Science.gov

Sample records for adaptive projection method

  1. A multilevel adaptive projection method for unsteady incompressible flow

    NASA Technical Reports Server (NTRS)

    Howell, Louis H.

    1993-01-01

    There are two main requirements for practical simulation of unsteady flow at high Reynolds number: the algorithm must accurately propagate discontinuous flow fields without excessive artificial viscosity, and it must have some adaptive capability to concentrate computational effort where it is most needed. We satisfy the first of these requirements with a second-order Godunov method similar to those used for high-speed flows with shocks, and the second with a grid-based refinement scheme which avoids some of the drawbacks associated with unstructured meshes. These two features of our algorithm place certain constraints on the projection method used to enforce incompressibility. Velocities are cell-based, leading to a Laplacian stencil for the projection which decouples adjacent grid points. We discuss features of the multigrid and multilevel iteration schemes required for solution of the resulting decoupled problem. Variable-density flows require use of a modified projection operator--we have found a multigrid method for this modified projection that successfully handles density jumps of thousands to one. Numerical results are shown for the 2D adaptive and 3D variable-density algorithms.

  2. Adaptive Projection Subspace Dimension for the Thick-Restart Lanczos Method

    SciTech Connect

    Yamazaki, Ichitaro; Bai, Zhaojun; Simon, Horst; Wang, Lin-Wang; Wu, K.

    2008-10-01

    The Thick-Restart Lanczos (TRLan) method is an effective method for solving large-scale Hermitian eigenvalue problems. However, its performance strongly depends on the dimension of the projection subspace. In this paper, we propose an objective function to quantify the effectiveness of a chosen subspace dimension, and then introduce an adaptive scheme to dynamically adjust the dimension at each restart. An open-source software package, nu-TRLan, which implements the TRLan method with this adaptive projection subspace dimension is available in the public domain. The numerical results of synthetic eigenvalue problems are presented to demonstrate that nu-TRLan achieves speedups of between 0.9 and 5.1 over the static method using a default subspace dimension. To demonstrate the effectiveness of nu-TRLan in a real application, we apply it to the electronic structure calculations of quantum dots. We show that nu-TRLan can achieve speedups of greater than 1.69 over the state-of-the-art eigensolver for this application, which is based on the Conjugate Gradient method with a powerful preconditioner.

  3. Evaluation of Load Analysis Methods for NASAs GIII Adaptive Compliant Trailing Edge Project

    NASA Technical Reports Server (NTRS)

    Cruz, Josue; Miller, Eric J.

    2016-01-01

    The Air Force Research Laboratory (AFRL), NASA Armstrong Flight Research Center (AFRC), and FlexSys Inc. (Ann Arbor, Michigan) have collaborated to flight test the Adaptive Compliant Trailing Edge (ACTE) flaps. These flaps were installed on a Gulfstream Aerospace Corporation (GAC) GIII aircraft and tested at AFRC at various deflection angles over a range of flight conditions. External aerodynamic and inertial load analyses were conducted with the intention to ensure that the change in wing loads due to the deployed ACTE flap did not overload the existing baseline GIII wing box structure. The objective of this paper was to substantiate the analysis tools used for predicting wing loads at AFRC. Computational fluid dynamics (CFD) models and distributed mass inertial models were developed for predicting the loads on the wing. The analysis tools included TRANAIR (full potential) and CMARC (panel) models. Aerodynamic pressure data from the analysis codes were validated against static pressure port data collected in-flight. Combined results from the CFD predictions and the inertial load analysis were used to predict the normal force, bending moment, and torque loads on the wing. Wing loads obtained from calibrated strain gages installed on the wing were used for substantiation of the load prediction tools. The load predictions exhibited good agreement compared to the flight load results obtained from calibrated strain gage measurements.

  4. Adaptive Algebraic Multigrid Methods

    SciTech Connect

    Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J

    2004-04-09

    Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.

  5. Accelerated adaptive integration method.

    PubMed

    Kaus, Joseph W; Arrar, Mehrnoosh; McCammon, J Andrew

    2014-05-15

    Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083

  6. Accelerated Adaptive Integration Method

    PubMed Central

    2015-01-01

    Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083

  7. Adaptive optics projects at ESO

    NASA Astrophysics Data System (ADS)

    Hubin, Norbert N.; Arsenault, Robin; Bonnet, Henri; Conan, Rodolphe; Delabre, Bernard; Donaldson, Robert; Dupuy, Christophe; Fedrigo, Enrico; Ivanescu, L.; Kasper, Markus E.; Kissler-Patig, Markus; Lizon, Jean-Luis; Le Louarn, Miska; Marchetti, Enrico; Paufique, J.; Stroebele, Stefan; Tordo, Sebastien

    2003-02-01

    Over the past two years ESO has reinforced its efforts in the field of Adaptive Optics. The AO team has currently the challenging objectives to provide 8 Adaptive Optics systems for the VLT in the coming years and has now a world-leading role in that field. This paper will review all AO projects and plans. We will present an overview of the Nasmyth Adaptive Optics System (NAOS) with its infrared imager CONICA installed successfully at the VLT last year. Sodium Laser Guide Star plans will be introduced. The status of the 4 curvature AO systems (MACAO) developed for the VLT interferometer will be discussed. The status of the SINFONI AO module developed to feed the infrared integral field spectrograph (SPIFFI) will be presented. A short description of the Multi-conjugate Adaptive optics Demonstrator MAD and its instrumentation will be introduced. Finally, we will present the plans for the VLT second-generation AO systems and the researches performed in the frame of OWL.

  8. A Cell-Centered Adaptive Projection Method for the IncompressibleNavier-Stokes Equations in Three Dimensions

    SciTech Connect

    Martin, D.F.; Colella, P.; Graves, D.T.

    2007-09-25

    We present a method for computing incompressible viscousflows in three dimensions using block-structured local refinement in bothspace and time. This method uses a projection formulation based on acell-centered approximate projection, combined with the systematic use ofmultilevel elliptic solvers to compute increments in the solutiongenerated at boundaries between refinement levels due to refinement intime. We use an L_0-stable second-order semi-implicit scheme to evaluatethe viscous terms. Results are presentedto demonstrate the accuracy andeffectiveness of this approach.

  9. Adaptive optical interconnects: the ADDAPT project

    NASA Astrophysics Data System (ADS)

    Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter

    2015-09-01

    Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.

  10. HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.

    PubMed

    Cornilescu, Gabriel; Bahrami, Arash; Tonelli, Marco; Markley, John L; Eghbalnia, Hamid R

    2007-08-01

    We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, "High-resolution Iterative Frequency Identification of Couplings" (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C' RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C' vector represents a realistic

  11. Logarithmic Adaptive Quantization Projection for Audio Watermarking

    NASA Astrophysics Data System (ADS)

    Zhao, Xuemin; Guo, Yuhong; Liu, Jian; Yan, Yonghong; Fu, Qiang

    In this paper, a logarithmic adaptive quantization projection (LAQP) algorithm for digital watermarking is proposed. Conventional quantization index modulation uses a fixed quantization step in the watermarking embedding procedure, which leads to poor fidelity. Moreover, the conventional methods are sensitive to value-metric scaling attack. The LAQP method combines the quantization projection scheme with a perceptual model. In comparison to some conventional quantization methods with a perceptual model, the LAQP only needs to calculate the perceptual model in the embedding procedure, avoiding the decoding errors introduced by the difference of the perceptual model used in the embedding and decoding procedure. Experimental results show that the proposed watermarking scheme keeps a better fidelity and is robust against the common signal processing attack. More importantly, the proposed scheme is invariant to value-metric scaling attack.

  12. Focus on climate projections for adaptation strategies

    NASA Astrophysics Data System (ADS)

    Feijt, Arnout; Appenzeller, Christof; Siegmund, Peter; von Storch, Hans

    2016-01-01

    Most papers in this focus issue on ‘climate and climate impact projections for adaptation strategies’ are solicited by the guest editorial team and originate from a cluster of projects that were initiated 5 years ago. These projects aimed to provide climate change and climate change adaptation information for a wide range of societal areas for the lower parts of the deltas of the Rhine and Meuse rivers, and particularly for the Netherlands. The papers give an overview of our experiences, methods, approaches, results and surprises in the process to developing scientifically underpinned climate products and services for various clients. Although the literature on interactions between society and climate science has grown over the past decade both with respect to policy-science framing in post-normal science (Storch et al 2011 J. Environ. Law Policy 1 1-15, van der Sluijs 2012 Nature and Culture 7 174-195), user-science framing (Berkhout et al 2014 Regional Environ. Change 14 879-93) and joint knowledge production (Hegger et al 2014 Regional Environ. Change 14 1049-62), there is still a lot to gain. With this focus issue we want to contribute to best practices in this quickly moving field between science and society.

  13. Method For Model-Reference Adaptive Control

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1990-01-01

    Relatively simple method of model-reference adaptive control (MRAC) developed from two prior classes of MRAC techniques: signal-synthesis method and parameter-adaption method. Incorporated into unified theory, which yields more general adaptation scheme.

  14. The Computerized Adaptive Testing System Development Project.

    ERIC Educational Resources Information Center

    McBride, James R.; Sympson, J. B.

    The Computerized Adaptive Testing (CAT) project is a joint Armed Services coordinated effort to develop and evaluate a system for automated, adaptive administration of the Armed Services Vocational Aptitude Battery (ASVAB). The CAT is a system for administering personnel tests that differs from conventional test administration in two major…

  15. Scaled norm-based Euclidean projection for sparse speaker adaptation

    NASA Astrophysics Data System (ADS)

    Kim, Younggwan; Kim, Myung Jong; Kim, Hoirin

    2015-12-01

    To reduce data storage for speaker adaptive (SA) models, in our previous work, we proposed a sparse speaker adaptation method which can efficiently reduce the number of adapted parameters by using Euclidean projection onto the L 1-ball (EPL1) while maintaining recognition performance comparable to maximum a posteriori (MAP) adaptation. In the EPL1-based sparse speaker adaptation framework, however, the adapted Gaussian mean vectors are mostly concentrated on dimensions having large variances because of assuming unit variance for all dimensions. To make EPL1 more flexible, in this paper, we propose scaled norm-based Euclidean projection (SNEP) which can consider dimension-specific variances. By using SNEP, we also propose a new sparse speaker adaptation method which can consider the variances of a speaker-independent model. Our experiments show that the adapted components of mean vectors are evenly distributed in all dimensions, and we can obtain sparsely adapted models with no loss of phone recognition performance from the proposed method compared with MAP adaptation.

  16. An adaptive level set method

    SciTech Connect

    Milne, R.B.

    1995-12-01

    This thesis describes a new method for the numerical solution of partial differential equations of the parabolic type on an adaptively refined mesh in two or more spatial dimensions. The method is motivated and developed in the context of the level set formulation for the curvature dependent propagation of surfaces in three dimensions. In that setting, it realizes the multiple advantages of decreased computational effort, localized accuracy enhancement, and compatibility with problems containing a range of length scales.

  17. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  18. Project Delivery Methods.

    ERIC Educational Resources Information Center

    Dolan, Thomas G.

    2003-01-01

    Describes project delivery methods that are replacing the traditional Design/Bid/Build linear approach to the management, design, and construction of new facilities. These variations can enhance construction management and teamwork. (SLD)

  19. Mathematics Case Methods Project.

    ERIC Educational Resources Information Center

    Barnett, Carne S.

    1998-01-01

    Presents an overview and analysis of the Mathematics Case Methods Project, which uses cases in order to examine and reflect upon teaching. Focuses on a special kind of teacher knowledge, coined pedagogical-content knowledge. (ASK)

  20. Assessing Adaptive Instructional Design Tools and Methods in ADAPT[IT].

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Spector, J. Michael

    ADAPT[IT] (Advanced Design Approach for Personalized Training - Interactive Tools) is a European project within the Information Society Technologies program that is providing design methods and tools to guide a training designer according to the latest cognitive science and standardization principles. ADAPT[IT] addresses users in two significantly…

  1. An adaptive selective frequency damping method

    NASA Astrophysics Data System (ADS)

    Jordi, Bastien; Cotter, Colin; Sherwin, Spencer

    2015-03-01

    The selective frequency damping (SFD) method is used to obtain unstable steady-state solutions of dynamical systems. The stability of this method is governed by two parameters that are the control coefficient and the filter width. Convergence is not guaranteed for arbitrary choice of these parameters. Even when the method does converge, the time necessary to reach a steady-state solution may be very long. We present an adaptive SFD method. We show that by modifying the control coefficient and the filter width all along the solver execution, we can reach an optimum convergence rate. This method is based on successive approximations of the dominant eigenvalue of the flow studied. We design a one-dimensional model to select SFD parameters that enable us to control the evolution of the least stable eigenvalue of the system. These parameters are then used for the application of the SFD method to the multi-dimensional flow problem. We apply this adaptive method to a set of classical test cases of computational fluid dynamics and show that the steady-state solutions obtained are similar to what can be found in the literature. Then we apply it to a specific vortex dominated flow (of interest for the automotive industry) whose stability had never been studied before. Seventh Framework Programme of the European Commission - ANADE project under Grant Contract PITN-GA-289428.

  2. Simple method for model reference adaptive control

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1989-01-01

    A simple method is presented for combined signal synthesis and parameter adaptation within the framework of model reference adaptive control theory. The results are obtained using a simple derivation based on an improved Liapunov function.

  3. A new orientation-adaptive interpolation method.

    PubMed

    Wang, Qing; Ward, Rabab Kreidieh

    2007-04-01

    We propose an isophote-oriented, orientation-adaptive interpolation method. The proposed method employs an interpolation kernel that adapts to the local orientation of isophotes, and the pixel values are obtained through an oriented, bilinear interpolation. We show that, by doing so, the curvature of the interpolated isophotes is reduced, and, thus, zigzagging artifacts are largely suppressed. Analysis and experiments show that images interpolated using the proposed method are visually pleasing and almost artifact free. PMID:17405424

  4. The Method of Adaptive Comparative Judgement

    ERIC Educational Resources Information Center

    Pollitt, Alastair

    2012-01-01

    Adaptive Comparative Judgement (ACJ) is a modification of Thurstone's method of comparative judgement that exploits the power of adaptivity, but in scoring rather than testing. Professional judgement by teachers replaces the marking of tests; a judge is asked to compare the work of two students and simply to decide which of them is the better.…

  5. Variational method for adaptive grid generation

    SciTech Connect

    Brackbill, J.U.

    1983-01-01

    A variational method for generating adaptive meshes is described. Functionals measuring smoothness, skewness, orientation, and the Jacobian are minimized to generate a mapping from a rectilinear domain in natural coordinate to an arbitrary domain in physical coordinates. From the mapping, a mesh is easily constructed. In using the method to adaptively zone computational problems, as few as one third the number of mesh points are required in each coordinate direction compared with a uniformly zoned mesh.

  6. Building Knowledge in the Workplace and Beyond. Curriculum Adaptation Project.

    ERIC Educational Resources Information Center

    Ballinger, Ronda

    A project was conducted to adapt and modify the four-part workplace literacy curriculum previously created by the College of Lake County (Illinois) and six industries in the county in order to improve the usefulness and application of the information in the original curriculum. Information for the adaptation project was generated by instructors…

  7. Combining Adaptive Hypermedia with Project and Case-Based Learning

    ERIC Educational Resources Information Center

    Papanikolaou, Kyparisia; Grigoriadou, Maria

    2009-01-01

    In this article we investigate the design of educational hypermedia based on constructivist learning theories. According to the principles of project and case-based learning we present the design rational of an Adaptive Educational Hypermedia system prototype named MyProject; learners working with MyProject undertake a project and the system…

  8. Modular Sequence: English as a Second Language, Methods and Techniques. TTP 001.13 Evaluating and Adapting Materials. Teacher Corps Bilingual Project.

    ERIC Educational Resources Information Center

    Hernandez, Alberto; Melnick, Susan L.

    The purpose of this unit of work is to provide the teacher participant with some useful guidelines for evaluating and adapting written materials for specific English as a second language (ESL) classes. There is pre- and post-assessment of specific learning tasks relevant to evaluating and adapting materials as well as learning activities, which…

  9. Selecting downscaled climate projections for water resource impacts and adaptation

    NASA Astrophysics Data System (ADS)

    Vidal, Jean-Philippe; Hingray, Benoît

    2015-04-01

    Increasingly large ensembles of global and regional climate projections are being produced and delivered to the climate impact community. However, such an enormous amount of information can hardly been dealt with by some impact models due to computational constraints. Strategies for transparently selecting climate projections are therefore urgently needed for informing small-scale impact and adaptation studies and preventing potential pitfalls in interpreting ensemble results from impact models. This work proposes results from a selection approach implemented for an integrated water resource impact and adaptation study in the Durance river basin (Southern French Alps). A large ensemble of 3000 daily transient gridded climate projections was made available for this study. It was built from different runs of 4 ENSEMBLES Stream2 GCMs, statistically downscaled by 3 probabilistic methods based on the K-nearest neighbours resampling approach (Lafaysse et al., 2014). The selection approach considered here exemplifies one of the multiple possible approaches described in a framework for identifying tailored subsets of climate projections for impact and adaptation studies proposed by Vidal & Hingray (2014). It was chosen based on the specificities of both the study objectives and the characteristics of the projection dataset. This selection approach aims at propagating as far as possible the relative contributions of the four different sources of uncertainties considered, namely GCM structure, large-scale natural variability, structure of the downscaling method, and catchment-scale natural variability. Moreover, it took the form of a hierarchical structure to deal with the specific constraints of several types of impact models (hydrological models, irrigation demand models and reservoir management models). The implemented 3-layer selection approach is therefore mainly based on conditioned Latin Hypercube sampling (Christierson et al., 2012). The choice of conditioning

  10. Configuration management plan for the Objective Supply Capability Adaptive Resdesign (OSCAR) project

    SciTech Connect

    Rasch, K.A.; Reid, R.W.

    1997-02-01

    The Configuration Management Plan for the Object Supply Capability Adaptive Redesign (OSCAR) documents the methods used for the OSCAR project to implement configuration management and control. Specific areas addressed include the establishment of baselines and change control procedures.

  11. Adaptive Finite Element Methods in Geodynamics

    NASA Astrophysics Data System (ADS)

    Davies, R.; Davies, H.; Hassan, O.; Morgan, K.; Nithiarasu, P.

    2006-12-01

    Adaptive finite element methods are presented for improving the quality of solutions to two-dimensional (2D) and three-dimensional (3D) convection dominated problems in geodynamics. The methods demonstrate the application of existing technology in the engineering community to problems within the `solid' Earth sciences. Two-Dimensional `Adaptive Remeshing': The `remeshing' strategy introduced in 2D adapts the mesh automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. The approach requires the coupling of an automatic mesh generator, a finite element flow solver and an error estimator. In this study, the procedure is implemented in conjunction with the well-known geodynamical finite element code `ConMan'. An unstructured quadrilateral mesh generator is utilised, with mesh adaptation accomplished through regeneration. This regeneration employs information provided by an interpolation based local error estimator, obtained from the computed solution on an existing mesh. The technique is validated by solving thermal and thermo-chemical problems with known benchmark solutions. In a purely thermal context, results illustrate that the method is highly successful, improving solution accuracy whilst increasing computational efficiency. For thermo-chemical simulations the same conclusions can be drawn. However, results also demonstrate that the grid based methods employed for simulating the compositional field are not competitive with the other methods (tracer particle and marker chain) currently employed in this field, even at the higher spatial resolutions allowed by the adaptive grid strategies. Three-Dimensional Adaptive Multigrid: We extend the ideas from our 2D work into the 3D realm in the context of a pre-existing 3D-spherical mantle dynamics code, `TERRA'. In its original format, `TERRA' is computationally highly efficient since it employs a multigrid solver that depends upon a grid utilizing a clever

  12. A New Adaptive Image Denoising Method

    NASA Astrophysics Data System (ADS)

    Biswas, Mantosh; Om, Hari

    2016-03-01

    In this paper, a new adaptive image denoising method is proposed that follows the soft-thresholding technique. In our method, a new threshold function is also proposed, which is determined by taking the various combinations of noise level, noise-free signal variance, subband size, and decomposition level. It is simple and adaptive as it depends on the data-driven parameters estimation in each subband. The state-of-the-art denoising methods viz. VisuShrink, SureShrink, BayesShrink, WIDNTF and IDTVWT are not able to modify the coefficients in an efficient manner to provide the good quality of image. Our method removes the noise from the noisy image significantly and provides better visual quality of an image.

  13. Domain adaptive boosting method and its applications

    NASA Astrophysics Data System (ADS)

    Geng, Jie; Miao, Zhenjiang

    2015-03-01

    Differences of data distributions widely exist among datasets, i.e., domains. For many pattern recognition, nature language processing, and content-based analysis systems, a decrease in performance caused by the domain differences between the training and testing datasets is still a notable problem. We propose a domain adaptation method called domain adaptive boosting (DAB). It is based on the AdaBoost approach with extensions to cover the domain differences between the source and target domains. Two main stages are contained in this approach: source-domain clustering and source-domain sample selection. By iteratively adding the selected training samples from the source domain, the discrimination model is able to achieve better domain adaptation performance based on a small validation set. The DAB algorithm is suitable for the domains with large scale samples and easy to extend for multisource adaptation. We implement this method on three computer vision systems: the skin detection model in single images, the video concept detection model, and the object classification model. In the experiments, we compare the performances of several commonly used methods and the proposed DAB. Under most situations, the DAB is superior.

  14. Structured adaptive grid generation using algebraic methods

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.

    1993-01-01

    The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration

  15. Adaptively Addressing Uncertainty in Estuarine and Near Coastal Restoration Projects

    SciTech Connect

    Thom, Ronald M.; Williams, Greg D.; Borde, Amy B.; Southard, John A.; Sargeant, Susan L.; Woodruff, Dana L.; Laufle, Jeffrey C.; Glasoe, Stuart

    2005-03-01

    Restoration projects have an uncertain outcome because of a lack of information about current site conditions, historical disturbance levels, effects of landscape alterations on site development, unpredictable trajectories or patterns of ecosystem structural development, and many other factors. A poor understanding of the factors that control the development and dynamics of a system, such as hydrology, salinity, wave energies, can also lead to an unintended outcome. Finally, lack of experience in restoring certain types of systems (e.g., rare or very fragile habitats) or systems in highly modified situations (e.g., highly urbanized estuaries) makes project outcomes uncertain. Because of these uncertainties, project costs can rise dramatically in an attempt to come closer to project goals. All of the potential sources of error can be addressed to a certain degree through adaptive management. The first step is admitting that these uncertainties can exist, and addressing as many of the uncertainties with planning and directed research prior to implementing the project. The second step is to evaluate uncertainties through hypothesis-driven experiments during project implementation. The third step is to use the monitoring program to evaluate and adjust the project as needed to improve the probability of the project to reach is goal. The fourth and final step is to use the information gained in the project to improve future projects. A framework that includes a clear goal statement, a conceptual model, and an evaluation framework can help in this adaptive restoration process. Projects and programs vary in their application of adaptive management in restoration, and it is very difficult to be highly prescriptive in applying adaptive management to projects that necessarily vary widely in scope, goal, ecosystem characteristics, and uncertainties. Very large ecosystem restoration programs in the Mississippi River delta (Coastal Wetlands Planning, Protection, and Restoration

  16. Optimal and adaptive methods of processing hydroacoustic signals (review)

    NASA Astrophysics Data System (ADS)

    Malyshkin, G. S.; Sidel'nikov, G. B.

    2014-09-01

    Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.

  17. Project management plan for the Objective Supply Capability Adaptive Redesign (OSCAR) project

    SciTech Connect

    Rasch, K.A.; Reid, R.W.

    1997-02-01

    This document establishes the project management plan for design and development of the Object Supply Capability Adaptive Redesign (OSCAR) Project. The purpose of the project management plan is to document the plans, goals, directions, commitments, approaches, and decisions that relate to guiding a project throughout its life cycle. Special attention is given to project goals, deliverables, sponsor and project standards, project resources, schedule, and cost estimates.

  18. Projecting the Scientific Method.

    ERIC Educational Resources Information Center

    Uthe, R. E.

    2000-01-01

    Describes how the gas laws are an excellent vehicle for introducing the steps of the scientific method. Students can use balloons and a simple apparatus to observe changes in various gas parameters, develop ideas about the changes they see, collect numerical data, test their ideas, derive simple equations for the relationships, and use the…

  19. Climate services within a regional climate adaptation project

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Heidenreich, Majana; Franke, Johannes; Riedel, Kathrin; Matschullat, Jörg; Bernhofer, Christian

    2013-04-01

    In recent years the demand for adapting to climate variability and change became more and more obvious. Thus a multitude of projects dealing with climate adaptation strategies and concrete measures was launched. Commonly, developing adaptation options is based on downscaled climate model outputs. These outputs have to be provided within the projects, but just providing the data is far from being sufficient. Obstacles connected with using climate projections for climate adaptation include uncertainties and bandwidths of climate projections and the inability of models to describe parameters such as extreme weather events, which are particularly relevant for many climate adaptation decisions. Climate scientists know that model outputs are no climate data and cannot be treated as observational data were treated in the past. Still, many practitioners demand precise values for future climate to replace past CLINO-values and to run their applications. Thus, climate adaptation involves adapting the instruments and processes used in deriving climate-related decisions. Communicating the challenges arising from this need in rethinking common procedures is of outstanding significance for any successful adaptation practice. Dealing with uncertainties of climate projections is a constant necessity, since they are always based on several simplifications, parameterisations and assumptions, e.g., on the future socioeconomic development or on climate sensitivity. Future climate should thus be communicated in bandwidths. Working with just one scenario, one climate model, or even working with ensemble means is risky as it evokes a higher than appropriate perceived confidence in the results. It encourages using familiar tools in processing climate information, rather than caution. Consequences are suboptimal adaption and misallocation of finances. We encourage working with bandwidths and testing climate adaptation options against a broad range of possible future climates. Climate

  20. Parallel adaptive wavelet collocation method for PDEs

    SciTech Connect

    Nejadmalayeri, Alireza; Vezolainen, Alexei; Brown-Dymkoski, Eric; Vasilyev, Oleg V.

    2015-10-01

    A parallel adaptive wavelet collocation method for solving a large class of Partial Differential Equations is presented. The parallelization is achieved by developing an asynchronous parallel wavelet transform, which allows one to perform parallel wavelet transform and derivative calculations with only one data synchronization at the highest level of resolution. The data are stored using tree-like structure with tree roots starting at a priori defined level of resolution. Both static and dynamic domain partitioning approaches are developed. For the dynamic domain partitioning, trees are considered to be the minimum quanta of data to be migrated between the processes. This allows fully automated and efficient handling of non-simply connected partitioning of a computational domain. Dynamic load balancing is achieved via domain repartitioning during the grid adaptation step and reassigning trees to the appropriate processes to ensure approximately the same number of grid points on each process. The parallel efficiency of the approach is discussed based on parallel adaptive wavelet-based Coherent Vortex Simulations of homogeneous turbulence with linear forcing at effective non-adaptive resolutions up to 2048{sup 3} using as many as 2048 CPU cores.

  1. Adapting Project Management Practices to Research-Based Projects

    NASA Technical Reports Server (NTRS)

    Bahr, P.; Baker, T.; Corbin, B.; Keith, L.; Loerch, L.; Mullenax, C.; Myers, R.; Rhodes, B.; Skytland, N.

    2007-01-01

    From dealing with the inherent uncertainties in outcomes of scientific research to the lack of applicability of current NASA Procedural Requirements guidance documentation, research-based projects present challenges that require unique application of classical project management techniques. If additionally challenged by the creation of a new program transitioning from basic to applied research in a technical environment often unfamiliar with the cost and schedule constraints addressed by project management practices, such projects can find themselves struggling throughout their life cycles. Finally, supplying deliverables to a prime vehicle customer, also in the formative stage, adds further complexity to the development and management of research-based projects. The Biomedical Research and Countermeasures Projects Branch at NASA Johnson Space Center encompasses several diverse applied research-based or research-enabling projects within the newly-formed Human Research Program. This presentation will provide a brief overview of the organizational structure and environment in which these projects operate and how the projects coordinate to address and manage technical requirements. We will identify several of the challenges (cost, technical, schedule, and personnel) encountered by projects across the Branch, present case reports of actions taken and techniques implemented to deal with these challenges, and then close the session with an open forum discussion of remaining challenges and potential mitigations.

  2. Adaptive computational methods for SSME internal flow analysis

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1986-01-01

    Adaptive finite element methods for the analysis of classes of problems in compressible and incompressible flow of interest in SSME (space shuttle main engine) analysis and design are described. The general objective of the adaptive methods is to improve and to quantify the quality of numerical solutions to the governing partial differential equations of fluid dynamics in two-dimensional cases. There are several different families of adaptive schemes that can be used to improve the quality of solutions in complex flow simulations. Among these are: (1) r-methods (node-redistribution or moving mesh methods) in which a fixed number of nodal points is allowed to migrate to points in the mesh where high error is detected; (2) h-methods, in which the mesh size h is automatically refined to reduce local error; and (3) p-methods, in which the local degree p of the finite element approximation is increased to reduce local error. Two of the three basic techniques have been studied in this project: an r-method for steady Euler equations in two dimensions and a p-method for transient, laminar, viscous incompressible flow. Numerical results are presented. A brief introduction to residual methods of a-posterior error estimation is also given and some pertinent conclusions of the study are listed.

  3. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  4. Finite element error estimation and adaptivity based on projected stresses

    SciTech Connect

    Jung, J.

    1990-08-01

    This report investigates the behavior of a family of finite element error estimators based on projected stresses, i.e., continuous stresses that are a least squared error fit to the conventional Gauss point stresses. An error estimate based on element force equilibrium appears to be quite effective. Examples of adaptive mesh refinement for a one-dimensional problem are presented. Plans for two-dimensional adaptivity are discussed. 12 refs., 82 figs.

  5. An Adaptive VOF Method on Unstructured Grid

    NASA Astrophysics Data System (ADS)

    Wu, L. L.; Huang, M.; Chen, B.

    2011-09-01

    In order to improve the accuracy of interface capturing and keeping the computational efficiency, an adaptive VOF method on unstructured grid is proposed in this paper. The volume fraction in each cell is regarded as the criterion to locally refine the interface cell. With the movement of interface, new interface cells (0 ≤ f ≤ 1) are subdivided into child cells, while those child cells that no longer contain interface will be merged back into the original parent cell. In order to avoid the complicated redistribution of volume fraction during the subdivision and amalgamation procedure, a predictor-corrector algorithm is proposed to implement the subdivision and amalgamation procedures only in empty or full cell ( f = 0 or 1). Thus volume fraction in the new cell can take the value from the original cell directly, and the interpolation of the interface is avoided. The advantage of this method is that the re-generation of the whole grid system is not necessary, so its implementation is very efficient. Moreover, an advection flow test of a hollow square was performed, and the relative shape error of the result obtained by adaptive mesh is smaller than those by non-refined grid, which verifies the validation of our method.

  6. Ensemble transform sensitivity method for adaptive observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xie, Yuanfu; Wang, Hongli; Chen, Dehui; Toth, Zoltan

    2016-01-01

    The Ensemble Transform (ET) method has been shown to be useful in providing guidance for adaptive observation deployment. It predicts forecast error variance reduction for each possible deployment using its corresponding transformation matrix in an ensemble subspace. In this paper, a new ET-based sensitivity (ETS) method, which calculates the gradient of forecast error variance reduction in terms of analysis error variance reduction, is proposed to specify regions for possible adaptive observations. ETS is a first order approximation of the ET; it requires just one calculation of a transformation matrix, increasing computational efficiency (60%-80% reduction in computational cost). An explicit mathematical formulation of the ETS gradient is derived and described. Both the ET and ETS methods are applied to the Hurricane Irene (2011) case and a heavy rainfall case for comparison. The numerical results imply that the sensitive areas estimated by the ETS and ET are similar. However, ETS is much more efficient, particularly when the resolution is higher and the number of ensemble members is larger.

  7. Adaptive characterization method for desktop color printers

    NASA Astrophysics Data System (ADS)

    Shen, Hui-Liang; Zheng, Zhi-Huan; Jin, Chong-Chao; Du, Xin; Shao, Si-Jie; Xin, John H.

    2013-04-01

    With the rapid development of multispectral imaging technique, it is desired that the spectral color can be accurately reproduced using desktop color printers. However, due to the specific spectral gamuts determined by printer inks, it is almost impossible to exactly replicate the reflectance spectra in other media. In addition, as ink densities can not be individually controlled, desktop printers can only be regarded as red-green-blue devices, making physical models unfeasible. We propose a locally adaptive method, which consists of both forward and inverse models, for desktop printer characterization. In the forward model, we establish the adaptive transform between control values and reflectance spectrum on individual cellular subsets by using weighted polynomial regression. In the inverse model, we first determine the candidate space of the control values based on global inverse regression and then compute the optimal control values by minimizing the color difference between the actual spectrum and the predicted spectrum via forward transform. Experimental results show that the proposed method can reproduce colors accurately for different media under multiple illuminants.

  8. Projection Operator: A Step Towards Certification of Adaptive Controllers

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    One of the major barriers to wider use of adaptive controllers in commercial aviation is the lack of appropriate certification procedures. In order to be certified by the Federal Aviation Administration (FAA), an aircraft controller is expected to meet a set of guidelines on functionality and reliability while not negatively impacting other systems or safety of aircraft operations. Due to their inherent time-variant and non-linear behavior, adaptive controllers cannot be certified via the metrics used for linear conventional controllers, such as gain and phase margin. Projection Operator is a robustness augmentation technique that bounds the output of a non-linear adaptive controller while conforming to the Lyapunov stability rules. It can also be used to limit the control authority of the adaptive component so that the said control authority can be arbitrarily close to that of a linear controller. In this paper we will present the results of applying the Projection Operator to a Model-Reference Adaptive Controller (MRAC), varying the amount of control authority, and comparing controller s performance and stability characteristics with those of a linear controller. We will also show how adjusting Projection Operator parameters can make it easier for the controller to satisfy the certification guidelines by enabling a tradeoff between controller s performance and robustness.

  9. Adaptive method with intercessory feedback control for an intelligent agent

    DOEpatents

    Goldsmith, Steven Y.

    2004-06-22

    An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.

  10. Adaptive Accommodation Control Method for Complex Assembly

    NASA Astrophysics Data System (ADS)

    Kang, Sungchul; Kim, Munsang; Park, Shinsuk

    Robotic systems have been used to automate assembly tasks in manufacturing and in teleoperation. Conventional robotic systems, however, have been ineffective in controlling contact force in multiple contact states of complex assemblythat involves interactions between complex-shaped parts. Unlike robots, humans excel at complex assembly tasks by utilizing their intrinsic impedance, forces and torque sensation, and tactile contact clues. By examining the human behavior in assembling complex parts, this study proposes a novel geometry-independent control method for robotic assembly using adaptive accommodation (or damping) algorithm. Two important conditions for complex assembly, target approachability and bounded contact force, can be met by the proposed control scheme. It generates target approachable motion that leads the object to move closer to a desired target position, while contact force is kept under a predetermined value. Experimental results from complex assembly tests have confirmed the feasibility and applicability of the proposed method.

  11. Adaptive Knowledge Management of Project-Based Learning

    ERIC Educational Resources Information Center

    Tilchin, Oleg; Kittany, Mohamed

    2016-01-01

    The goal of an approach to Adaptive Knowledge Management (AKM) of project-based learning (PBL) is to intensify subject study through guiding, inducing, and facilitating development knowledge, accountability skills, and collaborative skills of students. Knowledge development is attained by knowledge acquisition, knowledge sharing, and knowledge…

  12. Adapting implicit methods to parallel processors

    SciTech Connect

    Reeves, L.; McMillin, B.; Okunbor, D.; Riggins, D.

    1994-12-31

    When numerically solving many types of partial differential equations, it is advantageous to use implicit methods because of their better stability and more flexible parameter choice, (e.g. larger time steps). However, since implicit methods usually require simultaneous knowledge of the entire computational domain, these methods axe difficult to implement directly on distributed memory parallel processors. This leads to infrequent use of implicit methods on parallel/distributed systems. The usual implementation of implicit methods is inefficient due to the nature of parallel systems where it is common to take the computational domain and distribute the grid points over the processors so as to maintain a relatively even workload per processor. This creates a problem at the locations in the domain where adjacent points are not on the same processor. In order for the values at these points to be calculated, messages have to be exchanged between the corresponding processors. Without special adaptation, this will result in idle processors during part of the computation, and as the number of idle processors increases, the lower the effective speed improvement by using a parallel processor.

  13. Breakthrough Propulsion Physics Project: Project Management Methods

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    2004-01-01

    To leap past the limitations of existing propulsion, the NASA Breakthrough Propulsion Physics (BPP) Project seeks further advancements in physics from which new propulsion methods can eventually be derived. Three visionary breakthroughs are sought: (1) propulsion that requires no propellant, (2) propulsion that circumvents existing speed limits, and (3) breakthrough methods of energy production to power such devices. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify credible research that will make measurable progress toward these goals in the near-term. The management techniques to address this challenge are presented, with a special emphasis on the process used to review, prioritize, and select research tasks. This selection process includes these key features: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than the implications of the assertions, which includes the practice where the reviewers judge credibility rather than feasibility, and (c) total scores are obtained by multiplying the criteria scores rather than by adding. Lessons learned and revisions planned are discussed.

  14. Linearly-Constrained Adaptive Signal Processing Methods

    NASA Astrophysics Data System (ADS)

    Griffiths, Lloyd J.

    1988-01-01

    In adaptive least-squares estimation problems, a desired signal d(n) is estimated using a linear combination of L observation values samples xi (n), x2(n), . . . , xL-1(n) and denoted by the vector X(n). The estimate is formed as the inner product of this vector with a corresponding L-dimensional weight vector W. One particular weight vector of interest is Wopt which minimizes the mean-square between d(n) and the estimate. In this context, the term `mean-square difference' is a quadratic measure such as statistical expectation or time average. The specific value of W which achieves the minimum is given by the prod-uct of the inverse data covariance matrix and the cross-correlation between the data vector and the desired signal. The latter is often referred to as the P-vector. For those cases in which time samples of both the desired and data vector signals are available, a variety of adaptive methods have been proposed which will guarantee that an iterative weight vector Wa(n) converges (in some sense) to the op-timal solution. Two which have been extensively studied are the recursive least-squares (RLS) method and the LMS gradient approximation approach. There are several problems of interest in the communication and radar environment in which the optimal least-squares weight set is of interest and in which time samples of the desired signal are not available. Examples can be found in array processing in which only the direction of arrival of the desired signal is known and in single channel filtering where the spectrum of the desired response is known a priori. One approach to these problems which has been suggested is the P-vector algorithm which is an LMS-like approximate gradient method. Although it is easy to derive the mean and variance of the weights which result with this algorithm, there has never been an identification of the corresponding underlying error surface which the procedure searches. The purpose of this paper is to suggest an alternative

  15. Parallel, adaptive finite element methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.

    1994-01-01

    We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.

  16. An adaptive SPH method for strong shocks

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; López, Hender; Trujillo, Leonardo

    2009-09-01

    We propose an alternative SPH scheme to usual SPH Godunov-type methods for simulating supersonic compressible flows with sharp discontinuities. The method relies on an adaptive density kernel estimation (ADKE) algorithm, which allows the width of the kernel interpolant to vary locally in space and time so that the minimum necessary smoothing is applied in regions of low density. We have performed a von Neumann stability analysis of the SPH equations for an ideal gas and derived the corresponding dispersion relation in terms of the local width of the kernel. Solution of the dispersion relation in the short wavelength limit shows that stability is achieved for a wide range of the ADKE parameters. Application of the method to high Mach number shocks confirms the predictions of the linear analysis. Examples of the resolving power of the method are given for a set of difficult problems, involving the collision of two strong shocks, the strong shock-tube test, and the interaction of two blast waves.

  17. Adaptive wavelet methods - Matrix-vector multiplication

    NASA Astrophysics Data System (ADS)

    Černá, Dana; Finěk, Václav

    2012-12-01

    The design of most adaptive wavelet methods for elliptic partial differential equations follows a general concept proposed by A. Cohen, W. Dahmen and R. DeVore in [3, 4]. The essential steps are: transformation of the variational formulation into the well-conditioned infinite-dimensional l2 problem, finding of the convergent iteration process for the l2 problem and finally derivation of its finite dimensional version which works with an inexact right hand side and approximate matrix-vector multiplications. In our contribution, we shortly review all these parts and wemainly pay attention to approximate matrix-vector multiplications. Effective approximation of matrix-vector multiplications is enabled by an off-diagonal decay of entries of the wavelet stiffness matrix. We propose here a new approach which better utilize actual decay of matrix entries.

  18. Adaptive model training system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M; Lee, Vo

    2014-04-15

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  19. Adaptive model training system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M

    2014-11-18

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  20. Online Adaptive Replanning Method for Prostate Radiotherapy

    SciTech Connect

    Ahunbay, Ergun E.; Peng Cheng; Holmes, Shannon; Godley, Andrew; Lawton, Colleen; Li, X. Allen

    2010-08-01

    Purpose: To report the application of an adaptive replanning technique for prostate cancer radiotherapy (RT), consisting of two steps: (1) segment aperture morphing (SAM), and (2) segment weight optimization (SWO), to account for interfraction variations. Methods and Materials: The new 'SAM+SWO' scheme was retroactively applied to the daily CT images acquired for 10 prostate cancer patients on a linear accelerator and CT-on-Rails combination during the course of RT. Doses generated by the SAM+SWO scheme based on the daily CT images were compared with doses generated after patient repositioning using the current planning target volume (PTV) margin (5 mm, 3 mm toward rectum) and a reduced margin (2 mm), along with full reoptimization scans based on the daily CT images to evaluate dosimetry benefits. Results: For all cases studied, the online replanning method provided significantly better target coverage when compared with repositioning with reduced PTV (13% increase in minimum prostate dose) and improved organ sparing when compared with repositioning with regular PTV (13% decrease in the generalized equivalent uniform dose of rectum). The time required to complete the online replanning process was 6 {+-} 2 minutes. Conclusion: The proposed online replanning method can be used to account for interfraction variations for prostate RT with a practically acceptable time frame (5-10 min) and with significant dosimetric benefits. On the basis of this study, the developed online replanning scheme is being implemented in the clinic for prostate RT.

  1. CT Image Reconstruction from Sparse Projections Using Adaptive TpV Regularization

    PubMed Central

    Chen, Zijia; Zhou, Linghong

    2015-01-01

    Radiation dose reduction without losing CT image quality has been an increasing concern. Reducing the number of X-ray projections to reconstruct CT images, which is also called sparse-projection reconstruction, can potentially avoid excessive dose delivered to patients in CT examination. To overcome the disadvantages of total variation (TV) minimization method, in this work we introduce a novel adaptive TpV regularization into sparse-projection image reconstruction and use FISTA technique to accelerate iterative convergence. The numerical experiments demonstrate that the proposed method suppresses noise and artifacts more efficiently, and preserves structure information better than other existing reconstruction methods. PMID:26089962

  2. Adaptive quantum computation in changing environments using projective simulation

    PubMed Central

    Tiersch, M.; Ganahl, E. J.; Briegel, H. J.

    2015-01-01

    Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks. PMID:26260263

  3. Framework for Adaptable Operating and Runtime Systems: Final Project Report

    SciTech Connect

    Patrick G. Bridges

    2012-02-01

    In this grant, we examined a wide range of techniques for constructing high-performance con gurable system software for HPC systems and its application to DOE-relevant problems. Overall, research and development on this project focused in three specifc areas: (1) software frameworks for constructing and deploying con gurable system software, (2) applcation of these frameworks to HPC-oriented adaptable networking software, (3) performance analysis of HPC system software to understand opportunities for performance optimization.

  4. The VIADUC project: innovation in climate adaptation through service design

    NASA Astrophysics Data System (ADS)

    Corre, L.; Dandin, P.; L'Hôte, D.; Besson, F.

    2015-07-01

    From the French National Adaptation to Climate Change Plan, the "Drias, les futurs du climat" service has been developed to provide easy access to French regional climate projections. This is a major step for the implementation of French Climate Services. The usefulness of this service for the end-users and decision makers involved with adaptation planning at a local scale is investigated. As such, the VIADUC project is: to evaluate and enhance Drias, as well as to imagine future development in support of adaptation. Climate scientists work together with end-users and a service designer. The designer's role is to propose an innovative approach based on the interaction between scientists and citizens. The chosen end-users are three Natural Regional Parks located in the South West of France. The latter parks are administrative entities which gather municipalities having a common natural and cultural heritage. They are also rural areas in which specific economic activities take place, and therefore are concerned and involved in both protecting their environment and setting-up sustainable economic development. The first year of the project has been dedicated to investigation including the questioning of relevant representatives. Three key local economic sectors have been selected: i.e. forestry, pastoral farming and building activities. Working groups were composed of technicians, administrative and maintenance staff, policy makers and climate researchers. The sectors' needs for climate information have been assessed. The lessons learned led to actions which are presented hereinafter.

  5. An adaptive filtered back-projection for photoacoustic image reconstruction

    PubMed Central

    Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong

    2015-01-01

    Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing

  6. An adaptive filtered back-projection for photoacoustic image reconstruction

    SciTech Connect

    Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong

    2015-05-15

    Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing

  7. How Useful Are Climate Projections for Adaptation Decision Making?

    NASA Astrophysics Data System (ADS)

    Smith, J. B.; Vogel, J. M.

    2011-12-01

    Decision making is often portrayed as a linear process that assumes scientific knowledge is a necessary precursor to effective policy and is used directly in policy making. Yet, in practice, the use of scientific information in decision making is more complex than the linear model implies. The use of climate projections in adaptation decision making is a case in point. This paper briefly reviews efforts by some decision makers to understand climate change risks and to apply this knowledge when making decisions on management of climate sensitive resources and infrastructure . In general, and in spite of extensive efforts to study climate change at the regional and local scale to support decision making, few decisions outside of adapting to sea level rise appear to directly apply to climate change projections. A number of U.S. municipalities and states, including Seattle, New York City, Phoenix, and the States of California and Washington, have used climate change projections to assess their vulnerability to various climate change impacts. Some adaptation decisions have been made based on projections of sea level rise, such as change in location of infrastructure. This may be because a future rise is sea level is virtually certain. In contrast, decision making on precipitation has been more limited, even where there is consensus on likely changes in sign of the variable. Nonetheless, decision makers are adopting strategies that can be justified based on current climate and climate variability and that also reduce risks to climate change. A key question for the scientific community is whether improved projections will add value to decision making. For example, it remains unclear how higher-resolution projections can change decision making as long as the sign and magnitude of projections across climate models and downscaling techniques retains a wide range of uncertainty. It is also unclear whether even better information on the sign and magnitude of change would

  8. Robust projective lag synchronization in drive-response dynamical networks via adaptive control

    NASA Astrophysics Data System (ADS)

    Al-mahbashi, G.; Noorani, M. S. Md; Bakar, S. A.; Al-sawalha, M. M.

    2016-02-01

    This paper investigates the problem of projective lag synchronization behavior in drive-response dynamical networks (DRDNs) with identical and non-identical nodes. An adaptive control method is designed to achieve projective lag synchronization with fully unknown parameters and unknown bounded disturbances. These parameters were estimated by adaptive laws obtained by Lyapunov stability theory. Furthermore, sufficient conditions for synchronization are derived analytically using the Lyapunov stability theory and adaptive control. In addition, the unknown bounded disturbances are also overcome by the proposed control. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Simulation results show the effectiveness of the proposed method.

