapted and that pollinators play a role in this adaptation. PMID:26172378

  18. CLONAL EVOLUTION IN CANCER

    PubMed Central

    Greaves, Mel; Maley, Carlo C.

    2012-01-01

    Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive landscapes of tissue ecosystems. The dynamics are complex with highly variable patterns of genetic diversity and resultant clonal architecture. Therapeutic intervention may decimate cancer clones, and erode their habitats, but inadvertently provides potent selective pressure for the expansion of resistant variants. The inherently Darwinian character of cancer lies at the heart of therapeutic failure but perhaps also holds the key to more effective control. PMID:22258609

  19. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings

    NASA Astrophysics Data System (ADS)

    Barrett, Ronald M.; Barrett, Cassandra M.

    2014-07-01

    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad-1. Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load alleviation, ride quality, fatigue life and flight safety.

  20. Montreal electronic artificial urinary sphincters: Our futuristic alternatives to the AMS800™.

    PubMed

    Biardeau, Xavier; Hached, Sami; Loutochin, Oleg; Campeau, Lysanne; Sawan, Mohamad; Corcos, Jacques

    2017-10-01

    We aimed to present three novel remotely controlled hydromechanical artificial urinary sphincters (AUSs) and report their in-vitro and ex-vivo results. We successively developed three distinct hydromechanical AUSs on the basis of the existing AMS800 ™ device by incorporating an electronic pump. No changes were made to the cuff and balloon. The AUS#1 was designed as an electromagnetically controlled device. The AUS#2 and AUS#3 were conceived as Bluetooth 2.1 remotely controlled and Bluetooth 4.0 remotely-controlled, adaptive devices, respectively. In-vitro experiments profiled occlusive cuff pressure (OCP) during a complete device cycle, with different predetermined OCP. Ex-vivo experiments were performed on a fresh pig bladder with 4 cm cuff placed around the urethra. Leak point pressure with different predetermined OCP values was successively measured during cystometry via a catheter at the bladder dome. Our in-vitro and ex-vivo experiments demonstrated that these three novel AUSs provided stable and predetermined OCP - within the physiological range - and completely deflated the cuff, when required, in a limited time compatible with physiological voiding cycles. Our three novel, remotely controlled AUSs showed promising results that should be confirmed by in-vivo experiments focusing on efficacy and safety.

  1. Hundreds of Genes Experienced Convergent Shifts in Selective Pressure in Marine Mammals

    PubMed Central

    Chikina, Maria; Robinson, Joseph D.; Clark, Nathan L.

    2016-01-01

    Abstract Mammal species have made the transition to the marine environment several times, and their lineages represent one of the classical examples of convergent evolution in morphological and physiological traits. Nevertheless, the genetic mechanisms of their phenotypic transition are poorly understood, and investigations into convergence at the molecular level have been inconclusive. While past studies have searched for convergent changes at specific amino acid sites, we propose an alternative strategy to identify those genes that experienced convergent changes in their selective pressures, visible as changes in evolutionary rate specifically in the marine lineages. We present evidence of widespread convergence at the gene level by identifying parallel shifts in evolutionary rate during three independent episodes of mammalian adaptation to the marine environment. Hundreds of genes accelerated their evolutionary rates in all three marine mammal lineages during their transition to aquatic life. These marine-accelerated genes are highly enriched for pathways that control recognized functional adaptations in marine mammals, including muscle physiology, lipid-metabolism, sensory systems, and skin and connective tissue. The accelerations resulted from both adaptive evolution as seen in skin and lung genes, and loss of function as in gustatory and olfactory genes. In regard to sensory systems, this finding provides further evidence that reduced senses of taste and smell are ubiquitous in marine mammals. Our analysis demonstrates the feasibility of identifying genes underlying convergent organism-level characteristics on a genome-wide scale and without prior knowledge of adaptations, and provides a powerful approach for investigating the physiological functions of mammalian genes. PMID:27329977

  2. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    PubMed

    Shen, H; Xu, Y; Dickinson, B T

    2014-11-18

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  3. Portable fixture facilitates pressure testing of instrumentation fittings

    NASA Technical Reports Server (NTRS)

    Olson, G. A.

    1967-01-01

    Portable fixture facilitates pressure testing to detect possible leaks in instrumentation fittings mounted on tank bulkheads. It uses a vacuum cup which seals a pressure regulator adapter around one side of the fitting to be pressure tested. Leakage is detected with a gas sniffer.

  4. Effects of a Single Bout of Interval Hypoxia on Cardiorespiratory Control in Patients With Type 1 Diabetes

    PubMed Central

    Duennwald, Tobias; Bernardi, Luciano; Gordin, Daniel; Sandelin, Anna; Syreeni, Anna; Fogarty, Christopher; Kytö, Janne P.; Gatterer, Hannes; Lehto, Markku; Hörkkö, Sohvi; Forsblom, Carol; Burtscher, Martin; Groop, Per-Henrik

    2013-01-01

    Hypoxemia is common in diabetes, and reflex responses to hypoxia are blunted. These abnormalities could lead to cardiovascular/renal complications. Interval hypoxia (IH) (5–6 short periods of hypoxia each day over 1–3 weeks) was successfully used to improve the adaptation to hypoxia in patients with chronic obstructive pulmonary disease. We tested whether IH over 1 day could initiate a long-lasting response potentially leading to better adaptation to hypoxia. In 15 patients with type 1 diabetes, we measured hypoxic and hypercapnic ventilatory responses (HCVRs), ventilatory recruitment threshold (VRT-CO2), baroreflex sensitivity (BRS), blood pressure, and blood lactate before and after 0, 3, and 6 h of a 1-h single bout of IH. All measurements were repeated on a placebo day (single-blind protocol, randomized sequence). After IH (immediately and after 3 h), hypoxic and HCVR increased, whereas the VRT-CO2 dropped. No such changes were observed on the placebo day. Systolic and diastolic blood pressure increased, whereas blood lactate decreased after IH. Despite exposure to hypoxia, BRS remained unchanged. Repeated exposures to hypoxia over 1 day induced an initial adaptation to hypoxia, with improvement in respiratory reflexes. Prolonging the exposure to IH (>2 weeks) in type 1 diabetic patients will be a matter for further studies. PMID:23733200

  5. Elucidating Microbial Adaptation Dynamics via Autonomous Exposure and Sampling

    NASA Astrophysics Data System (ADS)

    Grace, J. M.; Verseux, C.; Gentry, D.; Moffet, A.; Thayabaran, R.; Wong, N.; Rothschild, L.

    2013-12-01

    The adaptation of micro-organisms to their environments is a complex process of interaction between the pressures of the environment and of competition. Reducing this multifactorial process to environmental exposure in the laboratory is a common tool for elucidating individual mechanisms of evolution, such as mutation rates[Wielgoss et al., 2013]. Although such studies inform fundamental questions about the way adaptation and even speciation occur, they are often limited by labor-intensive manual techniques[Wassmann et al., 2010]. Current methods for controlled study of microbial adaptation limit the length of time, the depth of collected data, and the breadth of applied environmental conditions. Small idiosyncrasies in manual techniques can have large effects on outcomes; for example, there are significant variations in induced radiation resistances following similar repeated exposure protocols[Alcántara-Díaz et al., 2004; Goldman and Travisano, 2011]. We describe here a project under development to allow rapid cycling of multiple types of microbial environmental exposure. The system allows continuous autonomous monitoring and data collection of both single species and sampled communities, independently and concurrently providing multiple types of controlled environmental pressure (temperature, radiation, chemical presence or absence, and so on) to a microbial community in dynamic response to the ecosystem's current status. When combined with DNA sequencing and extraction, such a controlled environment can cast light on microbial functional development, population dynamics, inter- and intra-species competition, and microbe-environment interaction. The project's goal is to allow rapid, repeatable iteration of studies of both natural and artificial microbial adaptation. As an example, the same system can be used both to increase the pH of a wet soil aliquot over time while periodically sampling it for genetic activity analysis, or to repeatedly expose a culture of bacteria to the presence of a toxic metal, automatically adjusting the level of toxicity based on the number or growth rate of surviving cells. We are on our second prototype iteration, with demonstrated functions of microbial growth monitoring and dynamic exposure to UV-C radiation and temperature. We plan to add functionality for general chemical presence or absence by Nov. 2013. By making the project low-cost and open-source, we hope to encourage others to use it as a basis for future development of a common microbial environmental adaptation testbed. References: Alcantara-Diaz, D. et al. (2004), Divergent adaptation of Escherichia coli to cyclic ultraviolet light exposures, Mutagenesis, 19(5), 349-354, doi:10.1093/mutage/geh039. Goldman, R. P., and Travisano, M. (2011), Experimental evolution of ultraviolet radiation resistance in Escherichia coli, Evolution, 65(12), 3486-3498, doi:10.1111/j.1558-5646.2011.01438.x. Wassmann, M. et al. (2010), Adaptation of Bacillus subtilis cells to Archean-like UV climate: relevant hints of microbial evolution to remarkably increased radiation resistance, Astrobiology, 10(6), 605-615, doi:10.1089/ast.2009.0455. Wielgoss, S. et al. (2013), Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load, Proc Natl Acad Sci USA, 110(1), 222-227, doi:10.1073/pnas.1219574110.

  6. Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis

    NASA Astrophysics Data System (ADS)

    Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre

    2013-12-01

    The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.

  7. Effects of disease severity and medication state on postural control asymmetry during challenging postural tasks in individuals with Parkinson's disease.

    PubMed

    Barbieri, Fabio A; Polastri, Paula F; Baptista, André M; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Beretta, Victor S; Gobbi, Lilian T B

    2016-04-01

    The aim of this study was to investigate the effects of disease severity and medication state on postural control asymmetry during challenging tasks in individuals with Parkinson's disease (PD). Nineteen people with PD and 11 neurologically healthy individuals performed three standing task conditions: bipedal standing, tandem and unipedal adapted standing; the individuals with PD performed the tasks in ON and OFF medication state. The participants with PD were distributed into 2 groups according to disease severity: unilateral group (n=8) and bilateral group (n=11). The two PD groups performed the evaluations both under and without the medication. Two force plates were used to analyze the posture. The symmetric index was calculated for various of center of pressure. ANOVA one-way (groups) and two-way (PD groups×medication), with repeated measures for medication, were calculated. For main effects of group, the bilateral group was more asymmetric than CG. For main effects of medication, only unipedal adapted standing presented effects of PD medication. There was PD groups×medication interaction. Under the effects of medication, the unilateral group presented lower asymmetry of RMS in anterior-posterior direction and area than the bilateral group in unipedal adapted standing. In addition, the unilateral group presented lower asymmetry of mean velocity, RMS in anterior-posterior direction and area in unipedal standing and area in tandem adapted standing after a medication dose. Postural control asymmetry during challenging postural tasks was dependent on disease severity and medication state in people with PD. The bilateral group presented higher postural control asymmetry than the control and unilateral groups in challenging postural tasks. Finally, the medication dose was able to reduce postural control asymmetry in the unilateral group during challenging postural tasks. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Adaptations to local environments in modern human populations.

    PubMed

    Jeong, Choongwon; Di Rienzo, Anna

    2014-12-01

    After leaving sub-Saharan Africa around 50000-100000 years ago, anatomically modern humans have quickly occupied extremely diverse environments. Human populations were exposed to further environmental changes resulting from cultural innovations, such as the spread of farming, which gave rise to new selective pressures related to pathogen exposures and dietary shifts. In addition to changing the frequency of individual adaptive alleles, natural selection may also shape the overall genetic architecture of adaptive traits. Here, we review recent advances in understanding the genetic architecture of adaptive human phenotypes based on insights from the studies of lactase persistence, skin pigmentation and high-altitude adaptation. These adaptations evolved in parallel in multiple human populations, providing a chance to investigate independent realizations of the evolutionary process. We suggest that the outcome of adaptive evolution is often highly variable even under similar selective pressures. Finally, we highlight a growing need for detecting adaptations that did not follow the classical sweep model and for incorporating new sources of genetic evidence such as information from ancient DNA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Hydroforming device and method

    DOEpatents

    Guza, David E.

    2007-09-11

    An apparatus (10, 110) and method to form a workpiece (32, 132) into a useful product (28, 128) using a pressurized fluid (14), also termed as "hydroforming". The workpiece may be a tube or may be one or a plurality of sheets of a material. The apparatus has a chamber (12) adapted to contain a quantity of a fluid, a hydroforming means positioned within the chamber, and means for substantially immersing the workpiece in the fluid before, during and after the hydroforming operation. Dies (16, 18) enclose the workpiece and provide a cavity of desired shape against which the workpiece is expanded by the pressurized fluid. The chamber may be open or closed to the atmosphere during operation and the fluid temperature and/or level may be controlled.

  10. [The high pressure life of piezophiles].

    PubMed

    Oger, Philippe; Cario, Anaïs

    2014-01-01

    The deep biosphere is composed of very different biotopes located in the depth of the oceans, the ocean crust or the lithosphere. Although very different, deep biosphere biotopes share one common feature, high hydrostatic pressure. The deep biosphere is colonized by specific organisms, called piezophiles, that are able to grow under high hydrostatic pressure. Bacterial piezophiles are mainly psychrophiles belonging to five genera of γ-proteobacteria, Photobacterium, Shewanella, Colwellia, Psychromonas and Moritella, while piezophilic Archaea are mostly (hyper)thermophiles from the Thermococcales. None of these genera are specific for the deep biosphere. High pressure deeply impacts the activity of cells and cellular components, and reduces the activity of numerous key processes, eventually leading to cell death of piezosensitive organisms. Biochemical and genomic studies yield a fragmented view on the adaptive mechanisms in piezophiles. It is yet unclear whether piezophilic adaptation requires the modification of a few genes, or metabolic pathways, or a more profound reorganization of the genome, the fine tuning of gene expression to compensate the pressure-induced loss of activity of the proteins most affected by high pressure, or a stress-like physiological cell response. In contrast to what has been seen for thermophily or halophily, the adaptation to high pressure is diffuse in the genome and may concern only a small fraction of the genes. © Société de Biologie, 2014.

  11. Time-dependent postural control adaptations following a neuromuscular warm-up in female handball players: a randomized controlled trial.

    PubMed

    Steib, Simon; Zahn, Peter; Zu Eulenburg, Christine; Pfeifer, Klaus; Zech, Astrid

    2016-01-01

    Female handball athletes are at a particular risk of sustaining lower extremity injuries. The study examines time-dependent adaptations of static and dynamic balance as potential injury risk factors to a specific warm-up program focusing on neuromuscular control. Fourty one (24.0 ± 5.9 years) female handball athletes were randomized to an intervention or control group. The intervention group implemented a 15-min specific neuromuscular warm-up program, three times per week for eleven weeks, whereas the control group continued with their regular warm-up. Balance was assessed at five time points. Measures included the star excursion balance test (SEBT), and center of pressure (COP) sway velocity during single-leg standing. No baseline differences existed between groups in demographic data. Adherence to neuromuscular warm-up was 88.7 %. Mean COP sway velocity decreased significantly over time in the intervention group (-14.4 %; p  < .001), but not in the control group (-6.2 %; p  = 0.056). However, these effects did not differ significantly between groups ( p  = .098). Mean changes over time in the SEBT score were significantly greater ( p  = .014) in the intervention group (+5.48) compared to the control group (+3.45). Paired t-tests revealed that the first significant balance improvements were observed after 6 weeks of training. A neuromuscular warm-up positively influences balance variables associated with an increased risk of lower extremity injuries in female handball athletes. The course of adaptations suggests that a training volume of 15 min, three times weekly over at least six weeks produces measurable changes. Retrospectively registered on 4th October 2016. Registry: clinicaltrials.gov. Trial number: NCT02925377.

  12. Feedback control methods for drug dosage optimisation. Concepts, classification and clinical application.

    PubMed

    Vozeh, S; Steimer, J L

    1985-01-01

    The concept of feedback control methods for drug dosage optimisation is described from the viewpoint of control theory. The control system consists of 5 parts: (a) patient (the controlled process); (b) response (the measured feedback); (c) model (the mathematical description of the process); (d) adaptor (to update the parameters); and (e) controller (to determine optimum dosing strategy). In addition to the conventional distinction between open-loop and closed-loop control systems, a classification is proposed for dosage optimisation techniques which distinguishes between tight-loop and loose-loop methods depending on whether physician's interaction is absent or included as part of the control step. Unlike engineering problems where the process can usually be controlled by fully automated devices, therapeutic situations often require that the physician be included in the decision-making process to determine the 'optimal' dosing strategy. Tight-loop and loose-loop methods can be further divided into adaptive and non-adaptive, depending on the presence of the adaptor. The main application areas of tight-loop feedback control methods are general anaesthesia, control of blood pressure, and insulin delivery devices. Loose-loop feedback methods have been used for oral anticoagulation and in therapeutic drug monitoring. The methodology, advantages and limitations of the different approaches are reviewed. A general feature common to all application areas could be observed: to perform well under routine clinical conditions, which are characterised by large interpatient variability and sometimes also intrapatient changes, control systems should be adaptive. Apart from application in routine drug treatment, feedback control methods represent an important research tool. They can be applied for the investigation of pathophysiological and pharmacodynamic processes. A most promising application is the evaluation of the relationship between an intermediate response (e.g. drug level), which is often used as feedback for dosage adjustment, and the final therapeutic goal.

  13. KSC-98pc644

    NASA Image and Video Library

    1998-05-22

    KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan

  14. KSC-98pc645

    NASA Image and Video Library

    1998-05-22

    KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan

  15. The physical mechanisms of complete denture retention.

    PubMed

    Darvell, B W; Clark, R K

    2000-09-09

    The purpose of this article is to assist the practitioner to understand which factors are relevant to complete denture retention in the light of the current understanding of physics and materials science and thus to guide design. Atmospheric pressure, vacuum, adhesion, cohesion, surface tension, viscosity, base adaption, border seal, seating force and muscular control have all been cited at one time or another as major or contributory factors, but usually as an opinion without proper reference to fundamental principles. Although there has been a detailed analysis published, it seems appropriate that a restatement of the points in a collated form be made. In fact, denture retention is a dynamic issue dependent on the control of the flow of interposed fluid and thus its viscosity and film thickness, while the timescale of displacement loading affects the assessment. Surface tension forces at the periphery contribute to retention, but the most important concerns are good base adaptation and border seal. These must be achieved if full advantage is to be taken of the saliva flow-related effects.

  16. Microbial Evolution at High Pressure: Deep Sea and Laboratory Studies

    NASA Astrophysics Data System (ADS)

    Bartlett, D. H.

    2011-12-01

    Elevated hydrostatic pressures are present in deep-sea and deep-Earth environments where this physical parameter has influenced the evolution and characteristics of life. Piezophilic (high-pressure-adapted) microbes have been isolated from diverse deep-sea settings, and would appear likely to occur in deep-subsurface habitats as well. In order to discern the factors enabling life at high pressure my research group has explored these adaptations at various levels, most recently including molecular analyses of deep-sea trench communities, and through the selective evolution of the model microbe Escherichia coli in the laboratory to progressively higher pressures. Much of the field work has focused on the microbes present in the deeper portions of the Puerto Rico Trench (PRT)and in the Peru-Chile Trench (PCT), from 6-8.5 km below the sea surface (~60-85 megapascals pressure). Culture-independent phylogenetic data on the Bacteria and Archaea present on particles or free-living, along with data on the microeukarya present was complemented with genomic analyses and the isolation and characterization of microbes in culture. Metagenomic analyses of the PRT revealed increased genome sizes and an overrepresentation at depth of sulfatases for the breakdown of sulfated polysaccharides and specific categories of transporters, including those associated with the transport of diverse cations or carboxylate ions, or associated with heavy metal resistance. Single-cell genomic studies revealed several linneages which recruited to the PRT metagenome far better than existing marine microbial genome sequences. analyses. Novel high pressure culture approaches have yielded new piezophiles including species preferring very low nutrient levels, those living off of hydrocarbons, and those adapted to various electron donor/electron acceptor combinations. In order to more specifically focus on functions enabling life at increased pressure selective evolution experiments were performed with Escherichia coli during laboratory cultivation. More than 60 subcultures were obtained at progressively increasing hydrostatic pressures ranging from 28 - 62 megapascals. A strain isolated from the 63rd subculture displayed dramatically improved growth over the parental strain at 59 megapascals but reduced growth rate relative to the parental strain at atmospheric pressure. The mutant also produced far more unsaturated fatty acids than its parent and also acquired the ability to upregulate these fatty acids species at elevated pressure. Solexa sequencing revealed mutations within an operon (acpP operon) governing unsaturated fatty acid production, and these have been examined as a function of generation at high pressure. These and other results indicate that a large number and variety of microbes are adapted to life at high pressure, that the selective constraints of pressure increases up to ~60 megapascals are not so severe as to preclude the rapid evolution to a piezotolerant phenotype, and that the production of increased levels of unsaturated fatty acids correlates with adaptation to this stressor. This work was supported by grants from the National Science Foundation (EF-0801793 and EF-0827051) and the National Aeronautics and Space Administration (NASA SSC NNX10AR13G).

  17. Dynamics of change in rat arterial pressure under conditions of immobilization

    NASA Technical Reports Server (NTRS)

    Yumatov, Y. A.; Skotselyas, Y. G.; Ivanona, L. I.

    1980-01-01

    Emotional stress developed in immobilized rats was shown to be accompanied by changes in the regulation of arterial pressure and the frequency of cardiac contractions. A group of adapting rats displayed definite resistance to emotional stress, while a group of rats incapable of adapting to acute emotional stress died with characteristics of cardiovascular insufficiency. The mechanisms providing resistance to emotional stress in numerous conflict situations were analyzed.

  18. Law of the Minimum paradoxes.

    PubMed

    Gorban, Alexander N; Pokidysheva, Lyudmila I; Smirnova, Elena V; Tyukina, Tatiana A

    2011-09-01

    The "Law of the Minimum" states that growth is controlled by the scarcest resource (limiting factor). This concept was originally applied to plant or crop growth (Justus von Liebig, 1840, Salisbury, Plant physiology, 4th edn., Wadsworth, Belmont, 1992) and quantitatively supported by many experiments. Some generalizations based on more complicated "dose-response" curves were proposed. Violations of this law in natural and experimental ecosystems were also reported. We study models of adaptation in ensembles of similar organisms under load of environmental factors and prove that violation of Liebig's law follows from adaptation effects. If the fitness of an organism in a fixed environment satisfies the Law of the Minimum then adaptation equalizes the pressure of essential factors and, therefore, acts against the Liebig's law. This is the the Law of the Minimum paradox: if for a randomly chosen pair "organism-environment" the Law of the Minimum typically holds, then in a well-adapted system, we have to expect violations of this law.For the opposite interaction of factors (a synergistic system of factors which amplify each other), adaptation leads from factor equivalence to limitations by a smaller number of factors.For analysis of adaptation, we develop a system of models based on Selye's idea of the universal adaptation resource (adaptation energy). These models predict that under the load of an environmental factor a population separates into two groups (phases): a less correlated, well adapted group and a highly correlated group with a larger variance of attributes, which experiences problems with adaptation. Some empirical data are presented and evidences of interdisciplinary applications to econometrics are discussed. © Society for Mathematical Biology 2010

  19. At the Fulcrum of Air Force Identity: Balancing the Internal and External Pressures of Image and Culture

    DTIC Science & Technology

    2014-01-01

    Jeffrey J . Smith, Colonel, PhD, Commandant and Dean AIR UNIVERSITY SCHOOL OF ADVANCED AIR AND SPACE STUDIES At the Fulcrum of Air Force Identity...ORGANIZATION STAKEHOLDER Figure 2. Key viewpoints of identity and image. (Adapted from Tom J . Brown et al., “Identity, Intended Image, Construed Image, and...Falklands, see Anno and Einspahr, Command and Control and Communications Lessons Learned. 15. Locher, “Has It Worked?,” 99. 16. Trest, Air Force Roles and

  20. View taken during EVA 1

    NASA Image and Video Library

    1998-12-07

    S88-E-5055 (12-07-98) --- Astronaut James H. Newman is seen at a pressurized mating adapter during early moments of the first of three scheduled spacewalks on STS-88. Astronauts Newman and Jerry L. Ross, both mission specialists, went on to mate 40 cables and connectors running 76 feet from the Zarya control module to Unity, with the 35-ton complex towering over Endeavour;'s cargo bay. This photo was taken with an electronic still camera (ESC) at 23:26:22 GMT, Dec. 7.

  1. Unity connecting module in the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.

  2. KSC-98pc993

    NASA Image and Video Library

    1998-08-27

    KENNEDY SPACE CENTER, FLA. -- Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station

  3. Dementia alters standing postural adaptation during a visual search task in older adult men.

    PubMed

    Jor'dan, Azizah J; McCarten, J Riley; Rottunda, Susan; Stoffregen, Thomas A; Manor, Brad; Wade, Michael G

    2015-04-23

    This study investigated the effects of dementia on standing postural adaptation during performance of a visual search task. We recruited 16 older adults with dementia and 15 without dementia. Postural sway was assessed by recording medial-lateral (ML) and anterior-posterior (AP) center-of-pressure when standing with and without a visual search task; i.e., counting target letter frequency within a block of displayed randomized letters. ML sway variability was significantly higher in those with dementia during visual search as compared to those without dementia and compared to both groups during the control condition. AP sway variability was significantly greater in those with dementia as compared to those without dementia, irrespective of task condition. In the ML direction, the absolute and percent change in sway variability between the control condition and visual search (i.e., postural adaptation) was greater in those with dementia as compared to those without. In contrast, postural adaptation to visual search was similar between groups in the AP direction. As compared to those without dementia, those with dementia identified fewer letters on the visual task. In the non-dementia group only, greater increases in postural adaptation in both the ML and AP direction, correlated with lower performance on the visual task. The observed relationship between postural adaptation during the visual search task and visual search task performance--in the non-dementia group only--suggests a critical link between perception and action. Dementia reduces the capacity to perform a visual-based task while standing and thus, appears to disrupt this perception-action synergy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Hydraulic balancing of a control component within a nuclear reactor

    DOEpatents

    Marinos, D.; Ripfel, H.C.F.

    1975-10-14

    A reactor control component includes an inner conduit, for instance containing neutron absorber elements, adapted for longitudinal movement within an outer guide duct. A transverse partition partially encloses one end of the conduit and meets a transverse wall within the guide duct when the conduit is fully inserted into the reactor core. A tube piece extends from the transverse partition and is coaxially aligned to be received within a tubular receptacle which extends from the transverse wall. The tube piece and receptacle cooperate in engagement to restrict the flow and pressure of coolant beneath the transverse partition and thereby minimize upward forces tending to expel the inner conduit.

