A multilevel adaptive projection method for unsteady incompressible flow
NASA Technical Reports Server (NTRS)
Howell, Louis H.
1993-01-01
There are two main requirements for practical simulation of unsteady flow at high Reynolds number: the algorithm must accurately propagate discontinuous flow fields without excessive artificial viscosity, and it must have some adaptive capability to concentrate computational effort where it is most needed. We satisfy the first of these requirements with a second-order Godunov method similar to those used for high-speed flows with shocks, and the second with a grid-based refinement scheme which avoids some of the drawbacks associated with unstructured meshes. These two features of our algorithm place certain constraints on the projection method used to enforce incompressibility. Velocities are cell-based, leading to a Laplacian stencil for the projection which decouples adjacent grid points. We discuss features of the multigrid and multilevel iteration schemes required for solution of the resulting decoupled problem. Variable-density flows require use of a modified projection operator--we have found a multigrid method for this modified projection that successfully handles density jumps of thousands to one. Numerical results are shown for the 2D adaptive and 3D variable-density algorithms.
NASA Astrophysics Data System (ADS)
Placidi, G.; Alecci, M.; Sotgiu, A.
1995-07-01
An adaptive method for selecting the projections to be used for image reconstruction is presented. The method starts with the acquisition of four projections at angles of 0°, 45°, 90°, 135° and selects the new angles by computing a function of the previous projections. This makes it possible to adapt the selection of projections to the arbitrary shape of the sample, thus measuring a more informative set of projections. When the sample is smooth or has internal symmetries, this technique allows a reduction in the number of projections required to reconstruct the image without loss of information. The method has been tested on simulated data at different values of signal-to-noise ratio (S/N) and on experimental data recorded by an EPR imaging apparatus.
Cochard, E; Aubry, J F; Tanter, M; Prada, C
2011-08-01
An adaptive projection method for ultrasonic focusing through the rib cage, with minimal energy deposition on the ribs, was evaluated experimentally in 3D geometry. Adaptive projection is based on decomposition of the time-reversal operator (DORT method) and projection on the "noise" subspace. It is shown that 3D implementation of this method is straightforward, and not more time-consuming than 2D. Comparisons are made between adaptive projection, spherical focusing, and a previously proposed time-reversal focusing method, by measuring pressure fields in the focal plane and rib region using the three methods. The ratio of the specific absorption rate at the focus over the one at the ribs was found to be increased by a factor of up to eight, versus spherical emission. Beam steering out of geometric focus was also investigated. For all configurations projecting steered emissions were found to deposit less energy on the ribs than steering time-reversed emissions: thus the non-invasive method presented here is more efficient than state-of-the-art invasive techniques. In fact, this method could be used for real-time treatment, because a single acquisition of back-scattered echoes from the ribs is enough to treat a large volume around the focus, thanks to real time projection of the steered beams.
Adaptive Projection Subspace Dimension for the Thick-Restart Lanczos Method
Yamazaki, Ichitaro; Bai, Zhaojun; Simon, Horst; Wang, Lin-Wang; Wu, K.
2008-10-01
The Thick-Restart Lanczos (TRLan) method is an effective method for solving large-scale Hermitian eigenvalue problems. However, its performance strongly depends on the dimension of the projection subspace. In this paper, we propose an objective function to quantify the effectiveness of a chosen subspace dimension, and then introduce an adaptive scheme to dynamically adjust the dimension at each restart. An open-source software package, nu-TRLan, which implements the TRLan method with this adaptive projection subspace dimension is available in the public domain. The numerical results of synthetic eigenvalue problems are presented to demonstrate that nu-TRLan achieves speedups of between 0.9 and 5.1 over the static method using a default subspace dimension. To demonstrate the effectiveness of nu-TRLan in a real application, we apply it to the electronic structure calculations of quantum dots. We show that nu-TRLan can achieve speedups of greater than 1.69 over the state-of-the-art eigensolver for this application, which is based on the Conjugate Gradient method with a powerful preconditioner.
Self-adaptive projection methods for the multiple-sets split feasibility problem
NASA Astrophysics Data System (ADS)
Zhao, Jinling; Yang, Qingzhi
2011-03-01
The multiple-sets split feasibility problem (MSFP) is to find a point closest to the intersection of a family of closed convex sets in one space, such that its image under a linear transformation will be closest to the intersection of another family of closed convex sets in the image space. This problem arises in many practical fields, and it can be a model for many inverse problems. Noting that some existing algorithms require estimating the Lipschitz constant or calculating the largest eigenvalue of the matrix, in this paper, we first introduce a self-adaptive projection method by adopting Armijo-like searches to solve the MSFP, then we focus on a special case of the MSFP and propose a relaxed self-adaptive method by using projections onto half-spaces instead of those onto the original convex sets, which is much more practical. Convergence results for both methods are analyzed. Preliminary numerical results show that our methods are practical and promising for solving larger scale MSFPs.
ERIC Educational Resources Information Center
Stoyanov, Slavi; Kirschner, Paul
2004-01-01
The article presents empirical evidence for the effectiveness and efficiency of a modified version of Trochim's (1989a, b) concept mapping approach to define the characteristics of an adaptive learning environment. The effectiveness and the efficiency of the method are attributed to the support that it provides in terms of elicitation, sharing,…
Evaluation of Load Analysis Methods for NASAs GIII Adaptive Compliant Trailing Edge Project
NASA Technical Reports Server (NTRS)
Cruz, Josue; Miller, Eric J.
2016-01-01
The Air Force Research Laboratory (AFRL), NASA Armstrong Flight Research Center (AFRC), and FlexSys Inc. (Ann Arbor, Michigan) have collaborated to flight test the Adaptive Compliant Trailing Edge (ACTE) flaps. These flaps were installed on a Gulfstream Aerospace Corporation (GAC) GIII aircraft and tested at AFRC at various deflection angles over a range of flight conditions. External aerodynamic and inertial load analyses were conducted with the intention to ensure that the change in wing loads due to the deployed ACTE flap did not overload the existing baseline GIII wing box structure. The objective of this paper was to substantiate the analysis tools used for predicting wing loads at AFRC. Computational fluid dynamics (CFD) models and distributed mass inertial models were developed for predicting the loads on the wing. The analysis tools included TRANAIR (full potential) and CMARC (panel) models. Aerodynamic pressure data from the analysis codes were validated against static pressure port data collected in-flight. Combined results from the CFD predictions and the inertial load analysis were used to predict the normal force, bending moment, and torque loads on the wing. Wing loads obtained from calibrated strain gages installed on the wing were used for substantiation of the load prediction tools. The load predictions exhibited good agreement compared to the flight load results obtained from calibrated strain gage measurements.
Adaptive Algebraic Multigrid Methods
Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J
2004-04-09
Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.
Martin, D.F.; Colella, P.; Graves, D.T.
2007-09-25
We present a method for computing incompressible viscousflows in three dimensions using block-structured local refinement in bothspace and time. This method uses a projection formulation based on acell-centered approximate projection, combined with the systematic use ofmultilevel elliptic solvers to compute increments in the solutiongenerated at boundaries between refinement levels due to refinement intime. We use an L_0-stable second-order semi-implicit scheme to evaluatethe viscous terms. Results are presentedto demonstrate the accuracy andeffectiveness of this approach.
Adaptive optical interconnects: the ADDAPT project
NASA Astrophysics Data System (ADS)
Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter
2015-09-01
Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.
Logarithmic Adaptive Quantization Projection for Audio Watermarking
NASA Astrophysics Data System (ADS)
Zhao, Xuemin; Guo, Yuhong; Liu, Jian; Yan, Yonghong; Fu, Qiang
In this paper, a logarithmic adaptive quantization projection (LAQP) algorithm for digital watermarking is proposed. Conventional quantization index modulation uses a fixed quantization step in the watermarking embedding procedure, which leads to poor fidelity. Moreover, the conventional methods are sensitive to value-metric scaling attack. The LAQP method combines the quantization projection scheme with a perceptual model. In comparison to some conventional quantization methods with a perceptual model, the LAQP only needs to calculate the perceptual model in the embedding procedure, avoiding the decoding errors introduced by the difference of the perceptual model used in the embedding and decoding procedure. Experimental results show that the proposed watermarking scheme keeps a better fidelity and is robust against the common signal processing attack. More importantly, the proposed scheme is invariant to value-metric scaling attack.
Focus on climate projections for adaptation strategies
NASA Astrophysics Data System (ADS)
Feijt, Arnout; Appenzeller, Christof; Siegmund, Peter; von Storch, Hans
2016-01-01
Most papers in this focus issue on ‘climate and climate impact projections for adaptation strategies’ are solicited by the guest editorial team and originate from a cluster of projects that were initiated 5 years ago. These projects aimed to provide climate change and climate change adaptation information for a wide range of societal areas for the lower parts of the deltas of the Rhine and Meuse rivers, and particularly for the Netherlands. The papers give an overview of our experiences, methods, approaches, results and surprises in the process to developing scientifically underpinned climate products and services for various clients. Although the literature on interactions between society and climate science has grown over the past decade both with respect to policy-science framing in post-normal science (Storch et al 2011 J. Environ. Law Policy 1 1-15, van der Sluijs 2012 Nature and Culture 7 174-195), user-science framing (Berkhout et al 2014 Regional Environ. Change 14 879-93) and joint knowledge production (Hegger et al 2014 Regional Environ. Change 14 1049-62), there is still a lot to gain. With this focus issue we want to contribute to best practices in this quickly moving field between science and society.
Kaneko, K.
1987-02-01
A relationship between the number projection and the shell model methods is investigated in the case of a single-j shell. We can find a one-to-one correspondence between the number projected and the shell model states.
Method For Model-Reference Adaptive Control
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1990-01-01
Relatively simple method of model-reference adaptive control (MRAC) developed from two prior classes of MRAC techniques: signal-synthesis method and parameter-adaption method. Incorporated into unified theory, which yields more general adaptation scheme.
Milne, R.B.
1995-12-01
This thesis describes a new method for the numerical solution of partial differential equations of the parabolic type on an adaptively refined mesh in two or more spatial dimensions. The method is motivated and developed in the context of the level set formulation for the curvature dependent propagation of surfaces in three dimensions. In that setting, it realizes the multiple advantages of decreased computational effort, localized accuracy enhancement, and compatibility with problems containing a range of length scales.
Mathematics Case Methods Project.
ERIC Educational Resources Information Center
Barnett, Carne S.
1998-01-01
Presents an overview and analysis of the Mathematics Case Methods Project, which uses cases in order to examine and reflect upon teaching. Focuses on a special kind of teacher knowledge, coined pedagogical-content knowledge. (ASK)
ERIC Educational Resources Information Center
Dolan, Thomas G.
2003-01-01
Describes project delivery methods that are replacing the traditional Design/Bid/Build linear approach to the management, design, and construction of new facilities. These variations can enhance construction management and teamwork. (SLD)
Robust Optimal Adaptive Control Method with Large Adaptive Gain
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
ERIC Educational Resources Information Center
OKADA, TETSUO
THIS NOTE DESCRIBES AND CRITICIZES THE VARIOUS METHODS CURRENTLY IN USE FOR PROJECTING BIRTHS--(1) COHORT-FERTILITY, (2) AGE-SPECIFIC, (3) COHORT-FERTILITY (SCRIPPS), AND (4) MARRIAGE-PARITY-PROGRESSION. VARIABLES USED IN THE VARIOUS METHODS ARE AGE OF MOTHER, COMPLETED FERTILITY, MARRIAGE STATUS, TIME SINCE MARRIAGE, PARITY, AND BIRTH INTERVAL.…
Assessing Adaptive Instructional Design Tools and Methods in ADAPT[IT].
ERIC Educational Resources Information Center
Eseryel, Deniz; Spector, J. Michael
ADAPT[IT] (Advanced Design Approach for Personalized Training - Interactive Tools) is a European project within the Information Society Technologies program that is providing design methods and tools to guide a training designer according to the latest cognitive science and standardization principles. ADAPT[IT] addresses users in two significantly…
An adaptive selective frequency damping method
NASA Astrophysics Data System (ADS)
Jordi, Bastien; Cotter, Colin; Sherwin, Spencer
2015-03-01
The selective frequency damping (SFD) method is used to obtain unstable steady-state solutions of dynamical systems. The stability of this method is governed by two parameters that are the control coefficient and the filter width. Convergence is not guaranteed for arbitrary choice of these parameters. Even when the method does converge, the time necessary to reach a steady-state solution may be very long. We present an adaptive SFD method. We show that by modifying the control coefficient and the filter width all along the solver execution, we can reach an optimum convergence rate. This method is based on successive approximations of the dominant eigenvalue of the flow studied. We design a one-dimensional model to select SFD parameters that enable us to control the evolution of the least stable eigenvalue of the system. These parameters are then used for the application of the SFD method to the multi-dimensional flow problem. We apply this adaptive method to a set of classical test cases of computational fluid dynamics and show that the steady-state solutions obtained are similar to what can be found in the literature. Then we apply it to a specific vortex dominated flow (of interest for the automotive industry) whose stability had never been studied before. Seventh Framework Programme of the European Commission - ANADE project under Grant Contract PITN-GA-289428.
Incorporating adaptive responses into future projections of coral bleaching.
Logan, Cheryl A; Dunne, John P; Eakin, C Mark; Donner, Simon D
2014-01-01
Climate warming threatens to increase mass coral bleaching events, and several studies have projected the demise of tropical coral reefs this century. However, recent evidence indicates corals may be able to respond to thermal stress though adaptive processes (e.g., genetic adaptation, acclimatization, and symbiont shuffling). How these mechanisms might influence warming-induced bleaching remains largely unknown. This study compared how different adaptive processes could affect coral bleaching projections. We used the latest bias-corrected global sea surface temperature (SST) output from the NOAA/GFDL Earth System Model 2 (ESM2M) for the preindustrial period through 2100 to project coral bleaching trajectories. Initial results showed that, in the absence of adaptive processes, application of a preindustrial climatology to the NOAA Coral Reef Watch bleaching prediction method overpredicts the present-day bleaching frequency. This suggests that corals may have already responded adaptively to some warming over the industrial period. We then modified the prediction method so that the bleaching threshold either permanently increased in response to thermal history (e.g., simulating directional genetic selection) or temporarily increased for 2-10 years in response to a bleaching event (e.g., simulating symbiont shuffling). A bleaching threshold that changes relative to the preceding 60 years of thermal history reduced the frequency of mass bleaching events by 20-80% compared with the 'no adaptive response' prediction model by 2100, depending on the emissions scenario. When both types of adaptive responses were applied, up to 14% more reef cells avoided high-frequency bleaching by 2100. However, temporary increases in bleaching thresholds alone only delayed the occurrence of high-frequency bleaching by ca. 10 years in all but the lowest emissions scenario. Future research should test the rate and limit of different adaptive responses for coral species across latitudes and
Simple method for model reference adaptive control
NASA Technical Reports Server (NTRS)
Seraji, H.
1989-01-01
A simple method is presented for combined signal synthesis and parameter adaptation within the framework of model reference adaptive control theory. The results are obtained using a simple derivation based on an improved Liapunov function.
Combining Adaptive Hypermedia with Project and Case-Based Learning
ERIC Educational Resources Information Center
Papanikolaou, Kyparisia; Grigoriadou, Maria
2009-01-01
In this article we investigate the design of educational hypermedia based on constructivist learning theories. According to the principles of project and case-based learning we present the design rational of an Adaptive Educational Hypermedia system prototype named MyProject; learners working with MyProject undertake a project and the system…
Building Knowledge in the Workplace and Beyond. Curriculum Adaptation Project.
ERIC Educational Resources Information Center
Ballinger, Ronda
A project was conducted to adapt and modify the four-part workplace literacy curriculum previously created by the College of Lake County (Illinois) and six industries in the county in order to improve the usefulness and application of the information in the original curriculum. Information for the adaptation project was generated by instructors…
Projection of Discontinuous Galerkin Variable Distributions During Adaptive Mesh Refinement
NASA Astrophysics Data System (ADS)
Ballesteros, Carlos; Herrmann, Marcus
2012-11-01
Adaptive mesh refinement (AMR) methods decrease the computational expense of CFD simulations by increasing the density of solution cells only in areas of the computational domain that are of interest in that particular simulation. In particular, unstructured Cartesian AMR has several advantages over other AMR approaches, as it does not require the creation of numerous guard-cell blocks, neighboring cell lookups become straightforward, and the hexahedral nature of the mesh cells greatly simplifies the refinement and coarsening operations. The h-refinement from this AMR approach can be leveraged by making use of highly-accurate, but computationally costly methods, such as the Discontinuous Galerkin (DG) numerical method. DG methods are capable of high orders of accuracy while retaining stencil locality--a property critical to AMR using unstructured meshes. However, the use of DG methods with AMR requires the use of special flux and projection operators during refinement and coarsening operations in order to retain the high order of accuracy. The flux and projection operators needed for refinement and coarsening of unstructured Cartesian adaptive meshes using Legendre polynomial test functions will be discussed, and their performance will be shown using standard test cases.
Variational method for adaptive grid generation
Brackbill, J.U.
1983-01-01
A variational method for generating adaptive meshes is described. Functionals measuring smoothness, skewness, orientation, and the Jacobian are minimized to generate a mapping from a rectilinear domain in natural coordinate to an arbitrary domain in physical coordinates. From the mapping, a mesh is easily constructed. In using the method to adaptively zone computational problems, as few as one third the number of mesh points are required in each coordinate direction compared with a uniformly zoned mesh.
Selecting downscaled climate projections for water resource impacts and adaptation
NASA Astrophysics Data System (ADS)
Vidal, Jean-Philippe; Hingray, Benoît
2015-04-01
Increasingly large ensembles of global and regional climate projections are being produced and delivered to the climate impact community. However, such an enormous amount of information can hardly been dealt with by some impact models due to computational constraints. Strategies for transparently selecting climate projections are therefore urgently needed for informing small-scale impact and adaptation studies and preventing potential pitfalls in interpreting ensemble results from impact models. This work proposes results from a selection approach implemented for an integrated water resource impact and adaptation study in the Durance river basin (Southern French Alps). A large ensemble of 3000 daily transient gridded climate projections was made available for this study. It was built from different runs of 4 ENSEMBLES Stream2 GCMs, statistically downscaled by 3 probabilistic methods based on the K-nearest neighbours resampling approach (Lafaysse et al., 2014). The selection approach considered here exemplifies one of the multiple possible approaches described in a framework for identifying tailored subsets of climate projections for impact and adaptation studies proposed by Vidal & Hingray (2014). It was chosen based on the specificities of both the study objectives and the characteristics of the projection dataset. This selection approach aims at propagating as far as possible the relative contributions of the four different sources of uncertainties considered, namely GCM structure, large-scale natural variability, structure of the downscaling method, and catchment-scale natural variability. Moreover, it took the form of a hierarchical structure to deal with the specific constraints of several types of impact models (hydrological models, irrigation demand models and reservoir management models). The implemented 3-layer selection approach is therefore mainly based on conditioned Latin Hypercube sampling (Christierson et al., 2012). The choice of conditioning
Adaptively Addressing Uncertainty in Estuarine and Near Coastal Restoration Projects
Thom, Ronald M.; Williams, Greg D.; Borde, Amy B.; Southard, John A.; Sargeant, Susan L.; Woodruff, Dana L.; Laufle, Jeffrey C.; Glasoe, Stuart
2005-03-01
Restoration projects have an uncertain outcome because of a lack of information about current site conditions, historical disturbance levels, effects of landscape alterations on site development, unpredictable trajectories or patterns of ecosystem structural development, and many other factors. A poor understanding of the factors that control the development and dynamics of a system, such as hydrology, salinity, wave energies, can also lead to an unintended outcome. Finally, lack of experience in restoring certain types of systems (e.g., rare or very fragile habitats) or systems in highly modified situations (e.g., highly urbanized estuaries) makes project outcomes uncertain. Because of these uncertainties, project costs can rise dramatically in an attempt to come closer to project goals. All of the potential sources of error can be addressed to a certain degree through adaptive management. The first step is admitting that these uncertainties can exist, and addressing as many of the uncertainties with planning and directed research prior to implementing the project. The second step is to evaluate uncertainties through hypothesis-driven experiments during project implementation. The third step is to use the monitoring program to evaluate and adjust the project as needed to improve the probability of the project to reach is goal. The fourth and final step is to use the information gained in the project to improve future projects. A framework that includes a clear goal statement, a conceptual model, and an evaluation framework can help in this adaptive restoration process. Projects and programs vary in their application of adaptive management in restoration, and it is very difficult to be highly prescriptive in applying adaptive management to projects that necessarily vary widely in scope, goal, ecosystem characteristics, and uncertainties. Very large ecosystem restoration programs in the Mississippi River delta (Coastal Wetlands Planning, Protection, and Restoration
Projecting the Scientific Method.
ERIC Educational Resources Information Center
Uthe, R. E.
2000-01-01
Describes how the gas laws are an excellent vehicle for introducing the steps of the scientific method. Students can use balloons and a simple apparatus to observe changes in various gas parameters, develop ideas about the changes they see, collect numerical data, test their ideas, derive simple equations for the relationships, and use the…
Adapting Project Management Practices to Research-Based Projects
NASA Technical Reports Server (NTRS)
Bahr, P.; Baker, T.; Corbin, B.; Keith, L.; Loerch, L.; Mullenax, C.; Myers, R.; Rhodes, B.; Skytland, N.
2007-01-01
From dealing with the inherent uncertainties in outcomes of scientific research to the lack of applicability of current NASA Procedural Requirements guidance documentation, research-based projects present challenges that require unique application of classical project management techniques. If additionally challenged by the creation of a new program transitioning from basic to applied research in a technical environment often unfamiliar with the cost and schedule constraints addressed by project management practices, such projects can find themselves struggling throughout their life cycles. Finally, supplying deliverables to a prime vehicle customer, also in the formative stage, adds further complexity to the development and management of research-based projects. The Biomedical Research and Countermeasures Projects Branch at NASA Johnson Space Center encompasses several diverse applied research-based or research-enabling projects within the newly-formed Human Research Program. This presentation will provide a brief overview of the organizational structure and environment in which these projects operate and how the projects coordinate to address and manage technical requirements. We will identify several of the challenges (cost, technical, schedule, and personnel) encountered by projects across the Branch, present case reports of actions taken and techniques implemented to deal with these challenges, and then close the session with an open forum discussion of remaining challenges and potential mitigations.
Optimal and adaptive methods of processing hydroacoustic signals (review)
NASA Astrophysics Data System (ADS)
Malyshkin, G. S.; Sidel'nikov, G. B.
2014-09-01
Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.
Domain adaptive boosting method and its applications
NASA Astrophysics Data System (ADS)
Geng, Jie; Miao, Zhenjiang
2015-03-01
Differences of data distributions widely exist among datasets, i.e., domains. For many pattern recognition, nature language processing, and content-based analysis systems, a decrease in performance caused by the domain differences between the training and testing datasets is still a notable problem. We propose a domain adaptation method called domain adaptive boosting (DAB). It is based on the AdaBoost approach with extensions to cover the domain differences between the source and target domains. Two main stages are contained in this approach: source-domain clustering and source-domain sample selection. By iteratively adding the selected training samples from the source domain, the discrimination model is able to achieve better domain adaptation performance based on a small validation set. The DAB algorithm is suitable for the domains with large scale samples and easy to extend for multisource adaptation. We implement this method on three computer vision systems: the skin detection model in single images, the video concept detection model, and the object classification model. In the experiments, we compare the performances of several commonly used methods and the proposed DAB. Under most situations, the DAB is superior.
Structured adaptive grid generation using algebraic methods
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.
1993-01-01
The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration
Parallel adaptive wavelet collocation method for PDEs
Nejadmalayeri, Alireza; Vezolainen, Alexei; Brown-Dymkoski, Eric; Vasilyev, Oleg V.