  9. The Colorado Climate Preparedness Project: A Systematic Approach to Assessing Efforts Supporting State-Level Adaptation

    NASA Astrophysics Data System (ADS)

    Klein, R.; Gordon, E.

    2010-12-01

    Scholars and policy analysts often contend that an effective climate adaptation strategy must entail "mainstreaming," or incorporating responses to possible climate impacts into existing planning and management decision frameworks. Such an approach, however, makes it difficult to assess the degree to which decisionmaking entities are engaging in adaptive activities that may or may not be explicitly framed around a changing climate. For example, a drought management plan may not explicitly address climate change, but the activities and strategies outlined in it may reduce vulnerabilities posed by a variable and changing climate. Consequently, to generate a strategic climate adaptation plan requires identifying the entire suite of activities that are implicitly linked to climate and may affect adaptive capacity within the system. Here we outline a novel, two-pronged approach, leveraging social science methods, to understanding adaptation throughout state government in Colorado. First, we conducted a series of interviews with key actors in state and federal government agencies, non-governmental organizations, universities, and other entities engaged in state issues. The purpose of these interviews was to elicit information about current activities that may affect the state’s adaptive capacity and to identify future climate-related needs across the state. Second, we have developed an interactive database cataloging organizations, products, projects, and people actively engaged in adaptive planning and policymaking that are relevant to the state of Colorado. The database includes a wiki interface, helping create a dynamic component that will enable frequent updating as climate-relevant information emerges. The results of this project are intended to paint a clear picture of sectors and agencies with higher and lower levels of adaptation awareness and to provide a roadmap for the next gubernatorial administration to pursue a more sophisticated climate adaptation agenda

  10. Adaptive numerical methods for partial differential equations

    SciTech Connect

    Cololla, P.

    1995-07-01

    This review describes a structured approach to adaptivity. The Automated Mesh Refinement (ARM) algorithms developed by M Berger are described, touching on hyperbolic and parabolic applications. Adaptivity is achieved by overlaying finer grids only in areas flagged by a generalized error criterion. The author discusses some of the issues involved in abutting disparate-resolution grids, and demonstrates that suitable algorithms exist for dissipative as well as hyperbolic systems.

  11. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  12. An Adaptive Multi-agent System for Project Schedule Management

    NASA Astrophysics Data System (ADS)

    Shou, Yongyi; Lai, Changtao

    A multi-agent system is established for project schedule management, considering the need for adaptive and dynamic scheduling under uncertainty. The system is realized using Java. In the proposed system, three types of agents, namely activity agents, resource agents, and a monitoring agent, are designed. Duration and resource requirement self-learning operators are developed for activity agents in order to model the self-learning and adaptive capacities of an agent in its local environment; moreover, a monitoring operator is also presented for the monitoring agent. The system allows the user to set up simulation parameters or scheduling rules according to their own preferences. Simulation results from an example showed that the system is effective in supporting users' decision-making process.

  13. Principles and Methods of Adapted Physical Education.

    ERIC Educational Resources Information Center

    Arnheim, Daniel D.; And Others

    Programs in adapted physical education are presented preceded by a background of services for the handicapped, by the psychosocial implications of disability, and by the growth and development of the handicapped. Elements of conducting programs discussed are organization and administration, class organization, facilities, exercise programs…

  14. QUEST - A Bayesian adaptive psychometric method

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Pelli, D. G.

    1983-01-01

    An adaptive psychometric procedure that places each trial at the current most probable Bayesian estimate of threshold is described. The procedure takes advantage of the common finding that the human psychometric function is invariant in form when expressed as a function of log intensity. The procedure is simple, fast, and efficient, and may be easily implemented on any computer.

  15. Adaptive method of realizing natural gradient learning for multilayer perceptrons.

    PubMed

    Amari, S; Park, H; Fukumizu, K

    2000-06-01

    The natural gradient learning method is known to have ideal performances for on-line training of multilayer perceptrons. It avoids plateaus, which give rise to slow convergence of the backpropagation method. It is Fisher efficient, whereas the conventional method is not. However, for implementing the method, it is necessary to calculate the Fisher information matrix and its inverse, which is practically very difficult. This article proposes an adaptive method of directly obtaining the inverse of the Fisher information matrix. It generalizes the adaptive Gauss-Newton algorithms and provides a solid theoretical justification of them. Simulations show that the proposed adaptive method works very well for realizing natural gradient learning. PMID:10935719

  16. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement.

    PubMed

    Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin

    2016-04-01

    It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation. PMID:27137056

  17. Solution-adaptive finite element method in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1993-01-01

    Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.

  18. Adaptive method for electron bunch profile prediction

    NASA Astrophysics Data System (ADS)

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET.

  19. Adaptive method for electron bunch profile prediction

    SciTech Connect

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.

  20. A massively parallel adaptive finite element method with dynamic load balancing

    SciTech Connect

    Devine, K.D.; Flaherty, J.E.; Wheat, S.R.; Maccabe, A.B.

    1993-05-01

    We construct massively parallel, adaptive finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We demonstrate parallel efficiency through computations on a 1024-processor nCUBE/2 hypercube. We also present results using adaptive p-refinement to reduce the computational cost of the method. We describe tiling, a dynamic, element-based data migration system. Tiling dynamically maintains global load balance in the adaptive method by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. We demonstrate the effectiveness of the dynamic load balancing with adaptive p-refinement examples.

  1. A New Adaptive Image Denoising Method Based on Neighboring Coefficients

    NASA Astrophysics Data System (ADS)

    Biswas, Mantosh; Om, Hari

    2016-03-01

    Many good techniques have been discussed for image denoising that include NeighShrink, improved adaptive wavelet denoising method based on neighboring coefficients (IAWDMBNC), improved wavelet shrinkage technique for image denoising (IWST), local adaptive wiener filter (LAWF), wavelet packet thresholding using median and wiener filters (WPTMWF), adaptive image denoising method based on thresholding (AIDMT). These techniques are based on local statistical description of the neighboring coefficients in a window. These methods however do not give good quality of the images since they cannot modify and remove too many small wavelet coefficients simultaneously due to the threshold. In this paper, a new image denoising method is proposed that shrinks the noisy coefficients using an adaptive threshold. Our method overcomes these drawbacks and it has better performance than the NeighShrink, IAWDMBNC, IWST, LAWF, WPTMWF, and AIDMT denoising methods.

  2. Online Sequential Projection Vector Machine with Adaptive Data Mean Update

    PubMed Central

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958

  3. Online Sequential Projection Vector Machine with Adaptive Data Mean Update.

    PubMed

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958

  4. Context-Specific Adaptation of Gravity-Dependent Vestibular Reflex Responses (NSBRI Neurovestibular Project 1)

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark; Goldberg, Jefim; Minor, Lloyd B.; Paloski, William H.; Young, Laurence R.; Zee, David S.

    1999-01-01

    Impairment of gaze and head stabilization reflexes can lead to disorientation and reduced performance in sensorimotor tasks such as piloting of spacecraft. Transitions between different gravitoinertial force (gif) environments - as during different phases of space flight - provide an extreme test of the adaptive capabilities of these mechanisms. We wish to determine to what extent the sensorimotor skills acquired in one gravity environment will transfer to others, and to what extent gravity serves as a context cue for inhibiting such transfer. We use the general approach of adapting a response (saccades, vestibuloocular reflex: VOR, or vestibulocollic reflex: VCR) to a particular change in gain or phase in one gif condition, adapting to a different gain or phase in a second gif condition, and then seeing if gif itself - the context cue - can recall the previously-learned adapted responses. Previous evidence indicates that unless there is specific training to induce context-specificity, reflex adaptation is sequential rather than simultaneous. Various experiments in this project investigate the behavioral properties, neurophysiological basis, and anatomical substrate of context-specific learning, using otolith (gravity) signals as a context cue. In the following, we outline the methods for all experiments in this project, and provide details and results on selected experiments.

  5. Moving and adaptive grid methods for compressible flows

    NASA Technical Reports Server (NTRS)

    Trepanier, Jean-Yves; Camarero, Ricardo

    1995-01-01

    This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.

  6. An adaptive pseudospectral method for discontinuous problems

    NASA Technical Reports Server (NTRS)

    Augenbaum, Jeffrey M.

    1988-01-01

    The accuracy of adaptively chosen, mapped polynomial approximations is studied for functions with steep gradients or discontinuities. It is shown that, for steep gradient functions, one can obtain spectral accuracy in the original coordinate system by using polynomial approximations in a transformed coordinate system with substantially fewer collocation points than are necessary using polynomial expansion directly in the original, physical, coordinate system. It is also shown that one can avoid the usual Gibbs oscillation associated with steep gradient solutions of hyperbolic pde's by approximation in suitably chosen coordinate systems. Continuous, high gradient solutions are computed with spectral accuracy (as measured in the physical coordinate system). Discontinuous solutions associated with nonlinear hyperbolic equations can be accurately computed by using an artificial viscosity chosen to smooth out the solution in the mapped, computational domain. Thus, shocks can be effectively resolved on a scale that is subgrid to the resolution available with collocation only in the physical domain. Examples with Fourier and Chebyshev collocation are given.

  7. Adaptable radiation monitoring system and method

    DOEpatents

    Archer, Daniel E.; Beauchamp, Brock R.; Mauger, G. Joseph; Nelson, Karl E.; Mercer, Michael B.; Pletcher, David C.; Riot, Vincent J.; Schek, James L.; Knapp, David A.

    2006-06-20

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  8. Adaptive computational methods for aerothermal heating analysis

    NASA Technical Reports Server (NTRS)

    Price, John M.; Oden, J. Tinsley

    1988-01-01

    The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated.

  9. Adaptive mesh strategies for the spectral element method

    NASA Technical Reports Server (NTRS)

    Mavriplis, Catherine

    1992-01-01

    An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.

  10. Comparing Anisotropic Output-Based Grid Adaptation Methods by Decomposition

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Loseille, Adrien; Krakos, Joshua A.; Michal, Todd

    2015-01-01

    Anisotropic grid adaptation is examined by decomposing the steps of flow solution, ad- joint solution, error estimation, metric construction, and simplex grid adaptation. Multiple implementations of each of these steps are evaluated by comparison to each other and expected analytic results when available. For example, grids are adapted to analytic metric fields and grid measures are computed to illustrate the properties of multiple independent implementations of grid adaptation mechanics. Different implementations of each step in the adaptation process can be evaluated in a system where the other components of the adaptive cycle are fixed. Detailed examination of these properties allows comparison of different methods to identify the current state of the art and where further development should be targeted.

  11. Regional projections of North Indian climate for adaptation studies.

    PubMed

    Mathison, Camilla; Wiltshire, Andrew; Dimri, A P; Falloon, Pete; Jacob, Daniela; Kumar, Pankaj; Moors, Eddy; Ridley, Jeff; Siderius, Christian; Stoffel, Markus; Yasunari, T

    2013-12-01

    Adaptation is increasingly important for regions around the world where large changes in climate could have an impact on populations and industry. The Brahmaputra-Ganges catchments have a large population, a main industry of agriculture and a growing hydro-power industry, making the region susceptible to changes in the Indian Summer Monsoon, annually the main water source. The HighNoon project has completed four regional climate model simulations for India and the Himalaya at high resolution (25km) from 1960 to 2100 to provide an ensemble of simulations for the region. In this paper we have assessed the ensemble for these catchments, comparing the simulations with observations, to give credence that the simulations provide a realistic representation of atmospheric processes and therefore future climate. We have illustrated how these simulations could be used to provide information on potential future climate impacts and therefore aid decision-making using climatology and threshold analysis. The ensemble analysis shows an increase in temperature between the baseline (1970-2000) and the 2050s (2040-2070) of between 2 and 4°C and an increase in the number of days with maximum temperatures above 28°C and 35°C. There is less certainty for precipitation and runoff which show considerable variability, even in this relatively small ensemble, spanning zero. The HighNoon ensemble is the most complete data for the region providing useful information on a wide range of variables for the regional climate of the Brahmaputra-Ganges region, however there are processes not yet included in the models that could have an impact on the simulations of future climate. We have discussed these processes and show that the range from the HighNoon ensemble is similar in magnitude to potential changes in projections where these processes are included. Therefore strategies for adaptation must be robust and flexible allowing for advances in the science and natural environmental changes. PMID

  12. Adaptive sequential methods for detecting network intrusions

    NASA Astrophysics Data System (ADS)

    Chen, Xinjia; Walker, Ernest

    2013-06-01

    In this paper, we propose new sequential methods for detecting port-scan attackers which routinely perform random "portscans" of IP addresses to find vulnerable servers to compromise. In addition to rigorously control the probability of falsely implicating benign remote hosts as malicious, our method performs significantly faster than other current solutions. Moreover, our method guarantees that the maximum amount of observational time is bounded. In contrast to the previous most effective method, Threshold Random Walk Algorithm, which is explicit and analytical in nature, our proposed algorithm involve parameters to be determined by numerical methods. We have introduced computational techniques such as iterative minimax optimization for quick determination of the parameters of the new detection algorithm. A framework of multi-valued decision for detecting portscanners and DoS attacks is also proposed.

  13. Adaptive finite-element method for diffraction gratings

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Chen, Zhiming; Wu, Haijun

    2005-06-01

    A second-order finite-element adaptive strategy with error control for one-dimensional grating problems is developed. The unbounded computational domain is truncated to a bounded one by a perfectly-matched-layer (PML) technique. The PML parameters, such as the thickness of the layer and the medium properties, are determined through sharp a posteriori error estimates. The adaptive finite-element method is expected to increase significantly the accuracy and efficiency of the discretization as well as reduce the computation cost. Numerical experiments are included to illustrate the competitiveness of the proposed adaptive method.

  14. Adaptive multiscale method for two-dimensional nanoscale adhesive contacts

    NASA Astrophysics Data System (ADS)

    Tong, Ruiting; Liu, Geng; Liu, Lan; Wu, Liyan

    2013-05-01

    There are two separate traditional approaches to model contact problems: continuum and atomistic theory. Continuum theory is successfully used in many domains, but when the scale of the model comes to nanometer, continuum approximation meets challenges. Atomistic theory can catch the detailed behaviors of an individual atom by using molecular dynamics (MD) or quantum mechanics, although accurately, it is usually time-consuming. A multiscale method coupled MD and finite element (FE) is presented. To mesh the FE region automatically, an adaptive method based on the strain energy gradient is introduced to the multiscale method to constitute an adaptive multiscale method. Utilizing the proposed method, adhesive contacts between a rigid cylinder and an elastic substrate are studied, and the results are compared with full MD simulations. The process of FE meshes refinement shows that adaptive multiscale method can make FE mesh generation more flexible. Comparison of the displacements of boundary atoms in the overlap region with the results from full MD simulations indicates that adaptive multiscale method can transfer displacements effectively. Displacements of atoms and FE nodes on the center line of the multiscale model agree well with that of atoms in full MD simulations, which shows the continuity in the overlap region. Furthermore, the Von Mises stress contours and contact force distributions in the contact region are almost same as full MD simulations. The method presented combines multiscale method and adaptive technique, and can provide a more effective way to multiscale method and to the investigation on nanoscale contact problems.

  15. Fast adaptive composite grid methods on distributed parallel architectures

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Quinlan, Daniel

    1992-01-01

    The fast adaptive composite (FAC) grid method is compared with the adaptive composite method (AFAC) under variety of conditions including vectorization and parallelization. Results are given for distributed memory multiprocessor architectures (SUPRENUM, Intel iPSC/2 and iPSC/860). It is shown that the good performance of AFAC and its superiority over FAC in a parallel environment is a property of the algorithm and not dependent on peculiarities of any machine.

  16. An Adaptive De-Aliasing Strategy for Discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Beck, Andrea; Flad, David; Frank, Hannes; Munz, Claus-Dieter

    2015-11-01

    Discontinuous Galerkin methods combine the accuracy of a local polynomial representation with the geometrical flexibility of an element-based discretization. In combination with their excellent parallel scalability, these methods are currently of great interest for DNS and LES. For high order schemes, the dissipation error approaches a cut-off behavior, which allows an efficient wave resolution per degree of freedom, but also reduces robustness against numerical errors. One important source of numerical error is the inconsistent discretization of the non-linear convective terms, which results in aliasing of kinetic energy and solver instability. Consistent evaluation of the inner products prevents this form of error, but is computationally very expensive. In this talk, we discuss the need for a consistent de-aliasing to achieve a neutrally stable scheme, and present a novel strategy for recovering a part of the incurred computational costs. By implementing the de-aliasing operation through a cell-local projection filter, we can perform adaptive de-aliasing in space and time, based on physically motivated indicators. We will present results for a homogeneous isotropic turbulence and the Taylor-Green vortex flow, and discuss implementation details, accuracy and efficiency.

  17. Adaptive upscaling with the dual mesh method

    SciTech Connect

    Guerillot, D.; Verdiere, S.

    1997-08-01

    The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.

  18. Adaptive Finite Element Methods for Continuum Damage Modeling

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.

    1995-01-01

    The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.

  19. A massively parallel adaptive finite element method with dynamic load balancing

    SciTech Connect

    Devine, K.D.; Flaherty, J.E.; Wheat, S.R.; Maccabe, A.B.

    1993-12-31

    The authors construct massively parallel adaptive finite element methods for the solution of hyperbolic conservation laws. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. The resulting method is of high order and may be parallelized efficiently on MIMD computers. They demonstrate parallel efficiency through computations on a 1024-processor nCUBE/2 hypercube. They present results using adaptive p-refinement to reduce the computational cost of the method, and tiling, a dynamic, element-based data migration system that maintains global load balance of the adaptive method by overlapping neighborhoods of processors that each perform local balancing.

  20. LDRD Final Report: Adaptive Methods for Laser Plasma Simulation

    SciTech Connect

    Dorr, M R; Garaizar, F X; Hittinger, J A

    2003-01-29

    The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an

  1. An auto-adaptive background subtraction method for Raman spectra.

    PubMed

    Xie, Yi; Yang, Lidong; Sun, Xilong; Wu, Dewen; Chen, Qizhen; Zeng, Yongming; Liu, Guokun

    2016-05-15

    Background subtraction is a crucial step in the preprocessing of Raman spectrum. Usually, parameter manipulating of the background subtraction method is necessary for the efficient removal of the background, which makes the quality of the spectrum empirically dependent. In order to avoid artificial bias, we proposed an auto-adaptive background subtraction method without parameter adjustment. The main procedure is: (1) select the local minima of spectrum while preserving major peaks, (2) apply an interpolation scheme to estimate background, (3) and design an iteration scheme to improve the adaptability of background subtraction. Both simulated data and Raman spectra have been used to evaluate the proposed method. By comparing the backgrounds obtained from three widely applied methods: the polynomial, the Baek's and the airPLS, the auto-adaptive method meets the demand of practical applications in terms of efficiency and accuracy. PMID:26950502

  2. An auto-adaptive background subtraction method for Raman spectra

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Yang, Lidong; Sun, Xilong; Wu, Dewen; Chen, Qizhen; Zeng, Yongming; Liu, Guokun

    2016-05-01

    Background subtraction is a crucial step in the preprocessing of Raman spectrum. Usually, parameter manipulating of the background subtraction method is necessary for the efficient removal of the background, which makes the quality of the spectrum empirically dependent. In order to avoid artificial bias, we proposed an auto-adaptive background subtraction method without parameter adjustment. The main procedure is: (1) select the local minima of spectrum while preserving major peaks, (2) apply an interpolation scheme to estimate background, (3) and design an iteration scheme to improve the adaptability of background subtraction. Both simulated data and Raman spectra have been used to evaluate the proposed method. By comparing the backgrounds obtained from three widely applied methods: the polynomial, the Baek's and the airPLS, the auto-adaptive method meets the demand of practical applications in terms of efficiency and accuracy.

  3. Track and vertex reconstruction: From classical to adaptive methods

    SciTech Connect

    Strandlie, Are; Fruehwirth, Rudolf

    2010-04-15

    This paper reviews classical and adaptive methods of track and vertex reconstruction in particle physics experiments. Adaptive methods have been developed to meet the experimental challenges at high-energy colliders, in particular, the CERN Large Hadron Collider. They can be characterized by the obliteration of the traditional boundaries between pattern recognition and statistical estimation, by the competition between different hypotheses about what constitutes a track or a vertex, and by a high level of flexibility and robustness achieved with a minimum of assumptions about the data. The theoretical background of some of the adaptive methods is described, and it is shown that there is a close connection between the two main branches of adaptive methods: neural networks and deformable templates, on the one hand, and robust stochastic filters with annealing, on the other hand. As both classical and adaptive methods of track and vertex reconstruction presuppose precise knowledge of the positions of the sensitive detector elements, the paper includes an overview of detector alignment methods and a survey of the alignment strategies employed by past and current experiments.

  4. Introduction to Adaptive Methods for Differential Equations

    NASA Astrophysics Data System (ADS)

    Eriksson, Kenneth; Estep, Don; Hansbo, Peter; Johnson, Claes

    Knowing thus the Algorithm of this calculus, which I call Differential Calculus, all differential equations can be solved by a common method (Gottfried Wilhelm von Leibniz, 1646-1719).When, several years ago, I saw for the first time an instrument which, when carried, automatically records the number of steps taken by a pedestrian, it occurred to me at once that the entire arithmetic could be subjected to a similar kind of machinery so that not only addition and subtraction, but also multiplication and division, could be accomplished by a suitably arranged machine easily, promptly and with sure results. For it is unworthy of excellent men to lose hours like slaves in the labour of calculations, which could safely be left to anyone else if the machine was used. And now that we may give final praise to the machine, we may say that it will be desirable to all who are engaged in computations which, as is well known, are the managers of financial affairs, the administrators of others estates, merchants, surveyors, navigators, astronomers, and those connected with any of the crafts that use mathematics (Leibniz).

  5. Stability and error estimation for Component Adaptive Grid methods

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph; Zhu, Xiaolei

    1994-01-01

    Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.

  6. Demosaicing: heterogeneity-projection hard-decision adaptive interpolation using spectral-spatial correlation

    NASA Astrophysics Data System (ADS)

    Tsai, Chi-Yi; Song, Kai-Tai

    2006-02-01

    A novel heterogeneity-projection hard-decision adaptive interpolation (HPHD-AI) algorithm is proposed in this paper for color reproduction from Bayer mosaic images. The proposed algorithm aims to estimate the optimal interpolation direction and perform hard-decision interpolation, in which the decision is made before interpolation. To do so, a new heterogeneity-projection scheme based on spectral-spatial correlation is proposed to decide the best interpolation direction from the original mosaic image directly. Exploiting the proposed heterogeneity-projection scheme, a hard-decision rule can be designed easily to perform the interpolation. We have compared this technique with three recently proposed demosaicing techniques: Lu's, Gunturk's and Li's methods, by utilizing twenty-five natural images from Kodak PhotoCD. The experimental results show that HPHD-AI outperforms all of them in both PSNR values and S-CIELab ▵Ε* ab measures.

  7. Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Chung, Eric; Efendiev, Yalchin; Hou, Thomas Y.

    2016-09-01

    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation.

  8. Final Report: Symposium on Adaptive Methods for Partial Differential Equations

    SciTech Connect

    Pernice, M.; Johnson, C.R.; Smith, P.J.; Fogelson, A.

    1998-12-10

    OAK-B135 Final Report: Symposium on Adaptive Methods for Partial Differential Equations. Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.

  9. EPACT II: project and methods.

    PubMed

    Juillerat, Pascal; Froehlich, Florian; Felley, Christian; Pittet, Valérie; Mottet, Christian; Gonvers, Jean-Jacques; Michetti, Pierre; Vader, John-Paul

    2007-01-01

    Building on the first European Panel on the Appropriateness of Crohn's Disease Treatment (EPACT I) which was held in Lausanne at the beginning of March 2004, a new panel will be convened in Switzerland (EPACT II, November to December 2007) to update this work. A combined evidence- and panel-based method (RAND) will be applied to assess the appropriateness of therapy for Crohn's disease (CD). In preparation for the meeting of experts, reviews of evidence-based literature were prepared for major clinical presentations of CD. During the meeting, an international multidis- ciplinary panel that includes gastroenterologists, surgeons and general practitioners weigh the strength of evidence and apply their clinical experience when assessing the appropriateness of therapy for 569 specific indications (clinical scenarios). This chapter describes in detail the process of updating the literature review and the systematic approach of the RAND Appropriateness Method used during the expert panel meeting. PMID:18239398

  10. A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics

    SciTech Connect

    Anderson, R W; Pember, R B; Elliott, N S

    2004-01-28

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.

  11. A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics

    SciTech Connect

    Anderson, R W; Pember, R B; Elliott, N S

    2002-10-19

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.

  12. Adaptive wavelet collocation method simulations of Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Livescu, D.; Vasilyev, O. V.

    2010-12-01

    Numerical simulations of single-mode, compressible Rayleigh-Taylor instability are performed using the adaptive wavelet collocation method (AWCM), which utilizes wavelets for dynamic grid adaptation. Due to the physics-based adaptivity and direct error control of the method, AWCM is ideal for resolving the wide range of scales present in the development of the instability. The problem is initialized consistent with the solutions from linear stability theory. Non-reflecting boundary conditions are applied to prevent the contamination of the instability growth by pressure waves created at the interface. AWCM is used to perform direct numerical simulations that match the early-time linear growth, the terminal bubble velocity and a reacceleration region.

  13. Adaptive Management for Urban Watersheds: The Slavic Village Pilot Project

    EPA Science Inventory

    Adaptive management is an environmental management strategy that uses an iterative process of decision-making to reduce the uncertainty in environmental management via system monitoring. A central tenet of adaptive management is that management involves a learning process that ca...

  14. Adaptive windowed range-constrained Otsu method using local information

    NASA Astrophysics Data System (ADS)

    Zheng, Jia; Zhang, Dinghua; Huang, Kuidong; Sun, Yuanxi; Tang, Shaojie

    2016-01-01

    An adaptive windowed range-constrained Otsu method using local information is proposed for improving the performance of image segmentation. First, the reason why traditional thresholding methods do not perform well in the segmentation of complicated images is analyzed. Therein, the influences of global and local thresholdings on the image segmentation are compared. Second, two methods that can adaptively change the size of the local window according to local information are proposed by us. The characteristics of the proposed methods are analyzed. Thereby, the information on the number of edge pixels in the local window of the binarized variance image is employed to adaptively change the local window size. Finally, the superiority of the proposed method over other methods such as the range-constrained Otsu, the active contour model, the double Otsu, the Bradley's, and the distance-regularized level set evolution is demonstrated. It is validated by the experiments that the proposed method can keep more details and acquire much more satisfying area overlap measure as compared with the other conventional methods.

  15. Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.

    ERIC Educational Resources Information Center

    Butler, Ronald W.

    The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…

  16. A Conditional Exposure Control Method for Multidimensional Adaptive Testing

    ERIC Educational Resources Information Center

    Finkelman, Matthew; Nering, Michael L.; Roussos, Louis A.

    2009-01-01

    In computerized adaptive testing (CAT), ensuring the security of test items is a crucial practical consideration. A common approach to reducing item theft is to define maximum item exposure rates, i.e., to limit the proportion of examinees to whom a given item can be administered. Numerous methods for controlling exposure rates have been proposed…

  17. An analysis of European riverine flood risk and adaptation measures under projected climate change

    NASA Astrophysics Data System (ADS)

    Bouwer, Laurens; Burzel, Andreas; Holz, Friederike; Winsemius, Hessel; de Bruijn, Karind

    2015-04-01

    There is increasing need to assess costs and benefits of adaptation at scales beyond the river basin. In Europe, such estimates are required at the European scale in order to set priorities for action and financing, for instance in the context of the EU Adaptation Strategy. The goal of this work as part of the FP7 BASE project is to develop a flood impact model that can be applied at Pan-European scale and that is able to project changes in flood risk due to climate change and socio-economic developments, and costs of adaptation. For this research, we build upon the global flood hazard estimation method developed by Winsemius et al. (Hydrology and Earth System Sciences, 2013), that produces flood inundation maps at different return period, for present day (EU WATCH) and future climate (IPCC scenarios RCP4.5 and 8.5, for five climate models). These maps are used for the assessment of flood impacts. We developed and tested a model for assessing direct economic flood damages by using large scale land use maps. We characterise vulnerable land use functions, in particular residential, commercial, industrial, infrastructure and agriculture, using depth-damage relationships. Furthermore, we apply up to NUTS3 level information on Gross Domestic Product, which is used as a proxy for relative differences in maximum damage values between different areas. Next, we test two adaptation measures, by adjusting flood protection levels and adjusting damage functions. The results show the projected changes in flood risk in the future. For example, on NUTS2 level, flood risk increases in some regions up to 179% (between the baseline scenario 1960-1999 and time slice 2010-2049). On country level there are increases up to 60% for selected climate models. The conference presentation will show the most relevant improvements in damage modelling on the continental scale, and results of the analysis of adaptation measures. The results will be critically discussed under the aspect of major

  18. Adaptive frequency estimation by MUSIC (Multiple Signal Classification) method

    NASA Astrophysics Data System (ADS)

    Karhunen, Juha; Nieminen, Esko; Joutsensalo, Jyrki

    During the last years, the eigenvector-based method called MUSIC has become very popular in estimating the frequencies of sinusoids in additive white noise. Adaptive realizations of the MUSIC method are studied using simulated data. Several of the adaptive realizations seem to give in practice equally good results as the nonadaptive standard realization. The only exceptions are instantaneous gradient type algorithms that need considerably more samples to achieve a comparable performance. A new method is proposed for constructing initial estimates to the signal subspace. The method improves often dramatically the performance of instantaneous gradient type algorithms. The new signal subspace estimate can also be used to define a frequency estimator directly or to simplify eigenvector computation.

  19. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    SciTech Connect

    Bo, Wurigen; Shashkov, Mikhail

    2015-07-21

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALE method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.

  20. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE PAGESBeta

    Bo, Wurigen; Shashkov, Mikhail

    2015-07-21

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  1. Method and system for environmentally adaptive fault tolerant computing

    NASA Technical Reports Server (NTRS)

    Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)

    2010-01-01

    A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.

  2. Workshop on adaptive grid methods for fusion plasmas

    SciTech Connect

    Wiley, J.C.

    1995-07-01

    The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.

  3. Solving Chemical Master Equations by an Adaptive Wavelet Method

    SciTech Connect

    Jahnke, Tobias; Galan, Steffen

    2008-09-01

    Solving chemical master equations is notoriously difficult due to the tremendous number of degrees of freedom. We present a new numerical method which efficiently reduces the size of the problem in an adaptive way. The method is based on a sparse wavelet representation and an algorithm which, in each time step, detects the essential degrees of freedom required to approximate the solution up to the desired accuracy.

  4. ICASE/LaRC Workshop on Adaptive Grid Methods

    NASA Technical Reports Server (NTRS)

    South, Jerry C., Jr. (Editor); Thomas, James L. (Editor); Vanrosendale, John (Editor)

    1995-01-01

    Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field.

  5. Rift Valley fever dynamics in Senegal: a project for pro-active adaptation and improvement of livestock raising management.

    PubMed

    Lafaye, Murielle; Sall, Baba; Ndiaye, Youssou; Vignolles, Cecile; Tourre, Yves M; Borchi, Franc Ois; Soubeyroux, Jean-Michel; Diallo, Mawlouth; Dia, Ibrahima; Ba, Yamar; Faye, Abdoulaye; Ba, Taibou; Ka, Alioune; Ndione, Jacques-André; Gauthier, Hélène; Lacaux, Jean-Pierre

    2013-11-01

    The multi-disciplinary French project "Adaptation à la Fiévre de la Vallée du Rift" (AdaptFVR) has concluded a 10-year constructive interaction between many scientists/partners involved with the Rift Valley fever (RVF) dynamics in Senegal. The three targeted objectives reached were (i) to produce--in near real-time--validated risk maps for parked livestock exposed to RVF mosquitoes/vectors bites; (ii) to assess the impacts on RVF vectors from climate variability at different time-scales including climate change; and (iii) to isolate processes improving local livestock management and animal health. Based on these results, concrete, pro-active adaptive actions were taken on site, which led to the establishment of a RVF early warning system (RVFews). Bulletins were released in a timely fashion during the project, tested and validated in close collaboration with the local populations, i.e. the primary users. Among the strategic, adaptive methods developed, conducted and evaluated in terms of cost/benefit analyses are the larvicide campaigns and the coupled bio-mathematical (hydrological and entomological) model technologies, which are being transferred to the staff of the "Centre de Suivi Ecologique" (CSE) in Dakar during 2013. Based on the results from the AdaptFVR project, other projects with similar conceptual and modelling approaches are currently being implemented, e.g. for urban and rural malaria and dengue in the French Antilles. PMID:24258902

  6. An Adaptive Cross-Architecture Combination Method for Graph Traversal

    SciTech Connect

    You, Yang; Song, Shuaiwen; Kerbyson, Darren J.

    2014-06-18

    Breadth-First Search (BFS) is widely used in many real-world applications including computational biology, social networks, and electronic design automation. The combination method, using both top-down and bottom-up techniques, is the most effective BFS approach. However, current combination methods rely on trial-and-error and exhaustive search to locate the optimal switching point, which may cause significant runtime overhead. To solve this problem, we design an adaptive method based on regression analysis to predict an optimal switching point for the combination method at runtime within less than 0.1% of the BFS execution time.

  7. An adaptive over/under data combination method

    NASA Astrophysics Data System (ADS)

    He, Jian-Wei; Lu, Wen-Kai; Li, Zhong-Xiao

    2013-12-01

    The traditional "dephase and sum" algorithms for over/under data combination estimate the ghost operator by assuming a calm sea surface. However, the real sea surface is typically rough, which invalidates the calm sea surface assumption. Hence, the traditional "dephase and sum" algorithms might produce poor-quality results in rough sea conditions. We propose an adaptive over/under data combination method, which adaptively estimates the amplitude spectrum of the ghost operator from the over/under data, and then over/under data combinations are implemented using the estimated ghost operators. A synthetic single shot gather is used to verify the performance of the proposed method in rough sea surface conditions and a real triple over/under dataset demonstrates the method performance.

  8. An Adaptive Derivative-based Method for Function Approximation

    SciTech Connect

    Tong, C

    2008-10-22

    To alleviate the high computational cost of large-scale multi-physics simulations to study the relationships between the model parameters and the outputs of interest, response surfaces are often used in place of the exact functional relationships. This report explores a method for response surface construction using adaptive sampling guided by derivative information at each selected sample point. This method is especially suitable for applications that can readily provide added information such as gradients and Hessian with respect to the input parameters under study. When higher order terms (third and above) in the Taylor series are negligible, the approximation error for this method can be controlled. We present details of the adaptive algorithm and numerical results on a few test problems.

  9. Development of a dynamically adaptive grid method for multidimensional problems

    NASA Astrophysics Data System (ADS)

    Holcomb, J. E.; Hindman, R. G.

    1984-06-01

    An approach to solution adaptive grid generation for use with finite difference techniques, previously demonstrated on model problems in one space dimension, has been extended to multidimensional problems. The method is based on the popular elliptic steady grid generators, but is 'dynamically' adaptive in the sense that a grid is maintained at all times satisfying the steady grid law driven by a solution-dependent source term. Testing has been carried out on Burgers' equation in one and two space dimensions. Results appear encouraging both for inviscid wave propagation cases and viscous boundary layer cases, suggesting that application to practical flow problems is now possible. In the course of the work, obstacles relating to grid correction, smoothing of the solution, and elliptic equation solvers have been largely overcome. Concern remains, however, about grid skewness, boundary layer resolution and the need for implicit integration methods. Also, the method in 3-D is expected to be very demanding of computer resources.

  10. Final Report: Symposium on Adaptive Methods for Partial Differential Equations

    SciTech Connect

    Pernice, Michael; Johnson, Christopher R.; Smith, Philip J.; Fogelson, Aaron

    1998-12-08

    Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.

  11. Advanced numerical methods in mesh generation and mesh adaptation

    SciTech Connect

    Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A

    2010-01-01

    Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge

  12. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    PubMed

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation. PMID:26306792

  13. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    NASA Astrophysics Data System (ADS)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  14. Methods for prismatic/tetrahedral grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Kallinderis, Y.

    1995-10-01

    The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is a method for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. A solution adaptive scheme for viscous computations on hybrid grids is also presented. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms.

  15. Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Carter, Melissa B.; Deere, Karen A.; Waithe, Kenrick A.

    2008-01-01

    This paper examines the use of two grid adaptation methods to improve the accuracy of the near-to-mid field pressure signature prediction of supersonic aircraft computed using the USM3D unstructured grid flow solver. The first method (ADV) is an interactive adaptation process that uses grid movement rather than enrichment to more accurately resolve the expansion and compression waves. The second method (SSGRID) uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid with the pressure waves and reduce the cell count required to achieve an accurate signature prediction at a given distance from the vehicle. Both methods initially create negative volume cells that are repaired in a module in the ADV code. While both approaches provide significant improvements in the near field signature (< 3 body lengths) relative to a baseline grid without increasing the number of grid points, only the SSGRID approach allows the details of the signature to be accurately computed at mid-field distances (3-10 body lengths) for direct use with mid-field-to-ground boom propagation codes.

  16. Vortical Flow Prediction Using an Adaptive Unstructured Grid Method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2003-01-01

    A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.

  17. Vortical Flow Prediction Using an Adaptive Unstructured Grid Method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2001-01-01

    A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65deg delta wing with different values of leading-edge bluntness, and the second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the windtunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.

  18. Adaptive [theta]-methods for pricing American options

    NASA Astrophysics Data System (ADS)

    Khaliq, Abdul Q. M.; Voss, David A.; Kazmi, Kamran

    2008-12-01

    We develop adaptive [theta]-methods for solving the Black-Scholes PDE for American options. By adding a small, continuous term, the Black-Scholes PDE becomes an advection-diffusion-reaction equation on a fixed spatial domain. Standard implementation of [theta]-methods would require a Newton-type iterative procedure at each time step thereby increasing the computational complexity of the methods. Our linearly implicit approach avoids such complications. We establish a general framework under which [theta]-methods satisfy a discrete version of the positivity constraint characteristic of American options, and numerically demonstrate the sensitivity of the constraint. The positivity results are established for the single-asset and independent two-asset models. In addition, we have incorporated and analyzed an adaptive time-step control strategy to increase the computational efficiency. Numerical experiments are presented for one- and two-asset American options, using adaptive exponential splitting for two-asset problems. The approach is compared with an iterative solution of the two-asset problem in terms of computational efficiency.

  19. Space-time adaptive numerical methods for geophysical applications.

    PubMed

    Castro, C E; Käser, M; Toro, E F

    2009-11-28

    In this paper we present high-order formulations of the finite volume and discontinuous Galerkin finite-element methods for wave propagation problems with a space-time adaptation technique using unstructured meshes in order to reduce computational cost without reducing accuracy. Both methods can be derived in a similar mathematical framework and are identical in their first-order version. In their extension to higher order accuracy in space and time, both methods use spatial polynomials of higher degree inside each element, a high-order solution of the generalized Riemann problem and a high-order time integration method based on the Taylor series expansion. The static adaptation strategy uses locally refined high-resolution meshes in areas with low wave speeds to improve the approximation quality. Furthermore, the time step length is chosen locally adaptive such that the solution is evolved explicitly in time by an optimal time step determined by a local stability criterion. After validating the numerical approach, both schemes are applied to geophysical wave propagation problems such as tsunami waves and seismic waves comparing the new approach with the classical global time-stepping technique. The problem of mesh partitioning for large-scale applications on multi-processor architectures is discussed and a new mesh partition approach is proposed and tested to further reduce computational cost. PMID:19840984

  20. Robust flicker evaluation method for low power adaptive dimming LCDs

    NASA Astrophysics Data System (ADS)

    Kim, Seul-Ki; Song, Seok-Jeong; Nam, Hyoungsik

    2015-05-01

    This paper describes a robust dimming flicker evaluation method of adaptive dimming algorithms for low power liquid crystal displays (LCDs). While the previous methods use sum of square difference (SSD) values without excluding the image sequence information, the proposed modified SSD (mSSD) values are obtained only with the dimming flicker effects by making use of differential images. The proposed scheme is verified for eight dimming configurations of two dimming level selection methods and four temporal filters over three test videos. Furthermore, a new figure of merit is introduced to cover the dimming flicker as well as image qualities and power consumption.

  1. Project ADAPT: Report Number 1: Description and Review of the MIT Orientation Program: [And Appendix].

    ERIC Educational Resources Information Center

    Massachusetts Inst. of Tech., Cambridge. Dept. of Urban Studies and Planning.

    The report of Project ADAPT (Aerospace and Defense Adaptation to Public Technology), describes the design, execution, and forthcoming evaluation of the program. The program's objective was to demonstrate the feasibility of redeploying surplus technical manpower into public service at State and local levels of government. The development of the…

  2. Adaptive domain decomposition methods for advection-diffusion problems

    SciTech Connect

    Carlenzoli, C.; Quarteroni, A.

    1995-12-31

    Domain decomposition methods can perform poorly on advection-diffusion equations if diffusion is dominated by advection. Indeed, the hyperpolic part of the equations could affect the behavior of iterative schemes among subdomains slowing down dramatically their rate of convergence. Taking into account the direction of the characteristic lines we introduce suitable adaptive algorithms which are stable with respect to the magnitude of the convective field in the equations and very effective on bear boundary value problems.

  3. Children's Ideas about Animal Adaptations: An Action Research Project

    ERIC Educational Resources Information Center

    Endreny, Anna Henderson

    2006-01-01

    In this paper, I describe the action research I conducted in my third-grade science classrooms over the course of two years. In order to gain an understanding of my third-grade students' ideas about animal adaptations and how the teaching of a unit on crayfish influenced these ideas, I used clinical interviews, observations, and written…

  4. Extended generalized Lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods

    NASA Astrophysics Data System (ADS)

    Domingues, Margarete O.; Gomes, Anna Karina F.; Mendes, Odim; Schneider, Kai

    2013-10-01

    We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge-Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of the magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution. This work was supported by the contract SiCoMHD (ANR-Blanc 2011-045).

  5. An adaptive unsupervised hyperspectral classification method based on Gaussian distribution

    NASA Astrophysics Data System (ADS)

    Yue, Jiang; Wu, Jing-wei; Zhang, Yi; Bai, Lian-fa

    2014-11-01

    In order to achieve adaptive unsupervised clustering in the high precision, a method using Gaussian distribution to fit the similarity of the inter-class and the noise distribution is proposed in this paper, and then the automatic segmentation threshold is determined by the fitting result. First, according with the similarity measure of the spectral curve, this method assumes that the target and the background both in Gaussian distribution, the distribution characteristics is obtained through fitting the similarity measure of minimum related windows and center pixels with Gaussian function, and then the adaptive threshold is achieved. Second, make use of the pixel minimum related windows to merge adjacent similar pixels into a picture-block, then the dimensionality reduction is completed and the non-supervised classification is realized. AVIRIS data and a set of hyperspectral data we caught are used to evaluate the performance of the proposed method. Experimental results show that the proposed algorithm not only realizes the adaptive but also outperforms K-MEANS and ISODATA on the classification accuracy, edge recognition and robustness.

  6. A New Online Calibration Method for Multidimensional Computerized Adaptive Testing.

    PubMed

    Chen, Ping; Wang, Chun

    2016-09-01

    Multidimensional-Method A (M-Method A) has been proposed as an efficient and effective online calibration method for multidimensional computerized adaptive testing (MCAT) (Chen & Xin, Paper presented at the 78th Meeting of the Psychometric Society, Arnhem, The Netherlands, 2013). However, a key assumption of M-Method A is that it treats person parameter estimates as their true values, thus this method might yield erroneous item calibration when person parameter estimates contain non-ignorable measurement errors. To improve the performance of M-Method A, this paper proposes a new MCAT online calibration method, namely, the full functional MLE-M-Method A (FFMLE-M-Method A). This new method combines the full functional MLE (Jones & Jin in Psychometrika 59:59-75, 1994; Stefanski & Carroll in Annals of Statistics 13:1335-1351, 1985) with the original M-Method A in an effort to correct for the estimation error of ability vector that might otherwise adversely affect the precision of item calibration. Two correction schemes are also proposed when implementing the new method. A simulation study was conducted to show that the new method generated more accurate item parameter estimation than the original M-Method A in almost all conditions. PMID:26608960

  7. Projection preconditioning for Lanczos-type methods

    SciTech Connect

    Bielawski, S.S.; Mulyarchik, S.G.; Popov, A.V.

    1996-12-31

    We show how auxiliary subspaces and related projectors may be used for preconditioning nonsymmetric system of linear equations. It is shown that preconditioned in such a way (or projected) system is better conditioned than original system (at least if the coefficient matrix of the system to be solved is symmetrizable). Two approaches for solving projected system are outlined. The first one implies straightforward computation of the projected matrix and consequent using some direct or iterative method. The second approach is the projection preconditioning of conjugate gradient-type solver. The latter approach is developed here in context with biconjugate gradient iteration and some related Lanczos-type algorithms. Some possible particular choices of auxiliary subspaces are discussed. It is shown that one of them is equivalent to using colorings. Some results of numerical experiments are reported.

  8. A novel adaptive force control method for IPMC manipulation

    NASA Astrophysics Data System (ADS)

    Hao, Lina; Sun, Zhiyong; Li, Zhi; Su, Yunquan; Gao, Jianchao

    2012-07-01

    IPMC is a type of electro-active polymer material, also called artificial muscle, which can generate a relatively large deformation under a relatively low input voltage (generally speaking, less than 5 V), and can be implemented in a water environment. Due to these advantages, IPMC can be used in many fields such as biomimetics, service robots, bio-manipulation, etc. Until now, most existing methods for IPMC manipulation are displacement control not directly force control, however, under most conditions, the success rate of manipulations for tiny fragile objects is limited by the contact force, such as using an IPMC gripper to fix cells. Like most EAPs, a creep phenomenon exists in IPMC, of which the generated force will change with time and the creep model will be influenced by the change of the water content or other environmental factors, so a proper force control method is urgently needed. This paper presents a novel adaptive force control method (AIPOF control—adaptive integral periodic output feedback control), based on employing a creep model of which parameters are obtained by using the FRLS on-line identification method. The AIPOF control method can achieve an arbitrary pole configuration as long as the plant is controllable and observable. This paper also designs the POF and IPOF controller to compare their test results. Simulation and experiments of micro-force-tracking tests are carried out, with results confirming that the proposed control method is viable.

  9. Computerized adaptive control weld skate with CCTV weld guidance project

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  10. Low Temperature Shape Memory Alloys for Adaptive, Autonomous Systems Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Williams, Martha; Benafan, Othmane; Fesmire, James

    2015-01-01

    The objective of this joint activity between Kennedy Space Center (KSC) and Glenn Research Center (GRC) is to develop and evaluate the applicability of 2-way SMAs in proof-of-concept, low-temperature adaptive autonomous systems. As part of this low technology readiness (TRL) activity, we will develop and train low-temperature novel, 2-way shape memory alloys (SMAs) with actuation temperatures ranging from 0 C to 150 C. These experimental alloys will also be preliminary tested to evaluate their performance parameters and transformation (actuation) temperatures in low- temperature or cryogenic adaptive proof-of-concept systems. The challenge will be in the development, design, and training of the alloys for 2-way actuation at those temperatures.