  5. Electronic compliance monitoring in resistant hypertension: the basis for rational therapeutic decisions.

    PubMed

    Burnier, M; Schneider, M P; Chioléro, A; Stubi, C L; Brunner, H R

    2001-02-01

    Incomplete compliance is one of several possible causes of uncontrolled hypertension. Yet, non-compliance remains largely unrecognized and is falsely interpreted as treatment resistance, because it is difficult to confirm or exclude objectively. The goal of this study was to evaluate the potential benefits of electronic monitoring of drug compliance in the management of patients with resistant hypertension. Forty-one hypertensive patients resistant to a three-drug regimen (average blood pressure 156/ 106 +/- 23/11 mmHg, mean +/- SD) were studied prospectively. They were informed that for the next 2 months, their presently prescribed drugs would be provided in electronic monitors, without any change in treatment, so as to provide the treating physician with a measure of their compliance. Thereafter, patients were offered the possibility of prolonging the monitoring of compliance for another 2 month period, during which treatment was adapted if necessary. Monitoring of compliance alone was associated with a significant improvement of blood pressure at 2 months (145/97 +/- 20/15 mmHg, P < 0.01). During monitoring, blood pressure was normalized (systolic < 140 mmHg or diastolic < 90 mmHg) in one-third of the patients and insufficient compliance was unmasked in another 20%. When analysed according to tertiles of compliance, patients with the lowest compliance exhibited significantly higher achieved diastolic blood pressures (P = 0.04). In 30 patients, compliance was monitored up to 4 months and drug therapy was adapted whenever necessary. In these patients, a further significant decrease in blood pressure was obtained (from 150/100 +/- 18/15 to 143/94 +/- 22/11 mmHg, P = 0.04/0.02). These results suggest that objective monitoring of compliance using electronic devices may be a useful step in the management of patients with refractory hypertension, as it enables physicians to take rational decisions based on reliable and objective data of drug compliance and hence to improve blood pressure control.

  6. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to a normally unstable high-power condition, thus enabling the high-power condition.

  7. Microfluidic strategy to investigate dynamics of small blood vessel function

    NASA Astrophysics Data System (ADS)

    Yasotharan, Sanjesh; Bolz, Steffen-Sebastian; Guenther, Axel

    2010-11-01

    Resistance arteries (RAs, 30-300 microns in diameter) that are located within the terminal part of the vascular tree regulate the laminar perfusion of tissue with blood, via the peripheral vascular resistance, and hence controls the systemic blood pressure. The structure of RAs is adapted to actively controlling flow resistance by dynamically changing their diameter, which is non-linearly dependent on the temporal variation of the transmural pressure, perfusion flow rate and spatiotemporal changes in the chemical environment. Increases in systemic blood pressure (hypertension) resulting from pathologic changes in the RA response represent the primary risk factor for cardiovascular diseases. We use a microfluidic strategy to investigate small blood vessels by quantifying structural variations within the arterial wall, RA outer contour and diameter over time. First, we document the artery response to vasomotor drugs that were homogeneously applied at step-wise increasing concentration. Second, we investigate the response in the presence of well-defined axial and circumferential heterogeneities. Artery per- and superfusion is discussed based on microscale PIV measurements of the fluid velocity on both sides of the arterial wall. Structural changes in the arterial wall are quantified using cross-correlation and proper orthogonal decomposition analyses of bright-field micrographs.

  8. Postural Regulation of Muscle Sympathetic Nerve Activity Before and After Simulated and Actual Microgravity Deconditioning

    NASA Technical Reports Server (NTRS)

    Pawelczyk, J. A.; Levine, B. D.

    1999-01-01

    The etiology of orthostatic intolerance after spaceflight is multifaceted. Morphological adaptations, in particular cardiac atrophy, are likely to magnify the decrease in stroke volume that occurs with reductions in cardiac filling pressure when standing. Neural adaptations may be inferred as well, as reductions in carotid-cardiac baroreflex responsiveness have been reported following bedrest deconditioning and spaceflight. Neural control of vascular resistance has not been studied directly when orthostatic intolerance is florid in the hours following spaceflight. However, the increases in systemic vascular resistance and plasma catecholamines during orthostatic stress are inappropriately low in orthostatically intolerant subjects following spaceflight, suggesting that deficits in the regulation of vascular resistance may be associated with hypoadrenergic function. The studies described in this abstract were designed to test this hypothesis.

  9. Adaptive attunement of selective covert attention to evolutionary-relevant emotional visual scenes.

    PubMed

    Fernández-Martín, Andrés; Gutiérrez-García, Aída; Capafons, Juan; Calvo, Manuel G

    2017-05-01

    We investigated selective attention to emotional scenes in peripheral vision, as a function of adaptive relevance of scene affective content for male and female observers. Pairs of emotional-neutral images appeared peripherally-with perceptual stimulus differences controlled-while viewers were fixating on a different stimulus in central vision. Early selective orienting was assessed by the probability of directing the first fixation towards either scene, and the time until first fixation. Emotional scenes selectively captured covert attention even when they were task-irrelevant, thus revealing involuntary, automatic processing. Sex of observers and specific emotional scene content (e.g., male-to-female-aggression, families and babies, etc.) interactively modulated covert attention, depending on adaptive priorities and goals for each sex, both for pleasant and unpleasant content. The attentional system exhibits domain-specific and sex-specific biases and attunements, probably rooted in evolutionary pressures to enhance reproductive and protective success. Emotional cues selectively capture covert attention based on their bio-social significance. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Distributed and self-adaptive vehicle speed estimation in the composite braking case for four-wheel drive hybrid electric car

    NASA Astrophysics Data System (ADS)

    Zhao, Z.-G.; Zhou, L.-J.; Zhang, J.-T.; Zhu, Q.; Hedrick, J.-K.

    2017-05-01

    Considering the controllability and observability of the braking torques of the hub motor, Integrated Starter Generator (ISG), and hydraulic brake for four-wheel drive (4WD) hybrid electric cars, a distributed and self-adaptive vehicle speed estimation algorithm for different braking situations has been proposed by fully utilising the Electronic Stability Program (ESP) sensor signals and multiple powersource signals. Firstly, the simulation platform of a 4WD hybrid electric car was established, which integrates an electronic-hydraulic composited braking system model and its control strategy, a nonlinear seven degrees-of-freedom vehicle dynamics model, and the Burckhardt tyre model. Secondly, combining the braking torque signals with the ESP signals, self-adaptive unscented Kalman sub-filter and main-filter adaptable to the observation noise were, respectively, designed. Thirdly, the fusion rules for the sub-filters and master filter were proposed herein, and the estimation results were compared with the simulated value of a real vehicle speed. Finally, based on the hardware in-the-loop platform and by picking up the regenerative motor torque signals and wheel cylinder pressure signals, the proposed speed estimation algorithm was tested under the case of moderate braking on the highly adhesive road, and the case of Antilock Braking System (ABS) action on the slippery road, as well as the case of ABS action on the icy road. Test results show that the presented vehicle speed estimation algorithm has not only a high precision but also a strong adaptability in the composite braking case.

  11. Kinetic Assessment of Golf Shoe Outer Sole Design Features

    PubMed Central

    Smith, Neal A.; Dyson, Rosemary J.

    2009-01-01

    This study assessed human kinetics in relation to golf shoe outer sole design features during the golf swing using a driver club by measuring both within the shoe, and beneath the shoe at the natural grass interface. Three different shoes were assessed: metal 7- spike shoe, alternative 7-spike shoe, and a flat soled shoe. In-shoe plantar pressure data were recorded using Footscan RS International pressure insoles and sampling at 500 Hz. Simultaneously ground reaction force at the shoe outer sole was measured using 2 natural grass covered Kistler force platforms and 1000 Hz data acquisition. Video recording of the 18 right-handed golfers at 200 Hz was undertaken while the golfer performed 5 golf shots with his own driver in each type of shoe. Front foot (nearest to shot direction) maximum vertical force and torque were greater than at the back foot, and there was no significant difference related to the shoe type. Wearing the metal spike shoe when using a driver was associated with more torque generation at the back foot (p < 0. 05) than when the flat soled shoe was worn. Within shoe regional pressures differed significantly with golf shoe outer sole design features (p < 0.05). Comparison of the metal spike and alternative spike shoe results provided indications of the quality of regional traction on the outer sole. Potential golf shoe outer sole design features and traction were presented in relation to phases of the golf swing movement. Application of two kinetic measurement methods identified that moderated (adapted) muscular control of foot and body movement may be induced by golf shoe outer sole design features. Ground reaction force measures inform comparisons of overall shoe functional performance, and insole pressure measurements inform comparisons of the underfoot conditions induced by specific regions of the golf shoe outer sole. Key points Assessments of within golf shoe pressures and beneath shoe forces at the natural grass interface were conducted during golf shots with a driver. Application of two kinetic measurement methods simultaneously identified that moderated (adapted) muscular control of the foot and body movement may be induced by golf shoe outer sole localised design features. Ground force measures inform overall shoe kinetic functional performance. Insole pressure measurement informs of underfoot conditions induced by localised specific regions of the golf outer sole. Significant differences in ground-shoe torque generation and insole regional pressures were identified when different golf shoes were worn. PMID:24149603

  12. Extracellular Polymeric Matrix Production and Relaxation under Fluid Shear and Mechanical Pressure in Staphylococcus aureus Biofilms.

    PubMed

    Hou, Jiapeng; Veeregowda, Deepak H; van de Belt-Gritter, Betsy; Busscher, Henk J; van der Mei, Henny C

    2017-10-20

    The viscoelasticity of a biofilm's EPS (extracellular-polymeric-substance) matrix conveys protection against mechanical challenges, but adaptive responses of biofilm inhabitants to produce EPS are not well known. Here, we compare the response of a biofilm of an EPS producing (ATCC 12600) and non-EPS producing (5298) Staphylococcus aureus strain to fluid shear and mechanical challenge. Confocal-Laser-Scanning-Microscopy confirmed absence of calcofluorwhite-stainable EPS in biofilms of S. aureus 5298. ATR-FTIR spectroscopy combined with tribometry indicated that the polysaccharide production per bacterium in the initial adhering layer was higher during growth at high shear than at low shear and this increased EPS production extended to entire biofilms, as indicated by tribometrically measured coefficients of friction (CoF). CoFs of biofilms grown under high fluid shear were higher than when grown under low shear, likely due to wash-off of polysaccharides. Measurement of a biofilm's CoF implies application of mechanical pressure that yielded an immediate increase in polysaccharide band area of S. aureus ATCC 12600 biofilms due to their compression that decreased after relieving pressure to the level observed prior to mechanical pressure. For biofilms grown under high shear, this coincided with a higher %whiteness in Optical-Coherence-Tomography-images indicative of water outflow, returning back into the biofilm during stress relaxation. Biofilms grown under low shear however, were stimulated during tribometry to produce EPS, also after stress relieve. Knowledge of factors that govern EPS production and water flow in biofilms will allow better control of biofilms under mechanical challenge and understanding of the barrier properties of biofilms toward antimicrobial penetration. IMPORTANCE Adaptive responses of biofilm inhabitants in nature to environmental challenges such as fluid shear and mechanical pressure, often involve EPS production with the aim of protecting biofilm inhabitants. EPS can assist biofilm bacteria to remain attached or impede antimicrobial penetration. The tribochemist is a recently introduced instrument, allowing to study initially adhering bacteria to a Germanium crystal using ATR-FTIR spectroscopy, while simultaneously allowing measurement of the coefficient of friction of a biofilm, serving as an indicator of the EPS content of a biofilm. EPS production can be stimulated by both fluid shear during growth and mechanical pressure, while increased EPS production can continue after pressure relaxation of the biofilm. Since EPS is pivotal in the protection of biofilm inhabitants against mechanical and chemical challenges, knowledge the factors that make biofilm inhabitants decide to produce EPS as provided in this study, are important for the development of biofilm control measures. Copyright © 2017 American Society for Microbiology.

  13. Microorganisms under high pressure--adaptation, growth and biotechnological potential.

    PubMed

    Mota, Maria J; Lopes, Rita P; Delgadillo, Ivonne; Saraiva, Jorge A

    2013-12-01

    Hydrostatic pressure is a well-known physical parameter which is now considered an important variable of life, since organisms have the ability to adapt to pressure changes, by the development of resistance against this variable. In the past decades a huge interest in high hydrostatic pressure (HHP) technology is increasingly emerging among food and biosciences researchers. Microbial specific stress responses to HHP are currently being investigated, through the evaluation of pressure effects on biomolecules, cell structure, metabolic behavior, growth and viability. The knowledge development in this field allows a better comprehension of pressure resistance mechanisms acquired at sub-lethal pressures. In addition, new applications of HHP could arise from these studies, particularly in what concerns to biotechnology. For instance, the modulation of microbial metabolic pathways, as a response to different pressure conditions, may lead to the production of novel compounds with potential biotechnological and industrial applications. Considering pressure as an extreme life condition, this review intends to present the main findings so far reported in the scientific literature, focusing on microorganisms with the ability to withstand and to grow in high pressure conditions, whether they have innated or acquired resistance, and show the potential of the application of HHP technology for microbial biotechnology. © 2013.

  14. Dynamic behaviors of cavitation bubble for the steady cavitating flow

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Huai, Xiulan; Li, Xunfeng

    2009-12-01

    In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a new equation, which does not involve the time term and can describe the motion of cavitation bubble in the steady cavitating flow, has been obtained. By solving the new motion equation using Runge-Kutta fourth order method with adaptive step size control, the dynamic behaviors of cavitation bubble driven by the varying pressure field downstream of a venturi cavitation reactor are numerically simulated. The effects of liquid temperature (corresponding to the saturated vapor pressure of liquid), cavitation number and inlet pressure of venturi on radial motion of bubble and pressure pulse due to the radial motion are analyzed and discussed in detail. Some dynamic behaviors of bubble different from those in previous papers are displayed. In addition, the internal relationship between bubble dynamics and process intensification is also discussed. The simulation results reported in this work reveal the variation laws of cavitation intensity with the flow conditions of liquid, and will lay a foundation for the practical application of hydrodynamic cavitation technology.

  15. Flexible Composite-Material Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  16. Bench Test Evaluation of Adaptive Servoventilation Devices for Sleep Apnea Treatment

    PubMed Central

    Zhu, Kaixian; Kharboutly, Haissam; Ma, Jianting; Bouzit, Mourad; Escourrou, Pierre

    2013-01-01

    Rationale: Adaptive servoventilation devices are marketed to overcome sleep disordered breathing with apneas and hypopneas of both central and obstructive mechanisms often experienced by patients with chronic heart failure. The clinical efficacy of these devices is still questioned. Study Objectives: This study challenged the detection and treatment capabilities of the three commercially available adaptive servoventilation devices in response to sleep disordered breathing events reproduced on an innovative bench test. Methods: The bench test consisted of a computer-controlled piston and a Starling resistor. The three devices were subjected to a flow sequence composed of central and obstructive apneas and hypopneas including Cheyne-Stokes respiration derived from a patient. The responses of the devices were separately evaluated with the maximum and the clinical settings (titrated expiratory positive airway pressure), and the detected events were compared to the bench-scored values. Results: The three devices responded similarly to central events, by increasing pressure support to raise airflow. All central apneas were eliminated, whereas hypopneas remained. The three devices responded differently to the obstructive events with the maximum settings. These obstructive events could be normalized with clinical settings. The residual events of all the devices were scored lower than bench test values with the maximum settings, but were in agreement with the clinical settings. However, their mechanisms were misclassified. Conclusion: The tested devices reacted as expected to the disordered breathing events, but not sufficiently to normalize the breathing flow. The device-scored results should be used with caution to judge efficacy, as their validity depends upon the initial settings. Citation: Zhu K; Kharboutly H; Ma J; Bouzit M; Escourrou P. Bench test evaluation of adaptive servoventilation devices for sleep apnea treatment. J Clin Sleep Med 2013;9(9):861-871. PMID:23997698

  17. Adaptive control system having hedge unit and related apparatus and methods

    NASA Technical Reports Server (NTRS)

    Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)

    2003-01-01

    The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.

  18. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  19. Nucleic adaptability of heterokaryons to fungicides in a multinucleate fungus, Sclerotinia homoeocarpa.

    PubMed

    Kessler, Dylan; Sang, Hyunkyu; Bousquet, Amanda; Hulvey, Jonathan P; Garcia, Dawlyn; Rhee, Siyeon; Hoshino, Yoichiro; Yamada, Toshihiko; Jung, Geunhwa

    2018-06-01

    Sclerotinia homoeocarpa is the causal organism of dollar spot in turfgrasses and is a multinucleate fungus with a history of resistance to multiple fungicide classes. Heterokaryosis gives rise to the coexistence of genetically distinct nuclei within a cell, which contributes to genotypic and phenotypic plasticity in multinucleate fungi. We demonstrate that field isolates, resistant to either a demethylation inhibitor or methyl benzimidazole carbamate fungicide, can form heterokaryons with resistance to each fungicide and adaptability to serial combinations of different fungicide concentrations. Field isolates and putative heterokaryons were assayed on fungicide-amended media for in vitro sensitivity. Shifts in fungicide sensitivity and microsatellite genotypes indicated that heterokaryons could adapt to changes in fungicide pressure. Presence of both nuclei in heterokaryons was confirmed by detection of a single nucleotide polymorphism in the β-tubulin gene, the presence of microsatellite alleles of both field isolates, and the live-cell imaging of two different fluorescently tagged nuclei using laser scanning confocal microscopy. Nucleic adaptability of heterokaryons to fungicides was strongly supported by the visualization of changes in fluorescently labeled nuclei to fungicide pressure. Results from this study suggest that heterokaryosis is a mechanism by which the pathogen adapts to multiple fungicide pressures in the field. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. p38α Mitogen-Activated Protein Kinase Plays a Critical Role in Cardiomyocyte Survival but Not in Cardiac Hypertrophic Growth in Response to Pressure Overload

    PubMed Central

    Nishida, Kazuhiko; Yamaguchi, Osamu; Hirotani, Shinichi; Hikoso, Shungo; Higuchi, Yoshiharu; Watanabe, Tetsuya; Takeda, Toshihiro; Osuka, Soh; Morita, Takashi; Kondoh, Gen; Uno, Yoshihiro; Kashiwase, Kazunori; Taniike, Masayuki; Nakai, Atsuko; Matsumura, Yasushi; Miyazaki, Jun-ichi; Sudo, Tatsuhiko; Hongo, Kenichi; Kusakari, Yoichiro; Kurihara, Satoshi; Chien, Kenneth R.; Takeda, Junji; Hori, Masatsugu; Otsu, Kinya

    2004-01-01

    The molecular mechanism for the transition from cardiac hypertrophy, an adaptive response to biomechanical stress, to heart failure is poorly understood. The mitogen-activated protein kinase p38α is a key component of stress response pathways in various types of cells. In this study, we attempted to explore the in vivo physiological functions of p38α in hearts. First, we generated mice with floxed p38α alleles and crossbred them with mice expressing the Cre recombinase under the control of the α-myosin heavy-chain promoter to obtain cardiac-specific p38α knockout mice. These cardiac-specific p38α knockout mice were born normally, developed to adulthood, were fertile, exhibited a normal life span, and displayed normal global cardiac structure and function. In response to pressure overload to the left ventricle, they developed significant levels of cardiac hypertrophy, as seen in controls, but also developed cardiac dysfunction and heart dilatation. This abnormal response to pressure overload was accompanied by massive cardiac fibrosis and the appearance of apoptotic cardiomyocytes. These results demonstrate that p38α plays a critical role in the cardiomyocyte survival pathway in response to pressure overload, while cardiac hypertrophic growth is unaffected despite its dramatic down-regulation. PMID:15572667

  1. Development of an Ex Vivo, Beating Heart Model for CT Myocardial Perfusion

    PubMed Central

    Das, Marco; Haberland, Ulrike; Slump, Cees; Handayani, Astri; van Tuijl, Sjoerd; Stijnen, Marco; Oudkerk, Matthijs; Wildberger, Joachim E.; Vliegenthart, Rozemarijn

    2015-01-01

    Objective. To test the feasibility of a CT-compatible, ex vivo, perfused porcine heart model for myocardial perfusion CT imaging. Methods. One porcine heart was perfused according to Langendorff. Dynamic perfusion scanning was performed with a second-generation dual source CT scanner. Circulatory parameters like blood flow, aortic pressure, and heart rate were monitored throughout the experiment. Stenosis was induced in the circumflex artery, controlled by a fractional flow reserve (FFR) pressure wire. CT-derived myocardial perfusion parameters were analysed at FFR of 1 to 0.10/0.0. Results. CT images did not show major artefacts due to interference of the model setup. The pacemaker-induced heart rhythm was generally stable at 70 beats per minute. During most of the experiment, blood flow was 0.9–1.0 L/min, and arterial pressure varied between 80 and 95 mm/Hg. Blood flow decreased and arterial pressure increased by approximately 10% after inducing a stenosis with FFR ≤ 0.50. Dynamic perfusion scanning was possible across the range of stenosis grades. Perfusion parameters of circumflex-perfused myocardial segments were affected at increasing stenosis grades. Conclusion. An adapted Langendorff porcine heart model is feasible in a CT environment. This model provides control over physiological parameters and may allow in-depth validation of quantitative CT perfusion techniques. PMID:26185756

  2. Numerical study of base pressure characteristic curve for a four-engine clustered nozzle configuration

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1993-01-01

    The objective of this study is to benchmark a four-engine clustered nozzle base flowfield with a computational fluid dynamics (CFD) model. The CFD model is a three-dimensional pressure-based, viscous flow formulation. An adaptive upwind scheme is employed for the spatial discretization. The upwind scheme is based on second and fourth order central differencing with adaptive artificial dissipation. Qualitative base flow features such as the reverse jet, wall jet, recompression shock, and plume-plume impingement have been captured. The computed quantitative flow properties such as the radial base pressure distribution, model centerline Mach number and static pressure variation, and base pressure characteristic curve agreed reasonably well with those of the measurement. Parametric study on the effect of grid resolution, turbulence model, inlet boundary condition and difference scheme on convective terms has been performed. The results showed that grid resolution had a strong influence on the accuracy of the base flowfield prediction.

  3. Rapid identification of Clostridium species by high-pressure liquid chromatography.

    PubMed Central

    Harpold, D J; Wasilauskas, B L; O'Connor, M L

    1985-01-01

    High-pressure liquid chromatography was evaluated as a rapid means of identifying various species of clostridia. Isolates were inoculated into a defined medium and incubated aerobically for 1 h at 35 degrees C. The organisms were removed, and the supernatants were derivatized for 1 min at room temperature by the addition of o-phthalaldehyde. The total time required to run each chromatogram was approximately 50 min. Standardized peak heights for each medium component and any new peaks formed were calculated for each isolate and compared with those for uninoculated control medium. Multiple isolates of various Clostridium species gave consistent patterns of medium utilization that could be used for identification. This rapid method can easily be adapted for laboratory use and has the potential for automation. PMID:3905852

  4. Development of an Atmospheric Pressure Ionization Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A commercial atmospheric pressure ionization mass spectrometer (APIMS) was purchased from EXTREL Mass Spectrometry, Inc. (Pittsburgh, PA). Our research objectives were to adapt this instrument and develop techniques for real-time determinations of the concentrations of trace species in the atmosphere. The prototype instrument is capable of making high frequency measurements with no sample preconcentrations. Isotopically labeled standards are used as an internal standard to obtain high precision and to compensate for changes in instrument sensitivity and analyte losses in the sampling manifold as described by Bandy and coworkers. The prototype instrument is capable of being deployed on NASA C130, Electra, P3, and DC8 aircraft. After purchasing and taking delivery by June 1994, we assembled the mass spectrometer, data acquisition, and manifold flow control instrumentation in electronic racks and performed tests.

  5. Adaptive Controller Effects on Pilot Behavior

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  6. Analysis of foot structure in athletes sustaining proximal fifth metatarsal stress fracture.

    PubMed

    Hetsroni, Iftach; Nyska, Meir; Ben-Sira, David; Mann, Gideon; Segal, Ofer; Maoz, Guy; Ayalon, Moshe

    2010-03-01

    In the past, several studies provided anecdotal descriptions of high-arched feet in individuals sustaining proximal fifth metatarsal stress fractures. This relationship has never been supported by scientific evidence. Our objective was to examine whether athletes who sustained this injury had an exceptional static foot structure or dynamic loading pattern. Ten injured professional soccer players who regained full professional activity following a unilateral proximal fifth metatarsal stress fracture and ten control soccer players were examined. Independent variables included static evaluation of foot and arch structure, followed by dynamic plantar foot pressure evaluation. Each variable was compared between injured, contra-lateral uninjured, and control feet. Static measurements of foot and arch structure did not reveal differences among the groups. However, plantar pressure evaluation revealed relative unloading of the fourth metatarsal in injured and uninjured limbs of injured athletes compared with control, while the fifth metatarsal revealed pressure reduction only in the injured limbs of injured athletes. Athletes who sustained proximal fifth metatarsal stress fracture were not characterized by an exceptional static foot structure. Dynamically, lateral metatarsal unloading during stance may either play a role in the pathogenesis of the injury, or alternately represent an adaptive process. Footwear fabrication for previously injured athletes should not categorically address cushioning properties designed for high-arch feet, but rather focus on individual dynamic evaluation of forefoot loading, with less attention applied to static foot and arch characteristics.

  7. Bench test evaluation of adaptive servoventilation devices for sleep apnea treatment.

    PubMed

    Zhu, Kaixian; Kharboutly, Haissam; Ma, Jianting; Bouzit, Mourad; Escourrou, Pierre

    2013-09-15

    Adaptive servoventilation devices are marketed to overcome sleep disordered breathing with apneas and hypopneas of both central and obstructive mechanisms often experienced by patients with chronic heart failure. The clinical efficacy of these devices is still questioned. This study challenged the detection and treatment capabilities of the three commercially available adaptive servoventilation devices in response to sleep disordered breathing events reproduced on an innovative bench test. The bench test consisted of a computer-controlled piston and a Starling resistor. The three devices were subjected to a flow sequence composed of central and obstructive apneas and hypopneas including Cheyne-Stokes respiration derived from a patient. The responses of the devices were separately evaluated with the maximum and the clinical settings (titrated expiratory positive airway pressure), and the detected events were compared to the bench-scored values. The three devices responded similarly to central events, by increasing pressure support to raise airflow. All central apneas were eliminated, whereas hypopneas remained. The three devices responded differently to the obstructive events with the maximum settings. These obstructive events could be normalized with clinical settings. The residual events of all the devices were scored lower than bench test values with the maximum settings, but were in agreement with the clinical settings. However, their mechanisms were misclassified. The tested devices reacted as expected to the disordered breathing events, but not sufficiently to normalize the breathing flow. The device-scored results should be used with caution to judge efficacy, as their validity depends upon the initial settings.

  8. Analysis of morphological variability and heritability in the head of the Argentine Black and White Tegu (Salvator merianae): undisturbed vs. disturbed environments.