2015-10-01
A parallel adaptive wavelet collocation method for solving a large class of Partial Differential Equations is presented. The parallelization is achieved by developing an asynchronous parallel wavelet transform, which allows one to perform parallel wavelet transform and derivative calculations with only one data synchronization at the highest level of resolution. The data are stored using tree-like structure with tree roots starting at a priori defined level of resolution. Both static and dynamic domain partitioning approaches are developed. For the dynamic domain partitioning, trees are considered to be the minimum quanta of data to be migrated between the processes. This allows fully automated and efficient handling of non-simply connected partitioning of a computational domain. Dynamic load balancing is achieved via domain repartitioning during the grid adaptation step and reassigning trees to the appropriate processes to ensure approximately the same number of grid points on each process. The parallel efficiency of the approach is discussed based on parallel adaptive wavelet-based Coherent Vortex Simulations of homogeneous turbulence with linear forcing at effective non-adaptive resolutions up to 2048{sup 3} using as many as 2048 CPU cores.
Projectively adapted pattern representation using noncommutative harmonic analysis
NASA Astrophysics Data System (ADS)
Turski, Jacek
1996-03-01
Projectively invariant classification of patterns is constructed in terms of orbits of the group SL(2,C) acting on an extended complex line (image plane with complex coordinates) by Mobius transformations. It provides projectively adapted noncommutative harmonic analysis for patterns by decomposing a pattern into irreducible representations of the unitary principal series of SL(2,C). It is the projective analog of the classical (Euclidean) Fourier decomposition, well suited for the analysis of projectively distorted images such as aerial images of the same scene when taken from different vantage points.
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
NASA Technical Reports Server (NTRS)
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel
Breakthrough Propulsion Physics Project: Project Management Methods
NASA Technical Reports Server (NTRS)
Millis, Marc G.
2004-01-01
To leap past the limitations of existing propulsion, the NASA Breakthrough Propulsion Physics (BPP) Project seeks further advancements in physics from which new propulsion methods can eventually be derived. Three visionary breakthroughs are sought: (1) propulsion that requires no propellant, (2) propulsion that circumvents existing speed limits, and (3) breakthrough methods of energy production to power such devices. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify credible research that will make measurable progress toward these goals in the near-term. The management techniques to address this challenge are presented, with a special emphasis on the process used to review, prioritize, and select research tasks. This selection process includes these key features: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than the implications of the assertions, which includes the practice where the reviewers judge credibility rather than feasibility, and (c) total scores are obtained by multiplying the criteria scores rather than by adding. Lessons learned and revisions planned are discussed.
Projection Operator: A Step Towards Certification of Adaptive Controllers
NASA Technical Reports Server (NTRS)
Larchev, Gregory V.; Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
One of the major barriers to wider use of adaptive controllers in commercial aviation is the lack of appropriate certification procedures. In order to be certified by the Federal Aviation Administration (FAA), an aircraft controller is expected to meet a set of guidelines on functionality and reliability while not negatively impacting other systems or safety of aircraft operations. Due to their inherent time-variant and non-linear behavior, adaptive controllers cannot be certified via the metrics used for linear conventional controllers, such as gain and phase margin. Projection Operator is a robustness augmentation technique that bounds the output of a non-linear adaptive controller while conforming to the Lyapunov stability rules. It can also be used to limit the control authority of the adaptive component so that the said control authority can be arbitrarily close to that of a linear controller. In this paper we will present the results of applying the Projection Operator to a Model-Reference Adaptive Controller (MRAC), varying the amount of control authority, and comparing controller s performance and stability characteristics with those of a linear controller. We will also show how adjusting Projection Operator parameters can make it easier for the controller to satisfy the certification guidelines by enabling a tradeoff between controller s performance and robustness.
Adaptive Knowledge Management of Project-Based Learning
ERIC Educational Resources Information Center
Tilchin, Oleg; Kittany, Mohamed
2016-01-01
The goal of an approach to Adaptive Knowledge Management (AKM) of project-based learning (PBL) is to intensify subject study through guiding, inducing, and facilitating development knowledge, accountability skills, and collaborative skills of students. Knowledge development is attained by knowledge acquisition, knowledge sharing, and knowledge…
Ensemble transform sensitivity method for adaptive observations
NASA Astrophysics Data System (ADS)
Zhang, Yu; Xie, Yuanfu; Wang, Hongli; Chen, Dehui; Toth, Zoltan
2016-01-01
The Ensemble Transform (ET) method has been shown to be useful in providing guidance for adaptive observation deployment. It predicts forecast error variance reduction for each possible deployment using its corresponding transformation matrix in an ensemble subspace. In this paper, a new ET-based sensitivity (ETS) method, which calculates the gradient of forecast error variance reduction in terms of analysis error variance reduction, is proposed to specify regions for possible adaptive observations. ETS is a first order approximation of the ET; it requires just one calculation of a transformation matrix, increasing computational efficiency (60%-80% reduction in computational cost). An explicit mathematical formulation of the ETS gradient is derived and described. Both the ET and ETS methods are applied to the Hurricane Irene (2011) case and a heavy rainfall case for comparison. The numerical results imply that the sensitive areas estimated by the ETS and ET are similar. However, ETS is much more efficient, particularly when the resolution is higher and the number of ensemble members is larger.
Adaptive Accommodation Control Method for Complex Assembly
NASA Astrophysics Data System (ADS)
Kang, Sungchul; Kim, Munsang; Park, Shinsuk
Robotic systems have been used to automate assembly tasks in manufacturing and in teleoperation. Conventional robotic systems, however, have been ineffective in controlling contact force in multiple contact states of complex assemblythat involves interactions between complex-shaped parts. Unlike robots, humans excel at complex assembly tasks by utilizing their intrinsic impedance, forces and torque sensation, and tactile contact clues. By examining the human behavior in assembling complex parts, this study proposes a novel geometry-independent control method for robotic assembly using adaptive accommodation (or damping) algorithm. Two important conditions for complex assembly, target approachability and bounded contact force, can be met by the proposed control scheme. It generates target approachable motion that leads the object to move closer to a desired target position, while contact force is kept under a predetermined value. Experimental results from complex assembly tests have confirmed the feasibility and applicability of the proposed method.
Adaptive method with intercessory feedback control for an intelligent agent
Goldsmith, Steven Y.
2004-06-22
An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.
Parallel, adaptive finite element methods for conservation laws
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.
1994-01-01
We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.
Adapting implicit methods to parallel processors
Reeves, L.; McMillin, B.; Okunbor, D.; Riggins, D.
1994-12-31
When numerically solving many types of partial differential equations, it is advantageous to use implicit methods because of their better stability and more flexible parameter choice, (e.g. larger time steps). However, since implicit methods usually require simultaneous knowledge of the entire computational domain, these methods axe difficult to implement directly on distributed memory parallel processors. This leads to infrequent use of implicit methods on parallel/distributed systems. The usual implementation of implicit methods is inefficient due to the nature of parallel systems where it is common to take the computational domain and distribute the grid points over the processors so as to maintain a relatively even workload per processor. This creates a problem at the locations in the domain where adjacent points are not on the same processor. In order for the values at these points to be calculated, messages have to be exchanged between the corresponding processors. Without special adaptation, this will result in idle processors during part of the computation, and as the number of idle processors increases, the lower the effective speed improvement by using a parallel processor.
Linearly-Constrained Adaptive Signal Processing Methods
NASA Astrophysics Data System (ADS)
Griffiths, Lloyd J.
1988-01-01
In adaptive least-squares estimation problems, a desired signal d(n) is estimated using a linear combination of L observation values samples xi (n), x2(n), . . . , xL-1(n) and denoted by the vector X(n). The estimate is formed as the inner product of this vector with a corresponding L-dimensional weight vector W. One particular weight vector of interest is Wopt which minimizes the mean-square between d(n) and the estimate. In this context, the term `mean-square difference' is a quadratic measure such as statistical expectation or time average. The specific value of W which achieves the minimum is given by the prod-uct of the inverse data covariance matrix and the cross-correlation between the data vector and the desired signal. The latter is often referred to as the P-vector. For those cases in which time samples of both the desired and data vector signals are available, a variety of adaptive methods have been proposed which will guarantee that an iterative weight vector Wa(n) converges (in some sense) to the op-timal solution. Two which have been extensively studied are the recursive least-squares (RLS) method and the LMS gradient approximation approach. There are several problems of interest in the communication and radar environment in which the optimal least-squares weight set is of interest and in which time samples of the desired signal are not available. Examples can be found in array processing in which only the direction of arrival of the desired signal is known and in single channel filtering where the spectrum of the desired response is known a priori. One approach to these problems which has been suggested is the P-vector algorithm which is an LMS-like approximate gradient method. Although it is easy to derive the mean and variance of the weights which result with this algorithm, there has never been an identification of the corresponding underlying error surface which the procedure searches. The purpose of this paper is to suggest an alternative
Adaptive model training system and method
Bickford, Randall L; Palnitkar, Rahul M
2014-11-18
An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.
Adaptive model training system and method
Bickford, Randall L; Palnitkar, Rahul M; Lee, Vo
2014-04-15
An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.
Adaptive quantum computation in changing environments using projective simulation
Tiersch, M.; Ganahl, E. J.; Briegel, H. J.
2015-01-01
Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks. PMID:26260263
Adaptive quantum computation in changing environments using projective simulation
NASA Astrophysics Data System (ADS)
Tiersch, M.; Ganahl, E. J.; Briegel, H. J.
2015-08-01
Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks.
Framework for Adaptable Operating and Runtime Systems: Final Project Report
Patrick G. Bridges
2012-02-01
In this grant, we examined a wide range of techniques for constructing high-performance con gurable system software for HPC systems and its application to DOE-relevant problems. Overall, research and development on this project focused in three specifc areas: (1) software frameworks for constructing and deploying con gurable system software, (2) applcation of these frameworks to HPC-oriented adaptable networking software, (3) performance analysis of HPC system software to understand opportunities for performance optimization.
Online Adaptive Replanning Method for Prostate Radiotherapy
Ahunbay, Ergun E.; Peng Cheng; Holmes, Shannon; Godley, Andrew; Lawton, Colleen; Li, X. Allen
2010-08-01
Purpose: To report the application of an adaptive replanning technique for prostate cancer radiotherapy (RT), consisting of two steps: (1) segment aperture morphing (SAM), and (2) segment weight optimization (SWO), to account for interfraction variations. Methods and Materials: The new 'SAM+SWO' scheme was retroactively applied to the daily CT images acquired for 10 prostate cancer patients on a linear accelerator and CT-on-Rails combination during the course of RT. Doses generated by the SAM+SWO scheme based on the daily CT images were compared with doses generated after patient repositioning using the current planning target volume (PTV) margin (5 mm, 3 mm toward rectum) and a reduced margin (2 mm), along with full reoptimization scans based on the daily CT images to evaluate dosimetry benefits. Results: For all cases studied, the online replanning method provided significantly better target coverage when compared with repositioning with reduced PTV (13% increase in minimum prostate dose) and improved organ sparing when compared with repositioning with regular PTV (13% decrease in the generalized equivalent uniform dose of rectum). The time required to complete the online replanning process was 6 {+-} 2 minutes. Conclusion: The proposed online replanning method can be used to account for interfraction variations for prostate RT with a practically acceptable time frame (5-10 min) and with significant dosimetric benefits. On the basis of this study, the developed online replanning scheme is being implemented in the clinic for prostate RT.
The VIADUC project: innovation in climate adaptation through service design
NASA Astrophysics Data System (ADS)
Corre, L.; Dandin, P.; L'Hôte, D.; Besson, F.
2015-07-01
From the French National Adaptation to Climate Change Plan, the "Drias, les futurs du climat" service has been developed to provide easy access to French regional climate projections. This is a major step for the implementation of French Climate Services. The usefulness of this service for the end-users and decision makers involved with adaptation planning at a local scale is investigated. As such, the VIADUC project is: to evaluate and enhance Drias, as well as to imagine future development in support of adaptation. Climate scientists work together with end-users and a service designer. The designer's role is to propose an innovative approach based on the interaction between scientists and citizens. The chosen end-users are three Natural Regional Parks located in the South West of France. The latter parks are administrative entities which gather municipalities having a common natural and cultural heritage. They are also rural areas in which specific economic activities take place, and therefore are concerned and involved in both protecting their environment and setting-up sustainable economic development. The first year of the project has been dedicated to investigation including the questioning of relevant representatives. Three key local economic sectors have been selected: i.e. forestry, pastoral farming and building activities. Working groups were composed of technicians, administrative and maintenance staff, policy makers and climate researchers. The sectors' needs for climate information have been assessed. The lessons learned led to actions which are presented hereinafter.
An adaptive filtered back-projection for photoacoustic image reconstruction
Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong
2015-05-15
Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing
An adaptive filtered back-projection for photoacoustic image reconstruction
Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong
2015-01-01
Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing
How Useful Are Climate Projections for Adaptation Decision Making?
NASA Astrophysics Data System (ADS)
Smith, J. B.; Vogel, J. M.
2011-12-01
Decision making is often portrayed as a linear process that assumes scientific knowledge is a necessary precursor to effective policy and is used directly in policy making. Yet, in practice, the use of scientific information in decision making is more complex than the linear model implies. The use of climate projections in adaptation decision making is a case in point. This paper briefly reviews efforts by some decision makers to understand climate change risks and to apply this knowledge when making decisions on management of climate sensitive resources and infrastructure . In general, and in spite of extensive efforts to study climate change at the regional and local scale to support decision making, few decisions outside of adapting to sea level rise appear to directly apply to climate change projections. A number of U.S. municipalities and states, including Seattle, New York City, Phoenix, and the States of California and Washington, have used climate change projections to assess their vulnerability to various climate change impacts. Some adaptation decisions have been made based on projections of sea level rise, such as change in location of infrastructure. This may be because a future rise is sea level is virtually certain. In contrast, decision making on precipitation has been more limited, even where there is consensus on likely changes in sign of the variable. Nonetheless, decision makers are adopting strategies that can be justified based on current climate and climate variability and that also reduce risks to climate change. A key question for the scientific community is whether improved projections will add value to decision making. For example, it remains unclear how higher-resolution projections can change decision making as long as the sign and magnitude of projections across climate models and downscaling techniques retains a wide range of uncertainty. It is also unclear whether even better information on the sign and magnitude of change would
Robust projective lag synchronization in drive-response dynamical networks via adaptive control
NASA Astrophysics Data System (ADS)
Al-mahbashi, G.; Noorani, M. S. Md; Bakar, S. A.; Al-sawalha, M. M.
2016-02-01
This paper investigates the problem of projective lag synchronization behavior in drive-response dynamical networks (DRDNs) with identical and non-identical nodes. An adaptive control method is designed to achieve projective lag synchronization with fully unknown parameters and unknown bounded disturbances. These parameters were estimated by adaptive laws obtained by Lyapunov stability theory. Furthermore, sufficient conditions for synchronization are derived analytically using the Lyapunov stability theory and adaptive control. In addition, the unknown bounded disturbances are also overcome by the proposed control. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Simulation results show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Klein, R.; Gordon, E.
2010-12-01
Scholars and policy analysts often contend that an effective climate adaptation strategy must entail "mainstreaming," or incorporating responses to possible climate impacts into existing planning and management decision frameworks. Such an approach, however, makes it difficult to assess the degree to which decisionmaking entities are engaging in adaptive activities that may or may not be explicitly framed around a changing climate. For example, a drought management plan may not explicitly address climate change, but the activities and strategies outlined in it may reduce vulnerabilities posed by a variable and changing climate. Consequently, to generate a strategic climate adaptation plan requires identifying the entire suite of activities that are implicitly linked to climate and may affect adaptive capacity within the system. Here we outline a novel, two-pronged approach, leveraging social science methods, to understanding adaptation throughout state government in Colorado. First, we conducted a series of interviews with key actors in state and federal government agencies, non-governmental organizations, universities, and other entities engaged in state issues. The purpose of these interviews was to elicit information about current activities that may affect the state’s adaptive capacity and to identify future climate-related needs across the state. Second, we have developed an interactive database cataloging organizations, products, projects, and people actively engaged in adaptive planning and policymaking that are relevant to the state of Colorado. The database includes a wiki interface, helping create a dynamic component that will enable frequent updating as climate-relevant information emerges. The results of this project are intended to paint a clear picture of sectors and agencies with higher and lower levels of adaptation awareness and to provide a roadmap for the next gubernatorial administration to pursue a more sophisticated climate adaptation agenda
NASA Technical Reports Server (NTRS)
Taylor, Patrick C.; Baker, Noel C.
2015-01-01
Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.
Peng, Junzheng; Liu, Xiaoli; Deng, Dingnan; Guo, Hongwei; Cai, Zewei; Peng, Xiang
2016-09-19
In phase-measuring profilometry, the lens distortion of commercial projectors may introduce additional bending carrier phase and thus lead to measurement errors. To address this problem, this paper presents an adaptive fringe projection technique in which the carrier phase in the projected fringe patterns is modified according to the projector distortion. After projecting these adaptive fringe patterns, the bending carrier phase induced by the projector distortion is eliminated. Experimental results demonstrate this method to be effective and efficient in suppressing the projector distortion for phase-measuring profilometry. More importantly, this method does not need to calibrate the projector and system parameters, such as the distortion coefficients of the projector and the angle between the optical axes of projector and camera lenses. Hence, it has low computational complexity and enables us to improve the measurement precision for an arbitrary phase-measuring profilometry system. PMID:27661920
Adaptive numerical methods for partial differential equations
Cololla, P.
1995-07-01
This review describes a structured approach to adaptivity. The Automated Mesh Refinement (ARM) algorithms developed by M Berger are described, touching on hyperbolic and parabolic applications. Adaptivity is achieved by overlaying finer grids only in areas flagged by a generalized error criterion. The author discusses some of the issues involved in abutting disparate-resolution grids, and demonstrates that suitable algorithms exist for dissipative as well as hyperbolic systems.
Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin
2016-04-01
It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation. PMID:27137056
The Radio Language Arts Project: adapting the radio mathematics model.
Christensen, P R
1985-01-01
Kenya's Radio Language Arts Project, directed by the Academy for Educational Development in cooperation with the Kenya Institute of Education in 1980-85, sought to teach English to rural school children in grades 1-3 through use of an intensive, radio-based instructional system. Daily 1/2 hour lessons are broadcast throughout the school year and supported by teachers and print materials. The project further was aimed at testing the feasibility of adaptation of the successful Nicaraguan Radio Math Project to a new subject area. Difficulties were encountered in articulating a language curriculum with the precision required for a media-based instructional system. Also a challenge was defining the acceptable regional standard for pronunciation and grammar; British English was finally selected. An important modification of the Radio Math model concerned the role of the teacher. While Radio Math sought to reduce the teacher's responsibilities during the broadcast, Radio Language Arts teachers played an important instructional role during the English lesson broadcasts by providing translation and checks on work. Evaluations of the Radio language Arts Project suggest significant gains in speaking, listening, and reading skills as well as high levels of satisfaction on the part of parents and teachers.
Principles and Methods of Adapted Physical Education.
ERIC Educational Resources Information Center
Arnheim, Daniel D.; And Others
Programs in adapted physical education are presented preceded by a background of services for the handicapped, by the psychosocial implications of disability, and by the growth and development of the handicapped. Elements of conducting programs discussed are organization and administration, class organization, facilities, exercise programs…
Adaptive method for electron bunch profile prediction
Scheinker, Alexander; Gessner, Spencer
2015-10-01
We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
Online Sequential Projection Vector Machine with Adaptive Data Mean Update
Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei
2016-01-01
We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958
Outlier Measures and Norming Methods for Computerized Adaptive Tests.
ERIC Educational Resources Information Center
Bradlow, Eric T.; Weiss, Robert E.
2001-01-01
Compares four methods that map outlier statistics to a familiarity probability scale (a "P" value). Explored these methods in the context of computerized adaptive test data from a 1995 nationally administered computerized examination for professionals in the medical industry. (SLD)
NASA Technical Reports Server (NTRS)
Shelhamer, Mark; Goldberg, Jefim; Minor, Lloyd B.; Paloski, William H.; Young, Laurence R.; Zee, David S.
1999-01-01
Impairment of gaze and head stabilization reflexes can lead to disorientation and reduced performance in sensorimotor tasks such as piloting of spacecraft. Transitions between different gravitoinertial force (gif) environments - as during different phases of space flight - provide an extreme test of the adaptive capabilities of these mechanisms. We wish to determine to what extent the sensorimotor skills acquired in one gravity environment will transfer to others, and to what extent gravity serves as a context cue for inhibiting such transfer. We use the general approach of adapting a response (saccades, vestibuloocular reflex: VOR, or vestibulocollic reflex: VCR) to a particular change in gain or phase in one gif condition, adapting to a different gain or phase in a second gif condition, and then seeing if gif itself - the context cue - can recall the previously-learned adapted responses. Previous evidence indicates that unless there is specific training to induce context-specificity, reflex adaptation is sequential rather than simultaneous. Various experiments in this project investigate the behavioral properties, neurophysiological basis, and anatomical substrate of context-specific learning, using otolith (gravity) signals as a context cue. In the following, we outline the methods for all experiments in this project, and provide details and results on selected experiments.
Regional projections of North Indian climate for adaptation studies.
Mathison, Camilla; Wiltshire, Andrew; Dimri, A P; Falloon, Pete; Jacob, Daniela; Kumar, Pankaj; Moors, Eddy; Ridley, Jeff; Siderius, Christian; Stoffel, Markus; Yasunari, T
2013-12-01
Adaptation is increasingly important for regions around the world where large changes in climate could have an impact on populations and industry. The Brahmaputra-Ganges catchments have a large population, a main industry of agriculture and a growing hydro-power industry, making the region susceptible to changes in the Indian Summer Monsoon, annually the main water source. The HighNoon project has completed four regional climate model simulations for India and the Himalaya at high resolution (25km) from 1960 to 2100 to provide an ensemble of simulations for the region. In this paper we have assessed the ensemble for these catchments, comparing the simulations with observations, to give credence that the simulations provide a realistic representation of atmospheric processes and therefore future climate. We have illustrated how these simulations could be used to provide information on potential future climate impacts and therefore aid decision-making using climatology and threshold analysis. The ensemble analysis shows an increase in temperature between the baseline (1970-2000) and the 2050s (2040-2070) of between 2 and 4°C and an increase in the number of days with maximum temperatures above 28°C and 35°C. There is less certainty for precipitation and runoff which show considerable variability, even in this relatively small ensemble, spanning zero. The HighNoon ensemble is the most complete data for the region providing useful information on a wide range of variables for the regional climate of the Brahmaputra-Ganges region, however there are processes not yet included in the models that could have an impact on the simulations of future climate. We have discussed these processes and show that the range from the HighNoon ensemble is similar in magnitude to potential changes in projections where these processes are included. Therefore strategies for adaptation must be robust and flexible allowing for advances in the science and natural environmental changes.
Regional projections of North Indian climate for adaptation studies.