  11. Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems

    NASA Technical Reports Server (NTRS)

    Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.

    1979-01-01

    The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.

  12. Adaptive Markov chain Monte Carlo forward projection for statistical analysis in epidemic modelling of human papillomavirus.

    PubMed

    Korostil, Igor A; Peters, Gareth W; Cornebise, Julien; Regan, David G

    2013-05-20

    A Bayesian statistical model and estimation methodology based on forward projection adaptive Markov chain Monte Carlo is developed in order to perform the calibration of a high-dimensional nonlinear system of ordinary differential equations representing an epidemic model for human papillomavirus types 6 and 11 (HPV-6, HPV-11). The model is compartmental and involves stratification by age, gender and sexual-activity group. Developing this model and a means to calibrate it efficiently is relevant because HPV is a very multi-typed and common sexually transmitted infection with more than 100 types currently known. The two types studied in this paper, types 6 and 11, are causing about 90% of anogenital warts. We extend the development of a sexual mixing matrix on the basis of a formulation first suggested by Garnett and Anderson, frequently used to model sexually transmitted infections. In particular, we consider a stochastic mixing matrix framework that allows us to jointly estimate unknown attributes and parameters of the mixing matrix along with the parameters involved in the calibration of the HPV epidemic model. This matrix describes the sexual interactions between members of the population under study and relies on several quantities that are a priori unknown. The Bayesian model developed allows one to estimate jointly the HPV-6 and HPV-11 epidemic model parameters as well as unknown sexual mixing matrix parameters related to assortativity. Finally, we explore the ability of an extension to the class of adaptive Markov chain Monte Carlo algorithms to incorporate a forward projection strategy for the ordinary differential equation state trajectories. Efficient exploration of the Bayesian posterior distribution developed for the ordinary differential equation parameters provides a challenge for any Markov chain sampling methodology, hence the interest in adaptive Markov chain methods. We conclude with simulation studies on synthetic and recent actual data. PMID

  13. Enrollment Projections--Factors and Methods.

    ERIC Educational Resources Information Center

    Glass, Thomas E.; Fulmer, Connie L.

    1991-01-01

    Outlines the importance of enrollment projections for informed decision making in educational organizations. Discusses births, migration, and holding power as the three major factors that affect school populations. Describes in detail the cohort survival ratio technique, presents a sample calculation, and mentions alternative methods. (11…

  14. Extended abstract: Partial row projection methods

    SciTech Connect

    Bramley, R.; Lee, Y.

    1996-12-31

    Accelerated row projection (RP) algorithms for solving linear systems Ax = b are a class of iterative methods which in theory converge for any nonsingular matrix. RP methods are by definition ones that require finding the orthogonal projection of vectors onto the null space of block rows of the matrix. The Kaczmarz form, considered here because it has a better spectrum for iterative methods, has an iteration matrix that is the product of such projectors. Because straightforward Kaczmarz method converges slowly for practical problems, typically an outer CG acceleration is applied. Definiteness, symmetry, or localization of the eigenvalues, of the coefficient matrix is not required. In spite of this robustness, work has generally been limited to structured systems such as block tridiagonal matrices because unlike many iterative solvers, RP methods cannot be implemented by simply supplying a matrix-vector multiplication routine. Finding the orthogonal projection of vectors onto the null space of block rows of the matrix in practice requires accessing the actual entries in the matrix. This report introduces a new partial RP algorithm which retains advantages of the RP methods.

  15. Project ADAPT: A Program to Assess Depression and Provide Proactive Treatment in Rural Areas

    ERIC Educational Resources Information Center

    Luptak, Marilyn; Kaas, Merrie J.; Artz, Margaret; McCarthy, Teresa

    2008-01-01

    Purpose: We describe and evaluate a project designed to pilot test an evidence-based clinical intervention for assessing and treating depression in older adults in rural primary care clinics. Project ADAPT--Assuring Depression Assessment and Proactive Treatment--utilized existing primary care resources to overcome barriers to sustainability…

  16. Adaptive methods for nonlinear structural dynamics and crashworthiness analysis

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted

    1993-01-01

    The objective is to describe three research thrusts in crashworthiness analysis: adaptivity; mixed time integration, or subcycling, in which different timesteps are used for different parts of the mesh in explicit methods; and methods for contact-impact which are highly vectorizable. The techniques are being developed to improve the accuracy of calculations, ease-of-use of crashworthiness programs, and the speed of calculations. The latter is still of importance because crashworthiness calculations are often made with models of 20,000 to 50,000 elements using explicit time integration and require on the order of 20 to 100 hours on current supercomputers. The methodologies are briefly reviewed and then some example calculations employing these methods are described. The methods are also of value to other nonlinear transient computations.

  17. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  18. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Han, Dong; Lin, Jing; He, Zhengjia

    2013-07-01

    Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gearboxes include selection of sensitive measurement locations, investigation of vibration transmission paths and weak feature extraction. One of them is how to effectively discover the weak characteristics from noisy signals of faulty components in planetary gearboxes. To address the issue in fault diagnosis of planetary gearboxes, an adaptive stochastic resonance (ASR) method is proposed in this paper. The ASR method utilizes the optimization ability of ant colony algorithms and adaptively realizes the optimal stochastic resonance system matching input signals. Using the ASR method, the noise may be weakened and weak characteristics highlighted, and therefore the faults can be diagnosed accurately. A planetary gearbox test rig is established and experiments with sun gear faults including a chipped tooth and a missing tooth are conducted. And the vibration signals are collected under the loaded condition and various motor speeds. The proposed method is used to process the collected signals and the results of feature extraction and fault diagnosis demonstrate its effectiveness.

  19. Parallel adaptive mesh refinement within the PUMAA3D Project

    NASA Technical Reports Server (NTRS)

    Freitag, Lori; Jones, Mark; Plassmann, Paul

    1995-01-01

    To enable the solution of large-scale applications on distributed memory architectures, we are designing and implementing parallel algorithms for the fundamental tasks of unstructured mesh computation. In this paper, we discuss efficient algorithms developed for two of these tasks: parallel adaptive mesh refinement and mesh partitioning. The algorithms are discussed in the context of two-dimensional finite element solution on triangular meshes, but are suitable for use with a variety of element types and with h- or p-refinement. Results demonstrating the scalability and efficiency of the refinement algorithm and the quality of the mesh partitioning are presented for several test problems on the Intel DELTA.

  20. Projection methods for quantum channel construction

    NASA Astrophysics Data System (ADS)

    Drusvyatskiy, Dmitriy; Li, Chi-Kwong; Pelejo, Diane Christine; Voronin, Yuen-Lam; Wolkowicz, Henry

    2015-08-01

    We consider the problem of constructing quantum channels, if they exist, that transform a given set of quantum states to another such set . In other words, we must find a completely positive linear map, if it exists, that maps a given set of density matrices to another given set of density matrices, possibly of different dimension. Using the theory of completely positive linear maps, one can formulate the problem as an instance of a positive semidefinite feasibility problem with highly structured constraints. The nature of the constraints makes projection-based algorithms very appealing when the number of variables is huge and standard interior-point methods for semidefinite programming are not applicable. We provide empirical evidence to this effect. We moreover present heuristics for finding both high-rank and low-rank solutions. Our experiments are based on the method of alternating projections and the Douglas-Rachford reflection method.

  1. Spatially-Anisotropic Parallel Adaptive Wavelet Collocation Method

    NASA Astrophysics Data System (ADS)

    Vasilyev, Oleg V.; Brown-Dymkoski, Eric

    2015-11-01

    Despite latest advancements in development of robust wavelet-based adaptive numerical methodologies to solve partial differential equations, they all suffer from two major ``curses'': 1) the reliance on rectangular domain and 2) the ``curse of anisotropy'' (i.e. homogeneous wavelet refinement and inability to have spatially varying aspect ratio of the mesh elements). The new method addresses both of these challenges by utilizing an adaptive anisotropic wavelet transform on curvilinear meshes that can be either algebraically prescribed or calculated on the fly using PDE-based mesh generation. In order to ensure accurate representation of spatial operators in physical space, an additional adaptation on spatial physical coordinates is also performed. It is important to note that when new nodes are added in computational space, the physical coordinates can be approximated by interpolation of the existing solution and additional local iterations to ensure that the solution of coordinate mapping PDEs is converged on the new mesh. In contrast to traditional mesh generation approaches, the cost of adding additional nodes is minimal, mainly due to localized nature of iterative mesh generation PDE solver requiring local iterations in the vicinity of newly introduced points. This work was supported by ONR MURI under grant N00014-11-1-069.

  2. The SMART CLUSTER METHOD - adaptive earthquake cluster analysis and declustering

    NASA Astrophysics Data System (ADS)

    Schaefer, Andreas; Daniell, James; Wenzel, Friedemann

    2016-04-01

    Earthquake declustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity with usual applications comprising of probabilistic seismic hazard assessments (PSHAs) and earthquake prediction methods. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation. Various methods have been developed to address this issue from other researchers. These have differing ranges of complexity ranging from rather simple statistical window methods to complex epidemic models. This study introduces the smart cluster method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal identification. Hereby, an adaptive search algorithm for data point clusters is adopted. It uses the earthquake density in the spatio-temporal neighbourhood of each event to adjust the search properties. The identified clusters are subsequently analysed to determine directional anisotropy, focussing on a strong correlation along the rupture plane and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010/2011 Darfield-Christchurch events, an adaptive classification procedure is applied to disassemble subsequent ruptures which may have been grouped into an individual cluster using near-field searches, support vector machines and temporal splitting. The steering parameters of the search behaviour are linked to local earthquake properties like magnitude of completeness, earthquake density and Gutenberg-Richter parameters. The method is capable of identifying and classifying earthquake clusters in space and time. It is tested and validated using earthquake data from California and New Zealand. As a result of the cluster identification process, each event in

  3. The New England Climate Adaptation Project: Enhancing Local Readiness to Adapt to Climate Change through Role-Play Simulations

    NASA Astrophysics Data System (ADS)

    Rumore, D.; Kirshen, P. H.; Susskind, L.

    2014-12-01

    Despite scientific consensus that the climate is changing, local efforts to prepare for and manage climate change risks remain limited. How we can raise concern about climate change risks and enhance local readiness to adapt to climate change's effects? In this presentation, we will share the lessons learned from the New England Climate Adaptation Project (NECAP), a participatory action research project that tested science-based role-play simulations as a tool for educating the public about climate change risks and simulating collective risk management efforts. NECAP was a 2-year effort involving the Massachusetts Institute of Technology, the Consensus Building Institute, the National Estuarine Research Reserve System, and four coastal New England municipalities. During 2012-2013, the NECAP team produced downscaled climate change projections, a summary risk assessment, and a stakeholder assessment for each partner community. Working with local partners, we used these assessments to create a tailored, science-based role-play simulation for each site. Through a series of workshops in 2013, NECAP engaged between 115-170 diverse stakeholders and members of the public in each partner municipality in playing the simulation and a follow up conversation about local climate change risks and possible adaptation strategies. Data were collected through before-and-after surveys administered to all workshop participants, follow-up interviews with 25 percent of workshop participants, public opinion polls conducted before and after our intervention, and meetings with public officials. This presentation will report our research findings and explain how science-based role-play simulations can be used to help communicate local climate change risks and enhance local readiness to adapt.

  4. An adaptive pseudo-spectral method for reaction diffusion problems

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Gottlieb, D.; Matkowsky, B. J.; Minkoff, M.

    1987-01-01

    The spectral interpolation error was considered for both the Chebyshev pseudo-spectral and Galerkin approximations. A family of functionals I sub r (u), with the property that the maximum norm of the error is bounded by I sub r (u)/J sub r, where r is an integer and J is the degree of the polynomial approximation, was developed. These functionals are used in the adaptive procedure whereby the problem is dynamically transformed to minimize I sub r (u). The number of collocation points is then chosen to maintain a prescribed error bound. The method is illustrated by various examples from combustion problems in one and two dimensions.

  5. An h-adaptive finite element method for turbulent heat transfer

    SciTech Connect

    Carriington, David B

    2009-01-01

    A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.

  6. A parallel adaptive method for pseudo-arclength continuation

    NASA Astrophysics Data System (ADS)

    Aruliah, D. A.; van Veen, L.; Dubitski, A.

    2012-10-01

    Pseudo-arclength continuation is a well-established method for constructing a numerical curve comprising solutions of a system of nonlinear equations. In many complicated high-dimensional systems, the corrector steps within pseudo-arclength continuation are extremely costly to compute; as a result, the step-length of the preceding prediction step must be adapted carefully to avoid prohibitively many failed steps. We describe the essence of a parallel method for adapting the step-length of pseudo-arclength continuation. Our method employs several predictor-corrector sequences with differing step-lengths running concurrently on distinct processors. Our parallel framework permits intermediate results of correction sequences that have not yet converged to seed new predictor-corrector sequences with various step-lengths; the goal is to amortize the cost of corrector steps to make further progress along the underlying numerical curve. Results from numerical experiments suggest a three-fold speedup is attainable when the continuation curve sought has great topological complexity and the corrector steps require significant processor time.

  7. Evaluating success criteria and project monitoring in river enhancement within an adaptive management framework

    USGS Publications Warehouse

    O'Donnell, T. K.; Galat, D.L.

    2008-01-01

    Objective setting, performance measures, and accountability are important components of an adaptive-management approach to river-enhancement programs. Few lessons learned by river-enhancement practitioners in the United States have been documented and disseminated relative to the number of projects implemented. We conducted scripted telephone surveys with river-enhancement project managers and practitioners within the Upper Mississippi River Basin (UMRB) to determine the extent of setting project success criteria, monitoring, evaluation of monitoring data, and data dissemination. Investigation of these elements enabled a determination of those that inhibited adaptive management. Seventy river enhancement projects were surveyed. Only 34% of projects surveyed incorporated a quantified measure of project success. Managers most often relied on geophysical attributes of rivers when setting project success criteria, followed by biological communities. Ninety-one percent of projects that performed monitoring included biologic variables, but the lack of data collection before and after project completion and lack of field-based reference or control sites will make future assessments of ecologic success difficult. Twenty percent of projects that performed monitoring evaluated ???1 variable but did not disseminate their evaluations outside their organization. Results suggest greater incentives may be required to advance the science of river enhancement. Future river-enhancement programs within the UMRB and elsewhere can increase knowledge gained from individual projects by offering better guidance on setting success criteria before project initiation and evaluation through established monitoring protocols. ?? 2007 Springer Science+Business Media, LLC.

  8. Evaluating Success Criteria and Project Monitoring in River Enhancement Within an Adaptive Management Framework

    NASA Astrophysics Data System (ADS)

    O'Donnell, T. Kevin; Galat, David L.

    2008-01-01

    Objective setting, performance measures, and accountability are important components of an adaptive-management approach to river-enhancement programs. Few lessons learned by river-enhancement practitioners in the United States have been documented and disseminated relative to the number of projects implemented. We conducted scripted telephone surveys with river-enhancement project managers and practitioners within the Upper Mississippi River Basin (UMRB) to determine the extent of setting project success criteria, monitoring, evaluation of monitoring data, and data dissemination. Investigation of these elements enabled a determination of those that inhibited adaptive management. Seventy river enhancement projects were surveyed. Only 34% of projects surveyed incorporated a quantified measure of project success. Managers most often relied on geophysical attributes of rivers when setting project success criteria, followed by biological communities. Ninety-one percent of projects that performed monitoring included biologic variables, but the lack of data collection before and after project completion and lack of field-based reference or control sites will make future assessments of ecologic success difficult. Twenty percent of projects that performed monitoring evaluated ≥1 variable but did not disseminate their evaluations outside their organization. Results suggest greater incentives may be required to advance the science of river enhancement. Future river-enhancement programs within the UMRB and elsewhere can increase knowledge gained from individual projects by offering better guidance on setting success criteria before project initiation and evaluation through established monitoring protocols.

  9. Sweep-twist adaptive rotor blade : final project report.

    SciTech Connect

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  10. Adaptive grid methods for RLV environment assessment and nozzle analysis

    NASA Technical Reports Server (NTRS)

    Thornburg, Hugh J.

    1996-01-01

    Rapid access to highly accurate data about complex configurations is needed for multi-disciplinary optimization and design. In order to efficiently meet these requirements a closer coupling between the analysis algorithms and the discretization process is needed. In some cases, such as free surface, temporally varying geometries, and fluid structure interaction, the need is unavoidable. In other cases the need is to rapidly generate and modify high quality grids. Techniques such as unstructured and/or solution-adaptive methods can be used to speed the grid generation process and to automatically cluster mesh points in regions of interest. Global features of the flow can be significantly affected by isolated regions of inadequately resolved flow. These regions may not exhibit high gradients and can be difficult to detect. Thus excessive resolution in certain regions does not necessarily increase the accuracy of the overall solution. Several approaches have been employed for both structured and unstructured grid adaption. The most widely used involve grid point redistribution, local grid point enrichment/derefinement or local modification of the actual flow solver. However, the success of any one of these methods ultimately depends on the feature detection algorithm used to determine solution domain regions which require a fine mesh for their accurate representation. Typically, weight functions are constructed to mimic the local truncation error and may require substantial user input. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. These weight functions can then be used to construct blending functions for algebraic redistribution, interpolation functions for unstructured grid generation

  11. Second derivatives for approximate spin projection methods

    SciTech Connect

    Thompson, Lee M.; Hratchian, Hrant P.

    2015-02-07

    The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical second derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.

  12. New methods and astrophysical applications of adaptive mesh fluid simulations

    NASA Astrophysics Data System (ADS)

    Wang, Peng

    The formation of stars, galaxies and supermassive black holes are among the most interesting unsolved problems in astrophysics. Those problems are highly nonlinear and involve enormous dynamical ranges. Thus numerical simulations with spatial adaptivity are crucial in understanding those processes. In this thesis, we discuss the development and application of adaptive mesh refinement (AMR) multi-physics fluid codes to simulate those nonlinear structure formation problems. To simulate the formation of star clusters, we have developed an AMR magnetohydrodynamics (MHD) code, coupled with radiative cooling. We have also developed novel algorithms for sink particle creation, accretion, merging and outflows, all of which are coupled with the fluid algorithms using operator splitting. With this code, we have been able to perform the first AMR-MHD simulation of star cluster formation for several dynamical times, including sink particle and protostellar outflow feedbacks. The results demonstrated that protostellar outflows can drive supersonic turbulence in dense clumps and explain the observed slow and inefficient star formation. We also suggest that global collapse rate is the most important factor in controlling massive star accretion rate. In the topics of galaxy formation, we discuss the results of three projects. In the first project, using cosmological AMR hydrodynamics simulations, we found that isolated massive star still forms in cosmic string wakes even though the mega-parsec scale structure has been perturbed significantly by the cosmic strings. In the second project, we calculated the dynamical heating rate in galaxy formation. We found that by balancing our heating rate with the atomic cooling rate, it gives a critical halo mass which agrees with the result of numerical simulations. This demonstrates that the effect of dynamical heating should be put into semi-analytical works in the future. In the third project, using our AMR-MHD code coupled with radiative

  13. Methods for the drug effectiveness review project.

    PubMed

    McDonagh, Marian S; Jonas, Daniel E; Gartlehner, Gerald; Little, Alison; Peterson, Kim; Carson, Susan; Gibson, Mark; Helfand, Mark

    2012-01-01

    The Drug Effectiveness Review Project was initiated in 2003 in response to dramatic increases in the cost of pharmaceuticals, which lessened the purchasing power of state Medicaid budgets. A collaborative group of state Medicaid agencies and other organizations formed to commission high-quality comparative effectiveness reviews to inform evidence-based decisions about drugs that would be available to Medicaid recipients. The Project is coordinated by the Center for Evidence-based Policy (CEbP) at Oregon Health & Science University (OHSU), and the systematic reviews are undertaken by the Evidence-based Practice Centers (EPCs) at OHSU and at the University of North Carolina. The reviews adhere to high standards for comparative effectiveness reviews. Because the investigators have direct, regular communication with policy-makers, the reports have direct impact on policy and decision-making, unlike many systematic reviews. The Project was an innovator of methods to involve stakeholders and continues to develop its methods in conducting reviews that are highly relevant to policy-makers. The methods used for selecting topics, developing key questions, searching, determining eligibility of studies, assessing study quality, conducting qualitative and quantitative syntheses, rating the strength of evidence, and summarizing findings are described. In addition, our on-going interactions with the policy-makers that use the reports are described. PMID:22970848

  14. Turbulence profiling methods applied to ESO's adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Valenzuela, Javier; Béchet, Clémentine; Garcia-Rissmann, Aurea; Gonté, Frédéric; Kolb, Johann; Le Louarn, Miska; Neichel, Benoît; Madec, Pierre-Yves; Guesalaga, Andrés.

    2014-07-01

    Two algorithms were recently studied for C2n profiling from wide-field Adaptive Optics (AO) measurements on GeMS (Gemini Multi-Conjugate AO system). They both rely on the Slope Detection and Ranging (SLODAR) approach, using spatial covariances of the measurements issued from various wavefront sensors. The first algorithm estimates the C2n profile by applying the truncated least-squares inverse of a matrix modeling the response of slopes covariances to various turbulent layer heights. In the second method, the profile is estimated by deconvolution of these spatial cross-covariances of slopes. We compare these methods in the new configuration of ESO Adaptive Optics Facility (AOF), a high-order multiple laser system under integration. For this, we use measurements simulated by the AO cluster of ESO. The impact of the measurement noise and of the outer scale of the atmospheric turbulence is analyzed. The important influence of the outer scale on the results leads to the development of a new step for outer scale fitting included in each algorithm. This increases the reliability and robustness of the turbulence strength and profile estimations.

  15. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    SciTech Connect

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  16. Computerized Adaptive Assessment of Personality Disorder: Introducing the CAT-PD Project

    PubMed Central

    Simms, Leonard J.; Goldberg, Lewis R.; Roberts, John E.; Watson, David; Welte, John; Rotterman, Jane H.

    2011-01-01

    Assessment of personality disorders (PD) has been hindered by reliance on the problematic categorical model embodied in the most recent Diagnostic and Statistical Model of Mental Disorders (DSM), lack of consensus among alternative dimensional models, and inefficient measurement methods. This article describes the rationale for and early results from an NIMH-funded, multi-year study designed to develop an integrative and comprehensive model and efficient measure of PD trait dimensions. To accomplish these goals, we are in the midst of a five-phase project to develop and validate the model and measure. The results of Phase 1 of the project—which was focused on developing the PD traits to be assessed and the initial item pool—resulted in a candidate list of 59 PD traits and an initial item pool of 2,589 items. Data collection and structural analyses in community and patient samples will inform the ultimate structure of the measure, and computerized adaptive testing (CAT) will permit efficient measurement of the resultant traits. The resultant Computerized Adaptive Test of Personality Disorder (CAT-PD) will be well positioned as a measure of the proposed DSM-5 PD traits. Implications for both applied and basic personality research are discussed. PMID:22804677

  17. An adaptive PCA fusion method for remote sensing images

    NASA Astrophysics Data System (ADS)

    Guo, Qing; Li, An; Zhang, Hongqun; Feng, Zhongkui

    2014-10-01

    The principal component analysis (PCA) method is a popular fusion method used for its efficiency and high spatial resolution improvement. However, the spectral distortion is often found in PCA. In this paper, we propose an adaptive PCA method to enhance the spectral quality of the fused image. The amount of spatial details of the panchromatic (PAN) image injected into each band of the multi-spectral (MS) image is appropriately determined by a weighting matrix, which is defined by the edges of the PAN image, the edges of the MS image and the proportions between MS bands. In order to prove the effectiveness of the proposed method, the qualitative visual and quantitative analyses are introduced. The correlation coefficient (CC), the spectral discrepancy (SPD), and the spectral angle mapper (SAM) are used to measure the spectral quality of each fused band image. Q index is calculated to evaluate the global spectral quality of all the fused bands as a whole. The spatial quality is evaluated by the average gradient (AG) and the standard deviation (STD). Experimental results show that the proposed method improves the spectral quality very much comparing to the original PCA method while maintaining the high spatial quality of the original PCA.

  18. A spectral projection method for transmission eigenvalues

    NASA Astrophysics Data System (ADS)

    Zeng, Fang; Sun, JiGuang; Xu, LiWei

    2016-08-01

    In this paper, we consider a nonlinear integral eigenvalue problem, which is a reformulation of the transmission eigenvalue problem arising in the inverse scattering theory. The boundary element method is employed for discretization, which leads to a generalized matrix eigenvalue problem. We propose a novel method based on the spectral projection. The method probes a given region on the complex plane using contour integrals and decides if the region contains eigenvalue(s) or not. It is particularly suitable to test if zero is an eigenvalue of the generalized eigenvalue problem, which in turn implies that the associated wavenumber is a transmission eigenvalue. Effectiveness and efficiency of the new method are demonstrated by numerical examples.

  19. A Review on Effectiveness and Adaptability of the Design-Build Method

    NASA Astrophysics Data System (ADS)

    Kudo, Masataka; Miyatake, Ichiro; Baba, Kazuhito; Yokoi, Hiroyuki; Fueta, Toshiharu

    In the Ministry of Land, Infrastructure, Transport and Tourism (MLIT), various approaches have been taken for efficient implementation of public works projects, one of which is the ongoing use of the design-build method on a trial basis, as a means to utilize the technical skills and knowledge of private companies. In 2005, MLIT further introduced the a dvanced technical proposal type, a kind of the comprehensive evaluation method, as part of its efforts to improve tendering and contracting systems. Meanwhile, although the positive effect of the design build method has been reported, it has not been widely published, which may be one of the reasons that the number of MLIT projects using the design-build method is declining year by year. In this context, this paper discusses the result and review of the study concerning the extent of flexibility allowed for the process and design (proposal) of public work projects, and the follow-up surveys of the actual test case projects, conducted as basic researches to examine the measure to expand and promote the use of the design-build method. The study objects were selected from the tunnel construction projects using the shield tunneling method for developing the common utility duct, and the bridge construction projects ordering construction of supers tructure work and substructure work in a single contract. In providing the result and review of the studies, the structures and the temporary installations were separately examined, and effectiveness and adaptability of the design-build method was discussed for each, respectively.

  20. Reduction in redundancy of multichannel telemetric information by the method of adaptive discretization with associative sorting

    NASA Technical Reports Server (NTRS)

    Kantor, A. V.; Timonin, V. G.; Azarova, Y. S.

    1974-01-01

    The method of adaptive discretization is the most promising for elimination of redundancy from telemetry messages characterized by signal shape. Adaptive discretization with associative sorting was considered as a way to avoid the shortcomings of adaptive discretization with buffer smoothing and adaptive discretization with logical switching in on-board information compression devices (OICD) in spacecraft. Mathematical investigations of OICD are presented.

  1. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  2. The Formative Method for Adapting Psychotherapy (FMAP): A community-based developmental approach to culturally adapting therapy

    PubMed Central

    Hwang, Wei-Chin

    2010-01-01

    How do we culturally adapt psychotherapy for ethnic minorities? Although there has been growing interest in doing so, few therapy adaptation frameworks have been developed. The majority of these frameworks take a top-down theoretical approach to adapting psychotherapy. The purpose of this paper is to introduce a community-based developmental approach to modifying psychotherapy for ethnic minorities. The Formative Method for Adapting Psychotherapy (FMAP) is a bottom-up approach that involves collaborating with consumers to generate and support ideas for therapy adaptation. It involves 5-phases that target developing, testing, and reformulating therapy modifications. These phases include: (a) generating knowledge and collaborating with stakeholders (b) integrating generated information with theory and empirical and clinical knowledge, (c) reviewing the initial culturally adapted clinical intervention with stakeholders and revising the culturally adapted intervention, (d) testing the culturally adapted intervention, and (e) finalizing the culturally adapted intervention. Application of the FMAP is illustrated using examples from a study adapting psychotherapy for Chinese Americans, but can also be readily applied to modify therapy for other ethnic groups. PMID:20625458

  3. A Spectral Adaptive Mesh Refinement Method for the Burgers equation

    NASA Astrophysics Data System (ADS)

    Nasr Azadani, Leila; Staples, Anne

    2013-03-01

    Adaptive mesh refinement (AMR) is a powerful technique in computational fluid dynamics (CFD). Many CFD problems have a wide range of scales which vary with time and space. In order to resolve all the scales numerically, high grid resolutions are required. The smaller the scales the higher the resolutions should be. However, small scales are usually formed in a small portion of the domain or in a special period of time. AMR is an efficient method to solve these types of problems, allowing high grid resolutions where and when they are needed and minimizing memory and CPU time. Here we formulate a spectral version of AMR in order to accelerate simulations of a 1D model for isotropic homogenous turbulence, the Burgers equation, as a first test of this method. Using pseudo spectral methods, we applied AMR in Fourier space. The spectral AMR (SAMR) method we present here is applied to the Burgers equation and the results are compared with the results obtained using standard solution methods performed using a fine mesh.

  4. Robust image registration using adaptive coherent point drift method

    NASA Astrophysics Data System (ADS)

    Yang, Lijuan; Tian, Zheng; Zhao, Wei; Wen, Jinhuan; Yan, Weidong

    2016-04-01

    Coherent point drift (CPD) method is a powerful registration tool under the framework of the Gaussian mixture model (GMM). However, the global spatial structure of point sets is considered only without other forms of additional attribute information. The equivalent simplification of mixing parameters and the manual setting of the weight parameter in GMM make the CPD method less robust to outlier and have less flexibility. An adaptive CPD method is proposed to automatically determine the mixing parameters by embedding the local attribute information of features into the construction of GMM. In addition, the weight parameter is treated as an unknown parameter and automatically determined in the expectation-maximization algorithm. In image registration applications, the block-divided salient image disk extraction method is designed to detect sparse salient image features and local self-similarity is used as attribute information to describe the local neighborhood structure of each feature. The experimental results on optical images and remote sensing images show that the proposed method can significantly improve the matching performance.

  5. Efficient Combustion Simulation via the Adaptive Wavelet Collocation Method

    NASA Astrophysics Data System (ADS)

    Lung, Kevin; Brown-Dymkoski, Eric; Guerrero, Victor; Doran, Eric; Museth, Ken; Balme, Jo; Urberger, Bob; Kessler, Andre; Jones, Stephen; Moses, Billy; Crognale, Anthony

    Rocket engine development continues to be driven by the intuition and experience of designers, progressing through extensive trial-and-error test campaigns. Extreme temperatures and pressures frustrate direct observation, while high-fidelity simulation can be impractically expensive owing to the inherent muti-scale, multi-physics nature of the problem. To address this cost, an adaptive multi-resolution PDE solver has been designed which targets the high performance, many-core architecture of GPUs. The adaptive wavelet collocation method is used to maintain a sparse-data representation of the high resolution simulation, greatly reducing the memory footprint while tightly controlling physical fidelity. The tensorial, stencil topology of wavelet-based grids lends itself to highly vectorized algorithms which are necessary to exploit the performance of GPUs. This approach permits efficient implementation of direct finite-rate kinetics, and improved resolution of steep thermodynamic gradients and the smaller mixing scales that drive combustion dynamics. Resolving these scales is crucial for accurate chemical kinetics, which are typically degraded or lost in statistical modeling approaches.

  6. A locally adaptive kernel regression method for facies delineation

    NASA Astrophysics Data System (ADS)

    Fernàndez-Garcia, D.; Barahona-Palomo, M.; Henri, C. V.; Sanchez-Vila, X.

    2015-12-01

    Facies delineation is defined as the separation of geological units with distinct intrinsic characteristics (grain size, hydraulic conductivity, mineralogical composition). A major challenge in this area stems from the fact that only a few scattered pieces of hydrogeological information are available to delineate geological facies. Several methods to delineate facies are available in the literature, ranging from those based only on existing hard data, to those including secondary data or external knowledge about sedimentological patterns. This paper describes a methodology to use kernel regression methods as an effective tool for facies delineation. The method uses both the spatial and the actual sampled values to produce, for each individual hard data point, a locally adaptive steering kernel function, self-adjusting the principal directions of the local anisotropic kernels to the direction of highest local spatial correlation. The method is shown to outperform the nearest neighbor classification method in a number of synthetic aquifers whenever the available number of hard data is small and randomly distributed in space. In the case of exhaustive sampling, the steering kernel regression method converges to the true solution. Simulations ran in a suite of synthetic examples are used to explore the selection of kernel parameters in typical field settings. It is shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The performance of the method is demonstrated to significantly improve when external information regarding facies proportions is incorporated. Remarkably, the method allows for a reasonable reconstruction of the facies connectivity patterns, shown in terms of breakthrough curves performance.

  7. Adapting Western Research Methods to Indigenous Ways of Knowing

    PubMed Central

    Christopher, Suzanne

    2013-01-01

    Indigenous communities have long experienced exploitation by researchers and increasingly require participatory and decolonizing research processes. We present a case study of an intervention research project to exemplify a clash between Western research methodologies and Indigenous methodologies and how we attempted reconciliation. We then provide implications for future research based on lessons learned from Native American community partners who voiced concern over methods of Western deductive qualitative analysis. Decolonizing research requires constant reflective attention and action, and there is an absence of published guidance for this process. Continued exploration is needed for implementing Indigenous methods alone or in conjunction with appropriate Western methods when conducting research in Indigenous communities. Currently, examples of Indigenous methods and theories are not widely available in academic texts or published articles, and are often not perceived as valid. PMID:23678897

  8. Methods for cost estimation in software project management

    NASA Astrophysics Data System (ADS)

    Briciu, C. V.; Filip, I.; Indries, I. I.

    2016-02-01

    The speed in which the processes used in software development field have changed makes it very difficult the task of forecasting the overall costs for a software project. By many researchers, this task has been considered unachievable, but there is a group of scientist for which this task can be solved using the already known mathematical methods (e.g. multiple linear regressions) and the new techniques as genetic programming and neural networks. The paper presents a solution for building a model for the cost estimation models in the software project management using genetic algorithms starting from the PROMISE datasets related COCOMO 81 model. In the first part of the paper, a summary of the major achievements in the research area of finding a model for estimating the overall project costs is presented together with the description of the existing software development process models. In the last part, a basic proposal of a mathematical model of a genetic programming is proposed including here the description of the chosen fitness function and chromosome representation. The perspective of model described it linked with the current reality of the software development considering as basis the software product life cycle and the current challenges and innovations in the software development area. Based on the author's experiences and the analysis of the existing models and product lifecycle it was concluded that estimation models should be adapted with the new technologies and emerging systems and they depend largely by the chosen software development method.

  9. Artisticc: An Art and Science Integration Project to Enquire into Community Level Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Vanderlinden, J. P.; Baztan, J.

    2014-12-01

    The prupose of this paper is to present the "Adaptation Research a Transdisciplinary community and policy centered appoach" (ARTisticc) project. ARTisticc's goal is to apply innovative standardized transdisciplinary art and science integrative approaches to foster robust, socially, culturally and scientifically, community centred adaptation to climate change. The approach used in the project is based on the strong understanding that adaptation is: (a) still "a concept of uncertain form"; (b) a concept dealing with uncertainty; (c) a concept that calls for an analysis that goes beyond the traditional disciplinary organization of science, and; (d) an unconventional process in the realm of science and policy integration. The project is centered on case studies in France, Greenland, Russia, India, Canada, Alaska, and Senegal. In every site we jointly develop artwork while we analyzing how natural science, essentially geosciences can be used in order to better adapt in the future, how society adapt to current changes and how memories of past adaptations frames current and future processes. Artforms are mobilized in order to share scientific results with local communities and policy makers, this in a way that respects cultural specificities while empowering stakeholders, ARTISTICC translates these "real life experiments" into stories and artwork that are meaningful to those affected by climate change. The scientific results and the culturally mediated productions will thereafter be used in order to co-construct, with NGOs and policy makers, policy briefs, i.e. robust and scientifically legitimate policy recommendations regarding coastal adaptation. This co-construction process will be in itself analysed with the goal of increasing arts and science's performative functions in the universe of evidence-based policy making. The project involves scientists from natural sciences, the social sciences and the humanities, as well as artitis from the performing arts (playwriters

  10. A forward method for optimal stochastic nonlinear and adaptive control

    NASA Technical Reports Server (NTRS)

    Bayard, David S.

    1988-01-01

    A computational approach is taken to solve the optimal nonlinear stochastic control problem. The approach is to systematically solve the stochastic dynamic programming equations forward in time, using a nested stochastic approximation technique. Although computationally intensive, this provides a straightforward numerical solution for this class of problems and provides an alternative to the usual dimensionality problem associated with solving the dynamic programming equations backward in time. It is shown that the cost degrades monotonically as the complexity of the algorithm is reduced. This provides a strategy for suboptimal control with clear performance/computation tradeoffs. A numerical study focusing on a generic optimal stochastic adaptive control example is included to demonstrate the feasibility of the method.

  11. Neurology diagnostics security and terminal adaptation for PocketNeuro project.

    PubMed

    Chemak, C; Bouhlel, M-S; Lapayre, J-C

    2008-09-01

    This paper presents new approaches of medical information security and terminal mobile phone adaptation for the PocketNeuro project. The latter term refers to a project created for the management of neurological diseases. It consists of transmitting information about patients ("desk of patients") to a doctor's mobile phone during a visit and examination of a patient. These new approaches for the PocketNeuro project were analyzed in terms of medical information security and adaptation of the diagnostic images to the doctor's mobile phone. Images were extracted from a DICOM library. Matlab and its library were used as software to test our approaches and to validate our results. Experiments performed on a database of 30 256 x 256 pixel-sized neuronal medical images indicated that our new approaches for PocketNeuro project are valid and support plans for large-scale studies between French and Swiss hospitals using secured connections. PMID:18817496

  12. Results of a Formal Methods Demonstration Project

    NASA Technical Reports Server (NTRS)

    Kelly, J.; Covington, R.; Hamilton, D.

    1994-01-01

    This paper describes the results of a cooperative study conducted by a team of researchers in formal methods at three NASA Centers to demonstrate FM techniques and to tailor them to critical NASA software systems. This pilot project applied FM to an existing critical software subsystem, the Shuttle's Jet Select subsystem (Phase I of an ongoing study). The present study shows that FM can be used successfully to uncover hidden issues in a highly critical and mature Functional Subsystem Software Requirements (FSSR) specification which are very difficult to discover by traditional means.

  13. Adaptive mesh refinement and adjoint methods in geophysics simulations

    NASA Astrophysics Data System (ADS)

    Burstedde, Carsten

    2013-04-01

    It is an ongoing challenge to increase the resolution that can be achieved by numerical geophysics simulations. This applies to considering sub-kilometer mesh spacings in global-scale mantle convection simulations as well as to using frequencies up to 1 Hz in seismic wave propagation simulations. One central issue is the numerical cost, since for three-dimensional space discretizations, possibly combined with time stepping schemes, a doubling of resolution can lead to an increase in storage requirements and run time by factors between 8 and 16. A related challenge lies in the fact that an increase in resolution also increases the dimensionality of the model space that is needed to fully parametrize the physical properties of the simulated object (a.k.a. earth). Systems that exhibit a multiscale structure in space are candidates for employing adaptive mesh refinement, which varies the resolution locally. An example that we found well suited is the mantle, where plate boundaries and fault zones require a resolution on the km scale, while deeper area can be treated with 50 or 100 km mesh spacings. This approach effectively reduces the number of computational variables by several orders of magnitude. While in this case it is possible to derive the local adaptation pattern from known physical parameters, it is often unclear what are the most suitable criteria for adaptation. We will present the goal-oriented error estimation procedure, where such criteria are derived from an objective functional that represents the observables to be computed most accurately. Even though this approach is well studied, it is rarely used in the geophysics community. A related strategy to make finer resolution manageable is to design methods that automate the inference of model parameters. Tweaking more than a handful of numbers and judging the quality of the simulation by adhoc comparisons to known facts and observations is a tedious task and fundamentally limited by the turnaround times

  14. Formal methods demonstration project for space applications

    NASA Technical Reports Server (NTRS)

    Divito, Ben L.

    1995-01-01

    The Space Shuttle program is cooperating in a pilot project to apply formal methods to live requirements analysis activities. As one of the larger ongoing shuttle Change Requests (CR's), the Global Positioning System (GPS) CR involves a significant upgrade to the Shuttle's navigation capability. Shuttles are to be outfitted with GPS receivers and the primary avionics software will be enhanced to accept GPS-provided positions and integrate them into navigation calculations. Prior to implementing the CR, requirements analysts at Loral Space Information Systems, the Shuttle software contractor, must scrutinize the CR to identify and resolve any requirements issues. We describe an ongoing task of the Formal Methods Demonstration Project for Space Applications whose goal is to find an effective way to use formal methods in the GPS CR requirements analysis phase. This phase is currently under way and a small team from NASA Langley, ViGYAN Inc. and Loral is now engaged in this task. Background on the GPS CR is provided and an overview of the hardware/software architecture is presented. We outline the approach being taken to formalize the requirements, only a subset of which is being attempted. The approach features the use of the PVS specification language to model 'principal functions', which are major units of Shuttle software. Conventional state machine techniques form the basis of our approach. Given this background, we present interim results based on a snapshot of work in progress. Samples of requirements specifications rendered in PVS are offered to illustration. We walk through a specification sketch for the principal function known as GPS Receiver State processing. Results to date are summarized and feedback from Loral requirements analysts is highlighted. Preliminary data is shown comparing issues detected by the formal methods team versus those detected using existing requirements analysis methods. We conclude by discussing our plan to complete the remaining

  15. Evaluation of Adaptive Subdivision Method on Mobile Device

    NASA Astrophysics Data System (ADS)

    Rahim, Mohd Shafry Mohd; Isa, Siti Aida Mohd; Rehman, Amjad; Saba, Tanzila

    2013-06-01

    Recently, there are significant improvements in the capabilities of mobile devices; but rendering large 3D object is still tedious because of the constraint in resources of mobile devices. To reduce storage requirement, 3D object is simplified but certain area of curvature is compromised and the surface will not be smooth. Therefore a method to smoother selected area of a curvature is implemented. One of the popular methods is adaptive subdivision method. Experiments are performed using two data with results based on processing time, rendering speed and the appearance of the object on the devices. The result shows a downfall in frame rate performance due to the increase in the number of triangles with each level of iteration while the processing time of generating the new mesh also significantly increase. Since there is a difference in screen size between the devices the surface on the iPhone appears to have more triangles and more compact than the surface displayed on the iPad. [Figure not available: see fulltext.

  16. Random projection and SVD methods in hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jiani

    Hyperspectral imaging provides researchers with abundant information with which to study the characteristics of objects in a scene. Processing the massive hyperspectral imagery datasets in a way that efficiently provides useful information becomes an important issue. In this thesis, we consider methods which reduce the dimension of hyperspectral data while retaining as much useful information as possible. Traditional deterministic methods for low-rank approximation are not always adaptable to process huge datasets in an effective way, and therefore probabilistic methods are useful in dimension reduction of hyperspectral images. In this thesis, we begin by generally introducing the background and motivations of this work. Next, we summarize the preliminary knowledge and the applications of SVD and PCA. After these descriptions, we present a probabilistic method, randomized Singular Value Decomposition (rSVD), for the purposes of dimension reduction, compression, reconstruction, and classification of hyperspectral data. We discuss some variations of this method. These variations offer the opportunity to obtain a more accurate reconstruction of the matrix whose singular values decay gradually, to process matrices without target rank, and to obtain the rSVD with only one single pass over the original data. Moreover, we compare the method with Compressive-Projection Principle Component Analysis (CPPCA). From the numerical results, we can see that rSVD has better performance in compression and reconstruction than truncated SVD and CPPCA. We also apply rSVD to classification methods for the hyperspectral data provided by the National Geospatial-Intelligence Agency (NGA).

  17. Activity Structures for Project-Based Teaching and Learning: Design and Adaptation of Cultural Tools.

    ERIC Educational Resources Information Center

    Polman, Joseph L.

    This paper discusses research on activity structure design in a project-based science classroom and efforts to adapt designs from this setting to an after-school program involving historical inquiry. Common activity structures such as classroom lessons and Initiation-Reply-Evaluation (I-R-E) sequences are important cultural tools that help…

  18. An Adaptation of Dual Labor Market Theory to the Evaluation of an Youth Employment Project.

    ERIC Educational Resources Information Center

    Spiessl, Ronald W.

    This paper reports the problems arising out of, and the solution developed, in adapting dual labor market theory to the evaluation of a CETA youth employment demonstration project. The theory posits that some jobs operate within a primary labor market, and are characterized by good wages and benefits, job security and potential for within firm…

  19. A Study of Two Methods for Adapting Self-Instructional Materials to Individual Differences. Final Report.

    ERIC Educational Resources Information Center

    Melaragno, Ralph J.

    The two-phase study compared two methods of adapting self-instructional materials to individual differences among learners. The methods were compared with each other and with a control condition involving only minimal adaptation. The first adaptation procedure was based on subjects' performances on a learning task in Phase I of the study; the…

  20. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  1. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, J.T.

    1998-04-28

    A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.

  2. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, Joseph Thaddeus

    1998-01-01

    A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)

  3. Adapted G-mode Clustering Method applied to Asteroid Taxonomy

    NASA Astrophysics Data System (ADS)

    Hasselmann, Pedro H.; Carvano, Jorge M.; Lazzaro, D.

    2013-11-01

    The original G-mode was a clustering method developed by A. I. Gavrishin in the late 60's for geochemical classification of rocks, but was also applied to asteroid photometry, cosmic rays, lunar sample and planetary science spectroscopy data. In this work, we used an adapted version to classify the asteroid photometry from SDSS Moving Objects Catalog. The method works by identifying normal distributions in a multidimensional space of variables. The identification starts by locating a set of points with smallest mutual distance in the sample, which is a problem when data is not planar. Here we present a modified version of the G-mode algorithm, which was previously written in FORTRAN 77, in Python 2.7 and using NumPy, SciPy and Matplotlib packages. The NumPy was used for array and matrix manipulation and Matplotlib for plot control. The Scipy had a import role in speeding up G-mode, Scipy.spatial.distance.mahalanobis was chosen as distance estimator and Numpy.histogramdd was applied to find the initial seeds from which clusters are going to evolve. Scipy was also used to quickly produce dendrograms showing the distances among clusters. Finally, results for Asteroids Taxonomy and tests for different sample sizes and implementations are presented.

  4. A CT reconstruction approach from sparse projection with adaptive-weighted diagonal total-variation in biomedical application.

    PubMed

    Deng, Luzhen; Mi, Deling; He, Peng; Feng, Peng; Yu, Pengwei; Chen, Mianyi; Li, Zhichao; Wang, Jian; Wei, Biao

    2015-01-01

    For lack of directivity in Total Variation (TV) which only uses x-coordinate and y-coordinate gradient transform as its sparse representation approach during the iteration process, this paper brought in Adaptive-weighted Diagonal Total Variation (AwDTV) that uses the diagonal direction gradient to constraint reconstructed image and adds associated weights which are expressed as an exponential function and can be adaptively adjusted by the local image-intensity diagonal gradient for the purpose of preserving the edge details, then using the steepest descent method to solve the optimization problem. Finally, we did two sets of numerical simulation and the results show that the proposed algorithm can reconstruct high-quality CT images from few-views projection, which has lower Root Mean Square Error (RMSE) and higher Universal Quality Index (UQI) than Algebraic Reconstruction Technique (ART) and TV-based reconstruction method. PMID:26405935

  5. Revealing Risks in Adaptation Planning: expanding Uncertainty Treatment and dealing with Large Projection Ensembles during Planning Scenario development

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Clark, M. P.; Gutmann, E. D.; Wood, A.; Mizukami, N.; Mendoza, P. A.; Rasmussen, R.; Ikeda, K.; Pruitt, T.; Arnold, J. R.; Rajagopalan, B.