    PubMed

    Imhoff, Carolina; Giri, Federico; Siroski, Pablo; Amavet, Patricia

    2018-04-01

    The heterogeneity of biotic and abiotic factors influencing fitness produce selective pressures that promote local adaptation and divergence among different populations of the same species. In order for adaptations to be maintained through evolutionary time, heritable genetic variation controlling the expression of the morphological features under selection is necessary. Here we compare morphological shape variability and size of the cephalic region of Salvator merianae specimens from undisturbed environments to those of individuals from disturbed environments, and estimated heritability for shape and size using geometric morphometric and quantitative genetics tools. The results of these analyzes indicated that there are statistically significant differences in shape and size between populations from the two environments. Possibly, one of the main determinants of cephalic shape and size is adaptation to the characteristics of the environment and to the trophic niche. Individuals from disturbed environments have a cephalic region with less shape variation and also have a larger centroid size when compared to individuals from undisturbed environments. The high heritability values obtained for shape and size in dorsal view and right side view indicate that these phenotypic characters have a great capacity to respond to the selection pressures to which they are subjected. Data obtained here could be used as an important tool when establishing guidelines for plans for the sustainable use and conservation of S. merianae and other species living in disturbed areas. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Plasmapheresis affects responses of slowly and rapidly adapting airway receptors to pulmonary venous congestion in dogs.

    PubMed Central

    Kappagoda, C T; Ravi, K

    1989-01-01

    1. The effects of plasmapheresis on the responses of rapidly adapting receptors (RARs) and slowly adapting receptors (SARs) of the airways to pulmonary venous congestion were examined in dogs anaesthetized with alpha-chloralose. Pulmonary venous congestion was produced in a graded manner by partial obstruction of the mitral valve sufficient to raise the mean left atrial pressure by 5, 10 and 15 mmHg. Plasmapheresis was performed by withdrawing 10% of blood volume twice. 2. Both RARs (n = 11) and SARs (n = 5) responded to pulmonary venous congestion by increasing their activities. The responses of the former were proportionately greater. 3. After plasmapheresis which reduced the concentration of plasma proteins by 12.3 +/- 1.0%, the responses of the RARs to pulmonary venous congestion were enhanced significantly. There was no significant change in the responses of SARs. 4. In another set of six RARs, the effects of graded pulmonary venous congestion were investigated twice with an interval of 45 min between the two observations. No significant differences were noted between the two responses. 5. Collection of lymph from the tracheobronchial lymph duct (n = 6) showed that after plasmapheresis, there was an increase in the control lymph flow. In addition, the lymph flow was enhanced during pulmonary venous congestion (mean left atrial pressure increased by 10 mmHg). 6. It is suggested that a natural stimulus for the excitation of the RAR is a function of the fluid fluxes in the pulmonary extravascular space. PMID:2607464

  10. [The prevention of pressure sores in paediatric intensive care].

    PubMed

    Thueux, Emilie

    2014-01-01

    In paediatric intensive care, children develop pressure sores as a result of various mechanical and clinical factors. The prevention and assessment of the risk of pressure sores constitute a key concern for the nursing teams which establish prevention strategies adapted to the young patients.

  11. Adaptive responses and latent costs of multigeneration cadmium exposure in parasite resistant and susceptible strains of a freshwater snail.

    PubMed

    Salice, Christopher J; Anderson, Todd A; Roesijadi, G

    2010-11-01

    Population response to anthropogenic activities will be influenced by prior adaptation to environmental conditions. We tested how parasite-resistant and -susceptible strains of the freshwater snail, Biomphalaria glabrata, responded to cadmium and elevated temperature challenges after having been exposed to low-level cadmium continuously for multiple generations. Snails exposed to cadmium for three generations were removed for the fourth generation, and challenged in the fifth generation with (1) chronic cadmium exposure over the entire life cycle; (2) lethal cadmium exposure of adults; and (3) elevated temperature challenge of adults. The parasite susceptible NMRI strain is more cadmium tolerant than the parasite resistant BS90 strain and remained more tolerant than BS90 throughout this study. Additionally, NMRI exhibited greater adaptive capacity for cadmium than BS90 and became more tolerant of both chronic and lethal cadmium challenges, while BS90 became more tolerant of lethal cadmium challenge only. Fitness costs, reflected in population growth rate, were not apparent in fifth generation snails maintained in control conditions. However, costs were latent and expressed as decreased tolerance to a secondarily imposed temperature stress. Adaptation to prior selection pressures can influence subsequent adaptation to anthropogenic stresses and may have associated costs that reduce fitness in novel environments.

  12. Predominance of Intrinsic Mechanism of Resting Heart Rate Control and Preserved Baroreflex Sensitivity in Professional Cyclists after Competitive Training.

    PubMed

    Azevedo, Luciene Ferreira; Perlingeiro, Patricia; Hachul, Denise Tessariol; Gomes-Santos, Igor Lucas; Tsutsui, Jeane Mike; Negrao, Carlos Eduardo; De Matos, Luciana D N J

    2016-01-01

    Different season trainings may influence autonomic and non-autonomic cardiac control of heart rate and provokes specific adaptations on heart's structure in athletes. We investigated the influence of transition training (TT) and competitive training (CT) on resting heart rate, its mechanisms of control, spontaneous baroreflex sensitivity (BRS) and relationships between heart rate mechanisms and cardiac structure in professional cyclists (N = 10). Heart rate (ECG) and arterial blood pressure (Pulse Tonometry) were recorded continuously. Autonomic blockade was performed (atropine-0.04 mg.kg-1; esmolol-500 μg.kg-1 = 0.5 mg). Vagal effect, intrinsic heart rate, parasympathetic (n) and sympathetic (m) modulations, autonomic influence, autonomic balance and BRS were calculated. Plasma norepinephrine (high-pressure liquid chromatography) and cardiac structure (echocardiography) were evaluated. Resting heart rate was similar in TT and CT. However, vagal effect, intrinsic heart rate, autonomic influence and parasympathetic modulation (higher n value) decreased in CT (P≤0.05). Sympathetic modulation was similar in both trainings. The autonomic balance increased in CT but still showed parasympathetic predominance. Cardiac diameter, septum and posterior wall thickness and left ventricular mass also increased in CT (P<0.05) as well as diastolic function. We observed an inverse correlation between left ventricular diastolic diameter, septum and posterior wall thickness and left ventricular mass with intrinsic heart rate. Blood pressure and BRS were similar in both trainings. Intrinsic heart rate mechanism is predominant over vagal effect during CT, despite similar resting heart rate. Preserved blood pressure levels and BRS during CT are probably due to similar sympathetic modulation in both trainings.

  13. The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)

    PubMed Central

    Milano, Elizabeth R.; Lowry, David B.; Juenger, Thomas E.

    2016-01-01

    The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mapping population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes. PMID:27613751

  14. The shapes of bird beaks are highly controlled by nondietary factors

    PubMed Central

    Bright, Jen A.; Marugán-Lobón, Jesús; Cobb, Samuel N.

    2016-01-01

    Bird beaks are textbook examples of ecological adaptation to diet, but their shapes are also controlled by genetic and developmental histories. To test the effects of these factors on the avian craniofacial skeleton, we conducted morphometric analyses on raptors, a polyphyletic group at the base of the landbird radiation. Despite common perception, we find that the beak is not an independently targeted module for selection. Instead, the beak and skull are highly integrated structures strongly regulated by size, with axes of shape change linked to the actions of recently identified regulatory genes. Together, size and integration account for almost 80% of the shape variation seen between different species to the exclusion of morphological dietary adaptation. Instead, birds of prey use size as a mechanism to modify their feeding ecology. The extent to which shape variation is confined to a few major axes may provide an advantage in that it facilitates rapid morphological evolution via changes in body size, but may also make raptors especially vulnerable when selection pressures act against these axes. The phylogenetic position of raptors suggests that this constraint is prevalent in all landbirds and that breaking the developmental correspondence between beak and braincase may be the key novelty in classic passerine adaptive radiations. PMID:27125856

  15. The shapes of bird beaks are highly controlled by nondietary factors.

    PubMed

    Bright, Jen A; Marugán-Lobón, Jesús; Cobb, Samuel N; Rayfield, Emily J

    2016-05-10

    Bird beaks are textbook examples of ecological adaptation to diet, but their shapes are also controlled by genetic and developmental histories. To test the effects of these factors on the avian craniofacial skeleton, we conducted morphometric analyses on raptors, a polyphyletic group at the base of the landbird radiation. Despite common perception, we find that the beak is not an independently targeted module for selection. Instead, the beak and skull are highly integrated structures strongly regulated by size, with axes of shape change linked to the actions of recently identified regulatory genes. Together, size and integration account for almost 80% of the shape variation seen between different species to the exclusion of morphological dietary adaptation. Instead, birds of prey use size as a mechanism to modify their feeding ecology. The extent to which shape variation is confined to a few major axes may provide an advantage in that it facilitates rapid morphological evolution via changes in body size, but may also make raptors especially vulnerable when selection pressures act against these axes. The phylogenetic position of raptors suggests that this constraint is prevalent in all landbirds and that breaking the developmental correspondence between beak and braincase may be the key novelty in classic passerine adaptive radiations.

  16. Adaptive evolution in locomotor performance: How selective pressures and functional relationships produce diversity.

    PubMed

    Scales, Jeffrey A; Butler, Marguerite A

    2016-01-01

    Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  17. Acute Effects of Capsaicin on Energy Expenditure and Fat Oxidation in Negative Energy Balance

    PubMed Central

    Janssens, Pilou L. H. R.; Hursel, Rick; Martens, Eveline A. P.; Westerterp-Plantenga, Margriet S.

    2013-01-01

    Background Addition of capsaicin (CAPS) to the diet has been shown to increase energy expenditure; therefore capsaicin is an interesting target for anti-obesity therapy. Aim We investigated the 24 h effects of CAPS on energy expenditure, substrate oxidation and blood pressure during 25% negative energy balance. Methods Subjects underwent four 36 h sessions in a respiration chamber for measurements of energy expenditure, substrate oxidation and blood pressure. They received 100% or 75% of their daily energy requirements in the conditions ‘100%CAPS’, ‘100%Control’, ‘75%CAPS’ and ‘75%Control’. CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units (SHU)) with every meal. Results An induced negative energy balance of 25% was effectively a 20.5% negative energy balance due to adapting mechanisms. Diet-induced thermogenesis (DIT) and resting energy expenditure (REE) at 75%CAPS did not differ from DIT and REE at 100%Control, while at 75%Control these tended to be or were lower than at 100%Control (p = 0.05 and p = 0.02 respectively). Sleeping metabolic rate (SMR) at 75%CAPS did not differ from SMR at 100%CAPS, while SMR at 75%Control was lower than at 100%CAPS (p = 0.04). Fat oxidation at 75%CAPS was higher than at 100%Control (p = 0.03), while with 75%Control it did not differ from 100%Control. Respiratory quotient (RQ) was more decreased at 75%CAPS (p = 0.04) than at 75%Control (p = 0.05) when compared with 100%Control. Blood pressure did not differ between the four conditions. Conclusion In an effectively 20.5% negative energy balance, consumption of 2.56 mg capsaicin per meal supports negative energy balance by counteracting the unfavorable negative energy balance effect of decrease in components of energy expenditure. Moreover, consumption of 2.56 mg capsaicin per meal promotes fat oxidation in negative energy balance and does not increase blood pressure significantly. Trial Registration Nederlands Trial Register; registration number NTR2944 PMID:23844093

  18. Adaptive dimensions of health research among indigenous Siberians.

    PubMed

    Snodgrass, J Josh; Sorensen, Mark V; Tarskaia, Larissa A; Leonard, William R

    2007-01-01

    Present evidence suggests that modern humans were the first hominid species to successfully colonize high-latitude environments (> or =55 degrees N). Given evidence for a recent (<200,000 years) lower latitude naissance of modern humans, the global dispersal and successful settlement of arctic and subarctic regions represent an unprecedented adaptive shift. This adaptive shift, which included cultural, behavioral, and biological dimensions, allowed human populations to cope with the myriad environmental stressors encountered in circumpolar regions. Although unique morphological and physiological adaptations among contemporary northern residents have been recognized for decades, human biologists are only now beginning to consider whether biological adaptations to regional environmental conditions influence health changes associated with economic modernization and lifestyle change. Recent studies have documented basal metabolic rates (BMRs) among indigenous Siberian populations that are systematically elevated compared to lower latitude groups; this metabolic elevation apparently is a physiological adaptation to cold stress experienced in the circumpolar environment. Important health implications of metabolic adaptation are suggested by research with the Yakut (Sakha), Evenki, and Buriat of Siberia. BMR is significantly positively correlated with blood pressure, independently of body size, body composition, and various potentially confounding variables (e.g., age and smoking). Further, this research has documented a significant negative association between BMR and LDL cholesterol, which remains after controlling for potential confounders; this suggests that high metabolic turnover among indigenous Siberians has a protective effect with regard to plasma lipid levels. These results underscore the importance of incorporating an evolutionary approach into health research among northern populations.

  19. Numerical simulation of immiscible viscous fingering using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Adam, A.; Salinas, P.; Percival, J. R.; Pavlidis, D.; Pain, C.; Muggeridge, A. H.; Jackson, M.

    2015-12-01

    Displacement of one fluid by another in porous media occurs in various settings including hydrocarbon recovery, CO2 storage and water purification. When the invading fluid is of lower viscosity than the resident fluid, the displacement front is subject to a Saffman-Taylor instability and is unstable to transverse perturbations. These instabilities can grow, leading to fingering of the invading fluid. Numerical simulation of viscous fingering is challenging. The physics is controlled by a complex interplay of viscous and diffusive forces and it is necessary to ensure physical diffusion dominates numerical diffusion to obtain converged solutions. This typically requires the use of high mesh resolution and high order numerical methods. This is computationally expensive. We demonstrate here the use of a novel control volume - finite element (CVFE) method along with dynamic unstructured mesh adaptivity to simulate viscous fingering with higher accuracy and lower computational cost than conventional methods. Our CVFE method employs a discontinuous representation for both pressure and velocity, allowing the use of smaller control volumes (CVs). This yields higher resolution of the saturation field which is represented CV-wise. Moreover, dynamic mesh adaptivity allows high mesh resolution to be employed where it is required to resolve the fingers and lower resolution elsewhere. We use our results to re-examine the existing criteria that have been proposed to govern the onset of instability.Mesh adaptivity requires the mapping of data from one mesh to another. Conventional methods such as consistent interpolation do not readily generalise to discontinuous fields and are non-conservative. We further contribute a general framework for interpolation of CV fields by Galerkin projection. The method is conservative, higher order and yields improved results, particularly with higher order or discontinuous elements where existing approaches are often excessively diffusive.

  20. Vascular characteristics in young women-Effect of extensive endurance training or a sedentary lifestyle.

    PubMed

    Bjarnegård, N; Länne, T; Cinthio, M; Ekstrand, J; Hedman, K; Nylander, E; Henriksson, J

    2018-06-01

    To explore whether high-level endurance training in early age has an influence on the arterial wall properties in young women. Forty-seven athletes (ATH) and 52 controls (CTR), all 17-25 years of age, were further divided into runners (RUN), whole-body endurance athletes (WBA), sedentary controls (SC) and normally active controls (AC). Two-dimensional ultrasound scanning of the carotid arteries was conducted to determine local common carotid artery (CCA) geometry and wall distensibility. Pulse waves were recorded with a tonometer to determine regional pulse wave velocity (PWV) and pulse pressure waveform. Carotid-radial PWV was lower in WBA than in RUN (P < .05), indicating higher arterial distensibility along the arm. Mean arterial pressure was lower in ATH than in CTR and in RUN than in WBA (P < .05). Synthesized aortic augmentation index (AI@75) was lower among ATH than among CTR (-12.8 ± 1.6 vs -2.6 ± 1.2%, P < .001) and in WBA than in RUN (-16.4 ± 2.5 vs -10.7 ± 2.0%, P < .05), suggesting a diminished return of reflection waves to the aorta during systole. Carotid-femoral PWV and intima-media thickness (IMT), lumen diameter and radial distensibility of the CCA were similar in ATH and CTR. Elastic artery distensibility and carotid artery IMT are not different in young women with extensive endurance training over several years and in those with sedentary lifestyle. On the other hand, our data suggest that long-term endurance training is associated with potentially favourable peripheral artery adaptation, especially in sports where upper body work is added. This adaptation, if persisting later in life, could contribute to lower cardiovascular risk. © 2018 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  1. Application of Parallel Adjoint-Based Error Estimation and Anisotropic Grid Adaptation for Three-Dimensional Aerospace Configurations

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Park, M. A.; Jones, W. T.; Hammond, D. P.; Nielsen, E. J.

    2005-01-01

    This paper demonstrates the extension of error estimation and adaptation methods to parallel computations enabling larger, more realistic aerospace applications and the quantification of discretization errors for complex 3-D solutions. Results were shown for an inviscid sonic-boom prediction about a double-cone configuration and a wing/body segmented leading edge (SLE) configuration where the output function of the adjoint was pressure integrated over a part of the cylinder in the near field. After multiple cycles of error estimation and surface/field adaptation, a significant improvement in the inviscid solution for the sonic boom signature of the double cone was observed. Although the double-cone adaptation was initiated from a very coarse mesh, the near-field pressure signature from the final adapted mesh compared very well with the wind-tunnel data which illustrates that the adjoint-based error estimation and adaptation process requires no a priori refinement of the mesh. Similarly, the near-field pressure signature for the SLE wing/body sonic boom configuration showed a significant improvement from the initial coarse mesh to the final adapted mesh in comparison with the wind tunnel results. Error estimation and field adaptation results were also presented for the viscous transonic drag prediction of the DLR-F6 wing/body configuration, and results were compared to a series of globally refined meshes. Two of these globally refined meshes were used as a starting point for the error estimation and field-adaptation process where the output function for the adjoint was the total drag. The field-adapted results showed an improvement in the prediction of the drag in comparison with the finest globally refined mesh and a reduction in the estimate of the remaining drag error. The adjoint-based adaptation parameter showed a need for increased resolution in the surface of the wing/body as well as a need for wake resolution downstream of the fuselage and wing trailing edge in order to achieve the requested drag tolerance. Although further adaptation was required to meet the requested tolerance, no further cycles were computed in order to avoid large discrepancies between the surface mesh spacing and the refined field spacing.

  2. Reflex tracheal contraction during pulmonary venous congestion in the dog.

    PubMed Central

    Kappagoda, C T; Man, G C; Ravi, K; Teo, K K

    1988-01-01

    1. The effect of pulmonary venous congestion on tracheal tone was studied in dogs anaesthetized with alpha-chloralose. Pulmonary venous congestion was produced by partial obstruction of the mitral valve to increase left atrial pressure by 10 mmHg. Tracheal tone was measured in vivo by an isometric force displacement method. 2. Tracheal tone increased by 6.3 +/- 0.3 g from a control level of 91.6 +/- 2.8 g when left atrial pressure was increased by 10.5 +/- 0.3 mmHg. This response was abolished by cooling the cervical vagi to 8 degrees C at a point caudal to the origin of the superior laryngeal nerves. Also, sectioning the superior laryngeal nerves abolished this increase in tracheal tone. 3. Afferent activity recorded from rapidly adapting receptors of the airways increased significantly during pulmonary venous congestion. This increase in activity was abolished by cooling the vagi caudal to the recording site to 8-9 degrees C. 4. Administration of propranolol (0.5 mg/kg) failed to abolish this increase in tracheal tone while atropine (3 mg/kg) did so. 5. Stimulation of left atrial receptors without an increase in left atrial pressure and stimulation of right atrial receptors with and without increases in right atrial pressure did not cause any change in tracheal tone. 6. It is suggested that pulmonary venous congestion is associated with a reflex increase in tracheal tone, the afferent limb of which is formed by pulmonary receptors discharging into myelinated fibres in the cervical vagi and the efferent limb by parasympathetic cholinergic fibres in the superior laryngeal nerves. The afferent receptors are likely to be the rapidly adapting receptors. This reflex may be of importance in the development of the respiratory symptoms associated with left ventricular failure. PMID:3236242

  3. Adaptation of gastrointestinal nematode parasites to host genotype: single locus simulation models

    PubMed Central

    2013-01-01

    Background Breeding livestock for improved resistance to disease is an increasingly important selection goal. However, the risk of pathogens adapting to livestock bred for improved disease resistance is difficult to quantify. Here, we explore the possibility of gastrointestinal worms adapting to sheep bred for low faecal worm egg count using computer simulation. Our model assumes sheep and worm genotypes interact at a single locus, such that the effect of an A allele in sheep is dependent on worm genotype, and the B allele in worms is favourable for parasitizing the A allele sheep but may increase mortality on pasture. We describe the requirements for adaptation and test if worm adaptation (1) is slowed by non-genetic features of worm infections and (2) can occur with little observable change in faecal worm egg count. Results Adaptation in worms was found to be primarily influenced by overall worm fitness, viz. the balance between the advantage of the B allele during the parasitic stage in sheep and its disadvantage on pasture. Genetic variation at the interacting locus in worms could be from de novo or segregating mutations, but de novo mutations are rare and segregating mutations are likely constrained to have (near) neutral effects on worm fitness. Most other aspects of the worm infection we modelled did not affect the outcomes. However, the host-controlled mechanism to reduce faecal worm egg count by lowering worm fecundity reduced the selection pressure on worms to adapt compared to other mechanisms, such as increasing worm mortality. Temporal changes in worm egg count were unreliable for detecting adaptation, despite the steady environment assumed in the simulations. Conclusions Adaptation of worms to sheep selected for low faecal worm egg count requires an allele segregating in worms that is favourable in animals with improved resistance but less favourable in other animals. Obtaining alleles with this specific property seems unlikely. With support from experimental data, we conclude that selection for low faecal worm egg count should be stable over a short time frame (e.g. 20 years). We are further exploring model outcomes with multiple loci and comparing outcomes to other control strategies. PMID:23714384

  4. Differential high pressure survival in stationary-phase Escherichia coli MG1655

    NASA Astrophysics Data System (ADS)

    Griffin, Patrick L.; Kish, Adrienne; Steele, Andrew; Hemley, Russell J.

    2011-06-01

    Hydrostatic pressure exerts a profound influence on nearly all facets of cellular structure and function with exposures to sufficiently high pressure leading to microbial inactivation. We report the first observation of a persistent, pressure-resistant subpopulation within stationary-phase samples of Escherichia coli MG1655, a mesophilic bacterium adapted to surface pressure. This high pressure-resistant subpopulation exhibits pressure survival ranging from 0.6 to 2.0 orders of magnitude greater survival than high pressure treatments at pressures of 225-400 MPa. We also examine some aspects of pressure treatment protocol that may influence the measurements of high pressure survival.

  5. Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model

    NASA Astrophysics Data System (ADS)

    Kim, Sangjo; Kim, Kuisoon; Son, Changmin

    2018-04-01

    An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.

  6. Reservoir and vector evolutionary pressures shaped the adaptation of Borrelia.

    PubMed

    Estrada-Peña, Agustín; Álvarez-Jarreta, Jorge; Cabezas-Cruz, Alejandro

    2018-04-12

    The life cycle of spirochetes of the genus Borrelia includes complex networks of vertebrates and ticks. The tripartite association of Borrelia-vertebrate-tick has proved ecologically successful for these bacteria, which have become some of the most prominent tick-borne pathogens in the northern hemisphere. To keep evolutionary pace with its double-host life history, Borrelia must adapt to the evolutionary pressures exerted by both sets of hosts. In this review, we attempt to reconcile functional, phylogenetic, and ecological perspectives to propose a coherent scenario of Borrelia evolution. Available empirical information supports that the association of Borrelia with ticks is very old. The major split between the tick families Argasidae-Ixodidae (dated some 230-290 Mya) resulted in most relapsing fever (Rf) species being restricted to Argasidae and few associated with Ixodidae. A further key event produced the diversification of the Lyme borreliosis (Lb) species: the radiation of ticks of the genus Ixodes from the primitive stock of Ixodidae (around 217 Mya). The ecological interactions of Borrelia demonstrate that Argasidae-transmitted Rf species remain restricted to small niches of one tick species and few vertebrates. The evolutionary pressures on this group are consequently low, and speciation processes seem to be driven by geographical isolation. In contrast to Rf, Lb species circulate in nested networks of dozens of tick species and hundreds of vertebrate species. This greater variety confers a remarkably variable pool of evolutionary pressures, resulting in large speciation of the Lb group, where different species adapt to circulate through different groups of vertebrates. Available data, based on ospA and multilocus sequence typing (including eight concatenated in-house genes) phylogenetic trees, suggest that ticks could constitute a secondary bottleneck that contributes to Lb specialization. Both sets of adaptive pressures contribute to the resilience of highly adaptable meta-populations of bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Genomic Trajectories to Desiccation Resistance: Convergence and Divergence Among Replicate Selected Drosophila Lines

    PubMed Central

    Griffin, Philippa C.; Hangartner, Sandra B.; Fournier-Level, Alexandre; Hoffmann, Ary A.

    2017-01-01

    Adaptation to environmental stress is critical for long-term species persistence. With climate change and other anthropogenic stressors compounding natural selective pressures, understanding the nature of adaptation is as important as ever in evolutionary biology. In particular, the number of alternative molecular trajectories available for an organism to reach the same adaptive phenotype remains poorly understood. Here, we investigate this issue in a set of replicated Drosophila melanogaster lines selected for increased desiccation resistance—a classical physiological trait that has been closely linked to Drosophila species distributions. We used pooled whole-genome sequencing (Pool-Seq) to compare the genetic basis of their selection responses, using a matching set of replicated control lines for characterizing laboratory (lab-)adaptation, as well as the original base population. The ratio of effective population size to census size was high over the 21 generations of the experiment at 0.52–0.88 for all selected and control lines. While selected SNPs in replicates of the same treatment (desiccation-selection or lab-adaptation) tended to change frequency in the same direction, suggesting some commonality in the selection response, candidate SNP and gene lists often differed among replicates. Three of the five desiccation-selection replicates showed significant overlap at the gene and network level. All five replicates showed enrichment for ovary-expressed genes, suggesting maternal effects on the selected trait. Divergence between pairs of replicate lines for desiccation-candidate SNPs was greater than between pairs of control lines. This difference also far exceeded the divergence between pairs of replicate lines for neutral SNPs. Overall, while there was overlap in the direction of allele frequency changes and the network and functional categories affected by desiccation selection, replicates showed unique responses at all levels, likely reflecting hitchhiking effects, and highlighting the challenges in identifying candidate genes from these types of experiments when traits are likely to be polygenic. PMID:28007884

  8. Organisational Culture and Values and the Adaptation of Academic Units in Australian Universities

    ERIC Educational Resources Information Center

    de Zilwa, Deanna

    2007-01-01

    This study explores connections between the organisational culture and values of academic units in Australian universities and their efforts to adapt to external environmental pressures. It integrates empirical findings from case studies with theories of organisational culture and values and adaptation. It identifies seven dimensions of academic…

  9. [Adaptation of a peer pressure scale in French and German: the Peer Pressure Inventory].