Mathison, Camilla; Wiltshire, Andrew; Dimri, A P; Falloon, Pete; Jacob, Daniela; Kumar, Pankaj; Moors, Eddy; Ridley, Jeff; Siderius, Christian; Stoffel, Markus; Yasunari, T
2013-12-01
Adaptation is increasingly important for regions around the world where large changes in climate could have an impact on populations and industry. The Brahmaputra-Ganges catchments have a large population, a main industry of agriculture and a growing hydro-power industry, making the region susceptible to changes in the Indian Summer Monsoon, annually the main water source. The HighNoon project has completed four regional climate model simulations for India and the Himalaya at high resolution (25km) from 1960 to 2100 to provide an ensemble of simulations for the region. In this paper we have assessed the ensemble for these catchments, comparing the simulations with observations, to give credence that the simulations provide a realistic representation of atmospheric processes and therefore future climate. We have illustrated how these simulations could be used to provide information on potential future climate impacts and therefore aid decision-making using climatology and threshold analysis. The ensemble analysis shows an increase in temperature between the baseline (1970-2000) and the 2050s (2040-2070) of between 2 and 4°C and an increase in the number of days with maximum temperatures above 28°C and 35°C. There is less certainty for precipitation and runoff which show considerable variability, even in this relatively small ensemble, spanning zero. The HighNoon ensemble is the most complete data for the region providing useful information on a wide range of variables for the regional climate of the Brahmaputra-Ganges region, however there are processes not yet included in the models that could have an impact on the simulations of future climate. We have discussed these processes and show that the range from the HighNoon ensemble is similar in magnitude to potential changes in projections where these processes are included. Therefore strategies for adaptation must be robust and flexible allowing for advances in the science and natural environmental changes. PMID
A New Adaptive Image Denoising Method Based on Neighboring Coefficients
NASA Astrophysics Data System (ADS)
Biswas, Mantosh; Om, Hari
2016-03-01
Many good techniques have been discussed for image denoising that include NeighShrink, improved adaptive wavelet denoising method based on neighboring coefficients (IAWDMBNC), improved wavelet shrinkage technique for image denoising (IWST), local adaptive wiener filter (LAWF), wavelet packet thresholding using median and wiener filters (WPTMWF), adaptive image denoising method based on thresholding (AIDMT). These techniques are based on local statistical description of the neighboring coefficients in a window. These methods however do not give good quality of the images since they cannot modify and remove too many small wavelet coefficients simultaneously due to the threshold. In this paper, a new image denoising method is proposed that shrinks the noisy coefficients using an adaptive threshold. Our method overcomes these drawbacks and it has better performance than the NeighShrink, IAWDMBNC, IWST, LAWF, WPTMWF, and AIDMT denoising methods.
Adaptive computational methods for aerothermal heating analysis
NASA Technical Reports Server (NTRS)
Price, John M.; Oden, J. Tinsley
1988-01-01
The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated.
An adaptive pseudospectral method for discontinuous problems
NASA Technical Reports Server (NTRS)
Augenbaum, Jeffrey M.
1988-01-01
The accuracy of adaptively chosen, mapped polynomial approximations is studied for functions with steep gradients or discontinuities. It is shown that, for steep gradient functions, one can obtain spectral accuracy in the original coordinate system by using polynomial approximations in a transformed coordinate system with substantially fewer collocation points than are necessary using polynomial expansion directly in the original, physical, coordinate system. It is also shown that one can avoid the usual Gibbs oscillation associated with steep gradient solutions of hyperbolic pde's by approximation in suitably chosen coordinate systems. Continuous, high gradient solutions are computed with spectral accuracy (as measured in the physical coordinate system). Discontinuous solutions associated with nonlinear hyperbolic equations can be accurately computed by using an artificial viscosity chosen to smooth out the solution in the mapped, computational domain. Thus, shocks can be effectively resolved on a scale that is subgrid to the resolution available with collocation only in the physical domain. Examples with Fourier and Chebyshev collocation are given.
Adaptable radiation monitoring system and method
Archer, Daniel E.; Beauchamp, Brock R.; Mauger, G. Joseph; Nelson, Karl E.; Mercer, Michael B.; Pletcher, David C.; Riot, Vincent J.; Schek, James L.; Knapp, David A.
2006-06-20
A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.
Moving and adaptive grid methods for compressible flows
NASA Technical Reports Server (NTRS)
Trepanier, Jean-Yves; Camarero, Ricardo
1995-01-01
This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.
Adaptive mesh strategies for the spectral element method
NASA Technical Reports Server (NTRS)
Mavriplis, Catherine
1992-01-01
An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.
Comparing Anisotropic Output-Based Grid Adaptation Methods by Decomposition
NASA Technical Reports Server (NTRS)
Park, Michael A.; Loseille, Adrien; Krakos, Joshua A.; Michal, Todd
2015-01-01
Anisotropic grid adaptation is examined by decomposing the steps of flow solution, ad- joint solution, error estimation, metric construction, and simplex grid adaptation. Multiple implementations of each of these steps are evaluated by comparison to each other and expected analytic results when available. For example, grids are adapted to analytic metric fields and grid measures are computed to illustrate the properties of multiple independent implementations of grid adaptation mechanics. Different implementations of each step in the adaptation process can be evaluated in a system where the other components of the adaptive cycle are fixed. Detailed examination of these properties allows comparison of different methods to identify the current state of the art and where further development should be targeted.
Adaptive sequential methods for detecting network intrusions
NASA Astrophysics Data System (ADS)
Chen, Xinjia; Walker, Ernest
2013-06-01
In this paper, we propose new sequential methods for detecting port-scan attackers which routinely perform random "portscans" of IP addresses to find vulnerable servers to compromise. In addition to rigorously control the probability of falsely implicating benign remote hosts as malicious, our method performs significantly faster than other current solutions. Moreover, our method guarantees that the maximum amount of observational time is bounded. In contrast to the previous most effective method, Threshold Random Walk Algorithm, which is explicit and analytical in nature, our proposed algorithm involve parameters to be determined by numerical methods. We have introduced computational techniques such as iterative minimax optimization for quick determination of the parameters of the new detection algorithm. A framework of multi-valued decision for detecting portscanners and DoS attacks is also proposed.
Identification of nonlinear optical systems using adaptive kernel methods
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Zhang, Changjiang; Zhang, Haoran; Feng, Genliang; Xu, Xiuling
2005-12-01
An identification approach of nonlinear optical dynamic systems, based on adaptive kernel methods which are modified version of least squares support vector machine (LS-SVM), is presented in order to obtain the reference dynamic model for solving real time applications such as adaptive signal processing of the optical systems. The feasibility of this approach is demonstrated with the computer simulation through identifying a Bragg acoustic-optical bistable system. Unlike artificial neural networks, the adaptive kernel methods possess prominent advantages: over fitting is unlikely to occur by employing structural risk minimization criterion, the global optimal solution can be uniquely obtained owing to that its training is performed through the solution of a set of linear equations. Also, the adaptive kernel methods are still effective for the nonlinear optical systems with a variation of the system parameter. This method is robust with respect to noise, and it constitutes another powerful tool for the identification of nonlinear optical systems.
LDRD Final Report: Adaptive Methods for Laser Plasma Simulation
Dorr, M R; Garaizar, F X; Hittinger, J A
2003-01-29
The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an
Adaptive upscaling with the dual mesh method
Guerillot, D.; Verdiere, S.
1997-08-01
The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.
Adaptive Finite Element Methods for Continuum Damage Modeling
NASA Technical Reports Server (NTRS)
Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.
1995-01-01
The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.
Adaptive Transmission Control Method for Communication-Broadcasting Integrated Services
NASA Astrophysics Data System (ADS)
Koto, Hideyuki; Furuya, Hiroki; Nakamura, Hajime
This paper proposes an adaptive transmission control method for massive and intensive telecommunication traffic generated by communication-broadcasting integrated services. The proposed method adaptively controls data transmissions from viewers depending on the congestion states, so that severe congestion can be effectively avoided. Furthermore, it utilizes the broadcasting channel which is not only scalable, but also reliable for controlling the responses from vast numbers of viewers. The performance of the proposed method is evaluated through experiments on a test bed where approximately one million viewers are emulated. The obtained results quantitatively demonstrate the performance of the proposed method and its effectiveness under massive and intensive traffic conditions.
EPACT II: project and methods.
Juillerat, Pascal; Froehlich, Florian; Felley, Christian; Pittet, Valérie; Mottet, Christian; Gonvers, Jean-Jacques; Michetti, Pierre; Vader, John-Paul
2007-01-01
Building on the first European Panel on the Appropriateness of Crohn's Disease Treatment (EPACT I) which was held in Lausanne at the beginning of March 2004, a new panel will be convened in Switzerland (EPACT II, November to December 2007) to update this work. A combined evidence- and panel-based method (RAND) will be applied to assess the appropriateness of therapy for Crohn's disease (CD). In preparation for the meeting of experts, reviews of evidence-based literature were prepared for major clinical presentations of CD. During the meeting, an international multidis- ciplinary panel that includes gastroenterologists, surgeons and general practitioners weigh the strength of evidence and apply their clinical experience when assessing the appropriateness of therapy for 569 specific indications (clinical scenarios). This chapter describes in detail the process of updating the literature review and the systematic approach of the RAND Appropriateness Method used during the expert panel meeting. PMID:18239398
An auto-adaptive background subtraction method for Raman spectra
NASA Astrophysics Data System (ADS)
Xie, Yi; Yang, Lidong; Sun, Xilong; Wu, Dewen; Chen, Qizhen; Zeng, Yongming; Liu, Guokun
2016-05-01
Background subtraction is a crucial step in the preprocessing of Raman spectrum. Usually, parameter manipulating of the background subtraction method is necessary for the efficient removal of the background, which makes the quality of the spectrum empirically dependent. In order to avoid artificial bias, we proposed an auto-adaptive background subtraction method without parameter adjustment. The main procedure is: (1) select the local minima of spectrum while preserving major peaks, (2) apply an interpolation scheme to estimate background, (3) and design an iteration scheme to improve the adaptability of background subtraction. Both simulated data and Raman spectra have been used to evaluate the proposed method. By comparing the backgrounds obtained from three widely applied methods: the polynomial, the Baek's and the airPLS, the auto-adaptive method meets the demand of practical applications in terms of efficiency and accuracy.
Stability and error estimation for Component Adaptive Grid methods
NASA Technical Reports Server (NTRS)
Oliger, Joseph; Zhu, Xiaolei
1994-01-01
Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
NASA Astrophysics Data System (ADS)
Bo, Wurigen; Shashkov, Mikhail
2015-10-01
eW present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35,34,6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. In the standard ReALE method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way. In the current paper we present a new adaptive ReALE method, A-ReALE, that is based on the following design principles. First, a monitor function (or error indicator) based on the Hessian of some flow parameter(s) is utilized. Second, an equi-distribution principle for the monitor function is used as a criterion for adapting the mesh. Third, a centroidal Voronoi tessellation is used to adapt the mesh. Fourth, we scale the monitor function to avoid very small and large cells and then smooth it to permit the use of theoretical results related to weighted centroidal Voronoi tessellation. In the A-ReALE method, both number of cells and their locations are allowed to change at the rezone stage on each time step. The number of generators at each time step is chosen to guarantee the required spatial resolution in regions where monitor function reaches its maximum value. We present all details required for implementation of new adaptive A-ReALE method and demonstrate its performance in comparison with standard ReALE method on series of numerical examples.
Adaptive Management for Urban Watersheds: The Slavic Village Pilot Project
Adaptive management is an environmental management strategy that uses an iterative process of decision-making to reduce the uncertainty in environmental management via system monitoring. A central tenet of adaptive management is that management involves a learning process that ca...
Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods
NASA Astrophysics Data System (ADS)
Chung, Eric; Efendiev, Yalchin; Hou, Thomas Y.
2016-09-01
In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation.
An analysis of European riverine flood risk and adaptation measures under projected climate change
NASA Astrophysics Data System (ADS)
Bouwer, Laurens; Burzel, Andreas; Holz, Friederike; Winsemius, Hessel; de Bruijn, Karind
2015-04-01
There is increasing need to assess costs and benefits of adaptation at scales beyond the river basin. In Europe, such estimates are required at the European scale in order to set priorities for action and financing, for instance in the context of the EU Adaptation Strategy. The goal of this work as part of the FP7 BASE project is to develop a flood impact model that can be applied at Pan-European scale and that is able to project changes in flood risk due to climate change and socio-economic developments, and costs of adaptation. For this research, we build upon the global flood hazard estimation method developed by Winsemius et al. (Hydrology and Earth System Sciences, 2013), that produces flood inundation maps at different return period, for present day (EU WATCH) and future climate (IPCC scenarios RCP4.5 and 8.5, for five climate models). These maps are used for the assessment of flood impacts. We developed and tested a model for assessing direct economic flood damages by using large scale land use maps. We characterise vulnerable land use functions, in particular residential, commercial, industrial, infrastructure and agriculture, using depth-damage relationships. Furthermore, we apply up to NUTS3 level information on Gross Domestic Product, which is used as a proxy for relative differences in maximum damage values between different areas. Next, we test two adaptation measures, by adjusting flood protection levels and adjusting damage functions. The results show the projected changes in flood risk in the future. For example, on NUTS2 level, flood risk increases in some regions up to 179% (between the baseline scenario 1960-1999 and time slice 2010-2049). On country level there are increases up to 60% for selected climate models. The conference presentation will show the most relevant improvements in damage modelling on the continental scale, and results of the analysis of adaptation measures. The results will be critically discussed under the aspect of major
Final Report: Symposium on Adaptive Methods for Partial Differential Equations
Pernice, M.; Johnson, C.R.; Smith, P.J.; Fogelson, A.
1998-12-10
OAK-B135 Final Report: Symposium on Adaptive Methods for Partial Differential Equations. Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.
Multiple Methods: Research Methods in Education Projects at NSF
ERIC Educational Resources Information Center
Suter, Larry E.
2005-01-01
Projects on science and mathematics education research supported by the National Science Foundation (US government) rarely employ a single method of study. Studies of educational practices that use experimental design are very rare. The most common research method is the case study method and the second most common is some form of experimental…
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Anderson, R W; Pember, R B; Elliott, N S
2004-01-28
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Anderson, R W; Pember, R B; Elliott, N S
2002-10-19
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
A fourth order accurate adaptive mesh refinement method forpoisson's equation
Barad, Michael; Colella, Phillip
2004-08-20
We present a block-structured adaptive mesh refinement (AMR) method for computing solutions to Poisson's equation in two and three dimensions. It is based on a conservative, finite-volume formulation of the classical Mehrstellen methods. This is combined with finite volume AMR discretizations to obtain a method that is fourth-order accurate in solution error, and with easily verifiable solvability conditions for Neumann and periodic boundary conditions.
Wavelet methods in multi-conjugate adaptive optics
NASA Astrophysics Data System (ADS)
Helin, T.; Yudytskiy, M.
2013-08-01
The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.
Lafaye, Murielle; Sall, Baba; Ndiaye, Youssou; Vignolles, Cecile; Tourre, Yves M; Borchi, Franc Ois; Soubeyroux, Jean-Michel; Diallo, Mawlouth; Dia, Ibrahima; Ba, Yamar; Faye, Abdoulaye; Ba, Taibou; Ka, Alioune; Ndione, Jacques-André; Gauthier, Hélène; Lacaux, Jean-Pierre
2013-11-01
The multi-disciplinary French project "Adaptation à la Fiévre de la Vallée du Rift" (AdaptFVR) has concluded a 10-year constructive interaction between many scientists/partners involved with the Rift Valley fever (RVF) dynamics in Senegal. The three targeted objectives reached were (i) to produce--in near real-time--validated risk maps for parked livestock exposed to RVF mosquitoes/vectors bites; (ii) to assess the impacts on RVF vectors from climate variability at different time-scales including climate change; and (iii) to isolate processes improving local livestock management and animal health. Based on these results, concrete, pro-active adaptive actions were taken on site, which led to the establishment of a RVF early warning system (RVFews). Bulletins were released in a timely fashion during the project, tested and validated in close collaboration with the local populations, i.e. the primary users. Among the strategic, adaptive methods developed, conducted and evaluated in terms of cost/benefit analyses are the larvicide campaigns and the coupled bio-mathematical (hydrological and entomological) model technologies, which are being transferred to the staff of the "Centre de Suivi Ecologique" (CSE) in Dakar during 2013. Based on the results from the AdaptFVR project, other projects with similar conceptual and modelling approaches are currently being implemented, e.g. for urban and rural malaria and dengue in the French Antilles. PMID:24258902
Lafaye, Murielle; Sall, Baba; Ndiaye, Youssou; Vignolles, Cecile; Tourre, Yves M; Borchi, Franc Ois; Soubeyroux, Jean-Michel; Diallo, Mawlouth; Dia, Ibrahima; Ba, Yamar; Faye, Abdoulaye; Ba, Taibou; Ka, Alioune; Ndione, Jacques-André; Gauthier, Hélène; Lacaux, Jean-Pierre
2013-11-01
The multi-disciplinary French project "Adaptation à la Fiévre de la Vallée du Rift" (AdaptFVR) has concluded a 10-year constructive interaction between many scientists/partners involved with the Rift Valley fever (RVF) dynamics in Senegal. The three targeted objectives reached were (i) to produce--in near real-time--validated risk maps for parked livestock exposed to RVF mosquitoes/vectors bites; (ii) to assess the impacts on RVF vectors from climate variability at different time-scales including climate change; and (iii) to isolate processes improving local livestock management and animal health. Based on these results, concrete, pro-active adaptive actions were taken on site, which led to the establishment of a RVF early warning system (RVFews). Bulletins were released in a timely fashion during the project, tested and validated in close collaboration with the local populations, i.e. the primary users. Among the strategic, adaptive methods developed, conducted and evaluated in terms of cost/benefit analyses are the larvicide campaigns and the coupled bio-mathematical (hydrological and entomological) model technologies, which are being transferred to the staff of the "Centre de Suivi Ecologique" (CSE) in Dakar during 2013. Based on the results from the AdaptFVR project, other projects with similar conceptual and modelling approaches are currently being implemented, e.g. for urban and rural malaria and dengue in the French Antilles.
Adaptive windowed range-constrained Otsu method using local information
NASA Astrophysics Data System (ADS)
Zheng, Jia; Zhang, Dinghua; Huang, Kuidong; Sun, Yuanxi; Tang, Shaojie
2016-01-01
An adaptive windowed range-constrained Otsu method using local information is proposed for improving the performance of image segmentation. First, the reason why traditional thresholding methods do not perform well in the segmentation of complicated images is analyzed. Therein, the influences of global and local thresholdings on the image segmentation are compared. Second, two methods that can adaptively change the size of the local window according to local information are proposed by us. The characteristics of the proposed methods are analyzed. Thereby, the information on the number of edge pixels in the local window of the binarized variance image is employed to adaptively change the local window size. Finally, the superiority of the proposed method over other methods such as the range-constrained Otsu, the active contour model, the double Otsu, the Bradley's, and the distance-regularized level set evolution is demonstrated. It is validated by the experiments that the proposed method can keep more details and acquire much more satisfying area overlap measure as compared with the other conventional methods.
A Conditional Exposure Control Method for Multidimensional Adaptive Testing
ERIC Educational Resources Information Center
Finkelman, Matthew; Nering, Michael L.; Roussos, Louis A.
2009-01-01
In computerized adaptive testing (CAT), ensuring the security of test items is a crucial practical consideration. A common approach to reducing item theft is to define maximum item exposure rates, i.e., to limit the proportion of examinees to whom a given item can be administered. Numerous methods for controlling exposure rates have been proposed…
Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.
ERIC Educational Resources Information Center
Butler, Ronald W.
The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
Bo, Wurigen; Shashkov, Mikhail
2015-07-21
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALE method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
Bo, Wurigen; Shashkov, Mikhail
2015-07-21
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less
Projection preconditioning for Lanczos-type methods
Bielawski, S.S.; Mulyarchik, S.G.; Popov, A.V.
1996-12-31
We show how auxiliary subspaces and related projectors may be used for preconditioning nonsymmetric system of linear equations. It is shown that preconditioned in such a way (or projected) system is better conditioned than original system (at least if the coefficient matrix of the system to be solved is symmetrizable). Two approaches for solving projected system are outlined. The first one implies straightforward computation of the projected matrix and consequent using some direct or iterative method. The second approach is the projection preconditioning of conjugate gradient-type solver. The latter approach is developed here in context with biconjugate gradient iteration and some related Lanczos-type algorithms. Some possible particular choices of auxiliary subspaces are discussed. It is shown that one of them is equivalent to using colorings. Some results of numerical experiments are reported.
Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie
2016-02-01
Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.
NASA Astrophysics Data System (ADS)
Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie
2016-02-01
Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.
Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie
2016-02-01
Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation. PMID:26306792
Solving Chemical Master Equations by an Adaptive Wavelet Method
Jahnke, Tobias; Galan, Steffen
2008-09-01
Solving chemical master equations is notoriously difficult due to the tremendous number of degrees of freedom. We present a new numerical method which efficiently reduces the size of the problem in an adaptive way. The method is based on a sparse wavelet representation and an algorithm which, in each time step, detects the essential degrees of freedom required to approximate the solution up to the desired accuracy.
Workshop on adaptive grid methods for fusion plasmas
Wiley, J.C.
1995-07-01
The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.
Method and system for environmentally adaptive fault tolerant computing
NASA Technical Reports Server (NTRS)
Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)
2010-01-01
A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.
ICASE/LaRC Workshop on Adaptive Grid Methods
NASA Technical Reports Server (NTRS)
South, Jerry C., Jr. (Editor); Thomas, James L. (Editor); Vanrosendale, John (Editor)
1995-01-01
Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field.
An Adaptive Approach to Managing Knowledge Development in a Project-Based Learning Environment
ERIC Educational Resources Information Center
Tilchin, Oleg; Kittany, Mohamed
2016-01-01
In this paper we propose an adaptive approach to managing the development of students' knowledge in the comprehensive project-based learning (PBL) environment. Subject study is realized by two-stage PBL. It shapes adaptive knowledge management (KM) process and promotes the correct balance between personalized and collaborative learning. The…
ERIC Educational Resources Information Center
Massachusetts Inst. of Tech., Cambridge. Dept. of Urban Studies and Planning.
The report of Project ADAPT (Aerospace and Defense Adaptation to Public Technology), describes the design, execution, and forthcoming evaluation of the program. The program's objective was to demonstrate the feasibility of redeploying surplus technical manpower into public service at State and local levels of government. The development of the…
An Adaptive Cross-Architecture Combination Method for Graph Traversal
You, Yang; Song, Shuaiwen; Kerbyson, Darren J.
2014-06-18
Breadth-First Search (BFS) is widely used in many real-world applications including computational biology, social networks, and electronic design automation. The combination method, using both top-down and bottom-up techniques, is the most effective BFS approach. However, current combination methods rely on trial-and-error and exhaustive search to locate the optimal switching point, which may cause significant runtime overhead. To solve this problem, we design an adaptive method based on regression analysis to predict an optimal switching point for the combination method at runtime within less than 0.1% of the BFS execution time.
An Adaptive Derivative-based Method for Function Approximation
Tong, C
2008-10-22
To alleviate the high computational cost of large-scale multi-physics simulations to study the relationships between the model parameters and the outputs of interest, response surfaces are often used in place of the exact functional relationships. This report explores a method for response surface construction using adaptive sampling guided by derivative information at each selected sample point. This method is especially suitable for applications that can readily provide added information such as gradients and Hessian with respect to the input parameters under study. When higher order terms (third and above) in the Taylor series are negligible, the approximation error for this method can be controlled. We present details of the adaptive algorithm and numerical results on a few test problems.
Adaptive IMEX schemes for high-order unstructured methods
NASA Astrophysics Data System (ADS)
Vermeire, Brian C.; Nadarajah, Siva
2015-01-01
We present an adaptive implicit-explicit (IMEX) method for use with high-order unstructured schemes. The proposed method makes use of the Gerschgorin theorem to conservatively estimate the influence of each individual degree of freedom on the spectral radius of the discretization. This information is used to split the system into implicit and explicit regions, adapting to unsteady features in the flow. We dynamically repartition the domain to balance the number of implicit and explicit elements per core. As a consequence, we are able to achieve an even load balance for each implicit/explicit stage of the IMEX scheme. We investigate linear advection-diffusion, isentropic vortex advection, unsteady laminar flow over an SD7003 airfoil, and turbulent flow over a circular cylinder. Results show that the proposed method consistently yields a stable discretization, and maintains the theoretical order of accuracy of the high-order spatial schemes.
NASA Astrophysics Data System (ADS)
Wang, Benfeng; Wu, Ru-Shan; Chen, Xiaohong; Li, Jingye
2015-05-01
Interpolation and random noise removal is a pre-requisite for multichannel techniques because the irregularity and random noise in observed data can affect their performances. Projection Onto Convex Sets (POCS) method can better handle seismic data interpolation if the data's signal-to-noise ratio (SNR) is high, while it has difficulty in noisy situations because it inserts the noisy observed seismic data in each iteration. Weighted POCS method can weaken the noise effects, while the performance is affected by the choice of weight factors and is still unsatisfactory. Thus, a new weighted POCS method is derived through the Iterative Hard Threshold (IHT) view, and in order to eliminate random noise, a new adaptive method is proposed to achieve simultaneous seismic data interpolation and denoising based on dreamlet transform. Performances of the POCS method, the weighted POCS method and the proposed method are compared in simultaneous seismic data interpolation and denoising which demonstrate the validity of the proposed method. The recovered SNRs confirm that the proposed adaptive method is the most effective among the three methods. Numerical examples on synthetic and real data demonstrate the validity of the proposed adaptive method.