    2015-12-01

    Adaptation planning assessments often rely on single methods for climate projection downscaling and hydrologic analysis, do not reveal uncertainties from associated method choices, and thus likely produce overly confident decision-support information. Recent work by the authors has highlighted this issue by identifying strengths and weaknesses of widely applied methods for downscaling climate projections and assessing hydrologic impacts. This work has shown that many of the methodological choices made can alter the magnitude, and even the sign of the climate change signal. Such results motivate consideration of both sources of method uncertainty within an impacts assessment. Consequently, the authors have pursued development of improved downscaling techniques spanning a range of method classes (quasi-dynamical and circulation-based statistical methods) and developed approaches to better account for hydrologic analysis uncertainty (multi-model; regional parameter estimation under forcing uncertainty). This presentation summarizes progress in the development of these methods, as well as implications of pursuing these developments. First, having access to these methods creates an opportunity to better reveal impacts uncertainty through multi-method ensembles, expanding on present-practice ensembles which are often based only on emissions scenarios and GCM choices. Second, such expansion of uncertainty treatment combined with an ever-expanding wealth of global climate projection information creates a challenge of how to use such a large ensemble for local adaptation planning. To address this challenge, the authors are evaluating methods for ensemble selection (considering the principles of fidelity, diversity and sensitivity) that is compatible with present-practice approaches for abstracting change scenarios from any "ensemble of opportunity". Early examples from this development will also be presented.

  6. Nonlinear optimization with linear constraints using a projection method

    NASA Technical Reports Server (NTRS)

    Fox, T.

    1982-01-01

    Nonlinear optimization problems that are encountered in science and industry are examined. A method of projecting the gradient vector onto a set of linear contraints is developed, and a program that uses this method is presented. The algorithm that generates this projection matrix is based on the Gram-Schmidt method and overcomes some of the objections to the Rosen projection method.

  7. Adaptable Metadata Rich IO Methods for Portable High Performance IO

    SciTech Connect

    Lofstead, J.; Zheng, Fang; Klasky, Scott A; Schwan, Karsten

    2009-01-01

    Since IO performance on HPC machines strongly depends on machine characteristics and configuration, it is important to carefully tune IO libraries and make good use of appropriate library APIs. For instance, on current petascale machines, independent IO tends to outperform collective IO, in part due to bottlenecks at the metadata server. The problem is exacerbated by scaling issues, since each IO library scales differently on each machine, and typically, operates efficiently to different levels of scaling on different machines. With scientific codes being run on a variety of HPC resources, efficient code execution requires us to address three important issues: (1) end users should be able to select the most efficient IO methods for their codes, with minimal effort in terms of code updates or alterations; (2) such performance-driven choices should not prevent data from being stored in the desired file formats, since those are crucial for later data analysis; and (3) it is important to have efficient ways of identifying and selecting certain data for analysis, to help end users cope with the flood of data produced by high end codes. This paper employs ADIOS, the ADaptable IO System, as an IO API to address (1)-(3) above. Concerning (1), ADIOS makes it possible to independently select the IO methods being used by each grouping of data in an application, so that end users can use those IO methods that exhibit best performance based on both IO patterns and the underlying hardware. In this paper, we also use this facility of ADIOS to experimentally evaluate on petascale machines alternative methods for high performance IO. Specific examples studied include methods that use strong file consistency vs. delayed parallel data consistency, as that provided by MPI-IO or POSIX IO. Concerning (2), to avoid linking IO methods to specific file formats and attain high IO performance, ADIOS introduces an efficient intermediate file format, termed BP, which can be converted, at small

  8. The Project Method in Agricultural Education: Then and Now

    ERIC Educational Resources Information Center

    Roberts, T. Grady; Harlin, Julie F.

    2007-01-01

    The purpose of this philosophical paper was to synthesize theoretical and historical foundations of the project method and compare them to modern best-practices. A review of historical and contemporary literature related to the project method yielded six themes: 1) purpose of projects; 2) project classification; 3) the process; 4) the context; 5)…

  9. An Alternative Method to Project Wind Patterns

    NASA Astrophysics Data System (ADS)

    Fadillioglu, Cagla; Kiyisuren, I. Cagatay; Collu, Kamil; Turp, M. Tufan; Kurnaz, M. Levent; Ozturk, Tugba

    2016-04-01

    Wind energy is one of the major clean and sustainable energy sources. Beside its various advantages, wind energy has a downside that its performance cannot be projected very accurately in the long-term. In this study, we offer an alternative method which can be used to determine the best location to install a wind turbine in a large area aiming maximum energy performance in the long run. For this purpose, a regional climate model (i.e. RegCM4.4) is combined with a software called Winds on Critical Streamline Surfaces (WOCSS) in order to identify wind patterns for any domains even in a changing climate. As a special case, Çanakkale region is examined due to the terrain profile having both coastal and mountainous features. WOCSS program was run twice for each month in the sample years in a double nested fashion, using the provisional RegCM4.4 wind data between years 2020 and 2040. Modified version of WOCSS provides terrain following flow surfaces and by processing those data, it makes a wind profile output for certain heights specified by the user. The computational time of WOCSS is also in reasonable range. Considering the lack of alternative methods for long-term wind performance projection, the model used in this study is a very good way for obtaining quick indications for wind performance taking the impact of the terrain effects into account. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.

  10. A hybrid method for optimization of the adaptive Goldstein filter

    NASA Astrophysics Data System (ADS)

    Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue

    2014-12-01

    The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.

  11. Tsunami modelling with adaptively refined finite volume methods

    USGS Publications Warehouse

    LeVeque, R.J.; George, D.L.; Berger, M.J.

    2011-01-01

    Numerical modelling of transoceanic tsunami propagation, together with the detailed modelling of inundation of small-scale coastal regions, poses a number of algorithmic challenges. The depth-averaged shallow water equations can be used to reduce this to a time-dependent problem in two space dimensions, but even so it is crucial to use adaptive mesh refinement in order to efficiently handle the vast differences in spatial scales. This must be done in a 'wellbalanced' manner that accurately captures very small perturbations to the steady state of the ocean at rest. Inundation can be modelled by allowing cells to dynamically change from dry to wet, but this must also be done carefully near refinement boundaries. We discuss these issues in the context of Riemann-solver-based finite volume methods for tsunami modelling. Several examples are presented using the GeoClaw software, and sample codes are available to accompany the paper. The techniques discussed also apply to a variety of other geophysical flows. ?? 2011 Cambridge University Press.

  12. Adaptation of a Psycho-Oncology Intervention for Black Breast Cancer Survivors: Project CARE

    PubMed Central

    Lechner, Suzanne C.; Ennis-Whitehead, Nicole; Robertson, Belinda Ryan; Annane, Debra W.; Vargas, Sara; Carver, Charles S.; Antoni, Michael H.

    2014-01-01

    Black women are traditionally underserved in all aspects of cancer care. This disparity is particularly evident in the area of psychosocial interventions where there are few programs designed to specifically meet the needs of Black breast cancer survivors. Cognitive-behavioral stress management intervention (CBSM) has been shown to facilitate adjustment to cancer. Recently, this intervention model has been adapted for Black women who have recently completed treatment for breast cancer. We outline the components of the CBSM intervention, the steps we took to adapt the intervention to meet the needs of Black women (Project CARE) and discuss the preliminary findings regarding acceptability and retention of participants in this novel study. PMID:25544778

  13. Supporting UK adaptation: building services for the next set of UK climate projections

    NASA Astrophysics Data System (ADS)

    Fung, Fai; Lowe, Jason

    2016-04-01

    As part of the Climate Change Act 2008, the UK Government sets out a national adaptation programme to address the risks and opportunities identified in a national climate change risk assessment (CCRA) every five years. The last risk assessment in 2012 was based on the probabilistic projections for the UK published in 2009 (UKCP09). The second risk assessment will also use information from UKCP09 alongside other evidence on climate projections. However, developments in the science of climate projeciton, and evolving user needs (based partly on what has been learnt about the diverse user requirements of the UK adaptation community from the seven years of delivering and managing UKCP09 products, market research and the peer-reviewed literature) suggest now is an appropriate time to update the projections and how they are delivered. A new set of UK climate projections are now being produced to upgrade UKCP09 to reflect the latest developments in climate science, the first phase of which will be delivered in 2018 to support the third CCRA. A major component of the work is the building of a tailored service to support users of the new projections during their development and to involve users in key decisions so that the projections are of most use. We will set out the plan for the new climate projections that seek to address the evolving user need. We will also present a framework which aims to (i) facilitate the dialogue between users, boundary organisations and producers, reflecting their different decision-making roles (ii) produce scientifically robust, user-relevant climate information (iii) provide the building blocks for developing further climate services to support adaptation activities in the UK.

  14. The importance of including variability in climate change projections used for adaptation

    NASA Astrophysics Data System (ADS)

    Sexton, David M. H.; Harris, Glen R.

    2015-10-01

    Our understanding of mankind’s influence on the climate is largely based on computer simulations. Model output is typically averaged over several decades so that the anthropogenic climate change signal stands out from the largely unpredictable `noise’ of climate variability. Similar averaging periods (30-year) are used for regional climate projections to inform adaptation. According to two such projections, UKCIP02 (ref. ) and UKCP09 (ref. ), the UK will experience `hotter drier summers and warmer wetter winters’ in the future. This message is about a typical rather than any individual future season, and these projections should not be compared directly to observed weather as this neglects the sizeable contribution from year-to-year climate variability. Therefore, despite the apparent contradiction with the messages, it is a fallacy to suggest the recent cold UK winters like 2009/2010 disprove human-made climate change. Nevertheless, such claims understandably cause public confusion and doubt. Here we include year-to-year variability to provide projections for individual seasons. This approach has two advantages. First, it allows fair comparisons with recent weather events, for instance showing that recent cold winters are within projected ranges. Second, it allows the projections to be expressed in terms of the extreme hot, cold, wet or dry seasons that impact society, providing a better idea of adaptation needs.

  15. MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods

    PubMed Central

    Schmidt, Johannes F. M.; Santelli, Claudio; Kozerke, Sebastian

    2016-01-01

    An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675

  16. MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods.

    PubMed

    Schmidt, Johannes F M; Santelli, Claudio; Kozerke, Sebastian

    2016-01-01

    An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675

  17. How to Select a Project Delivery Method for School Facilities

    ERIC Educational Resources Information Center

    Kalina, David

    2007-01-01

    In this article, the author discusses and explains three project delivery methods that are commonly used today in the United States. The first project delivery method mentioned is the design-bid-build, which is still the predominant method of project delivery for public works and school construction in the United States. The second is the…

  18. Adaptive optical beam shaping for compensating projection-induced focus deformation

    NASA Astrophysics Data System (ADS)

    Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2016-02-01

    Scanner-based applications are already widely used for the processing of surfaces, as they allow for highly dynamic deflection of the laser beam. Particularly, the processing of three-dimensional surfaces with laser radiation initiates the development of highly innovative manufacturing techniques. Unfortunately, the focused laser beam suffers from deformation caused by the involved projection mechanisms. The degree of deformation is field variant and depends on both the surface geometry and the working position of the laser beam. Depending on the process sensitivity, the deformation affects the process quality, which motivates a method of compensation. Current approaches are based on a local adaption of the laser power to maintain constant intensity within the interaction zone. For advanced manufacturing, this approach is insufficient, as the residual deformation of the initial circular laser spot is not taken into account. In this paper, an alternative approach is discussed. Additional beam-shaping devices are integrated between the laser source and the scanner, and allow for an in situ compensation to ensure a field-invariant circular focus spot within the interaction zone. Beyond the optical design, the approach is challenging with respect to the control theory's point of view, as both the beam deflection and the compensation have to be synchronized.

  19. Solution of Reactive Compressible Flows Using an Adaptive Wavelet Method

    NASA Astrophysics Data System (ADS)

    Zikoski, Zachary; Paolucci, Samuel; Powers, Joseph

    2008-11-01

    This work presents numerical simulations of reactive compressible flow, including detailed multicomponent transport, using an adaptive wavelet algorithm. The algorithm allows for dynamic grid adaptation which enhances our ability to fully resolve all physically relevant scales. The thermodynamic properties, equation of state, and multicomponent transport properties are provided by CHEMKIN and TRANSPORT libraries. Results for viscous detonation in a H2:O2:Ar mixture, and other problems in multiple dimensions, are included.

  20. On Accuracy of Adaptive Grid Methods for Captured Shocks

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2002-01-01

    The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.

  1. Method and system for spatial data input, manipulation and distribution via an adaptive wireless transceiver

    NASA Technical Reports Server (NTRS)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.

  2. Global Change adaptation in water resources management: the Water Change project.

    PubMed

    Pouget, Laurent; Escaler, Isabel; Guiu, Roger; Mc Ennis, Suzy; Versini, Pierre-Antoine

    2012-12-01

    In recent years, water resources management has been facing new challenges due to increasing changes and their associated uncertainties, such as changes in climate, water demand or land use, which can be grouped under the term Global Change. The Water Change project (LIFE+ funding) developed a methodology and a tool to assess the Global Change impacts on water resources, thus helping river basin agencies and water companies in their long term planning and in the definition of adaptation measures. The main result of the project was the creation of a step by step methodology to assess Global Change impacts and define strategies of adaptation. This methodology was tested in the Llobregat river basin (Spain) with the objective of being applicable to any water system. It includes several steps such as setting-up the problem with a DPSIR framework, developing Global Change scenarios, running river basin models and performing a cost-benefit analysis to define optimal strategies of adaptation. This methodology was supported by the creation of a flexible modelling system, which can link a wide range of models, such as hydrological, water quality, and water management models. The tool allows users to integrate their own models to the system, which can then exchange information among them automatically. This enables to simulate the interactions among multiple components of the water cycle, and run quickly a large number of Global Change scenarios. The outcomes of this project make possible to define and test different sets of adaptation measures for the basin that can be further evaluated through cost-benefit analysis. The integration of the results contributes to an efficient decision-making on how to adapt to Global Change impacts. PMID:22883209

  3. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  4. Riemannian mean and space-time adaptive processing using projection and inversion algorithms

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam; Barbaresco, Frédéric

    2013-05-01

    The estimation of the covariance matrix from real data is required in the application of space-time adaptive processing (STAP) to an airborne ground moving target indication (GMTI) radar. A natural approach to estimation of the covariance matrix that is based on the information geometry has been proposed. In this paper, the output of the Riemannian mean is used in inversion and projection algorithms. It is found that the projection class of algorithms can yield very significant gains, even when the gains due to inversion-based algorithms are marginal over standard algorithms. The performance of the projection class of algorithms does not appear to be overly sensitive to the projected subspace dimension.

  5. On axis fringe projection: A new method for shape measurement

    NASA Astrophysics Data System (ADS)

    Sicardi-Segade, Analía; Estrada, J. C.; Martínez-García, Amalia; Garnica, Guillermo

    2015-06-01

    The traditional fringe projection technique requires a non-zero angle between projection and observation directions to have sensitivity in the z direction. In this work, a new method for shape measurement using fringe projection is presented. In our case, the angle between projection and observation directions is zero, but the system presents sensitivity due to divergent projection which changes the fringes frequency in each one of the normal planes to z-axis. The accuracy of the new method proposed here is validated with real measurements obtained with a coordinate measuring machine (CMM) and compared with the standard fringe projection technique. Finally, we discuss the advantages of the new method.

  6. Application of Symmetry Adapted Function Method for Three-Dimensional Reconstruction of Octahedral Biological Macromolecules

    PubMed Central

    Zeng, Songjun; Liu, Hongrong; Yang, Qibin

    2010-01-01

    A method for three-dimensional (3D) reconstruction of macromolecule assembles, that is, octahedral symmetrical adapted functions (OSAFs) method, was introduced in this paper and a series of formulations for reconstruction by OSAF method were derived. To verify the feasibility and advantages of the method, two octahedral symmetrical macromolecules, that is, heat shock protein Degp24 and the Red-cell L Ferritin, were utilized as examples to implement reconstruction by the OSAF method. The schedule for simulation was designed as follows: 2000 random orientated projections of single particles with predefined Euler angles and centers of origins were generated, then different levels of noises that is signal-to-noise ratio (S/N) = 0.1, 0.5, and 0.8 were added. The structures reconstructed by the OSAF method were in good agreement with the standard models and the relative errors of the structures reconstructed by the OSAF method to standard structures were very little even for high level noise. The facts mentioned above account for that the OSAF method is feasible and efficient approach to reconstruct structures of macromolecules and have ability to suppress the influence of noise. PMID:20150955

  7. Adaptation of a-Stratified Method in Variable Length Computerized Adaptive Testing.

    ERIC Educational Resources Information Center

    Wen, Jian-Bing; Chang, Hua-Hua; Hau, Kit-Tai

    Test security has often been a problem in computerized adaptive testing (CAT) because the traditional wisdom of item selection overly exposes high discrimination items. The a-stratified (STR) design advocated by H. Chang and his collaborators, which uses items of less discrimination in earlier stages of testing, has been shown to be very…

  8. Study of adaptive methods for data compression of scanner data

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The performance of adaptive image compression techniques and the applicability of a variety of techniques to the various steps in the data dissemination process are examined in depth. It is concluded that the bandwidth of imagery generated by scanners can be reduced without introducing significant degradation such that the data can be transmitted over an S-band channel. This corresponds to a compression ratio equivalent to 1.84 bits per pixel. It is also shown that this can be achieved using at least two fairly simple techniques with weight-power requirements well within the constraints of the LANDSAT-D satellite. These are the adaptive 2D DPCM and adaptive hybrid techniques.

  9. Systems and Methods for Derivative-Free Adaptive Control

    NASA Technical Reports Server (NTRS)

    Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor); Calise, Anthony J. (Inventor)

    2015-01-01

    An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.

  10. Lessons learned applying CASE methods/tools to Ada software development projects

    NASA Technical Reports Server (NTRS)

    Blumberg, Maurice H.; Randall, Richard L.

    1993-01-01

    This paper describes the lessons learned from introducing CASE methods/tools into organizations and applying them to actual Ada software development projects. This paper will be useful to any organization planning to introduce a software engineering environment (SEE) or evolving an existing one. It contains management level lessons learned, as well as lessons learned in using specific SEE tools/methods. The experiences presented are from Alpha Test projects established under the STARS (Software Technology for Adaptable and Reliable Systems) project. They reflect the front end efforts by those projects to understand the tools/methods, initial experiences in their introduction and use, and later experiences in the use of specific tools/methods and the introduction of new ones.

  11. A New Method to Cancel RFI---The Adaptive Filter

    NASA Astrophysics Data System (ADS)

    Bradley, R.; Barnbaum, C.

    1996-12-01

    An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation

  12. Health diplomacy the adaptation of global health interventions to local needs in sub-Saharan Africa and Thailand: Evaluating findings from Project Accept (HPTN 043)

    PubMed Central

    2012-01-01

    Background Study-based global health interventions, especially those that are conducted on an international or multi-site basis, frequently require site-specific adaptations in order to (1) respond to socio-cultural differences in risk determinants, (2) to make interventions more relevant to target population needs, and (3) in recognition of ‘global health diplomacy' issues. We report on the adaptations development, approval and implementation process from the Project Accept voluntary counseling and testing, community mobilization and post-test support services intervention. Methods We reviewed all relevant documentation collected during the study intervention period (e.g. monthly progress reports; bi-annual steering committee presentations) and conducted a series of semi-structured interviews with project directors and between 12 and 23 field staff at each study site in South Africa, Zimbabwe, Thailand and Tanzania during 2009. Respondents were asked to describe (1) the adaptations development and approval process and (2) the most successful site-specific adaptations from the perspective of facilitating intervention implementation. Results Across sites, proposed adaptations were identified by field staff and submitted to project directors for review on a formally planned basis. The cross-site intervention sub-committee then ensured fidelity to the study protocol before approval. Successfully-implemented adaptations included: intervention delivery adaptations (e.g. development of tailored counseling messages for immigrant labour groups in South Africa) political, environmental and infrastructural adaptations (e.g. use of local community centers as VCT venues in Zimbabwe); religious adaptations (e.g. dividing clients by gender in Muslim areas of Tanzania); economic adaptations (e.g. co-provision of income generating skills classes in Zimbabwe); epidemiological adaptations (e.g. provision of ‘youth-friendly’ services in South Africa, Zimbabwe and Tanzania), and

  13. Adaptive region of interest method for analytical micro-CT reconstruction.

    PubMed

    Yang, Wanneng; Xu, Xiaochun; Bi, Kun; Zeng, Shaoqun; Liu, Qian; Chen, Shangbin

    2011-01-01

    The real-time imaging is important in automatic successive inspection with micro-computerized tomography (micro-CT). Generally, the size of the detector is chosen according to the most probable size of the measured object to acquire all the projection data. Given enough imaging area and imaging resolution of X-ray detector, the detector is larger than specimen projection area, which results in redundant data in the Sinogram. The process of real-time micro-CT is computation-intensive because of the large amounts of source and destination data. The speed of the reconstruction algorithm can't always meet the requirements of real-time applications. A preprocessing method called adaptive region of interest (AROI), which detects the object's boundaries automatically to focus the active Sinogram regions, is introduced into the analytical reconstruction algorithm in this paper. The AROI method reduces the volume of the reconstructing data and thus directly accelerates the reconstruction process. It has been further shown that image quality is not compromised when applying AROI, while the reconstruction speed is increased as the square of the ratio of the sizes of the detector and the specimen slice. In practice, the conch reconstruction experiment indicated that the process is accelerated by 5.2 times with AROI and the imaging quality is not degraded. Therefore, the AROI method improves the speed of analytical micro-CT reconstruction significantly. PMID:21422587

  14. Evaluation of intrinsic respiratory signal determination methods for 4D CBCT adapted for mice

    SciTech Connect

    Martin, Rachael; Pan, Tinsu; Rubinstein, Ashley; Court, Laurence; Ahmad, Moiz

    2015-01-15

    Purpose: 4D CT imaging in mice is important in a variety of areas including studies of lung function and tumor motion. A necessary step in 4D imaging is obtaining a respiratory signal, which can be done through an external system or intrinsically through the projection images. A number of methods have been developed that can successfully determine the respiratory signal from cone-beam projection images of humans, however only a few have been utilized in a preclinical setting and most of these rely on step-and-shoot style imaging. The purpose of this work is to assess and make adaptions of several successful methods developed for humans for an image-guided preclinical radiation therapy system. Methods: Respiratory signals were determined from the projection images of free-breathing mice scanned on the X-RAD system using four methods: the so-called Amsterdam shroud method, a method based on the phase of the Fourier transform, a pixel intensity method, and a center of mass method. The Amsterdam shroud method was modified so the sharp inspiration peaks associated with anesthetized mouse breathing could be detected. Respiratory signals were used to sort projections into phase bins and 4D images were reconstructed. Error and standard deviation in the assignment of phase bins for the four methods compared to a manual method considered to be ground truth were calculated for a range of region of interest (ROI) sizes. Qualitative comparisons were additionally made between the 4D images obtained using each of the methods and the manual method. Results: 4D images were successfully created for all mice with each of the respiratory signal extraction methods. Only minimal qualitative differences were noted between each of the methods and the manual method. The average error (and standard deviation) in phase bin assignment was 0.24 ± 0.08 (0.49 ± 0.11) phase bins for the Fourier transform method, 0.09 ± 0.03 (0.31 ± 0.08) phase bins for the modified Amsterdam shroud method, 0

  15. Climate change adaptation accounting for huge uncertainties in future projections - the case of urban drainage

    NASA Astrophysics Data System (ADS)

    Willems, Patrick

    2015-04-01

    case study), following the approach proposed by Ntegeka et al. (2014). When the consequences of given scenarios are high, they should be taken into account in the decision making process. For the Flanders' guidelines, it was agreed among the members of the regional Coordination Commission Integrated Water Management to consider (in addition to the traditional range of return periods up to 5 years) a 20-year design storm for scenario investigation. It was motivated by the outcome of this study that under the high climate scenario a 20-year storm would become - in order of magnitude - a 5-year storm. If after a design for a 5-year storm, the 20-year scenario investigation would conclude that specific zones along the sewer system would have severe additional impacts, it is recommended to apply changes to the system or to design flexible adaptation measures for the future (depending on which of the options would be most cost-efficient). Another adaptation action agreed was the installation of storm water infiltration devices at private houses and make these mandatory for new and renovated houses. Such installation was found to be cost-effective in any of the climate scenario's. This is one way of dealing with climate uncertainties, but lessons learned from other cases/applications are highly welcomed. References Ntegeka, V., Baguis, P., Roulin, E., Willems, P. (2014), 'Developing tailored climate change scenarios for hydrological impact assessments', Journal of Hydrology, 508C, 307-321 Willems, P. (2013). 'Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium', Journal of Hydrology, 496, 166-177 Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V. (2012), 'Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings', Atmospheric Research, 103, 106-118

  16. The use of the spectral method within the fast adaptive composite grid method

    SciTech Connect

    McKay, S.M.

    1994-12-31

    The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.

  17. Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain-computer interface applications.

    PubMed

    Hemakom, Apit; Goverdovsky, Valentin; Looney, David; Mandic, Danilo P

    2016-04-13

    An extension to multivariate empirical mode decomposition (MEMD), termed adaptive-projection intrinsically transformed MEMD (APIT-MEMD), is proposed to cater for power imbalances and inter-channel correlations in real-world multichannel data. It is shown that the APIT-MEMD exhibits similar or better performance than MEMD for a large number of projection vectors, whereas it outperforms MEMD for the critical case of a small number of projection vectors within the sifting algorithm. We also employ the noise-assisted APIT-MEMD within our proposed intrinsic multiscale analysis framework and illustrate the advantages of such an approach in notoriously noise-dominated cooperative brain-computer interface (BCI) based on the steady-state visual evoked potentials and the P300 responses. Finally, we show that for a joint cognitive BCI task, the proposed intrinsic multiscale analysis framework improves system performance in terms of the information transfer rate. PMID:26953174

  18. Innovative Adaptive Control Method Demonstrated for Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2005-01-01

    This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.

  19. Adaptive finite element methods for two-dimensional problems in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1994-01-01

    Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.

  20. Post-project appraisals in adaptive management of river channel restoration.

    PubMed

    Downs, Peter W; Kondolf, G Mathias

    2002-04-01

    Post-project appraisals (PPAs) can evaluate river restoration schemes in relation to their compliance with design, their short-term performance attainment, and their longer-term geomorphological compatibility with the catchment hydrology and sediment transport processes. PPAs provide the basis for communicating the results of one restoration scheme to another, thereby improving future restoration designs. They also supply essential performance feedback needed for adaptive management, in which management actions are treated as experiments. PPAs allow river restoration success to be defined both in terms of the scheme attaining its performance objectives and in providing a significant learning experience. Different levels of investment in PPA, in terms of pre-project data and follow-up information, bring with them different degrees of understanding and tbus different abilities to gauge both types of success. We present four case studies to illustrate how the commitment to PPA has determined the understanding achieved in each case. In Moore's Gulch (California, USA), understanding was severely constrained by the lack of pre-project data and post-implementation monitoring. Pre-project data existed for the Kitswell Brook (Hertfordshire, UK), but the monitoring consisted only of one site visit and thus the understanding achieved is related primarily to design compliance issues. The monitoring undertaken for Deep Run (Maryland, USA) and the River Idle (Nottinghamshire, UK) enabled some understanding of the short-term performance of each scheme. The transferable understanding gained from each case study is used to develop an illustrative five-fold classification of geomorphological PPAs (full, medium-term, short-term, one-shot, and remains) according to their potential as learning experiences. The learning experience is central to adaptive management but rarely articulated in the literature. Here, we gauge the potential via superimposition onto a previous schematic

  1. Adaptation potential of naturally ventilated barns to high temperature extremes: The OptiBarn project

    NASA Astrophysics Data System (ADS)

    Menz, Christoph

    2016-04-01

    Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.

  2. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    DOE PAGESBeta

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; Huynh, Timmy N.; Bhaduri, Budhendra L.

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less

  3. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    SciTech Connect

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; Huynh, Timmy N.; Bhaduri, Budhendra L.

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.

  4. Locally adaptive, spatially explicit projection of US population for 2030 and 2050

    PubMed Central

    McKee, Jacob J.; Rose, Amy N.; Bright, Edward A.; Huynh, Timmy; Bhaduri, Budhendra L.

    2015-01-01

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census’s projection methodology, with the US Census’s official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations. PMID:25605882

  5. Evaluation of an adaptive beamforming method for hearing aids.

    PubMed

    Greenberg, J E; Zurek, P M

    1992-03-01

    In this paper evaluations of a two-microphone adaptive beamforming system for hearing aids are presented. The system, based on the constrained adaptive beamformer described by Griffiths and Jim [IEEE Trans. Antennas Propag. AP-30, 27-34 (1982)], adapts to preserve target signals from straight ahead and to minimize jammer signals arriving from other directions. Modifications of the basic Griffiths-Jim algorithm are proposed to alleviate problems of target cancellation and misadjustment that arise in the presence of strong target signals. The evaluations employ both computer simulations and a real-time hardware implementation and are restricted to the case of a single jammer. Performance is measured by the spectrally weighted gain in the target-to-jammer ratio in the steady state. Results show that in environments with relatively little reverberation: (1) the modifications allow good performance even with misaligned arrays and high input target-to-jammer ratios; and (2) performance is better with a broadside array with 7-cm spacing between microphones than with a 26-cm broadside or a 7-cm endfire configuration. Performance degrades in reverberant environments; at the critical distance of a room, improvement with a practical system is limited to a few dB. PMID:1564202

  6. Recommendable Communication Method in Project Management

    NASA Astrophysics Data System (ADS)

    Watanabe, Kosei

    A role of communication among project stakeholders in project execution is significant, sometimes it makes a project with bad. General speaking, most Japanese think that communication between Japanese is easy, because we are living in relatively homogenized sense of value. In my experience, I have opposite opinion, because most Japanese don't study communication theory and practical training. For example, when they ask something to someone, they never offer their request clearly, because of expecting him to understand context of the request. This is typical way of Japanese communication. I recommend if you want to be good communicator, you have to think what is your mission, your purpose and your goal, prior to ask your request to someone. It is self-evident that unclear request never lead to proper results. There is some difficulty on communication in our society as high context culture.

  7. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1989-01-01

    The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.

  8. The Action-Project Method in Counseling Psychology

    ERIC Educational Resources Information Center

    Young, Richard A.; Valach, Ladislav; Domene, Jose F.

    2005-01-01

    The qualitative action-project method is described as an appropriate and heuristic qualitative research method for use in counseling psychology. Action theory, which addresses human intentional, goal-directed action, project, and career, provides the conceptual framework for the method. Data gathering and analysis involve multiple procedures to…

  9. The image adaptive method for solder paste 3D measurement system

    NASA Astrophysics Data System (ADS)

    Xiaohui, Li; Changku, Sun; Peng, Wang

    2015-03-01

    The extensive application of Surface Mount Technology (SMT) requires various measurement methods to evaluate the circuit board. The solder paste 3D measurement system utilizing laser light projecting on the printed circuit board (PCB) surface is one of the critical methods. The local oversaturation, arising from the non-consistent reflectivity of the PCB surface, will lead to inaccurate measurement. The paper reports a novel optical image adaptive method of remedying the local oversaturation for solder paste measurement. The liquid crystal on silicon (LCoS) and image sensor (CCD or CMOS) are combined as the high dynamic range image (HDRI) acquisition system. The significant characteristic of the new method is that the image after adjustment is captured by specially designed HDRI acquisition system programmed by the LCoS mask. The formation of the LCoS mask, depending on a HDRI combined with the image fusion algorithm, is based on separating the laser light from the local oversaturated region. Experimental results demonstrate that the method can significantly improve the accuracy for the solder paste 3D measurement system with local oversaturation.

  10. Tailoring the visual communication of climate projections for local adaptation practitioners in Germany and the UK

    PubMed Central

    Lorenz, Susanne; Dessai, Suraje; Forster, Piers M.; Paavola, Jouni

    2015-01-01

    Visualizations are widely used in the communication of climate projections. However, their effectiveness has rarely been assessed among their target audience. Given recent calls to increase the usability of climate information through the tailoring of climate projections, it is imperative to assess the effectiveness of different visualizations. This paper explores the complexities of tailoring through an online survey conducted with 162 local adaptation practitioners in Germany and the UK. The survey examined respondents’ assessed and perceived comprehension (PC) of visual representations of climate projections as well as preferences for using different visualizations in communicating and planning for a changing climate. Comprehension and use are tested using four different graph formats, which are split into two pairs. Within each pair the information content is the same but is visualized differently. We show that even within a fairly homogeneous user group, such as local adaptation practitioners, there are clear differences in respondents’ comprehension of and preference for visualizations. We do not find a consistent association between assessed comprehension and PC or use within the two pairs of visualizations that we analysed. There is, however, a clear link between PC and use of graph format. This suggests that respondents use what they think they understand the best, rather than what they actually understand the best. These findings highlight that audience-specific targeted communication may be more complex and challenging than previously recognized. PMID:26460109

  11. Stochastic nonlinear aeroelastic analysis of a supersonic lifting surface using an adaptive spectral method

    NASA Astrophysics Data System (ADS)

    Chassaing, J.-C.; Lucor, D.; Trégon, J.

    2012-01-01

    An adaptive stochastic spectral projection method is deployed for the uncertainty quantification in limit-cycle oscillations of an elastically mounted two-dimensional lifting surface in a supersonic flow field. Variabilities in the structural parameters are propagated in the aeroelastic system which accounts for nonlinear restoring force and moment by means of hardening cubic springs. The physical nonlinearities promote sharp and sudden flutter onset for small change of the reduced velocity. In a stochastic context, this behavior translates to steep solution gradients developing in the parametric space. A remedy is to expand the stochastic response of the airfoil on a piecewise generalized polynomial chaos basis. Accurate approximation andaffordable computational costs are obtained using sensitivity-based adaptivity for various types of supersonic stochastic responses depending on the selected values of the Mach number on the bifurcation map. Sensitivity analysis via Sobol' indices shows how the probability density function of the peak pitch amplitude responds to combined uncertainties: e.g. the elastic axis location, torsional stiffness and flap angle. We believe that this work demonstrates the capability and flexibility of the approach for more reliable predictions of realistic aeroelastic systems subject to a moderate number of uncertainties.

  12. Multiscale Simulation of Microcrack Based on a New Adaptive Finite Element Method

    NASA Astrophysics Data System (ADS)

    Xu, Yun; Chen, Jun; Chen, Dong Quan; Sun, Jin Shan

    In this paper, a new adaptive finite element (FE) framework based on the variational multiscale method is proposed and applied to simulate the dynamic behaviors of metal under loadings. First, the extended bridging scale method is used to couple molecular dynamics and FE. Then, macro damages evolvements of those micro defects are simulated by the adaptive FE method. Some auxiliary strategies, such as the conservative mesh remapping, failure mechanism and mesh splitting technique are also included in the adaptive FE computation. Efficiency of our method is validated by numerical experiments.

  13. An adaptive response surface method for crashworthiness optimization

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yang, Ren-Jye; Zhu, Ping

    2013-11-01

    Response surface-based design optimization has been commonly used for optimizing large-scale design problems in the automotive industry. However, most response surface models are built by a limited number of design points without considering data uncertainty. In addition, the selection of a response surface in the literature is often arbitrary. This article uses a Bayesian metric to systematically select the best available response surface among several candidates in a library while considering data uncertainty. An adaptive, efficient response surface strategy, which minimizes the number of computationally intensive simulations, was developed for design optimization of large-scale complex problems. This methodology was demonstrated by a crashworthiness optimization example.

  14. Quality assurance plan for the Objective Supply Capability Adaptive Redesign (OSCAR) project

    SciTech Connect

    Stewart, K.A.; Rasch, K.A.; Reid, R.W.

    1996-11-01

    This document establishes the Quality Assurance Plan (QAP) for the National Guard Bureau Objective Supply Capability Adaptive Redesign (OSCAR) project activities under the Oak Ridge National Laboratory (ORNL) management. It defines the requirements and assigns responsibilities for ensuring, with a high degree of confidence, that project objectives will be achieved as planned. The QAP outlined herein is responsive to and meets the Quality Assurance Program standards for the U.S. Department of Energy (DOE), Lockheed Martin Energy Research Corporation and ORNL and the ORNL Computing, Robotics, and Education Directorate (CRE). This document is intended to be in compliance with DOE Order 5700.6C, Quality Assurance Program, and the ORNL Standard Practice Procedure, SPP X-QA-8, Quality Assurance for ORNL Computing Software. This standard allows individual organizations to apply the stated requirements in a flexible manner suitable to the type of activity involved. Section I of this document provides an introduction to the OSCAR project QAP; Sections 2 and 3 describe the specific aspects of quality assurance as applicable to the OSCAR project. Section 4 describes the project approach to risk management. The Risk Management Matrix given in Appendix A is a tool to assess, prioritize, and prevent problems before they occur. Therefore, the matrix will be reviewed and revised on a periodic basis.

  15. Adaptation of filtered back-projection to compton imaging with non-uniform azimuthal geometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyounggun; Lee, Taewoong; Lee, Wonho

    2016-05-01

    For Compton image reconstruction, analytic reconstruction methods such as filtered backprojection have been used for real-time imaging. The conventional filtered back-projection method assumes a uniformly distributed azimuthal response in the detector system. In this study, we applied filtered back-projection to the experimental data from detector systems with limited azimuthal angle coverage ranges and estimated the limitations of the analytic reconstruction methods when applied to these systems. For the system with a uniform azimuthal response, the images reconstructed by using filtered back-projection showed better angular resolutions than the images obtained by using simple back-projection did. However, when filtered back-projection was applied to reconstruct Compton images based on measurements performed by using Compton cameras with limited response geometries, the reconstructed images exhibited artifacts caused by the geometrical limitations. Our proposed method employs the Compton camera's rotation to overcome the angular response limitations; when the rotation method was applied in this study, the artifacts in the reconstructed images caused by angular response limitations were minimized. With this method, filtered back-projection can be applied to reconstruct real-time Compton images even when the radiation measurements are performed by using Compton cameras with non-uniform azimuthal response geometries.

  16. A resilience perspective to water risk management: case-study application of the adaptation tipping point method

    NASA Astrophysics Data System (ADS)

    Gersonius, Berry; Ashley, Richard; Jeuken, Ad; Nasruddin, Fauzy; Pathirana, Assela; Zevenbergen, Chris

    2010-05-01

    In a context of high uncertainty about hydrological variables due to climate change and other factors, the development of updated risk management approaches is as important as—if not more important than—the provision of improved data and forecasts of the future. Traditional approaches to adaptation attempt to manage future water risks to cities with the use of the predict-then-adapt method. This method uses hydrological change projections as the starting point to identify adaptive strategies, which is followed by analysing the cause-effect chain based on some sort of Pressures-State-Impact-Response (PSIR) scheme. The predict-then-adapt method presumes that it is possible to define a singular (optimal) adaptive strategy according to a most likely or average projection of future change. A key shortcoming of the method is, however, that the planning of water management structures is typically decoupled from forecast uncertainties and is, as such, inherently inflexible. This means that there is an increased risk of under- or over-adaptation, resulting in either mal-functioning or unnecessary costs. Rather than taking a traditional approach, responsible water risk management requires an alternative approach to adaptation that recognises and cultivates resiliency for change. The concept of resiliency relates to the capability of complex socio-technical systems to make aspirational levels of functioning attainable despite the occurrence of possible changes. Focusing on resiliency does not attempt to reduce uncertainty associated with future change, but rather to develop better ways of managing it. This makes it a particularly relevant perspective for adaptation to long-term hydrological change. Although resiliency is becoming more refined as a theory, the application of the concept to water risk management is still in an initial phase. Different methods are used in practice to support the implementation of a resilience-focused approach. Typically these approaches

  17. Robustness of an adaptive beamforming method for hearing aids.

    PubMed

    Peterson, P M; Wei, S M; Rabinowitz, W M; Zurek, P M

    1990-01-01

    We describe the results of computer simulations of a multimicrophone adaptive-beamforming system as a noise reduction device for hearing aids. Of particular concern was the system's sensitivity to violations of the underlying assumption that the target signal is identical at the microphones. Two- and four-microphone versions of the system were tested in simulated anechoic and modestly-reverberant environments with one and two jammers, and with deviations from the assumed straight-ahead target direction. Also examined were the effects of input target-to-jammer ratio and adaptive-filter length. Generally, although the noise-reduction performance of the system is degraded by target misalignment and modest reverberation, the system still provides positive advantage at input target-to-jammer ratios up to about 0 dB. This is in contrast to the degrading target-cancellation effect that the system can have when the equal-target assumption is violated and the input target-to-jammer ratio is greater than zero. PMID:2356741

  18. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method

    NASA Astrophysics Data System (ADS)

    Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  19. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download. PMID:26465549

  20. Investigating Item Exposure Control Methods in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Ozturk, Nagihan Boztunc; Dogan, Nuri

    2015-01-01

    This study aims to investigate the effects of item exposure control methods on measurement precision and on test security under various item selection methods and item pool characteristics. In this study, the Randomesque (with item group sizes of 5 and 10), Sympson-Hetter, and Fade-Away methods were used as item exposure control methods. Moreover,…

  1. An examination of an adapter method for measuring the vibration transmitted to the human arms

    PubMed Central

    Xu, Xueyan S.; Dong, Ren G.; Welcome, Daniel E.; Warren, Christopher; McDowell, Thomas W.

    2016-01-01

    The objective of this study is to evaluate an adapter method for measuring the vibration on the human arms. Four instrumented adapters with different weights were used to measure the vibration transmitted to the wrist, forearm, and upper arm of each subject. Each adapter was attached at each location on the subjects using an elastic cloth wrap. Two laser vibrometers were also used to measure the transmitted vibration at each location to evaluate the validity of the adapter method. The apparent mass at the palm of the hand along the forearm direction was also measured to enhance the evaluation. This study found that the adapter and laser-measured transmissibility spectra were comparable with some systematic differences. While increasing the adapter mass reduced the resonant frequency at the measurement location, increasing the tightness of the adapter attachment increased the resonant frequency. However, the use of lightweight (≤15 g) adapters under medium attachment tightness did not change the basic trends of the transmissibility spectrum. The resonant features observed in the transmissibility spectra were also correlated with those observed in the apparent mass spectra. Because the local coordinate systems of the adapters may be significantly misaligned relative to the global coordinates of the vibration test systems, large errors were observed for the adapter-measured transmissibility in some individual orthogonal directions. This study, however, also demonstrated that the misalignment issue can be resolved by either using the total vibration transmissibility or by measuring the misalignment angles to correct the errors. Therefore, the adapter method is acceptable for understanding the basic characteristics of the vibration transmission in the human arms, and the adapter-measured data are acceptable for approximately modeling the system. PMID:26834309

  2. An adaptive way for improving noise reduction using local geometric projection

    NASA Astrophysics Data System (ADS)

    Leontitsis, Alexandros; Bountis, Tassos; Pagge, Jenny

    2004-03-01

    We propose an adaptive way to improve noise reduction by local geometric projection. From the neighborhood of each candidate point in phase space, we identify the best subspace that the point will be orthogonally projected to. The signal subspace is formed by the most significant eigendirections of the neighborhood, while the less significant ones define the noise subspace. We provide a simple criterion to separate the most significant eigendirections from the less significant ones. This criterion is based on the maximum logarithmic difference between the neighborhood eigendirection lengths, and the assumption that there is at least one eigendirection that corresponds to the noise subspace. In this way, we take into account the special characteristics of each neighborhood and introduce a more successful noise reduction technique. Results are presented for a chaotic time series of the Hénon map and Ikeda map, as well as on the Nasdaq Composite index.

  3. Construction Management: Choosing the Best Project Delivery Method.

    ERIC Educational Resources Information Center

    Peck, Blake V.

    2001-01-01

    Reviews the types of facility construction project delivery methods and the concerns that facility owners have when embarking on a construction program. The considerations that should guide the owner in selecting the proper delivery method are highlighted. (GR)

  4. Investigation of the Multiple Model Adaptive Control (MMAC) method for flight control systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The application was investigated of control theoretic ideas to the design of flight control systems for the F-8 aircraft. The design of an adaptive control system based upon the so-called multiple model adaptive control (MMAC) method is considered. Progress is reported.

  5. The older person has a stroke: Learning to adapt using the Feldenkrais® Method.

    PubMed

    Jackson-Wyatt, O

    1995-01-01

    The older person with a stroke requires adapted therapeutic interventions to take into account normal age-related changes. The Feldenkrais® Method presents a model for learning to promote adaptability that addresses key functional changes seen with normal aging. Clinical examples related to specific functional tasks are discussed to highlight major treatment modifications and neuromuscular, psychological, emotional, and sensory considerations. PMID:27619899

  6. An adaptive filter method for spacecraft using gravity assist

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Huang, Panpan; Fang, Jiancheng; Liu, Gang; Ge, Shuzhi Sam

    2015-04-01

    Celestial navigation (CeleNav) has been successfully used during gravity assist (GA) flyby for orbit determination in many deep space missions. Due to spacecraft attitude errors, ephemeris errors, the camera center-finding bias, and the frequency of the images before and after the GA flyby, the statistics of measurement noise cannot be accurately determined, and yet have time-varying characteristics, which may introduce large estimation error and even cause filter divergence. In this paper, an unscented Kalman filter (UKF) with adaptive measurement noise covariance, called ARUKF, is proposed to deal with this problem. ARUKF scales the measurement noise covariance according to the changes in innovation and residual sequences. Simulations demonstrate that ARUKF is robust to the inaccurate initial measurement noise covariance matrix and time-varying measurement noise. The impact factors in the ARUKF are also investigated.

  7. Project 6: Cumulative Risk Assessment (CRA) Methods and Applications

    EPA Science Inventory

    Project 6: CRA Methods and Applications addresses the need to move beyond traditional risk assessment practices by developing CRA methods to integrate and evaluate impacts of chemical and nonchemical stressors on the environment and human health. Project 6 has three specific obje...

  8. Semi-Projective Methods, Political Attitudes, and Political Reasoning.

    ERIC Educational Resources Information Center

    Binford, Michael B.

    Semi-projective holistic methods in political science research can augment knowledge of political attitudes and political reasoning. Semi-projective methods refer to techniques which present focused or structured stimuli and allow an unrestricted range of responses. Visual stimuli include ink blots, standard drawings, political cartoons, or…

  9. Adaptation of vulnerable regional agricultural systems in Europe to climate change - results from the ADAGIO project

    NASA Astrophysics Data System (ADS)

    Eitzinger, J.; Kubu, G.; Alexandrov, V.; Utset, A.; Mihailovic, D. T.; Lalic, B.; Trnka, M.; Zalud, Z.; Semeradova, D.; Ventrella, D.; Anastasiou, D. P.; Medany, M.; Altaher, S.; Olejnik, J.; Lesny, J.; Nemeshko, N.; Nikolaev, M.; Simota, C.; Cojocaru, G.