    PubMed

    Baggio, S; Studer, J; Daeppen, J-B; Gmel, G

    2013-06-01

    Peer pressure is regarded as an important determinant of substance use, sexual behavior and juvenile delinquency. However, few peer pressure scales are validated, especially in French or German. Little is known about the factor structure of such scales or the kind of scale needed: some scales takes into account both peer pressure to do and peer pressure not to do, while others consider only peer pressure to do. The aim of the present study was to adapt French and German versions of the Peer Pressure Inventory, which is one of the most widely used scales in this field. We considered its factor structure and concurrent validity. Five thousand eight hundred and sixty-seven young Swiss men filled in a questionnaire on peer pressure, substance use, and other variables (conformity, involvement) in a cohort study. We identified a four-factor structure, with the three factors of the initial Peer Pressure Inventory (involvement, conformity, misconduct) and adding a new one (relationship with girls). A non-valued scale (from no peer pressure to peer pressure to do only) showed stronger psychometric qualities than a valued scale (from peer pressure not to do to peer pressure to do). Concurrent validity was also good. Each behavior or attitude was significantly associated with peer pressure. Peer pressure seems to be a multidimensional concept. In this study, peer pressure to do showed the strongest influence on participants. Indeed, peer pressure not to do did not add anything useful. Only peer pressure to do affected young Swiss men's behaviors and attitudes and was reliable. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Oxidative Attack of Carbon/Carbon Substrates through Coating Pinholes

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Leonhardt, Todd; Curry, Donald; Rapp, Robert A.

    1998-01-01

    A critical issue with oxidation protected carbon/carbon composites used for spacecraft thermal protection is the formation of coating pinholes. In laboratory experiments, artificial pinholes were drilled through SiC-coatings on a carbon/carbon material and the material was oxidized at 600, 1000, and 1400 C at reduced pressures of air. The attack of the carbon/carbon was quantified by both weight loss and a novel cross-sectioning technique. A two-zone, one dimensional diffusion control model was adapted to analyze this problem. Agreement of the model with experiment was reasonable at 1000 and 1400 C; however results at lower temperatures show clear deviations from the theory suggesting that surface reaction control plays a role.

  11. Space Station Upgrades Continue on This Week @NASA – March 31, 2017

    NASA Image and Video Library

    2017-03-31

    Work continues aboard the International Space Station on upgrades to prepare it for future operational activities. Ground controllers, using the station’s robotic arm, moved the Pressurized Mating Adapter-3 (PMA-3) from the Tranquility module to the station’s Harmony module March 26. PMA-3 will be outfitted with one of two International Docking Adapters to accommodate U.S. commercial spacecraft carrying astronauts on future missions. Four days after the PMA-3 move, NASA’s Shane Kimbrough and Peggy Whitson conducted the second in a series of three planned spacewalks to complete work related to the upgrades. The third spacewalk is planned in April. Also, James Webb Space Telescope Completes Acoustic and Vibration Tests, MAVEN Data Helps Measure Loss of Mars’ Atmosphere, Getting Excited About STEM, and New NASA App for Amazon Fire TV!

  12. Effect of head-down-tilt bed rest and hypovolemia on dynamic regulation of heart rate and blood pressure

    NASA Technical Reports Server (NTRS)

    Iwasaki, K. I.; Zhang, R.; Zuckerman, J. H.; Pawelczyk, J. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    2000-01-01

    Adaptation to head-down-tilt bed rest leads to an apparent abnormality of baroreflex regulation of cardiac period. We hypothesized that this "deconditioning response" could primarily be a result of hypovolemia, rather than a unique adaptation of the autonomic nervous system to bed rest. To test this hypothesis, nine healthy subjects underwent 2 wk of -6 degrees head-down bed rest. One year later, five of these same subjects underwent acute hypovolemia with furosemide to produce the same reductions in plasma volume observed after bed rest. We took advantage of power spectral and transfer function analysis to examine the dynamic relationship between blood pressure (BP) and R-R interval. We found that 1) there were no significant differences between these two interventions with respect to changes in numerous cardiovascular indices, including cardiac filling pressures, arterial pressure, cardiac output, or stroke volume; 2) normalized high-frequency (0.15-0.25 Hz) power of R-R interval variability decreased significantly after both conditions, consistent with similar degrees of vagal withdrawal; 3) transfer function gain (BP to R-R interval), used as an index of arterial-cardiac baroreflex sensitivity, decreased significantly to a similar extent after both conditions in the high-frequency range; the gain also decreased similarly when expressed as BP to heart rate x stroke volume, which provides an index of the ability of the baroreflex to alter BP by modifying systemic flow; and 4) however, the low-frequency (0.05-0.15 Hz) power of systolic BP variability decreased after bed rest (-22%) compared with an increase (+155%) after acute hypovolemia, suggesting a differential response for the regulation of vascular resistance (interaction, P < 0.05). The similarity of changes in the reflex control of the circulation under both conditions is consistent with the hypothesis that reductions in plasma volume may be largely responsible for the observed changes in cardiac baroreflex control after bed rest. However, changes in vasomotor function associated with these two conditions may be different and may suggest a cardiovascular remodeling after bed rest.

  13. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  14. Cerebellar transcranial direct current stimulation improves adaptive postural control.

    PubMed

    Poortvliet, Peter; Hsieh, Billie; Cresswell, Andrew; Au, Jacky; Meinzer, Marcus

    2018-01-01

    Rehabilitation interventions contribute to recovery of impaired postural control, but it remains a priority to optimize their effectiveness. A promising strategy may involve transcranial direct current stimulation (tDCS) of brain areas involved in fine-tuning of motor adaptation. This study explored the effects of cerebellar tDCS (ctDCS) on postural recovery from disturbance by Achilles tendon vibration. Twenty-eight healthy volunteers participated in this sham-ctDCS controlled study. Standing blindfolded on a force platform, four trials were completed: 60 s quiet standing followed by 20 min active (anodal-tDCS, 1 mA, 20 min, N = 14) or sham-ctDCS (40 s, N = 14) tDCS; three quiet standing trials with 15 s of Achilles tendon vibration and 25 s of postural recovery. Postural steadiness was quantified as displacement, standard deviation and path derived from the center of pressure (COP). Baseline demographics and quiet standing postural steadiness, and backwards displacement during vibration were comparable between groups. However, active-tDCS significantly improved postural steadiness during vibration and reduced forward displacement and variability in COP derivatives during recovery. We demonstrate that ctDCS results in short-term improvement of postural adaptation in healthy individuals. Future studies need to investigate if multisession ctDCS combined with training or rehabilitation interventions can induce prolonged improvement of postural balance. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  15. Developmental adaptations to gravity in animals

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.

    1991-01-01

    Terrestrial animals have adapted to a constant gravitational stress over millions of years. Tissues of the cardiovascular system and lumbar spine in tall species of animals such as the giraffe are particularly well adapted to high and variable vectors of gravitational force. Swelling of the leg tissues in the giraffe is prevented by a variety of physiological mechanisms including (1) a natural 'antigravity suit', (2) impermeable capillaries, (3) arterial-wall hypertrophy, (4) variable blood pressures during normal activity, and (5) a large-capacity lymphatic system. These adaptations, as well as a natural hypertension, maintain blood perfusion to the giraffe's brain. The intervertebral disk is another tissue that is uniquely adapted to gravitational stress. Tall and large terrestrial animals have higher swelling pressures than their smaller or aquatic counterparts. Finally, the meniscus of the rabbit knee provides information on the effects of aging and load-bearing on cartilaginous tissues. Such tissues within the joints of animals are important for load-bearing on Earth; these connective tissues may degenerate during long-duration space flight.

  16. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  17. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  18. Molecular chaperone accumulation as a function of stress evidences adaptation to high hydrostatic pressure in the piezophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Jebbar, Mohamed; Thiel, Axel; Kervarec, Nelly; Oger, Phil M

    2016-07-05

    The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response.

  19. Molecular chaperone accumulation as a function of stress evidences adaptation to high hydrostatic pressure in the piezophilic archaeon Thermococcus barophilus

    PubMed Central

    Cario, Anaïs; Jebbar, Mohamed; Thiel, Axel; Kervarec, Nelly; Oger, Phil M.

    2016-01-01

    The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response. PMID:27378270

  20. Experimental investigation of an accelerometer controlled automatic braking system

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1972-01-01

    An investigation was made to determine the feasibility of an automatic braking system for arresting the motion of an airplane by sensing and controlling braked wheel decelerations. The system was tested on a rotating drum dynamometer by using an automotive tire, wheel, and disk-brake assembly under conditions which included two tire loadings, wet and dry surfaces, and a range of ground speeds up to 70 knots. The controlling parameters were the rates at which brake pressure was applied and released and the Command Deceleration Level which governed the wheel deceleration by controlling the brake operation. Limited tests were also made with the automatic braking system installed on a ground vehicle in an effort to provide a more realistic proof of its feasibility. The results of this investigation indicate that a braking system which utilizes wheel decelerations as the control variable to restrict tire slip is feasible and capable of adapting to rapidly changing surface conditions.

  1. Grid-Adapted FUN3D Computations for the Second High Lift Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Rumsey, C. L.; Park, M. A.

    2014-01-01

    Contributions of the unstructured Reynolds-averaged Navier-Stokes code FUN3D to the 2nd AIAA CFD High Lift Prediction Workshop are described, and detailed comparisons are made with experimental data. Using workshop-supplied grids, results for the clean wing configuration are compared with results from the structured code CFL3D Using the same turbulence model, both codes compare reasonably well in terms of total forces and moments, and the maximum lift is similarly over-predicted for both codes compared to experiment. By including more representative geometry features such as slat and flap brackets and slat pressure tube bundles, FUN3D captures the general effects of the Reynolds number variation, but under-predicts maximum lift on workshop-supplied grids in comparison with the experimental data, due to excessive separation. However, when output-based, off-body grid adaptation in FUN3D is employed, results improve considerably. In particular, when the geometry includes both brackets and the pressure tube bundles, grid adaptation results in a more accurate prediction of lift near stall in comparison with the wind-tunnel data. Furthermore, a rotation-corrected turbulence model shows improved pressure predictions on the outboard span when using adapted grids.

  2. Adaptive near-field beamforming techniques for sound source imaging.

    PubMed

    Cho, Yong Thung; Roan, Michael J

    2009-02-01

    Phased array signal processing techniques such as beamforming have a long history in applications such as sonar for detection and localization of far-field sound sources. Two sometimes competing challenges arise in any type of spatial processing; these are to minimize contributions from directions other than the look direction and minimize the width of the main lobe. To tackle this problem a large body of work has been devoted to the development of adaptive procedures that attempt to minimize side lobe contributions to the spatial processor output. In this paper, two adaptive beamforming procedures-minimum variance distorsionless response and weight optimization to minimize maximum side lobes--are modified for use in source visualization applications to estimate beamforming pressure and intensity using near-field pressure measurements. These adaptive techniques are compared to a fixed near-field focusing technique (both techniques use near-field beamforming weightings focusing at source locations estimated based on spherical wave array manifold vectors with spatial windows). Sound source resolution accuracies of near-field imaging procedures with different weighting strategies are compared using numerical simulations both in anechoic and reverberant environments with random measurement noise. Also, experimental results are given for near-field sound pressure measurements of an enclosed loudspeaker.

  3. Adaptive Controller Adaptation Time and Available Control Authority Effects on Piloting

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna; Gregory, Irene

    2013-01-01

    Adaptive control is considered for highly uncertain, and potentially unpredictable, flight dynamics characteristic of adverse conditions. This experiment looked at how adaptive controller adaptation time to recover nominal aircraft dynamics affects pilots and how pilots want information about available control authority transmitted. Results indicate that an adaptive controller that takes three seconds to adapt helped pilots when looking at lateral and longitudinal errors. The controllability ratings improved with the adaptive controller, again the most for the three seconds adaptation time while workload decreased with the adaptive controller. The effects of the displays showing the percentage amount of available safe flight envelope used in the maneuver were dominated by the adaptation time. With the displays, the altitude error increased, controllability slightly decreased, and mental demand increased. Therefore, the displays did require some of the subjects resources but these negatives may be outweighed by pilots having more situation awareness of their aircraft.

  4. Non-traumatic trans-diaphragmatic intercostal hernia and cor pulmonale in a patient with poorly controlled obstructive sleep apnoea.

    PubMed

    Mehdi, Syed Basharath; Madi, Salem; Sudworth, Jordan

    2016-10-28

    Trans-diaphragmatic intercostal hernia is a rare entity. Patient with multiple medical comorbidities, including obstructive sleep apnoea, presents with shortness of breath, leg oedema and a bulging swelling through the right chest wall. CT shows partial herniation of the right lung and liver through intercostal space and an echocardiogram reveals right heart failure. He was treated initially with continuous positive airway pressure with poor response and subsequently treated with adaptive servo ventilation with much better symptomatic relief and treatment tolerance. 2016 BMJ Publishing Group Ltd.

  5. Enhancement Of Water-Jet Stripping Of Foam

    NASA Technical Reports Server (NTRS)

    Cosby, Steven A.; Shockney, Charles H.; Bates, Keith E.; Shalala, John P.; Daniels, Larry S.

    1995-01-01

    Improved robotic high-pressure-water-jet system strips foam insulation from parts without removing adjacent coating materials like paints, primers, and sealants. Even injects water into crevices and blind holes to clean out foam, without harming adjacent areas. Eliminates both cost of full stripping and recoating and problem of disposing of toxic solutions used in preparation for coating. Developed for postflight refurbishing of aft skirts of booster rockets. System includes six-axis robot provided with special end effector and specially written control software, called Aftfoam. Adaptable to cleaning and stripping in other industrial settings.

  6. Ascent Guidance for a Winged Boost Vehicle. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Corvin, Michael Alexander

    1988-01-01

    The objective of the advanced ascent guidance study was to investigate guidance concepts which could contribute to increased autonomy during ascent operations in a winged boost vehicle such as the proposed Shuttle II. The guidance scheme was required to yield near a full-optimal ascent in the presence of vehicle system and environmental dispersions. The study included consideration of trajectory shaping issues, trajectory design, closed loop and predictive adaptive guidance techniques and control of dynamic pressure by throttling. An extensive ascent vehicle simulation capability was developed for use in the study.

  7. KSC00pp1374

    NASA Image and Video Library

    2000-09-15

    KENNEDY SPACE CENTER, FLA. -- STS-92 Commander Brian Duffy is seated at the controls of Discovery to take part in a simulated countdown. The countdown is part of Terminal Countdown Demonstration Test (TCDT) activities that he and other crew members have been performing. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program

  8. KSC-00pp1374

    NASA Image and Video Library

    2000-09-15

    KENNEDY SPACE CENTER, FLA. -- STS-92 Commander Brian Duffy is seated at the controls of Discovery to take part in a simulated countdown. The countdown is part of Terminal Countdown Demonstration Test (TCDT) activities that he and other crew members have been performing. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program

  9. Endwall Treatment and Method for Gas Turbine

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D. (Inventor); Strazisar, Anthony J. (Inventor); Suder, Kenneth L. (Inventor)

    2006-01-01

    An endwall treatment for a gas turbine engine having at least one rotor blade extending from a rotatable hub and a casing circumferentially surrounding the rotor and the hub, the endwall treatment including, an inlet formed in an endwall of the gas turbine engine adapted to ingest fluid from a region of a higher-pressure fluid, an outlet formed in the endwall and located in a region of lower pressure than the inlet, wherein the inlet and the outlet are in a fluid communication with each other, the outlet being adapted to inject the fluid from the inlet in the region of lower pressure, and wherein the outlet is at least partially circumferentially offset relative to the inlet.

  10. Test and evaluation of the HIDEC engine uptrim algorithm. [Highly Integrated Digital Electronic Control for aircraft

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  11. An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan

    2008-01-01

    This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.

  12. Adaptation, allometry, and hypertension.

    PubMed

    Weder, A B; Schork, N J

    1994-08-01

    Essential hypertension is a "disease of civilization" but has a clear genetic component. From an evolutionary perspective, persistence in the human genome of elements capable of raising blood pressure presupposes their adaptive significance. Recently, two hypotheses that explicitly appeal to selectionist arguments, the "slavery" and "thrifty gene" theories, have been forwarded. We find neither completely successful, and we advance an alternative explanation of the adaptive importance of genes responsible for hypertension. We propose that blood pressure rises during childhood and adolescence to subserve homeostatic needs of the organism. Specifically, we contend that blood pressure is a flexible element in the repertoire of renal homeostatic mechanisms serving to match renal function to growth. The effect of modern diet and lifestyle on human growth stimulates earlier and more vigorous development, straining biologically necessary relationships between renal and general somatic growth and requiring compensation via homeostatic mechanisms preserved during evolution. Prime among such mechanisms is blood pressure, which rises as a compensation to maintain renal function in the face of greater growth. Since virtually all members of acculturated societies share in the modern lifestyle, the demands imposed by accelerated growth and development result in a populational shift to higher blood pressures, with a consequent increase in the prevalence of hypertension. We propose that hypertension is the product of maladaptation of highly genetically conserved mechanisms subserving important biological homeostatic needs. Elucidation of the mechanisms underlying hypertension will require approaches that examine the developmental processes linking growth to blood pressure.

  13. Thyroid hormone is required for growth adaptation to pressure load in the ovine fetal heart.

    PubMed

    Segar, Jeffrey L; Volk, Ken A; Lipman, Michael H B; Scholz, Thomas D

    2013-03-01

    Thyroid hormone exerts broad effects on the adult heart, but little is known regarding the role of thyroid hormone in the regulation of cardiac growth early in development and in response to pathophysiological conditions. To address this issue, we determined the effects of fetal thyroidectomy on cardiac growth and growth-related gene expression in control and pulmonary-artery-banded fetal sheep. Fetal thyroidectomy (THX) and/or placement of a restrictive pulmonary artery band (PAB) were performed at 126 ± 1 days of gestation (term, 145 days). Four groups of animals [n = 5-6 in each group; (i) control; (ii) fetal THX; (iii) fetal PAB; and (iv) fetal PAB + THX] were monitored for 1 week prior to being killed. Fetal heart rate was significantly lower in the two THX groups compared with the non-THX groups, while mean arterial blood pressure was similar among groups. Combined left and right ventricle free wall + septum weight, expressed per kilogram of fetal weight, was significantly increased in PAB (6.27 ± 0.85 g kg(-1)) compared with control animals (4.72 ± 0.12 g kg(-1)). Thyroidectomy significantly attenuated the increase in cardiac mass associated with PAB (4.94 ± 0.13 g kg(-1)), while THX alone had no detectable effect on heart mass (4.95 ± 0.27 g kg(-1)). The percentage of binucleated cardiomyocytes was significantly decreased in THX and PAB +THX groups (∼16%) compared with the non-THX groups (∼27%). No differences in levels of activated Akt, extracellular signal-regulated kinase or c-Jun N-terminal kinase were detected among the groups. Markers of cellular proliferation but not apoptosis or expression of growth-related genes were lower in the THX and THX+ PAB groups relative to thyroid-intact animals. These findings suggest that in the late-gestation fetal heart, thyroid hormone has important cellular growth functions in both physiological and pathophysiological states. Specifically, thyroid hormone is required for adaptive fetal cardiac growth in response to pressure overload.

  14. Haemodynamic responses and changes of haemostatic risk factors in cold-adapted humans.

    PubMed

    De Lorenzo, F; Kadziola, Z; Mukherjee, M; Saba, N; Kakkar, V V

    1999-09-01

    Epidemiological studies have shown an increase in acute myocardial infarctions or deaths due to myocardial infarction in colder weather; the mechanisms most likely involve increased blood levels of haemostatic risk factors, and increases in arterial blood pressure and heart rate. We studied the relationship between cold adaptation, haemostatic risk factors and haemodynamic variables. Cold adaptation was obtained by a programme of immersion of the whole body up to the neck in a water-filled bath, the temperature of which was gradually decreased from 22 degrees C to 14 degrees C, time of exposure being increased from 5 to 20 min over a period of 90 days. We studied 428 patients (44% men) and measured blood levels of fibrinogen, plasminogen activator inhibitor 1 (PAI-1), tissue plasminogen activator antigen (t-PA), plasma viscosity, von Willebrand factor, D-dimer and platelet count, both at baseline and after 90 days of daily immersion. There were significant reductions in von Willebrand factor (-3%; p < 0.001), and plasma viscosity (-3.0 s; p < 0.001), and a mild but significant increase in PAI-1 (+0.3 IU/ml; p = 0.02). The pressure rate product (systolic blood pressure x heart rate) was also significantly lower after cold adaptation (-310; p = 0.004). Cold adaptation, compared with exposure to cold weather, induces different haemodynamic responses and changes of blood levels of haemostatic risk factors.

  15. Genetic selection pressure in TLR9 gene may enforce risk for SLE in Indian Tamils.

    PubMed

    Yusuf, J H; Kaliyaperumal, D; Jayaraman, M; Ramanathan, G; Devaraju, P

    2017-03-01

    Objectives Lupus is a classical systemic autoimmune disease with genetics as one of the well known causative factors for the disease pathogenesis. Toll-like receptors are the major pattern recognition receptors associated with innate immunity and also act as an interface with the adaptive immunity. Genetic polymorphisms in genes encoding TLRs were implicated in the development of infections, malignancies and autoimmune diseases. TLR9 is a member of TLR family, and recognizes the CpG DNA motifs of pathogens. Though the incidence rate of lupus in Asians was reported to be low (30 - 50/100,000 population), poor disease prognosis due to higher incidence of renal complications and aggressive disease worsens the scenario. The ability of TLR9 to detect and elicit an immune response against double-stranded DNA makes TLR9 a relevant factor to be tested for its association with the clinical and serological phenotypes of lupus. However, lack of relevant genetic data on normative frequencies of the TLR9 (rs187084) polymorphism may serve as a constraint to derive the sample size to conduct case control association studies. Hence this study was conducted to establish the normative frequency of TLR9 (rs187084) polymorphism in Indian Tamils. Materials and methods The TLR9 (rs187084) polymorphism was screened in South Indian Tamils ( n = 208) by PCR-RFLP. Results and discussion We observed a higher occurrence of the mutant allele (65%) in South Indian Tamils. No gender disparity with respect to the mutant allele frequency was observed. The higher incidence of mutant allele in both genders suggests that this population had undergone a genetic selection pressure as an evolutionary genetic measure to withstand the prevailing endemic infections like TB and malaria. Though the enhanced expression of TLR9 was protective against infections, it may also influence the development of autoimmune diseases. Conclusion The higher incidence of theTLR9 (rs187084) over-expression mutation in Indian Tamils is suggestive of a genetic adaptation or selection pressure to withstand the prevailing endemic infectious and parasitic diseases. However, this genetic adaptation poses a greater risk to develop autoimmune diseases like SLE etc through complex gene environment interactions. The normative frequency of the TLR9 (rs187084) polymorphism established in our population could now be used to define the sample size for future case control studies.

  16. Adaptive evolution during the establishment of European avian-like H1N1 influenza A virus in swine.

    PubMed

    Joseph, Udayan; Vijaykrishna, Dhanasekaran; Smith, Gavin J D; Su, Yvonne C F

    2018-04-01

    An H1N1 subtype influenza A virus with all eight gene segments derived from wild birds (including mallards), ducks and chickens, caused severe disease outbreaks in swine populations in Europe beginning in 1979 and successfully adapted to form the European avian-like swine (EA-swine) influenza lineage. Genes of the EA-swine lineage that are clearly segregated from its closest avian relatives continue to circulate in swine populations globally and represent a unique opportunity to study the adaptive process of an avian-to-mammalian cross-species transmission. Here, we used a relaxed molecular clock model to test whether the EA-swine virus originated through the introduction of a single avian ancestor as an entire genome, followed by an analysis of host-specific selection pressures among different gene segments. Our data indicated independent introduction of gene segments via transmission of avian viruses into swine followed by reassortment events that occurred at least 1-4 years prior to the EA-swine outbreak. All EA-swine gene segments exhibit greater selection pressure than avian viruses, reflecting both adaptive pressures and relaxed selective constraints that are associated with host switching. Notably, we identified key amino acid mutations in the viral surface proteins (H1 and N1) that play a role in adaptation to new hosts. Following the establishment of EA-swine lineage, we observed an increased frequency of intrasubtype reassortment of segments compared to the earlier strains that has been associated with adaptive amino acid replacements, disease severity and vaccine escape. Taken together, our study provides key insights into the adaptive changes in viral genomes following the transmission of avian influenza viruses to swine and the early establishment of the EA-swine lineage.

  17. Biomechanical simulation of vocal fold dynamics in adults based on laryngeal high-speed videoendoscopy

    PubMed Central

    Gómez, Pablo; Patel, Rita R.; Alexiou, Christoph; Bohr, Christopher; Schützenberger, Anne

    2017-01-01

    Motivation Human voice is generated in the larynx by the two oscillating vocal folds. Owing to the limited space and accessibility of the larynx, endoscopic investigation of the actual phonatory process in detail is challenging. Hence the biomechanics of the human phonatory process are still not yet fully understood. Therefore, we adapt a mathematical model of the vocal folds towards vocal fold oscillations to quantify gender and age related differences expressed by computed biomechanical model parameters. Methods The vocal fold dynamics are visualized by laryngeal high-speed videoendoscopy (4000 fps). A total of 33 healthy young subjects (16 females, 17 males) and 11 elderly subjects (5 females, 6 males) were recorded. A numerical two-mass model is adapted to the recorded vocal fold oscillations by varying model masses, stiffness and subglottal pressure. For adapting the model towards the recorded vocal fold dynamics, three different optimization algorithms (Nelder–Mead, Particle Swarm Optimization and Simulated Bee Colony) in combination with three cost functions were considered for applicability. Gender differences and age-related kinematic differences reflected by the model parameters were analyzed. Results and conclusion The biomechanical model in combination with numerical optimization techniques allowed phonatory behavior to be simulated and laryngeal parameters involved to be quantified. All three optimization algorithms showed promising results. However, only one cost function seems to be suitable for this optimization task. The gained model parameters reflect the phonatory biomechanics for men and women well and show quantitative age- and gender-specific differences. The model parameters for younger females and males showed lower subglottal pressures, lower stiffness and higher masses than the corresponding elderly groups. Females exhibited higher subglottal pressures, smaller oscillation masses and larger stiffness than the corresponding similar aged male groups. Optimizing numerical models towards vocal fold oscillations is useful to identify underlying laryngeal components controlling the phonatory process. PMID:29121085

  18. Design and research on the two-joint mating system of underwater vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-lin; Wang, Li-quan

    2013-03-01

    In the 21st century, people have come to the era of ocean science and ocean economy. With the development of ocean science and technology and the thorough research on the ocean, underwater mating technique has been widely used in such fields as sunk ship salvage, deep ocean workstation, submarine lifesaving aid and military affairs. In this paper, researches are made home and abroad on mating technology. Two-joint mating system of underwater vehicle is designed including plane system, three-dimensional assembly system and control system in order to increase the capacity of adapting platform obliquity and adopting rotational skirt scheme. It is clear that the system fits the working space of underwater vehicle passageway and there is no interference phenomenon in assembly design. The finite element model of the system shell and the pressurization of the joint are established. The results of the finite element computing and the pressing test are accordant, and thus it can testify that the shell material meet the need of intension and joint pressurization is reliable. Modeling of the control system is accomplished, and simulation and analysis are made, which can provide directions for the controller design of mating system of underwater vehicles.

  19. Adaptive Flight Control for Aircraft Safety Enhancements

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Gregory, Irene M.; Joshi, Suresh M.