Final Report: Symposium on Adaptive Methods for Partial Differential Equations
Pernice, Michael; Johnson, Christopher R.; Smith, Philip J.; Fogelson, Aaron
1998-12-08
Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.
Children's Ideas about Animal Adaptations: An Action Research Project
ERIC Educational Resources Information Center
Endreny, Anna Henderson
2006-01-01
In this paper, I describe the action research I conducted in my third-grade science classrooms over the course of two years. In order to gain an understanding of my third-grade students' ideas about animal adaptations and how the teaching of a unit on crayfish influenced these ideas, I used clinical interviews, observations, and written…
Extended abstract: Partial row projection methods
Bramley, R.; Lee, Y.
1996-12-31
Accelerated row projection (RP) algorithms for solving linear systems Ax = b are a class of iterative methods which in theory converge for any nonsingular matrix. RP methods are by definition ones that require finding the orthogonal projection of vectors onto the null space of block rows of the matrix. The Kaczmarz form, considered here because it has a better spectrum for iterative methods, has an iteration matrix that is the product of such projectors. Because straightforward Kaczmarz method converges slowly for practical problems, typically an outer CG acceleration is applied. Definiteness, symmetry, or localization of the eigenvalues, of the coefficient matrix is not required. In spite of this robustness, work has generally been limited to structured systems such as block tridiagonal matrices because unlike many iterative solvers, RP methods cannot be implemented by simply supplying a matrix-vector multiplication routine. Finding the orthogonal projection of vectors onto the null space of block rows of the matrix in practice requires accessing the actual entries in the matrix. This report introduces a new partial RP algorithm which retains advantages of the RP methods.
Advanced numerical methods in mesh generation and mesh adaptation
Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A
2010-01-01
Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge
Computerized adaptive control weld skate with CCTV weld guidance project
NASA Technical Reports Server (NTRS)
Wall, W. A.
1976-01-01
This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.
Tang, Guo; Huang, Yue; Tian, Kuangda; Song, Xiangzhong; Yan, Hong; Hu, Jing; Xiong, Yanmei; Min, Shungeng
2014-10-01
The competitive adaptive reweighted sampling-successive projections algorithm (CARS-SPA) method was proposed as a novel variable selection approach to process multivariate calibration. The CARS was first used to select informative variables, and then SPA to refine the variables with minimum redundant information. The proposed method was applied to near-infrared (NIR) reflectance data of nicotine in tobacco lamina and NIR transmission data of active ingredient in pesticide formulation. As a result, fewer but more informative variables were selected by CARS-SPA than by direct CARS. In the system of pesticide formulation, a multiple linear regression (MLR) model using variables selected by CARS-SPA provided a better prediction than the full-range partial least-squares (PLS) model, successive projections algorithm (SPA) model and uninformative variables elimination-successive projections algorithm (UVE-SPA) processed model. The variable subsets selected by CARS-SPA included the spectral ranges with sufficient chemical information, whereas the uninformative variables were hardly selected.
Space-time adaptive numerical methods for geophysical applications.
Castro, C E; Käser, M; Toro, E F
2009-11-28
In this paper we present high-order formulations of the finite volume and discontinuous Galerkin finite-element methods for wave propagation problems with a space-time adaptation technique using unstructured meshes in order to reduce computational cost without reducing accuracy. Both methods can be derived in a similar mathematical framework and are identical in their first-order version. In their extension to higher order accuracy in space and time, both methods use spatial polynomials of higher degree inside each element, a high-order solution of the generalized Riemann problem and a high-order time integration method based on the Taylor series expansion. The static adaptation strategy uses locally refined high-resolution meshes in areas with low wave speeds to improve the approximation quality. Furthermore, the time step length is chosen locally adaptive such that the solution is evolved explicitly in time by an optimal time step determined by a local stability criterion. After validating the numerical approach, both schemes are applied to geophysical wave propagation problems such as tsunami waves and seismic waves comparing the new approach with the classical global time-stepping technique. The problem of mesh partitioning for large-scale applications on multi-processor architectures is discussed and a new mesh partition approach is proposed and tested to further reduce computational cost. PMID:19840984
Vortical Flow Prediction Using an Adaptive Unstructured Grid Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2003-01-01
A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Carter, Melissa B.; Deere, Karen A.; Waithe, Kenrick A.
2008-01-01
This paper examines the use of two grid adaptation methods to improve the accuracy of the near-to-mid field pressure signature prediction of supersonic aircraft computed using the USM3D unstructured grid flow solver. The first method (ADV) is an interactive adaptation process that uses grid movement rather than enrichment to more accurately resolve the expansion and compression waves. The second method (SSGRID) uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid with the pressure waves and reduce the cell count required to achieve an accurate signature prediction at a given distance from the vehicle. Both methods initially create negative volume cells that are repaired in a module in the ADV code. While both approaches provide significant improvements in the near field signature (< 3 body lengths) relative to a baseline grid without increasing the number of grid points, only the SSGRID approach allows the details of the signature to be accurately computed at mid-field distances (3-10 body lengths) for direct use with mid-field-to-ground boom propagation codes.
Vortical Flow Prediction Using an Adaptive Unstructured Grid Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2001-01-01
A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65deg delta wing with different values of leading-edge bluntness, and the second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the windtunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
Projection methods for quantum channel construction
NASA Astrophysics Data System (ADS)
Drusvyatskiy, Dmitriy; Li, Chi-Kwong; Pelejo, Diane Christine; Voronin, Yuen-Lam; Wolkowicz, Henry
2015-08-01
We consider the problem of constructing quantum channels, if they exist, that transform a given set of quantum states to another such set . In other words, we must find a completely positive linear map, if it exists, that maps a given set of density matrices to another given set of density matrices, possibly of different dimension. Using the theory of completely positive linear maps, one can formulate the problem as an instance of a positive semidefinite feasibility problem with highly structured constraints. The nature of the constraints makes projection-based algorithms very appealing when the number of variables is huge and standard interior-point methods for semidefinite programming are not applicable. We provide empirical evidence to this effect. We moreover present heuristics for finding both high-rank and low-rank solutions. Our experiments are based on the method of alternating projections and the Douglas-Rachford reflection method.
Robust flicker evaluation method for low power adaptive dimming LCDs
NASA Astrophysics Data System (ADS)
Kim, Seul-Ki; Song, Seok-Jeong; Nam, Hyoungsik
2015-05-01
This paper describes a robust dimming flicker evaluation method of adaptive dimming algorithms for low power liquid crystal displays (LCDs). While the previous methods use sum of square difference (SSD) values without excluding the image sequence information, the proposed modified SSD (mSSD) values are obtained only with the dimming flicker effects by making use of differential images. The proposed scheme is verified for eight dimming configurations of two dimming level selection methods and four temporal filters over three test videos. Furthermore, a new figure of merit is introduced to cover the dimming flicker as well as image qualities and power consumption.
[An adaptive threshloding segmentation method for urinary sediment image].
Li, Yongming; Zeng, Xiaoping; Qin, Jian; Han, Liang
2009-02-01
In this paper is proposed a new method to solve the segmentation of the complicated defocusing urinary sediment image. The main points of the method are: (1) using wavelet transforms and morphology to erase the effect of defocusing and realize the first segmentation, (2) using adaptive threshold processing in accordance to the subimages after wavelet processing, and (3) using 'peel off' algorithm to deal with the overlapped cells' segmentations. The experimental results showed that this method was not affected by the defocusing, and it made good use of many kinds of characteristics of the images. So this new mehtod can get very precise segmentation; it is effective for defocusing urinary sediment image segmentation.
Low Temperature Shape Memory Alloys for Adaptive, Autonomous Systems Project
NASA Technical Reports Server (NTRS)
Falker, John; Zeitlin, Nancy; Williams, Martha; Benafan, Othmane; Fesmire, James
2015-01-01
The objective of this joint activity between Kennedy Space Center (KSC) and Glenn Research Center (GRC) is to develop and evaluate the applicability of 2-way SMAs in proof-of-concept, low-temperature adaptive autonomous systems. As part of this low technology readiness (TRL) activity, we will develop and train low-temperature novel, 2-way shape memory alloys (SMAs) with actuation temperatures ranging from 0 C to 150 C. These experimental alloys will also be preliminary tested to evaluate their performance parameters and transformation (actuation) temperatures in low- temperature or cryogenic adaptive proof-of-concept systems. The challenge will be in the development, design, and training of the alloys for 2-way actuation at those temperatures.
An adaptive locally optimal method detecting weak deterministic signals
NASA Astrophysics Data System (ADS)
Wang, C. H.
1983-10-01
A new method for detecting weak signals in interference and clutter in radar systems is presented. The detector which uses this method is adaptive for an environment varying with time and locally optimal for detecting targets and constant false-alarm ratio (CFAR) for the statistics of interference and clutter varying with time. The loss of CFAR is small, and the detector is also simple in structure. The statistical equivalent transfer characteristic of a rank quantizer which can be used as part of an adaptive locally most powerful detector (ALMP) is obtained. It is shown that the distribution-free Doppler processor of Dillard (1974) is not only a nonparameter detector, but also an ALMP detector under certain conditions.
Korostil, Igor A; Peters, Gareth W; Cornebise, Julien; Regan, David G
2013-05-20
A Bayesian statistical model and estimation methodology based on forward projection adaptive Markov chain Monte Carlo is developed in order to perform the calibration of a high-dimensional nonlinear system of ordinary differential equations representing an epidemic model for human papillomavirus types 6 and 11 (HPV-6, HPV-11). The model is compartmental and involves stratification by age, gender and sexual-activity group. Developing this model and a means to calibrate it efficiently is relevant because HPV is a very multi-typed and common sexually transmitted infection with more than 100 types currently known. The two types studied in this paper, types 6 and 11, are causing about 90% of anogenital warts. We extend the development of a sexual mixing matrix on the basis of a formulation first suggested by Garnett and Anderson, frequently used to model sexually transmitted infections. In particular, we consider a stochastic mixing matrix framework that allows us to jointly estimate unknown attributes and parameters of the mixing matrix along with the parameters involved in the calibration of the HPV epidemic model. This matrix describes the sexual interactions between members of the population under study and relies on several quantities that are a priori unknown. The Bayesian model developed allows one to estimate jointly the HPV-6 and HPV-11 epidemic model parameters as well as unknown sexual mixing matrix parameters related to assortativity. Finally, we explore the ability of an extension to the class of adaptive Markov chain Monte Carlo algorithms to incorporate a forward projection strategy for the ordinary differential equation state trajectories. Efficient exploration of the Bayesian posterior distribution developed for the ordinary differential equation parameters provides a challenge for any Markov chain sampling methodology, hence the interest in adaptive Markov chain methods. We conclude with simulation studies on synthetic and recent actual data. PMID
Project ADAPT: A Program to Assess Depression and Provide Proactive Treatment in Rural Areas
ERIC Educational Resources Information Center
Luptak, Marilyn; Kaas, Merrie J.; Artz, Margaret; McCarthy, Teresa
2008-01-01
Purpose: We describe and evaluate a project designed to pilot test an evidence-based clinical intervention for assessing and treating depression in older adults in rural primary care clinics. Project ADAPT--Assuring Depression Assessment and Proactive Treatment--utilized existing primary care resources to overcome barriers to sustainability…
Method and apparatus for telemetry adaptive bandwidth compression
NASA Astrophysics Data System (ADS)
Graham, Olin L.
1987-07-01
Methods and apparatus are provided for automatic and/or manual adaptive bandwidth compression of telemetry. An adaptive sampler samples a video signal from a scanning sensor and generates a sequence of sampled fields. Each field and range rate information from the sensor are hence sequentially transmitted to and stored in a multiple and adaptive field storage means. The field storage means then, in response to an automatic or manual control signal, transfers the stored sampled field signals to a video monitor in a form for sequential or simultaneous display of a desired number of stored signal fields. The sampling ratio of the adaptive sample, the relative proportion of available communication bandwidth allocated respectively to transmitted data and video information, and the number of fields simultaneously displayed are manually or automatically selectively adjustable in functional relationship to each other and detected range rate. In one embodiment, when relatively little or no scene motion is detected, the control signal maximizes sampling ratio and causes simultaneous display of all stored fields, thus maximizing resolution and bandwidth available for data transmission. When increased scene motion is detected, the control signal is adjusted accordingly to cause display of fewer fields. If greater resolution is desired, the control signal is adjusted to increase the sampling ratio.
A Diffusion Synthetic Acceleration Method for Block Adaptive Mesh Refinement.
Ward, R. C.; Baker, R. S.; Morel, J. E.
2005-01-01
A prototype two-dimensional Diffusion Synthetic Acceleration (DSA) method on a Block-based Adaptive Mesh Refinement (BAMR) transport mesh has been developed. The Block-Adaptive Mesh Refinement Diffusion Synthetic Acceleration (BAMR-DSA) method was tested in the PARallel TIme-Dependent SN (PARTISN) deterministic transport code. The BAMR-DSA equations are derived by differencing the DSA equation using a vertex-centered diffusion discretization that is diamond-like and may be characterized as 'partially' consistent. The derivation of a diffusion discretization that is fully consistent with diamond transport differencing on BAMR mesh does not appear to be possible. However, despite being partially consistent, the BAMR-DSA method is effective for many applications. The BAMR-DSA solver was implemented and tested in two dimensions for rectangular (XY) and cylindrical (RZ) geometries. Testing results confirm that a partially consistent BAMR-DSA method will introduce instabilities for extreme cases, e.g., scattering ratios approaching 1.0 with optically thick cells, but for most realistic problems the BAMR-DSA method provides effective acceleration. The initial use of a full matrix to store and LU-Decomposition to solve the BAMR-DSA equations has been extended to include Compressed Sparse Row (CSR) storage and a Conjugate Gradient (CG) solver. The CSR and CG methods provide significantly more efficient and faster storage and solution methods.
An adaptive unsupervised hyperspectral classification method based on Gaussian distribution
NASA Astrophysics Data System (ADS)
Yue, Jiang; Wu, Jing-wei; Zhang, Yi; Bai, Lian-fa
2014-11-01
In order to achieve adaptive unsupervised clustering in the high precision, a method using Gaussian distribution to fit the similarity of the inter-class and the noise distribution is proposed in this paper, and then the automatic segmentation threshold is determined by the fitting result. First, according with the similarity measure of the spectral curve, this method assumes that the target and the background both in Gaussian distribution, the distribution characteristics is obtained through fitting the similarity measure of minimum related windows and center pixels with Gaussian function, and then the adaptive threshold is achieved. Second, make use of the pixel minimum related windows to merge adjacent similar pixels into a picture-block, then the dimensionality reduction is completed and the non-supervised classification is realized. AVIRIS data and a set of hyperspectral data we caught are used to evaluate the performance of the proposed method. Experimental results show that the proposed algorithm not only realizes the adaptive but also outperforms K-MEANS and ISODATA on the classification accuracy, edge recognition and robustness.
A New Online Calibration Method for Multidimensional Computerized Adaptive Testing.
Chen, Ping; Wang, Chun
2016-09-01
Multidimensional-Method A (M-Method A) has been proposed as an efficient and effective online calibration method for multidimensional computerized adaptive testing (MCAT) (Chen & Xin, Paper presented at the 78th Meeting of the Psychometric Society, Arnhem, The Netherlands, 2013). However, a key assumption of M-Method A is that it treats person parameter estimates as their true values, thus this method might yield erroneous item calibration when person parameter estimates contain non-ignorable measurement errors. To improve the performance of M-Method A, this paper proposes a new MCAT online calibration method, namely, the full functional MLE-M-Method A (FFMLE-M-Method A). This new method combines the full functional MLE (Jones & Jin in Psychometrika 59:59-75, 1994; Stefanski & Carroll in Annals of Statistics 13:1335-1351, 1985) with the original M-Method A in an effort to correct for the estimation error of ability vector that might otherwise adversely affect the precision of item calibration. Two correction schemes are also proposed when implementing the new method. A simulation study was conducted to show that the new method generated more accurate item parameter estimation than the original M-Method A in almost all conditions. PMID:26608960
Object-adapted inverse pattern projection: generation, evaluation, and applications
NASA Astrophysics Data System (ADS)
Bothe, Thorsten; Li, Wansong; von Kopylow, Christoph; Juptner, Werner P.
2003-05-01
Fast and robust 3D quality control as well as fast deformation measurement is of particular importance for industrial inspection. Additionally a direct response about measured properties is desired. Therefore, robust optical techniques are needed which use as few images as possible for measurement and visualize results in an efficient way. One promising technique for this aim is the inverse pattern projection which has the following advantages: The technique codes the information of a preceding measurement into the projected inverse pattern. Thus, it is possible to do differential measurements using only one camera frame for each state. Additionally, the results are optimized straight fringes for sampling which are independent of the object curvature. The ability to use any image for inverse projection enables the use for augmented reality, i.e. any properties can be visualized directly on the object's surface which makes inspections easier than with use of a separated indicating device. The hardware needs are low as just a programmable projector and a standard camera are necessary. The basic idea of inverse pattern projection, necessary algorithms ane found optimizations are demonstrated, roughly. Evaluation techniques were found to preserve a high quality phase measurement under imperfect conditions. The different application fields can be sorted out by the type of pattern used for inverse projection. We select two main topics for presentation. One is the incremental (one image per state) deformation measurement which is a promising technique for high speed deformation measurements. A video series of a wavering flag with projected inverse pattern was evaluated to show the complete deformation series. The other application is the optical feature marking (augmented reality) that allows to map any measured result directly onto the object under investigation. The general ability to straighten any kind of information on 3D surfaces is shown while preserving an exact
Projection methods: Results and open problems
Bauschke, H.
1994-12-31
The convex feasibility problem consists of finding a point in the intersection of convex constraint sets. It is very easy to state and has an immediate geometric appeal; its real significance, however, lies in the wide range of applications in mathematics and physical sciences. The method of cyclic projections is an iterative attempt to solve the convex feasibility problem: a convergent sequence is generated by projecting cyclically onto the constraint sets and its limit is a solution. This and similar other methods have been used in practice with great success and quite a few theoretical results are known. Nonetheless, some fundamental questions remain open! In this talk, I will present some (of my favorite) open problems and what`s known about them.
Second derivatives for approximate spin projection methods
Thompson, Lee M.; Hratchian, Hrant P.
2015-02-07
The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical second derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.
O'Donnell, T. K.; Galat, D.L.
2008-01-01
Objective setting, performance measures, and accountability are important components of an adaptive-management approach to river-enhancement programs. Few lessons learned by river-enhancement practitioners in the United States have been documented and disseminated relative to the number of projects implemented. We conducted scripted telephone surveys with river-enhancement project managers and practitioners within the Upper Mississippi River Basin (UMRB) to determine the extent of setting project success criteria, monitoring, evaluation of monitoring data, and data dissemination. Investigation of these elements enabled a determination of those that inhibited adaptive management. Seventy river enhancement projects were surveyed. Only 34% of projects surveyed incorporated a quantified measure of project success. Managers most often relied on geophysical attributes of rivers when setting project success criteria, followed by biological communities. Ninety-one percent of projects that performed monitoring included biologic variables, but the lack of data collection before and after project completion and lack of field-based reference or control sites will make future assessments of ecologic success difficult. Twenty percent of projects that performed monitoring evaluated ???1 variable but did not disseminate their evaluations outside their organization. Results suggest greater incentives may be required to advance the science of river enhancement. Future river-enhancement programs within the UMRB and elsewhere can increase knowledge gained from individual projects by offering better guidance on setting success criteria before project initiation and evaluation through established monitoring protocols. ?? 2007 Springer Science+Business Media, LLC.
Adaptive density partitioning technique in the auxiliary plane wave method
NASA Astrophysics Data System (ADS)
Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko
2006-01-01
We have developed the adaptive density partitioning technique (ADPT) in the auxiliary plane wave method, in which a part of the density is expanded to plane waves, for the fast evaluation of Coulomb matrix. Our partitioning is based on the error estimations and allows us to control the accuracy and efficiency. Moreover, we can drastically reduce the core Gaussian products that are left in Gaussian representation (its analytical integrals is the bottleneck in this method). For the taxol molecule with 6-31G** basis, the core Gaussian products accounted only for 5% in submicrohartree error.
Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.
1979-01-01
The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.
Introduction to project ALIAS: adaptive-learning image analysis system
NASA Astrophysics Data System (ADS)
Bock, Peter
1992-03-01
As an alternative to preprogrammed rule-based artificial intelligence, collective learning systems theory postulates a hierarchical network of cellular automata which acquire their knowledge through learning based on a series of trial-and-error interactions with an evaluating environment, much as humans do. The input to the hierarchical network is provided by a set of sensors which perceive the external world. Using both this perceived information and past experience (memory), the learning automata synthesize collections of trial responses, periodically modifying their memories based on internal evaluations or external evaluations from the environment. Based on collective learning systems theory, an adaptive transputer- based image-processing engine comprising a three-layer hierarchical network of 32 learning cells and 33 nonlearning cells has been applied to a difficult image processing task: the scale, phase, and translation-invariant detection of anomalous features in otherwise `normal' images. Known as adaptive learning image analysis system (ALIAS), this parallel-processing engine has been constructed and tested at the Research institute for Applied Knowledge Processing (FAW) in Ulm, Germany under the sponsorship of Robert Bosch GmbH. Results demonstrate excellent detection, discrimination, and localization of anomalies in binary images. Recent enhancements include the ability to process gray-scale images and the automatic supervised segmentation and classification of images. Current research is directed toward the processing of time-series data and the hierarchical extension of ALIAS from the sub-symbolic level to the higher levels of symbolic association.
An adaptive Tikhonov regularization method for fluorescence molecular tomography.
Cao, Xu; Zhang, Bin; Wang, Xin; Liu, Fei; Liu, Ke; Luo, Jianwen; Bai, Jing
2013-08-01
The high degree of absorption and scattering of photons propagating through biological tissues makes fluorescence molecular tomography (FMT) reconstruction a severe ill-posed problem and the reconstructed result is susceptible to noise in the measurements. To obtain a reasonable solution, Tikhonov regularization (TR) is generally employed to solve the inverse problem of FMT. However, with a fixed regularization parameter, the Tikhonov solutions suffer from low resolution. In this work, an adaptive Tikhonov regularization (ATR) method is presented. Considering that large regularization parameters can smoothen the solution with low spatial resolution, while small regularization parameters can sharpen the solution with high level of noise, the ATR method adaptively updates the spatially varying regularization parameters during the iteration process and uses them to penalize the solutions. The ATR method can adequately sharpen the feasible region with fluorescent probes and smoothen the region without fluorescent probes resorting to no complementary priori information. Phantom experiments are performed to verify the feasibility of the proposed method. The results demonstrate that the proposed method can improve the spatial resolution and reduce the noise of FMT reconstruction at the same time.
NASA Astrophysics Data System (ADS)
Rumore, D.; Kirshen, P. H.; Susskind, L.
2014-12-01
Despite scientific consensus that the climate is changing, local efforts to prepare for and manage climate change risks remain limited. How we can raise concern about climate change risks and enhance local readiness to adapt to climate change's effects? In this presentation, we will share the lessons learned from the New England Climate Adaptation Project (NECAP), a participatory action research project that tested science-based role-play simulations as a tool for educating the public about climate change risks and simulating collective risk management efforts. NECAP was a 2-year effort involving the Massachusetts Institute of Technology, the Consensus Building Institute, the National Estuarine Research Reserve System, and four coastal New England municipalities. During 2012-2013, the NECAP team produced downscaled climate change projections, a summary risk assessment, and a stakeholder assessment for each partner community. Working with local partners, we used these assessments to create a tailored, science-based role-play simulation for each site. Through a series of workshops in 2013, NECAP engaged between 115-170 diverse stakeholders and members of the public in each partner municipality in playing the simulation and a follow up conversation about local climate change risks and possible adaptation strategies. Data were collected through before-and-after surveys administered to all workshop participants, follow-up interviews with 25 percent of workshop participants, public opinion polls conducted before and after our intervention, and meetings with public officials. This presentation will report our research findings and explain how science-based role-play simulations can be used to help communicate local climate change risks and enhance local readiness to adapt.