    2009-10-01

    During 2007-2009 the ADAGIO project (http://www.adagio-eu.org) is carried out to evaluate regional adaptation options in agriculture in most vulnerable European regions (mediterranean, central and eastern European regions). In this context a bottom-up approach is used beside the top-down approach of using scientific studies, involving regional experts and farmers in the evaluation of potential regional vulnerabilities and adaptation options. Preliminary results of the regional studies and gathered feedback from experts and farmers show in general that (increasing) drought and heat are the main factors having impact on agricultural vulnerability not only in the Mediterranean region, but also in the Central and southern Eastern European regions. Another important aspect is that the increasing risk of pest and diseases may play a more important role for agricultural vulnerability than assumed before, however, till now this field is only rarely investigated in Europe. Although dominating risks such as increasing drought and heat are similar in most regions, the vulnerabilities in the different regions are very much influenced by characteristics of the dominating agroecosystems and prevailing socio-economic conditions. This will be even be more significant for potential adaptation measures at the different levels, which have to reflect the regional conditions.

  10. Integrated Modeling and Participatory Scenario Planning for Climate Adaptation: the Maui Groundwater Project

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Finucane, M.; Brewington, L.

    2014-12-01

    For the last century, the island of Maui, Hawaii, has been the center of environmental, agricultural, and legal conflict with respect to surface and groundwater allocation. Planning for adequate future freshwater resources requires flexible and adaptive policies that emphasize partnerships and knowledge transfer between scientists and non-scientists. In 2012 the Hawai'i state legislature passed the Climate Change Adaptation Priority Guidelines (Act 286) law requiring county and state policy makers to include island-wide climate change scenarios in their planning processes. This research details the ongoing work by researchers in the NOAA funded Pacific RISA to support the development of Hawaii's first island-wide water use plan under the new climate adaptation directive. This integrated project combines several models with participatory future scenario planning. The dynamically downscaled triply nested Hawaii Regional Climate Model (HRCM) was modified from the WRF community model and calibrated to simulate the many microclimates on the Hawaiian archipelago. For the island of Maui, the HRCM was validated using 20 years of hindcast data, and daily projections were created at a 1 km scale to capture the steep topography and diverse rainfall regimes. Downscaled climate data are input into a USGS hydrological model to quantify groundwater recharge. This model was previously used for groundwater management, and is being expanded utilizing future climate projections, current land use maps and future scenario maps informed by stakeholder input. Participatory scenario planning began in 2012 to bring together a diverse group of over 50 decision-makers in government, conservation, and agriculture to 1) determine the type of information they would find helpful in planning for climate change, and 2) develop a set of scenarios that represent alternative climate/management futures. This is an iterative process, resulting in flexible and transparent narratives at multiple scales

  11. Supporting adaptation decisions to address climate related impacts and hazards in the Caribbean (the CARIWIG project)

    NASA Astrophysics Data System (ADS)

    Burton, Aidan

    2015-04-01

    Managers and policy makers from regional and national institutions in the Caribbean require knowledge of the likely impacts and hazards arising from the present and future climate that are specific to their responsibility and geographical range, and relevant to their planning time-horizons. Knowledge, experience and the political support to develop appropriate adaptation strategies are also required. However, the climate information available for the region is of limited use as: observational records are intermittent and typically of short duration; climate model projections of the weather suffer from scale and bias issues; and statistical downscaling to provide locally relevant unbiased climate change information remains sporadic. Tropical cyclone activity is a considerable sporadic hazard in the region and yet related weather information is limited to historic events. Further, there is a lack of guidance for managers and policy makers operating with very limited resources to utilize such information within their remit. The CARIWIG project (June 2012 - May 2015) will be presented, reflecting on stakeholder impact, best practice and lessons learned. This project seeks to address the climate service needs of the Caribbean region through a combination of capacity building and improved provision of climate information services. An initial workshop with regional-scale stakeholders initiated a dialogue to develop a realistic shared vision of the needed information services which could be provided by the project. Capacity building is then achieved on a number of levels: knowledge and expertise sharing between project partners; raising understanding and knowledge of resources that support national and regional institutions' adaptation decisions; developing case studies in key sectors to test and demonstrate the information services; training for stakeholder technical staff in the use of the provided services; the development of a support network within and out

  12. Adaptation response surfaces from an ensemble of wheat projections under climate change in Europe

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Ferrise, Roberto

    2016-04-01

    preliminary ARSs show some adaptation options allow recover up to ca. 2000 kg/ha. Compared to the historical yields recorded at Lleida province (2550 kg/ha in 1981-2010) our results indicate that adaptation is feasible and may help to reduce detrimental effects of CC. Our analysis evaluates if the explored adaptations fulfill the biophysical requirements to become a practical adaptive solution. This study exemplifies how adaptation options and their impacts can be analyzed, evaluated and communicated in a context of high regional uncertainty for current and future conditions and for short to long-term perspective. This work was funded by MACSUR project within FACCE-JPI. References Abeledo, L.G., R. Savin and G.A. Slafer (2008). European Journal of Agronomy 28:541-550. Cartelle, J., A. Pedró, R. Savin, G.A. Slafer (2006) European Journal of Agronomy 25:365-371. Pirttioja, N., T. Carter, S. Fronzek, M. Bindi, H. Hoffmann, T. Palosuo, M. Ruiz-Ramos, F. Tao, M. Acutis, S. Asseng, P. Baranowski, B. Basso, P. Bodin, S. Buis, D. Cammarano, P. Deligios, M.-F. Destain, B. Dumont, R. Ewert, R. Ferrise, L. François, T. Gaiser, P. Hlavinka, I. Jacquemin, K.C. Kersebaum, C. Kollas, J. Krzyszczak, I.J. Lorite, J. Minet, M.I. Minguez, M. Montesino, M. Moriondo, C. Müller, C. Nendel, I. Öztürk, A. Perego, A. Rodríguez, A.C. Ruane, F. Ruget, M. Sanna, M.A. Semenov, C. Slawinski, P. Stratonovitch, I. Supit, K. Waha, E. Wang, L. Wu, Z. Zhao, and R.P. Rötter, 2015: A crop model ensemble analysis of temperature and precipitation effects on wheat yield across a European transect using impact response surfaces. Clim. Res., 65, 87-105, doi:10.3354/cr01322. IRS2 TEAM: Alfredo Rodríguez(1), Ignacio J. Lorite(3), Fulu Tao(4), Nina Pirttioja(5), Stefan Fronzek(5), Taru Palosuo(4), Timothy R. Carter(5), Marco Bindi(2), Jukka G Höhn(4), Kurt Christian Kersebaum(6), Miroslav Trnka(7,8), Holger Hoffmann(9), Piotr Baranowski(10), Samuel Buis(11), Davide Cammarano(12), Yi Chen(13,4), Paola Deligios

  13. Adaptation response surfaces from an ensemble of wheat projections under climate change in Europe

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Ferrise, Roberto

    2016-04-01

    preliminary ARSs show some adaptation options allow recover up to ca. 2000 kg/ha. Compared to the historical yields recorded at Lleida province (2550 kg/ha in 1981-2010) our results indicate that adaptation is feasible and may help to reduce detrimental effects of CC. Our analysis evaluates if the explored adaptations fulfill the biophysical requirements to become a practical adaptive solution. This study exemplifies how adaptation options and their impacts can be analyzed, evaluated and communicated in a context of high regional uncertainty for current and future conditions and for short to long-term perspective. This work was funded by MACSUR project within FACCE-JPI. References Abeledo, L.G., R. Savin and G.A. Slafer (2008). European Journal of Agronomy 28:541-550. Cartelle, J., A. Pedró, R. Savin, G.A. Slafer (2006) European Journal of Agronomy 25:365-371. Pirttioja, N., T. Carter, S. Fronzek, M. Bindi, H. Hoffmann, T. Palosuo, M. Ruiz-Ramos, F. Tao, M. Acutis, S. Asseng, P. Baranowski, B. Basso, P. Bodin, S. Buis, D. Cammarano, P. Deligios, M.-F. Destain, B. Dumont, R. Ewert, R. Ferrise, L. François, T. Gaiser, P. Hlavinka, I. Jacquemin, K.C. Kersebaum, C. Kollas, J. Krzyszczak, I.J. Lorite, J. Minet, M.I. Minguez, M. Montesino, M. Moriondo, C. Müller, C. Nendel, I. Öztürk, A. Perego, A. Rodríguez, A.C. Ruane, F. Ruget, M. Sanna, M.A. Semenov, C. Slawinski, P. Stratonovitch, I. Supit, K. Waha, E. Wang, L. Wu, Z. Zhao, and R.P. Rötter, 2015: A crop model ensemble analysis of temperature and precipitation effects on wheat yield across a European transect using impact response surfaces. Clim. Res., 65, 87-105, doi:10.3354/cr01322. IRS2 TEAM: Alfredo Rodríguez(1), Ignacio J. Lorite(3), Fulu Tao(4), Nina Pirttioja(5), Stefan Fronzek(5), Taru Palosuo(4), Timothy R. Carter(5), Marco Bindi(2), Jukka G Höhn(4), Kurt Christian Kersebaum(6), Miroslav Trnka(7,8), Holger Hoffmann(9), Piotr Baranowski(10), Samuel Buis(11), Davide Cammarano(12), Yi Chen(13,4), Paola Deligios

  14. Science Roles and Interactions in Adaptive Management of Large River Restoration Projects, Midwest United States

    NASA Astrophysics Data System (ADS)

    Jacobson, R. B.; Galat, D. L.; Smith, C. B.

    2010-12-01

    Most large-river restoration projects include formal or informal implementations of adaptive management strategies which acknowledge uncertainty and use scientific inquiry to learn and refine management options. Although the central role of science in reducing uncertainty is acknowledged in such projects, specific roles and interactions can vary widely, including how science relates to decision-making within the governance of these projects. Our objective is to present some structured generalizations about science roles and interactions as developed from the authors’ experiences in adaptive management of large river restoration in the Midwest United States. Scientific information may be introduced into decision making by scientists acting in any of the three roles common to adaptive management -- action agency representative, stakeholder, or science provider. We have observed that confusion and gridlock can arise when it is unclear if a scientist is acting as an advocate for a stakeholder or management position, or instead as an independent, “honest broker” of science. Although both advocacy and independence are proper and expected in public decision making, it is useful when scientists unambiguously identify their role. While complete scientific independence may be illusory, transparency and peer review can promote the ideal. Transparency comes from setting clear directions and objectives at the decision-making level and defining at the outset how learning will help assess progress and inform decisions. Independent peer reviews of proposals, study plans, and publications serve as a powerful tool to advance scientific independence, even if funding sources present a potential conflict of interest. Selection of experts for scientific advice and review often requires consideration of the balance between benefits of the “outside” expert (independent, knowledgeable but with little specific understanding of the river system), compared to those provided by the

  15. Parallel architectures for iterative methods on adaptive, block structured grids

    NASA Technical Reports Server (NTRS)

    Gannon, D.; Vanrosendale, J.

    1983-01-01

    A parallel computer architecture well suited to the solution of partial differential equations in complicated geometries is proposed. Algorithms for partial differential equations contain a great deal of parallelism. But this parallelism can be difficult to exploit, particularly on complex problems. One approach to extraction of this parallelism is the use of special purpose architectures tuned to a given problem class. The architecture proposed here is tuned to boundary value problems on complex domains. An adaptive elliptic algorithm which maps effectively onto the proposed architecture is considered in detail. Two levels of parallelism are exploited by the proposed architecture. First, by making use of the freedom one has in grid generation, one can construct grids which are locally regular, permitting a one to one mapping of grids to systolic style processor arrays, at least over small regions. All local parallelism can be extracted by this approach. Second, though there may be a regular global structure to the grids constructed, there will be parallelism at this level. One approach to finding and exploiting this parallelism is to use an architecture having a number of processor clusters connected by a switching network. The use of such a network creates a highly flexible architecture which automatically configures to the problem being solved.

  16. An adaptive mesh refinement algorithm for the discrete ordinates method

    SciTech Connect

    Jessee, J.P.; Fiveland, W.A.; Howell, L.H.; Colella, P.; Pember, R.B.

    1996-03-01

    The discrete ordinates form of the radiative transport equation (RTE) is spatially discretized and solved using an adaptive mesh refinement (AMR) algorithm. This technique permits the local grid refinement to minimize spatial discretization error of the RTE. An error estimator is applied to define regions for local grid refinement; overlapping refined grids are recursively placed in these regions; and the RTE is then solved over the entire domain. The procedure continues until the spatial discretization error has been reduced to a sufficient level. The following aspects of the algorithm are discussed: error estimation, grid generation, communication between refined levels, and solution sequencing. This initial formulation employs the step scheme, and is valid for absorbing and isotopically scattering media in two-dimensional enclosures. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single-grid algorithm for several benchmark cases. The AMR algorithm provides a reduction in memory requirements and maintains the convergence characteristics of the standard single-grid algorithm; however, the cases illustrate that efficiency gains of the AMR algorithm will not be fully realized until three-dimensional geometries are considered.

  17. Analysis of modified SMI method for adaptive array weight control

    NASA Technical Reports Server (NTRS)

    Dilsavor, R. L.; Moses, R. L.

    1989-01-01

    An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.

  18. Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.

    1991-01-01

    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.

  19. Speckle reduction in optical coherence tomography by adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Shi, Yaoyao; Liu, Youwen; He, Chongjun

    2015-12-01

    An adaptive total variation method based on the combination of speckle statistics and total variation restoration is proposed and developed for reducing speckle noise in optical coherence tomography (OCT) images. The statistical distribution of the speckle noise in OCT image is investigated and measured. With the measured parameters such as the mean value and variance of the speckle noise, the OCT image is restored by the adaptive total variation restoration method. The adaptive total variation restoration algorithm was applied to the OCT images of a volunteer's hand skin, which showed effective speckle noise reduction and image quality improvement. For image quality comparison, the commonly used median filtering method was also applied to the same images to reduce the speckle noise. The measured results demonstrate the superior performance of the adaptive total variation restoration method in terms of image signal-to-noise ratio, equivalent number of looks, contrast-to-noise ratio, and mean square error.

  20. Higher-Order Semi-Implicit Projection Methods

    SciTech Connect

    Minion, M L

    2001-09-06

    A semi-implicit form of the method of spectral deferred corrections is applied to the solution of the incompressible Navier-Stokes equations. A methodology for constructing semi-implicit projection methods with arbitrarily high order of temporal accuracy in both the velocity and pressure is presented. Three variations of projection methods are discussed which differ in the manner in which the auxiliary velocity and the pressure are calculated. The presentation will make clear that project methods in general need not be viewed as fractional step methods as is often the practice. Two simple numerical examples re used to demonstrate fourth-order accuracy in time for an implementation of each variation of projection method.

  1. An adaptation of Krylov subspace methods to path following

    SciTech Connect

    Walker, H.F.

    1996-12-31

    Krylov subspace methods at present constitute a very well known and highly developed class of iterative linear algebra methods. These have been effectively applied to nonlinear system solving through Newton-Krylov methods, in which Krylov subspace methods are used to solve the linear systems that characterize steps of Newton`s method (the Newton equations). Here, we will discuss the application of Krylov subspace methods to path following problems, in which the object is to track a solution curve as a parameter varies. Path following methods are typically of predictor-corrector form, in which a point near the solution curve is {open_quotes}predicted{close_quotes} by some easy but relatively inaccurate means, and then a series of Newton-like corrector iterations is used to return approximately to the curve. The analogue of the Newton equation is underdetermined, and an additional linear condition must be specified to determine corrector steps uniquely. This is typically done by requiring that the steps be orthogonal to an approximate tangent direction. Augmenting the under-determined system with this orthogonality condition in a straightforward way typically works well if direct linear algebra methods are used, but Krylov subspace methods are often ineffective with this approach. We will discuss recent work in which this orthogonality condition is imposed directly as a constraint on the corrector steps in a certain way. The means of doing this preserves problem conditioning, allows the use of preconditioners constructed for the fixed-parameter case, and has certain other advantages. Experiments on standard PDE continuation test problems indicate that this approach is effective.

  2. Systems and Methods for Parameter Dependent Riccati Equation Approaches to Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kim, Kilsoo (Inventor); Yucelen, Tansel (Inventor); Calise, Anthony J. (Inventor)

    2015-01-01

    Systems and methods for adaptive control are disclosed. The systems and methods can control uncertain dynamic systems. The control system can comprise a controller that employs a parameter dependent Riccati equation. The controller can produce a response that causes the state of the system to remain bounded. The control system can control both minimum phase and non-minimum phase systems. The control system can augment an existing, non-adaptive control design without modifying the gains employed in that design. The control system can also avoid the use of high gains in both the observer design and the adaptive control law.

  3. Solving delay differential equations in S-ADAPT by method of steps.

    PubMed

    Bauer, Robert J; Mo, Gary; Krzyzanski, Wojciech

    2013-09-01

    S-ADAPT is a version of the ADAPT program that contains additional simulation and optimization abilities such as parametric population analysis. S-ADAPT utilizes LSODA to solve ordinary differential equations (ODEs), an algorithm designed for large dimension non-stiff and stiff problems. However, S-ADAPT does not have a solver for delay differential equations (DDEs). Our objective was to implement in S-ADAPT a DDE solver using the methods of steps. The method of steps allows one to solve virtually any DDE system by transforming it to an ODE system. The solver was validated for scalar linear DDEs with one delay and bolus and infusion inputs for which explicit analytic solutions were derived. Solutions of nonlinear DDE problems coded in S-ADAPT were validated by comparing them with ones obtained by the MATLAB DDE solver dde23. The estimation of parameters was tested on the MATLB simulated population pharmacodynamics data. The comparison of S-ADAPT generated solutions for DDE problems with the explicit solutions as well as MATLAB produced solutions which agreed to at least 7 significant digits. The population parameter estimates from using importance sampling expectation-maximization in S-ADAPT agreed with ones used to generate the data. PMID:23810514

  4. Automatic multirate methods for ordinary differential equations. [Adaptive time steps

    SciTech Connect

    Gear, C.W.

    1980-01-01

    A study is made of the application of integration methods in which different step sizes are used for different members of a system of equations. Such methods can result in savings if the cost of derivative evaluation is high or if a system is sparse; however, the estimation and control of errors is very difficult and can lead to high overheads. Three approaches are discussed, and it is shown that the least intuitive is the most promising. 2 figures.

  5. Adaptive error covariances estimation methods for ensemble Kalman filters

    SciTech Connect

    Zhen, Yicun; Harlim, John

    2015-08-01

    This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.

  6. Understanding the finite state projection and related methods for solving the chemical master equation.

    PubMed

    Dinh, Khanh N; Sidje, Roger B

    2016-01-01

    The finite state projection (FSP) method has enabled us to solve the chemical master equation of some biological models that were considered out of reach not long ago. Since the original FSP method, much effort has gone into transforming it into an adaptive time-stepping algorithm as well as studying its accuracy. Some of the improvements include the multiple time interval FSP, the sliding windows, and most notably the Krylov-FSP approach. Our goal in this tutorial is to give the reader an overview of the current methods that build on the FSP. PMID:27176781

  7. Understanding the finite state projection and related methods for solving the chemical master equation

    NASA Astrophysics Data System (ADS)

    Dinh, Khanh N.; Sidje, Roger B.

    2016-06-01

    The finite state projection (FSP) method has enabled us to solve the chemical master equation of some biological models that were considered out of reach not long ago. Since the original FSP method, much effort has gone into transforming it into an adaptive time-stepping algorithm as well as studying its accuracy. Some of the improvements include the multiple time interval FSP, the sliding windows, and most notably the Krylov-FSP approach. Our goal in this tutorial is to give the reader an overview of the current methods that build on the FSP.

  8. Fine-granularity and spatially-adaptive regularization for projection-based image deblurring.

    PubMed

    Li, Xin

    2011-04-01

    This paper studies two classes of regularization strategies to achieve an improved tradeoff between image recovery and noise suppression in projection-based image deblurring. The first is based on a simple fact that r-times Landweber iteration leads to a fixed level of regularization, which allows us to achieve fine-granularity control of projection-based iterative deblurring by varying the value r. The regularization behavior is explained by using the theory of Lagrangian multiplier for variational schemes. The second class of regularization strategy is based on the observation that various regularized filters can be viewed as nonexpansive mappings in the metric space. A deeper understanding about different regularization filters can be gained by probing into their asymptotic behavior--the fixed point of nonexpansive mappings. By making an analogy to the states of matter in statistical physics, we can observe that different image structures (smooth regions, regular edges and textures) correspond to different fixed points of nonexpansive mappings when the temperature(regularization) parameter varies. Such an analogy motivates us to propose a deterministic annealing based approach toward spatial adaptation in projection-based image deblurring. Significant performance improvements over the current state-of-the-art schemes have been observed in our experiments, which substantiates the effectiveness of the proposed regularization strategies. PMID:20876018

  9. Global adaptive rank truncated product method for gene-set analysis in association studies.

    PubMed

    Vilor-Tejedor, Natalia; Calle, M Luz

    2014-08-01

    Gene set analysis (GSA) aims to assess the overall association of a set of genetic variants with a phenotype and has the potential to detect subtle effects of variants in a gene or a pathway that might be missed when assessed individually. We present a new implementation of the Adaptive Rank Truncated Product method (ARTP) for analyzing the association of a set of Single Nucleotide Polymorphisms (SNPs) in a gene or pathway. The new implementation, referred to as globalARTP, improves the original one by allowing the different SNPs in the set to have different modes of inheritance. We perform a simulation study for exploring the power of the proposed methodology in a set of scenarios with different numbers of causal SNPs with different effect sizes. Moreover, we show the advantage of using the gene set approach in the context of an Alzheimer's disease case-control study where we explore the endocytosis pathway. The new method is implemented in the R function globalARTP of the globalGSA package available at http://cran.r-project.org. PMID:25082012

  10. Adaptation of the projection-slice theorem for stock valuation estimation using random Markov fields

    NASA Astrophysics Data System (ADS)

    Riasati, Vahid R.

    2009-04-01

    The Projection-Slice Synthetic Discriminant function filter is utilized with Random Markov Fields, RMF to estimate trends that may be used as prediction for stock valuation through the representation of the market behavior as a hidden Markov Model, HMM. In this work, we utilize a set of progressive and contiguous time segments of a given stock, and treat the set as a two dimensional object that has been represented by its one-d projections. The abstract two-D object is thus an incarnation of N-temporal projections. The HMM is then utilized to generate N+1 projections that maximizes the two-dimensional correlation peak between the data and the HMM-generated stochastic processes. This application of the PSDF provides a method of stock valuation prediction via the market stochastic behavior utilized in the filter.

  11. Effective Teaching Methods--Project-based Learning in Physics

    ERIC Educational Resources Information Center

    Holubova, Renata

    2008-01-01

    The paper presents results of the research of new effective teaching methods in physics and science. It is found out that it is necessary to educate pre-service teachers in approaches stressing the importance of the own activity of students, in competences how to create an interdisciplinary project. Project-based physics teaching and learning…

  12. Restrictive Stochastic Item Selection Methods in Cognitive Diagnostic Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Wang, Chun; Chang, Hua-Hua; Huebner, Alan

    2011-01-01

    This paper proposes two new item selection methods for cognitive diagnostic computerized adaptive testing: the restrictive progressive method and the restrictive threshold method. They are built upon the posterior weighted Kullback-Leibler (KL) information index but include additional stochastic components either in the item selection index or in…

  13. Weighted Structural Regression: A Broad Class of Adaptive Methods for Improving Linear Prediction.

    ERIC Educational Resources Information Center

    Pruzek, Robert M.; Lepak, Greg M.

    1992-01-01

    Adaptive forms of weighted structural regression are developed and discussed. Bootstrapping studies indicate that the new methods have potential to recover known population regression weights and predict criterion score values routinely better than do ordinary least squares methods. The new methods are scale free and simple to compute. (SLD)

  14. Community Climate Change Adaptation based on Past Trends and Future Projections

    NASA Astrophysics Data System (ADS)

    Rodenhuis, D. R.; Werner, A. T.; Picketts, I. M.; Murdock, T. Q.

    2009-12-01

    In anticipation of climate change, the community of Prince George, BC has taken steps towards adaptation of community infrastructure. An introductory summary of impacts on temperature, precipitation and streamflow was prepared by the Pacific Climate Impacts Consortium (PCIC) and presented at several workshops. From the workshops the implications of these changes were identified with feedback from senior city staff and planners and documented in a report, Climate Change in Prince George: Summary of Past Trends and Future Projections and will form the basis of the report Adapting to Climate Change in Prince George. Prince George is a city of roughly 77,000 inhabitants, built on a flood plain at the confluence of the Nechako and Upper Fraser rivers. During the winter of 2007-2008, Prince George experienced severe ice-related flooding when lands along the lower Nechako River were inundated causing extensive damage. The watersheds surrounding Prince George encompass the headwaters of the largest river in BC (the Fraser) and have been heavily impacted by mountain pine beetle. These factors make this region susceptible to climate change impacts, and maintaining water security in this region is a concern to both the residents of Prince George and the Province. Over the last century the city experienced an average warming trend of 1.3°C. In recent decades, Prince George has become warmer in the winter season and a greater percentage of precipitation has fallen as rain rather than snow. Future climate projections were used with an evaluation of uncertainty to allow planners, managers and engineers to better integrate this information and make informed decisions as they prepare to adapt. Annual temperatures in the region are projected to increase by an average of 1.6°C to 2.5°C over the next 50 years. Precipitation during this time is projected to increase by 3% to 10%, with increases occurring primarily in winter and decreases possibly occurring in summer. These

  15. Climate trends and projections for the Andean Altiplano and strategies for adaptation

    NASA Astrophysics Data System (ADS)

    Valdivia, C.; Thibeault, J.; Gilles, J. L.; García, M.; Seth, A.

    2013-04-01

    Climate variability and change impact production in rainfed agricultural systems of the Bolivian highlands. Maximum temperature trends are increasing for the Altiplano. Minimum temperature increases are significant in the northern region, and decreases are significant in the southern region. Producers' perceptions of climate hazards are high in the central region, while concerns with changing climate and unemployment are high in the north. Similar high-risk perceptions involve pests and diseases in both regions. Altiplano climate projections for end-of-century highlights include increases in temperature, extreme event frequency, change in the timing of rainfall, and reduction of soil humidity. Successful adaptation to these changes will require the development of links between the knowledge systems of producers and scientists. Two-way participatory approaches to develop capacity and information that involve decision makers and scientists are appropriate approaches in this context of increased risk, uncertainty and vulnerability.

  16. Future temperature in southwest Asia projected to exceed a threshold for human adaptability

    NASA Astrophysics Data System (ADS)

    Pal, Jeremy S.; Eltahir, Elfatih A. B.

    2016-02-01

    A human body may be able to adapt to extremes of dry-bulb temperature (commonly referred to as simply temperature) through perspiration and associated evaporative cooling provided that the wet-bulb temperature (a combined measure of temperature and humidity or degree of `mugginess’) remains below a threshold of 35 °C. (ref. ). This threshold defines a limit of survivability for a fit human under well-ventilated outdoor conditions and is lower for most people. We project using an ensemble of high-resolution regional climate model simulations that extremes of wet-bulb temperature in the region around the Arabian Gulf are likely to approach and exceed this critical threshold under the business-as-usual scenario of future greenhouse gas concentrations. Our results expose a specific regional hotspot where climate change, in the absence of significant mitigation, is likely to severely impact human habitability in the future.

  17. An Adaptive Kalman Filter using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  18. An Adaptive Kalman Filter Using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  19. Adapting and using quality management methods to improve health promotion.

    PubMed

    Becker, Craig M; Glascoff, Mary A; Felts, William Michael; Kent, Christopher

    2015-01-01

    Although the western world is the most technologically advanced civilization to date, it is also the most addicted, obese, medicated, and in-debt adult population in history. Experts had predicted that the 21st century would be a time of better health and prosperity. Although wealth has increased, our quest to quell health problems using a pathogenic approach without understanding the interconnectedness of everyone and everything has damaged personal and planetary health. While current efforts help identify and eliminate causes of problems, they do not facilitate the creation of health and well-being as would be done with a salutogenic approach. Sociologist Aaron Antonovsky coined the term salutogenesis in 1979. It is derived from salus, which is Latin for health, and genesis, meaning to give birth. Salutogenesis, the study of the origins and creation of health, provides a method to identify an interconnected way to enhance well-being. Salutogenesis provides a framework for a method of practice to improve health promotion efforts. This article illustrates how quality management methods can be used to guide health promotion efforts focused on improving health beyond the absence of disease. PMID:25777291

  20. Adaptive Discrete Equation Method for injection of stochastic cavitating flows

    NASA Astrophysics Data System (ADS)

    Geraci, Gianluca; Rodio, Maria Giovanna; Iaccarino, Gianluca; Abgrall, Remi; Congedo, Pietro

    2014-11-01

    This work aims at the improvement of the prediction and of the control of biofuel injection for combustion. In fact, common injector should be optimized according to the specific physical/chemical properties of biofuels. In order to attain this scope, an optimized model for reproducing the injection for several biofuel blends will be considered. The originality of this approach is twofold, i) the use of cavitating two-phase compressible models, known as Baer & Nunziato, in order to reproduce the injection, and ii) the design of a global scheme for directly taking into account experimental measurements uncertainties in the simulation. In particular, stochastic intrusive methods display a high efficiency when dealing with discontinuities in unsteady compressible flows. We have recently formulated a new scheme for simulating stochastic multiphase flows relying on the Discrete Equation Method (DEM) for describing multiphase effects. The set-up of the intrusive stochastic method for multiphase unsteady compressible flows in quasi 1D configuration will be presented. The target test-case is a multiphase unsteady nozzle for injection of biofuels, described by complex thermodynamics models, for which experimental data and associated uncertainties are available.

  1. The Pilates method and cardiorespiratory adaptation to training.

    PubMed

    Tinoco-Fernández, Maria; Jiménez-Martín, Miguel; Sánchez-Caravaca, M Angeles; Fernández-Pérez, Antonio M; Ramírez-Rodrigo, Jesús; Villaverde-Gutiérrez, Carmen

    2016-01-01

    Although all authors report beneficial health changes following training based on the Pilates method, no explicit analysis has been performed of its cardiorespiratory effects. The objective of this study was to evaluate possible changes in cardiorespiratory parameters with the Pilates method. A total of 45 university students aged 18-35 years (77.8% female and 22.2% male), who did not routinely practice physical exercise or sports, volunteered for the study and signed informed consent. The Pilates training was conducted over 10 weeks, with three 1-hour sessions per week. Physiological cardiorespiratory responses were assessed using a MasterScreen CPX apparatus. After the 10-week training, statistically significant improvements were observed in mean heart rate (135.4-124.2 beats/min), respiratory exchange ratio (1.1-0.9) and oxygen equivalent (30.7-27.6) values, among other spirometric parameters, in submaximal aerobic testing. These findings indicate that practice of the Pilates method has a positive influence on cardiorespiratory parameters in healthy adults who do not routinely practice physical exercise activities. PMID:27357919

  2. SPACES Project ARS AfricaE – Adaptive Resilience of Southern African ecosystems

    NASA Astrophysics Data System (ADS)

    Falge, Eva; Brümmer, Christian; Schmullius, Christiane; Hüttich, Christian; Scholes, Robert John; Midgley, Guy; Hickler, Thomas; Scheiter, Simon; Twine, Wayne; Bradshaw, Karen; Lück, Wolfgang; Thiel-Clemen, Thomas; Lenfers, Ulfia; Mukelabai, Mukufute; Kutsch, Werner

    2015-04-01

    Nowadays, many semi-arid ecosystems are affected by at least two different kinds of disturbances: land use (change) and climate change. Based on this, it can be hypothesized that even very resilient ecosystems may not return to their initial state after disturbance, but will rather adapt to a new steady-state. We name this phenomenon "Adaptive Resilience of Ecosystems" and use it as base for the research concept of ARS AfricaE. This project wants to go beyond older approaches that only describe structural changes in savannas and their drivers. It employs functional aspects, such as the investigation of biogeochemical cycles, but also targets a deeper understanding of the functional consequences of ecosystem changes caused by multiple disturbances, and defines "degradation" as a sustained loss in the broad set of ecosystem services, i.e. a decrease in natural capital. To achieve this goal, the project will • create a network of research clusters (with natural and altered vegetation) along an aridity gradient in the Greater Karoo, Kruger National Park in South Africa, and Kataba Forest Reserve in Zambia • link biogeochemical functions with ecosystem structure, diversity of species and eco-physiological properties • describe ecosystem disturbance (and recovery) in terms of ecosystem function such as carbon balance components and water use efficiency • build an individual-based model to predict ecosystem dynamics under (post) disturbance managements • combine this model with long-term landscape dynamic information derived from remote sensing and aerial photography • develop sustainable management strategies for disturbed ecosystems and land use change

  3. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques.

    PubMed

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi

    2016-04-21

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients. PMID:27008349

  4. Using Projections of Tidal Marsh Ecosystem Response to Sea-Level Rise to Guide Adaptation Planning

    NASA Astrophysics Data System (ADS)

    Veloz, S.; Nur, N.; Salas, L. A.; Stralberg, D.; Jongsomjit, D.; Wood, J.; Liu, L.; Ballard, G.

    2011-12-01

    The large uncertainty associated with estimating the effects of sea-level rise and climate change on tidal marsh ecosystems exacerbates the difficulty in planning for their effective conservation. To address this uncertainty, we modeled the distribution and abundance of tidal marsh bird species in the San Francisco Estuary for the period 2010 to 2110 in relation to projected changes in sea-level rise, salinity, and sediment availability using four future scenarios with assumptions of low or high suspended sediment concentrations and low or high rates of sea-level rise (0.52 or 1.65 m/100 yr). We used the projections of bird populations the modeled uncertainty to develop spatially explicit priorities for conservation and restoration using Zonation conservation planning software. In our models, marsh bird population generally declined from current levels due to the conversion of high and mid-marsh habitat to low-marsh and mudflats and changes in spring and summer salinity. High sea-level rise scenarios had the biggest impact on bird populations, although the effects were muted under high sediment availability scenarios. There was considerable variation in bird population projections among the four future scenarios we tested and the uncertainty tended to increase from 2030 to 2110. Because so little tidal marsh habitat currently remains in the San Francisco Estuary, the spatial prioritization found that all areas currently open to tidal influence were high priorities for conservation. We repeated this prioritization exercise with all barriers to tidal flow (e.g. levees) removed and identified important locations in which restoration by breaching levees would most efficiently provide long-term benefit to tidal marsh bird populations. The projected species distributions and changes in tidal marsh elevations are available in the form of interactive maps and downloadable GIS layers at: www.prbo.org/sfbayslr. This website can help managers plan effective conservation and

  5. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    NASA Astrophysics Data System (ADS)

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E.; Lo, Yeh-Chi

    2016-04-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients.

  6. Projection methods for solving nonlinear systems of equations

    SciTech Connect

    Brown, P.N. ); Saad, Y. . Ames Research Center)

    1990-04-01

    This paper describes several nonlinear projection methods based on Krylov subspaces and analyzes their convergence. The prototype of these methods is a technique that generalizes the conjugate direction method by minimizing the norm of the function F over some subspace. The emphasis of this paper is on nonlinear least squares problems which can also be handled by this general approach.

  7. Error estimation and adaptive order nodal method for solving multidimensional transport problems

    SciTech Connect

    Zamonsky, O.M.; Gho, C.J.; Azmy, Y.Y.

    1998-01-01

    The authors propose a modification of the Arbitrarily High Order Transport Nodal method whereby they solve each node and each direction using different expansion order. With this feature and a previously proposed a posteriori error estimator they develop an adaptive order scheme to automatically improve the accuracy of the solution of the transport equation. They implemented the modified nodal method, the error estimator and the adaptive order scheme into a discrete-ordinates code for solving monoenergetic, fixed source, isotropic scattering problems in two-dimensional Cartesian geometry. They solve two test problems with large homogeneous regions to test the adaptive order scheme. The results show that using the adaptive process the storage requirements are reduced while preserving the accuracy of the results.

  8. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.

  9. A Massively Parallel Adaptive Fast Multipole Method on Heterogeneous Architectures

    SciTech Connect

    Lashuk, Ilya; Chandramowlishwaran, Aparna; Langston, Harper; Nguyen, Tuan-Anh; Sampath, Rahul S; Shringarpure, Aashay; Vuduc, Richard; Ying, Lexing; Zorin, Denis; Biros, George

    2012-01-01

    We describe a parallel fast multipole method (FMM) for highly nonuniform distributions of particles. We employ both distributed memory parallelism (via MPI) and shared memory parallelism (via OpenMP and GPU acceleration) to rapidly evaluate two-body nonoscillatory potentials in three dimensions on heterogeneous high performance computing architectures. We have performed scalability tests with up to 30 billion particles on 196,608 cores on the AMD/CRAY-based Jaguar system at ORNL. On a GPU-enabled system (NSF's Keeneland at Georgia Tech/ORNL), we observed 30x speedup over a single core CPU and 7x speedup over a multicore CPU implementation. By combining GPUs with MPI, we achieve less than 10 ns/particle and six digits of accuracy for a run with 48 million nonuniformly distributed particles on 192 GPUs.

  10. Grating project method for surface with step-height

    NASA Astrophysics Data System (ADS)

    Wang, Xuanze; Yajun, Wu

    2016-01-01

    The grating projection measurement method has broad applications in surface 3D topography measuring due to its measurement speed and accuracy. Along with the grating, the phase-shift method is usually adopted for calculating the field phase. This is achieved by projection scanning in order to obtain more grating fringe images. The higher the projection fringe density is, the higher resolution can be achieved. However, because the results of the projected grey value periodically change, once the fringe period is over the single-period, the absolute-phase will become wrapped-phase. Always obtain the absolute phase by means of an unwrapping algorithm because the traditional projection unwrapping algorithm, which is based on phase continuity and changing conditions, it is not suitable for step-height measuring. Aiming to solve this problem, an unusual sub-step projection scanning method for variable widths of grating periods is proposed. According to the principle of minimum error, using the step-by-step phase estimation and connection method, we can directly determine the high-density fringe projection absolute-phase.

  11. [A Method for Selecting Self-Adoptive Chromaticity of the Projected Markers].

    PubMed

    Zhao, Shou-bo; Zhang, Fu-min; Qu, Xing-hua; Zheng, Shi-wei; Chen, Zhe

    2015-04-01

    The authors designed a self-adaptive projection system which is composed of color camera, projector and PC. In detail, digital micro-mirror device (DMD) as a spatial light modulator for the projector was introduced in the optical path to modulate the illuminant spectrum based on red, green and blue light emitting diodes (LED). However, the color visibility of active markers is affected by the screen which has unknown reflective spectrum as well. Here active markers are projected spot array. And chromaticity feature of markers is sometimes submerged in similar spectral screen. In order to enhance the color visibility of active markers relative to screen, a method for selecting self-adaptive chromaticity of the projected markers in 3D scanning metrology is described. Color camera with 3 channels limits the accuracy of device characterization. For achieving interconversion of device-independent color space and device-dependent color space, high-dimensional linear model of reflective spectrum was built. Prior training samples provide additional constraints to yield high-dimensional linear model with more than three degrees of freedom. Meanwhile, spectral power distribution of ambient light was estimated. Subsequently, markers' chromaticity in CIE color spaces was selected via maximization principle of Euclidean distance. The setting values of RGB were easily estimated via inverse transform. Finally, we implemented a typical experiment to show the performance of the proposed approach. An 24 Munsell Color Checker was used as projective screen. Color difference in the chromaticity coordinates between the active marker and the color patch was utilized to evaluate the color visibility of active markers relative to the screen. The result comparison between self-adaptive projection system and traditional diode-laser light projector was listed and discussed to highlight advantage of our proposed method. PMID:26197614

  12. Project Method, as One of the Basic Methods of Environmental Education

    ERIC Educational Resources Information Center

    Szállassy, Noémi

    2008-01-01

    Our aim was to present in this paper the one of the most important methods of environmental education, the project method. We present here the steps and phases of project method and we give an example of how to use these elements in planning an activity for celebrating the World Day for Water.

  13. A convergent blind deconvolution method for post-adaptive-optics astronomical imaging

    NASA Astrophysics Data System (ADS)

    Prato, M.; La Camera, A.; Bonettini, S.; Bertero, M.

    2013-06-01

    In this paper, we propose a blind deconvolution method which applies to data perturbed by Poisson noise. The objective function is a generalized Kullback-Leibler (KL) divergence, depending on both the unknown object and unknown point spread function (PSF), without the addition of regularization terms; constrained minimization, with suitable convex constraints on both unknowns, is considered. The problem is non-convex and we propose to solve it by means of an inexact alternating minimization method, whose global convergence to stationary points of the objective function has been recently proved in a general setting. The method is iterative and each iteration, also called outer iteration, consists of alternating an update of the object and the PSF by means of a fixed number of iterations, also called inner iterations, of the scaled gradient projection (SGP) method. Therefore, the method is similar to other proposed methods based on the Richardson-Lucy (RL) algorithm, with SGP replacing RL. The use of SGP has two advantages: first, it allows one to prove global convergence of the blind method; secondly, it allows the introduction of different constraints on the object and the PSF. The specific constraint on the PSF, besides non-negativity and normalization, is an upper bound derived from the so-called Strehl ratio (SR), which is the ratio between the peak value of an aberrated versus a perfect wavefront. Therefore, a typical application, but not a unique one, is to the imaging of modern telescopes equipped with adaptive optics systems for the partial correction of the aberrations due to atmospheric turbulence. In the paper, we describe in detail the algorithm and we recall the results leading to its convergence. Moreover, we illustrate its effectiveness by means of numerical experiments whose results indicate that the method, pushed to convergence, is very promising in the reconstruction of non-dense stellar clusters. The case of more complex astronomical targets is

  14. Impedance adaptation methods of the piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Hyeoungwoo

    In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling

  15. Adaptive Management Methods to Protect the California Sacramento-San Joaquin Delta Water Resource

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  16. A self-adaptive-grid method with application to airfoil flow

    NASA Technical Reports Server (NTRS)

    Nakahashi, K.; Deiwert, G. S.

    1985-01-01

    A self-adaptive-grid method is described that is suitable for multidimensional steady and unsteady computations. Based on variational principles, a spring analogy is used to redistribute grid points in an optimal sense to reduce the overall solution error. User-specified parameters, denoting both maximum and minimum permissible grid spacings, are used to define the all-important constants, thereby minimizing the empiricism and making the method self-adaptive. Operator splitting and one-sided controls for orthogonality and smoothness are used to make the method practical, robust, and efficient. Examples are included for both steady and unsteady viscous flow computations about airfoils in two dimensions, as well as for a steady inviscid flow computation and a one-dimensional case. These examples illustrate the precise control the user has with the self-adaptive method and demonstrate a significant improvement in accuracy and quality of the solutions.

  17. Research on adaptive segmentation and activity classification method of filamentous fungi image in microbe fermentation

    NASA Astrophysics Data System (ADS)

    Cai, Xiaochun; Hu, Yihua; Wang, Peng; Sun, Dujuan; Hu, Guilan

    2009-10-01

    The paper presents an adaptive segmentation and activity classification method for filamentous fungi image. Firstly, an adaptive structuring element (SE) construction algorithm is proposed for image background suppression. Based on watershed transform method, the color labeled segmentation of fungi image is taken. Secondly, the fungi elements feature space is described and the feature set for fungi hyphae activity classification is extracted. The growth rate evaluation of fungi hyphae is achieved by using SVM classifier. Some experimental results demonstrate that the proposed method is effective for filamentous fungi image processing.

  18. An adaptive wavelet stochastic collocation method for irregular solutions of stochastic partial differential equations

    SciTech Connect

    Webster, Clayton G; Zhang, Guannan; Gunzburger, Max D

    2012-10-01

    Accurate predictive simulations of complex real world applications require numerical approximations to first, oppose the curse of dimensionality and second, converge quickly in the presence of steep gradients, sharp transitions, bifurcations or finite discontinuities in high-dimensional parameter spaces. In this paper we present a novel multi-dimensional multi-resolution adaptive (MdMrA) sparse grid stochastic collocation method, that utilizes hierarchical multiscale piecewise Riesz basis functions constructed from interpolating wavelets. The basis for our non-intrusive method forms a stable multiscale splitting and thus, optimal adaptation is achieved. Error estimates and numerical examples will used to compare the efficiency of the method with several other techniques.

  19. Projection methods for the numerical solution of Markov chain models

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1989-01-01

    Projection methods for computing stationary probability distributions for Markov chain models are presented. A general projection method is a method which seeks an approximation from a subspace of small dimension to the original problem. Thus, the original matrix problem of size N is approximated by one of dimension m, typically much smaller than N. A particularly successful class of methods based on this principle is that of Krylov subspace methods which utilize subspaces of the form span(v,av,...,A(exp m-1)v). These methods are effective in solving linear systems and eigenvalue problems (Lanczos, Arnoldi,...) as well as nonlinear equations. They can be combined with more traditional iterative methods such as successive overrelaxation, symmetric successive overrelaxation, or with incomplete factorization methods to enhance convergence.

  20. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    PubMed Central

    Maier, Andreas; Wigström, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu, Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-01-01

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia’s CUDA Interface provided an 8

  1. Project-Method Fit: Exploring Factors That Influence Agile Method Use

    ERIC Educational Resources Information Center

    Young, Diana K.

    2013-01-01

    While the productivity and quality implications of agile software development methods (SDMs) have been demonstrated, research concerning the project contexts where their use is most appropriate has yielded less definitive results. Most experts agree that agile SDMs are not suited for all project contexts. Several project and team factors have been…

  2. Potential benefit of the CT adaptive statistical iterative reconstruction method for pediatric cardiac diagnosis

    NASA Astrophysics Data System (ADS)

    Miéville, Frédéric A.; Ayestaran, Paul; Argaud, Christophe; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Gudinchet, François; Bochud, François; Verdun, Francis R.

    2010-04-01

    Adaptive Statistical Iterative Reconstruction (ASIR) is a new imaging reconstruction technique recently introduced by General Electric (GE). This technique, when combined with a conventional filtered back-projection (FBP) approach, is able to improve the image noise reduction. To quantify the benefits provided on the image quality and the dose reduction by the ASIR method with respect to the pure FBP one, the standard deviation (SD), the modulation transfer function (MTF), the noise power spectrum (NPS), the image uniformity and the noise homogeneity were examined. Measurements were performed on a control quality phantom when varying the CT dose index (CTDIvol) and the reconstruction kernels. A 64-MDCT was employed and raw data were reconstructed with different percentages of ASIR on a CT console dedicated for ASIR reconstruction. Three radiologists also assessed a cardiac pediatric exam reconstructed with different ASIR percentages using the visual grading analysis (VGA) method. For the standard, soft and bone reconstruction kernels, the SD is reduced when the ASIR percentage increases up to 100% with a higher benefit for low CTDIvol. MTF medium frequencies were slightly enhanced and modifications of the NPS shape curve were observed. However for the pediatric cardiac CT exam, VGA scores indicate an upper limit of the ASIR benefit. 40% of ASIR was observed as the best trade-off between noise reduction and clinical realism of organ images. Using phantom results, 40% of ASIR corresponded to an estimated dose reduction of 30% under pediatric cardiac protocol conditions. In spite of this discrepancy between phantom and clinical results, the ASIR method is as an important option when considering the reduction of radiation dose, especially for pediatric patients.

  3. Projections of Suitable Wine Growing Regions and Varieties: Adaptation in Space or Place?

    NASA Astrophysics Data System (ADS)

    Forrestel, E. J.; Cook, B.; Garcia de Cortazar-Atauri, I.; Nicholas, K. A.; Parker, A.; van Leeuwen, C.; Wolkovich, E. M.