    2008-01-01

    This poster presents the current adaptive control research being conducted at NASA ARC and LaRC in support of the Integrated Resilient Aircraft Control (IRAC) project. The technique "Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control" has been developed at NASA ARC to address the needs for stability margin metrics for adaptive control that potentially enables future V&V of adaptive systems. The technique "Direct Adaptive Control With Unknown Actuator Failures" is developed at NASA LaRC to deal with unknown actuator failures. The technique "Adaptive Control with Adaptive Pilot Element" is being researched at NASA LaRC to investigate the effects of pilot interactions with adaptive flight control that can have implications of stability and performance.

  20. Organizational Adaptation to the Rapidly Changing External Environment: A Case Study of Strategic Marketing at Notre Dame College in Ohio

    ERIC Educational Resources Information Center

    Brown, Shawn M.

    2012-01-01

    This thesis examined the role of strategic marketing in organizational adaptation to a rapidly changing and competitive external environment among institutions of higher education. Colleges and universities adapt to external pressures as open systems operating within a broader external environment (Bess & Dee, 2008; Keller, 1983). How does…

  1. Fitness landscape transformation through a single amino acid change in the rho terminator.

    PubMed

    Freddolino, Peter L; Goodarzi, Hani; Tavazoie, Saeed

    2012-05-01

    Regulatory networks allow organisms to match adaptive behavior to the complex and dynamic contingencies of their native habitats. Upon a sudden transition to a novel environment, the mismatch between the native behavior and the new niche provides selective pressure for adaptive evolution through mutations in elements that control gene expression. In the case of core components of cellular regulation and metabolism, with broad control over diverse biological processes, such mutations may have substantial pleiotropic consequences. Through extensive phenotypic analyses, we have characterized the systems-level consequences of one such mutation (rho*) in the global transcriptional terminator Rho of Escherichia coli. We find that a single amino acid change in Rho results in a massive change in the fitness landscape of the cell, with widely discrepant fitness consequences of identical single locus perturbations in rho* versus rho(WT) backgrounds. Our observations reveal the extent to which a single regulatory mutation can transform the entire fitness landscape of the cell, causing a massive change in the interpretation of individual mutations and altering the evolutionary trajectories which may be accessible to a bacterial population.

  2. Spanish version of Bus Drivers' Job Demands Scale (BDJD-24).

    PubMed

    Boada-Grau, Joan; Prizmic-Kuzmica, Aldo-Javier; González-Fernández, Marcos-David; Vigil-Colet, Andreu

    2013-01-01

    Karasek and Theorell's Job Demands-Control Model argues that adverse health-related outcomes, both psychological and physiological, arise from a combination of high job demand and a low level of job control. The objective was to adapt Meijman and Kompier's Bus Drivers' Job Demands Scale (BDJD-24), which enables us to assess the job demands of bus drivers, to Spanish. The final version of the Spanish adaptation was applied to a sample made up of 287 bus drivers living in Spain (80.1% men and 19.9% women), whose average age was 40.44 (SD= 11.78). The results yielded a three-factor structure for the scale used: Time Pressure, Safety, and Passengers. These findings confirm that the Spanish version replicates the factor structure of the original English scale. The reliability of the three subscales was acceptable, ranging from .75 to .84. Furthermore, the subscales were also related to different external correlates and to other scales and showed good convergent and criterion validity. The present instrument can be used to evaluate job demands of bus drivers, as its psychometrics are substantially sound.

  3. Unity with PMA-2 attached awaits further processing in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing by Boeing technicians in its workstand in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan.

  4. Unity with PMA-2 attached awaits further processing in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.- funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan.

  5. KSC-98pc646

    NASA Image and Video Library

    1998-05-22

    KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing by Boeing technicians in its workstand in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan

  6. PMA3 Relocate ops

    NASA Image and Video Library

    2009-08-07

    ISS020-E-028611 (7 Aug. 2009) --- European Space Agency astronaut Frank De Winne (foreground) and Canadian Space Agency astronaut Robert Thirsk, both Expedition 20 flight engineers, work the controls of the Space Station Remote Manipulator System (SSRMS) and the Centerline Berthing Camera System (CBCS) in the International Space Station’s Destiny laboratory to relocate the Pressurized Mating Adapter 3 (PMA-3) from the Unity node nadir port to Unity’s port side. This relocation is required to allow reconfigurations on the side of the Unity node port bulkhead by the crew in a pressurized environment where PMA-3 is now located. Once these reconfigurations are completed, PMA-3 will be relocated back to Unity’s nadir port, after which the Tranquility node will be brought up and berthed to Unity’s port side on mission STS-130/20A.

  7. Millimeter wave sensor for monitoring effluents

    DOEpatents

    Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.

    1995-01-01

    A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.

  8. Spine immobilization apparatus

    NASA Technical Reports Server (NTRS)

    Lambson, K. H.; Vykukal, H. C. (Inventor)

    1981-01-01

    The apparatus makes use of a normally flat, flexible bladder filled with beads or micro-balloons that form a rigid mass when the pressure within the bladder is decreased below ambient through the use of a suction pump so that the bladder can be conformed to the torso of the victim and provide the desired restraint. The bladder is strapped to the victim prior to being rigidified by an arrangement of straps which avoid the stomach area. The bladder is adapted to be secured to a rigid support, i.e., a rescue chair, so as to enable removal of a victim after the bladder has been made rigid. A double sealing connector is used to connect the bladder to the suction pump and a control valve is employed to vary the pressure within the bladder so as to soften and harden the bladder as desired.

  9. Verification and Validation Challenges for Adaptive Flight Control of Complex Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2018-01-01

    Autonomy of aerospace systems requires the ability for flight control systems to be able to adapt to complex uncertain dynamic environment. In spite of the five decades of research in adaptive control, the fact still remains that currently no adaptive control system has ever been deployed on any safety-critical or human-rated production systems such as passenger transport aircraft. The problem lies in the difficulty with the certification of adaptive control systems since existing certification methods cannot readily be used for nonlinear adaptive control systems. Research to address the notion of metrics for adaptive control began to appear in the recent years. These metrics, if accepted, could pave a path towards certification that would potentially lead to the adoption of adaptive control as a future control technology for safety-critical and human-rated production systems. Development of certifiable adaptive control systems represents a major challenge to overcome. Adaptive control systems with learning algorithms will never become part of the future unless it can be proven that they are highly safe and reliable. Rigorous methods for adaptive control software verification and validation must therefore be developed to ensure that adaptive control system software failures will not occur, to verify that the adaptive control system functions as required, to eliminate unintended functionality, and to demonstrate that certification requirements imposed by regulatory bodies such as the Federal Aviation Administration (FAA) can be satisfied. This presentation will discuss some of the technical issues with adaptive flight control and related V&V challenges.

  10. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1989-01-01

    The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.

  11. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  12. An Evaluation of the Potential Failure Modes for Gaseous Agent Fire Extinguishing Systems Installed within the Protected Space

    DTIC Science & Technology

    2007-02-01

    N2 Halocarbon WK-872450-000 Discharge head, plain nut Halocarbon WK-934208-000 Swivel adapter Halocarbon 06-118262-001 Pressure switch Halocarbon...06-118263-001 Pressure switch Halocarbon 81-486536-000 Pressure switch Halocarbon 81-981332-000 X-proof pressure switch Halocarbon 81-871072-001...90-100121-001 67 kg (125 lb.) Cyl w/LLI 82-878751-000 Lever Pressure Op Actuator6 06-118263-001 Pressure Switch 119.9 400.0 3.8 27.6 Pressure

  13. Measured and predicted pressure distributions on the AFTI/F-111 mission adaptive wing

    NASA Technical Reports Server (NTRS)

    Webb, Lannie D.; Mccain, William E.; Rose, Lucinda A.

    1988-01-01

    Flight tests have been conducted using an F-111 aircraft modified with a mission adaptive wing (MAW). The MAW has variable-camber leading and trailing edge surfaces that can change the wing camber in flight, while preserving smooth upper surface contours. This paper contains wing surface pressure measurements obtained during flight tests at Dryden Flight Research Facility of NASA Ames Research Center. Upper and lower surface steady pressure distributions were measured along four streamwise rows of static pressure orifices on the right wing for a leading-edge sweep angle of 26 deg. The airplane, wing, instrumentation, and test conditions are discussed. Steady pressure results are presented for selected wing camber deflections flown at subsonic Mach numbers up to 0.90 and an angle-of-attack range of 5 to 12 deg. The Reynolds number was 26 million, based on the mean aerodynamic chord. The MAW flight data are compared to MAW wind tunnel data, transonic aircraft technology (TACT) flight data, and predicted pressure distributions. The results provide a unique database for a smooth, variable-camber, advanced supercritical wing.

  14. A two-stage adaptive stochastic collocation method on nested sparse grids for multiphase flow in randomly heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi

    2017-02-01

    A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod-Patterson-Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiency of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.

  15. Molecular Retrofitting Adapts a Metal–Organic Framework to Extreme Pressure

    DOE PAGES

    Kapustin, Eugene A.; Lee, Seungkyu; Alshammari, Ahmad S.; ...

    2017-06-07

    Despite numerous studies on chemical and thermal stability of metal-organic frameworks (MOFs), mechanical stability remains largely undeveloped. No strategy exists to control the mechanical deformation of MOFs under ultrahigh pressure, to date. We show that the mechanically unstable MOF-520 can be retrofitted by precise placement of a rigid 4,4'-biphenyldicarboxylate (BPDC) linker as a "girder" to afford a mechanically robust framework: MOF-520-BPDC. This retrofitting alters how the structure deforms under ultrahigh pressure and thus leads to a drastic enhancement of its mechanical robustness. While in the parent MOF-520 the pressure transmitting medium molecules diffuse into the pore and expand the structuremore » from the inside upon compression, the girder in the new retrofitted MOF-520-BPDC prevents the framework from expansion by linking two adjacent secondary building units together. As a result, the modified MOF is stable under hydrostatic compression in a diamond-anvil cell up to 5.5 gigapascal. The increased mechanical stability of MOF-520-BPDC prohibits the typical amorphization observed for MOFs in this pressure range. Direct correlation between the orientation of these girders within the framework and its linear strain was estimated, providing new insights for the design of MOFs with optimized mechanical properties.« less

  16. Experimental Validation of L1 Adaptive Control: Rohrs' Counterexample in Flight

    NASA Technical Reports Server (NTRS)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Issac; Kitsios, Ioannis; Cao, Chengyu; Gregory, Irene M.; Valavani, Lena

    2010-01-01

    The paper presents new results on the verification and in-flight validation of an L1 adaptive flight control system, and proposes a general methodology for verification and validation of adaptive flight control algorithms. The proposed framework is based on Rohrs counterexample, a benchmark problem presented in the early 80s to show the limitations of adaptive controllers developed at that time. In this paper, the framework is used to evaluate the performance and robustness characteristics of an L1 adaptive control augmentation loop implemented onboard a small unmanned aerial vehicle. Hardware-in-the-loop simulations and flight test results confirm the ability of the L1 adaptive controller to maintain stability and predictable performance of the closed loop adaptive system in the presence of general (artificially injected) unmodeled dynamics. The results demonstrate the advantages of L1 adaptive control as a verifiable robust adaptive control architecture with the potential of reducing flight control design costs and facilitating the transition of adaptive control into advanced flight control systems.

  17. Cardiovascular physiology - Effects of microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V.; Hoffler, G. W.

    1992-01-01

    Experiments during spaceflight and its groundbase analog, bedrest, provide consistent data which demonstrate that numerous changes in cardiovascular function occur as part of the physiological adaptation process to the microgravity environment. These include elevated heart rate and venous compliance, lowered blood volume, central venous pressure and stroke volume, and attenuated autonomic reflex functions. Although most of these adaptations are not functionally apparent during microgravity exposure, they manifest themselves during the return to the gravitational challenge of earth's terrestrial environment as orthostatic hypotension and instability, a condition which could compromise safety, health and productivity. Development and application of effective and efficient countermeasures such as saline "loading," intermittent venous pooling, pharmacological treatments, and exercise have become primary emphases of the space life sciences research effort with only limited success. Successful development of countermeasures will require knowledge of the physiological mechanisms underlying cardiovascular adaptation to microgravity which can be obtained only through controlled, parallel groundbased research to complement carefully designed flight experiments. Continued research will provide benefits for both space and clinical applications as well as enhance the basic understanding of cardiovascular homeostasis in humans.

  18. Development of a constant surface pressure penetration langmuir balance based on axisymmetric drop shape analysis.

    PubMed

    Wege, H A; Holgado-Terriza, J A; Cabrerizo-Vílchez, M A

    2002-05-15

    A new constant pressure pendant-drop penetration surface balance has been developed combining a pendant-drop surface balance, a rapid-subphase-exchange technique, and a fuzzy logic control algorithm. Beside the determination of insoluble monolayer compression-expansion isotherms, it allows performance of noninvasive kinetic studies of the adsorption of surfactants added to the new subphase onto the free surface and of the adsorption/penetration/reaction of the former onto/into/with surface layers, respectively. The interfacial pressure pi is a fundamental parameter in these studies: by working at constant pi one controls the height of the energy barrier to adsorption/penetration and can select different regimes and steps of the adsorption/penetration process. In our device a solution drop is formed at the tip of a coaxial double capillary, connected to a double microinjector. Drop profiles are extracted from digital drop micrographs and fitted to the equation of capillarity, yielding pi, the drop volume V, and the interfacial area A. pi is varied changing V (and hence A) with the microinjector. Control is based on a case-adaptable modulated fuzzy-logic PID algorithm able to maintain constant pi (or A) under a wide range of experimental conditions. The drop subphase liquid can be exchanged quantitatively by the coaxial capillaries. The adsorption/penetration/reaction kinetics at constant pi are then studied monitoring A(t), i.e., determining the relative area change necessary at each instant to compensate the pressure variation due to the interaction of the surfactant in the subsurface with the surface layer. A fully Windows-integrated program manages the whole setup. Examples of experimental protein adsorption and monolayer penetration kinetics are presented.

  19. Elevational speciation in action? Restricted gene flow associated with adaptive divergence across an altitudinal gradient

    USGS Publications Warehouse

    Funk, W. C.; Murphy, M.A.; Hoke, K. L.; Muths, Erin L.; Amburgey, Staci M.; Lemmon, Emily M.; Lemmon, A. R.

    2016-01-01

    Evolutionary theory predicts that divergent selection pressures across elevational gradients could cause adaptive divergence and reproductive isolation in the process of ecological speciation. Although there is substantial evidence for adaptive divergence across elevation, there is less evidence that this restricts gene flow. Previous work in the boreal chorus frog (Pseudacris maculata) has demonstrated adaptive divergence in morphological, life history and physiological traits across an elevational gradient from approximately 1500–3000 m in the Colorado Front Range, USA. We tested whether this adaptive divergence is associated with restricted gene flow across elevation – as would be expected if incipient speciation were occurring – and, if so, whether behavioural isolation contributes to reproductive isolation. Our analysis of 12 microsatellite loci in 797 frogs from 53 populations revealed restricted gene flow across elevation, even after controlling for geographic distance and topography. Calls also varied significantly across elevation in dominant frequency, pulse number and pulse duration, which was partly, but not entirely, due to variation in body size and temperature across elevation. However, call variation did not result in strong behavioural isolation: in phonotaxis experiments, low-elevation females tended to prefer an average low-elevation call over a high-elevation call, and vice versa for high-elevation females, but this trend was not statistically significant. In summary, our results show that adaptive divergence across elevation restricts gene flow in P. maculata, but the mechanisms for this potential incipient speciation remain open.

  20. Genes under weaker stabilizing selection increase network evolvability and rapid regulatory adaptation to an environmental shift.

    PubMed

    Laarits, T; Bordalo, P; Lemos, B

    2016-08-01

    Regulatory networks play a central role in the modulation of gene expression, the control of cellular differentiation, and the emergence of complex phenotypes. Regulatory networks could constrain or facilitate evolutionary adaptation in gene expression levels. Here, we model the adaptation of regulatory networks and gene expression levels to a shift in the environment that alters the optimal expression level of a single gene. Our analyses show signatures of natural selection on regulatory networks that both constrain and facilitate rapid evolution of gene expression level towards new optima. The analyses are interpreted from the standpoint of neutral expectations and illustrate the challenge to making inferences about network adaptation. Furthermore, we examine the consequence of variable stabilizing selection across genes on the strength and direction of interactions in regulatory networks and in their subsequent adaptation. We observe that directional selection on a highly constrained gene previously under strong stabilizing selection was more efficient when the gene was embedded within a network of partners under relaxed stabilizing selection pressure. The observation leads to the expectation that evolutionarily resilient regulatory networks will contain optimal ratios of genes whose expression is under weak and strong stabilizing selection. Altogether, our results suggest that the variable strengths of stabilizing selection across genes within regulatory networks might itself contribute to the long-term adaptation of complex phenotypes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  1. Load Adaptability in Patients With Pulmonary Arterial Hypertension.

    PubMed

    Amsallem, Myriam; Boulate, David; Aymami, Marie; Guihaire, Julien; Selej, Mona; Huo, Jennie; Denault, Andre Y; McConnell, Michael V; Schnittger, Ingela; Fadel, Elie; Mercier, Olaf; Zamanian, Roham T; Haddad, Francois

    2017-09-01

    Right ventricular (RV) adaptation to pressure overload is a major prognostic factor in patients with pulmonary arterial hypertension (PAH). The objectives were first to define the relation between RV adaptation and load using allometric modeling, then to compare the prognostic value of different indices of load adaptability in PAH. Both a derivation (n = 85) and a validation cohort (n = 200) were included. Load adaptability was assessed using 3 approaches: (1) surrogates of ventriculo-arterial coupling (e.g., RV area change/end-systolic area), (2) simple ratio of function and load (e.g., tricuspid annular plane systolic excursion/right ventricular systolic pressure), and (3) indices assessing the proportionality of adaptation using allometric pressure-function or size modeling. Proportional hazard modeling was used to compare the hazard ratio for the outcome of death or lung transplantation. The mean age of the derivation cohort was 44 ± 11 years, with 80% female and 74% in New York Heart Association class III or IV. Mean pulmonary vascular resistance index (PVRI) was 24 ± 11 with a wide distribution (1.6 to 57.5 WU/m 2 ). Allometric relations were observed between PVRI and RV fractional area change (R 2  = 0.53, p < 0.001) and RV end-systolic area indexed to body surface area right ventricular end-systolic area index (RVESAI) (R 2  = 0.29, p < 0.001), allowing the derivation of simple ratiometric load-specific indices of RV adaptation. In right heart parameters, RVESAI was the strongest predictor of outcomes (hazard ratio per SD = 1.93, 95% confidence interval 1.37 to 2.75, p < 0.001). Although RVESAI/PVRI 0.35 provided small incremental discrimination on multivariate modeling, none of the load-adaptability indices provided stronger discrimination of outcome than simple RV adaptation metrics in either the derivation or the validation cohort. In conclusion, allometric modeling enables quantification of the proportionality of RV load adaptation but offers small incremental prognostic value to RV end-systolic dimension in PAH. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Nonlinear Control of a Reusable Rocket Engine for Life Extension

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok

    1998-01-01

    This paper presents the conceptual development of a life-extending control system where the objective is to achieve high performance and structural durability of the plant. A life-extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel (H2) and oxidizer (O2) turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. The design procedure makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life-extending controller module to augment a conventional performance controller of the rocket engine. The nonlinear aspect of the design is achieved using non-linear parameter optimization of a prescribed control structure. Fatigue damage in fuel and oxidizer turbine blades is primarily caused by stress cycling during start-up, shutdown, and transient operations of a rocket engine. Fatigue damage in the turbine blades is one of the most serious causes for engine failure.

  3. Beluga (Delphinapterus leucas) granulocytes and monocytes display variable responses to in vitro pressure exposures

    PubMed Central

    Thompson, Laura A.; Romano, Tracy A.

    2015-01-01

    While it is widely known that marine mammals possess adaptations which allow them to make repetitive and extended dives to great depths without suffering ill effects seen in humans, the response of marine mammal immune cells to diving is unknown. Renewed interest in marine mammal dive physiology has arisen due to reports of decompression sickness-like symptoms and embolic damage in stranded and by-caught animals, and there is concern over whether anthropogenic activities can impact marine mammal health by disrupting adaptive dive responses and behavior. This work addresses the need for information concerning marine mammal immune function during diving by evaluating granulocyte and monocyte phagocytosis, and granulocyte activation in belugas (n = 4) in comparison with humans (n = 4), with and without in vitro pressure exposures. In addition, the potential for additional stressors to impact immune function was investigated by comparing the response of beluga cells to pressure between baseline and stressor conditions. Granulocyte and monocyte phagocytosis, as well as granulocyte activation, were compared between pressure exposed and non-exposed cells for each condition, between different pressure profiles and between conditions using mixed generalized linear models (α = 0.05). The effects of pressure varied between species as well by depth, compression/decompression rates, and length of exposures, and condition for belugas. Pressure induced changes in granulocyte and monocyte function in belugas could serve a protective function against dive-related pathologies and differences in the response between humans and belugas could reflect degrees of dive adaptation. The alteration of these responses during physiologically challenging conditions may increase the potential for dive-related in jury and disease in marine mammals. PMID:25999860

  4. Beluga (Delphinapterus leucas) granulocytes and monocytes display variable responses to in vitro pressure exposures.

    PubMed

    Thompson, Laura A; Romano, Tracy A

    2015-01-01

    While it is widely known that marine mammals possess adaptations which allow them to make repetitive and extended dives to great depths without suffering ill effects seen in humans, the response of marine mammal immune cells to diving is unknown. Renewed interest in marine mammal dive physiology has arisen due to reports of decompression sickness-like symptoms and embolic damage in stranded and by-caught animals, and there is concern over whether anthropogenic activities can impact marine mammal health by disrupting adaptive dive responses and behavior. This work addresses the need for information concerning marine mammal immune function during diving by evaluating granulocyte and monocyte phagocytosis, and granulocyte activation in belugas (n = 4) in comparison with humans (n = 4), with and without in vitro pressure exposures. In addition, the potential for additional stressors to impact immune function was investigated by comparing the response of beluga cells to pressure between baseline and stressor conditions. Granulocyte and monocyte phagocytosis, as well as granulocyte activation, were compared between pressure exposed and non-exposed cells for each condition, between different pressure profiles and between conditions using mixed generalized linear models (α = 0.05). The effects of pressure varied between species as well by depth, compression/decompression rates, and length of exposures, and condition for belugas. Pressure induced changes in granulocyte and monocyte function in belugas could serve a protective function against dive-related pathologies and differences in the response between humans and belugas could reflect degrees of dive adaptation. The alteration of these responses during physiologically challenging conditions may increase the potential for dive-related in jury and disease in marine mammals.

  5. Bacillus megaterium strains derived from water and soil exhibit differential responses to the herbicide mesotrione.

    PubMed

    Dobrzanski, Tatiane; Gravina, Fernanda; Steckling, Bruna; Olchanheski, Luiz R; Sprenger, Ricardo F; Espírito Santo, Bruno C; Galvão, Carolina W; Reche, Péricles M; Prestes, Rosilene A; Pileggi, Sônia A V; Campos, Francinete R; Azevedo, Ricardo A; Sadowsky, Michael J; Beltrame, Flávio L; Pileggi, Marcos

    2018-01-01

    The intense use of herbicides for weed control in agriculture causes selection pressure on soil microbiota and water ecosystems, possibly resulting in changes to microbial processes, such as biogeochemical cycles. These xenobiotics may increase the production of reactive oxygen species and consequently affect the survival of microorganisms, which need to develop strategies to adapt to these conditions and maintain their ecological functionality. This study analyzed the adaptive responses of bacterial isolates belonging to the same species, originating from two different environments (water and soil), and subjected to selection pressure by herbicides. The effects of herbicide Callisto and its active ingredient, mesotrione, induced different adaptation strategies on the cellular, enzymatic, and structural systems of two Bacillus megaterium isolates obtained from these environments. The lipid saturation patterns observed may have affected membrane permeability in response to this herbicide. Moreover, this may have led to different levels of responses involving superoxide dismutase and catalase activities, and enzyme polymorphisms. Due to these response systems, the strain isolated from water exhibited higher growth rates than did the soil strain, in evaluations made in oligotrophic culture media, which would be more like that found in semi-pristine aquatic environments. The influence of the intracellular oxidizing environments, which changed the mode of degradation of mesotrione in our experimental model and produced different metabolites, can also be observed in soil and water at sites related to agriculture. Since the different metabolites may present different levels of toxicity, we suggest that this fact should be considered in studies on the fate of agrochemicals in different environments.

  6. Bacillus megaterium strains derived from water and soil exhibit differential responses to the herbicide mesotrione

    PubMed Central

    Gravina, Fernanda; Olchanheski, Luiz R.; Sprenger, Ricardo F.; Espírito Santo, Bruno C.; Galvão, Carolina W.; Reche, Péricles M.; Prestes, Rosilene A.; Pileggi, Sônia A. V.; Campos, Francinete R.; Azevedo, Ricardo A.; Sadowsky, Michael J.; Beltrame, Flávio L.

    2018-01-01

    The intense use of herbicides for weed control in agriculture causes selection pressure on soil microbiota and water ecosystems, possibly resulting in changes to microbial processes, such as biogeochemical cycles. These xenobiotics may increase the production of reactive oxygen species and consequently affect the survival of microorganisms, which need to develop strategies to adapt to these conditions and maintain their ecological functionality. This study analyzed the adaptive responses of bacterial isolates belonging to the same species, originating from two different environments (water and soil), and subjected to selection pressure by herbicides. The effects of herbicide Callisto and its active ingredient, mesotrione, induced different adaptation strategies on the cellular, enzymatic, and structural systems of two Bacillus megaterium isolates obtained from these environments. The lipid saturation patterns observed may have affected membrane permeability in response to this herbicide. Moreover, this may have led to different levels of responses involving superoxide dismutase and catalase activities, and enzyme polymorphisms. Due to these response systems, the strain isolated from water exhibited higher growth rates than did the soil strain, in evaluations made in oligotrophic culture media, which would be more like that found in semi-pristine aquatic environments. The influence of the intracellular oxidizing environments, which changed the mode of degradation of mesotrione in our experimental model and produced different metabolites, can also be observed in soil and water at sites related to agriculture. Since the different metabolites may present different levels of toxicity, we suggest that this fact should be considered in studies on the fate of agrochemicals in different environments. PMID:29694403

  7. Does human pressure affect the community structure of surf zone fish in sandy beaches?

    NASA Astrophysics Data System (ADS)

    Costa, Leonardo Lopes; Landmann, Júlia G.; Gaelzer, Luiz R.; Zalmon, Ilana R.

    2017-01-01

    Intense tourism and human activities have resulted in habitat destruction in sandy beach ecosystems with negative impacts on the associated communities. To investigate whether urbanized beaches affect surf zone fish communities, fish and their benthic macrofaunal prey were collected during periods of low and high human pressure at two beaches on the Southeastern Brazilian coast. A BACI experimental design (Before-After-Control-Impact) was adapted for comparisons of tourism impact on fish community composition and structure in urbanized, intermediate and non-urbanized sectors of each beach. At the end of the summer season, we observed a significant reduction in fish richness, abundance, and diversity in the high tourist pressure areas. The negative association between visitors' abundance and the macrofaunal density suggests that urbanized beaches are avoided by surf zone fish due to higher human pressure and the reduction of food availability. Our results indicate that surf zone fish should be included in environmental impact studies in sandy beaches, including commercial species, e.g., the bluefish Pomatomus saltatrix. The comparative results from the less urbanized areas suggest that environmental zoning and visitation limits should be used as effective management and preservation strategies on beaches with high conservation potential.