Sweep-twist adaptive rotor blade : final project report.
Ashwill, Thomas D.
2010-02-01
Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.
Planetary gearbox fault diagnosis using an adaptive stochastic resonance method
NASA Astrophysics Data System (ADS)
Lei, Yaguo; Han, Dong; Lin, Jing; He, Zhengjia
2013-07-01
Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gearboxes include selection of sensitive measurement locations, investigation of vibration transmission paths and weak feature extraction. One of them is how to effectively discover the weak characteristics from noisy signals of faulty components in planetary gearboxes. To address the issue in fault diagnosis of planetary gearboxes, an adaptive stochastic resonance (ASR) method is proposed in this paper. The ASR method utilizes the optimization ability of ant colony algorithms and adaptively realizes the optimal stochastic resonance system matching input signals. Using the ASR method, the noise may be weakened and weak characteristics highlighted, and therefore the faults can be diagnosed accurately. A planetary gearbox test rig is established and experiments with sun gear faults including a chipped tooth and a missing tooth are conducted. And the vibration signals are collected under the loaded condition and various motor speeds. The proposed method is used to process the collected signals and the results of feature extraction and fault diagnosis demonstrate its effectiveness.
Robust time and frequency domain estimation methods in adaptive control
NASA Technical Reports Server (NTRS)
Lamaire, Richard Orville
1987-01-01
A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.
Adaptive integral method with fast Gaussian gridding for solving combined field integral equations
NASA Astrophysics Data System (ADS)
Bakır, O.; Baǧ; Cı, H.; Michielssen, E.
Fast Gaussian gridding (FGG), a recently proposed nonuniform fast Fourier transform algorithm, is used to reduce the memory requirements of the adaptive integral method (AIM) for accelerating the method of moments-based solution of combined field integral equations pertinent to the analysis of scattering from three-dimensional perfect electrically conducting surfaces. Numerical results that demonstrate the efficiency and accuracy of the AIM-FGG hybrid in comparison to an AIM-accelerated solver, which uses moment matching to project surface sources onto an auxiliary grid, are presented.
An h-adaptive finite element method for turbulent heat transfer
Carriington, David B
2009-01-01
A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.
The SMART CLUSTER METHOD - adaptive earthquake cluster analysis and declustering
NASA Astrophysics Data System (ADS)
Schaefer, Andreas; Daniell, James; Wenzel, Friedemann
2016-04-01
Earthquake declustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity with usual applications comprising of probabilistic seismic hazard assessments (PSHAs) and earthquake prediction methods. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation. Various methods have been developed to address this issue from other researchers. These have differing ranges of complexity ranging from rather simple statistical window methods to complex epidemic models. This study introduces the smart cluster method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal identification. Hereby, an adaptive search algorithm for data point clusters is adopted. It uses the earthquake density in the spatio-temporal neighbourhood of each event to adjust the search properties. The identified clusters are subsequently analysed to determine directional anisotropy, focussing on a strong correlation along the rupture plane and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010/2011 Darfield-Christchurch events, an adaptive classification procedure is applied to disassemble subsequent ruptures which may have been grouped into an individual cluster using near-field searches, support vector machines and temporal splitting. The steering parameters of the search behaviour are linked to local earthquake properties like magnitude of completeness, earthquake density and Gutenberg-Richter parameters. The method is capable of identifying and classifying earthquake clusters in space and time. It is tested and validated using earthquake data from California and New Zealand. As a result of the cluster identification process, each event in
An adaptive pseudo-spectral method for reaction diffusion problems
NASA Technical Reports Server (NTRS)
Bayliss, A.; Matkowsky, B. J.; Gottlieb, D.; Minkoff, M.
1989-01-01
The spectral interpolation error was considered for both the Chebyshev pseudo-spectral and Galerkin approximations. A family of functionals I sub r (u), with the property that the maximum norm of the error is bounded by I sub r (u)/J sub r, where r is an integer and J is the degree of the polynomial approximation, was developed. These functionals are used in the adaptive procedure whereby the problem is dynamically transformed to minimize I sub r (u). The number of collocation points is then chosen to maintain a prescribed error bound. The method is illustrated by various examples from combustion problems in one and two dimensions.
An adaptive pseudo-spectral method for reaction diffusion problems
NASA Technical Reports Server (NTRS)
Bayliss, A.; Gottlieb, D.; Matkowsky, B. J.; Minkoff, M.
1987-01-01
The spectral interpolation error was considered for both the Chebyshev pseudo-spectral and Galerkin approximations. A family of functionals I sub r (u), with the property that the maximum norm of the error is bounded by I sub r (u)/J sub r, where r is an integer and J is the degree of the polynomial approximation, was developed. These functionals are used in the adaptive procedure whereby the problem is dynamically transformed to minimize I sub r (u). The number of collocation points is then chosen to maintain a prescribed error bound. The method is illustrated by various examples from combustion problems in one and two dimensions.
Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca
2011-11-15
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold
Methods for cost estimation in software project management
NASA Astrophysics Data System (ADS)
Briciu, C. V.; Filip, I.; Indries, I. I.
2016-02-01
The speed in which the processes used in software development field have changed makes it very difficult the task of forecasting the overall costs for a software project. By many researchers, this task has been considered unachievable, but there is a group of scientist for which this task can be solved using the already known mathematical methods (e.g. multiple linear regressions) and the new techniques as genetic programming and neural networks. The paper presents a solution for building a model for the cost estimation models in the software project management using genetic algorithms starting from the PROMISE datasets related COCOMO 81 model. In the first part of the paper, a summary of the major achievements in the research area of finding a model for estimating the overall project costs is presented together with the description of the existing software development process models. In the last part, a basic proposal of a mathematical model of a genetic programming is proposed including here the description of the chosen fitness function and chromosome representation. The perspective of model described it linked with the current reality of the software development considering as basis the software product life cycle and the current challenges and innovations in the software development area. Based on the author's experiences and the analysis of the existing models and product lifecycle it was concluded that estimation models should be adapted with the new technologies and emerging systems and they depend largely by the chosen software development method.
Experiments on speckle imaging using projection methods
NASA Astrophysics Data System (ADS)
Loktev, M.; Vdovin, G.; Soloviev, O.; Savenko, S.
2011-09-01
In this paper we present some experimental results of speckle imaging for near-diffraction-limited observation of ground-based scenery and astronomical objects through atmospheric turbulence. The method of alternating projections onto convex sets is used for iterative reconstruction of the point-spread function (PSF), combined with Wiener filtering for deconvolution and several pre-processing techniques. A modification of the optical system with aperture segmentation is considered. The results of imaging on a horizontal path and astronomical imaging are reported and compared with time averaged and best frame images. Apparent image improvement is demonstrated in a field much wider than the isoplanatic patch size.
NASA Astrophysics Data System (ADS)
Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar
2011-12-01
This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.
Formal methods demonstration project for space applications
NASA Technical Reports Server (NTRS)
Divito, Ben L.
1995-01-01
The Space Shuttle program is cooperating in a pilot project to apply formal methods to live requirements analysis activities. As one of the larger ongoing shuttle Change Requests (CR's), the Global Positioning System (GPS) CR involves a significant upgrade to the Shuttle's navigation capability. Shuttles are to be outfitted with GPS receivers and the primary avionics software will be enhanced to accept GPS-provided positions and integrate them into navigation calculations. Prior to implementing the CR, requirements analysts at Loral Space Information Systems, the Shuttle software contractor, must scrutinize the CR to identify and resolve any requirements issues. We describe an ongoing task of the Formal Methods Demonstration Project for Space Applications whose goal is to find an effective way to use formal methods in the GPS CR requirements analysis phase. This phase is currently under way and a small team from NASA Langley, ViGYAN Inc. and Loral is now engaged in this task. Background on the GPS CR is provided and an overview of the hardware/software architecture is presented. We outline the approach being taken to formalize the requirements, only a subset of which is being attempted. The approach features the use of the PVS specification language to model 'principal functions', which are major units of Shuttle software. Conventional state machine techniques form the basis of our approach. Given this background, we present interim results based on a snapshot of work in progress. Samples of requirements specifications rendered in PVS are offered to illustration. We walk through a specification sketch for the principal function known as GPS Receiver State processing. Results to date are summarized and feedback from Loral requirements analysts is highlighted. Preliminary data is shown comparing issues detected by the formal methods team versus those detected using existing requirements analysis methods. We conclude by discussing our plan to complete the remaining
An adaptive stepsize method for the chemical Langevin equation.
Ilie, Silvana; Teslya, Alexandra
2012-05-14
Mathematical and computational modeling are key tools in analyzing important biological processes in cells and living organisms. In particular, stochastic models are essential to accurately describe the cellular dynamics, when the assumption of the thermodynamic limit can no longer be applied. However, stochastic models are computationally much more challenging than the traditional deterministic models. Moreover, many biochemical systems arising in applications have multiple time-scales, which lead to mathematical stiffness. In this paper we investigate the numerical solution of a stochastic continuous model of well-stirred biochemical systems, the chemical Langevin equation. The chemical Langevin equation is a stochastic differential equation with multiplicative, non-commutative noise. We propose an adaptive stepsize algorithm for approximating the solution of models of biochemical systems in the Langevin regime, with small noise, based on estimates of the local error. The underlying numerical method is the Milstein scheme. The proposed adaptive method is tested on several examples arising in applications and it is shown to have improved efficiency and accuracy compared to the existing fixed stepsize schemes.
NASA Astrophysics Data System (ADS)
Vanderlinden, J. P.; Baztan, J.
2014-12-01
The prupose of this paper is to present the "Adaptation Research a Transdisciplinary community and policy centered appoach" (ARTisticc) project. ARTisticc's goal is to apply innovative standardized transdisciplinary art and science integrative approaches to foster robust, socially, culturally and scientifically, community centred adaptation to climate change. The approach used in the project is based on the strong understanding that adaptation is: (a) still "a concept of uncertain form"; (b) a concept dealing with uncertainty; (c) a concept that calls for an analysis that goes beyond the traditional disciplinary organization of science, and; (d) an unconventional process in the realm of science and policy integration. The project is centered on case studies in France, Greenland, Russia, India, Canada, Alaska, and Senegal. In every site we jointly develop artwork while we analyzing how natural science, essentially geosciences can be used in order to better adapt in the future, how society adapt to current changes and how memories of past adaptations frames current and future processes. Artforms are mobilized in order to share scientific results with local communities and policy makers, this in a way that respects cultural specificities while empowering stakeholders, ARTISTICC translates these "real life experiments" into stories and artwork that are meaningful to those affected by climate change. The scientific results and the culturally mediated productions will thereafter be used in order to co-construct, with NGOs and policy makers, policy briefs, i.e. robust and scientifically legitimate policy recommendations regarding coastal adaptation. This co-construction process will be in itself analysed with the goal of increasing arts and science's performative functions in the universe of evidence-based policy making. The project involves scientists from natural sciences, the social sciences and the humanities, as well as artitis from the performing arts (playwriters
An adaptive PCA fusion method for remote sensing images
NASA Astrophysics Data System (ADS)
Guo, Qing; Li, An; Zhang, Hongqun; Feng, Zhongkui
2014-10-01
The principal component analysis (PCA) method is a popular fusion method used for its efficiency and high spatial resolution improvement. However, the spectral distortion is often found in PCA. In this paper, we propose an adaptive PCA method to enhance the spectral quality of the fused image. The amount of spatial details of the panchromatic (PAN) image injected into each band of the multi-spectral (MS) image is appropriately determined by a weighting matrix, which is defined by the edges of the PAN image, the edges of the MS image and the proportions between MS bands. In order to prove the effectiveness of the proposed method, the qualitative visual and quantitative analyses are introduced. The correlation coefficient (CC), the spectral discrepancy (SPD), and the spectral angle mapper (SAM) are used to measure the spectral quality of each fused band image. Q index is calculated to evaluate the global spectral quality of all the fused bands as a whole. The spatial quality is evaluated by the average gradient (AG) and the standard deviation (STD). Experimental results show that the proposed method improves the spectral quality very much comparing to the original PCA method while maintaining the high spatial quality of the original PCA.
Study on project schedule management based on comprehensive comparison methods
NASA Astrophysics Data System (ADS)
Ge, Jun-ying
2011-10-01
Project schedule management is the central content in project organization plan, which affects the project time and investment. The traditional representation methods of schedule are gant chart, network chart, S curve, etc. With the engineering scale increasing constantly, techniques and management level are improving, single method can not meet the requirements of project schedule management. Comprehensive comparison method gets more and more attention, and has become one symbol of project management modernization with its vivacity and brevity form. The paper analyzes the factors that affect the project, and then compare the progress of the different control methods, finally it made some management measures of project schedule.
NASA Astrophysics Data System (ADS)
Commerçon, B.; Debout, V.; Teyssier, R.
2014-03-01
Context. Implicit solvers present strong limitations when used on supercomputing facilities and in particular for adaptive mesh-refinement codes. Aims: We present a new method for implicit adaptive time-stepping on adaptive mesh-refinement grids. We implement it in the radiation-hydrodynamics solver we designed for the RAMSES code for astrophysical purposes and, more particularly, for protostellar collapse. Methods: We briefly recall the radiation-hydrodynamics equations and the adaptive time-stepping methodology used for hydrodynamical solvers. We then introduce the different types of boundary conditions (Dirichlet, Neumann, and Robin) that are used at the interface between levels and present our implementation of the new method in the RAMSES code. The method is tested against classical diffusion and radiation-hydrodynamics tests, after which we present an application for protostellar collapse. Results: We show that using Dirichlet boundary conditions at level interfaces is a good compromise between robustness and accuracy and that it can be used in structure formation calculations. The gain in computational time over our former unique time step method ranges from factors of 5 to 50 depending on the level of adaptive time-stepping and on the problem. We successfully compare the old and new methods for protostellar collapse calculations that involve highly non linear physics. Conclusions: We have developed a simple but robust method for adaptive time-stepping of implicit scheme on adaptive mesh-refinement grids. It can be applied to a wide variety of physical problems that involve diffusion processes.
Nonlinear optimization with linear constraints using a projection method
NASA Technical Reports Server (NTRS)
Fox, T.
1982-01-01
Nonlinear optimization problems that are encountered in science and industry are examined. A method of projecting the gradient vector onto a set of linear contraints is developed, and a program that uses this method is presented. The algorithm that generates this projection matrix is based on the Gram-Schmidt method and overcomes some of the objections to the Rosen projection method.
Adapting Western research methods to indigenous ways of knowing.
Simonds, Vanessa W; Christopher, Suzanne
2013-12-01
Indigenous communities have long experienced exploitation by researchers and increasingly require participatory and decolonizing research processes. We present a case study of an intervention research project to exemplify a clash between Western research methodologies and Indigenous methodologies and how we attempted reconciliation. We then provide implications for future research based on lessons learned from Native American community partners who voiced concern over methods of Western deductive qualitative analysis. Decolonizing research requires constant reflective attention and action, and there is an absence of published guidance for this process. Continued exploration is needed for implementing Indigenous methods alone or in conjunction with appropriate Western methods when conducting research in Indigenous communities. Currently, examples of Indigenous methods and theories are not widely available in academic texts or published articles, and are often not perceived as valid.
Adapting Western Research Methods to Indigenous Ways of Knowing
Christopher, Suzanne
2013-01-01
Indigenous communities have long experienced exploitation by researchers and increasingly require participatory and decolonizing research processes. We present a case study of an intervention research project to exemplify a clash between Western research methodologies and Indigenous methodologies and how we attempted reconciliation. We then provide implications for future research based on lessons learned from Native American community partners who voiced concern over methods of Western deductive qualitative analysis. Decolonizing research requires constant reflective attention and action, and there is an absence of published guidance for this process. Continued exploration is needed for implementing Indigenous methods alone or in conjunction with appropriate Western methods when conducting research in Indigenous communities. Currently, examples of Indigenous methods and theories are not widely available in academic texts or published articles, and are often not perceived as valid. PMID:23678897
Ye, Jinzuo; Chi, Chongwei; Xue, Zhenwen; Wu, Ping; An, Yu; Xu, Han; Zhang, Shuang; Tian, Jie
2014-02-01
Fluorescence molecular tomography (FMT), as a promising imaging modality, can three-dimensionally locate the specific tumor position in small animals. However, it remains challenging for effective and robust reconstruction of fluorescent probe distribution in animals. In this paper, we present a novel method based on sparsity adaptive subspace pursuit (SASP) for FMT reconstruction. Some innovative strategies including subspace projection, the bottom-up sparsity adaptive approach, and backtracking technique are associated with the SASP method, which guarantees the accuracy, efficiency, and robustness for FMT reconstruction. Three numerical experiments based on a mouse-mimicking heterogeneous phantom have been performed to validate the feasibility of the SASP method. The results show that the proposed SASP method can achieve satisfactory source localization with a bias less than 1mm; the efficiency of the method is much faster than mainstream reconstruction methods; and this approach is robust even under quite ill-posed condition. Furthermore, we have applied this method to an in vivo mouse model, and the results demonstrate the feasibility of the practical FMT application with the SASP method.
A Spectral Adaptive Mesh Refinement Method for the Burgers equation
NASA Astrophysics Data System (ADS)
Nasr Azadani, Leila; Staples, Anne
2013-03-01
Adaptive mesh refinement (AMR) is a powerful technique in computational fluid dynamics (CFD). Many CFD problems have a wide range of scales which vary with time and space. In order to resolve all the scales numerically, high grid resolutions are required. The smaller the scales the higher the resolutions should be. However, small scales are usually formed in a small portion of the domain or in a special period of time. AMR is an efficient method to solve these types of problems, allowing high grid resolutions where and when they are needed and minimizing memory and CPU time. Here we formulate a spectral version of AMR in order to accelerate simulations of a 1D model for isotropic homogenous turbulence, the Burgers equation, as a first test of this method. Using pseudo spectral methods, we applied AMR in Fourier space. The spectral AMR (SAMR) method we present here is applied to the Burgers equation and the results are compared with the results obtained using standard solution methods performed using a fine mesh.
Robust image registration using adaptive coherent point drift method
NASA Astrophysics Data System (ADS)
Yang, Lijuan; Tian, Zheng; Zhao, Wei; Wen, Jinhuan; Yan, Weidong
2016-04-01
Coherent point drift (CPD) method is a powerful registration tool under the framework of the Gaussian mixture model (GMM). However, the global spatial structure of point sets is considered only without other forms of additional attribute information. The equivalent simplification of mixing parameters and the manual setting of the weight parameter in GMM make the CPD method less robust to outlier and have less flexibility. An adaptive CPD method is proposed to automatically determine the mixing parameters by embedding the local attribute information of features into the construction of GMM. In addition, the weight parameter is treated as an unknown parameter and automatically determined in the expectation-maximization algorithm. In image registration applications, the block-divided salient image disk extraction method is designed to detect sparse salient image features and local self-similarity is used as attribute information to describe the local neighborhood structure of each feature. The experimental results on optical images and remote sensing images show that the proposed method can significantly improve the matching performance.
Hwang, Wei-Chin
2010-01-01
How do we culturally adapt psychotherapy for ethnic minorities? Although there has been growing interest in doing so, few therapy adaptation frameworks have been developed. The majority of these frameworks take a top-down theoretical approach to adapting psychotherapy. The purpose of this paper is to introduce a community-based developmental approach to modifying psychotherapy for ethnic minorities. The Formative Method for Adapting Psychotherapy (FMAP) is a bottom-up approach that involves collaborating with consumers to generate and support ideas for therapy adaptation. It involves 5-phases that target developing, testing, and reformulating therapy modifications. These phases include: (a) generating knowledge and collaborating with stakeholders (b) integrating generated information with theory and empirical and clinical knowledge, (c) reviewing the initial culturally adapted clinical intervention with stakeholders and revising the culturally adapted intervention, (d) testing the culturally adapted intervention, and (e) finalizing the culturally adapted intervention. Application of the FMAP is illustrated using examples from a study adapting psychotherapy for Chinese Americans, but can also be readily applied to modify therapy for other ethnic groups. PMID:20625458
Efficient Combustion Simulation via the Adaptive Wavelet Collocation Method
NASA Astrophysics Data System (ADS)
Lung, Kevin; Brown-Dymkoski, Eric; Guerrero, Victor; Doran, Eric; Museth, Ken; Balme, Jo; Urberger, Bob; Kessler, Andre; Jones, Stephen; Moses, Billy; Crognale, Anthony
Rocket engine development continues to be driven by the intuition and experience of designers, progressing through extensive trial-and-error test campaigns. Extreme temperatures and pressures frustrate direct observation, while high-fidelity simulation can be impractically expensive owing to the inherent muti-scale, multi-physics nature of the problem. To address this cost, an adaptive multi-resolution PDE solver has been designed which targets the high performance, many-core architecture of GPUs. The adaptive wavelet collocation method is used to maintain a sparse-data representation of the high resolution simulation, greatly reducing the memory footprint while tightly controlling physical fidelity. The tensorial, stencil topology of wavelet-based grids lends itself to highly vectorized algorithms which are necessary to exploit the performance of GPUs. This approach permits efficient implementation of direct finite-rate kinetics, and improved resolution of steep thermodynamic gradients and the smaller mixing scales that drive combustion dynamics. Resolving these scales is crucial for accurate chemical kinetics, which are typically degraded or lost in statistical modeling approaches.
User-Adaptable Microcomputer Graphics Software for Life Science Instruction. Final Project Report.
ERIC Educational Resources Information Center
Spain, James D.
The objectives of the SUMIT project was to develop, evaluate, and disseminate 20 course modules (microcomputer programs) for instruction in general biology and ecology. To encourage broad utilization, the programs were designed for the Apple II microcomputer and written in Applesoft Basic with a user-adaptable format. Each package focused on a key…
Adaptive Ripple Down Rules Method based on Description Length
NASA Astrophysics Data System (ADS)
Yoshida, Tetsuya; Wada, Takuya; Motoda, Hiroshi; Washio, Takashi
A knowledge acquisition method Ripple Down Rules (RDR) can directly acquire and encode knowledge from human experts. It is an incremental acquisition method and each new piece of knowledge is added as an exception to the existing knowledge base. Past researches on RDR method assume that the problem domain is stable. This is not the case in reality, especially when an environment changes. Things change over time. This paper proposes an adaptive Ripple Down Rules method based on the Minimum Description Length Principle aiming at knowledge acquisition in a dynamically changing environment. We consider the change in the correspondence between attribute-values and class labels as a typical change in the environment. When such a change occurs, some pieces of knowledge previously acquired become worthless, and the existence of such knowledge may hinder acquisition of new knowledge. In our approach knowledge deletion is carried out as well as knowledge acquisition so that useless knowledge is properly discarded to ensure efficient knowledge acquisition while maintaining the prediction accuracy for future data. Furthermore, pruning is incorporated into the incremental knowledge acquisition in RDR to improve the prediction accuracy of the constructed knowledge base. Experiments were conducted by simulating the change in the correspondence between attribute-values and class labels using the datasets in UCI repository. The results are encouraging.