    2015-12-01

    Winegrapes (Vitis vinifera L) are the most valuable horticultural crop in the world with nearly eight million hectares of vineyards in cultivation. Different varieties of winegrapes (e.g., Grenache or Syrah) exhibit an unprecedented amount of phenological and genetic diversity for a cultivated species, which is an important resource to buffer against climate change. Matching phenological strategies of the different winegrape varieties to a particular climate is a fundamental aim for every vineyard manager, especially in the face of significant climatic shifts in many winegrape growing regions. Yet current projections of suitable winegrape growing regions based on future climate scenarios are limited in their utility, as they do not consider the possibility that other varieties better suited to a future climate could be planted within an existing region. For our projections, we built phenological models for the nine most-planted winegrapes globally, which constitutes over 40% of all planted hectares, using a global dataset of budburst, flowering, veraison and maturity. These models were then used to characterize the growing range of 1300 globally planted winegrape varieties. Combing these models with climate projection models under RCP 4.5 and 8.5 emission scenarios we examined future distributions of suitable wine growing regions, as well as the turnover of suitable varieties within existing regions. In some regions of the world, predicted climate change will not significantly alter the varieties that are able to grow, while in others there will need to be shifts in the region itself or in the varieties that are currently planted. Some regions will also see a significant increase in the number and diversity of varieties that can be grown. Our results suggest the need to utilize the full range of winegrape diversity available when considering adaptive strategies in response to changing climates.

  4. Arbitrary Lagrangian-Eulerian Method with Local Structured Adaptive Mesh Refinement for Modeling Shock Hydrodynamics

    SciTech Connect

    Anderson, R W; Pember, R B; Elliott, N S

    2001-10-22

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.

  5. Adaptation of the TCLP and SW-846 methods to radioactive mixed waste

    SciTech Connect

    Griest, W.H.; Schenley, R.L.; Caton, J.E.; Wolfe, P.F.

    1994-07-01

    Modifications of conventional sample preparation and analytical methods are necessary to provide radiation protection and to meet sensitivity requirements for regulated constituents when working with radioactive samples. Adaptations of regulatory methods for determining ``total`` Toxicity Characteristic Leaching Procedure (TCLP) volatile and semivolatile organics and pesticides, and for conducting aqueous leaching are presented.

  6. Five Methods to Score the Teacher Observation of Classroom Adaptation Checklist and to Examine Group Differences

    ERIC Educational Resources Information Center

    Wang, Ze; Rohrer, David; Chuang, Chi-ching; Fujiki, Mayo; Herman, Keith; Reinke, Wendy

    2015-01-01

    This study compared 5 scoring methods in terms of their statistical assumptions. They were then used to score the Teacher Observation of Classroom Adaptation Checklist, a measure consisting of 3 subscales and 21 Likert-type items. The 5 methods used were (a) sum/average scores of items, (b) latent factor scores with continuous indicators, (c)…

  7. An adaptive, formally second order accurate version of the immersed boundary method

    NASA Astrophysics Data System (ADS)

    Griffith, Boyce E.; Hornung, Richard D.; McQueen, David M.; Peskin, Charles S.

    2007-04-01

    Like many problems in biofluid mechanics, cardiac mechanics can be modeled as the dynamic interaction of a viscous incompressible fluid (the blood) and a (visco-)elastic structure (the muscular walls and the valves of the heart). The immersed boundary method is a mathematical formulation and numerical approach to such problems that was originally introduced to study blood flow through heart valves, and extensions of this work have yielded a three-dimensional model of the heart and great vessels. In the present work, we introduce a new adaptive version of the immersed boundary method. This adaptive scheme employs the same hierarchical structured grid approach (but a different numerical scheme) as the two-dimensional adaptive immersed boundary method of Roma et al. [A multilevel self adaptive version of the immersed boundary method, Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University, 1996; An adaptive version of the immersed boundary method, J. Comput. Phys. 153 (2) (1999) 509-534] and is based on a formally second order accurate (i.e., second order accurate for problems with sufficiently smooth solutions) version of the immersed boundary method that we have recently described [B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. Comput. Phys. 208 (1) (2005) 75-105]. Actual second order convergence rates are obtained for both the uniform and adaptive methods by considering the interaction of a viscous incompressible flow and an anisotropic incompressible viscoelastic shell. We also present initial results from the application of this methodology to the three-dimensional simulation of blood flow in the heart and great vessels. The results obtained by the adaptive method show good qualitative agreement with simulation results obtained by earlier non-adaptive versions of the method, but the flow in the vicinity of the model heart valves

  8. An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations

    NASA Astrophysics Data System (ADS)

    Tian, Lulu; Xu, Yan; Kuerten, J. G. M.; van der Vegt, J. J. W.

    2016-08-01

    In this article, we develop a mesh adaptation algorithm for a local discontinuous Galerkin (LDG) discretization of the (non)-isothermal Navier-Stokes-Korteweg (NSK) equations modeling liquid-vapor flows with phase change. This work is a continuation of our previous research, where we proposed LDG discretizations for the (non)-isothermal NSK equations with a time-implicit Runge-Kutta method. To save computing time and to capture the thin interfaces more accurately, we extend the LDG discretization with a mesh adaptation method. Given the current adapted mesh, a criterion for selecting candidate elements for refinement and coarsening is adopted based on the locally largest value of the density gradient. A strategy to refine and coarsen the candidate elements is then provided. We emphasize that the adaptive LDG discretization is relatively simple and does not require additional stabilization. The use of a locally refined mesh in combination with an implicit Runge-Kutta time method is, however, non-trivial, but results in an efficient time integration method for the NSK equations. Computations, including cases with solid wall boundaries, are provided to demonstrate the accuracy, efficiency and capabilities of the adaptive LDG discretizations.

  9. Participatory Scenario Planning for Climate Change Adaptation: the Maui Groundwater Project

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Brewington, L.; Finucane, M.

    2015-12-01

    For the last century, the island of Maui in Hawai'i has been the center of environmental, agricultural, and legal conflict with respect to both surface and groundwater allocation. Planning for sustainable future freshwater supply in Hawai'i requires adaptive policies and decision-making that emphasizes private and public partnerships and knowledge transfer between scientists and non-scientists. We have downscaled dynamical climate models to 1 km resolution in Maui and coupled them with a USGS Water Budget model and a participatory scenario building process to quantify future changes in island-scale climate and groundwater recharge under different land uses. Although these projections are uncertain, the integrated nature of the Pacific RISA research program has allowed us to take a multi-pronged approach to facilitate the uptake of climate information into policy and management. This presentation details the ongoing work to support the development of Hawai'i's first island-wide water use plan under the new climate adaptation directive. Participatory scenario planning began in 2012 to bring together a diverse group of ~100 decision-makers in state and local government, watershed restoration, agriculture, and conservation to 1) determine the type of information (climate variables, land use and development, agricultural practices) they would find helpful in planning for climate change, and 2) develop a set of nested scenarios that represent alternative climate and management futures. This integration of knowledge is an iterative process, resulting in flexible and transparent narratives of complex futures comprised of information at multiple scales. We will present an overview of the downscaling, scenario building, hydrological modeling processes, and stakeholder response.

  10. Estimating the Importance of Private Adaptation to Climate Change in Agriculture: A Review of Empirical Methods

    NASA Astrophysics Data System (ADS)

    Moore, F.; Burke, M.

    2015-12-01

    A wide range of studies using a variety of methods strongly suggest that climate change will have a negative impact on agricultural production in many areas. Farmers though should be able to learn about a changing climate and to adjust what they grow and how they grow it in order to reduce these negative impacts. However, it remains unclear how effective these private (autonomous) adaptations will be, or how quickly they will be adopted. Constraining the uncertainty on this adaptation is important for understanding the impacts of climate change on agriculture. Here we review a number of empirical methods that have been proposed for understanding the rate and effectiveness of private adaptation to climate change. We compare these methods using data on agricultural yields in the United States and western Europe.

  11. The adaptive problems of female teenage refugees and their behavioral adjustment methods for coping

    PubMed Central

    Mhaidat, Fatin

    2016-01-01

    This study aimed at identifying the levels of adaptive problems among teenage female refugees in the government schools and explored the behavioral methods that were used to cope with the problems. The sample was composed of 220 Syrian female students (seventh to first secondary grades) enrolled at government schools within the Zarqa Directorate and who came to Jordan due to the war conditions in their home country. The study used the scale of adaptive problems that consists of four dimensions (depression, anger and hostility, low self-esteem, and feeling insecure) and a questionnaire of the behavioral adjustment methods for dealing with the problem of asylum. The results indicated that the Syrian teenage female refugees suffer a moderate degree of adaptation problems, and the positive adjustment methods they have used are more than the negatives. PMID:27175098

  12. Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors - Performance results

    NASA Technical Reports Server (NTRS)

    Mccormick, S.; Quinlan, D.

    1989-01-01

    The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids (global and local) to provide adaptive resolution and fast solution of PDEs. Like all such methods, it offers parallelism by using possibly many disconnected patches per level, but is hindered by the need to handle these levels sequentially. The finest levels must therefore wait for processing to be essentially completed on all the coarser ones. A recently developed asynchronous version of FAC, called AFAC, completely eliminates this bottleneck to parallelism. This paper describes timing results for AFAC, coupled with a simple load balancing scheme, applied to the solution of elliptic PDEs on an Intel iPSC hypercube. These tests include performance of certain processes necessary in adaptive methods, including moving grids and changing refinement. A companion paper reports on numerical and analytical results for estimating convergence factors of AFAC applied to very large scale examples.

  13. A new adaptive exponential smoothing method for non-stationary time series with level shifts

    NASA Astrophysics Data System (ADS)

    Monfared, Mohammad Ali Saniee; Ghandali, Razieh; Esmaeili, Maryam

    2014-07-01

    Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting process. This paper generalizes the SES method into a new adaptive method called revised simple exponential smoothing (RSES), as an alternative method to recognize non-stationary level shifts in the time series. We show that the new method improves the accuracy of the forecasting process. This is done by controlling the number of observations and the smoothing parameter in an adaptive approach, and in accordance with the laws of statistical control limits and the Bayes rule of conditioning. We use a numerical example to show how the new RSES method outperforms its traditional counterpart, SES.

  14. A new project on development and application of comprehensive downscaling methods over Hokkaido.

    NASA Astrophysics Data System (ADS)

    Inatsu, M.; Yamada, T. J.; Sato, T.; Nakamura, K.; Matsuoka, N.; Komatsu, A.; Pokhrel, Y. N.; Sugimoto, S.; Miyazaki, S.

    2012-04-01

    A new project on development and application of comprehensive downscaling methods over Hokkaido started as one of the branches of "Research Program on climate change adaptation" funded by Ministry of Education, Sports, Culture, Science, and Technology of Japan in 2010. Our group will develop two new downscaling algorithms in order to get more information on the uncertainty of high/low temperatures or heavy rainfall. Both of the algorithms called "sampling downscaling" and "hybrid downscaling" are based upon the mixed use of statistical and dynamical downscaling ideas. Another point of the project is to evaluate the effect of land-use changes in Hokkaido, where the major pioneering began only about a century ago. Scientific outcomes on climate changes in Hokkaido from the project will be provided to not only public sectors in Hokkaido but also people who live in Hokkaido through a graphical-user-interface system just like a weather forecast system in a forecast-center's webpage.

  15. WRF4G project: Adaptation of WRF Model to Distributed Computing Infrastructures

    NASA Astrophysics Data System (ADS)

    Cofino, Antonio S.; Fernández Quiruelas, Valvanuz; García Díez, Markel; Blanco Real, Jose C.; Fernández, Jesús

    2013-04-01

    Nowadays Grid Computing is powerful computational tool which is ready to be used for scientific community in different areas (such as biomedicine, astrophysics, climate, etc.). However, the use of this distributed computing infrastructures (DCI) is not yet common practice in climate research, and only a few teams and applications in this area take advantage of this infrastructure. Thus, the first objective of this project is to popularize the use of this technology in the atmospheric sciences area. In order to achieve this objective, one of the most used applications has been taken (WRF; a limited- area model, successor of the MM5 model), that has a user community formed by more than 8000 researchers worldwide. This community develop its research activity on different areas and could benefit from the advantages of Grid resources (case study simulations, regional hind-cast/forecast, sensitivity studies, etc.). The WRF model is been used as input by many energy and natural hazards community, therefore those community will also benefit. However, Grid infrastructures have some drawbacks for the execution of applications that make an intensive use of CPU and memory for a long period of time. This makes necessary to develop a specific framework (middleware). This middleware encapsulates the application and provides appropriate services for the monitoring and management of the jobs and the data. Thus, the second objective of the project consists on the development of a generic adaptation of WRF for Grid (WRF4G), to be distributed as open-source and to be integrated in the official WRF development cycle. The use of this WRF adaptation should be transparent and useful to face any of the previously described studies, and avoid any of the problems of the Grid infrastructure. Moreover it should simplify the access to the Grid infrastructures for the research teams, and also to free them from the technical and computational aspects of the use of the Grid. Finally, in order to

  16. Software for the parallel adaptive solution of conservation laws by discontinous Galerkin methods.

    SciTech Connect

    Flaherty, J. E.; Loy, R. M.; Shephard, M. S.; Teresco, J. D.

    1999-08-17

    The authors develop software tools for the solution of conservation laws using parallel adaptive discontinuous Galerkin methods. In particular, the Rensselaer Partition Model (RPM) provides parallel mesh structures within an adaptive framework to solve the Euler equations of compressible flow by a discontinuous Galerkin method (LOCO). Results are presented for a Rayleigh-Taylor flow instability for computations performed on 128 processors of an IBM SP computer. In addition to managing the distributed data and maintaining a load balance, RPM provides information about the parallel environment that can be used to tailor partitions to a specific computational environment.

  17. A comparison of locally adaptive multigrid methods: LDC, FAC and FIC

    NASA Technical Reports Server (NTRS)

    Khadra, Khodor; Angot, Philippe; Caltagirone, Jean-Paul

    1993-01-01

    This study is devoted to a comparative analysis of three 'Adaptive ZOOM' (ZOom Overlapping Multi-level) methods based on similar concepts of hierarchical multigrid local refinement: LDC (Local Defect Correction), FAC (Fast Adaptive Composite), and FIC (Flux Interface Correction)--which we proposed recently. These methods are tested on two examples of a bidimensional elliptic problem. We compare, for V-cycle procedures, the asymptotic evolution of the global error evaluated by discrete norms, the corresponding local errors, and the convergence rates of these algorithms.

  18. An Adaptive Altitude Information Fusion Method for Autonomous Landing Processes of Small Unmanned Aerial Rotorcraft

    PubMed Central

    Lei, Xusheng; Li, Jingjing

    2012-01-01

    This paper presents an adaptive information fusion method to improve the accuracy and reliability of the altitude measurement information for small unmanned aerial rotorcraft during the landing process. Focusing on the low measurement performance of sensors mounted on small unmanned aerial rotorcraft, a wavelet filter is applied as a pre-filter to attenuate the high frequency noises in the sensor output. Furthermore, to improve altitude information, an adaptive extended Kalman filter based on a maximum a posteriori criterion is proposed to estimate measurement noise covariance matrix in real time. Finally, the effectiveness of the proposed method is proved by static tests, hovering flight and autonomous landing flight tests. PMID:23201993

  19. Adaptive spatial carrier frequency method for fast monitoring optical properties of fibres

    NASA Astrophysics Data System (ADS)

    Sokkar, T. Z. N.; El-Farahaty, K. A.; El-Bakary, M. A.; Omar, E. Z.; Agour, M.; Hamza, A. A.

    2016-05-01

    We present an extension of the adaptive spatial carrier frequency method which is proposed for fast measuring optical properties of fibrous materials. The method can be considered as a two complementary steps. In the first step, the support of the adaptive filter shall be defined. In the second step, the angle between the sample under test and the interference fringe system generated by the utilized interferometer has to be determined. Thus, the support of the optical filter associated with the implementation of the adaptive spatial carrier frequency method is accordingly rotated. This method is experimentally verified by measuring optical properties of polypropylene (PP) fibre with the help of a Mach-Zehnder interferometer. The results show that errors resulting from rotating the fibre with respect to the interference fringes of the interferometer are reduced compared with the traditional band pass filter method. This conclusion was driven by comparing results of the mean refractive index of drown PP fibre at parallel polarization direction obtained from the new and adaptive spatial carrier frequency method.

  20. Precipitation Variability and Projection Uncertainties in Climate Change Adaptation: Go Local!

    EPA Science Inventory

    Presentations agenda includes: Regional and local climate change effects: The relevance; Variability and uncertainty in decision- making and adaptation approaches; Adaptation attributes for the U.S. Southwest: Water availability, storage capacity, and related; EPA research...

  1. Lesion insertion in the projection domain: Methods and initial results

    SciTech Connect

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Yu, Zhicong; Ma, Chi; McCollough, Cynthia

    2015-12-15

    Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated both axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically

  2. A modified implicit Monte Carlo method for time-dependent radiative transfer with adaptive material coupling

    SciTech Connect

    McClarren, Ryan G. Urbatsch, Todd J.

    2009-09-01

    In this paper we develop a robust implicit Monte Carlo (IMC) algorithm based on more accurately updating the linearized equilibrium radiation energy density. The method does not introduce oscillations in the solution and has the same limit as {delta}t{yields}{infinity} as the standard Fleck and Cummings IMC method. Moreover, the approach we introduce can be trivially added to current implementations of IMC by changing the definition of the Fleck factor. Using this new method we develop an adaptive scheme that uses either standard IMC or the modified method basing the adaptation on a zero-dimensional problem solved in each cell. Numerical results demonstrate that the new method can avoid the nonphysical overheating that occurs in standard IMC when the time step is large. The method also leads to decreased noise in the material temperature at the cost of a potential increase in the radiation temperature noise.

  3. Effects of light curing method and resin composite composition on composite adaptation to the cavity wall.

    PubMed

    Yoshikawa, Takako; Morigami, Makoto; Sadr, Alireza; Tagami, Junji

    2014-01-01

    This study aimed to evaluate the effects of the light curing method and resin composite composition on marginal sealing and resin composite adaptation to the cavity wall. Cylindrical cavities were prepared on the buccal or lingual cervical regions. The teeth were restored using Clearfil Liner Bond 2V adhesive system and filled with Clearfil Photo Bright or Palfique Estelite resin composite. The resins were cured using the conventional or slow-start light curing method. After thermal cycling, the specimens were subjected to a dye penetration test. The slow-start curing method showed better resin composite adaptation to the cavity wall for both composites. Furthermore, the slow-start curing method resulted in significantly improved dentin marginal sealing compared with the conventional method for Clearfil Photo Bright. The light-cured resin composite, which exhibited increased contrast ratios duringpolymerization, seems to suggest high compensation for polymerization contraction stress when using the slow-start curing method. PMID:24988883

  4. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

    SciTech Connect

    Druckmueller, M.

    2013-08-15

    A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.

  5. A density-based adaptive quantum mechanical/molecular mechanical method.

    PubMed

    Waller, Mark P; Kumbhar, Sadhana; Yang, Jack

    2014-10-20

    We present a density-based adaptive quantum mechanical/molecular mechanical (DBA-QM/MM) method, whereby molecules can switch layers from the QM to the MM region and vice versa. The adaptive partitioning of the molecular system ensures that the layer assignment can change during the optimization procedure, that is, on the fly. The switch from a QM molecule to a MM molecule is determined if there is an absence of noncovalent interactions to any atom of the QM core region. The presence/absence of noncovalent interactions is determined by analysis of the reduced density gradient. Therefore, the location of the QM/MM boundary is based on physical arguments, and this neatly removes some empiricism inherent in previous adaptive QM/MM partitioning schemes. The DBA-QM/MM method is validated by using a water-in-water setup and an explicitly solvated L-alanyl-L-alanine dipeptide. PMID:24954803

  6. A GPU-accelerated adaptive discontinuous Galerkin method for level set equation

    NASA Astrophysics Data System (ADS)

    Karakus, A.; Warburton, T.; Aksel, M. H.; Sert, C.

    2016-01-01

    This paper presents a GPU-accelerated nodal discontinuous Galerkin method for the solution of two- and three-dimensional level set (LS) equation on unstructured adaptive meshes. Using adaptive mesh refinement, computations are localised mostly near the interface location to reduce the computational cost. Small global time step size resulting from the local adaptivity is avoided by local time-stepping based on a multi-rate Adams-Bashforth scheme. Platform independence of the solver is achieved with an extensible multi-threading programming API that allows runtime selection of different computing devices (GPU and CPU) and different threading interfaces (CUDA, OpenCL and OpenMP). Overall, a highly scalable, accurate and mass conservative numerical scheme that preserves the simplicity of LS formulation is obtained. Efficiency, performance and local high-order accuracy of the method are demonstrated through distinct numerical test cases.

  7. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  8. An adaptive mesh finite volume method for the Euler equations of gas dynamics

    NASA Astrophysics Data System (ADS)

    Mungkasi, Sudi

    2016-06-01

    The Euler equations have been used to model gas dynamics for decades. They consist of mathematical equations for the conservation of mass, momentum, and energy of the gas. For a large time value, the solution may contain discontinuities, even when the initial condition is smooth. A standard finite volume numerical method is not able to give accurate solutions to the Euler equations around discontinuities. Therefore we solve the Euler equations using an adaptive mesh finite volume method. In this paper, we present a new construction of the adaptive mesh finite volume method with an efficient computation of the refinement indicator. The adaptive method takes action automatically at around places having inaccurate solutions. Inaccurate solutions are reconstructed to reduce the error by refining the mesh locally up to a certain level. On the other hand, if the solution is already accurate, then the mesh is coarsened up to another certain level to minimize computational efforts. We implement the numerical entropy production as the mesh refinement indicator. As a test problem, we take the Sod shock tube problem. Numerical results show that the adaptive method is more promising than the standard one in solving the Euler equations of gas dynamics.

  9. Assessing current and future exposure to flood hazards - proceedings of the project RiskAdapt

    NASA Astrophysics Data System (ADS)

    Löschner, Lukas; Seher, Walter

    2013-04-01

    The project RiskAdapt, funded by the Climate and Energy Fund Austria, applies a novel dynamic flood risk assessment approach. It analyses both aspects of risk - hazard and vulnerability - and considers their potential spatial and temporal developments under climate change scenarios on a macro scale (federal territory of Austria) and a micro scale (regional/local case studies). The conceptual framework of RiskAdapt integrates analytical perspectives of hazard and vulnerability, the latter comprising the analysis of exposure, sensitivity and adaptive capacities. In the framework of the macro scale risk assessment, a nationwide GIS based analysis of current hazard exposure is conducted based on the indicators "affected persons" and "traffic infrastructure" (roads and railroads) in calculated flooding areas. Provided by the Environment Agency Austria (UBA) for 500m river stretches, these indicators are evaluated for each municipality in Austria. To assess their future exposure to flood hazards, demographic and land-use change scenarios (timeframe: 2030) are established based on existing projections and available data suitable for extrapolation. Regarding population change, extrapolations of local demographic developments are correlated with regional forecasts provided by the Austrian Conference on Spatial Planning (ÖROK). Land-use change scenarios are established by extrapolating trends in the development of highly vulnerable land uses (including building land for housing, commercial and industrial purposes as well as land used for traffic infrastructure). Data on highly vulnerable land uses is available for the years 2001, 2003, 2005 and 2012 for each municipality of Austria (provided by UBA). Based on this analysis, municipalities will be clustered according to the present and expected degree of exposure. This simplified approach in exposure assessment contains uncertainties, in particular with regard to demographic and land-use change scenarios: -) While population

  10. Projection techniques as methods of particle-number symmetry restoration

    SciTech Connect

    Oudih, M. R.; Fellah, M.; Allal, N. H.; Benhamouda, N.

    2007-10-15

    The accuracy of the variation before (VBP) and after (VAP) particle-number projection methods, the Lipkin-Nogami (LN) prescription, and the projected Lipkin-Nogami (PLN) method have been studied using two exactly solvable models. It is shown that the VBP and the LN methods are rather dubious not only in a weak pairing regime, but also in strong pairing for the evaluation of quantities other than the ground state energy. The PLN method provides good results for the ground and the excited state energies, but it must be used with caution for the occupation probabilities and the observables that strongly depend on it. It seems that the VAP is the only suitable method for a global description of the nuclear properties.

  11. A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection

    SciTech Connect

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; Burkardt, John V.

    2015-06-24

    This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.

  12. A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Solution of the Euler Equations

    SciTech Connect

    Anderson, R W; Elliott, N S; Pember, R B

    2003-02-14

    A new method that combines staggered grid arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the methods are driven by the need to reconcile traditional AMR techniques with the staggered variables and moving, deforming meshes associated with Lagrange based ALE schemes. We develop interlevel solution transfer operators and interlevel boundary conditions first in the case of purely Lagrangian hydrodynamics, and then extend these ideas into an ALE method by developing adaptive extensions of elliptic mesh relaxation techniques. Conservation properties of the method are analyzed, and a series of test problem calculations are presented which demonstrate the utility and efficiency of the method.

  13. Applications of automatic mesh generation and adaptive methods in computational medicine

    SciTech Connect

    Schmidt, J.A.; Macleod, R.S.; Johnson, C.R.; Eason, J.C.

    1995-12-31

    Important problems in Computational Medicine exist that can benefit from the implementation of adaptive mesh refinement techniques. Biological systems are so inherently complex that only efficient models running on state of the art hardware can begin to simulate reality. To tackle the complex geometries associated with medical applications we present a general purpose mesh generation scheme based upon the Delaunay tessellation algorithm and an iterative point generator. In addition, automatic, two- and three-dimensional adaptive mesh refinement methods are presented that are derived from local and global estimates of the finite element error. Mesh generation and adaptive refinement techniques are utilized to obtain accurate approximations of bioelectric fields within anatomically correct models of the heart and human thorax. Specifically, we explore the simulation of cardiac defibrillation and the general forward and inverse problems in electrocardiography (ECG). Comparisons between uniform and adaptive refinement techniques are made to highlight the computational efficiency and accuracy of adaptive methods in the solution of field problems in computational medicine.

  14. Development and evaluation of a method of calibrating medical displays based on fixed adaptation

    SciTech Connect

    Sund, Patrik Månsson, Lars Gunnar; Båth, Magnus

    2015-04-15

    Purpose: The purpose of this work was to develop and evaluate a new method for calibration of medical displays that includes the effect of fixed adaptation and by using equipment and luminance levels typical for a modern radiology department. Methods: Low contrast sinusoidal test patterns were derived at nine luminance levels from 2 to 600 cd/m{sup 2} and used in a two alternative forced choice observer study, where the adaptation level was fixed at the logarithmic average of 35 cd/m{sup 2}. The contrast sensitivity at each luminance level was derived by establishing a linear relationship between the ten pattern contrast levels used at every luminance level and a detectability index (d′) calculated from the fraction of correct responses. A Gaussian function was fitted to the data and normalized to the adaptation level. The corresponding equation was used in a display calibration method that included the grayscale standard display function (GSDF) but compensated for fixed adaptation. In the evaluation study, the contrast of circular objects with a fixed pixel contrast was displayed using both calibration methods and was rated on a five-grade scale. Results were calculated using a visual grading characteristics method. Error estimations in both observer studies were derived using a bootstrap method. Results: The contrast sensitivities for the darkest and brightest patterns compared to the contrast sensitivity at the adaptation luminance were 37% and 56%, respectively. The obtained Gaussian fit corresponded well with similar studies. The evaluation study showed a higher degree of equally distributed contrast throughout the luminance range with the calibration method compensated for fixed adaptation than for the GSDF. The two lowest scores for the GSDF were obtained for the darkest and brightest patterns. These scores were significantly lower than the lowest score obtained for the compensated GSDF. For the GSDF, the scores for all luminance levels were statistically

  15. Adaptive non-local means method for speckle reduction in ultrasound images

    NASA Astrophysics Data System (ADS)

    Ai, Ling; Ding, Mingyue; Zhang, Xuming

    2016-03-01

    Noise removal is a crucial step to enhance the quality of ultrasound images. However, some existing despeckling methods cannot ensure satisfactory restoration performance. In this paper, an adaptive non-local means (ANLM) filter is proposed for speckle noise reduction in ultrasound images. The distinctive property of the proposed method lies in that the decay parameter will not take the fixed value for the whole image but adapt itself to the variation of the local features in the ultrasound images. In the proposed method, the pre-filtered image will be obtained using the traditional NLM method. Based on the pre-filtered result, the local gradient will be computed and it will be utilized to determine the decay parameter adaptively for each image pixel. The final restored image will be produced by the ANLM method using the obtained decay parameters. Simulations on the synthetic image show that the proposed method can deliver sufficient speckle reduction while preserving image details very well and it outperforms the state-of-the-art despeckling filters in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Experiments on the clinical ultrasound image further demonstrate the practicality and advantage of the proposed method over the compared filtering methods.

  16. A propagation method with adaptive mesh grid based on wave characteristics for wave optics simulation

    NASA Astrophysics Data System (ADS)

    Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan

    2015-10-01

    Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.

  17. Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Wilcox, L.

    2013-12-01

    Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.

  18. Field tests of carbon monitoring methods in forestry projects

    SciTech Connect

    1999-07-01

    In response to the emerging scientific consensus on the facts of global climate change, the international Joint Implementation (JI) program provided a pilot phase in which utilities and other industries could finance, among other activities, international efforts to sequester carbon dioxide, a major greenhouse gas. To make JI and its successor mechanisms workable, however, cost-effective methods are needed for monitoring progress in the reduction of greenhouse gas emissions. The papers in this volume describe field test experiences with methods for measuring carbon storage by three types of land use: natural forest, plantation forest, and agroforestry. Each test, in a slightly different land-use situation, contributes to the knowledge of carbon-monitoring methods as experienced in the field. The field tests of the agroforestry guidelines in Guatemala and the Philippines, for example, suggested adaptations in terms of plot size and method of delineating the total area for sampling.

  19. New cardiac MRI gating method using event-synchronous adaptive digital filter.

    PubMed

    Park, Hodong; Park, Youngcheol; Cho, Sungpil; Jang, Bongryoel; Lee, Kyoungjoung

    2009-11-01

    When imaging the heart using MRI, an artefact-free electrocardiograph (ECG) signal is not only important for monitoring the patient's heart activity but also essential for cardiac gating to reduce noise in MR images induced by moving organs. The fundamental problem in conventional ECG is the distortion induced by electromagnetic interference. Here, we propose an adaptive algorithm for the suppression of MR gradient artefacts (MRGAs) in ECG leads of a cardiac MRI gating system. We have modeled MRGAs by assuming a source of strong pulses used for dephasing the MR signal. The modeled MRGAs are rectangular pulse-like signals. We used an event-synchronous adaptive digital filter whose reference signal is synchronous to the gradient peaks of MRI. The event detection processor for the event-synchronous adaptive digital filter was implemented using the phase space method-a sort of topology mapping method-and least-squares acceleration filter. For evaluating the efficiency of the proposed method, the filter was tested using simulation and actual data. The proposed method requires a simple experimental setup that does not require extra hardware connections to obtain the reference signals of adaptive digital filter. The proposed algorithm was more effective than the multichannel approach. PMID:19644754

  20. Item Pocket Method to Allow Response Review and Change in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Han, Kyung T.

    2013-01-01

    Most computerized adaptive testing (CAT) programs do not allow test takers to review and change their responses because it could seriously deteriorate the efficiency of measurement and make tests vulnerable to manipulative test-taking strategies. Several modified testing methods have been developed that provide restricted review options while…

  1. Method for reducing the drag of blunt-based vehicles by adaptively increasing forebody roughness

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A. (Inventor); Saltzman, Edwin J. (Inventor); Moes, Timothy R. (Inventor); Iliff, Kenneth W. (Inventor)

    2005-01-01

    A method for reducing drag upon a blunt-based vehicle by adaptively increasing forebody roughness to increase drag at the roughened area of the forebody, which results in a decrease in drag at the base of this vehicle, and in total vehicle drag.

  2. [Correction of autonomic reactions parameters in organism of cosmonaut with adaptive biocontrol method

    NASA Technical Reports Server (NTRS)

    Kornilova, L. N.; Cowings, P. S.; Toscano, W. B.; Arlashchenko, N. I.; Korneev, D. Iu; Ponomarenko, A. V.; Salagovich, S. V.; Sarantseva, A. V.; Kozlovskaia, I. B.

    2000-01-01

    Presented are results of testing the method of adaptive biocontrol during preflight training of cosmonauts. Within the MIR-25 crew, a high level of controllability of the autonomous reactions was characteristic of Flight Commanders MIR-23 and MIR-25 and flight Engineer MIR-23, while Flight Engineer MIR-25 displayed a weak intricate dependence of these reactions on the depth of relaxation or strain.

  3. Component model reduction via the projection and assembly method

    NASA Technical Reports Server (NTRS)

    Bernard, Douglas E.

    1989-01-01

    The problem of acquiring a simple but sufficiently accurate model of a dynamic system is made more difficult when the dynamic system of interest is a multibody system comprised of several components. A low order system model may be created by reducing the order of the component models and making use of various available multibody dynamics programs to assemble them into a system model. The difficulty is in choosing the reduced order component models to meet system level requirements. The projection and assembly method, proposed originally by Eke, solves this difficulty by forming the full order system model, performing model reduction at the the system level using system level requirements, and then projecting the desired modes onto the components for component level model reduction. The projection and assembly method is analyzed to show the conditions under which the desired modes are captured exactly; to the numerical precision of the algorithm.

  4. A decoupled monolithic projection method for natural convection problems

    NASA Astrophysics Data System (ADS)

    Pan, Xiaomin; Kim, Kyoungyoun; Lee, Changhoon; Choi, Jung-Il

    2016-06-01

    We propose an efficient monolithic numerical procedure based on a projection method for solving natural convection problems. In the present monolithic method, the buoyancy, linear diffusion, and nonlinear convection terms are implicitly advanced by applying the Crank-Nicolson scheme in time. To avoid an otherwise inevitable iterative procedure in solving the monolithic discretized system, we use a linearization of the nonlinear convection terms and approximate block lower-upper (LU) decompositions along with approximate factorization. Numerical simulations demonstrate that the proposed method is more stable and computationally efficient than other semi-implicit methods, preserving temporal second-order accuracy.

  5. Selecting the Right Construction Delivery Method for a Specific Project.

    ERIC Educational Resources Information Center

    Klinger, Jeff; Booth, Scott

    2002-01-01

    Discusses the costs and benefits of various construction delivery methods for higher education facility projects, including the traditional lump sum general contracting approach (also known as design/bid/build); design-build; and, in the case of private institutions, guaranteed maximum pricing offered by those firms willing to perform construction…

  6. Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy

    2006-01-01

    This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.

  7. An edge-based solution-adaptive method applied to the AIRPLANE code

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Thomas, Scott D.; Cliff, Susan E.

    1995-01-01

    Computational methods to solve large-scale realistic problems in fluid flow can be made more efficient and cost effective by using them in conjunction with dynamic mesh adaption procedures that perform simultaneous coarsening and refinement to capture flow features of interest. This work couples the tetrahedral mesh adaption scheme, 3D_TAG, with the AIRPLANE code to solve complete aircraft configuration problems in transonic and supersonic flow regimes. Results indicate that the near-field sonic boom pressure signature of a cone-cylinder is improved, the oblique and normal shocks are better resolved on a transonic wing, and the bow shock ahead of an unstarted inlet is better defined.

  8. Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations

    SciTech Connect

    Matthews, Devin A.; Stanton, John F.

    2015-02-14

    The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q))

  9. Fuzzy physical programming for Space Manoeuvre Vehicles trajectory optimization based on hp-adaptive pseudospectral method

    NASA Astrophysics Data System (ADS)

    Chai, Runqi; Savvaris, Al; Tsourdos, Antonios

    2016-06-01

    In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.

  10. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  11. From vision to action: roadmapping as a strategic method and tool to implement climate change adaptation - the example of the roadmap 'water sensitive urban design 2020'.

    PubMed

    Hasse, J U; Weingaertner, D E

    2016-01-01

    As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) 'dynaklim - Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)', the Roadmap 2020 'Regional Climate Adaptation' has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap 'Water Sensitive Urban Design 2020'. With a focus on the process support tool 'KlimaFLEX', one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on. PMID:27148728

  12. Adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients.

    PubMed

    Xia, Kelin; Zhan, Meng; Wan, Decheng; Wei, Guo-Wei

    2012-02-01

    Mesh deformation methods are a versatile strategy for solving partial differential equations (PDEs) with a vast variety of practical applications. However, these methods break down for elliptic PDEs with discontinuous coefficients, namely, elliptic interface problems. For this class of problems, the additional interface jump conditions are required to maintain the well-posedness of the governing equation. Consequently, in order to achieve high accuracy and high order convergence, additional numerical algorithms are required to enforce the interface jump conditions in solving elliptic interface problems. The present work introduces an interface technique based adaptively deformed mesh strategy for resolving elliptic interface problems. We take the advantages of the high accuracy, flexibility and robustness of the matched interface and boundary (MIB) method to construct an adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients. The proposed method generates deformed meshes in the physical domain and solves the transformed governed equations in the computational domain, which maintains regular Cartesian meshes. The mesh deformation is realized by a mesh transformation PDE, which controls the mesh redistribution by a source term. The source term consists of a monitor function, which builds in mesh contraction rules. Both interface geometry based deformed meshes and solution gradient based deformed meshes are constructed to reduce the L(∞) and L(2) errors in solving elliptic interface problems. The proposed adaptively deformed mesh based interface method is extensively validated by many numerical experiments. Numerical results indicate that the adaptively deformed mesh based interface method outperforms the original MIB method for dealing with elliptic interface problems. PMID:22586356

  13. Adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients

    PubMed Central

    Xia, Kelin; Zhan, Meng; Wan, Decheng; Wei, Guo-Wei

    2011-01-01

    Mesh deformation methods are a versatile strategy for solving partial differential equations (PDEs) with a vast variety of practical applications. However, these methods break down for elliptic PDEs with discontinuous coefficients, namely, elliptic interface problems. For this class of problems, the additional interface jump conditions are required to maintain the well-posedness of the governing equation. Consequently, in order to achieve high accuracy and high order convergence, additional numerical algorithms are required to enforce the interface jump conditions in solving elliptic interface problems. The present work introduces an interface technique based adaptively deformed mesh strategy for resolving elliptic interface problems. We take the advantages of the high accuracy, flexibility and robustness of the matched interface and boundary (MIB) method to construct an adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients. The proposed method generates deformed meshes in the physical domain and solves the transformed governed equations in the computational domain, which maintains regular Cartesian meshes. The mesh deformation is realized by a mesh transformation PDE, which controls the mesh redistribution by a source term. The source term consists of a monitor function, which builds in mesh contraction rules. Both interface geometry based deformed meshes and solution gradient based deformed meshes are constructed to reduce the L∞ and L2 errors in solving elliptic interface problems. The proposed adaptively deformed mesh based interface method is extensively validated by many numerical experiments. Numerical results indicate that the adaptively deformed mesh based interface method outperforms the original MIB method for dealing with elliptic interface problems. PMID:22586356

  14. Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation

    NASA Astrophysics Data System (ADS)

    Kompenhans, Moritz; Rubio, Gonzalo; Ferrer, Esteban; Valero, Eusebio

    2016-02-01

    In this paper three p-adaptation strategies based on the minimization of the truncation error are presented for high order discontinuous Galerkin methods. The truncation error is approximated by means of a τ-estimation procedure and enables the identification of mesh regions that require adaptation. Three adaptation strategies are developed and termed a posteriori, quasi-a priori and quasi-a priori corrected. All strategies require fine solutions, which are obtained by enriching the polynomial order, but while the former needs time converged solutions, the last two rely on non-converged solutions, which lead to faster computations. In addition, the high order method permits the spatial decoupling for the estimated errors and enables anisotropic p-adaptation. These strategies are verified and compared in terms of accuracy and computational cost for the Euler and the compressible Navier-Stokes equations. It is shown that the two quasi-a priori methods achieve a significant reduction in computational cost when compared to a uniform polynomial enrichment. Namely, for a viscous boundary layer flow, we obtain a speedup of 6.6 and 7.6 for the quasi-a priori and quasi-a priori corrected approaches, respectively.

  15. A wavelet-optimized, very high order adaptive grid and order numerical method

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1996-01-01

    Differencing operators of arbitrarily high order can be constructed by interpolating a polynomial through a set of data followed by differentiation of this polynomial and finally evaluation of the polynomial at the point where a derivative approximation is desired. Furthermore, the interpolating polynomial can be constructed from algebraic, trigonometric, or, perhaps exponential polynomials. This paper begins with a comparison of such differencing operator construction. Next, the issue of proper grids for high order polynomials is addressed. Finally, an adaptive numerical method is introduced which adapts the numerical grid and the order of the differencing operator depending on the data. The numerical grid adaptation is performed on a Chebyshev grid. That is, at each level of refinement the grid is a Chebvshev grid and this grid is refined locally based on wavelet analysis.

  16. A Digitalized Gyroscope System Based on a Modified Adaptive Control Method

    PubMed Central

    Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen

    2016-01-01

    In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019

  17. A Digitalized Gyroscope System Based on a Modified Adaptive Control Method.

    PubMed

    Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen

    2016-01-01

    In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019

  18. Scale-adaptive tensor algebra for local many-body methods of electronic structure theory

    SciTech Connect

    Liakh, Dmitry I

    2014-01-01

    While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locally supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).

  19. Projections of grounding line retreat in West Antarctica carried out with an adaptive mesh model

    NASA Astrophysics Data System (ADS)

    Cornford, Stephen; Payne, Antony; Martin, Daniel; Le Brocq, Anne

    2013-04-01

    Present and future sea level rise associated with mass loss from West Antarctica is typically attributed to marine glaciers retreating in response to a warming ocean. Warmer waters melt the floating ice shelves that restrain some, if not all, marine glaciers, and the glaciers themselves respond by speeding up. That leads to thinning and in turn grounding line retreat. Satellite observations indicate that Amundsen Sea Embayment and, in particular, Pine Island Glacier, are undergoing this kind of dynamic change today. Numerical models, however, struggle to reproduce the observed behavior because either high resolution or some other kind special treatment is required at the grounding line. We present 200-year projections of three major glacier systems of West Antarctica: those that drain into the Amundsen Sea , the Filchner-Ronne Ice Shelf and the Ross Ice shelf. We do so using the newly developed BISICLES ice­ sheet model, which employs adaptive ­mesh refinement to maintain sub-kilometer resolution close to the grounding line and coarser resolution elsewhere. Ice accumulation and ice­ shelf melt-rate are derived from a range of models of the Antarctic atmosphere and ocean forced by the SRES A1B and E1 scenarios. We find that a substantial proportion of the grounding line in West Antarctica retreats, however the total sea level rise is less than 50 mm by 2100, and less than 100 mm by 2200. The lion's share of the mass loss is attributed to Pine Island Glacier, while its immediate neighbor Thwaites Glacier does not retreat until the end of the simulations.

  20. An adaptive subspace trust-region method for frequency-domain seismic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Li, Xiaofan; Song, Hanjie; Liu, Shaolin

    2015-05-01

    Full waveform inversion is currently considered as a promising seismic imaging method to obtain high-resolution and quantitative images of the subsurface. It is a nonlinear ill-posed inverse problem, the main difficulty of which that prevents the full waveform inversion from widespread applying to real data is the sensitivity to incorrect initial models and noisy data. Local optimization theories including Newton's method and gradient method always lead the convergence to local minima, while global optimization algorithms such as simulated annealing are computationally costly. To confront this issue, in this paper we investigate the possibility of applying the trust-region method to the full waveform inversion problem. Different from line search methods, trust-region methods force the new trial step within a certain neighborhood of the current iterate point. Theoretically, the trust-region methods are reliable and robust, and they have very strong convergence properties. The capability of this inversion technique is tested with the synthetic Marmousi velocity model and the SEG/EAGE Salt model. Numerical examples demonstrate that the adaptive subspace trust-region method can provide solutions closer to the global minima compared to the conventional Approximate Hessian approach and the L-BFGS method with a higher convergence rate. In addition, the match between the inverted model and the true model is still excellent even when the initial model deviates far from the true model. Inversion results with noisy data also exhibit the remarkable capability of the adaptive subspace trust-region method for low signal-to-noise data inversions. Promising numerical results suggest this adaptive subspace trust-region method is suitable for full waveform inversion, as it has stronger convergence and higher convergence rate.

  1. Adaptive mesh refinement techniques for the immersed interface method applied to flow problems.

    PubMed

    Li, Zhilin; Song, Peng

    2013-06-01

    In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515-527). The interface is captured by the zero level set of a Lipschitz continuous function φ(x, y, t). Our adaptive mesh refinement is built within a small band of |φ(x, y, t)| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method. PMID:23794763

  2. Tomographic fluorescence reconstruction by a spectral projected gradient pursuit method

    NASA Astrophysics Data System (ADS)

    Ye, Jinzuo; An, Yu; Mao, Yamin; Jiang, Shixin; Yang, Xin; Chi, Chongwei; Tian, Jie

    2015-03-01

    In vivo fluorescence molecular imaging (FMI) has played an increasingly important role in biomedical research of preclinical area. Fluorescence molecular tomography (FMT) further upgrades the two-dimensional FMI optical information to three-dimensional fluorescent source distribution, which can greatly facilitate applications in related studies. However, FMT presents a challenging inverse problem which is quite ill-posed and ill-conditioned. Continuous efforts to develop more practical and efficient methods for FMT reconstruction are still needed. In this paper, a method based on spectral projected gradient pursuit (SPGP) has been proposed for FMT reconstruction. The proposed method was based on the directional pursuit framework. A mathematical strategy named the nonmonotone line search was associated with the SPGP method, which guaranteed the global convergence. In addition, the Barzilai-Borwein step length was utilized to build the new step length of the SPGP method, which was able to speed up the convergence of this gradient method. To evaluate the performance of the proposed method, several heterogeneous simulation experiments including multisource cases as well as comparative analyses have been conducted. The results demonstrated that, the proposed method was able to achieve satisfactory source localizations with a bias less than 1 mm; the computational efficiency of the method was one order of magnitude faster than the contrast method; and the fluorescence reconstructed by the proposed method had a higher contrast to the background than the contrast method. All the results demonstrated the potential for practical FMT applications with the proposed method.

  3. Projected discrete ordinates methods for numerical transport problems

    SciTech Connect

    Larsen, E.W.

    1985-01-01

    A class of Projected Discrete-Ordinates (PDO) methods is described for obtaining iterative solutions of discrete-ordinates problems with convergence rates comparable to those observed using Diffusion Synthetic Acceleration (DSA). The spatially discretized PDO solutions are generally not equal to the DSA solutions, but unlike DSA, which requires great care in the use of spatial discretizations to preserve stability, the PDO solutions remain stable and rapidly convergent with essentially arbitrary spatial discretizations. Numerical results are presented which illustrate the rapid convergence and the accuracy of solutions obtained using PDO methods with commonplace differencing methods.

  4. Large project experiences with object-oriented methods and reuse

    NASA Technical Reports Server (NTRS)

    Wessale, William; Reifer, Donald J.; Weller, David

    1992-01-01

    The SSVTF (Space Station Verification and Training Facility) project is completing the Preliminary Design Review of a large software development using object-oriented methods and systematic reuse. An incremental developmental lifecycle was tailored to provide early feedback and guidance on methods and products, with repeated attention to reuse. Object oriented methods were formally taught and supported by realistic examples. Reuse was readily accepted and planned by the developers. Schedule and budget issues were handled by agreements and work sharing arranged by the developers.