  8. Respiratory Distress

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The University of Miami School of Medicine asked the Research Triangle Institute for assistance in improvising the negative pressure technique to relieve respiratory distress in infants. Marshall Space Flight Center and Johnson Space Center engineers adapted this idea to the lower-body negative-pressure system seals used during the Skylab missions. Some 20,000 babies succumb to respiratory distress in the U.S. each year, a condition in which lungs progressively lose their ability to oxygenate blood. Both positive and negative pressure techniques have been used - the first to force air into lungs, the second to keep infant's lungs expanded. Negative pressure around chest helps the baby expand his lungs and maintain proper volume of air. If doctors can keep the infant alive for four days, the missing substance in the lungs will usually form in sufficient quantity to permit normal breathing. The Skylab chamber and its leakproof seals were adapted for medical use.

  9. Transgenerational Adaptation to Pollution Changes Energy Allocation in Populations of Nematodes.

    PubMed

    Goussen, Benoit; Péry, Alexandre R R; Bonzom, Jean-Marc; Beaudouin, Rémy

    2015-10-20

    Assessing the evolutionary responses of long-term exposed populations requires multigeneration ecotoxicity tests. However, the analysis of the data from these tests is not straightforward. Mechanistic models allow the in-depth analysis of the variation of physiological traits over many generations, by quantifying the trend of the physiological and toxicological parameters of the model. In the present study, a bioenergetic mechanistic model has been used to assess the evolution of two populations of the nematode Caenorhabditis elegans in control conditions or exposed to uranium. This evolutionary pressure resulted in a brood size reduction of 60%. We showed an adaptation of individuals of both populations to experimental conditions (increase of maximal length, decrease of growth rate, decrease of brood size, and decrease of the elimination rate). In addition, differential evolution was also highlighted between the two populations once the maternal effects had been diminished after several generations. Thus, individuals that were greater in maximal length, but with apparently a greater sensitivity to uranium were selected in the uranium population. In this study, we showed that this bioenergetics mechanistic modeling approach provided a precise, certain, and powerful analysis of the life strategy of C. elegans populations exposed to heavy metals resulting in an evolutionary pressure across successive generations.

  10. Which adaptive maternal eating behaviors predict child feeding practices? An examination with mothers of 2- to 5-year-old children

    PubMed Central

    Tylka, Tracy L.; Eneli, Ihuoma U.; Kroon Van Diest, Ashley M.; Lumeng, Julie C.

    2013-01-01

    Researchers have started to explore the detrimental impact of maladaptive maternal eating behaviors on child feeding practices. However, identifying which adaptive maternal eating behaviors contribute to lower use of negative and higher use of positive child feeding practices remains unexamined. The present study explored this link with 180 mothers of 2- to 5-year-old children. Hierarchical regression analyses (controlling for recruitment venue and maternal demographic characteristics, i.e., age, education, ethnicity, and body mass index) examined mothers’ intuitive eating and eating competence as predictors of four feeding practices (restriction, monitoring, pressure to eat, and dividing feeding responsibilities with their child). Mothers who gave themselves unconditional permission to eat were less likely to restrict their child’s food intake. Mothers who ate for physical (rather than emotional) reasons and had eating-related contextual skills (e.g., mindfulness when eating, planning regular and nutritious eating opportunities for themselves) were more likely to monitor their child’s food intake. Mothers who had eating-related contextual skills were more likely to divide feeding responsibilities with their child. No maternal eating behavior predicted pressure to eat. Interventions to help mothers develop their eating-related contextual skills and eat intuitively, in particular, may translate into a more positive feeding environment for their young children. PMID:23265403

  11. Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Jones, B. J. P.; McDonald, A. D.; Nygren, D. R.

    2016-12-01

    Background rejection is key to success for future neutrinoless double beta decay experiments. To achieve sensitivity to effective Majorana lifetimes of ~ 1028 years, backgrounds must be controlled to better than 0.1 count per ton per year, beyond the reach of any present technology. In this paper we propose a new method to identify the birth of the barium daughter ion in the neutrinoless double beta decay of 136Xe. The method adapts Single Molecule Fluorescent Imaging, a technique from biochemistry research with demonstrated single ion sensitivity. We explore possible SMFI dyes suitable for the problem of barium ion detection in high pressure xenon gas, and develop a fiber-coupled sensing system with which we can detect the presence of bulk Ba++ ions remotely. We show that our sensor produces signal-to-background ratios as high as 85 in response to Ba++ ions when operated in aqueous solution. We then describe the next stage of this R&D program, which will be to demonstrate chelation and fluorescence in xenon gas. If a successful barium ion tag can be developed using SMFI adapted for high pressure xenon gas detectors, the first essentially zero background, ton-scale neutrinoless double beta decay technology could be realized.

  12. Residual interference and wind tunnel wall adaption

    NASA Technical Reports Server (NTRS)

    Mokry, Miroslav

    1989-01-01

    Measured flow variables near the test section boundaries, used to guide adjustments of the walls in adaptive wind tunnels, can also be used to quantify the residual interference. Because of a finite number of wall control devices (jacks, plenum compartments), the finite test section length, and the approximation character of adaptation algorithms, the unconfined flow conditions are not expected to be precisely attained even in the fully adapted stage. The procedures for the evaluation of residual wall interference are essentially the same as those used for assessing the correction in conventional, non-adaptive wind tunnels. Depending upon the number of flow variables utilized, one can speak of one- or two-variable methods; in two dimensions also of Schwarz- or Cauchy-type methods. The one-variable methods use the measured static pressure and normal velocity at the test section boundary, but do not require any model representation. This is clearly of an advantage for adaptive wall test section, which are often relatively small with respect to the test model, and for the variety of complex flows commonly encountered in wind tunnel testing. For test sections with flexible walls the normal component of velocity is given by the shape of the wall, adjusted for the displacement effect of its boundary layer. For ventilated test section walls it has to be measured by the Calspan pipes, laser Doppler velocimetry, or other appropriate techniques. The interface discontinuity method, also described, is a genuine residual interference assessment technique. It is specific to adaptive wall wind tunnels, where the computation results for the fictitious flow in the exterior of the test section are provided.

  13. Adapting clinical guidelines in low‐resources countries: a study on the guideline on the management and prevention of type 2 diabetes mellitus in Indonesia

    PubMed Central

    Wangge, Grace; van der Graaf, Yolanda; van der Heijden, Geert J. M. G.

    2016-01-01

    Abstract Rationale, aims and objectives Most of the clinical guidelines in low‐resource countries are adaptations from preexisting international guidelines. This adaptation can be problematic when those international guidelines are not based on current evidence or original evidence‐based international guidelines are not followed. This study aims to evaluate the quality of an Indonesian type 2 diabetes mellitus guideline adapted from selected international guidelines. Methods The “Consensus on the Management and Prevention of type 2 Diabetes in Indonesia 2011” is a guideline by the Indonesian Society of Endocrinology (Perkeni). Four parent guidelines identified from its list of references were from the International Diabetes Federation (IDF), American Association of Clinical Endocrinologist (AACE), American Diabetes Association (ADA), and one jointly released by ADA and European Association for the Study of Diabetes (EASD). Two reviewers independently assessed its quality using the Appraisal of Guidelines, Research and Evaluation Collaboration (AGREE II) instrument. Six recommendations were compared: (1) screening for diabetes; (2) diagnosis; (3) control of hyperglycemia; (4) target blood glucose; (5) target blood pressure; and (6) treatment of dyslipidemia. Results Perkeni's guideline satisfied 55% of the AGREE II items, while its parent guidelines satisfied 59% to 74%. Perkeni's shows low score on “rigor of development” and “applicability” and the lowest score in the “scope and purpose” domain. Differences were found in 4 recommendations: the screening of diabetes, control of hyperglycemia, target blood glucose, and treatment of dyslipidemia. In 3 of 4, Perkeni followed the ADA's recommendation. Conclusion Derivation of recommendations from parent guidelines and their adaptation to the context of Indonesian health care lacks transparency. When guidelines are either derived from other guidelines or adapted for use in different context, evidence‐based practice principles should be followed and adhered to. PMID:27592587

  14. Adapting clinical guidelines in low-resources countries: a study on the guideline on the management and prevention of type 2 diabetes mellitus in Indonesia.

    PubMed

    Widyahening, Indah S; Wangge, Grace; van der Graaf, Yolanda; van der Heijden, Geert J M G

    2017-02-01

    Most of the clinical guidelines in low-resource countries are adaptations from preexisting international guidelines. This adaptation can be problematic when those international guidelines are not based on current evidence or original evidence-based international guidelines are not followed. This study aims to evaluate the quality of an Indonesian type 2 diabetes mellitus guideline adapted from selected international guidelines. The "Consensus on the Management and Prevention of type 2 Diabetes in Indonesia 2011" is a guideline by the Indonesian Society of Endocrinology (Perkeni). Four parent guidelines identified from its list of references were from the International Diabetes Federation (IDF), American Association of Clinical Endocrinologist (AACE), American Diabetes Association (ADA), and one jointly released by ADA and European Association for the Study of Diabetes (EASD). Two reviewers independently assessed its quality using the Appraisal of Guidelines, Research and Evaluation Collaboration (AGREE II) instrument. Six recommendations were compared: (1) screening for diabetes; (2) diagnosis; (3) control of hyperglycemia; (4) target blood glucose; (5) target blood pressure; and (6) treatment of dyslipidemia. Perkeni's guideline satisfied 55% of the AGREE II items, while its parent guidelines satisfied 59% to 74%. Perkeni's shows low score on "rigor of development" and "applicability" and the lowest score in the "scope and purpose" domain. Differences were found in 4 recommendations: the screening of diabetes, control of hyperglycemia, target blood glucose, and treatment of dyslipidemia. In 3 of 4, Perkeni followed the ADA's recommendation. Derivation of recommendations from parent guidelines and their adaptation to the context of Indonesian health care lacks transparency. When guidelines are either derived from other guidelines or adapted for use in different context, evidence-based practice principles should be followed and adhered to. © 2016 The Authors Journal of Evaluation in Clinical Practice Published by John Wiley & Sons Ltd.

  15. Intracranial pressure dynamics during simulated microgravity using a new noninvasive ultrasonic technique

    NASA Technical Reports Server (NTRS)

    Ueno, T.; Ballard, R. E.; Shuer, L. M.; Yost, W. T.; Cantrell, J. H.; Hargens, A. R.

    1998-01-01

    It is believed that intracranial pressure (ICP) may be elevated in microgravity because a fluid shift toward the head occurs due to loss of gravitational blood pressures. Elevated ICP may contribute to space adaptation syndrome, because as widely observed in clinical settings, elevated ICP causes headache, nausea, and projectile vomiting, which are similar to symptoms of space adaptation syndrome. However, the hypothesis that ICP is altered in microgravity is difficult to test because of the invasiveness of currently-available techniques. We have developed a new ultrasonic technique, which allows us to record ICP waveforms noninvasively. The present study was designed to understand postural effects on ICP and assess the feasibility of our new device in future flight experiments.

  16. Cavity closure arrangement for high pressure vessels

    DOEpatents

    Amtmann, Hans H.

    1981-01-01

    A closure arrangement for a pressure vessel such as the pressure vessel of a high temperature gas-cooled reactor wherein a liner is disposed within a cavity penetration in the reactor vessel and defines an access opening therein. A closure is adapted for sealing relation with an annular mounting flange formed on the penetration liner and has a plurality of radially movable locking blocks thereon having outer serrations adapted for releasable interlocking engagement with serrations formed internally of the upper end of the penetration liner so as to effect high strength closure hold-down. In one embodiment, ramping surfaces are formed on the locking block serrations to bias the closure into sealed relation with the mounting flange when the locking blocks are actuated to locking positions.

  17. Development of a Protocol to Test Proprioceptive Utilization as a Predictor for Sensorimotor Adaptability

    NASA Technical Reports Server (NTRS)

    Goel, R.; De Dios, Y. E.; Gadd, N. E.; Caldwell, E. E.; Peters, B. T.; Bloomberg, J. J.; Oddsson, L. I. E.; Mulavara, A. P.

    2016-01-01

    Astronauts returning from space flight show significant inter-subject variations in their abilities to readapt to a gravitational environment because of their innate sensory weighting. The ability to predict the manner and degree to which each individual astronaut will be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. We hypothesize participant's ability to utilize individual sensory information (vision, proprioception and vestibular) influences adaptation in sensorimotor performance after space flight. The goal of this study is to develop a reliable protocol to test proprioceptive utilization in a functional postural control task. Subjects "stand" in a supine position while strapped to a backpack frame holding a friction-free device using air-bearings that allow the subject to move freely in the frontal plane, similar to when in upright standing. The frame is attached to a pneumatic cylinder, which can provide different levels of a gravity-like force that the subject must balance against to remain "upright". The supine posture with eyes closed ensures reduced vestibular and visual contribution to postural control suggesting somatosensory and/or non-otolith vestibular inputs will provide relevant information for maintaining balance control in this task. This setup is called the gravity bed. Fourteen healthy subjects carried out three trials each with eyes open alternated with eyes closed, "standing" on their dominant leg in the gravity bed environment while loaded with 60 percent of their body weight. Subjects were instructed to: "use your sense of sway about the ankle and pressure changes under the foot to maintain balance." Maximum length of a trial was 45 seconds. A force plate underneath the foot recorded forces and moments during the trial and an inertial measurement unit (IMU) attached on the backpack's frame near the center of mass of the subject recorded upper body postural responses. Series of linear and non-linear analyses were carried out on several force plate and IMU data including stabilogram diffusion analysis on the center of pressure (COP) to find a subset of parameters that were sensitive to detect differences in postural performance between eyes open and closed conditions. Results revealed that seven parameters (root mean square (RMS) of medio-lateral (ML) COP, range of ML COP, RMS of roll moment, range of trunk roll, minimum time-to-boundary (TTB), integrated TTB, and critical mean square planar displacement (delta r (sup 2) (sub c)) were significantly different between eyes open and closed conditions. We will present data to show the efficacy of using performance in single leg stance with eyes closed on the gravity bed to assess individuals' ability to utilize proprioceptive information in a functional postural control task to predict re-adaptation for sensorimotor and functional performance.

  18. Tissue adaptations to gravitational stress - Newborn versus adult giraffes

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R; Gershuni, David H.; Danzig, Larry A.; Millard, Ronald W.; Pettersson, Knut

    1988-01-01

    Preliminary results on developmental alterations in load-bearing tissues of newborn and adult giraffes are presented. Attention is focused on vascular wall thickness in relation to local blood pressure, and on meniscal adaptations to increased load bearing in the developing giraffe. It is believed that the developing giraffe provides an excellent model for investigations of adaptive mechanisms of increased weight bearing.

  19. Evolution of meiotic recombination genes in maize and teosinte.

    PubMed

    Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P

    2017-01-25

    Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.

  20. Adaptive control applied to Space Station attitude control system

    NASA Technical Reports Server (NTRS)

    Lam, Quang M.; Chipman, Richard; Hu, Tsay-Hsin G.; Holmes, Eric B.; Sunkel, John

    1992-01-01

    This paper presents an adaptive control approach to enhance the performance of current attitude control system used by the Space Station Freedom. The proposed control law was developed based on the direct adaptive control or model reference adaptive control scheme. Performance comparisons, subject to inertia variation, of the adaptive controller and the fixed-gain linear quadratic regulator currently implemented for the Space Station are conducted. Both the fixed-gain and the adaptive gain controllers are able to maintain the Station stability for inertia variations of up to 35 percent. However, when a 50 percent inertia variation is applied to the Station, only the adaptive controller is able to maintain the Station attitude.

  1. How will climate change affect spatial planning in agricultural and natural environments? Examples from three Dutch case study regions

    NASA Astrophysics Data System (ADS)

    Blom-Zandstra, Margaretha; Paulissen, Maurice; Agricola, Herman; Schaap, Ben

    2009-11-01

    Climate change will place increasing pressure on the functioning of agricultural and natural areas in the Netherlands. Strategies to adapt these areas to stress are likely to require changes in landscape structure and management. In densely populated countries such as the Netherlands, the increased pressure of climate change on agricultural and natural areas will inevitably lead, through the necessity of spatial adaptation measures, to spatial conflicts between the sectors of agriculture and nature. An integrated approach to climate change adaptation may therefore be beneficial in limiting such sectoral conflicts. We explored the conflicting and synergistic properties of different climate adaptation strategies for agricultural and natural environments in the Netherlands. To estimate the feasibility and effectiveness of the strategies, we focussed on three case study regions with contrasting landscape structural, natural and agricultural characteristics. For each region, we estimated the expected climate-related threats and associated trade-offs for arable farming and natural areas for 2040. We describe a number of spatial and integrated adaptation strategies to mitigate these threats. Formulating adaptation strategies requires consultation of different stakeholders and deliberation between different interests. We discuss some trade-offs involved in this decision-making.

  2. Understanding and applying principles of social cognition and ...

    EPA Pesticide Factsheets

    Environmental governance systems are under greater pressure to adapt and to cope with increased social and ecological uncertainty from stressors like climate change. We review principles of social cognition and decision making that shape and constrain how environmental governance systems adapt. We focus primarily on the interplay between key decision makers in society and legal systems. We argue that adaptive governance must overcome three cooperative dilemmas to facilitate adaptation: (1) encouraging collaborative problem solving, (2) garnering social acceptance and commitment, and (3) cultivating a culture of trust and tolerance for change and uncertainty. However, to do so governance systems must cope with biases in people’s decision making that cloud their judgment and create conflict. These systems must also satisfy people’s fundamental needs for self-determination, fairness, and security, ensuring that changes to environmental governance are perceived as legitimate, trustworthy, and acceptable. We discuss the implications of these principles for common governance solutions (e.g., public participation, enforcement) and conclude with methodological recommendations. We outline how scholars can investigate the social cognitive principles involved in cases of adaptive governance. Social-ecological stressors place significant pressure on major societal systems, triggering adaptive reforms in human governance and environmental law. Though potentially benefici

  3. Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Boskovic, Jovan D.

    2008-01-01

    This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.

  4. Active-Adaptive Control of Inlet Separation Using Supersonic Microjets

    NASA Technical Reports Server (NTRS)

    Alvi, Farrukh S.

    2007-01-01

    Flow separation in internal and external flows generally results in a significant degradation in aircraft performance. For internal flows, such as inlets and transmission ducts in aircraft propulsion systems, separation is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control it. In this research, we extended our investigation of active separation control (under a previous NASA grant) where we explored the use of microjets for the control of boundary layer separation. The geometry used for the initial study was a simple diverging Stratford ramp, equipped with arrays of microjets. These early results clearly show that the activation of microjets eliminated flow separation. Furthermore, the velocity-field measurements, using PIV, also demonstrate that the gain in momentum due to the elimination of separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very little mass flow through the microjets. Based on our initial promising results this research was continued under the present grant, using a more flexible model. This model allows for the magnitude and extent of separation as well as the microjet parameters to be independently varied. The results, using this model were even more encouraging and demonstrated that microjet control completely eliminated significant regions of flow separation over a wide range of conditions with almost negligible mass flow. Detailed studies of the flowfield and its response to microjets were further examined using 3-component PIV and unsteady pressure measurements, among others. As the results presented this report will show, microjets were successfully used to control the separation of a much larger extent and magnitude than demonstrated in our earlier experiments. In fact, using the appropriate combination of control parameters (microjet, location, angle and pressure) separation was completely eliminated for the largest separated flowfield we could generate with the present model. Separation control also resulted in a significant reduction in the unsteady pressures in the flow where the unsteady pressure field was found to be directly responsive to the state of the flow above the surface. Hence, our study indicates that the unsteady pressure signature is a strong candidate for a flow state sensor , which can be used to estimate the location, magnitude and other properties of the separated flowfield. Once better understood and properly utilized, this behavior can be of significant practical importance for developing and implementing online control.

  5. Systematic strength training as a model of therapeutic intervention. A controlled trial in postmenopausal women with osteopenia.

    PubMed

    Hartard, M; Haber, P; Ilieva, D; Preisinger, E; Seidl, G; Huber, J

    1996-01-01

    Physical exercise is often recommended as a therapeutic tool to combat pre- and postmenopausal loss of bone density. However, the relationship between training dosage (intensity, duration, frequency) and the effect on bone density still is undergoing discussion. Furthermore, the exercise quantification programs are often described so inadequately that they are neither quantitatively nor qualitatively reproducible. The aim of this investigation was to determine whether a clearly defined training of muscle strength, under defined safety aspects, performed only twice weekly, can counteract bone density loss in women with postmenopausal osteopenia. Data from 16 women in the training group (age, 63.6 +/- 6.2 yr) and 15 women in the control group (age, 67.4 +/-9.7 yr), of comparable height and weight, were evaluated. Strength training was performed for 6 mo as continually adapted strength training, providing an intensity of about 70% of each test person's one repetition maximum. Bone mineral density of lumbar vertebrae 2 to 4 and the femoral neck was measured by dual-energy x-ray absorptiometry. Maximum performance in watts and parameters of hemodynamics were controlled with a bicycle ergometer test to maximal effort. In addition, metabolic data were assessed. In the lumbar spine and femoral neck, the training group showed no significant changes, whereas the control group demonstrated a significant loss of bone mineral density, especially in the femoral neck (P<0.05). The strength increase was highly significant in all exercised muscle groups, rising to about 70% above the pretraining status (P<0.001). Heart rate and blood pressure data indicated a slight economization, metabolism was not significantly influenced. Based on these findings, we conclude that continually adapted strength training is an effective, safe, reproducible, and adaptable method of therapeutic strength training, following only two exercise sessions per week.

  6. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review

    NASA Astrophysics Data System (ADS)

    Shamshiri, Redmond Ramin; Jones, James W.; Thorp, Kelly R.; Ahmad, Desa; Man, Hasfalina Che; Taheri, Sima

    2018-04-01

    Greenhouse technology is a flexible solution for sustainable year-round cultivation of Tomato (Lycopersicon esculentum Mill), particularly in regions with adverse climate conditions or limited land and resources. Accurate knowledge about plant requirements at different growth stages, and under various light conditions, can contribute to the design of adaptive control strategies for a more cost-effective and competitive production. In this context, different scientific publications have recommended different values of microclimate parameters at different tomato growth stages. This paper provides a detailed summary of optimal, marginal and failure air and root-zone temperatures, relative humidity and vapour pressure deficit for successful greenhouse cultivation of tomato. Graphical representations of the membership function model to define the optimality degrees of these three parameters are included with a view to determining how close the greenhouse microclimate is to the optimal condition. Several production constraints have also been discussed to highlight the short and long-term effects of adverse microclimate conditions on the quality and yield of tomato, which are associated with interactions between suboptimal parameters, greenhouse environment and growth responses.

  7. Solution of the Inverse Problem for Thin Film Patterning by Electrohydrodynamic Forces

    NASA Astrophysics Data System (ADS)

    Zhou, Chengzhe; Troian, Sandra

    2017-11-01

    Micro- and nanopatterning techniques for applications ranging from optoelectronics to biofluidics have multiplied in number over the past decade to include adaptations of mature technologies as well as novel lithographic techniques based on periodic spatial modulation of surface stresses. We focus here on one such technique which relies on shape changes in nanofilms responding to a patterned counter-electrode. The interaction of a patterned electric field with the polarization charges at the liquid interface causes a patterned electrostatic pressure counterbalanced by capillary pressure which leads to 3D protrusions whose shape and evolution can be terminated as needed. All studies to date, however, have investigated the evolution of the liquid film in response to a preset counter-electrode pattern. In this talk, we present solution of the inverse problem for the thin film equation governing the electrohydrodynamic response by treating the system as a transient control problem. Optimality conditions are derived and an efficient corresponding solution algorithm is presented. We demonstrate such implementation of film control to achieve periodic, free surface shapes ranging from simple circular cap arrays to more complex square and sawtooth patterns.

  8. Adaptive support ventilation: State of the art review

    PubMed Central

    Fernández, Jaime; Miguelena, Dayra; Mulett, Hernando; Godoy, Javier; Martinón-Torres, Federico

    2013-01-01

    Mechanical ventilation is one of the most commonly applied interventions in intensive care units. Despite its life-saving role, it can be a risky procedure for the patient if not applied appropriately. To decrease risks, new ventilator modes continue to be developed in an attempt to improve patient outcomes. Advances in ventilator modes include closed-loop systems that facilitate ventilator manipulation of variables based on measured respiratory parameters. Adaptive support ventilation (ASV) is a positive pressure mode of mechanical ventilation that is closed-loop controlled, and automatically adjust based on the patient's requirements. In order to deliver safe and appropriate patient care, clinicians need to achieve a thorough understanding of this mode, including its effects on underlying respiratory mechanics. This article will discuss ASV while emphasizing appropriate ventilator settings, their advantages and disadvantages, their particular effects on oxygenation and ventilation, and the monitoring priorities for clinicians. PMID:23833471

  9. Mechanisms of antibiotic resistance in enterococci

    PubMed Central

    Miller, William R; Munita, Jose M; Arias, Cesar A

    2015-01-01

    Multidrug-resistant (MDR) enterococci are important nosocomial pathogens and a growing clinical challenge. These organisms have developed resistance to virtually all antimicrobials currently used in clinical practice using a diverse number of genetic strategies. Due to this ability to recruit antibiotic resistance determinants, MDR enterococci display a wide repertoire of antibiotic resistance mechanisms including modification of drug targets, inactivation of therapeutic agents, overexpression of efflux pumps and a sophisticated cell envelope adaptive response that promotes survival in the human host and the nosocomial environment. MDR enterococci are well adapted to survive in the gastrointestinal tract and can become the dominant flora under antibiotic pressure, predisposing the severely ill and immunocompromised patient to invasive infections. A thorough understanding of the mechanisms underlying antibiotic resistance in enterococci is the first step for devising strategies to control the spread of these organisms and potentially establish novel therapeutic approaches. PMID:25199988

  10. Toward Automatic Verification of Goal-Oriented Flow Simulations

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2014-01-01

    We demonstrate the power of adaptive mesh refinement with adjoint-based error estimates in verification of simulations governed by the steady Euler equations. The flow equations are discretized using a finite volume scheme on a Cartesian mesh with cut cells at the wall boundaries. The discretization error in selected simulation outputs is estimated using the method of adjoint-weighted residuals. Practical aspects of the implementation are emphasized, particularly in the formulation of the refinement criterion and the mesh adaptation strategy. Following a thorough code verification example, we demonstrate simulation verification of two- and three-dimensional problems. These involve an airfoil performance database, a pressure signature of a body in supersonic flow and a launch abort with strong jet interactions. The results show reliable estimates and automatic control of discretization error in all simulations at an affordable computational cost. Moreover, the approach remains effective even when theoretical assumptions, e.g., steady-state and solution smoothness, are relaxed.