An Alternative Method to Project Wind Patterns
NASA Astrophysics Data System (ADS)
Fadillioglu, Cagla; Kiyisuren, I. Cagatay; Collu, Kamil; Turp, M. Tufan; Kurnaz, M. Levent; Ozturk, Tugba
2016-04-01
Wind energy is one of the major clean and sustainable energy sources. Beside its various advantages, wind energy has a downside that its performance cannot be projected very accurately in the long-term. In this study, we offer an alternative method which can be used to determine the best location to install a wind turbine in a large area aiming maximum energy performance in the long run. For this purpose, a regional climate model (i.e. RegCM4.4) is combined with a software called Winds on Critical Streamline Surfaces (WOCSS) in order to identify wind patterns for any domains even in a changing climate. As a special case, Çanakkale region is examined due to the terrain profile having both coastal and mountainous features. WOCSS program was run twice for each month in the sample years in a double nested fashion, using the provisional RegCM4.4 wind data between years 2020 and 2040. Modified version of WOCSS provides terrain following flow surfaces and by processing those data, it makes a wind profile output for certain heights specified by the user. The computational time of WOCSS is also in reasonable range. Considering the lack of alternative methods for long-term wind performance projection, the model used in this study is a very good way for obtaining quick indications for wind performance taking the impact of the terrain effects into account. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.
Adaptive Mesh Refinement in Computational Astrophysics -- Methods and Applications
NASA Astrophysics Data System (ADS)
Balsara, D.
2001-12-01
The advent of robust, reliable and accurate higher order Godunov schemes for many of the systems of equations of interest in computational astrophysics has made it important to understand how to solve them in multi-scale fashion. This is so because the physics associated with astrophysical phenomena evolves in multi-scale fashion and we wish to arrive at a multi-scale simulational capability to represent the physics. Because astrophysical systems have magnetic fields, multi-scale magnetohydrodynamics (MHD) is of especial interest. In this paper we first discuss general issues in adaptive mesh refinement (AMR). We then focus on the important issues in carrying out divergence-free AMR-MHD and catalogue the progress we have made in that area. We show that AMR methods lend themselves to easy parallelization. We then discuss applications of the RIEMANN framework for AMR-MHD to problems in computational astophysics.
Adaptive mesh refinement and adjoint methods in geophysics simulations
NASA Astrophysics Data System (ADS)
Burstedde, Carsten
2013-04-01
It is an ongoing challenge to increase the resolution that can be achieved by numerical geophysics simulations. This applies to considering sub-kilometer mesh spacings in global-scale mantle convection simulations as well as to using frequencies up to 1 Hz in seismic wave propagation simulations. One central issue is the numerical cost, since for three-dimensional space discretizations, possibly combined with time stepping schemes, a doubling of resolution can lead to an increase in storage requirements and run time by factors between 8 and 16. A related challenge lies in the fact that an increase in resolution also increases the dimensionality of the model space that is needed to fully parametrize the physical properties of the simulated object (a.k.a. earth). Systems that exhibit a multiscale structure in space are candidates for employing adaptive mesh refinement, which varies the resolution locally. An example that we found well suited is the mantle, where plate boundaries and fault zones require a resolution on the km scale, while deeper area can be treated with 50 or 100 km mesh spacings. This approach effectively reduces the number of computational variables by several orders of magnitude. While in this case it is possible to derive the local adaptation pattern from known physical parameters, it is often unclear what are the most suitable criteria for adaptation. We will present the goal-oriented error estimation procedure, where such criteria are derived from an objective functional that represents the observables to be computed most accurately. Even though this approach is well studied, it is rarely used in the geophysics community. A related strategy to make finer resolution manageable is to design methods that automate the inference of model parameters. Tweaking more than a handful of numbers and judging the quality of the simulation by adhoc comparisons to known facts and observations is a tedious task and fundamentally limited by the turnaround times
NASA Astrophysics Data System (ADS)
Brekke, L. D.; Clark, M. P.; Gutmann, E. D.; Wood, A.; Mizukami, N.; Mendoza, P. A.; Rasmussen, R.; Ikeda, K.; Pruitt, T.; Arnold, J. R.; Rajagopalan, B.
2015-12-01
Adaptation planning assessments often rely on single methods for climate projection downscaling and hydrologic analysis, do not reveal uncertainties from associated method choices, and thus likely produce overly confident decision-support information. Recent work by the authors has highlighted this issue by identifying strengths and weaknesses of widely applied methods for downscaling climate projections and assessing hydrologic impacts. This work has shown that many of the methodological choices made can alter the magnitude, and even the sign of the climate change signal. Such results motivate consideration of both sources of method uncertainty within an impacts assessment. Consequently, the authors have pursued development of improved downscaling techniques spanning a range of method classes (quasi-dynamical and circulation-based statistical methods) and developed approaches to better account for hydrologic analysis uncertainty (multi-model; regional parameter estimation under forcing uncertainty). This presentation summarizes progress in the development of these methods, as well as implications of pursuing these developments. First, having access to these methods creates an opportunity to better reveal impacts uncertainty through multi-method ensembles, expanding on present-practice ensembles which are often based only on emissions scenarios and GCM choices. Second, such expansion of uncertainty treatment combined with an ever-expanding wealth of global climate projection information creates a challenge of how to use such a large ensemble for local adaptation planning. To address this challenge, the authors are evaluating methods for ensemble selection (considering the principles of fidelity, diversity and sensitivity) that is compatible with present-practice approaches for abstracting change scenarios from any "ensemble of opportunity". Early examples from this development will also be presented.
NASA Astrophysics Data System (ADS)
Lee, Ping-Chang
2014-03-01
Computed tomography (CT) plays a key role in modern medical system, whether it be for diagnosis or therapy. As an increased risk of cancer development is associated with exposure to radiation, reducing radiation exposure in CT becomes an essential issue. Based on the compressive sensing (CS) theory, iterative based method with total variation (TV) minimization is proven to be a powerful framework for few-view tomographic image reconstruction. Multigrid method is an iterative method for solving both linear and nonlinear systems, especially when the system contains a huge number of components. In medical imaging, image background is often defined by zero intensity, thus attaining spatial support of the image, which is helpful for iterative reconstruction. In the proposed method, the image support is not considered as a priori knowledge. Rather, it evolves during the reconstruction process. Based on the CS framework, we proposed a multigrid method with adaptive spatial support constraint. The simultaneous algebraic reconstruction (SART) with TV minimization is implemented for comparison purpose. The numerical result shows: 1. Multigrid method has better performance while less than 60 views of projection data were used, 2. Spatial support highly improves the CS reconstruction, and 3. When few views of projection data were measured, our method performs better than the SART+TV method with spatial support constraint.
Adaptive mesh generation for edge-element finite element method
NASA Astrophysics Data System (ADS)
Tsuboi, Hajime; Gyimothy, Szabolcs
2001-06-01
An adaptive mesh generation method for two- and three-dimensional finite element methods using edge elements is proposed. Since the tangential component continuity is preserved when using edge elements, the strategy of creating new nodes is based on evaluation of the normal component of the magnetic vector potential across element interfaces. The evaluation is performed at the middle point of edge of a triangular element for two-dimensional problems or at the gravity center of triangular surface of a tetrahedral element for three-dimensional problems. At the boundary of two elements, the error estimator is the ratio of the normal component discontinuity to the maximum value of the potential in the same material. One or more nodes are set at the middle points of the edges according to the value of the estimator as well as the subdivision of elements where new nodes have been created. A final mesh will be obtained after several iterations. Some computation results of two- and three-dimensional problems using the proposed method are shown.
Evaluation of Adaptive Subdivision Method on Mobile Device
NASA Astrophysics Data System (ADS)
Rahim, Mohd Shafry Mohd; Isa, Siti Aida Mohd; Rehman, Amjad; Saba, Tanzila
2013-06-01
Recently, there are significant improvements in the capabilities of mobile devices; but rendering large 3D object is still tedious because of the constraint in resources of mobile devices. To reduce storage requirement, 3D object is simplified but certain area of curvature is compromised and the surface will not be smooth. Therefore a method to smoother selected area of a curvature is implemented. One of the popular methods is adaptive subdivision method. Experiments are performed using two data with results based on processing time, rendering speed and the appearance of the object on the devices. The result shows a downfall in frame rate performance due to the increase in the number of triangles with each level of iteration while the processing time of generating the new mesh also significantly increase. Since there is a difference in screen size between the devices the surface on the iPhone appears to have more triangles and more compact than the surface displayed on the iPad. [Figure not available: see fulltext.
Adaptive Elastic Net for Generalized Methods of Moments.
Caner, Mehmet; Zhang, Hao Helen
2014-01-30
Model selection and estimation are crucial parts of econometrics. This paper introduces a new technique that can simultaneously estimate and select the model in generalized method of moments (GMM) context. The GMM is particularly powerful for analyzing complex data sets such as longitudinal and panel data, and it has wide applications in econometrics. This paper extends the least squares based adaptive elastic net estimator of Zou and Zhang (2009) to nonlinear equation systems with endogenous variables. The extension is not trivial and involves a new proof technique due to estimators lack of closed form solutions. Compared to Bridge-GMM of Caner (2009), we allow for the number of parameters to diverge to infinity as well as collinearity among a large number of variables, also the redundant parameters set to zero via a data dependent technique. This method has the oracle property, meaning that we can estimate nonzero parameters with their standard limit and the redundant parameters are dropped from the equations simultaneously. Numerical examples are used to illustrate the performance of the new method.
Adaptive enhancement method of infrared image based on scene feature
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Bai, Tingzhu; Shang, Fei
2008-12-01
All objects emit radiation in amounts related to their temperature and their ability to emit radiation. The infrared image shows the invisible infrared radiation emitted directly. Because of the advantages, the technology of infrared imaging is applied to many kinds of fields. But compared with visible image, the disadvantages of infrared image are obvious. The characteristics of low luminance, low contrast and the inconspicuous difference target and background are the main disadvantages of infrared image. The aim of infrared image enhancement is to improve the interpretability or perception of information in infrared image for human viewers, or to provide 'better' input for other automated image processing techniques. Most of the adaptive algorithm for image enhancement is mainly based on the gray-scale distribution of infrared image, and is not associated with the actual image scene of the features. So the pertinence of infrared image enhancement is not strong, and the infrared image is not conducive to the application of infrared surveillance. In this paper we have developed a scene feature-based algorithm to enhance the contrast of infrared image adaptively. At first, after analyzing the scene feature of different infrared image, we have chosen the feasible parameters to describe the infrared image. In the second place, we have constructed the new histogram distributing base on the chosen parameters by using Gaussian function. In the last place, the infrared image is enhanced by constructing a new form of histogram. Experimental results show that the algorithm has better performance than other methods mentioned in this paper for infrared scene images.
Supporting UK adaptation: building services for the next set of UK climate projections
NASA Astrophysics Data System (ADS)
Fung, Fai; Lowe, Jason
2016-04-01
As part of the Climate Change Act 2008, the UK Government sets out a national adaptation programme to address the risks and opportunities identified in a national climate change risk assessment (CCRA) every five years. The last risk assessment in 2012 was based on the probabilistic projections for the UK published in 2009 (UKCP09). The second risk assessment will also use information from UKCP09 alongside other evidence on climate projections. However, developments in the science of climate projeciton, and evolving user needs (based partly on what has been learnt about the diverse user requirements of the UK adaptation community from the seven years of delivering and managing UKCP09 products, market research and the peer-reviewed literature) suggest now is an appropriate time to update the projections and how they are delivered. A new set of UK climate projections are now being produced to upgrade UKCP09 to reflect the latest developments in climate science, the first phase of which will be delivered in 2018 to support the third CCRA. A major component of the work is the building of a tailored service to support users of the new projections during their development and to involve users in key decisions so that the projections are of most use. We will set out the plan for the new climate projections that seek to address the evolving user need. We will also present a framework which aims to (i) facilitate the dialogue between users, boundary organisations and producers, reflecting their different decision-making roles (ii) produce scientifically robust, user-relevant climate information (iii) provide the building blocks for developing further climate services to support adaptation activities in the UK.
Method for removing tilt control in adaptive optics systems
Salmon, Joseph Thaddeus
1998-01-01
A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)
Method for removing tilt control in adaptive optics systems
Salmon, J.T.
1998-04-28
A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.
Adaptive two-regime method: Application to front propagation
Robinson, Martin Erban, Radek; Flegg, Mark
2014-03-28
The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in terms of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.
An adaptive training method for optimal interpolative neural nets.
Liu, T Z; Yen, C W
1997-04-01
In contrast to conventional multilayered feedforward networks which are typically trained by iterative gradient search methods, an optimal interpolative (OI) net can be trained by a noniterative least squares algorithm called RLS-OI. The basic idea of RLS-OI is to use a subset of the training set, whose inputs are called subprototypes, to constrain the OI net solution. A subset of these subprototypes, called prototypes, is then chosen as the parameter vectors of the activation functions of the OI net to satisfy the subprototype constraints in the least squares (LS) sense. By dynamically increasing the numbers of subprototypes and prototypes, RLS-OI evolves the OI net from scratch to the extent sufficient to solve a given classification problem. To improve the performance of RLS-OI, this paper addresses two important problems in OI net training: the selection of the subprototypes and the selection of the prototypes. By choosing subprototypes from poorly classified regions, this paper proposes a new subprototype selection method which is adaptive to the changing classification performance of the growing OI net. This paper also proposes a new prototype selection criterion to reduce the complexity of the OI net. For the same training accuracy, simulation results demonstrate that the proposed approach produces smaller OI net than the RLS-OI algorithm. Experimental results also show that the proposed approach is less sensitive to the variation of the training set than RLS-OI.
Adaptive two-regime method: application to front propagation.
Robinson, Martin; Flegg, Mark; Erban, Radek
2014-03-28
The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in terms of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.
An adaptive high and low impedance fault detection method
Yu, D.C. ); Khan, S.H. )
1994-10-01
An integrated high impedance fault (HIF) and low impedance fault (LIF) detection method is proposed in this paper. For a HIF detection, the proposed technique is based on a number of characteristics of the HIF current. These characteristics are: fault current magnitude, magnitude of the 3rd harmonic current, magnitude of the 5th harmonic current, the angle of the third harmonic current, the angle difference between the third harmonics current and the fundamental voltage, negative sequence current of HIF. These characteristics are identified by modeling the distribution feeders in EMTP. Apart from these characteristics, the above ambient (average) negative sequence current is also considered. An adjustable block out region around the average load current is provided. The average load current is calculated at every 18,000 cycles (5 minutes) interval. This adaptive feature will not only make the proposed scheme more sensitive to the low fault current, but it will also prevent the relay from tripping during the normal load current. In this paper, the logic circuit required for implementing the proposed HIF detection methods is also included. With minimal modifications, the logic developed for the HIF detection can be applied for the low impedance fault (LIF) detection. A complete logic circuit which detects both the HIF and LIF is proposed. Using this combined logic, the need of installing separate devices for HIF and LIF detection can be eliminated.
Adaptable Metadata Rich IO Methods for Portable High Performance IO
Lofstead, J.; Zheng, Fang; Klasky, Scott A; Schwan, Karsten
2009-01-01
Since IO performance on HPC machines strongly depends on machine characteristics and configuration, it is important to carefully tune IO libraries and make good use of appropriate library APIs. For instance, on current petascale machines, independent IO tends to outperform collective IO, in part due to bottlenecks at the metadata server. The problem is exacerbated by scaling issues, since each IO library scales differently on each machine, and typically, operates efficiently to different levels of scaling on different machines. With scientific codes being run on a variety of HPC resources, efficient code execution requires us to address three important issues: (1) end users should be able to select the most efficient IO methods for their codes, with minimal effort in terms of code updates or alterations; (2) such performance-driven choices should not prevent data from being stored in the desired file formats, since those are crucial for later data analysis; and (3) it is important to have efficient ways of identifying and selecting certain data for analysis, to help end users cope with the flood of data produced by high end codes. This paper employs ADIOS, the ADaptable IO System, as an IO API to address (1)-(3) above. Concerning (1), ADIOS makes it possible to independently select the IO methods being used by each grouping of data in an application, so that end users can use those IO methods that exhibit best performance based on both IO patterns and the underlying hardware. In this paper, we also use this facility of ADIOS to experimentally evaluate on petascale machines alternative methods for high performance IO. Specific examples studied include methods that use strong file consistency vs. delayed parallel data consistency, as that provided by MPI-IO or POSIX IO. Concerning (2), to avoid linking IO methods to specific file formats and attain high IO performance, ADIOS introduces an efficient intermediate file format, termed BP, which can be converted, at small
The Vulcan Project: Methods, Results, and Evaluation
NASA Astrophysics Data System (ADS)
Gurney, K. R.; Mendoza, D.; Miller, C.; Ojima, D.; Knox, S.; Corbin, K.; Denning, S.; Fischer, M.; de La Rue Du Can, S.
2008-12-01
The Vulcan Project has quantified fossil fuel CO2 for the United States at the sub-county spatial scale, hourly for the year 2002. It approached quantification of fossil fuel CO2 from a novel perspective: leveraging the information already contained within the National Emissions Inventory for the assessment of nationally regulated air pollution. By utilizing the inventory emissions of carbon monoxide and nitrogen oxides combined with emissions factors, specific to combustion device technology, we have calculated CO2 emissions for industrial point sources, powerplants, mobile sources, residential and commercial sectors with information on fuel used and source classification information. In this presentation, we provide an overview of the Vulcan inventory methods, results and evaluation of the Vulcan inventory by comparing to state-level inventories and other independent estimates. The inventory has been recently placed onto Google Earth and we will provide a preview of this capability. Finally, we will present the result of fossil fuel CO2 concentration as transported by an atmospheric transport model and a comparison to in situ CO2 observations.
Principles and Methods of Adapted Physical Education and Recreation.
ERIC Educational Resources Information Center
Arnheim, Daniel D.; And Others
This text is designed for the elementary and secondary school physical educator and the recreation specialist in adapted physical education and, more specifically, as a text for college courses in adapted and corrective physical education and therapeutic recreation. The text is divided into four major divisions: scope, key teaching and therapy…
Adaptive optical beam shaping for compensating projection-induced focus deformation
NASA Astrophysics Data System (ADS)
Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter
2016-02-01
Scanner-based applications are already widely used for the processing of surfaces, as they allow for highly dynamic deflection of the laser beam. Particularly, the processing of three-dimensional surfaces with laser radiation initiates the development of highly innovative manufacturing techniques. Unfortunately, the focused laser beam suffers from deformation caused by the involved projection mechanisms. The degree of deformation is field variant and depends on both the surface geometry and the working position of the laser beam. Depending on the process sensitivity, the deformation affects the process quality, which motivates a method of compensation. Current approaches are based on a local adaption of the laser power to maintain constant intensity within the interaction zone. For advanced manufacturing, this approach is insufficient, as the residual deformation of the initial circular laser spot is not taken into account. In this paper, an alternative approach is discussed. Additional beam-shaping devices are integrated between the laser source and the scanner, and allow for an in situ compensation to ensure a field-invariant circular focus spot within the interaction zone. Beyond the optical design, the approach is challenging with respect to the control theory's point of view, as both the beam deflection and the compensation have to be synchronized.
Global Change adaptation in water resources management: the Water Change project.
Pouget, Laurent; Escaler, Isabel; Guiu, Roger; Mc Ennis, Suzy; Versini, Pierre-Antoine
2012-12-01
In recent years, water resources management has been facing new challenges due to increasing changes and their associated uncertainties, such as changes in climate, water demand or land use, which can be grouped under the term Global Change. The Water Change project (LIFE+ funding) developed a methodology and a tool to assess the Global Change impacts on water resources, thus helping river basin agencies and water companies in their long term planning and in the definition of adaptation measures. The main result of the project was the creation of a step by step methodology to assess Global Change impacts and define strategies of adaptation. This methodology was tested in the Llobregat river basin (Spain) with the objective of being applicable to any water system. It includes several steps such as setting-up the problem with a DPSIR framework, developing Global Change scenarios, running river basin models and performing a cost-benefit analysis to define optimal strategies of adaptation. This methodology was supported by the creation of a flexible modelling system, which can link a wide range of models, such as hydrological, water quality, and water management models. The tool allows users to integrate their own models to the system, which can then exchange information among them automatically. This enables to simulate the interactions among multiple components of the water cycle, and run quickly a large number of Global Change scenarios. The outcomes of this project make possible to define and test different sets of adaptation measures for the basin that can be further evaluated through cost-benefit analysis. The integration of the results contributes to an efficient decision-making on how to adapt to Global Change impacts.
MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods
Schmidt, Johannes F. M.; Santelli, Claudio; Kozerke, Sebastian
2016-01-01
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675
Tsunami modelling with adaptively refined finite volume methods
LeVeque, R.J.; George, D.L.; Berger, M.J.
2011-01-01
Numerical modelling of transoceanic tsunami propagation, together with the detailed modelling of inundation of small-scale coastal regions, poses a number of algorithmic challenges. The depth-averaged shallow water equations can be used to reduce this to a time-dependent problem in two space dimensions, but even so it is crucial to use adaptive mesh refinement in order to efficiently handle the vast differences in spatial scales. This must be done in a 'wellbalanced' manner that accurately captures very small perturbations to the steady state of the ocean at rest. Inundation can be modelled by allowing cells to dynamically change from dry to wet, but this must also be done carefully near refinement boundaries. We discuss these issues in the context of Riemann-solver-based finite volume methods for tsunami modelling. Several examples are presented using the GeoClaw software, and sample codes are available to accompany the paper. The techniques discussed also apply to a variety of other geophysical flows. ?? 2011 Cambridge University Press.
A hybrid method for optimization of the adaptive Goldstein filter
NASA Astrophysics Data System (ADS)
Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue
2014-12-01
The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.
Lessons learned applying CASE methods/tools to Ada software development projects
NASA Technical Reports Server (NTRS)
Blumberg, Maurice H.; Randall, Richard L.
1993-01-01
This paper describes the lessons learned from introducing CASE methods/tools into organizations and applying them to actual Ada software development projects. This paper will be useful to any organization planning to introduce a software engineering environment (SEE) or evolving an existing one. It contains management level lessons learned, as well as lessons learned in using specific SEE tools/methods. The experiences presented are from Alpha Test projects established under the STARS (Software Technology for Adaptable and Reliable Systems) project. They reflect the front end efforts by those projects to understand the tools/methods, initial experiences in their introduction and use, and later experiences in the use of specific tools/methods and the introduction of new ones.
Solution of Reactive Compressible Flows Using an Adaptive Wavelet Method
NASA Astrophysics Data System (ADS)
Zikoski, Zachary; Paolucci, Samuel; Powers, Joseph
2008-11-01
This work presents numerical simulations of reactive compressible flow, including detailed multicomponent transport, using an adaptive wavelet algorithm. The algorithm allows for dynamic grid adaptation which enhances our ability to fully resolve all physically relevant scales. The thermodynamic properties, equation of state, and multicomponent transport properties are provided by CHEMKIN and TRANSPORT libraries. Results for viscous detonation in a H2:O2:Ar mixture, and other problems in multiple dimensions, are included.
On Accuracy of Adaptive Grid Methods for Captured Shocks
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2002-01-01
The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.
NASA Technical Reports Server (NTRS)
Wang, Ray (Inventor)
2009-01-01
A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.
The Action-Project Method in Counseling Psychology
ERIC Educational Resources Information Center
Young, Richard A.; Valach, Ladislav; Domene, Jose F.
2005-01-01
The qualitative action-project method is described as an appropriate and heuristic qualitative research method for use in counseling psychology. Action theory, which addresses human intentional, goal-directed action, project, and career, provides the conceptual framework for the method. Data gathering and analysis involve multiple procedures to…
NASA Astrophysics Data System (ADS)
Picketts, I. M.