  5. A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Eiseman, Peter R.

    1990-01-01

    A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.

  6. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    SciTech Connect

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J; Guo, X

    2015-06-15

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.

  7. Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems

    SciTech Connect

    Saad, Y.

    1980-12-01

    Many powerful methods for solving systems of equations can be regarded as projection methods. Most of the projection methods known for solving linear systems are orthogonal projection methods: but little attention has been given to the class of nonorthogonal (or oblique) projection methods, which is particularly attractive for large nonsymmetric systems. Some methods in the general setting of oblique projection methods are presented, and some theoretical results are given. Some experiments comparing the various algorithms are reported. 5 figures.

  8. Development of the Adaptive Collision Source (ACS) method for discrete ordinates

    SciTech Connect

    Walters, W.; Haghighat, A.

    2013-07-01

    We have developed a new collision source method to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained, with potentially a different quadrature order. Traditionally, the flux from every iteration is combined, with the same quadrature applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iteration. This allows for an optimal use of processing power, by using a high order quadrature for the first few iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and we call it the adaptive collision source method (ACS). The ACS methodology has been implemented in the TITAN discrete ordinates code, and has shown a relative speedup of 1.5-2.5 on a test problem, for the same desired level of accuracy. (authors)

  9. A multigrid method for steady Euler equations on unstructured adaptive grids

    NASA Technical Reports Server (NTRS)

    Riemslagh, Kris; Dick, Erik

    1993-01-01

    A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.

  10. Vortical Flow Prediction using an Adaptive Unstructured Grid Method. Chapter 11

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2009-01-01

    A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.

  11. Adjoint-based error estimation and mesh adaptation for the correction procedure via reconstruction method

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Wang, Z. J.

    2015-08-01

    Adjoint-based mesh adaptive methods are capable of distributing computational resources to areas which are important for predicting an engineering output. In this paper, we develop an adjoint-based h-adaptation approach based on the high-order correction procedure via reconstruction formulation (CPR) to minimize the output or functional error. A dual-consistent CPR formulation of hyperbolic conservation laws is developed and its dual consistency is analyzed. Super-convergent functional and error estimate for the output with the CPR method are obtained. Factors affecting the dual consistency, such as the solution point distribution, correction functions, boundary conditions and the discretization approach for the non-linear flux divergence term, are studied. The presented method is then used to perform simulations for the 2D Euler and Navier-Stokes equations with mesh adaptation driven by the adjoint-based error estimate. Several numerical examples demonstrate the ability of the presented method to dramatically reduce the computational cost comparing with uniform grid refinement.

  12. A method for online verification of adapted fields using an independent dose monitor

    SciTech Connect

    Chang Jina; Norrlinger, Bernhard D.; Heaton, Robert K.; Jaffray, David A.; Cho, Young-Bin; Islam, Mohammad K.; Mahon, Robert

    2013-07-15

    Purpose: Clinical implementation of online adaptive radiotherapy requires generation of modified fields and a method of dosimetric verification in a short time. We present a method of treatment field modification to account for patient setup error, and an online method of verification using an independent monitoring system.Methods: The fields are modified by translating each multileaf collimator (MLC) defined aperture in the direction of the patient setup error, and magnifying to account for distance variation to the marked isocentre. A modified version of a previously reported online beam monitoring system, the integral quality monitoring (IQM) system, was investigated for validation of adapted fields. The system consists of a large area ion-chamber with a spatial gradient in electrode separation to provide a spatially sensitive signal for each beam segment, mounted below the MLC, and a calculation algorithm to predict the signal. IMRT plans of ten prostate patients have been modified in response to six randomly chosen setup errors in three orthogonal directions.Results: A total of approximately 49 beams for the modified fields were verified by the IQM system, of which 97% of measured IQM signal agree with the predicted value to within 2%.Conclusions: The modified IQM system was found to be suitable for online verification of adapted treatment fields.

  13. Vivid Motor Imagery as an Adaptation Method for Head Turns on a Short-Arm Centrifuge

    NASA Technical Reports Server (NTRS)

    Newby, N. J.; Mast, F. W.; Natapoff, A.; Paloski, W. H.

    2006-01-01

    from one another. For the perceived duration of sensations, the CG group again exhibited the least amount of adaptation. However, the rates of adaptation of the PA and the MA groups were indistinguishable, suggesting that the imagined pseudostimulus appeared to be just as effective a means of adaptation as the actual stimulus. The MA group's rate of adaptation to motion sickness symptoms was also comparable to the PA group. The use of vivid motor imagery may be an effective method for adapting to the illusory sensations and motion sickness symptoms produced by cross-coupled stimuli. For space-based AG applications, this technique may prove quite useful in retaining astronauts considered highly susceptible to motion sickness as it reduces the number of actual CCS required to attain adaptation.

  14. Eulerian Lagrangian Adaptive Fup Collocation Method for solving the conservative solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Gotovac, Hrvoje; Srzic, Veljko

    2014-05-01

    Contaminant transport in natural aquifers is a complex, multiscale process that is frequently studied using different Eulerian, Lagrangian and hybrid numerical methods. Conservative solute transport is typically modeled using the advection-dispersion equation (ADE). Despite the large number of available numerical methods that have been developed to solve it, the accurate numerical solution of the ADE still presents formidable challenges. In particular, current numerical solutions of multidimensional advection-dominated transport in non-uniform velocity fields are affected by one or all of the following problems: numerical dispersion that introduces artificial mixing and dilution, grid orientation effects, unresolved spatial and temporal scales and unphysical numerical oscillations (e.g., Herrera et al, 2009; Bosso et al., 2012). In this work we will present Eulerian Lagrangian Adaptive Fup Collocation Method (ELAFCM) based on Fup basis functions and collocation approach for spatial approximation and explicit stabilized Runge-Kutta-Chebyshev temporal integration (public domain routine SERK2) which is especially well suited for stiff parabolic problems. Spatial adaptive strategy is based on Fup basis functions which are closely related to the wavelets and splines so that they are also compactly supported basis functions; they exactly describe algebraic polynomials and enable a multiresolution adaptive analysis (MRA). MRA is here performed via Fup Collocation Transform (FCT) so that at each time step concentration solution is decomposed using only a few significant Fup basis functions on adaptive collocation grid with appropriate scales (frequencies) and locations, a desired level of accuracy and a near minimum computational cost. FCT adds more collocations points and higher resolution levels only in sensitive zones with sharp concentration gradients, fronts and/or narrow transition zones. According to the our recent achievements there is no need for solving the large

  15. Adaptation of LASCA method for diagnostics of malignant tumours in laboratory animals

    SciTech Connect

    Ul'yanov, S S; Laskavyi, V N; Glova, Alina B; Polyanina, T I; Ul'yanova, O V; Fedorova, V A; Ul'yanov, A S

    2012-05-31

    The LASCA method is adapted for diagnostics of malignant neoplasms in laboratory animals. Tumours are studied in mice of Balb/c inbred line after inoculation of cells of syngeneic myeloma cell line Sp.2/0 Ag.8. The appropriateness of using the tLASCA method in tumour investigations is substantiated; its advantages in comparison with the sLASCA method are demonstrated. It is found that the most informative characteristic, indicating the presence of a tumour, is the fractal dimension of LASCA images.

  16. Adaptation of LASCA method for diagnostics of malignant tumours in laboratory animals

    NASA Astrophysics Data System (ADS)

    Ul'yanov, S. S.; Laskavyi, V. N.; Glova, Alina B.; Polyanina, T. I.; Ul'yanova, O. V.; Fedorova, V. A.; Ul'yanov, A. S.

    2012-05-01

    The LASCA method is adapted for diagnostics of malignant neoplasms in laboratory animals. Tumours are studied in mice of Balb/c inbred line after inoculation of cells of syngeneic myeloma cell line Sp.2/0 — Ag.8. The appropriateness of using the tLASCA method in tumour investigations is substantiated; its advantages in comparison with the sLASCA method are demonstrated. It is found that the most informative characteristic, indicating the presence of a tumour, is the fractal dimension of LASCA images.

  17. Locus coeruleus: From global projection system to adaptive regulation of behavior.

    PubMed

    Aston-Jones, G; Waterhouse, B

    2016-08-15

    The brainstem nucleus locus coeruleus (LC) is a major source of norepinephrine (NE) projections throughout the CNS. This important property was masked in very early studies by the inability to visualize endogenous monoamines. The development of monoamine histofluorescence methods by Swedish scientists led to a plethora of studies, including a paper published in Brain Research by Loizou in 1969. That paper was highly cited (making it a focal point for the 50th anniversary issue of this journal), and helped to spark a large and continuing set of investigations to further refine our understating of the LC-NE system and its contribution to brain function and behavior. This paper very briefly reviews the ensuing advances in anatomical, physiological and behavioral aspects of the LC-NE system. Although its projections are ubiquitously present throughout the CNS, recent studies find surprising specificity within the organizational and operational domains of LC neurons. These and other findings lead us to expect that future work will unmask additional features of the LC-NE system and its roles in normative and pathological brain and behavioral processes. This article is part of a Special Issue entitled SI:50th Anniversary Issue. PMID:26969408

  18. A novel timestamp based adaptive clock method for circuit emulation service over packet network

    NASA Astrophysics Data System (ADS)

    Dai, Jin-you; Yu, Shao-hua

    2007-11-01

    It is necessary to transport TDM (time division multiplexing) over packet network such as IP and Ethernet, and synchronization is a problem when carrying TDM over the packet network. Clock methods for TDM over packet network are introduced. A new adaptive clock method is presented. The method is a kind of timestamp based adaptive method, but no timestamp needs transporting over packet network. By using the local oscillator and a counter, the timestamp information (local timestamp) related to the service clock of the remote PE (provide edge) and the near PE can be attained. By using D-EWMA filter algorithm, the noise caused by packet network can be filtered and the useful timestamp can be extracted out. With the timestamp and a voltage-controlled oscillator, clock frequency of near PE can be adjusted the same as clock frequency of the remote PE. A kind of simulation device is designed and a test network topology is set up to test and verify the method. The experiment result shows that synthetical performance of the new method is better than ordinary buffer based method and ordinary timestamp based method.

  19. Coherent Vortex Simulation of weakly compressible turbulent mixing layers using adaptive multiresolution methods

    NASA Astrophysics Data System (ADS)

    Roussel, Olivier; Schneider, Kai

    2010-03-01

    An adaptive mulitresolution method based on a second-order finite volume discretization is presented for solving the three-dimensional compressible Navier-Stokes equations in Cartesian geometry. The explicit time discretization is of second-order and for flux evaluation a 2-4 Mac Cormack scheme is used. Coherent Vortex Simulations (CVS) are performed by decomposing the flow variables into coherent and incoherent contributions. The coherent part is computed deterministically on a locally refined grid using the adaptive multiresolution method while the influence of the incoherent part is neglected to model turbulent dissipation. The computational efficiency of this approach in terms of memory and CPU time compression is illustrated for turbulent mixing layers in the weakly compressible regime and for Reynolds numbers based on the mixing layer thickness between 50 and 200. Comparisons with direct numerical simulations allow to assess the precision and efficiency of CVS.

  20. H∞ Adaptive tracking control for switched systems based on an average dwell-time method

    NASA Astrophysics Data System (ADS)

    Wu, Caiyun; Zhao, Jun

    2015-10-01

    This paper investigates the H∞ state tracking model reference adaptive control (MRAC) problem for a class of switched systems using an average dwell-time method. First, a stability criterion is established for a switched reference model. Then, an adaptive controller is designed and the state tracking control problem is converted into the stability analysis. The global practical stability of the error switched system can be guaranteed under a class of switching signals characterised by an average dwell time. Consequently, sufficient conditions for the solvability of the H∞ state tracking MRAC problem are derived. An example of highly manoeuvrable aircraft technology vehicle is given to demonstrate the feasibility and effectiveness of the proposed design method.

  1. An Adaptive Mesh Refinement Strategy for Immersed Boundary/Interface Methods.

    PubMed

    Li, Zhilin; Song, Peng

    2012-01-01

    An adaptive mesh refinement strategy is proposed in this paper for the Immersed Boundary and Immersed Interface methods for two-dimensional elliptic interface problems involving singular sources. The interface is represented by the zero level set of a Lipschitz function φ(x,y). Our adaptive mesh refinement is done within a small tube of |φ(x,y)|≤ δ with finer Cartesian meshes. The discrete linear system of equations is solved by a multigrid solver. The AMR methods could obtain solutions with accuracy that is similar to those on a uniform fine grid by distributing the mesh more economically, therefore, reduce the size of the linear system of the equations. Numerical examples presented show the efficiency of the grid refinement strategy. PMID:22670155

  2. Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and Classification

    PubMed Central

    Liu, Hui; Zhang, Cai-Ming; Su, Zhi-Yuan; Wang, Kai; Deng, Kai

    2015-01-01

    The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms. PMID:25945120

  3. An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Padgett, Jill M. A.; Ilie, Silvana

    2016-03-01

    Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating the solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.

  4. Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics

    NASA Technical Reports Server (NTRS)

    Stowers, S. T.; Bass, J. M.; Oden, J. T.

    1993-01-01

    A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.

  5. Research on a pulmonary nodule segmentation method combining fast self-adaptive FCM and classification.

    PubMed

    Liu, Hui; Zhang, Cai-Ming; Su, Zhi-Yuan; Wang, Kai; Deng, Kai

    2015-01-01

    The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms. PMID:25945120

  6. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    SciTech Connect

    Paganelli, Chiara; Peroni, Marta

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT

  7. System and method for adaptively deskewing parallel data signals relative to a clock

    DOEpatents

    Jenkins, Philip Nord; Cornett, Frank N.

    2008-10-07

    A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.

  8. System and method for adaptively deskewing parallel data signals relative to a clock

    DOEpatents

    Jenkins, Philip Nord; Cornett, Frank N.

    2011-10-04

    A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.

  9. A Lagrangian-Eulerian finite element method with adaptive gridding for advection-dispersion problems

    SciTech Connect

    Ijiri, Y.; Karasaki, K.

    1994-02-01

    In the present paper, a Lagrangian-Eulerian finite element method with adaptive gridding for solving advection-dispersion equations is described. The code creates new grid points in the vicinity of sharp fronts at every time step in order to reduce numerical dispersion. The code yields quite accurate solutions for a wide range of mesh Peclet numbers and for mesh Courant numbers well in excess of 1.

  10. Childhood Obesity Research Demonstration Project: Cross-Site Evaluation Methods

    PubMed Central

    Lee, Rebecca E.; Mehta, Paras; Thompson, Debbe; Bhargava, Alok; Carlson, Coleen; Kao, Dennis; Layne, Charles S.; Ledoux, Tracey; O'Connor, Teresia; Rifai, Hanadi; Gulley, Lauren; Hallett, Allen M.; Kudia, Ousswa; Joseph, Sitara; Modelska, Maria; Ortega, Dana; Parker, Nathan; Stevens, Andria

    2015-01-01

    Abstract Introduction: The Childhood Obesity Research Demonstration (CORD) project links public health and primary care interventions in three projects described in detail in accompanying articles in this issue of Childhood Obesity. This article describes a comprehensive evaluation plan to determine the extent to which the CORD model is associated with changes in behavior, body weight, BMI, quality of life, and healthcare satisfaction in children 2–12 years of age. Design/Methods: The CORD Evaluation Center (EC-CORD) will analyze the pooled data from three independent demonstration projects that each integrate public health and primary care childhood obesity interventions. An extensive set of common measures at the family, facility, and community levels were defined by consensus among the CORD projects and EC-CORD. Process evaluation will assess reach, dose delivered, and fidelity of intervention components. Impact evaluation will use a mixed linear models approach to account for heterogeneity among project-site populations and interventions. Sustainability evaluation will assess the potential for replicability, continuation of benefits beyond the funding period, institutionalization of the intervention activities, and community capacity to support ongoing program delivery. Finally, cost analyses will assess how much benefit can potentially be gained per dollar invested in programs based on the CORD model. Conclusions: The keys to combining and analyzing data across multiple projects include the CORD model framework and common measures for the behavioral and health outcomes along with important covariates at the individual, setting, and community levels. The overall objective of the comprehensive evaluation will develop evidence-based recommendations for replicating and disseminating community-wide, integrated public health and primary care programs based on the CORD model. PMID:25679060

  11. A velocity-correction projection method based immersed boundary method for incompressible flows

    NASA Astrophysics Data System (ADS)

    Cai, Shanggui

    2014-11-01

    In the present work we propose a novel direct forcing immersed boundary method based on the velocity-correction projection method of [J.L. Guermond, J. Shen, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal., 41 (1)(2003) 112]. The principal idea of immersed boundary method is to correct the velocity in the vicinity of the immersed object by using an artificial force to mimic the presence of the physical boundaries. Therefore, velocity-correction projection method is preferred to its pressure-correction counterpart in the present work. Since the velocity-correct projection method is considered as a dual class of pressure-correction method, the proposed method here can also be interpreted in the way that first the pressure is predicted by treating the viscous term explicitly without the consideration of the immersed boundary, and the solenoidal velocity is used to determine the volume force on the Lagrangian points, then the non-slip boundary condition is enforced by correcting the velocity with the implicit viscous term. To demonstrate the efficiency and accuracy of the proposed method, several numerical simulations are performed and compared with the results in the literature. China Scholarship Council.

  12. Laying the Groundwork for NCLEX Success: An Exploration of Adaptive Quizzing as an Examination Preparation Method.

    PubMed

    Cox-Davenport, Rebecca A; Phelan, Julia C

    2015-05-01

    First-time NCLEX-RN pass rates are an important indicator of nursing school success and quality. Nursing schools use different methods to anticipate NCLEX outcomes and help prevent student failure and possible threat to accreditation. This study evaluated the impact of a shift in NCLEX preparation policy at a BSN program in the southeast United States. The policy shifted from the use of predictor score thresholds to determine graduation eligibility to a more proactive remediation strategy involving adaptive quizzing. A descriptive correlational design evaluated the impact of an adaptive quizzing system designed to give students ongoing active practice and feedback and explored the relationship between predictor examinations and NCLEX success. Data from student usage of the system as well as scores on predictor tests were collected for three student cohorts. Results revealed a positive correlation between adaptive quizzing system usage and content mastery. Two of the 69 students in the sample did not pass the NCLEX. With so few students failing the NCLEX, predictability of any course variables could not be determined. The power of predictor examinations to predict NCLEX failure could also not be supported. The most consistent factor among students, however, was their content mastery level within the adaptive quizzing system. Implications of these findings are discussed. PMID:25851560

  13. Accelerated Test Method for Corrosion Protective Coatings Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  14. An automatic locally-adaptive method to estimate heavily-tailed breakthrough curves from particle distributions

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele; Fernàndez-Garcia, Daniel

    2013-09-01

    Particle tracking methods to simulate solute transport deal with the issue of having to reconstruct smooth concentrations from a limited number of particles. This is an error-prone process that typically leads to large fluctuations in the determined late-time behavior of breakthrough curves (BTCs). Kernel density estimators (KDE) can be used to automatically reconstruct smooth BTCs from a small number of particles. The kernel approach incorporates the uncertainty associated with subsampling a large population by equipping each particle with a probability density function. Two broad classes of KDE methods can be distinguished depending on the parametrization of this function: global and adaptive methods. This paper shows that each method is likely to estimate a specific portion of the BTCs. Although global methods offer a valid approach to estimate early-time behavior and peak of BTCs, they exhibit important fluctuations at the tails where fewer particles exist. In contrast, locally adaptive methods improve tail estimation while oversmoothing both early-time and peak concentrations. Therefore a new method is proposed combining the strength of both KDE approaches. The proposed approach is universal and only needs one parameter (α) which slightly depends on the shape of the BTCs. Results show that, for the tested cases, heavily-tailed BTCs are properly reconstructed with α ≈ 0.5 .

  15. Adaptability and stability of genotypes of sweet sorghum by GGEBiplot and Toler methods.

    PubMed

    de Figueiredo, U J; Nunes, J A R; da C Parrella, R A; Souza, E D; da Silva, A R; Emygdio, B M; Machado, J R A; Tardin, F D

    2015-01-01

    Sweet sorghum has considerable potential for ethanol and energy production. The crop is adaptable and can be grown under a wide range of cultivation conditions in marginal areas; however, studies of phenotypic stability are lacking under tropical conditions. Various methods can be used to assess the stability of the crop. Some of these methods generate the same basic information, whereas others provide additional information on genotype x environment (G x E) interactions and/or a description of the genotypes and environments. In this study, we evaluated the complementarity of two methods, GGEBiplot and Toler, with the aim of achieving more detailed information on G x E interactions and their implications for selection of sweet sorghum genotypes. We used data from 25 sorghum genotypes grown in different environments and evaluated the following traits: flowering (FLOW), green mass yield (GMY), total soluble solids (TSS), and tons of Brix per hectare (TBH). Significant G x E interactions were found for all traits. The most stable genotypes identified with the GGEBiplot method were CMSXS643 for FLOW, CMSXS644 and CMSXS647 for GMY, CMSXS646 and CMSXS637 for TSS, and BRS511 and CMSXSS647 for TBH. Especially for TBH, the genotype BRS511 was classified as doubly desirable by the Toler method; however, unlike the result of the GGEBiplot method, the genotype CMSXS647 was also found to be doubly undesirable. The two analytical methods were complementary and enabled a more reliable identification of adapted and stable genotypes. PMID:26400352

  16. Adaptive non-uniformity correction method based on temperature for infrared detector array

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijie; Yue, Song; Hong, Pu; Jia, Guowei; Lei, Bo

    2013-09-01

    The existence of non-uniformities in the responsitivity of the element array is a severe problem typical to common infrared detector. These non-uniformities result in a "curtain'' like fixed pattern noises (FPN) that appear in the image. Some random noise can be restrained by the method kind of equalization method. But the fixed pattern noise can only be removed by .non uniformity correction method. The produce of non uniformities of detector array is the combined action of infrared detector array, readout circuit, semiconductor device performance, the amplifier circuit and optical system. Conventional linear correction techniques require costly recalibration due to the drift of the detector or changes in temperature. Therefore, an adaptive non-uniformity method is needed to solve this problem. A lot factors including detectors and environment conditions variety are considered to analyze and conduct the cause of detector drift. Several experiments are designed to verify the guess. Based on the experiments, an adaptive non-uniformity correction method is put forward in this paper. The strength of this method lies in its simplicity and low computational complexity. Extensive experimental results demonstrate the disadvantage of traditional non-uniformity correct method is conquered by the proposed scheme.

  17. Shack-Hartmann wavefront sensor with large dynamic range by adaptive spot search method.

    PubMed

    Shinto, Hironobu; Saita, Yusuke; Nomura, Takanori

    2016-07-10

    A Shack-Hartmann wavefront sensor (SHWFS) that consists of a microlens array and an image sensor has been used to measure the wavefront aberrations of human eyes. However, a conventional SHWFS has finite dynamic range depending on the diameter of the each microlens. The dynamic range cannot be easily expanded without a decrease of the spatial resolution. In this study, an adaptive spot search method to expand the dynamic range of an SHWFS is proposed. In the proposed method, spots are searched with the help of their approximate displacements measured with low spatial resolution and large dynamic range. By the proposed method, a wavefront can be correctly measured even if the spot is beyond the detection area. The adaptive spot search method is realized by using the special microlens array that generates both spots and discriminable patterns. The proposed method enables expanding the dynamic range of an SHWFS with a single shot and short processing time. The performance of the proposed method is compared with that of a conventional SHWFS by optical experiments. Furthermore, the dynamic range of the proposed method is quantitatively evaluated by numerical simulations. PMID:27409319

  18. A general, mass-preserving Navier-Stokes projection method

    NASA Astrophysics Data System (ADS)

    Salac, David

    2016-07-01

    The conservation of mass is a common issue with multiphase fluid simulations. In this work a novel projection method is presented which conserves mass both locally and globally. The fluid pressure is augmented with a time-varying component which accounts for any global mass change. The resulting system of equations is solved using an efficient Schur-complement method. Using the proposed method four numerical examples are performed: the evolution of a static bubble, the rise of a bubble, the breakup of a thin fluid thread, and the extension of a droplet in shear flow. The method is capable of conserving the mass even in situations with morphological changes such as droplet breakup.

  19. Galerkin projection methods for solving multiple related linear systems

    SciTech Connect

    Chan, T.F.; Ng, M.; Wan, W.L.

    1996-12-31

    We consider using Galerkin projection methods for solving multiple related linear systems A{sup (i)}x{sup (i)} = b{sup (i)} for 1 {le} i {le} s, where A{sup (i)} and b{sup (i)} are different in general. We start with the special case where A{sup (i)} = A and A is symmetric positive definite. The method generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed system, by the CG method and then projects the residuals of other systems orthogonally onto the generated Krylov subspace to get the approximate solutions. The whole process is repeated with another unsolved system as a seed until all the systems are solved. We observe in practice a super-convergence behaviour of the CG process of the seed system when compared with the usual CG process. We also observe that only a small number of restarts is required to solve all the systems if the right-hand sides are close to each other. These two features together make the method particularly effective. In this talk, we give theoretical proof to justify these observations. Furthermore, we combine the advantages of this method and the block CG method and propose a block extension of this single seed method. The above procedure can actually be modified for solving multiple linear systems A{sup (i)}x{sup (i)} = b{sup (i)}, where A{sup (i)} are now different. We can also extend the previous analytical results to this more general case. Applications of this method to multiple related linear systems arising from image restoration and recursive least squares computations are considered as examples.

  20. Adaptive f-k deghosting method based on non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Lu, Wenkai

    2016-04-01

    For conventional horizontal towed streamer data, the f-k deghosting method is widely used to remove receiver ghosts. In the traditional f-k deghosting method, the depth of the streamer and the sea surface reflection coefficient are two key ghost parameters. In general, for one seismic line, these two parameters are fixed for all shot gathers and given by the users. In practice, these two parameters often vary during acquisition because of the rough sea condition. This paper proposes an automatic method to adaptively obtain these two ghost parameters for every shot gather. Since the proposed method is based on the non-Gaussianity of the deghosting result, it is important to choose a proper non-Gaussian criterion to ensure high accuracy of the parameter estimation. We evaluate six non-Gaussian criteria by synthetic experiment. The conclusion of our experiment is expected to provide a reference for choosing the most appropriate criterion. We apply the proposed method on a 2D real field example. Experimental results show that the optimal parameters vary among shot gathers and validate effectiveness of the parameter estimation process. Moreover, despite that this method ignores the parameter variation within one shot, the adaptive deghosting results show improvements when compared with the deghosting results obtained by using constant parameters for the whole line.

  1. A novel adaptive compression method for hyperspectral images by using EDT and particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Ghamisi, Pedram; Kumar, Lalit

    2012-01-01

    Hyperspectral sensors generate useful information about climate and the earth surface in numerous contiguous narrow spectral bands, and are widely used in resource management, agriculture, environmental monitoring, etc. Compression of the hyperspectral data helps in long-term storage and transmission systems. Lossless compression is preferred for high-detail data, such as hyperspectral data. Due to high redundancy in neighboring spectral bands and the tendency to achieve a higher compression ratio, using adaptive coding methods for hyperspectral data seems suitable for this purpose. This paper introduces two new compression methods. One of these methods is adaptive and powerful for the compression of hyperspectral data, which is based on separating the bands with different specifications by the histogram and Binary Particle Swarm Optimization (BPSO) and compressing each one a different manner. The new proposed methods improve the compression ratio of the JPEG standards and save storage space the transmission. The proposed methods are applied on different test cases, and the results are evaluated and compared with some other compression methods, such as lossless JPEG and JPEG2000.

  2. Projection Method for Flows with Large Density Variations

    NASA Technical Reports Server (NTRS)

    Heinrich, Juan C.; Westra, Douglas G.

    2007-01-01

    Numerical models of solidification including a mushy zone are notoriously inefficient; most of them are based on formulations that require the coupled solution of the velocity components in the momentum equation greatly restricting the range of applicability of the models. There are only two models known to the authors that have used a projection or fractional step formulation, but none of these were used to model problems of any significant size. A third model was only applied to a partial mushy zone with no all-fluid region. Our initial attempts at modeling directional solidification in the presence of a developing mushy zone using a projection formulation encountered very serious difficulties once solidification starts. These difficulties were traced to the inability of the method to deal with large local density differences in the vicinity of the fluid-mush interface. As a result, a modified formulation of the projection method has been developed, that maintains the coupling between the body force and the pressure gradient and is presented in this work. The new formulation is shown to be robust and efficient, and can be applied to problems involving very large meshes. This is illustrated in this work through its application to simulations involving Pb-Sb and Pb-Sn alloys.

  3. Higher-Order, Space-Time Adaptive Finite Volume Methods: Algorithms, Analysis and Applications

    SciTech Connect

    Minion, Michael

    2014-04-29

    The four main goals outlined in the proposal for this project were: 1. Investigate the use of higher-order (in space and time) finite-volume methods for fluid flow problems. 2. Explore the embedding of iterative temporal methods within traditional block-structured AMR algorithms. 3. Develop parallel in time methods for ODEs and PDEs. 4. Work collaboratively with the Center for Computational Sciences and Engineering (CCSE) at Lawrence Berkeley National Lab towards incorporating new algorithms within existing DOE application codes.

  4. Projected Hybrid Orbitals: A General QM/MM Method

    PubMed Central

    2015-01-01

    A projected hybrid orbital (PHO) method was described to model the covalent boundary in a hybrid quantum mechanical and molecular mechanical (QM/MM) system. The PHO approach can be used in ab initio wave function theory and in density functional theory with any basis set without introducing system-dependent parameters. In this method, a secondary basis set on the boundary atom is introduced to formulate a set of hybrid atomic orbtials. The primary basis set on the boundary atom used for the QM subsystem is projected onto the secondary basis to yield a representation that provides a good approximation to the electron-withdrawing power of the primary basis set to balance electronic interactions between QM and MM subsystems. The PHO method has been tested on a range of molecules and properties. Comparison with results obtained from QM calculations on the entire system shows that the present PHO method is a robust and balanced QM/MM scheme that preserves the structural and electronic properties of the QM region. PMID:25317748

  5. Hybrid numerical method with adaptive overlapping meshes for solving nonstationary problems in continuum mechanics

    NASA Astrophysics Data System (ADS)

    Burago, N. G.; Nikitin, I. S.; Yakushev, V. L.

    2016-06-01

    Techniques that improve the accuracy of numerical solutions and reduce their computational costs are discussed as applied to continuum mechanics problems with complex time-varying geometry. The approach combines shock-capturing computations with the following methods: (1) overlapping meshes for specifying complex geometry; (2) elastic arbitrarily moving adaptive meshes for minimizing the approximation errors near shock waves, boundary layers, contact discontinuities, and moving boundaries; (3) matrix-free implementation of efficient iterative and explicit-implicit finite element schemes; (4) balancing viscosity (version of the stabilized Petrov-Galerkin method); (5) exponential adjustment of physical viscosity coefficients; and (6) stepwise correction of solutions for providing their monotonicity and conservativeness.

  6. An adaptive finite element method for convective heat transfer with variable fluid properties

    NASA Astrophysics Data System (ADS)

    Pelletier, Dominique; Ilinca, Florin; Hetu, Jean-Francois

    1993-07-01

    This paper presents an adaptive finite element method based on remeshing to solve incompressible viscous flow problems for which fluid properties present a strong temperature dependence. Solutions are obtained in primitive variables using a highly accurate finite element approximation on unstructured grids. Two general purpose error estimators, that take into account fluid properties variations, are presented. The methodology is applied to a problem of practical interest: the thermal convection of corn syrup in an enclosure with localized heating. Predictions are in good agreement with experimental measurements. The method leads to improved accuracy and reliability of finite element predictions.

  7. An adaptive mesh method for phase-field simulation of alloy solidification in three dimensions

    NASA Astrophysics Data System (ADS)

    Bollada, P. C.; Jimack, P. K.; Mullis, A. M.

    2015-06-01

    We present our computational method for binary alloy solidification which takes advantage of high performance computing where up to 1024 cores are employed. Much of the simulation at a sufficiently fine resolution is possible on a modern 12 core PC and the 1024 core simulation is only necessary for very mature dendrite and convergence testing where high resolution puts extreme demands on memory. In outline, the method uses implicit time stepping in conjunction with an iterative solver, adaptive meshing and a scheme for dividing the work load across processors. We include three dimensional results for a Lewis number of 100 and a snapshot for a mature dendrite for a Lewis number of 40.

  8. Development of a Godunov method for Maxwell's equations with Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Barbas, Alfonso; Velarde, Pedro

    2015-11-01

    In this paper we present a second order 3D method for Maxwell's equations based on a Godunov scheme with Adaptive Mesh Refinement (AMR). In order to achieve it, we apply a limiter which better preserves extrema and boundary conditions based on a characteristic fields decomposition. Despite being more complex, simplifications in the boundary conditions make the resulting method competitive in computer time consumption and accuracy compared to FDTD. AMR allows us to simulate systems with a sharp step in material properties with negligible rebounds and also large domains with accuracy in small wavelengths.

  9. Model reference adaptive control in fractional order systems using discrete-time approximation methods

    NASA Astrophysics Data System (ADS)

    Abedini, Mohammad; Nojoumian, Mohammad Ali; Salarieh, Hassan; Meghdari, Ali

    2015-08-01

    In this paper, model reference control of a fractional order system has been discussed. In order to control the fractional order plant, discrete-time approximation methods have been applied. Plant and reference model are discretized by Grünwald-Letnikov definition of the fractional order derivative using "Short Memory Principle". Unknown parameters of the fractional order system are appeared in the discrete time approximate model as combinations of parameters of the main system. The discrete time MRAC via RLS identification is modified to estimate the parameters and control the fractional order plant. Numerical results show the effectiveness of the proposed method of model reference adaptive control.

  10. Method to determine the speckle characteristics of front projection screens.

    PubMed

    Riechert, Falko; Glöckler, Felix; Lemmer, Uli

    2009-03-01

    We present a method to determine the speckle properties of front projection screens. Seven different screens are investigated in a backscattering geometry for 808 nm light. The speckle contrast reduction that results from polarization scrambling and reduced temporal coherence is modeled for the case of volume scattering in the screens. For this purpose, the screen's volume scattering path length distributions and depolarization characteristics are determined. This is done via a streak camera setup to measure the temporal broadening of ultrashort 50 fs light pulses scattered in the screens. We show that it is essential to properly select a projection screen with large volume roughness in order to achieve low speckle contrast values for moderate illumination bandwidths. PMID:19252632

  11. An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments

    PubMed Central

    Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui

    2016-01-01

    As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs’ tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N0), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods. PMID:26805853

  12. An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments.

    PubMed

    Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui

    2016-01-01

    As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs' tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N₀), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods. PMID:26805853

  13. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems

    NASA Astrophysics Data System (ADS)

    Lee, W. H.; Kim, T.-S.; Cho, M. H.; Ahn, Y. B.; Lee, S. Y.

    2006-12-01

    In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.

  14. Coherent Vortex Simulation (CVS) of compressible turbulent mixing layers using adaptive multiresolution methods

    NASA Astrophysics Data System (ADS)

    Schneider, Kai; Roussel, Olivier; Farge, Marie

    2007-11-01

    Coherent Vortex Simulation is based on the wavelet decomposition of the flow into coherent and incoherent components. An adaptive multiresolution method using second order finite volumes with explicit time discretization, a 2-4 Mac Cormack scheme, allows an efficient computation of the coherent flow on a dynamically adapted grid. Neglecting the influence of the incoherent background models turbulent dissipation. We present CVS computation of three dimensional compressible time developing mixing layer. We show the speed up in CPU time with respect to DNS and the obtained memory reduction thanks to dynamical octree data structures. The impact of different filtering strategies is discussed and it is found that isotropic wavelet thresholding of the Favre averaged gradient of the momentum yields the most effective results.

  15. Encoding and simulation of daily rainfall records via adaptations of the fractal multifractal method

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Puente, C. E.; Sivakumar, B.; Cortis, A.

    2015-12-01

    A deterministic geometric approach, the fractal-multifractal (FM) method, is adapted to encode and simulate daily rainfall records exhibiting noticeable intermittency. Using data sets gathered at Laikakota in Bolivia and Tinkham in Washington State, USA, it is demonstrated that the adapted FM approach can, within the limits of accuracy of measured sets and using only a few geometric parameters, encode and simulate the erratic rainfall records reasonably well. The FM procedure does not only preserve the statistical attributes of the records such as histogram, entropy function and distribution of zeroes, but also captures the overall texture inherent in the rather complex intermittent sets. As such, the FM deterministic representations may be used to supplement stochastic frameworks for data coding and simulation.

  16. Pulse front adaptive optics: a new method for control of ultrashort laser pulses.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-07-27

    Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers. PMID:26367595

  17. Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Barcarolo, D. A.; Le Touzé, D.; Oger, G.; de Vuyst, F.

    2014-09-01

    SPH simulations are usually performed with a uniform particle distribution. New techniques have been recently proposed to enable the use of spatially varying particle distributions, which encouraged the development of automatic adaptivity and particle refinement/derefinement algorithms. All these efforts resulted in very interesting and promising procedures leading to more efficient and faster SPH simulations. In this article, a family of particle refinement techniques is reviewed and a new derefinement technique is proposed and validated through several test cases involving both free-surface and viscous flows. Besides, this new procedure allows higher resolutions in the regions requiring increased accuracy. Moreover, several levels of refinement can be used with this new technique, as often encountered in adaptive mesh refinement techniques in mesh-based methods.

  18. New Adaptive Method for IQ Imbalance Compensation of Quadrature Modulators in Predistortion Systems

    NASA Astrophysics Data System (ADS)

    Zareian, Hassan; Vakili, Vahid Tabataba

    2009-12-01

    Imperfections in quadrature modulators (QMs), such as inphase and quadrature (IQ) imbalance, can severely impact the performance of power amplifier (PA) linearization systems, in particular in adaptive digital predistorters (PDs). In this paper, we first analyze the effect of IQ imbalance on the performance of a memory orthogonal polynomials predistorter (MOP PD), and then we propose a new adaptive algorithm to estimate and compensate the unknown IQ imbalance in QM. Unlike previous compensation techniques, the proposed method was capable of online IQ imbalance compensation with faster convergence, and no special calibration or training signals were needed. The effectiveness of the proposed IQ imbalance compensator was validated by simulations. The results clearly show the performance of the MOP PD to be enhanced significantly by adding the proposed IQ imbalance compensator.

  19. The stochastic control of the F-8C aircraft using the Multiple Model Adaptive Control (MMAC) method

    NASA Technical Reports Server (NTRS)

    Athans, M.; Dunn, K. P.; Greene, E. S.; Lee, W. H.; Sandel, N. R., Jr.

    1975-01-01

    The purpose of this paper is to summarize results obtained for the adaptive control of the F-8C aircraft using the so-called Multiple Model Adaptive Control method. The discussion includes the selection of the performance criteria for both the lateral and the longitudinal dynamics, the design of the Kalman filters for different flight conditions, the 'identification' aspects of the design using hypothesis testing ideas, and the performance of the closed loop adaptive system.

  20. An Adaptive Kernel Smoothing Method for Classifying Austrosimulium tillyardianum (Diptera: Simuliidae) Larval Instars

    PubMed Central

    Cen, Guanjun; Zeng, Xianru; Long, Xiuzhen; Wei, Dewei; Gao, Xuyuan; Zeng, Tao

    2015-01-01

    In insects, the frequency distribution of the measurements of sclerotized body parts is generally used to classify larval instars and is characterized by a multimodal overlap between instar stages. Nonparametric methods with fixed bandwidths, such as histograms, have significant limitations when used to fit this type of distribution, making it difficult to identify divisions between instars. Fixed bandwidths have also been chosen somewhat subjectively in the past, which is another problem. In this study, we describe an adaptive kernel smoothing method to differentiate instars based on discontinuities in the growth rates of sclerotized insect body parts. From Brooks’ rule, we derived a new standard for assessing the quality of instar classification and a bandwidth selector that more accurately reflects the distributed character of specific variables. We used this method to classify the larvae of Austrosimulium tillyardianum (Diptera: Simuliidae) based on five different measurements. Based on head capsule width and head capsule length, the larvae were separated into nine instars. Based on head capsule postoccipital width and mandible length, the larvae were separated into 8 instars and 10 instars, respectively. No reasonable solution was found for antennal segment 3 length. Separation of the larvae into nine instars using head capsule width or head capsule length was most robust and agreed with Crosby’s growth rule. By strengthening the distributed character of the separation variable through the use of variable bandwidths, the adaptive kernel smoothing method could identify divisions between instars more effectively and accurately than previous methods. PMID:26546689

  1. A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection

    DOE PAGESBeta

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; Burkardt, John V.

    2015-06-24

    This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the newmore » technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less

  2. Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    PubMed Central

    Cain, Stephen M; Gordon, Keith E; Ferris, Daniel P

    2007-01-01

    Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control. PMID:18154649

  3. Adaptive circle-ellipse fitting method for estimating tree diameter based on single terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Bu, Guochao; Wang, Pei

    2016-04-01

    Terrestrial laser scanning (TLS) has been used to extract accurate forest biophysical parameters for inventory purposes. The diameter at breast height (DBH) is a key parameter for individual trees because it has the potential for modeling the height, volume, biomass, and carbon sequestration potential of the tree based on empirical allometric scaling equations. In order to extract the DBH from the single-scan data of TLS automatically and accurately within a certain range, we proposed an adaptive circle-ellipse fitting method based on the point cloud transect. This proposed method can correct the error caused by the simple circle fitting method when a tree is slanted. A slanted tree was detected by the circle-ellipse fitting analysis, then the corresponding slant angle was found based on the ellipse fitting result. With this information, the DBH of the trees could be recalculated based on reslicing the point cloud data at breast height. Artificial stem data simulated by a cylindrical model of leaning trees and the scanning data acquired with the RIEGL VZ-400 were used to test the proposed adaptive fitting method. The results shown that the proposed method can detect the trees and accurately estimate the DBH for leaning trees.

  4. Modeling flow through inline tube bundles using an adaptive immersed boundary method

    NASA Astrophysics Data System (ADS)

    Liang, Chunlei; Luo, Xiaoyu; Griffith, Boyce

    2007-11-01

    Fluid flow and its exerted forces on the tube bundle cylinders are important in designing mechanical/nuclear heat exchanger facilities. In this paper, we study the vortex structure of the flow around the tube bundle for different tube spacing. An adaptive, formally 2^nd order immersed boundary (IB) method is used to simulate the flow. One advantage of the IB method is its great flexibility and ease in positioning solid bodies in the fluid domain. Our IB approach uses a six-point regularized delta function and is a type of continuous forcing approach. Validation results obtained using the IB method for two-in-tandem cylinders compare well with those obtained using the finite volume or spectral element methods on unstructured grids. Subsequently, we simulated flow through six-row inline tube bundles with pitch-to-diameter ratios of 2.1, 3.2, and 4, respectively, on structured adaptively refined Cartesian grids. The IB method enables us to study the critical tube spacing when the flow regime switches from the vortex reattachment pattern to alternative individual vortex shedding.

  5. A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection

    SciTech Connect

    Zhang, Guannan; Webster, Clayton G; Gunzburger, Max D; Burkardt, John V

    2014-03-01

    This work proposes and analyzes a hyper-spherical adaptive hi- erarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the the- oretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a func- tion representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smooth- ness of the hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity anal- yses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.

  6. High-Frequency Wave Propagation by the Segment Projection Method

    NASA Astrophysics Data System (ADS)

    Engquist, Björn; Runborg, Olof; Tornberg, Anna-Karin

    2002-05-01

    Geometrical optics is a standard technique used for the approximation of high-frequency wave propagation. Computational methods based on partial differential equations instead of the traditional ray tracing have recently been applied to geometrical optics. These new methods have a number of advantages but typically exhibit difficulties with linear superposition of waves. In this paper we introduce a new partial differential technique based on the segment projection method in phase space. The superposition problem is perfectly resolved and so is the problem of computing amplitudes in the neighborhood of caustics. The computational complexity is of the same order as that of ray tracing. The new algorithm is described and a number of computational examples are given, including a simulation of waveguides.

  7. Nucleon-deuteron scattering using the adiabatic projection method

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar; Lee, Dean; Meißner, Ulf-G.; Rupak, Gautam

    2016-06-01

    In this paper we discuss the adiabatic projection method, a general framework for scattering and reaction calculations on the lattice. We also introduce several new techniques developed to study nucleus-nucleus scattering and reactions on the lattice. We present technical details of the method for large-scale problems. To estimate the systematic errors of the calculations we consider simple two-particle scattering on the lattice. Then we benchmark the accuracy and efficiency of the numerical methods by applying these to calculate fermion-dimer scattering in lattice effective field theory with and without a long-range Coulomb potential. The fermion-dimer calculations correspond to neutron-deuteron and proton-deuteron scattering in the spin-quartet channel at leading order in the pionless effective field theory.

  8. Feasibility of an online adaptive replanning method for cranial frameless intensity-modulated radiosurgery

    SciTech Connect

    Calvo, Juan Francisco; San José, Sol; Garrido, LLuís; Puertas, Enrique; Moragues, Sandra; Pozo, Miquel; Casals, Joan

    2013-10-01

    To introduce an approach for online adaptive replanning (i.e., dose-guided radiosurgery) in frameless stereotactic radiosurgery, when a 6-dimensional (6D) robotic couch is not available in the linear accelerator (linac). Cranial radiosurgical treatments are planned in our department using intensity-modulated technique. Patients are immobilized using thermoplastic mask. A cone-beam computed tomography (CBCT) scan is acquired after the initial laser-based patient setup (CBCT{sub setup}). The online adaptive replanning procedure we propose consists of a 6D registration-based mapping of the reference plan onto actual CBCT{sub setup}, followed by a reoptimization of the beam fluences (“6D plan”) to achieve similar dosage as originally was intended, while the patient is lying in the linac couch and the original beam arrangement is kept. The goodness of the online adaptive method proposed was retrospectively analyzed for 16 patients with 35 targets treated with CBCT-based frameless intensity modulated technique. Simulation of reference plan onto actual CBCT{sub setup}, according to the 4 degrees of freedom, supported by linac couch was also generated for each case (4D plan). Target coverage (D99%) and conformity index values of 6D and 4D plans were compared with the corresponding values of the reference plans. Although the 4D-based approach does not always assure the target coverage (D99% between 72% and 103%), the proposed online adaptive method gave a perfect coverage in all cases analyzed as well as a similar conformity index value as was planned. Dose-guided radiosurgery approach is effective to assure the dose coverage and conformity of an intracranial target volume, avoiding resetting the patient inside the mask in a “trial and error” way so as to remove the pitch and roll errors when a robotic table is not available.

  9. SWAT system performance predictions. Project report. [SWAT (Short-Wavelength Adaptive Techniques)

    SciTech Connect

    Parenti, R.R.; Sasiela, R.J.

    1993-03-10

    In the next phase of Lincoln Laboratory's SWAT (Short-Wavelength Adaptive Techniques) program, the performance of a 241-actuator adaptive-optics system will be measured using a variety of synthetic-beacon geometries. As an aid in this experimental investigation, a detailed set of theoretical predictions has also been assembled. The computational tools that have been applied in this study include a numerical approach in which Monte-Carlo ray-trace simulations of accumulated phase error are developed, and an analytical analysis of the expected system behavior. This report describes the basis of these two computational techniques and compares their estimates of overall system performance. Although their regions of applicability tend to be complementary rather than redundant, good agreement is usually obtained when both sets of results can be derived for the same engagement scenario.... Adaptive optics, Phase conjugation, Atmospheric turbulence Synthetic beacon, Laser guide star.