  11. The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)

    DOE PAGES

    Milano, E. R.; Lowry, D. B.; Juenger, T. E.

    2016-09-09

    The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less

  12. Overview of the ARPA/WL Smart Structures and Materials Development-Smart Wing contract

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Jardine, A. Peter; Martin, Christopher A.; Appa, Kari

    1996-05-01

    While the concept of an adaptive aircraft wing, i.e., a wing whose shape parameters such as camber, wing twist, and thickness can be varied to optimize the wing shape for various flight conditions, has been extensively studied, the complexity and weight penalty of the actuation mechanisms have precluded their practical implementation. Recent development of sensors and actuators using smart materials could potentially alleviate the shortcomings of prior designs, paving the way for a practical, `smart' adaptive wing which responds to changes in flight and environmental conditions by modifying its shape to provide optimal performance. This paper presents a summary of recent work done on adaptive wing designs under an on-going ARPA/WL contract entitled `Smart Structures and Materials Development--Smart Wing.' Specifically, the design, development and planned wind tunnel testing of a 16% model representative of a fighter aircraft wing and incorporating the following features, are discussed: (1) a composite wing torque box whose span-wise twist can be varied by activating built-in shape memory alloy (SMA) torque tubes to provide increased lift and enhanced maneuverability at multiple flight conditions, (2) trailing edge control surfaces deployed using composite SMA actuators to provide smooth, hingeless aerodynamic surfaces, and (3) a suite of fiber optic sensors integrated into the wing skin which provide real-time strain and pressure data to a feedback control system.

  13. The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milano, E. R.; Lowry, D. B.; Juenger, T. E.

    The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less

  14. A mechanical adapter for installing mission equipment on large space structures

    NASA Technical Reports Server (NTRS)

    Lefever, A. E.; Totah, R. S.

    1980-01-01

    A mechanical attachment adapter was designed, constructed, and tested. The adapter was was included in a simulation program that investigated techniques for assembling erectable structures under simulated zero-g conditions by pressure-suited subjects in a simulated EVA mode. The adapter was utilized as an interface attachment between a simulated equipment module and one node point of a tetrahedral structural cell. The mating performance of the adapter, a self-energized mechanism, was easily and quickly demonstrated and required little effort on the part of the test subjects.

  15. [A scale for the assessment of the risk of pressure sores in paediatric intensive care].

    PubMed

    Weigel, Virginie

    2014-01-01

    Pressure sores are a frequent complication in paediatric intensive care. A multi-disciplinary nursing team has drawn up an assessment scale for the risk of pressure sores and has put in place guidelines for caring for children in intensive care. Prevention actions are thereby adapted to each young patient.

  16. Military Curriculum Materials for Vocational and Technical Education. Welding High and Low Pressure Lines, 3-26.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This short course in welding high and low pressure lines was adapted from military curriculum materials for use in vocational education. The course is designed to teach safety requirements for work with high and low pressure pipelines; pipe welding requirements and specifications; special pipeline repair welding applications; layout of pipe…

  17. Advances in Adaptive Control Methods

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2009-01-01

    This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.

  18. A revised model of fluid transport optimization in Physarum polycephalum.

    PubMed

    Bonifaci, Vincenzo

    2017-02-01

    Optimization of fluid transport in the slime mold Physarum polycephalum has been the subject of several modeling efforts in recent literature. Existing models assume that the tube adaptation mechanism in P. polycephalum's tubular network is controlled by the sheer amount of fluid flow through the tubes. We put forward the hypothesis that the controlling variable may instead be the flow's pressure gradient along the tube. We carry out the stability analysis of such a revised mathematical model for a parallel-edge network, proving that the revised model supports the global flow-optimizing behavior of the slime mold for a substantially wider class of response functions compared to previous models. Simulations also suggest that the same conclusion may be valid for arbitrary network topologies.

  19. Test and evaluation of the HIDEC engine uptrim algorithm

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemented into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  20. Pilot Evaluation of Adaptive Control in Motion-Based Flight Simulator

    NASA Technical Reports Server (NTRS)

    Kaneshige, John T.; Campbell, Stefan Forrest

    2009-01-01

    The objective of this work is to assess the strengths, weaknesses, and robustness characteristics of several MRAC (Model-Reference Adaptive Control) based adaptive control technologies garnering interest from the community as a whole. To facilitate this, a control study using piloted and unpiloted simulations to evaluate sensitivities and handling qualities was conducted. The adaptive control technologies under consideration were ALR (Adaptive Loop Recovery), BLS (Bounded Linear Stability), Hybrid Adaptive Control, L1, OCM (Optimal Control Modification), PMRAC (Predictor-based MRAC), and traditional MRAC

  1. Insecticide-driven patterns of genetic variation in the dengue vector Aedes aegypti in Martinique Island.

    PubMed

    Marcombe, Sébastien; Paris, Margot; Paupy, Christophe; Bringuier, Charline; Yebakima, André; Chandre, Fabrice; David, Jean-Philippe; Corbel, Vincent; Despres, Laurence

    2013-01-01

    Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs). Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique.

  2. A short term -12° head down tilt does not mimic microgravity in terms of human gonadal function

    NASA Astrophysics Data System (ADS)

    Strollo, Felice; Pecorelli, Lia; Strollo, Giovanna; Morè, Massimo; Riondino, Giuseppe; Masini, Maria Angela; Uva, Bianca Maria

    2006-09-01

    A significant reversible decrease in testosterone (T) has been associated with microgravity in male rodents and humans. Urinary T excretion increases in primates under hypergravity. Hypogonadism is somehow related to abnormally high levels of leptin (L), a hormone produced by the adipose tissue which has been found to increase under microgravity simulation conditions like head down bed rest (HDBR). The aim of this study was to assess hemodynamic and pituitary-adrenal and -gonadal adaptation to an acute HDBR test to be eventually used on a routine basis to get better prepared to next space flights. The Authors performed a 1 hour -12° HDBR in 6 male and 6 female volunteers who underwent heart rate and blood pressure measurement together with a blood draw three times at 30 min intervals from the start to the end of the test for L, T, estradiol (E2), LH, androstenedione (A), cortisol (F), ACTH. 12 age- and sexmatched control subjects followed the same protocol except for keeping the sitting position all the time. According to the ANOVA for repeated measures, no changes occurred in L, T, E2 or LH whereas A, F and ACTH significantly decreased independently of gender. During HDBR systolic blood pressure decreased in both genders, diastolic blood pressure decreased significantly only in men and HR showed a more clear-cut decrease in women than in men. As a conclusion, such an acute steep-slope HDBR protocol may be efficiently used to testing immediate individual haemodynamic or adrenal response to microgravity but is not suitable for studies concerning gonadal adaptation.

  3. Adaptive control of a Stewart platform-based manipulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami S.; Zhou, Zhen-Lei; Campbell, Charles E., Jr.

    1993-01-01

    A joint-space adaptive control scheme for controlling noncompliant motion of a Stewart platform-based manipulator (SPBM) was implemented in the Hardware Real-Time Emulator at Goddard Space Flight Center. The six-degrees of freedom SPBM uses two platforms and six linear actuators driven by dc motors. The adaptive control scheme is based on proportional-derivative controllers whose gains are adjusted by an adaptation law based on model reference adaptive control and Liapunov direct method. It is concluded that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.

  4. Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear

    DOEpatents

    Kholwadwala, Deepesh K.; Rohrer, Brandon R.; Spletzer, Barry L.; Galambos, Paul C.; Wheeler, Jason W.; Hobart, Clinton G.; Givler, Richard C.

    2008-09-23

    Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.

  5. Implications of Dynamic Pressure Transducer Mounting Variations on Measurements in Pyrotechnic Test Apparatus

    NASA Technical Reports Server (NTRS)

    Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.

    2009-01-01

    Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.

  6. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults.

    PubMed

    Manor, Brad; Costa, Madalena D; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C K; Novak, Vera; Lipsitz, Lewis A

    2010-12-01

    The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = -0.34, P = 0.002) and percent (R = -0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.

  7. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults

    PubMed Central

    Costa, Madalena D.; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C. K.; Novak, Vera; Lipsitz, Lewis A.

    2010-01-01

    The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = −0.34, P = 0.002) and percent (R = −0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors. PMID:20947715

  8. Dual-arm manipulators with adaptive control

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1991-01-01

    The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws.

  9. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1995-01-01

    The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws.

  10. The First Genomic and Proteomic Characterization of a Deep-Sea Sulfate Reducer: Insights into the Piezophilic Lifestyle of Desulfovibrio piezophilus

    PubMed Central

    Pradel, Nathalie; Ji, Boyang; Gimenez, Grégory; Talla, Emmanuel; Lenoble, Patricia; Garel, Marc; Tamburini, Christian; Fourquet, Patrick; Lebrun, Régine; Bertin, Philippe; Denis, Yann; Pophillat, Matthieu; Barbe, Valérie; Ollivier, Bernard; Dolla, Alain

    2013-01-01

    Desulfovibrio piezophilus strain C1TLV30T is a piezophilic anaerobe that was isolated from wood falls in the Mediterranean deep-sea. D. piezophilus represents a unique model for studying the adaptation of sulfate-reducing bacteria to hydrostatic pressure. Here, we report the 3.6 Mbp genome sequence of this piezophilic bacterium. An analysis of the genome revealed the presence of seven genomic islands as well as gene clusters that are most likely linked to life at a high hydrostatic pressure. Comparative genomics and differential proteomics identified the transport of solutes and amino acids as well as amino acid metabolism as major cellular processes for the adaptation of this bacterium to hydrostatic pressure. In addition, the proteome profiles showed that the abundance of key enzymes that are involved in sulfate reduction was dependent on hydrostatic pressure. A comparative analysis of orthologs from the non-piezophilic marine bacterium D. salexigens and D. piezophilus identified aspartic acid, glutamic acid, lysine, asparagine, serine and tyrosine as the amino acids preferentially replaced by arginine, histidine, alanine and threonine in the piezophilic strain. This work reveals the adaptation strategies developed by a sulfate reducer to a deep-sea lifestyle. PMID:23383081

  11. Deficient pain modulatory systems in patients with mild traumatic brain and chronic post-traumatic headache: implications for its mechanism.

    PubMed

    Defrin, Ruth; Riabinin, Miri; Feingold, Yelena; Schreiber, Shaul; Pick, Chaim G

    2015-01-01

    Although the prevalence rate of chronic post-traumatic headache (CPTHA) after mild traumatic brain injury (TBI) reaches up to 95%, its mechanism is unknown, and little is known about the characteristics of the pain system in this condition. Our aim was to investigate the capabilities of two pain modulatory systems among individuals with CPTHA and study their association with CPTHA, here for the first time. Forty-six subjects participated; 16 with TBI and CPTHA, 12 with TBI without CPTHA, and 18 healthy controls. Testing included the measurement of heat-pain (HPT) and pressure-pain (PPT) thresholds in the forehead and forearm, pain adaptation to tonic noxious heat, and conditioned pain modulation (CPM).The participants completed a post-traumatic stress disorder (PTSD) questionnaire. The two TBI groups did not differ in the TBI and background characteristics. However, TBI patients with CPTHA had significantly higher HPT and lower PPT in the cranium and higher PTSD symptomatology than TBI patients without CPTHA and healthy controls. Adaptation to pain and CPM were diminished in the CPTHA group compared with the two control groups. The intensity of CPTHA correlated negatively with cranial PPT, magnitude of pain adaptation, and CPM. CPTHA intensity correlated positively with PTSD symptomatology. CPTHA appears to be characterized by cranial hyperalgesia and dysfunctional pain modulation capabilities, which are associated with CPTHA magnitude. It is concluded that damage to pain modulatory systems along with chronic cranial sensitization underlies the development of CPTHA. PTSD may reinforce CPTHA and vice versa. Clinical implications are discussed.

  12. Deficient Pain Modulatory Systems in Patients with Mild Traumatic Brain and Chronic Post-Traumatic Headache: Implications for its Mechanism

    PubMed Central

    Riabinin, Miri; Feingold, Yelena; Schreiber, Shaul; Pick, Chaim G.

    2015-01-01

    Abstract Although the prevalence rate of chronic post-traumatic headache (CPTHA) after mild traumatic brain injury (TBI) reaches up to 95%, its mechanism is unknown, and little is known about the characteristics of the pain system in this condition. Our aim was to investigate the capabilities of two pain modulatory systems among individuals with CPTHA and study their association with CPTHA, here for the first time. Forty-six subjects participated; 16 with TBI and CPTHA, 12 with TBI without CPTHA, and 18 healthy controls. Testing included the measurement of heat-pain (HPT) and pressure-pain (PPT) thresholds in the forehead and forearm, pain adaptation to tonic noxious heat, and conditioned pain modulation (CPM).The participants completed a post-traumatic stress disorder (PTSD) questionnaire. The two TBI groups did not differ in the TBI and background characteristics. However, TBI patients with CPTHA had significantly higher HPT and lower PPT in the cranium and higher PTSD symptomatology than TBI patients without CPTHA and healthy controls. Adaptation to pain and CPM were diminished in the CPTHA group compared with the two control groups. The intensity of CPTHA correlated negatively with cranial PPT, magnitude of pain adaptation, and CPM. CPTHA intensity correlated positively with PTSD symptomatology. CPTHA appears to be characterized by cranial hyperalgesia and dysfunctional pain modulation capabilities, which are associated with CPTHA magnitude. It is concluded that damage to pain modulatory systems along with chronic cranial sensitization underlies the development of CPTHA. PTSD may reinforce CPTHA and vice versa. Clinical implications are discussed. PMID:25068510

  13. A two-stage adaptive stochastic collocation method on nested sparse grids for multiphase flow in randomly heterogeneous porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Qinzhuo, E-mail: liaoqz@pku.edu.cn; Zhang, Dongxiao; Tchelepi, Hamdi

    A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod–Patterson–Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiencymore » of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.« less

  14. Both sustained orthostasis and inverse-orthostasis may elicit hypertension in conscious rat

    NASA Astrophysics Data System (ADS)

    Raffai, Gábor; Dézsi, László; Mészáros, Márta; Kollai, Márk; Monos, Emil

    2007-02-01

    The organism is exposed to diverse orthostatic stimuli, which can induce several acute and chronic adaptive responses. In this study, we investigated hemodynamic responses elicited by short-term and intermediate-term various orthostatic stimuli, using normotensive and hypertensive rat models. Arterial blood pressure and heart rate were measured by telemetry. Hypertension was induced by NO-synthase blockade. Effect of orthostatic and inverse-orthostatic body positions were examined in 45∘ head-up (HUT) or head-down tilt (HDT), either for 5 min duration repeated 3 times each with a 5-min pause " R", or as sustained tilting for 120 min " S". Data are given as mean±SEM. In normotensives, horizontal control blood pressure was R115.4±1.4/S113.7±1.6mmHg and heart rate was R386.4±7.0/S377.9±8.8BPM. HUT changed blood pressure by R<±1(ns)/S4.6mmHg(p<0.05). HDT resulted in augmented blood pressure increase by R6.2(p<0.05)/S14.4mmHg(p<0.05). In NO-deprived hypertension, horizontal control hemodynamic parameters were R138.4±2.6/S140.3±2.7mmHg and R342.1±12.0/S346.0±8.3BPM, respectively. HUT and HDT changed blood pressure further by R<±1(ns)/S5.6mmHg(p<0.05) and by R8.9(p<0.05)/S14.4mmHg(p<0.05), respectively. Heart rate changed only slightly or non-specifically. These data demonstrate that both normotensive and hypertensive conscious rats restricted from longitudinal locomotion respond to sustained orthostasis or inverse-orthostasis related gravitational stimuli with moderate or augmented hypertension, respectively.

  15. High blood pressure and visual sensitivity

    NASA Astrophysics Data System (ADS)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  16. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    PubMed Central

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  17. An adaptive supervisory sliding fuzzy cerebellar model articulation controller for sensorless vector-controlled induction motor drive systems.

    PubMed

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-03-25

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes--the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC--were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.

  18. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  19. Adaptive Control Allocation in the Presence of Actuator Failures

    NASA Technical Reports Server (NTRS)

    Liu, Yu; Crespo, Luis G.

    2010-01-01

    In this paper, a novel adaptive control allocation framework is proposed. In the adaptive control allocation structure, cooperative actuators are grouped and treated as an equivalent control effector. A state feedback adaptive control signal is designed for the equivalent effector and allocated to the member actuators adaptively. Two adaptive control allocation algorithms are proposed, which guarantee closed-loop stability and asymptotic state tracking in the presence of uncertain loss of effectiveness and constant-magnitude actuator failures. The proposed algorithms can be shown to reduce the controller complexity with proper grouping of the actuators. The proposed adaptive control allocation schemes are applied to two linearized aircraft models, and the simulation results demonstrate the performance of the proposed algorithms.

  20. A double-inverted pendulum model for studying the adaptability of postural control to frequency during human stepping in place.

    PubMed

    Breniere, Y; Ribreau, C

    1998-10-01

    In order to analyze the influence of gravity and body characteristics on the control of center of mass (CM) oscillations in stepping in place, equations of motion in oscillating systems were developed using a double-inverted pendulum model which accounts for both the head-arms-trunk (HAT) segment and the two-legged system. The principal goal of this work is to propose an equivalent model which makes use of the usual anthropometric data for the human body, in order to study the ability of postural control to adapt to the step frequency in this particular paradigm of human gait. This model allows the computation of CM-to-CP amplitude ratios, when the center of foot pressure (CP) oscillates, as a parametric function of the stepping in place frequency, whose parameters are gravity and major body characteristics. Motion analysis from a force plate was used to test the model by comparing experimental and simulated values of variations of the CM-to-CP amplitude ratio in the frontal plane versus the frequency. With data from the literature, the model is used to calculate the intersegmental torque which stabilizes the HAT when the Leg segment is subjected to a harmonic torque with an imposed frequency.

  1. Adaptive Optics: Arroyo Simulation Tool and Deformable Mirror Actuation Using Golay Cells

    NASA Technical Reports Server (NTRS)

    Lint, Adam S.

    2005-01-01

    The Arroyo C++ libraries, written by Caltech post-doc student Matthew Britton, have the ability to simulate optical systems and atmospheric signal interference. This program was chosen for use in an end-to-end simulation model of a laser communication system because it is freely distributed and has the ability to be controlled by a remote system or "smart agent." Proposed operation of this program by a smart agent has been demonstrated, and the results show it to be a suitable simulation tool. Deformable mirrors, as a part of modern adaptive optics systems, may contain thousands of tiny, independently controlled actuators used to modify the shape of the mirror. Each actuator is connected to two wires, creating a cumbersome and expensive device. Recently, an alternative actuation method that uses gas-filled tubes known as Golay cells has been explored. Golay cells, operated by infrared lasers instead of electricity, would replace the actuator system thereby creating a more compact deformable mirror. The operation of Golay cells and their ability to move a deformable mirror in excess of the required 20 microns has been demonstrated. Experimentation has shown them to be extremely sensitive to pressure and temperature, making them ideal for use in a controlled environment.

  2. Isolating Gas Sensor From Pressure And Temperature Effects

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  3. Nasal variation in relation to high-altitude adaptations among Tibetans and Andeans.

    PubMed

    Butaric, Lauren N; Klocke, Ross P

    2018-05-01

    High-altitude (>2500 m) populations face several pressures, including hypoxia and cold-dry air, resulting in greater respiratory demand to obtain more oxygen and condition inspired air. While cardiovascular and pulmonary adaptations to high-altitude hypoxia have been extensively studied, adaptations of upper-respiratory structures, e.g., nasal cavity, remain untested. This study investigates whether nasal morphology presents adaptations to hypoxic (larger noses) and/or cold-dry (tall/narrow noses) conditions among high-altitude samples. CT scans of two high- and four low-altitude samples from diverse climates were collected (n = 130): high-altitude Tibetans and Peruvians; low-altitude Peruvians, Southern Chinese (temperate), Mongolian-Buriats (cold-dry), and Southeast Asians (hot-wet). Facial and nasal distances were calculated from 3D landmarks placed on digitally-modeled crania. Temperature, precipitation, and barometric pressure data were also obtained. Principal components analysis and analyses of variance primarily indicate size-related differences among the cold-dry (Mongolian-Buriats) and hot-wet (Southeast Asians) adapted groups. Two-block partial least squares (PLS) analysis show weak relationships between size-standardized nasal dimensions and environmental variables. However, among PLS1 (85.90% of covariance), Tibetans display relatively larger nasal cavities related to lower temperatures and barometric pressure; regression analyses also indicate high-altitude Tibetans possess relatively larger internal nasal breadths and heights for their facial size. Overall, nasal differences relate to climate among the cold-dry and hot-wet groups. Specific nasal adaptations were not identified among either Peruvian group, perhaps due to their relatively recent migration history and population structure. However, high-altitude Tibetans seem to exhibit a compromise in nasal morphology, serving in increased oxygen uptake, and air-conditioning processes. © 2018 Wiley Periodicals, Inc.

  4. Neural network based adaptive control for nonlinear dynamic regimes

    NASA Astrophysics Data System (ADS)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  5. Recovery of Neonatal Head Turning to Decreased Sound Pressure Level.

    ERIC Educational Resources Information Center

    Tarquinio, Nancy; And Others

    1990-01-01

    Investigated newborns' responses to decreased sound pressure level (SPL) by means of a localized head turning habituation procedure. Findings, which demonstrated recovery of neonatal head turning to decreased SPL, were inconsistent with the selective receptor adaptation model. (RH)

  6. Real-time performance assessment and adaptive control for a water chiller unit in an HVAC system

    NASA Astrophysics Data System (ADS)

    Bai, Jianbo; Li, Yang; Chen, Jianhao

    2018-02-01

    The paper proposes an adaptive control method for a water chiller unit in a HVAC system. Based on the minimum variance evaluation, the adaptive control method was used to realize better control of the water chiller unit. To verify the performance of the adaptive control method, the proposed method was compared with an a conventional PID controller, the simulation results showed that adaptive control method had superior control performance to that of the conventional PID controller.

  7. Initial adaptation testing of the bidimensionally self-adapting wall of the French T2 wind tunnel, around a three-dimensional object

    NASA Technical Reports Server (NTRS)

    Archambaud, J. P.; Dor, J. B.; Mignosi, A.; Lamarche, L.

    1986-01-01

    The test series was carried out at ONERA/CERT at the T2 wind tunnel in September 1984. The objective of this series was to minimize wall interference through a bidimensional adaptation around the models, inducing tridimensional flows. For this, three different models were used, measuring either the pressures or the forces and moment of pitch (balance). The adaptation was derived from a correction computation in the compressible axisymmetric tridimensional.

  8. iss050e059608

    NASA Image and Video Library

    2017-03-24

    iss050e059608 (03/24/2017) --- NASA astronaut Peggy Whitson controls the robotic arm aboard the International Space Station during a spacewalk. Expedition 50 Commander Shane Kimbrough of NASA and Flight Engineer Thomas Pesquet of ESA (European Space Agency) conducted a six hour and 34 minute spacewalk on March 24, 2017. The two astronauts successfully disconnected cables and electrical connections on the Pressurized Mating Adapter-3 to prepare for its robotic move, lubricated the latching end effector on the Special Purpose Dexterous Manipulator “extension” for the Canadarm2 robotic arm, inspected a radiator valve and replaced cameras on the Japanese segment of the outpost.

  9. KSC-00pp1357

    NASA Image and Video Library

    2000-09-13

    Inside the Payload Changeout Room (PCR), workers check the controls on movement of the Integrated Truss Structure Z1 behind them into the PCR from the payload canister. Once sealed inside the PCR, workers will get ready to move the Z1 into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT

  10. KSC-00pp0917

    NASA Image and Video Library

    2000-07-12

    In the Orbiter Processing Facility bay 1, STS-92 crew members, along with Boeing workers, look closely at the tools they will be using on their mission. The crew comprises Commander Brian Duffy, Pilot Pam Melroy and Mission Specialists Koichi Wakata, Leroy Chiao, Jeff Wisoff, Michael Lopez-Alegria and Bill McArthur. STS-92 is scheduled to launch Oct. 5 on Shuttle Discovery from Launch Pad 39A on the fifth flight to the International Space Station. Discovery will carry the Integrated Truss Structure (ITS) Z1, Pressurized Mating Adapter 3, Ku-band Communications System, and Control Moment Gyros (CMGs)

  11. Intracranial pressure increases during weightlessness: A parabolic flights study

    NASA Astrophysics Data System (ADS)

    Denise, P.; Normand, H.; Buzer, L.; Duretete, A.; Avan, P.

    2005-08-01

    The fluid shift induced by weightlessness likely induces an elevated intracranial pressure (ICP). This factor may contribute to space adaptation syndrome (SAS). Recently, it has been shown that ICP can be monitored every few seconds non invasively by otoacoustic emissions (OAE). The OAE of 6 subjects were measured along the course of parabolic flights aboard the zero-gravity A300 Airbus. Built-in noise rejection and signal processing techniques enabled valid OAE signals to be collected and analyzed online in 4 of 6 subjects. On average, the phase of 1 kHz- OAE rotated by -41° from 1 to 1.8 g, and by +78.7° at 0 g relative to 1 g. From reference invasive ICP measurements in a control group of neurosurgery patients, it is possible to infer that ICP increased by about 34 mmHg in transient weightlessness.

  12. Physiology of Fluid and Electrolyte Responses During Inactivity: Water Immersion and Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1984-01-01

    This manuscript emphasizes the physiology of fluid-electrolyte-hormonal responses during the prolonged inactivity of bed rest and water immersion. An understanding of the total mechanism of adaptation (deconditioning) should provide more insight into the conditioning process. Findings that need to be confirmed during bed rest and immersion are: (1) the volume and tissues of origin of fluid shifted to the thorax and head; (2) interstitial fluid pressure changes in muscle and subcutaneous tissue, particularly during immersion; and (3) the composition of the incoming presumably interstitial fluid that contributes to the early hypervolemia. Better resolution of the time course and source of the diuretic fluid is needed. Important data will be forthcoming when hypotheses are tested involving the probable action of the emerging diuretic and natriuretic hormones, between themselves and among vasopressin and aldosterone, on diuresis and blood pressure control.

  13. The helical screw expander evaluation project. [for geothermal wells

    NASA Technical Reports Server (NTRS)

    Mckay, R. A.

    1977-01-01

    A positive-displacement helical-screw expander of the Lysholm type has been adapted for geothermal service and successfully demonstrated in a 50 kW prototype power system. Evaluation of the expander by tests of a new model in a 1 MW power system under wellhead conditions in selected liquid-dominated geothermal fields is proposed. The objectives are to determine the performance characteristics of the expander and power system over a broad range of operating conditions and also to examine the concept of wellhead power plants. Throttling and fractionation of the fluids from the test wells is planned to simulate a wide range of wellhead pressures and steam fractions. Variation in the expander exhaust pressure is also planned. The investigation will include expander efficiency, corrosion, erosion, scale formation and control, and endurance testing. Interaction studies with the wells and an electric grid are also proposed.