2015-12-01
Transportation infrastructure is a significant climate change adaptation concern because it is: costly; designed for long operational lives; susceptible to both episodic and seasonal deterioration; and a significant safety concern. While examples of adaptation exist in transportation design, many communities do not have the capacity to incorporate climate change considerations into infrastructure planning and management. This presentation will overview the process and outcomes of research conducted in collaboration with the communities of Prince George and Squamish, both located in British Columbia (BC), Canada. Previous research in Prince George (in northern BC) involved applying downscaled climate projection information to assess local climate impacts, and identified transportation infrastructure as the top priority for ongoing study. In Prince George the adaptation process was oriented toward determining how the City could plan, design, and maintain roads and other structures to account for climate change. A local steering committee was formed, and created and evaluated 23 potential research topics. Two focus areas were selected for further investigation and explored during a workshop with practitioners, researchers, consultants and other representatives. The workshop precipitated additional modelling of projected impacts of climate change on road maintenance and road safety, and plans to explore the viability of alternative paving techniques. Outcomes of the case study provide insights regarding how researchers can 'combine' top down and bottom up approaches by using modelling information as part of an engagement process with local experts to explore adaptation. Ongoing research in Squamish seeks to apply lessons learned from the Prince George case study (both related to process and the application of modelling information) to a more temperate coastal region with a more climate-concerned population. In Squamish there also lies an opportunity to explicitly focus
NASA Astrophysics Data System (ADS)
Willems, Patrick
2015-04-01
case study), following the approach proposed by Ntegeka et al. (2014). When the consequences of given scenarios are high, they should be taken into account in the decision making process. For the Flanders' guidelines, it was agreed among the members of the regional Coordination Commission Integrated Water Management to consider (in addition to the traditional range of return periods up to 5 years) a 20-year design storm for scenario investigation. It was motivated by the outcome of this study that under the high climate scenario a 20-year storm would become - in order of magnitude - a 5-year storm. If after a design for a 5-year storm, the 20-year scenario investigation would conclude that specific zones along the sewer system would have severe additional impacts, it is recommended to apply changes to the system or to design flexible adaptation measures for the future (depending on which of the options would be most cost-efficient). Another adaptation action agreed was the installation of storm water infiltration devices at private houses and make these mandatory for new and renovated houses. Such installation was found to be cost-effective in any of the climate scenario's. This is one way of dealing with climate uncertainties, but lessons learned from other cases/applications are highly welcomed. References Ntegeka, V., Baguis, P., Roulin, E., Willems, P. (2014), 'Developing tailored climate change scenarios for hydrological impact assessments', Journal of Hydrology, 508C, 307-321 Willems, P. (2013). 'Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium', Journal of Hydrology, 496, 166-177 Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V. (2012), 'Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings', Atmospheric Research, 103, 106-118
Hemakom, Apit; Goverdovsky, Valentin; Looney, David; Mandic, Danilo P
2016-04-13
An extension to multivariate empirical mode decomposition (MEMD), termed adaptive-projection intrinsically transformed MEMD (APIT-MEMD), is proposed to cater for power imbalances and inter-channel correlations in real-world multichannel data. It is shown that the APIT-MEMD exhibits similar or better performance than MEMD for a large number of projection vectors, whereas it outperforms MEMD for the critical case of a small number of projection vectors within the sifting algorithm. We also employ the noise-assisted APIT-MEMD within our proposed intrinsic multiscale analysis framework and illustrate the advantages of such an approach in notoriously noise-dominated cooperative brain-computer interface (BCI) based on the steady-state visual evoked potentials and the P300 responses. Finally, we show that for a joint cognitive BCI task, the proposed intrinsic multiscale analysis framework improves system performance in terms of the information transfer rate. PMID:26953174
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; Huynh, Timmy N.; Bhaduri, Budhendra L.
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; Huynh, Timmy N.; Bhaduri, Budhendra L.
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.
Locally adaptive, spatially explicit projection of US population for 2030 and 2050
McKee, Jacob J.; Rose, Amy N.; Bright, Edward A.; Huynh, Timmy; Bhaduri, Budhendra L.
2015-01-01
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census’s projection methodology, with the US Census’s official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations. PMID:25605882
2012-01-01
Background Study-based global health interventions, especially those that are conducted on an international or multi-site basis, frequently require site-specific adaptations in order to (1) respond to socio-cultural differences in risk determinants, (2) to make interventions more relevant to target population needs, and (3) in recognition of ‘global health diplomacy' issues. We report on the adaptations development, approval and implementation process from the Project Accept voluntary counseling and testing, community mobilization and post-test support services intervention. Methods We reviewed all relevant documentation collected during the study intervention period (e.g. monthly progress reports; bi-annual steering committee presentations) and conducted a series of semi-structured interviews with project directors and between 12 and 23 field staff at each study site in South Africa, Zimbabwe, Thailand and Tanzania during 2009. Respondents were asked to describe (1) the adaptations development and approval process and (2) the most successful site-specific adaptations from the perspective of facilitating intervention implementation. Results Across sites, proposed adaptations were identified by field staff and submitted to project directors for review on a formally planned basis. The cross-site intervention sub-committee then ensured fidelity to the study protocol before approval. Successfully-implemented adaptations included: intervention delivery adaptations (e.g. development of tailored counseling messages for immigrant labour groups in South Africa) political, environmental and infrastructural adaptations (e.g. use of local community centers as VCT venues in Zimbabwe); religious adaptations (e.g. dividing clients by gender in Muslim areas of Tanzania); economic adaptations (e.g. co-provision of income generating skills classes in Zimbabwe); epidemiological adaptations (e.g. provision of ‘youth-friendly’ services in South Africa, Zimbabwe and Tanzania), and
Systems and Methods for Derivative-Free Adaptive Control
NASA Technical Reports Server (NTRS)
Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.
Study of adaptive methods for data compression of scanner data
NASA Technical Reports Server (NTRS)
1977-01-01
The performance of adaptive image compression techniques and the applicability of a variety of techniques to the various steps in the data dissemination process are examined in depth. It is concluded that the bandwidth of imagery generated by scanners can be reduced without introducing significant degradation such that the data can be transmitted over an S-band channel. This corresponds to a compression ratio equivalent to 1.84 bits per pixel. It is also shown that this can be achieved using at least two fairly simple techniques with weight-power requirements well within the constraints of the LANDSAT-D satellite. These are the adaptive 2D DPCM and adaptive hybrid techniques.
Adaptive region of interest method for analytical micro-CT reconstruction.
Yang, Wanneng; Xu, Xiaochun; Bi, Kun; Zeng, Shaoqun; Liu, Qian; Chen, Shangbin
2011-01-01
The real-time imaging is important in automatic successive inspection with micro-computerized tomography (micro-CT). Generally, the size of the detector is chosen according to the most probable size of the measured object to acquire all the projection data. Given enough imaging area and imaging resolution of X-ray detector, the detector is larger than specimen projection area, which results in redundant data in the Sinogram. The process of real-time micro-CT is computation-intensive because of the large amounts of source and destination data. The speed of the reconstruction algorithm can't always meet the requirements of real-time applications. A preprocessing method called adaptive region of interest (AROI), which detects the object's boundaries automatically to focus the active Sinogram regions, is introduced into the analytical reconstruction algorithm in this paper. The AROI method reduces the volume of the reconstructing data and thus directly accelerates the reconstruction process. It has been further shown that image quality is not compromised when applying AROI, while the reconstruction speed is increased as the square of the ratio of the sizes of the detector and the specimen slice. In practice, the conch reconstruction experiment indicated that the process is accelerated by 5.2 times with AROI and the imaging quality is not degraded. Therefore, the AROI method improves the speed of analytical micro-CT reconstruction significantly.
Adaptive region of interest method for analytical micro-CT reconstruction.
Yang, Wanneng; Xu, Xiaochun; Bi, Kun; Zeng, Shaoqun; Liu, Qian; Chen, Shangbin
2011-01-01
The real-time imaging is important in automatic successive inspection with micro-computerized tomography (micro-CT). Generally, the size of the detector is chosen according to the most probable size of the measured object to acquire all the projection data. Given enough imaging area and imaging resolution of X-ray detector, the detector is larger than specimen projection area, which results in redundant data in the Sinogram. The process of real-time micro-CT is computation-intensive because of the large amounts of source and destination data. The speed of the reconstruction algorithm can't always meet the requirements of real-time applications. A preprocessing method called adaptive region of interest (AROI), which detects the object's boundaries automatically to focus the active Sinogram regions, is introduced into the analytical reconstruction algorithm in this paper. The AROI method reduces the volume of the reconstructing data and thus directly accelerates the reconstruction process. It has been further shown that image quality is not compromised when applying AROI, while the reconstruction speed is increased as the square of the ratio of the sizes of the detector and the specimen slice. In practice, the conch reconstruction experiment indicated that the process is accelerated by 5.2 times with AROI and the imaging quality is not degraded. Therefore, the AROI method improves the speed of analytical micro-CT reconstruction significantly. PMID:21422587
Evaluation of intrinsic respiratory signal determination methods for 4D CBCT adapted for mice
Martin, Rachael; Pan, Tinsu; Rubinstein, Ashley; Court, Laurence; Ahmad, Moiz
2015-01-15
Purpose: 4D CT imaging in mice is important in a variety of areas including studies of lung function and tumor motion. A necessary step in 4D imaging is obtaining a respiratory signal, which can be done through an external system or intrinsically through the projection images. A number of methods have been developed that can successfully determine the respiratory signal from cone-beam projection images of humans, however only a few have been utilized in a preclinical setting and most of these rely on step-and-shoot style imaging. The purpose of this work is to assess and make adaptions of several successful methods developed for humans for an image-guided preclinical radiation therapy system. Methods: Respiratory signals were determined from the projection images of free-breathing mice scanned on the X-RAD system using four methods: the so-called Amsterdam shroud method, a method based on the phase of the Fourier transform, a pixel intensity method, and a center of mass method. The Amsterdam shroud method was modified so the sharp inspiration peaks associated with anesthetized mouse breathing could be detected. Respiratory signals were used to sort projections into phase bins and 4D images were reconstructed. Error and standard deviation in the assignment of phase bins for the four methods compared to a manual method considered to be ground truth were calculated for a range of region of interest (ROI) sizes. Qualitative comparisons were additionally made between the 4D images obtained using each of the methods and the manual method. Results: 4D images were successfully created for all mice with each of the respiratory signal extraction methods. Only minimal qualitative differences were noted between each of the methods and the manual method. The average error (and standard deviation) in phase bin assignment was 0.24 ± 0.08 (0.49 ± 0.11) phase bins for the Fourier transform method, 0.09 ± 0.03 (0.31 ± 0.08) phase bins for the modified Amsterdam shroud method, 0
NASA Astrophysics Data System (ADS)
Menz, Christoph
2016-04-01
Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.
NASA Technical Reports Server (NTRS)
Kopasakis, George
2005-01-01
This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.
A New Method to Cancel RFI---The Adaptive Filter
NASA Astrophysics Data System (ADS)
Bradley, R.; Barnbaum, C.
1996-12-01
An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation
Lorenz, Susanne; Dessai, Suraje; Forster, Piers M; Paavola, Jouni
2015-11-28
Visualizations are widely used in the communication of climate projections. However, their effectiveness has rarely been assessed among their target audience. Given recent calls to increase the usability of climate information through the tailoring of climate projections, it is imperative to assess the effectiveness of different visualizations. This paper explores the complexities of tailoring through an online survey conducted with 162 local adaptation practitioners in Germany and the UK. The survey examined respondents' assessed and perceived comprehension (PC) of visual representations of climate projections as well as preferences for using different visualizations in communicating and planning for a changing climate. Comprehension and use are tested using four different graph formats, which are split into two pairs. Within each pair the information content is the same but is visualized differently. We show that even within a fairly homogeneous user group, such as local adaptation practitioners, there are clear differences in respondents' comprehension of and preference for visualizations. We do not find a consistent association between assessed comprehension and PC or use within the two pairs of visualizations that we analysed. There is, however, a clear link between PC and use of graph format. This suggests that respondents use what they think they understand the best, rather than what they actually understand the best. These findings highlight that audience-specific targeted communication may be more complex and challenging than previously recognized. PMID:26460109
Lorenz, Susanne; Dessai, Suraje; Forster, Piers M.; Paavola, Jouni
2015-01-01
Visualizations are widely used in the communication of climate projections. However, their effectiveness has rarely been assessed among their target audience. Given recent calls to increase the usability of climate information through the tailoring of climate projections, it is imperative to assess the effectiveness of different visualizations. This paper explores the complexities of tailoring through an online survey conducted with 162 local adaptation practitioners in Germany and the UK. The survey examined respondents’ assessed and perceived comprehension (PC) of visual representations of climate projections as well as preferences for using different visualizations in communicating and planning for a changing climate. Comprehension and use are tested using four different graph formats, which are split into two pairs. Within each pair the information content is the same but is visualized differently. We show that even within a fairly homogeneous user group, such as local adaptation practitioners, there are clear differences in respondents’ comprehension of and preference for visualizations. We do not find a consistent association between assessed comprehension and PC or use within the two pairs of visualizations that we analysed. There is, however, a clear link between PC and use of graph format. This suggests that respondents use what they think they understand the best, rather than what they actually understand the best. These findings highlight that audience-specific targeted communication may be more complex and challenging than previously recognized. PMID:26460109
Lorenz, Susanne; Dessai, Suraje; Forster, Piers M; Paavola, Jouni
2015-11-28
Visualizations are widely used in the communication of climate projections. However, their effectiveness has rarely been assessed among their target audience. Given recent calls to increase the usability of climate information through the tailoring of climate projections, it is imperative to assess the effectiveness of different visualizations. This paper explores the complexities of tailoring through an online survey conducted with 162 local adaptation practitioners in Germany and the UK. The survey examined respondents' assessed and perceived comprehension (PC) of visual representations of climate projections as well as preferences for using different visualizations in communicating and planning for a changing climate. Comprehension and use are tested using four different graph formats, which are split into two pairs. Within each pair the information content is the same but is visualized differently. We show that even within a fairly homogeneous user group, such as local adaptation practitioners, there are clear differences in respondents' comprehension of and preference for visualizations. We do not find a consistent association between assessed comprehension and PC or use within the two pairs of visualizations that we analysed. There is, however, a clear link between PC and use of graph format. This suggests that respondents use what they think they understand the best, rather than what they actually understand the best. These findings highlight that audience-specific targeted communication may be more complex and challenging than previously recognized.
ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve.
Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk
2014-01-01
In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments.
Adaptation of filtered back-projection to compton imaging with non-uniform azimuthal geometry
NASA Astrophysics Data System (ADS)
Lee, Hyounggun; Lee, Taewoong; Lee, Wonho
2016-05-01
For Compton image reconstruction, analytic reconstruction methods such as filtered backprojection have been used for real-time imaging. The conventional filtered back-projection method assumes a uniformly distributed azimuthal response in the detector system. In this study, we applied filtered back-projection to the experimental data from detector systems with limited azimuthal angle coverage ranges and estimated the limitations of the analytic reconstruction methods when applied to these systems. For the system with a uniform azimuthal response, the images reconstructed by using filtered back-projection showed better angular resolutions than the images obtained by using simple back-projection did. However, when filtered back-projection was applied to reconstruct Compton images based on measurements performed by using Compton cameras with limited response geometries, the reconstructed images exhibited artifacts caused by the geometrical limitations. Our proposed method employs the Compton camera's rotation to overcome the angular response limitations; when the rotation method was applied in this study, the artifacts in the reconstructed images caused by angular response limitations were minimized. With this method, filtered back-projection can be applied to reconstruct real-time Compton images even when the radiation measurements are performed by using Compton cameras with non-uniform azimuthal response geometries.
The use of the spectral method within the fast adaptive composite grid method
McKay, S.M.
1994-12-31
The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.
Quality assurance plan for the Objective Supply Capability Adaptive Redesign (OSCAR) project
Stewart, K.A.; Rasch, K.A.; Reid, R.W.
1996-11-01
This document establishes the Quality Assurance Plan (QAP) for the National Guard Bureau Objective Supply Capability Adaptive Redesign (OSCAR) project activities under the Oak Ridge National Laboratory (ORNL) management. It defines the requirements and assigns responsibilities for ensuring, with a high degree of confidence, that project objectives will be achieved as planned. The QAP outlined herein is responsive to and meets the Quality Assurance Program standards for the U.S. Department of Energy (DOE), Lockheed Martin Energy Research Corporation and ORNL and the ORNL Computing, Robotics, and Education Directorate (CRE). This document is intended to be in compliance with DOE Order 5700.6C, Quality Assurance Program, and the ORNL Standard Practice Procedure, SPP X-QA-8, Quality Assurance for ORNL Computing Software. This standard allows individual organizations to apply the stated requirements in a flexible manner suitable to the type of activity involved. Section I of this document provides an introduction to the OSCAR project QAP; Sections 2 and 3 describe the specific aspects of quality assurance as applicable to the OSCAR project. Section 4 describes the project approach to risk management. The Risk Management Matrix given in Appendix A is a tool to assess, prioritize, and prevent problems before they occur. Therefore, the matrix will be reviewed and revised on a periodic basis.
Construction Management: Choosing the Best Project Delivery Method.
ERIC Educational Resources Information Center
Peck, Blake V.
2001-01-01
Reviews the types of facility construction project delivery methods and the concerns that facility owners have when embarking on a construction program. The considerations that should guide the owner in selecting the proper delivery method are highlighted. (GR)
Project 6: Cumulative Risk Assessment (CRA) Methods and Applications
Project 6: CRA Methods and Applications addresses the need to move beyond traditional risk assessment practices by developing CRA methods to integrate and evaluate impacts of chemical and nonchemical stressors on the environment and human health. Project 6 has three specific obje...
Adaptive finite element methods for two-dimensional problems in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1994-01-01
Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.
NASA Astrophysics Data System (ADS)
Günay, Osman; Töreyin, Behcet Uǧur; Çetin, Ahmet Enis
2011-07-01
In this paper, an online adaptive decision fusion framework is developed for image analysis and computer vision applications. In this framework, it is assumed that the compound algorithm consists of several sub-algorithms, each of which yields its own decision as a real number centered around zero, representing the confidence level of that particular sub-algorithm. Decision values are linearly combined with weights that are updated online according to an active fusion method based on performing orthogonal projections onto convex sets describing sub-algorithms. It is assumed that there is an oracle, who is usually a human operator, providing feedback to the decision fusion method. A video-based wildfire detection system is developed to evaluate the performance of the algorithm in handling the problems where data arrives sequentially. In this case, the oracle is the security guard of the forest lookout tower verifying the decision of the combined algorithm. Simulation results are presented.
An adaptive way for improving noise reduction using local geometric projection
NASA Astrophysics Data System (ADS)
Leontitsis, Alexandros; Bountis, Tassos; Pagge, Jenny
2004-03-01
We propose an adaptive way to improve noise reduction by local geometric projection. From the neighborhood of each candidate point in phase space, we identify the best subspace that the point will be orthogonally projected to. The signal subspace is formed by the most significant eigendirections of the neighborhood, while the less significant ones define the noise subspace. We provide a simple criterion to separate the most significant eigendirections from the less significant ones. This criterion is based on the maximum logarithmic difference between the neighborhood eigendirection lengths, and the assumption that there is at least one eigendirection that corresponds to the noise subspace. In this way, we take into account the special characteristics of each neighborhood and introduce a more successful noise reduction technique. Results are presented for a chaotic time series of the Hénon map and Ikeda map, as well as on the Nasdaq Composite index.
Method and apparatus for adaptive force and position control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1989-01-01
The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.
Higher-Order Semi-Implicit Projection Methods
Minion, M L
2001-09-06
A semi-implicit form of the method of spectral deferred corrections is applied to the solution of the incompressible Navier-Stokes equations. A methodology for constructing semi-implicit projection methods with arbitrarily high order of temporal accuracy in both the velocity and pressure is presented. Three variations of projection methods are discussed which differ in the manner in which the auxiliary velocity and the pressure are calculated. The presentation will make clear that project methods in general need not be viewed as fractional step methods as is often the practice. Two simple numerical examples re used to demonstrate fourth-order accuracy in time for an implementation of each variation of projection method.
ERIC Educational Resources Information Center
Wessel, J. A.; And Others
The final report reviews the first year of a project to adapt, for severely handicapped individuals, physical and leisure education materials developed by the I CAN Project for trainable retarded student populations; and to develop a training program in use of the materials for teacher consultants and teachers of the severely handicapped.…
Adaptive aggregation method for the Chemical Master Equation.
Zhang, Jingwei; Watson, Layne T; Cao, Yang
2009-01-01
One important aspect of biological systems such as gene regulatory networks and protein-protein interaction networks is the stochastic nature of interactions between chemical species. Such stochastic behaviour can be accurately modelled by the Chemical Master Equation (CME). However, the CME usually imposes intensive computational requirements when used to characterise molecular biological systems. The major challenge comes from the curse of dimensionality, which has been tackled by a few research papers. The essential goal is to aggregate the system efficiently with limited approximation errors. This paper presents an adaptive way to implement the aggregation process using information collected from Monte Carlo simulations. Numerical results show the effectiveness of the proposed algorithm.
An adaptive response surface method for crashworthiness optimization
NASA Astrophysics Data System (ADS)
Shi, Lei; Yang, Ren-Jye; Zhu, Ping
2013-11-01
Response surface-based design optimization has been commonly used for optimizing large-scale design problems in the automotive industry. However, most response surface models are built by a limited number of design points without considering data uncertainty. In addition, the selection of a response surface in the literature is often arbitrary. This article uses a Bayesian metric to systematically select the best available response surface among several candidates in a library while considering data uncertainty. An adaptive, efficient response surface strategy, which minimizes the number of computationally intensive simulations, was developed for design optimization of large-scale complex problems. This methodology was demonstrated by a crashworthiness optimization example.
NASA Astrophysics Data System (ADS)
Burton, Aidan
2015-04-01
Managers and policy makers from regional and national institutions in the Caribbean require knowledge of the likely impacts and hazards arising from the present and future climate that are specific to their responsibility and geographical range, and relevant to their planning time-horizons. Knowledge, experience and the political support to develop appropriate adaptation strategies are also required. However, the climate information available for the region is of limited use as: observational records are intermittent and typically of short duration; climate model projections of the weather suffer from scale and bias issues; and statistical downscaling to provide locally relevant unbiased climate change information remains sporadic. Tropical cyclone activity is a considerable sporadic hazard in the region and yet related weather information is limited to historic events. Further, there is a lack of guidance for managers and policy makers operating with very limited resources to utilize such information within their remit. The CARIWIG project (June 2012 - May 2015) will be presented, reflecting on stakeholder impact, best practice and lessons learned. This project seeks to address the climate service needs of the Caribbean region through a combination of capacity building and improved provision of climate information services. An initial workshop with regional-scale stakeholders initiated a dialogue to develop a realistic shared vision of the needed information services which could be provided by the project. Capacity building is then achieved on a number of levels: knowledge and expertise sharing between project partners; raising understanding and knowledge of resources that support national and regional institutions' adaptation decisions; developing case studies in key sectors to test and demonstrate the information services; training for stakeholder technical staff in the use of the provided services; the development of a support network within and out
NASA Astrophysics Data System (ADS)
Eitzinger, J.; Kubu, G.; Alexandrov, V.; Utset, A.; Mihailovic, D. T.; Lalic, B.; Trnka, M.; Zalud, Z.; Semeradova, D.; Ventrella, D.; Anastasiou, D. P.; Medany, M.; Altaher, S.; Olejnik, J.; Lesny, J.; Nemeshko, N.; Nikolaev, M.; Simota, C.; Cojocaru, G.
2009-10-01
During 2007-2009 the ADAGIO project (http://www.adagio-eu.org) is carried out to evaluate regional adaptation options in agriculture in most vulnerable European regions (mediterranean, central and eastern European regions). In this context a bottom-up approach is used beside the top-down approach of using scientific studies, involving regional experts and farmers in the evaluation of potential regional vulnerabilities and adaptation options. Preliminary results of the regional studies and gathered feedback from experts and farmers show in general that (increasing) drought and heat are the main factors having impact on agricultural vulnerability not only in the Mediterranean region, but also in the Central and southern Eastern European regions. Another important aspect is that the increasing risk of pest and diseases may play a more important role for agricultural vulnerability than assumed before, however, till now this field is only rarely investigated in Europe. Although dominating risks such as increasing drought and heat are similar in most regions, the vulnerabilities in the different regions are very much influenced by characteristics of the dominating agroecosystems and prevailing socio-economic conditions. This will be even be more significant for potential adaptation measures at the different levels, which have to reflect the regional conditions.
Projection-based spatially adaptive reconstruction of block-transform compressed images.