  10. Numerical performance of projection methods in finite element consolidation models

    NASA Astrophysics Data System (ADS)

    Gambolati, Giuseppe; Pini, Giorgio; Ferronato, Massimiliano

    2001-12-01

    Projection, or conjugate gradient like, methods are becoming increasingly popular for the efficient solution of large sparse sets of unsymmetric indefinite equations arising from the numerical integration of (initial) boundary value problems. One such problem is soil consolidation coupling a flow and a structural model, typically solved by finite elements (FE) in space and a marching scheme in time (e.g. the Crank-Nicolson scheme). The attraction of a projection method stems from a number of factors, including the ease of implementation, the requirement of limited core memory and the low computational cost if a cheap and effective matrix preconditioner is available. In the present paper, biconjugate gradient stabilized (Bi- CGSTAB) is used to solve FE consolidation equations in 2-D and 3-D settings with variable time integration steps. Three different nodal orderings are selected along with the preconditioner ILUT based on incomplete triangular factorization and variable fill-in. The overall cost of the solver is made up of the preconditioning cost plus the cost to converge which is in turn related to the number of iterations and the elementary operations required by each iteration. The results show that nodal ordering affects the perfor mance of Bi-CGSTAB. For normally conditioned consolidation problems Bi-CGSTAB with the best ILUT preconditioner may converge in a number of iterations up to two order of magnitude smaller than the size of the FE model and proves an accurate, cost-effective and robust alternative to direct methods.

  11. Self-adaptive method for high frequency multi-channel analysis of surface wave method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When the high frequency multi-channel analysis of surface waves (MASW) method is conducted to explore soil properties in the vadose zone, existing rules for selecting the near offset and spread lengths cannot satisfy the requirements of planar dominant Rayleigh waves for all frequencies of interest ...

  12. An HP Adaptive Discontinuous Galerkin Method for Hyperbolic Conservation Laws. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.

    1994-01-01

    This dissertation addresses various issues for model classes of hyperbolic conservation laws. The basic approach developed in this work employs a new family of adaptive, hp-version, finite element methods based on a special discontinuous Galerkin formulation for hyperbolic problems. The discontinuous Galerkin formulation admits high-order local approximations on domains of quite general geometry, while providing a natural framework for finite element approximations and for theoretical developments. The use of hp-versions of the finite element method makes possible exponentially convergent schemes with very high accuracies in certain cases; the use of adaptive hp-schemes allows h-refinement in regions of low regularity and p-enrichment to deliver high accuracy, while keeping problem sizes manageable and dramatically smaller than many conventional approaches. The use of discontinuous Galerkin methods is uncommon in applications, but the methods rest on a reasonable mathematical basis for low-order cases and has local approximation features that can be exploited to produce very efficient schemes, especially in a parallel, multiprocessor environment. The place of this work is to first and primarily focus on a model class of linear hyperbolic conservation laws for which concrete mathematical results, methodologies, error estimates, convergence criteria, and parallel adaptive strategies can be developed, and to then briefly explore some extensions to more general cases. Next, we provide preliminaries to the study and a review of some aspects of the theory of hyperbolic conservation laws. We also provide a review of relevant literature on this subject and on the numerical analysis of these types of problems.

  13. Adaptive finite volume methods for time-dependent P.D.E.S.

    SciTech Connect

    Ware, J.; Berzins, M.

    1995-12-31

    The aim of adaptive methods for time-dependent p.d.e.s is to control the numerical error so that it is less than a user-specified tolerance. This error depends on the spatial discretization method, the spatial mesh, the method of time integration and the timestep. The spatial discretization method and positioning of the spatial mesh points should attempt to ensure that the spatial error is controlled to meet the user`s requirements. It is then desirable to integrate the o.d.e. system in time with sufficient accuracy so that the temporal error does not corrupt the spatial accuracy or the reliability of the spatial error estimates. This paper is concerned with the development of a prototype algorithm of this type, based on a cell-centered triangular finite volume scheme, for two space dimensional convection-dominated problems.

  14. A Cartesian Adaptive Level Set Method for Two-Phase Flows

    NASA Technical Reports Server (NTRS)

    Ham, F.; Young, Y.-N.

    2003-01-01

    In the present contribution we develop a level set method based on local anisotropic Cartesian adaptation as described in Ham et al. (2002). Such an approach should allow for the smallest possible Cartesian grid capable of resolving a given flow. The remainder of the paper is organized as follows. In section 2 the level set formulation for free surface calculations is presented and its strengths and weaknesses relative to the other free surface methods reviewed. In section 3 the collocated numerical method is described. In section 4 the method is validated by solving the 2D and 3D drop oscilation problem. In section 5 we present some results from more complex cases including the 3D drop breakup in an impulsively accelerated free stream, and the 3D immiscible Rayleigh-Taylor instability. Conclusions are given in section 6.

  15. Patched based methods for adaptive mesh refinement solutions of partial differential equations

    SciTech Connect

    Saltzman, J.

    1997-09-02

    This manuscript contains the lecture notes for a course taught from July 7th through July 11th at the 1997 Numerical Analysis Summer School sponsored by C.E.A., I.N.R.I.A., and E.D.F. The subject area was chosen to support the general theme of that year`s school which is ``Multiscale Methods and Wavelets in Numerical Simulation.`` The first topic covered in these notes is a description of the problem domain. This coverage is limited to classical PDEs with a heavier emphasis on hyperbolic systems and constrained hyperbolic systems. The next topic is difference schemes. These schemes are the foundation for the adaptive methods. After the background material is covered, attention is focused on a simple patched based adaptive algorithm and its associated data structures for square grids and hyperbolic conservation laws. Embellishments include curvilinear meshes, embedded boundary and overset meshes. Next, several strategies for parallel implementations are examined. The remainder of the notes contains descriptions of elliptic solutions on the mesh hierarchy, elliptically constrained flow solution methods and elliptically constrained flow solution methods with diffusion.

  16. Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2004-01-01

    This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the mechanism of intra-harmonic coupling.

  17. Adaptive method for quantifying uncertainty in discharge measurements using velocity-area method.

    NASA Astrophysics Data System (ADS)

    Despax, Aurélien; Favre, Anne-Catherine; Belleville, Arnaud

    2015-04-01

    Streamflow information provided by hydrometric services such as EDF-DTG allow real time monitoring of rivers, streamflow forecasting, paramount hydrological studies and engineering design. In open channels, the traditional approach to measure flow uses a rating curve, which is an indirect method to estimate the discharge in rivers based on water level and punctual discharge measurements. A large proportion of these discharge measurements are performed using the velocity-area method; it consists in integrating flow velocities and depths through the cross-section [1]. The velocity field is estimated by choosing a number m of verticals, distributed across the river, where vertical velocity profile is sampled by a current-meter at ni different depths. Uncertainties coming from several sources are related to the measurement process. To date, the framework for assessing uncertainty in velocity-area discharge measurements is the method presented in the ISO 748 standard [2] which follows the GUM [3] approach. The equation for the combined uncertainty in measured discharge u(Q), at 68% level of confidence, proposed by the ISO 748 standard is expressed as: Σ 2 2 2 -q2i[u2(Bi)+-u2(Di)+-u2p(Vi)+-(1ni) ×-[u2c(Vi)+-u2exp(Vi)

  18. Conservation strategies to adapt to projected climate change impacts in Malawi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is potential for climate change to have negative effects on agricultural production via extreme events (Pruski and Nearing, 2002b; Zhang et al., 2012; Walthall 2012), and there is a need to implement conservation practices for climate change adaptation (Delgado et al. 2011; 2013). Recent repo...

  19. The Adaptive Project of Parenting: South Asian Families with Children with Developmental Delays.

    ERIC Educational Resources Information Center

    Raghavan, Chemba; Weisner, Thomas S.; Patel, Devindra

    1999-01-01

    This study compared patterns of family adaptation to children with developmental delays of South Asian families living in California with similar Euro-American families. Analysis of parent interviews found differences in family support, spousal relations, gender roles, cultural identity, and spirituality. Similarities were found in hope for…

  20. The Impact of Different Portability Factors during the Life Cycle of an Educational Software Adaptation Project.

    ERIC Educational Resources Information Center

    Collis, Betty A.; De Diana, Italo

    1990-01-01

    Provides an example that illustrates the interrelationship of the factors that influence educational software portability. Nielsen's seven-level approach to human-computer interaction is used as the basis for a model for factors that influence portability, and five phases in the life cycle of a software product being adapted are considered. (10…

  1. Radiation hydrodynamics including irradiation and adaptive mesh refinement with AZEuS. I. Methods

    NASA Astrophysics Data System (ADS)

    Ramsey, J. P.; Dullemond, C. P.

    2015-02-01

    Aims: The importance of radiation to the physical structure of protoplanetary disks cannot be understated. However, protoplanetary disks evolve with time, and so to understand disk evolution and by association, disk structure, one should solve the combined and time-dependent equations of radiation hydrodynamics. Methods: We implement a new implicit radiation solver in the AZEuS adaptive mesh refinement magnetohydrodynamics fluid code. Based on a hybrid approach that combines frequency-dependent ray-tracing for stellar irradiation with non-equilibrium flux limited diffusion, we solve the equations of radiation hydrodynamics while preserving the directionality of the stellar irradiation. The implementation permits simulations in Cartesian, cylindrical, and spherical coordinates, on both uniform and adaptive grids. Results: We present several hydrostatic and hydrodynamic radiation tests which validate our implementation on uniform and adaptive grids as appropriate, including benchmarks specifically designed for protoplanetary disks. Our results demonstrate that the combination of a hybrid radiation algorithm with AZEuS is an effective tool for radiation hydrodynamics studies, and produces results which are competitive with other astrophysical radiation hydrodynamics codes.

  2. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

    PubMed

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J

    2015-09-01

    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples. PMID:25940062

  3. Comparative adaptation accuracy of acrylic denture bases evaluated by two different methods.

    PubMed

    Lee, Chung-Jae; Bok, Sung-Bem; Bae, Ji-Young; Lee, Hae-Hyoung

    2010-08-01

    This study examined the adaptation accuracy of acrylic denture base processed using fluid-resin (PERform), injection-moldings (SR-Ivocap, Success, Mak Press), and two compression-molding techniques. The adaptation accuracy was measured primarily by the posterior border gaps at the mid-palatal area using a microscope and subsequently by weighing of the weight of the impression material between the denture base and master cast using hand-mixed and automixed silicone. The correlation between the data measured using these two test methods was examined. The PERform and Mak Press produced significantly smaller maximum palatal gap dimensions than the other groups (p<0.05). Mak Press also showed a significantly smaller weight of automixed silicone material than the other groups (p<0.05), while SR-Ivocap and Success showed similar adaptation accuracy to the compression-molding denture. The correlationship between the magnitude of the posterior border gap and the weight of the silicone impression materials was affected by either the material or mixing variables. PMID:20675954

  4. Adaptive correction method for an OCXO and investigation of analytical cumulative time error upper bound.

    PubMed

    Zhou, Hui; Kunz, Thomas; Schwartz, Howard

    2011-01-01

    Traditional oscillators used in timing modules of CDMA and WiMAX base stations are large and expensive. Applying cheaper and smaller, albeit more inaccurate, oscillators in timing modules is an interesting research challenge. An adaptive control algorithm is presented to enhance the oscillators to meet the requirements of base stations during holdover mode. An oscillator frequency stability model is developed for the adaptive control algorithm. This model takes into account the control loop which creates the correction signal when the timing module is in locked mode. A recursive prediction error method is used to identify the system model parameters. Simulation results show that an oscillator enhanced by our adaptive control algorithm improves the oscillator performance significantly, compared with uncorrected oscillators. Our results also show the benefit of explicitly modeling the control loop. Finally, the cumulative time error upper bound of such enhanced oscillators is investigated analytically and comparison results between the analytical and simulated upper bound are provided. The results show that the analytical upper bound can serve as a practical guide for system designers. PMID:21244973

  5. Adaptive control system having hedge unit and related apparatus and methods

    NASA Technical Reports Server (NTRS)

    Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)

    2003-01-01

    The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.

  6. Adaptive control system having hedge unit and related apparatus and methods

    NASA Technical Reports Server (NTRS)

    Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)

    2007-01-01

    The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.

  7. Project CASAS: Facilitating the Adaptation of Recent Immigrant Students through Complex Community-Wide Efforts

    ERIC Educational Resources Information Center

    Schoorman, Dilys; Jean-Jacques, Velouse

    2003-01-01

    The primary focus of this article is a community-based project initiated under the auspices of the Palm Beach County School District's Office of Multicultural Affairs. The students in this district represent 150 countries and 104 language groups. The nation with the highest representation among this population is Haiti. Project CASAS (Community…

  8. The C8 Health Project: Design, Methods, and Participants

    PubMed Central

    Frisbee, Stephanie J.; Brooks, A. Paul; Maher, Arthur; Flensborg, Patsy; Arnold, Susan; Fletcher, Tony; Steenland, Kyle; Shankar, Anoop; Knox, Sarah S.; Pollard, Cecil; Halverson, Joel A.; Vieira, Verónica M.; Jin, Chuanfang; Leyden, Kevin M.; Ducatman, Alan M.

    2009-01-01

    Background The C8 Health Project was created, authorized, and funded as part of the settlement agreement reached in the case of Jack W. Leach, et al. v. E.I. du Pont de Nemours & Company (no. 01-C-608 W.Va., Wood County Circuit Court, filed 10 April 2002). The settlement stemmed from the perfluorooctanoic acid (PFOA, or C8) contamination of drinking water in six water districts in two states near the DuPont Washington Works facility near Parkersburg, West Virginia. Objectives This study reports on the methods and results from the C8 Health Project, a population study created to gather data that would allow class members to know their own PFOA levels and permit subsequent epidemiologic investigations. Methods Final study participation was 69,030, enrolled over a 13-month period in 2005–2006. Extensive data were collected, including demographic data, medical diagnoses (both self-report and medical records review), clinical laboratory testing, and determination of serum concentrations of 10 perfluorocarbons (PFCs). Here we describe the processes used to collect, validate, and store these health data. We also describe survey participants and their serum PFC levels. Results The population geometric mean for serum PFOA was 32.91 ng/mL, 500% higher than previously reported for a representative American population. Serum concentrations for perfluorohexane sulfonate and perfluorononanoic acid were elevated 39% and 73% respectively, whereas perfluorooctanesulfonate was present at levels similar to those in the U.S. population. Conclusions This largest known population study of community PFC exposure permits new evaluations of associations between PFOA, in particular, and a range of health parameters. These will contribute to understanding of the biology of PFC exposure. The C8 Health Project also represents an unprecedented effort to gather basic data on an exposed population; its achievements and limitations can inform future legal settlements for populations exposed to

  9. Data-adapted moving least squares method for 3-D image interpolation

    NASA Astrophysics Data System (ADS)

    Jang, Sumi; Nam, Haewon; Lee, Yeon Ju; Jeong, Byeongseon; Lee, Rena; Yoon, Jungho

    2013-12-01

    In this paper, we present a nonlinear three-dimensional interpolation scheme for gray-level medical images. The scheme is based on the moving least squares method but introduces a fundamental modification. For a given evaluation point, the proposed method finds the local best approximation by reproducing polynomials of a certain degree. In particular, in order to obtain a better match to the local structures of the given image, we employ locally data-adapted least squares methods that can improve the classical one. Some numerical experiments are presented to demonstrate the performance of the proposed method. Five types of data sets are used: MR brain, MR foot, MR abdomen, CT head, and CT foot. From each of the five types, we choose five volumes. The scheme is compared with some well-known linear methods and other recently developed nonlinear methods. For quantitative comparison, we follow the paradigm proposed by Grevera and Udupa (1998). (Each slice is first assumed to be unknown then interpolated by each method. The performance of each interpolation method is assessed statistically.) The PSNR results for the estimated volumes are also provided. We observe that the new method generates better results in both quantitative and visual quality comparisons.

  10. Two Project Methods: Preliminary Observations on the Similarities and Differences between William Heard Kilpatrick's Project Method and John Dewey's Problem-Solving Method

    ERIC Educational Resources Information Center

    Sutinen, Ari

    2013-01-01

    The project method became a famous teaching method when William Heard Kilpatrick published his article "Project Method" in 1918. The key idea in Kilpatrick's project method is to try to explain how pupils learn things when they work in projects toward different common objects. The same idea of pupils learning by work or action in an…

  11. System and method for adaptively deskewing parallel data signals relative to a clock

    DOEpatents

    Jenkins, Philip Nord; Cornett, Frank N.

    2006-04-18

    A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. Each of the plurality of delayed signals is compared to a reference signal to detect changes in the skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in the detected skew.

  12. Adaptive Forward Modeling Method for Analysis and Reconstructions of Orientation Image Map

    SciTech Connect

    Frankie Li, Shiu Fai

    2014-06-01

    IceNine is a MPI-parallel orientation reconstruction and microstructure analysis code. It's primary purpose is to reconstruct a spatially resolved orientation map given a set of diffraction images from a high energy x-ray diffraction microscopy (HEDM) experiment (1). In particular, IceNine implements the adaptive version of the forward modeling method (2, 3). Part of IceNine is a library used to for conbined analysis of the microstructure with the experimentally measured diffraction signal. The libraries is also designed for tapid prototyping of new reconstruction and analysis algorithms. IceNine is also built with a simulator of diffraction images with an input microstructure.

  13. Wavefront detection method of a single-sensor based adaptive optics system.

    PubMed

    Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li

    2015-08-10

    In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS. PMID:26367988

  14. Removal of Cardiopulmonary Resuscitation Artifacts with an Enhanced Adaptive Filtering Method: An Experimental Trial

    PubMed Central

    Gong, Yushun; Yu, Tao; Chen, Bihua; He, Mi; Li, Yongqin

    2014-01-01

    Current automated external defibrillators mandate interruptions of chest compression to avoid the effect of artifacts produced by CPR for reliable rhythm analyses. But even seconds of interruption of chest compression during CPR adversely affects the rate of restoration of spontaneous circulation and survival. Numerous digital signal processing techniques have been developed to remove the artifacts or interpret the corrupted ECG with promising result, but the performance is still inadequate, especially for nonshockable rhythms. In the present study, we suppressed the CPR artifacts with an enhanced adaptive filtering method. The performance of the method was evaluated by comparing the sensitivity and specificity for shockable rhythm detection before and after filtering the CPR corrupted ECG signals. The dataset comprised 283 segments of shockable and 280 segments of nonshockable ECG signals during CPR recorded from 22 adult pigs that experienced prolonged cardiac arrest. For the unfiltered signals, the sensitivity and specificity were 99.3% and 46.8%, respectively. After filtering, a sensitivity of 93.3% and a specificity of 96.0% were achieved. This animal trial demonstrated that the enhanced adaptive filtering method could significantly improve the detection of nonshockable rhythms without compromising the ability to detect a shockable rhythm during uninterrupted CPR. PMID:24795878

  15. Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungin; Liou, Meng-Sing

    2011-01-01

    In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems

  16. A Newton method with adaptive finite elements for solving phase-change problems with natural convection

    NASA Astrophysics Data System (ADS)

    Danaila, Ionut; Moglan, Raluca; Hecht, Frédéric; Le Masson, Stéphane

    2014-10-01

    We present a new numerical system using finite elements with mesh adaptivity for the simulation of solid-liquid phase change systems. In the liquid phase, the natural convection flow is simulated by solving the incompressible Navier-Stokes equations with Boussinesq approximation. A variable viscosity model allows the velocity to progressively vanish in the solid phase, through an intermediate mushy region. The phase change is modeled by introducing an implicit enthalpy source term in the heat equation. The final system of equations describing the liquid-solid system by a single domain approach is solved using a Newton iterative algorithm. The space discretization is based on a P2-P1 Taylor-Hood finite elements and mesh adaptivity by metric control is used to accurately track the solid-liquid interface or the density inversion interface for water flows. The numerical method is validated against classical benchmarks that progressively add strong non-linearities in the system of equations: natural convection of air, natural convection of water, melting of a phase-change material and water freezing. Very good agreement with experimental data is obtained for each test case, proving the capability of the method to deal with both melting and solidification problems with convection. The presented numerical method is easy to implement using FreeFem++ software using a syntax close to the mathematical formulation.

  17. FALCON: A method for flexible adaptation of local coordinates of nuclei.

    PubMed

    König, Carolin; Hansen, Mads Bøttger; Godtliebsen, Ian H; Christiansen, Ove

    2016-02-21

    We present a flexible scheme for calculating vibrational rectilinear coordinates with well-defined strict locality on a certain set of atoms. Introducing a method for Flexible Adaption of Local COordinates of Nuclei (FALCON) we show how vibrational subspaces can be "grown" in an adaptive manner. Subspace Hessian matrices are set up and used to calculate and analyze vibrational modes and frequencies. FALCON coordinates can more generally be used to construct vibrational coordinates for describing local and (semi-local) interacting modes with desired features. For instance, spatially local vibrations can be approximately described as internal motion within only a group of atoms and delocalized modes can be approximately expressed as relative motions of rigid groups of atoms. The FALCON method can support efficiency in the calculation and analysis of vibrational coordinates and energies in the context of harmonic and anharmonic calculations. The features of this method are demonstrated on a few small molecules, i.e., formylglycine, coumarin, and dimethylether as well as for the amide-I band and low-frequency modes of alanine oligomers and alpha conotoxin. PMID:26896977

  18. Adaptive explicit and implicit finite element methods for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Probert, E. J.; Hassan, O.; Morgan, K.; Peraire, J.

    1992-01-01

    The application of adaptive finite element methods to the solution of transient heat conduction problems in two dimensions is investigated. The computational domain is represented by an unstructured assembly of linear triangular elements and the mesh adaptation is achieved by local regeneration of the grid, using an error estimation procedure coupled to an automatic triangular mesh generator. Two alternative solution procedures are considered. In the first procedure, the solution is advanced by explicit timestepping, with domain decomposition being used to improve the computational efficiency of the method. In the second procedure, an algorithm for constructing continuous lines which pass only once through each node of the mesh is employed. The lines are used as the basis of a fully implicit method, in which the equation system is solved by line relaxation using a block tridiagonal equation solver. The numerical performance of the two procedures is compared for the analysis of a problem involving a moving heat source applied to a convectively cooled cylindrical leading edge.

  19. Efficient reconstruction method for ground layer adaptive optics with mixed natural and laser guide stars.

    PubMed

    Wagner, Roland; Helin, Tapio; Obereder, Andreas; Ramlau, Ronny

    2016-02-20

    The imaging quality of modern ground-based telescopes such as the planned European Extremely Large Telescope is affected by atmospheric turbulence. In consequence, they heavily depend on stable and high-performance adaptive optics (AO) systems. Using measurements of incoming light from guide stars, an AO system compensates for the effects of turbulence by adjusting so-called deformable mirror(s) (DMs) in real time. In this paper, we introduce a novel reconstruction method for ground layer adaptive optics. In the literature, a common approach to this problem is to use Bayesian inference in order to model the specific noise structure appearing due to spot elongation. This approach leads to large coupled systems with high computational effort. Recently, fast solvers of linear order, i.e., with computational complexity O(n), where n is the number of DM actuators, have emerged. However, the quality of such methods typically degrades in low flux conditions. Our key contribution is to achieve the high quality of the standard Bayesian approach while at the same time maintaining the linear order speed of the recent solvers. Our method is based on performing a separate preprocessing step before applying the cumulative reconstructor (CuReD). The efficiency and performance of the new reconstructor are demonstrated using the OCTOPUS, the official end-to-end simulation environment of the ESO for extremely large telescopes. For more specific simulations we also use the MOST toolbox. PMID:26906596

  20. Limited-memory scaled gradient projection methods for real-time image deconvolution in microscopy

    NASA Astrophysics Data System (ADS)

    Porta, F.; Zanella, R.; Zanghirati, G.; Zanni, L.

    2015-04-01

    Gradient projection methods have given rise to effective tools for image deconvolution in several relevant areas, such as microscopy, medical imaging and astronomy. Due to the large scale of the optimization problems arising in nowadays imaging applications and to the growing request of real-time reconstructions, an interesting challenge to be faced consists in designing new acceleration techniques for the gradient schemes, able to preserve their simplicity and low computational cost of each iteration. In this work we propose an acceleration strategy for a state-of-the-art scaled gradient projection method for image deconvolution in microscopy. The acceleration idea is derived by adapting a step-length selection rule, recently introduced for limited-memory steepest descent methods in unconstrained optimization, to the special constrained optimization framework arising in image reconstruction. We describe how important issues related to the generalization of the step-length rule to the imaging optimization problem have been faced and we evaluate the improvements due to the acceleration strategy by numerical experiments on large-scale image deconvolution problems.

  1. Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints

    NASA Astrophysics Data System (ADS)

    Teschke, Gerd; Borries, Claudia

    2010-02-01

    This paper is concerned with the construction of an iterative algorithm to solve nonlinear inverse problems with an ell1 constraint on x. One extensively studied method to obtain a solution of such an ell1 penalized problem is iterative soft-thresholding. Regrettably, such iteration schemes are computationally very intensive. A subtle alternative to iterative soft-thresholding is the projected gradient method that was quite recently proposed by Daubechies et al (2008 J. Fourier Anal. Appl. 14 764-92). The authors have shown that the proposed scheme is indeed numerically much thriftier. However, its current applicability is limited to linear inverse problems. In this paper we provide an extension of this approach to nonlinear problems. Adequately adapting the conditions on the (variable) thresholding parameter to the nonlinear nature, we can prove convergence in norm for this projected gradient method, with and without acceleration. A numerical verification is given in the context of nonlinear and non-ideal sensing. For this particular recovery problem we can achieve an impressive numerical performance (when comparing it to non-accelerated procedures).

  2. A CD adaptive monitoring and compensation method based on the average of the autocorrelation matrix eigenvalue

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Lei, Jianming; Guo, Junhui; Zou, Xuecheng; Li, Bin; Lu, Li

    2014-02-01

    A new autocorrelation matrix eigenvalue based digital signal processing (DSP) chromatic dispersion (CD) adaptive monitoring and compensation method is proposed. It employs the average of the autocorrelation matrix eigenvalue instead of eigenvalue spread to be the metric of scanning. The average calculation has been effective in relieving the degradation of performance caused by the fluctuation of autocorrelation matrix eigenvalue. Compare with the eigenvalue spread scanning algorithm, this method reduces the monitoring errors to below 10 ps/nm from more than 200 ps/nm, while not increasing its computation complexity. Simulation results show that in 100 Gbit/s polarization division multiplexing (PDM) quadrature phase shift keying (QPSK) coherent optical transmission system, this method improves the bit error rate (BER) performance and the system robustness against the amplified-spontaneous-emission noise.

  3. Dynamics of the adaptive natural gradient descent method for soft committee machines

    NASA Astrophysics Data System (ADS)

    Inoue, Masato; Park, Hyeyoung; Okada, Masato

    2004-05-01

    Adaptive natural gradient descent (ANGD) method realizes natural gradient descent (NGD) without needing to know the input distribution of learning data and reduces the calculation cost from a cubic order to a square order. However, no performance analysis of ANGD has been done. We have developed a statistical-mechanical theory of the simplified version of ANGD dynamics for soft committee machines in on-line learning; this method provides deterministic learning dynamics expressed through a few order parameters, even though ANGD intrinsically holds a large approximated Fisher information matrix. Numerical results obtained using this theory were consistent with those of a simulation, with respect not only to the learning curve but also to the learning failure. Utilizing this method, we numerically evaluated ANGD efficiency and found that ANGD generally performs as well as NGD. We also revealed the key condition affecting the learning plateau in ANGD.

  4. Directionally adaptive finite element method for multidimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Tan, Zhiqiang; Varghese, Philip L.

    1993-01-01

    A directionally adaptive finite element method for multidimensional compressible flows is presented. Quadrilateral and hexahedral elements are used because they have several advantages over triangular and tetrahedral elements. Unlike traditional methods that use quadrilateral/hexahedral elements, our method allows an element to be divided in each of the three directions in 3D and two directions in 2D. Some restrictions on mesh structure are found to be necessary, especially in 3D. The refining and coarsening procedures, and the treatment of constraints are given. A new implementation of upwind schemes in the constrained finite element system is presented. Some example problems, including a Mach 10 shock interaction with the walls of a 2D channel, a 2D viscous compression corner flow, and inviscid and viscous 3D flows in square channels, are also shown.

  5. A Formula for Fixing Troubled Projects: The Scientific Method Meets Leadership

    NASA Technical Reports Server (NTRS)

    Wagner, Sandra

    2006-01-01

    This presentation focuses on project management, specifically addressing project issues using the scientific method of problem-solving. Two sample projects where this methodology has been applied are provided.

  6. An adaptive distance-based group contribution method for thermodynamic property prediction.

    PubMed

    He, Tanjin; Li, Shuang; Chi, Yawei; Zhang, Hong-Bo; Wang, Zhi; Yang, Bin; He, Xin; You, Xiaoqing

    2016-09-14

    In the search for an accurate yet inexpensive method to predict thermodynamic properties of large hydrocarbon molecules, we have developed an automatic and adaptive distance-based group contribution (DBGC) method. The method characterizes the group interaction within a molecule with an exponential decay function of the group-to-group distance, defined as the number of bonds between the groups. A database containing the molecular bonding information and the standard enthalpy of formation (Hf,298K) for alkanes, alkenes, and their radicals at the M06-2X/def2-TZVP//B3LYP/6-31G(d) level of theory was constructed. Multiple linear regression (MLR) and artificial neural network (ANN) fitting were used to obtain the contributions from individual groups and group interactions for further predictions. Compared with the conventional group additivity (GA) method, the DBGC method predicts Hf,298K for alkanes more accurately using the same training sets. Particularly for some highly branched large hydrocarbons, the discrepancy with the literature data is smaller for the DBGC method than the conventional GA method. When extended to other molecular classes, including alkenes and radicals, the overall accuracy level of this new method is still satisfactory. PMID:27522953

  7. Using Mixed-Methods Research to Adapt and Evaluate a Family Strengthening Intervention in Rwanda

    PubMed Central

    Betancourt, Theresa S.; Meyers-Ohki, Sarah E.; Stevenson, Anne; Ingabire, Charles; Kanyanganzi, Fredrick; Munyana, Morris; Mushashi, Christina; Teta, Sharon; Fayida, Ildephonse; Cyamatare, Felix Rwabukwisi; Stulac, Sara; Beardslee, William R.

    2013-01-01

    Introduction Research in several international settings indicates that children and adolescents affected by HIV and other compounded adversities are at increased risk for a range of mental health problems including depression, anxiety, and social withdrawal. More intervention research is needed to develop valid measurement and intervention tools to address child mental health in such settings. Objective This article presents a collaborative mixed-methods approach to designing and evaluating a mental health intervention to assist families facing multiple adversities in Rwanda. Methods Qualitative methods were used to gain knowledge of culturally-relevant mental health problems in children and adolescents, individual, family and community resources, and contextual dynamics among HIV-affected families. This data was used to guide the selection and adaptation of mental health measures to assess intervention outcomes. Measures were subjected to a quantitative validation exercise. Qualitative data and community advisory board input also informed the selection and adaptation of a family-based preventive intervention to reduce the risk for mental health problems among children in families affected by HIV.. Community-based participatory methods were used to ensure that the intervention targeted relevant problems manifest in Rwandan children and families and built on local strengths. Results Qualitative data on culturally-appropriate practices for building resilience in vulnerable families has enriched the development of a Family-Strengthening Intervention (FSI). Input from community partners has also contributed to creating a feasible and culturally-relevant intervention. Mental health measures demonstrate strong performance in this population. Conclusion The mixed-methods model discussed represents a refined, multi-phase protocol for incorporating qualitative data and community input in the development and evaluation of feasible, culturally-sound quantitative assessments

  8. A spatially adaptive total variation regularization method for electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2015-12-01

    The total variation (TV) regularization method has been used to solve the ill-posed inverse problem of electrical resistance tomography (ERT), owing to its good ability to preserve edges. However, the quality of the reconstructed images, especially in the flat region, is often degraded by noise. To optimize the regularization term and the regularization factor according to the spatial feature and to improve the resolution of reconstructed images, a spatially adaptive total variation (SATV) regularization method is proposed. A kind of effective spatial feature indicator named difference curvature is used to identify which region is a flat or edge region. According to different spatial features, the SATV regularization method can automatically adjust both the regularization term and regularization factor. At edge regions, the regularization term is approximate to the TV functional to preserve the edges; in flat regions, it is approximate to the first-order Tikhonov (FOT) functional to make the solution stable. Meanwhile, the adaptive regularization factor determined by the spatial feature is used to constrain the regularization strength of the SATV regularization method for different regions. Besides, a numerical scheme is adopted for the implementation of the second derivatives of difference curvature to improve the numerical stability. Several reconstruction image metrics are used to quantitatively evaluate the performance of the reconstructed results. Both simulation and experimental results indicate that, compared with the TV (mean relative error 0.288, mean correlation coefficient 0.627) and FOT (mean relative error 0.295, mean correlation coefficient 0.638) regularization methods, the proposed SATV (mean relative error 0.259, mean correlation coefficient 0.738) regularization method can endure a relatively high level of noise and improve the resolution of reconstructed images.

  9. Building Adaptive Capacity with the Delphi Method and Mediated Modeling for Water Quality and Climate Change Adaptation in Lake Champlain Basin

    NASA Astrophysics Data System (ADS)

    Coleman, S.; Hurley, S.; Koliba, C.; Zia, A.; Exler, S.

    2014-12-01

    Eutrophication and nutrient pollution of surface waters occur within complex governance, social, hydrologic and biophysical basin contexts. The pervasive and perennial nutrient pollution in Lake Champlain Basin, despite decades of efforts, exemplifies problems found across the world's surface waters. Stakeholders with diverse values, interests, and forms of explicit and tacit knowledge determine water quality impacts through land use, agricultural and water resource decisions. Uncertainty, ambiguity and dynamic feedback further complicate the ability to promote the continual provision of water quality and ecosystem services. Adaptive management of water resources and land use requires mechanisms to allow for learning and integration of new information over time. The transdisciplinary Research on Adaptation to Climate Change (RACC) team is working to build regional adaptive capacity in Lake Champlain Basin while studying and integrating governance, land use, hydrological, and biophysical systems to evaluate implications for adaptive management. The RACC team has engaged stakeholders through mediated modeling workshops, online forums, surveys, focus groups and interviews. In March 2014, CSS2CC.org, an interactive online forum to source and identify adaptive interventions from a group of stakeholders across sectors was launched. The forum, based on the Delphi Method, brings forward the collective wisdom of stakeholders and experts to identify potential interventions and governance designs in response to scientific uncertainty and ambiguity surrounding the effectiveness of any strategy, climate change impacts, and the social and natural systems governing water quality and eutrophication. A Mediated Modeling Workshop followed the forum in May 2014, where participants refined and identified plausible interventions under different governance, policy and resource scenarios. Results from the online forum and workshop can identify emerging consensus across scales and sectors

  10. Lavia – an Evaluation of the Potential Safety Benefits of the French Intelligent Speed Adaptation Project

    PubMed Central

    Driscoll, R.; Page, Y.; Lassarre, S.; Ehrlich, J.

    2007-01-01

    This paper presents the potential safety benefits of the experimental French LAVIA Intelligent Speed Adaptation system, according to road network and system mode, based on observed driving speeds, distributions of crash severity and crash injury risk. Results are given for car frontal and side impacts that together, represent 80% of all serious and fatal injuries in France. Of the three system modes tested (advisory, driver select, mandatory), our results suggest that driver select would most significantly reduce serious injuries and death. We estimate this 100% utilization of cars equipped with this type of speed adaptation system would decrease injury rates by 6% to 16% over existing conditions depending on the type of crash (frontal or side) and road environment considered. Some limitations associated with the analysis are also identified. PMID:18184509

  11. Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    Lessons Learne: 1. Design-out unnecessary risk to prevent excessive mitigation management during flight. 2. Consider iterative checkouts to confirm or improve human factor characteristics. 3. Consider the total flight test profile to uncover unanticipated human-algorithm interactions. 4. Consider test card cadence as a metric to assess test readiness. 5. Full-scale flight test is critical to development, maturation, and acceptance of adaptive control laws for operational use.

  12. The Adaptive Biasing Force Method: Everything You Always Wanted To Know but Were Afraid To Ask

    PubMed Central

    2014-01-01

    In the host of numerical schemes devised to calculate free energy differences by way of geometric transformations, the adaptive biasing force algorithm has emerged as a promising route to map complex free-energy landscapes. It relies upon the simple concept that as a simulation progresses, a continuously updated biasing force is added to the equations of motion, such that in the long-time limit it yields a Hamiltonian devoid of an average force acting along the transition coordinate of interest. This means that sampling proceeds uniformly on a flat free-energy surface, thus providing reliable free-energy estimates. Much of the appeal of the algorithm to the practitioner is in its physically intuitive underlying ideas and the absence of any requirements for prior knowledge about free-energy landscapes. Since its inception in 2001, the adaptive biasing force scheme has been the subject of considerable attention, from in-depth mathematical analysis of convergence properties to novel developments and extensions. The method has also been successfully applied to many challenging problems in chemistry and biology. In this contribution, the method is presented in a comprehensive, self-contained fashion, discussing with a critical eye its properties, applicability, and inherent limitations, as well as introducing novel extensions. Through free-energy calculations of prototypical molecular systems, many methodological aspects are examined, from stratification strategies to overcoming the so-called hidden barriers in orthogonal space, relevant not only to the adaptive biasing force algorithm but also to other importance-sampling schemes. On the basis of the discussions in this paper, a number of good practices for improving the efficiency and reliability of the computed free-energy differences are proposed. PMID:25247823

  13. Modeling, mesh generation, and adaptive numerical methods for partial differential equations

    SciTech Connect

    Babuska, I.; Henshaw, W.D.; Oliger, J.E.; Flaherty, J.E.; Hopcroft, J.E.; Tezduyar, T.

    1995-12-31

    Mesh generation is one of the most time consuming aspects of computational solutions of problems involving partial differential equations. It is, furthermore, no longer acceptable to compute solutions without proper verification that specified accuracy criteria are being satisfied. Mesh generation must be related to the solution through computable estimates of discretization errors. Thus, an iterative process of alternate mesh and solution generation evolves in an adaptive manner with the end result that the solution is computed to prescribed specifications in an optimal, or at least efficient, manner. While mesh generation and adaptive strategies are becoming available, major computational challenges remain. One, in particular, involves moving boundaries and interfaces, such as free-surface flows and fluid-structure interactions. A 3-week program was held from July 5 to July 23, 1993 with 173 participants and 66 keynote, invited, and contributed presentations. This volume represents written versions of 21 of these lectures. These proceedings are organized roughly in order of their presentation at the workshop. Thus, the initial papers are concerned with geometry and mesh generation and discuss the representation of physical objects and surfaces on a computer and techniques to use this data to generate, principally, unstructured meshes of tetrahedral or hexahedral elements. The remainder of the papers cover adaptive strategies, error estimation, and applications. Several submissions deal with high-order p- and hp-refinement methods where mesh refinement/coarsening (h-refinement) is combined with local variation of method order (p-refinement). Combinations of mathematically verified and physically motivated approaches to error estimation are represented. Applications center on fluid mechanics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  14. Practical Method of Adaptive Radiotherapy for Prostate Cancer Using Real-Time Electromagnetic Tracking

    SciTech Connect

    Olsen, Jeffrey R.; Noel, Camille E.; Baker, Kenneth; Santanam, Lakshmi; Michalski, Jeff M.; Parikh, Parag J.

    2012-04-01

    Purpose: We have created an automated process using real-time tracking data to evaluate the adequacy of planning target volume (PTV) margins in prostate cancer, allowing a process of adaptive radiotherapy with minimal physician workload. We present an analysis of PTV adequacy and a proposed adaptive process. Methods and Materials: Tracking data were analyzed for 15 patients who underwent step-and-shoot multi-leaf collimation (SMLC) intensity-modulated radiation therapy (IMRT) with uniform 5-mm PTV margins for prostate cancer using the Calypso Registered-Sign Localization System. Additional plans were generated with 0- and 3-mm margins. A custom software application using the planned dose distribution and structure location from computed tomography (CT) simulation was developed to evaluate the dosimetric impact to the target due to motion. The dose delivered to the prostate was calculated for the initial three, five, and 10 fractions, and for the entire treatment. Treatment was accepted as adequate if the minimum delivered prostate dose (D{sub min}) was at least 98% of the planned D{sub min}. Results: For 0-, 3-, and 5-mm PTV margins, adequate treatment was obtained in 3 of 15, 12 of 15, and 15 of 15 patients, and the delivered D{sub min} ranged from 78% to 99%, 96% to 100%, and 99% to 100% of the planned D{sub min}. Changes in D{sub min} did not correlate with magnitude of prostate motion. Treatment adequacy during the first 10 fractions predicted sufficient dose delivery for the entire treatment for all patients and margins. Conclusions: Our adaptive process successfully used real-time tracking data to predict the need for PTV modifications, without the added burden of physician contouring and image analysis. Our methods are applicable to other uses of real-time tracking, including hypofractionated treatment.

  15. Adaptive and robust statistical methods for processing near-field scanning microwave microscopy images.

    PubMed

    Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P

    2015-03-01

    Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. PMID:25463325

  16. An adaptive multifluid interface-capturing method for compressible flow in complex geometries

    SciTech Connect

    Greenough, J.A.; Beckner, V.; Pember, R.B.; Crutchfield, W.Y.; Bell, J.B.; Colella, P.

    1995-04-01

    We present a numerical method for solving the multifluid equations of gas dynamics using an operator-split second-order Godunov method for flow in complex geometries in two and three dimensions. The multifluid system treats the fluid components as thermodynamically distinct entities and correctly models fluids with different compressibilities. This treatment allows a general equation-of-state (EOS) specification and the method is implemented so that the EOS references are minimized. The current method is complementary to volume-of-fluid (VOF) methods in the sense that a VOF representation is used, but no interface reconstruction is performed. The Godunov integrator captures the interface during the solution process. The basic multifluid integrator is coupled to a Cartesian grid algorithm that also uses a VOF representation of the fluid-body interface. This representation of the fluid-body interface allows the algorithm to easily accommodate arbitrarily complex geometries. The resulting single grid multifluid-Cartesian grid integration scheme is coupled to a local adaptive mesh refinement algorithm that dynamically refines selected regions of the computational grid to achieve a desired level of accuracy. The overall method is fully conservative with respect to the total mixture. The method will be used for a simple nozzle problem in two-dimensional axisymmetric coordinates.

  17. Compact integration factor methods for complex domains and adaptive mesh refinement

    PubMed Central

    Liu, Xinfeng; Nie, Qing

    2010-01-01

    Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed. PMID:20543883

  18. An adaptively refined phase-space element method for cosmological simulations and collisionless dynamics

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Angulo, Raul E.

    2016-01-01

    N-body simulations are essential for understanding the formation and evolution of structure in the Universe. However, the discrete nature of these simulations affects their accuracy when modelling collisionless systems. We introduce a new approach to simulate the gravitational evolution of cold collisionless fluids by solving the Vlasov-Poisson equations in terms of adaptively refineable `Lagrangian phase-space elements'. These geometrical elements are piecewise smooth maps between Lagrangian space and Eulerian phase-space and approximate the continuum structure of the distribution function. They allow for dynamical adaptive splitting to accurately follow the evolution even in regions of very strong mixing. We discuss in detail various one-, two- and three-dimensional test problems to demonstrate the performance of our method. Its advantages compared to N-body algorithms are: (i) explicit tracking of the fine-grained distribution function, (ii) natural representation of caustics, (iii) intrinsically smooth gravitational potential fields, thus (iv) eliminating the need for any type of ad hoc force softening. We show the potential of our method by simulating structure formation in a warm dark matter scenario. We discuss how spurious collisionality and large-scale discreteness noise of N-body methods are both strongly suppressed, which eliminates the artificial fragmentation of filaments. Therefore, we argue that our new approach improves on the N-body method when simulating self-gravitating cold and collisionless fluids, and is the first method that allows us to explicitly follow the fine-grained evolution in six-dimensional phase-space.

  19. Blended particle methods with adaptive subspaces for filtering turbulent dynamical systems

    NASA Astrophysics Data System (ADS)

    Qi, Di; Majda, Andrew J.

    2015-04-01

    It is a major challenge throughout science and engineering to improve uncertain model predictions by utilizing noisy data sets from nature. Hybrid methods combining the advantages of traditional particle filters and the Kalman filter offer a promising direction for filtering or data assimilation in high dimensional turbulent dynamical systems. In this paper, blended particle filtering methods that exploit the physical structure of turbulent dynamical systems are developed. Non-Gaussian features of the dynamical system are captured adaptively in an evolving-in-time low dimensional subspace through particle methods, while at the same time statistics in the remaining portion of the phase space are amended by conditional Gaussian mixtures interacting with the particles. The importance of both using the adaptively evolving subspace and introducing conditional Gaussian statistics in the orthogonal part is illustrated here by simple examples. For practical implementation of the algorithms, finding the most probable distributions that characterize the statistics in the phase space as well as effective resampling strategies is discussed to handle realizability and stability issues. To test the performance of the blended algorithms, the forty dimensional Lorenz 96 system is utilized with a five dimensional subspace to run particles. The filters are tested extensively in various turbulent regimes with distinct statistics and with changing observation time frequency and both dense and sparse spatial observations. In real applications perfect dynamical models are always inaccessible considering the complexities in both modeling and computation of high dimensional turbulent system. The effects of model errors from imperfect modeling of the systems are also checked for these methods. The blended methods show uniformly high skill in both capturing non-Gaussian statistics and achieving accurate filtering results in various dynamical regimes with and without model errors.

  20. A Wavelet-Based ECG Delineation Method: Adaptation to an Experimental Electrograms with Manifested Global Ischemia.

    PubMed

    Hejč, Jakub; Vítek, Martin; Ronzhina, Marina; Nováková, Marie; Kolářová, Jana

    2015-09-01

    We present a novel wavelet-based ECG delineation method with robust classification of P wave and T wave. The work is aimed on an adaptation of the method to long-term experimental electrograms (EGs) measured on isolated rabbit heart and to evaluate the effect of global ischemia in experimental EGs on delineation performance. The algorithm was tested on a set of 263 rabbit EGs with established reference points and on human signals using standard Common Standards for Quantitative Electrocardiography Standard Database (CSEDB). On CSEDB, standard deviation (SD) of measured errors satisfies given criterions in each point and the results are comparable to other published works. In rabbit signals, our QRS detector reached sensitivity of 99.87% and positive predictivity of 99.89% despite an overlay of spectral components of QRS complex, P wave and power line noise. The algorithm shows great performance in suppressing J-point elevation and reached low overall error in both, QRS onset (SD = 2.8 ms) and QRS offset (SD = 4.3 ms) delineation. T wave offset is detected with acceptable error (SD = 12.9 ms) and sensitivity nearly 99%. Variance of the errors during global ischemia remains relatively stable, however more failures in detection of T wave and P wave occur. Due to differences in spectral and timing characteristics parameters of rabbit based algorithm have to be highly adaptable and set more precisely than in human ECG signals to reach acceptable performance. PMID:26577367