  14. Adjustment of Adaptive Gain with Bounded Linear Stability Analysis to Improve Time-Delay Margin for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.

  15. Comparison between invasive and noninvasive techniques of evaluation of microvascular structural alterations.

    PubMed

    De Ciuceis, Carolina; Agabiti Rosei, Claudia; Caletti, Stefano; Trapletti, Valentina; Coschignano, Maria A; Tiberio, Guido A M; Duse, Sarah; Docchio, Franco; Pasinetti, Simone; Zambonardi, Federica; Semeraro, Francesco; Porteri, Enzo; Solaini, Leonardo; Sansoni, Giovanna; Pileri, Paola; Rossini, Claudia; Mittempergher, Francesco; Portolani, Nazario; Ministrini, Silvia; Agabiti-Rosei, Enrico; Rizzoni, Damiano

    2018-05-01

    The evaluation of the morphological characteristics of small resistance arteries in humans is challenging. The gold standard method is generally considered to be the measurement by wire or pressure micromyography of the media-to-lumen ratio of subcutaneous small vessels obtained by local biopsies. However, noninvasive techniques for the evaluation of retinal arterioles were recently proposed; in particular, two approaches, scanning laser Doppler flowmetry (SLDF) and adaptive optics, seem to provide useful information; both of them provide an estimation of the wall-to-lumen ratio (WLR) of retinal arterioles. Moreover, a noninvasive measurement of basal and total capillary density may be obtained by videomicroscopy/capillaroscopy. No direct comparison of these three noninvasive techniques in the same population was previously performed; in particular, adaptive optics was never validated against micromyography. In the current study, we enrolled 41 controls and patients: 12 normotensive lean controls, 12 essential hypertensive lean patients, nine normotensive obese patients and eight hypertensive obese patients undergoing elective surgery. All patients underwent a biopsy of subcutaneous fat during surgery. Subcutaneous small resistance artery structure was assessed by wire micromyography and the media-to-lumen ratio was calculated. WLR of retinal arterioles was obtained by SLDF and adaptive optics. Functional (basal) and structural (total) microvascular density was evaluated by capillaroscopy before and after venous congestion. Our data suggest that adaptive optics has a substantial advantage over SLDF in terms of evaluation of microvascular morphology, as WLR measured with adaptive optics is more closely correlated with the M/L of subcutaneous small arteries (r = 0.84, P < 0.001 vs. r = 0.52, P < 0.05, slopes of the relations: P < 0.01 adaptive optics vs. SLDF). In addition, the reproducibility of the evaluation of the WLR with adaptive optics is far better, as compared with SLDF, as intraobserver and interobserver variation coefficients are clearly smaller. This may be important in terms of clinical evaluation of microvascular morphology in a clinical setting, as micromyography has substantial limitations in its clinical application due to the local invasiveness of the procedure.

  16. Disturbance and productivity interactions mediate stability of forest composition and structure.

    PubMed

    O'Connor, Christopher D; Falk, Donald A; Lynch, Ann M; Swetnam, Thomas W; Wilcox, Craig P

    2017-04-01

    Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with similar historical fire regimes. This variability in plant community response to fire exclusion is not well understood; however, ecological mechanisms such as individual species' adaptations to disturbance or competition and underlying site characteristics that facilitate or impede establishment and growth have been proposed as potential drivers of assemblage response. We used spatially explicit dendrochronological reconstruction of tree population dynamics and fire regimes to examine the influence of historical disturbance frequency (a proxy for adaptation to disturbance or competition), and potential site productivity (a proxy for underlying site characteristics) on the stability of forest composition and structure along a continuous ecological gradient of pine, dry mixed-conifer, mesic mixed-conifer, and spruce-fir forests following fire exclusion. While average structural density increased in all forests, species composition was relatively stable in the lowest productivity pine-dominated and highest productivity spruce-fir-dominated sites immediately following fire exclusion and for the next 100 years, suggesting site productivity as a primary control on species composition and structure in forests with very different historical fire regimes. Species composition was least stable on intermediate productivity sites dominated by mixed-conifer forests, shifting from primarily fire-adapted species to competition-adapted, fire-sensitive species within 20 years of fire exclusion. Rapid changes to species composition and stand densities have been interpreted by some as evidence of high-severity fire. We demonstrate that the very different ecological process of fire exclusion can produce similar changes by shifting selective pressures from disturbance-mediated to productivity-mediated controls. Restoring disturbance-adapted species composition and structure to intermediate productivity forests may help to buffer them against projected increasing temperatures, lengthening fire seasons, and more frequent and prolonged moisture stress. Fewer management options are available to promote adaptation in forest assemblages historically constrained by underlying site productivity. © 2016 by the Ecological Society of America.

  17. Understanding and applying principles of social cognition and decision making in adaptive environmental governance

    EPA Science Inventory

    Environmental governance systems are under greater pressure to adapt and to cope with increased social and ecological uncertainty from stressors like climate change. We review principles of social cognition and decision making that shape and constrain how environmental governance...

  18. Heating and Large Scale Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Schnack, Dalton D.

    2000-01-01

    The effort was concentrated in the areas: coronal heating mechanism, unstructured adaptive grid algorithms, numerical modeling of magnetic reconnection in the MRX experiment: effect of toroidal magnetic field and finite pressure, effect of OHMIC heating and vertical magnetic field, effect of dynamic MESH adaption.

  19. Hypertrophic remodeling and increased arterial stiffness in patients with intracranial aneurysms.

    PubMed

    Maltete, David; Bellien, Jeremy; Cabrejo, Lucie; Iacob, Michele; Proust, François; Mihout, Bruno; Thuillez, Christian; Guegan-Massardier, Evelyne; Joannides, Robinson

    2010-08-01

    Because an underlying arteriopathy might contribute to the development of intracranial aneurysms (IAs), we assessed the elastic properties of proximal conduit arteries in patients with IA. In 27 patients with previous ruptured IA and 27 control subjects matched for age, gender and BMI, we determined arterial pressure, internal diameter, intima-media thickness (IMT), circumferential wall stress (CWS) and elastic modulus (wall stiffness) in common carotid arteries using applanation tonometry and echotracking. Moreover, carotid augmentation index (AIx, arterial wave reflections) and carotid-to-femoral pulse wave velocity (PWV, aortic stiffness) were assessed. Compared with controls, patients with IA exhibited higher brachial and carotid systolic and diastolic blood pressures, with similar brachial but higher carotid artery pulse pressure (35 + or - 6mm Hg vs. 41 + or - 8mm Hg, P=0.014). Moreover, patients have higher PWV (7.8 + or - 1.2ms(-1) vs. 8.3 + or - 1.1ms(-1), P=0.048) and AIx (15.8 + or - 10.8% vs. 21.1 + or - 8.5%, P<0.001) which contributes to increase carotid blood pressures. Furthermore, carotid IMT was higher in patients (546 + or - 64 microm vs. 642 + or - 70 microm, P<0.001) without difference in diameter suggesting an adaptive hypertrophy. However, patients display a lower CWS (61.6 + or - 9.2 kPa vs. 56.9 + or - 10.3 kPa, P=0.007) and no correlation between IMT and pulse pressure (r=0.152, P=NS) in contrast to controls (r=0.539, P<0.001) showing the contribution of a pressure-independent process. Finally, despite this lesser CWS, elastic modulus was increased in patients (310 + or - 105 kPa vs. 383 + or - 174 kPa, P=0.026). This study demonstrates that patients with IA display a particular carotid artery phenotype with an exaggerated hypertrophic remodeling and altered elastic properties. Thus, a systemic arteriopathy might contribute, together with the arterial wall fatiguing effect of the increased pulsatile stress, to the pathogenesis of IA. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Low Boom Configuration Analysis with FUN3D Adjoint Simulation Framework

    NASA Technical Reports Server (NTRS)

    Park, Michael A.

    2011-01-01

    Off-body pressure, forces, and moments for the Gulfstream Low Boom Model are computed with a Reynolds Averaged Navier Stokes solver coupled with the Spalart-Allmaras (SA) turbulence model. This is the first application of viscous output-based adaptation to reduce estimated discretization errors in off-body pressure for a wing body configuration. The output adaptation approach is compared to an a priori grid adaptation technique designed to resolve the signature on the centerline by stretching and aligning the grid to the freestream Mach angle. The output-based approach produced good predictions of centerline and off-centerline measurements. Eddy viscosity predicted by the SA turbulence model increased significantly with grid adaptation. Computed lift as a function of drag compares well with wind tunnel measurements for positive lift, but predicted lift, drag, and pitching moment as a function of angle of attack has significant differences from the measured data. The sensitivity of longitudinal forces and moment to grid refinement is much smaller than the differences between the computed and measured data.

  1. High-Reynolds-Number Test of a 5-Percent-Thick Low-Aspect-Ratio Semispan Wing in the Langley 0.3-Meter Transonic Cryogenic Tunnel: Wing Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Lawing, Pierce L.

    1990-01-01

    A high Reynolds number test of a 5 percent thick low aspect ratio semispan wing was conducted in the adaptive wall test section of the Langley 0.3 m Transonic Cryogenic Tunnel. The model tested had a planform and a NACA 64A-105 airfoil section that is similar to that of the pressure instrumented canard on the X-29 experimental aircraft. Chordwise pressure data for Mach numbers of 0.3, 0.7, and 0.9 were measured for an angle-of-attack range of -4 to 15 deg. The associated Reynolds numbers, based on the geometric mean chord, encompass most of the flight regime of the canard. This test was a free transition investigation. A summary of the wing pressures are presented without analysis as well as adapted test section top and bottom wall pressure signatures. However, the presented graphical data indicate Reynolds number dependent complex leading edge separation phenomena. This data set supplements the existing high Reynolds number database and are useful for computational codes comparison.

  2. Transcriptomics Reveal Several Gene Expression Patterns in the Piezophile Desulfovibrio hydrothermalis in Response to Hydrostatic Pressure

    PubMed Central

    Amrani, Amira; Bergon, Aurélie; Holota, Hélène; Tamburini, Christian; Garel, Marc; Ollivier, Bernard; Imbert, Jean; Dolla, Alain; Pradel, Nathalie

    2014-01-01

    RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt) that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria. PMID:25215865

  3. Prokaryotic responses to hydrostatic pressure in the ocean--a review.

    PubMed

    Tamburini, Christian; Boutrif, Mehdi; Garel, Marc; Colwell, Rita R; Deming, Jody W

    2013-05-01

    Effects of hydrostatic pressure on pure cultures of prokaryotes have been studied extensively but impacts at the community level in the ocean are less well defined. Here we consider hydrostatic pressure effects on natural communities containing both unadapted (piezosensitive) prokaryotes originating from surface water and adapted (including piezophilic) prokaryotes from the deep sea. Results from experiments mimicking pressure changes experienced by particle-associated prokaryotes during their descent through the water column show that rates of degradation of organic matter (OM) by surface-originating microorganisms decrease with sinking. Analysis of a much larger data set shows that, under stratified conditions, deep-sea communities adapt to in situ conditions of high pressure, low temperature and low OM. Measurements made using decompressed samples and atmospheric pressure thus underestimate in situ activity. Exceptions leading to overestimates can be attributed to deep mixing events, large influxes of surface particles, or provision of excessive OM during experimentation. The sediment-water interface, where sinking particles accumulate, will be populated by a mixture of piezosensitive, piezotolerant and piezophilic prokaryotes, with piezophilic activity prevailing deeper within sediment. A schematic representation of how pressure shapes prokaryotic communities in the ocean is provided, allowing a reasonably accurate interpretation of the available activity measurements. © 2013 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Robust adaptive vibration control of a flexible structure.

    PubMed

    Khoshnood, A M; Moradi, H M

    2014-07-01

    Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Optimal Control Modification for Robust Adaptation of Singularly Perturbed Systems with Slow Actuators

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham; Stepanyan, Vahram; Boskovic, Jovan

    2009-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. The model matching conditions in the transformed time coordinate results in increase in the feedback gain and modification of the adaptive law.

  6. Application of Bounded Linear Stability Analysis Method for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a second order system that represents a pitch attitude control of a generic transport aircraft. The analysis shows that the system with the metrics-conforming variable adaptive gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis time-window for BLSA is also evaluated in order to meet the stability margin criteria.

  7. Postural control strategies during single limb stance following acute lateral ankle sprain.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2014-06-01

    Single-limb stance is maintained via the integration of visual, vestibular and somatosensory afferents. Musculoskeletal injury challenges the somatosensory system to reweight distorted sensory afferents. This investigation supplements kinetic analysis of eyes-open and eyes-closed single-limb stance tasks with a kinematic profile of lower limb postural orientation in an acute lateral ankle sprain group to assess the adaptive capacity of the sensorimotor system to injury. Sixty-six participants with first-time acute lateral ankle sprain completed a 20-second eyes-open single-limb stance task on their injured and non-injured limbs (task 1). Twenty-three of these participants successfully completed the same 20-second single-limb stance task with their eyes closed (task 2). A non-injured control group of 19 participants completed task 1, with 16 completing task 2. 3-dimensional kinematics of the hip, knee and ankle joints, as well as associated fractal dimension of the center-of-pressure path were determined for each limb during these tasks. Between trial analyses revealed significant differences in stance limb kinematics and fractal dimension of the center-of-pressure path for task 2 only. The control group bilaterally assumed a position of greater hip flexion compared to injured participants on their side-matched "involved"(7.41 [6.1°] vs 1.44 [4.8]°; η(2)=.34) and "uninvolved" (9.59 [8.5°] vs 2.16 [5.6°]; η(2)=.31) limbs, with a greater fractal dimension of the center-of-pressure path (involved limb=1.39 [0.16°] vs 1.25 [0.14°]; uninvolved limb=1.37 [0.21°] vs 1.23 [0.14°]). Bilateral impairment in postural control strategies present following a first time acute lateral ankle sprain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Toll‐Like Receptor‐2 Mediates Adaptive Cardiac Hypertrophy in Response to Pressure Overload Through Interleukin‐1β Upregulation via Nuclear Factor κB Activation

    PubMed Central

    Higashikuni, Yasutomi; Tanaka, Kimie; Kato, Megumi; Nureki, Osamu; Hirata, Yasunobu; Nagai, Ryozo; Komuro, Issei; Sata, Masataka

    2013-01-01

    Background Inflammation is induced in the heart during the development of cardiac hypertrophy. The initiating mechanisms and the role of inflammation in cardiac hypertrophy, however, remain unclear. Toll‐like receptor‐2 (TLR2) recognizes endogenous molecules that induce noninfectious inflammation. Here, we examined the role of TLR2‐mediated inflammation in cardiac hypertrophy. Methods and Results At 2 weeks after transverse aortic constriction, Tlr2−/− mice showed reduced cardiac hypertrophy and fibrosis with greater left ventricular dilatation and impaired systolic function compared with wild‐type mice, which indicated impaired cardiac adaptation in Tlr2−/− mice. Bone marrow transplantation experiment revealed that TLR2 expressed in the heart, but not in bone marrow–derived cells, is important for cardiac adaptive response to pressure overload. In vitro experiments demonstrated that TLR2 signaling can induce cardiomyocyte hypertrophy and fibroblast and vascular endothelial cell proliferation through nuclear factor–κB activation and interleukin‐1β upregulation. Systemic administration of a nuclear factor–κB inhibitor or anti–interleukin‐1β antibodies to wild‐type mice resulted in impaired adaptive cardiac hypertrophy after transverse aortic constriction. We also found that heat shock protein 70, which was increased in murine plasma after transverse aortic constriction, can activate TLR2 signaling in vitro and in vivo. Systemic administration of anti–heat shock protein 70 antibodies to wild‐type mice impaired adaptive cardiac hypertrophy after transverse aortic constriction. Conclusions Our results demonstrate that TLR2‐mediated inflammation induced by extracellularly released heat shock protein 70 is essential for adaptive cardiac hypertrophy in response to pressure overload. Thus, modulation of TLR2 signaling in the heart may provide a novel strategy for treating heart failure due to inadequate adaptation to hemodynamic stress. PMID:24249711

  9. Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.

  10. Adaptive neural network motion control for aircraft under uncertainty conditions

    NASA Astrophysics Data System (ADS)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  11. Reduction of the pectoral spine and girdle in domesticated Channel catfish is likely caused by changes in selection pressure.

    PubMed

    Fine, Michael L; Lahiri, Shweta; Sullivan, Amanda D H; Mayo, Mark; Newton, Scott H; Sismour, Edward N

    2014-07-01

    Locked pectoral spines of the Channel Catfish Ictalurus punctatus more than double the fish's width and complicate ingestion by gape-limited predators. The spine mates with the pectoral girdle, a robust structure that anchors the spine. This study demonstrates that both spine and girdle exhibit negative allometric growth and that pectoral spines and girdles are lighter in domesticated than in wild Channel Catfish. This finding could be explained by changes in selection pressure for spine growth during domestication or by an epigenetic effect in which exposure to predators in wild fish stimulates pectoral growth. We tested the epigenetic hypothesis by exposing domesticated Channel Catfish fingerlings to Largemouth Bass Micropterus salmoides predators for 13 weeks. Spines and girdles grow isometrically in the fingerlings, and regression analysis indicates no difference in proportional pectoral growth between control and predator-exposed fish. Therefore a change in selection pressure likely accounts for smaller pectoral growth in domesticated Channel Catfish. Decreasing spine growth in older fish suggests anti-predator functions are most important in smaller fish. Additionally, growth of the appendicular and axial skeleton is controlled differentially, and mechanical properties of the spine and not just its length are an important component of this defensive adaptation. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  12. Co-adaption of tRNA gene copy number and amino acid usage influences translation rates in three life domains

    PubMed Central

    Du, Meng-Ze; Wei, Wen; Qin, Lei; Liu, Shuo; Zhang, An-Ying; Zhang, Yong; Zhou, Hong

    2017-01-01

    Abstract Although more and more entangled participants of translation process were realized, how they cooperate and co-determine the final translation efficiency still lacks details. Here, we reasoned that the basic translation components, tRNAs and amino acids should be consistent to maximize the efficiency and minimize the cost. We firstly revealed that 310 out of 410 investigated genomes of three domains had significant co-adaptions between the tRNA gene copy numbers and amino acid compositions, indicating that maximum efficiency constitutes ubiquitous selection pressure on protein translation. Furthermore, fast-growing and larger bacteria are found to have significantly better co-adaption and confirmed the effect of this pressure. Within organism, highly expressed proteins and those connected to acute responses have higher co-adaption intensity. Thus, the better co-adaption probably speeds up the growing of cells through accelerating the translation of special proteins. Experimentally, manipulating the tRNA gene copy number to optimize co-adaption between enhanced green fluorescent protein (EGFP) and tRNA gene set of Escherichia coli indeed lifted the translation rate (speed). Finally, as a newly confirmed translation rate regulating mechanism, the co-adaption reflecting translation rate not only deepens our understanding on translation process but also provides an easy and practicable method to improve protein translation rates and productivity. PMID:28992099

  13. Adaptive powertrain control for plugin hybrid electric vehicles

    DOEpatents

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  14. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    NASA Technical Reports Server (NTRS)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  15. The Mars Gravity Simulation Project

    NASA Technical Reports Server (NTRS)

    Korienek, Gene

    1998-01-01

    Human beings who make abrupt transitions between one gravitational environment and another undergo severe disruptions of their visual perception and visual- motor coordination, frequently accompanied by "space sickness." Clearly, such immediate effects of exposure to a novel gravitational condition have significant implications for human performance. For example, when astronauts first arrive in Earth orbit their attempts to move about in the spacecraft and to perform their duties are uncoordinated, inaccurate, and inefficient. Other inter-gravitational transitions for which these difficulties can be expected include going from the 0 g of the spacecraft to the. 16 g of the Moon, from 0 g to the .38 g of Mars, and from 0 g back to the 1.0 g of Earth. However, after astronauts have actively interacted with their new gravitational environment for several days, these problems tend to disappear, evidence that some sort of adaptive process has taken place. It would be advantageous, therefore, if there were some way to minimize or perhaps even to eliminate this potentially hazardous adaptive transition period by allowing astronauts to adapt to the altered gravitational conditions before actually entering them. Simultaneous adaptations to both the altered and the normal gravitational environment as a result of repeatedly adapting to one and readapting to the other, a phenomenon known as dual adaptation. The objective of the Mars Gravity Simulator (MGS) Project is to construct a simulation of the visual and bodily effects of altered gravity. This perceptual-motor simulation is created through the use of: 1) differential body pressure to produce simulated hypo-gravity and 2) treadmill-controlled virtual reality to create a corresponding visual effect. It is expected that this combination will produce sensory motor perturbations in the subjects. Both the immediate and adaptive behavioral (postural and ambulatory) responses to these sensory perturbations will be assessed.

  16. Phase Synchronization of Hemodynamic Variables at Rest and after Deep Breathing Measured during the Course of Pregnancy

    PubMed Central

    Papousek, Ilona; Roessler, Andreas; Hinghofer-Szalkay, Helmut; Lang, Uwe; Kolovetsiou-Kreiner, Vassiliki

    2013-01-01

    Background The autonomic nervous system plays a central role in the functioning of systems critical for the homeostasis maintenance. However, its role in the cardiovascular adaptation to pregnancy-related demands is poorly understood. We explored the maternal cardiovascular systems throughout pregnancy to quantify pregnancy-related autonomic nervous system adaptations. Methodology Continuous monitoring of heart rate (R-R interval; derived from the 3-lead electrocardiography), blood pressure, and thoracic impedance was carried out in thirty-six women at six time-points throughout pregnancy. In order to quantify in addition to the longitudinal effects on baseline levels throughout gestation the immediate adaptive heart rate and blood pressure changes at each time point, a simple reflex test, deep breathing, was applied. Consequently, heart rate variability and blood pressure variability in the low (LF) and high (HF) frequency range, respiration and baroreceptor sensitivity were analyzed in resting conditions and after deep breathing. The adjustment of the rhythms of the R-R interval, blood pressure and respiration partitioned for the sympathetic and the parasympathetic branch of the autonomic nervous system were quantified by the phase synchronization index γ, which has been adopted from the analysis of weakly coupled chaotic oscillators. Results Heart rate and LF/HF ratio increased throughout pregnancy and these effects were accompanied by a continuous loss of baroreceptor sensitivity. The increases in heart rate and LF/HF ratio levels were associated with an increasing decline in the ability to flexibly respond to additional demands (i.e., diminished adaptive responses to deep breathing). The phase synchronization index γ showed that the observed effects could be explained by a decreased coupling of respiration and the cardiovascular system (HF components of heart rate and blood pressure). Conclusions/Significance The findings suggest that during the course of pregnancy the individual systems become increasingly independent to meet the increasing demands placed on the maternal cardiovascular and respiratory system. PMID:23577144

  17. Medium-term methionine supplementation increases plasma homocysteine but not ADMA and improves blood pressure control in rats fed a diet rich in protein and adequate in folate and choline.

    PubMed

    Mariotti, François; Hammiche, Alexia; Blouet, Clémence; Daré, Sophie; Tomé, Daniel; Huneau, Jean François

    2006-10-01

    Hyperhomocysteinemia (HHcy) is associated with cardiovascular risk, possibly because it increases asymmetric dimethyl-arginine (ADMA), but the general association remains unclear and may vary with nutritional and physiological conditions. We aimed to monitor the effect of methionine supplementation, and subsequent HHcy, on plasma ADMA and hemodynamics in the context of a diet rich in protein and adequate in folic acid and choline. For 6 weeks, rats were fed a 29% protein diet supplemented (M) or not (C) with 8 g/kg L: -methionine. Blood pressure and plasma amino acids, including homocysteine and ADMA, were measured throughout the experiment and additional parameters, including in vivo hemodynamic response to acetylcholine, were measured at week 5-6. As compared to the C diet, the M diet induced a marked HHcy during the first 3 weeks, which lessened at week 5. In contrast, plasma ADMA stayed similar in the C and M diet. Paradoxically, M rats had lower mean and diastolic blood pressure values over the experiment, together with a lower left ventricular mass at week 6, when compared with C rats. No difference was observed between groups regarding vascular reactivity and plasma NOx at week 6. In a context of a diet rich in protein and adequate in methyl donors, rats exhibit a complex adaptation to the medium-term methionine supplementation, with improvement in blood pressure control despite marked HHcy. The lack of increase in plasma ADMA may account for the absence of detrimental effects of HHcy on hemodynamics.

  18. Nutrition systems for pressure suits.

    NASA Technical Reports Server (NTRS)

    Huber, C. S.; Heidelbaugh, N. D.; Rapp, R. M.; Smith, M. C., Jr.

    1973-01-01

    Nutrition systems were successfully developed in the Apollo Program for astronauts wearing pressure suits during emergency decompression situations and during lunar surface explorations. These nutrition systems consisted of unique dispensers, water, flavored beverages, nutrient-fortified beverages, and intermediate moisture food bars. The emergency decompression system dispensed the nutrition from outside the pressure suit by interfacing with a suit helmet penetration port. The lunar exploration system utilized dispensers stowed within the interior layers of the pressure suit. These systems could be adapted for provision of nutrients in other situations requiring the use of pressure suits.

  19. A novel composite adaptive flap controller design by a high-efficient modified differential evolution identification approach.

    PubMed

    Li, Nailu; Mu, Anle; Yang, Xiyun; Magar, Kaman T; Liu, Chao

    2018-05-01

    The optimal tuning of adaptive flap controller can improve adaptive flap control performance on uncertain operating environments, but the optimization process is usually time-consuming and it is difficult to design proper optimal tuning strategy for the flap control system (FCS). To solve this problem, a novel adaptive flap controller is designed based on a high-efficient differential evolution (DE) identification technique and composite adaptive internal model control (CAIMC) strategy. The optimal tuning can be easily obtained by DE identified inverse of the FCS via CAIMC structure. To achieve fast tuning, a high-efficient modified adaptive DE algorithm is proposed with new mutant operator and varying range adaptive mechanism for the FCS identification. A tradeoff between optimized adaptive flap control and low computation cost is successfully achieved by proposed controller. Simulation results show the robustness of proposed method and its superiority to conventional adaptive IMC (AIMC) flap controller and the CAIMC flap controllers using other DE algorithms on various uncertain operating conditions. The high computation efficiency of proposed controller is also verified based on the computation time on those operating cases. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Advanced EMU Portable Life Support System (PLSS) and Shuttle/ISS EMU Schematics, a Comparison

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2012-01-01

    In order to be able to adapt to differing vehicle interfaces such as suitport and airlock, adjust to varying vehicle pressure schedules, tolerate lower quality working fluids, and adapt to differing suit architectures as dictated by a range of mission architectures, the next generation space suit requires more adaptability and robustness over that of the current Shuttle/ISS Extra-vehicular Mobility Unit (EMU). While some features have been added to facilitate interfaces to differing vehicle and suit architectures, the key performance gains have been made via incorporation of new technologies such as the variable pressure regulators, Rapid Cycle Amine swing-bed, and Suit Water Membrane Evaporator. This paper performs a comparison between the Shuttle/ISS EMU PLSS schematic and the Advanced EMU PLSS schematic complete with a discussion for each difference.

Top