Yang, Y; Galatsanos, N P; Katsaggelos, A K
1995-01-01
At the present time, block-transform coding is probably the most popular approach for image compression. For this approach, the compressed images are decoded using only the transmitted transform data. We formulate image decoding as an image recovery problem. According to this approach, the decoded image is reconstructed using not only the transmitted data but, in addition, the prior knowledge that images before compression do not display between-block discontinuities. A spatially adaptive image recovery algorithm is proposed based on the theory of projections onto convex sets. Apart from the data constraint set, this algorithm uses another new constraint set that enforces between-block smoothness. The novelty of this set is that it captures both the local statistical properties of the image and the human perceptual characteristics. A simplified spatially adaptive recovery algorithm is also proposed, and the analysis of its computational complexity is presented. Numerical experiments are shown that demonstrate that the proposed algorithms work better than both the JPEG deblocking recommendation and our previous projection-based image decoding approach.
NASA Astrophysics Data System (ADS)
Keener, V. W.; Finucane, M.; Brewington, L.
2014-12-01
For the last century, the island of Maui, Hawaii, has been the center of environmental, agricultural, and legal conflict with respect to surface and groundwater allocation. Planning for adequate future freshwater resources requires flexible and adaptive policies that emphasize partnerships and knowledge transfer between scientists and non-scientists. In 2012 the Hawai'i state legislature passed the Climate Change Adaptation Priority Guidelines (Act 286) law requiring county and state policy makers to include island-wide climate change scenarios in their planning processes. This research details the ongoing work by researchers in the NOAA funded Pacific RISA to support the development of Hawaii's first island-wide water use plan under the new climate adaptation directive. This integrated project combines several models with participatory future scenario planning. The dynamically downscaled triply nested Hawaii Regional Climate Model (HRCM) was modified from the WRF community model and calibrated to simulate the many microclimates on the Hawaiian archipelago. For the island of Maui, the HRCM was validated using 20 years of hindcast data, and daily projections were created at a 1 km scale to capture the steep topography and diverse rainfall regimes. Downscaled climate data are input into a USGS hydrological model to quantify groundwater recharge. This model was previously used for groundwater management, and is being expanded utilizing future climate projections, current land use maps and future scenario maps informed by stakeholder input. Participatory scenario planning began in 2012 to bring together a diverse group of over 50 decision-makers in government, conservation, and agriculture to 1) determine the type of information they would find helpful in planning for climate change, and 2) develop a set of scenarios that represent alternative climate/management futures. This is an iterative process, resulting in flexible and transparent narratives at multiple scales
NASA Astrophysics Data System (ADS)
Gersonius, Berry; Ashley, Richard; Jeuken, Ad; Nasruddin, Fauzy; Pathirana, Assela; Zevenbergen, Chris
2010-05-01
In a context of high uncertainty about hydrological variables due to climate change and other factors, the development of updated risk management approaches is as important as—if not more important than—the provision of improved data and forecasts of the future. Traditional approaches to adaptation attempt to manage future water risks to cities with the use of the predict-then-adapt method. This method uses hydrological change projections as the starting point to identify adaptive strategies, which is followed by analysing the cause-effect chain based on some sort of Pressures-State-Impact-Response (PSIR) scheme. The predict-then-adapt method presumes that it is possible to define a singular (optimal) adaptive strategy according to a most likely or average projection of future change. A key shortcoming of the method is, however, that the planning of water management structures is typically decoupled from forecast uncertainties and is, as such, inherently inflexible. This means that there is an increased risk of under- or over-adaptation, resulting in either mal-functioning or unnecessary costs. Rather than taking a traditional approach, responsible water risk management requires an alternative approach to adaptation that recognises and cultivates resiliency for change. The concept of resiliency relates to the capability of complex socio-technical systems to make aspirational levels of functioning attainable despite the occurrence of possible changes. Focusing on resiliency does not attempt to reduce uncertainty associated with future change, but rather to develop better ways of managing it. This makes it a particularly relevant perspective for adaptation to long-term hydrological change. Although resiliency is becoming more refined as a theory, the application of the concept to water risk management is still in an initial phase. Different methods are used in practice to support the implementation of a resilience-focused approach. Typically these approaches
NASA Astrophysics Data System (ADS)
Rui, Lai; Yin-Tang, Yang; Qing, Li; Hui-Xin, Zhou
2009-09-01
The scene adaptive nonuniformity correction (NUC) technique is commonly used to decrease the fixed pattern noise (FPN) in infrared focal plane arrays (IRFPA). However, the correction precision of existing scene adaptive NUC methods is reduced by the nonlinear response of IRFPA detectors seriously. In this paper, an improved scene adaptive NUC method that employs "S"-curve model to approximate the detector response is presented. The performance of the proposed method is tested with real infrared video sequence, and the experimental results validate that our method can promote the correction precision considerably.
Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.
Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta
2015-09-01
The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.
Nonlinear mode decomposition: A noise-robust, adaptive decomposition method
NASA Astrophysics Data System (ADS)
Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta
2015-09-01
The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.
Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.
Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta
2015-09-01
The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download. PMID:26465549
Investigating Item Exposure Control Methods in Computerized Adaptive Testing
ERIC Educational Resources Information Center
Ozturk, Nagihan Boztunc; Dogan, Nuri
2015-01-01
This study aims to investigate the effects of item exposure control methods on measurement precision and on test security under various item selection methods and item pool characteristics. In this study, the Randomesque (with item group sizes of 5 and 10), Sympson-Hetter, and Fade-Away methods were used as item exposure control methods. Moreover,…
NASA Astrophysics Data System (ADS)
Jacobson, R. B.; Galat, D. L.; Smith, C. B.
2010-12-01
Most large-river restoration projects include formal or informal implementations of adaptive management strategies which acknowledge uncertainty and use scientific inquiry to learn and refine management options. Although the central role of science in reducing uncertainty is acknowledged in such projects, specific roles and interactions can vary widely, including how science relates to decision-making within the governance of these projects. Our objective is to present some structured generalizations about science roles and interactions as developed from the authors’ experiences in adaptive management of large river restoration in the Midwest United States. Scientific information may be introduced into decision making by scientists acting in any of the three roles common to adaptive management -- action agency representative, stakeholder, or science provider. We have observed that confusion and gridlock can arise when it is unclear if a scientist is acting as an advocate for a stakeholder or management position, or instead as an independent, “honest broker” of science. Although both advocacy and independence are proper and expected in public decision making, it is useful when scientists unambiguously identify their role. While complete scientific independence may be illusory, transparency and peer review can promote the ideal. Transparency comes from setting clear directions and objectives at the decision-making level and defining at the outset how learning will help assess progress and inform decisions. Independent peer reviews of proposals, study plans, and publications serve as a powerful tool to advance scientific independence, even if funding sources present a potential conflict of interest. Selection of experts for scientific advice and review often requires consideration of the balance between benefits of the “outside” expert (independent, knowledgeable but with little specific understanding of the river system), compared to those provided by the
Adaptation response surfaces from an ensemble of wheat projections under climate change in Europe
NASA Astrophysics Data System (ADS)
Ruiz-Ramos, Margarita; Ferrise, Roberto
2016-04-01
preliminary ARSs show some adaptation options allow recover up to ca. 2000 kg/ha. Compared to the historical yields recorded at Lleida province (2550 kg/ha in 1981-2010) our results indicate that adaptation is feasible and may help to reduce detrimental effects of CC. Our analysis evaluates if the explored adaptations fulfill the biophysical requirements to become a practical adaptive solution. This study exemplifies how adaptation options and their impacts can be analyzed, evaluated and communicated in a context of high regional uncertainty for current and future conditions and for short to long-term perspective. This work was funded by MACSUR project within FACCE-JPI. References Abeledo, L.G., R. Savin and G.A. Slafer (2008). European Journal of Agronomy 28:541-550. Cartelle, J., A. Pedró, R. Savin, G.A. Slafer (2006) European Journal of Agronomy 25:365-371. Pirttioja, N., T. Carter, S. Fronzek, M. Bindi, H. Hoffmann, T. Palosuo, M. Ruiz-Ramos, F. Tao, M. Acutis, S. Asseng, P. Baranowski, B. Basso, P. Bodin, S. Buis, D. Cammarano, P. Deligios, M.-F. Destain, B. Dumont, R. Ewert, R. Ferrise, L. François, T. Gaiser, P. Hlavinka, I. Jacquemin, K.C. Kersebaum, C. Kollas, J. Krzyszczak, I.J. Lorite, J. Minet, M.I. Minguez, M. Montesino, M. Moriondo, C. Müller, C. Nendel, I. Öztürk, A. Perego, A. Rodríguez, A.C. Ruane, F. Ruget, M. Sanna, M.A. Semenov, C. Slawinski, P. Stratonovitch, I. Supit, K. Waha, E. Wang, L. Wu, Z. Zhao, and R.P. Rötter, 2015: A crop model ensemble analysis of temperature and precipitation effects on wheat yield across a European transect using impact response surfaces. Clim. Res., 65, 87-105, doi:10.3354/cr01322. IRS2 TEAM: Alfredo Rodríguez(1), Ignacio J. Lorite(3), Fulu Tao(4), Nina Pirttioja(5), Stefan Fronzek(5), Taru Palosuo(4), Timothy R. Carter(5), Marco Bindi(2), Jukka G Höhn(4), Kurt Christian Kersebaum(6), Miroslav Trnka(7,8), Holger Hoffmann(9), Piotr Baranowski(10), Samuel Buis(11), Davide Cammarano(12), Yi Chen(13,4), Paola Deligios
Adaptation response surfaces from an ensemble of wheat projections under climate change in Europe
NASA Astrophysics Data System (ADS)
Ruiz-Ramos, Margarita; Ferrise, Roberto
2016-04-01
preliminary ARSs show some adaptation options allow recover up to ca. 2000 kg/ha. Compared to the historical yields recorded at Lleida province (2550 kg/ha in 1981-2010) our results indicate that adaptation is feasible and may help to reduce detrimental effects of CC. Our analysis evaluates if the explored adaptations fulfill the biophysical requirements to become a practical adaptive solution. This study exemplifies how adaptation options and their impacts can be analyzed, evaluated and communicated in a context of high regional uncertainty for current and future conditions and for short to long-term perspective. This work was funded by MACSUR project within FACCE-JPI. References Abeledo, L.G., R. Savin and G.A. Slafer (2008). European Journal of Agronomy 28:541-550. Cartelle, J., A. Pedró, R. Savin, G.A. Slafer (2006) European Journal of Agronomy 25:365-371. Pirttioja, N., T. Carter, S. Fronzek, M. Bindi, H. Hoffmann, T. Palosuo, M. Ruiz-Ramos, F. Tao, M. Acutis, S. Asseng, P. Baranowski, B. Basso, P. Bodin, S. Buis, D. Cammarano, P. Deligios, M.-F. Destain, B. Dumont, R. Ewert, R. Ferrise, L. François, T. Gaiser, P. Hlavinka, I. Jacquemin, K.C. Kersebaum, C. Kollas, J. Krzyszczak, I.J. Lorite, J. Minet, M.I. Minguez, M. Montesino, M. Moriondo, C. Müller, C. Nendel, I. Öztürk, A. Perego, A. Rodríguez, A.C. Ruane, F. Ruget, M. Sanna, M.A. Semenov, C. Slawinski, P. Stratonovitch, I. Supit, K. Waha, E. Wang, L. Wu, Z. Zhao, and R.P. Rötter, 2015: A crop model ensemble analysis of temperature and precipitation effects on wheat yield across a European transect using impact response surfaces. Clim. Res., 65, 87-105, doi:10.3354/cr01322. IRS2 TEAM: Alfredo Rodríguez(1), Ignacio J. Lorite(3), Fulu Tao(4), Nina Pirttioja(5), Stefan Fronzek(5), Taru Palosuo(4), Timothy R. Carter(5), Marco Bindi(2), Jukka G Höhn(4), Kurt Christian Kersebaum(6), Miroslav Trnka(7,8), Holger Hoffmann(9), Piotr Baranowski(10), Samuel Buis(11), Davide Cammarano(12), Yi Chen(13,4), Paola Deligios
General adaptive guidance using nonlinear programming constraint solving methods (FAST)
NASA Astrophysics Data System (ADS)
Skalecki, Lisa; Martin, Marc
An adaptive, general purpose, constraint solving guidance algorithm called FAST (Flight Algorithm to Solve Trajectories) has been developed by the authors in response to the requirements for the Advanced Launch System (ALS). The FAST algorithm can be used for all mission phases for a wide range of Space Transportation Vehicles without code modification because of the general formulation of the nonlinear programming (NLP) problem, ad the general trajectory simulation used to predict constraint values. The approach allows on board re-targeting for severe weather and changes in payload or mission parameters, increasing flight reliability and dependability while reducing the amount of pre-flight analysis that must be performed. The algorithm is described in general in this paper. Three degree of freedom simulation results are presented for application of the algorithm to ascent and reentry phases of an ALS mission, and Mars aerobraking. Flight processor CPU requirement data is also shown.
Dinh, Khanh N; Sidje, Roger B
2016-01-01
The finite state projection (FSP) method has enabled us to solve the chemical master equation of some biological models that were considered out of reach not long ago. Since the original FSP method, much effort has gone into transforming it into an adaptive time-stepping algorithm as well as studying its accuracy. Some of the improvements include the multiple time interval FSP, the sliding windows, and most notably the Krylov-FSP approach. Our goal in this tutorial is to give the reader an overview of the current methods that build on the FSP. PMID:27176781
NASA Astrophysics Data System (ADS)
Dinh, Khanh N.; Sidje, Roger B.
2016-06-01
The finite state projection (FSP) method has enabled us to solve the chemical master equation of some biological models that were considered out of reach not long ago. Since the original FSP method, much effort has gone into transforming it into an adaptive time-stepping algorithm as well as studying its accuracy. Some of the improvements include the multiple time interval FSP, the sliding windows, and most notably the Krylov-FSP approach. Our goal in this tutorial is to give the reader an overview of the current methods that build on the FSP.
Dinh, Khanh N; Sidje, Roger B
2016-05-13
The finite state projection (FSP) method has enabled us to solve the chemical master equation of some biological models that were considered out of reach not long ago. Since the original FSP method, much effort has gone into transforming it into an adaptive time-stepping algorithm as well as studying its accuracy. Some of the improvements include the multiple time interval FSP, the sliding windows, and most notably the Krylov-FSP approach. Our goal in this tutorial is to give the reader an overview of the current methods that build on the FSP.
Investigation of the Multiple Model Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
1975-01-01
The application was investigated of control theoretic ideas to the design of flight control systems for the F-8 aircraft. The design of an adaptive control system based upon the so-called multiple model adaptive control (MMAC) method is considered. Progress is reported.
The older person has a stroke: Learning to adapt using the Feldenkrais® Method.
Jackson-Wyatt, O
1995-01-01
The older person with a stroke requires adapted therapeutic interventions to take into account normal age-related changes. The Feldenkrais® Method presents a model for learning to promote adaptability that addresses key functional changes seen with normal aging. Clinical examples related to specific functional tasks are discussed to highlight major treatment modifications and neuromuscular, psychological, emotional, and sensory considerations. PMID:27619899
A Comparative Study of Item Exposure Control Methods in Computerized Adaptive Testing.
ERIC Educational Resources Information Center
Chang, Shun-Wen; Twu, Bor-Yaun
This study investigated and compared the properties of five methods of item exposure control within the purview of estimating examinees' abilities in a computerized adaptive testing (CAT) context. Each of the exposure control algorithms was incorporated into the item selection procedure and the adaptive testing progressed based on the CAT design…
Simple method for adaptive filtering of motion artifacts in E-textile wearable ECG sensors.
Alkhidir, Tamador; Sluzek, Andrzej; Yapici, Murat Kaya
2015-08-01
In this paper, we have developed a simple method for adaptive out-filtering of the motion artifact from the electrocardiogram (ECG) obtained by using conductive textile electrodes. The textile electrodes were placed on the left and the right wrist to measure ECG through lead-1 configuration. The motion artifact was induced by simple hand movements. The reference signal for adaptive filtering was obtained by placing additional electrodes at one hand to capture the motion of the hand. The adaptive filtering was compared to independent component analysis (ICA) algorithm. The signal-to-noise ratio (SNR) for the adaptive filtering approach was higher than independent component analysis in most cases.
Fleming, Michael S; Vysochan, Anna; Paixão, Sόnia; Niu, Jingwen; Klein, Rüdiger; Savitt, Joseph M; Luo, Wenqin
2015-04-02
RET can be activated in cis or trans by its co-receptors and ligands in vitro, but the physiological roles of trans signaling are unclear. Rapidly adapting (RA) mechanoreceptors in dorsal root ganglia (DRGs) express Ret and the co-receptor Gfrα2 and depend on Ret for survival and central projection growth. Here, we show that Ret and Gfrα2 null mice display comparable early central projection deficits, but Gfrα2 null RA mechanoreceptors recover later. Loss of Gfrα1, the co-receptor implicated in activating RET in trans, causes no significant central projection or cell survival deficit, but Gfrα1;Gfrα2 double nulls phenocopy Ret nulls. Finally, we demonstrate that GFRα1 produced by neighboring DRG neurons activates RET in RA mechanoreceptors. Taken together, our results suggest that trans and cis RET signaling could function in the same developmental process and that the availability of both forms of activation likely enhances but not diversifies outcomes of RET signaling.
Fleming, Michael S; Vysochan, Anna; Paixão, Sόnia; Niu, Jingwen; Klein, Rüdiger; Savitt, Joseph M; Luo, Wenqin
2015-01-01
RET can be activated in cis or trans by its co-receptors and ligands in vitro, but the physiological roles of trans signaling are unclear. Rapidly adapting (RA) mechanoreceptors in dorsal root ganglia (DRGs) express Ret and the co-receptor Gfrα2 and depend on Ret for survival and central projection growth. Here, we show that Ret and Gfrα2 null mice display comparable early central projection deficits, but Gfrα2 null RA mechanoreceptors recover later. Loss of Gfrα1, the co-receptor implicated in activating RET in trans, causes no significant central projection or cell survival deficit, but Gfrα1;Gfrα2 double nulls phenocopy Ret nulls. Finally, we demonstrate that GFRα1 produced by neighboring DRG neurons activates RET in RA mechanoreceptors. Taken together, our results suggest that trans and cis RET signaling could function in the same developmental process and that the availability of both forms of activation likely enhances but not diversifies outcomes of RET signaling. DOI: http://dx.doi.org/10.7554/eLife.06828.001 PMID:25838128
[Methods for mortality analysis in SENTIERI Project].
De Santis, M; Pasetto, R; Minelli, G; Conti, S
2011-01-01
The methods of mortality analysis in Italian polluted sites (IPS) are described. The study concerned 44 IPSs; each one included one or more municipalities. Mortality at municipality level was studied in the period 1995-2002, using the following indicators: crude rate, standardized rate, standardized mortality ratio (SMR), and SMR adjusted for an ad hoc deprivation index. Regional populations were used as reference for indirect standardization. The deprivation index was constructed using the 2001 national census variables representing the following socioeconomic domains: education, unemployment, dwelling ownership, overcrowding. Mortality indicators were computed for 63 single or grouped causes. The results for all the 63 analysed causes of death are available for each IPS, and in this Chapter the results for each IPS for causes selected on the basis of a priori evidence of risk from local sources of environmental pollution are presented. The procedures and results of the evidence evaluation have been published in the 2010 Supplement of Epidemiology & Prevention devoted to SENTIERI.
Solid rocket booster internal flow analysis by highly accurate adaptive computational methods
NASA Technical Reports Server (NTRS)
Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.
1991-01-01
The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.
An adaptive mesh refinement algorithm for the discrete ordinates method
Jessee, J.P.; Fiveland, W.A.; Howell, L.H.; Colella, P.; Pember, R.B.
1996-03-01
The discrete ordinates form of the radiative transport equation (RTE) is spatially discretized and solved using an adaptive mesh refinement (AMR) algorithm. This technique permits the local grid refinement to minimize spatial discretization error of the RTE. An error estimator is applied to define regions for local grid refinement; overlapping refined grids are recursively placed in these regions; and the RTE is then solved over the entire domain. The procedure continues until the spatial discretization error has been reduced to a sufficient level. The following aspects of the algorithm are discussed: error estimation, grid generation, communication between refined levels, and solution sequencing. This initial formulation employs the step scheme, and is valid for absorbing and isotopically scattering media in two-dimensional enclosures. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single-grid algorithm for several benchmark cases. The AMR algorithm provides a reduction in memory requirements and maintains the convergence characteristics of the standard single-grid algorithm; however, the cases illustrate that efficiency gains of the AMR algorithm will not be fully realized until three-dimensional geometries are considered.
Parallel architectures for iterative methods on adaptive, block structured grids
NASA Technical Reports Server (NTRS)
Gannon, D.; Vanrosendale, J.
1983-01-01
A parallel computer architecture well suited to the solution of partial differential equations in complicated geometries is proposed. Algorithms for partial differential equations contain a great deal of parallelism. But this parallelism can be difficult to exploit, particularly on complex problems. One approach to extraction of this parallelism is the use of special purpose architectures tuned to a given problem class. The architecture proposed here is tuned to boundary value problems on complex domains. An adaptive elliptic algorithm which maps effectively onto the proposed architecture is considered in detail. Two levels of parallelism are exploited by the proposed architecture. First, by making use of the freedom one has in grid generation, one can construct grids which are locally regular, permitting a one to one mapping of grids to systolic style processor arrays, at least over small regions. All local parallelism can be extracted by this approach. Second, though there may be a regular global structure to the grids constructed, there will be parallelism at this level. One approach to finding and exploiting this parallelism is to use an architecture having a number of processor clusters connected by a switching network. The use of such a network creates a highly flexible architecture which automatically configures to the problem being solved.
Analysis of modified SMI method for adaptive array weight control
NASA Technical Reports Server (NTRS)
Dilsavor, R. L.; Moses, R. L.
1989-01-01
An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.
Project Method, as One of the Basic Methods of Environmental Education
ERIC Educational Resources Information Center
Szállassy, Noémi
2008-01-01
Our aim was to present in this paper the one of the most important methods of environmental education, the project method. We present here the steps and phases of project method and we give an example of how to use these elements in planning an activity for celebrating the World Day for Water.
An adaptation of Krylov subspace methods to path following
Walker, H.F.
1996-12-31
Krylov subspace methods at present constitute a very well known and highly developed class of iterative linear algebra methods. These have been effectively applied to nonlinear system solving through Newton-Krylov methods, in which Krylov subspace methods are used to solve the linear systems that characterize steps of Newton`s method (the Newton equations). Here, we will discuss the application of Krylov subspace methods to path following problems, in which the object is to track a solution curve as a parameter varies. Path following methods are typically of predictor-corrector form, in which a point near the solution curve is {open_quotes}predicted{close_quotes} by some easy but relatively inaccurate means, and then a series of Newton-like corrector iterations is used to return approximately to the curve. The analogue of the Newton equation is underdetermined, and an additional linear condition must be specified to determine corrector steps uniquely. This is typically done by requiring that the steps be orthogonal to an approximate tangent direction. Augmenting the under-determined system with this orthogonality condition in a straightforward way typically works well if direct linear algebra methods are used, but Krylov subspace methods are often ineffective with this approach. We will discuss recent work in which this orthogonality condition is imposed directly as a constraint on the corrector steps in a certain way. The means of doing this preserves problem conditioning, allows the use of preconditioners constructed for the fixed-parameter case, and has certain other advantages. Experiments on standard PDE continuation test problems indicate that this approach is effective.
Climate trends and projections for the Andean Altiplano and strategies for adaptation
NASA Astrophysics Data System (ADS)
Valdivia, C.; Thibeault, J.; Gilles, J. L.; García, M.; Seth, A.
2013-04-01
Climate variability and change impact production in rainfed agricultural systems of the Bolivian highlands. Maximum temperature trends are increasing for the Altiplano. Minimum temperature increases are significant in the northern region, and decreases are significant in the southern region. Producers' perceptions of climate hazards are high in the central region, while concerns with changing climate and unemployment are high in the north. Similar high-risk perceptions involve pests and diseases in both regions. Altiplano climate projections for end-of-century highlights include increases in temperature, extreme event frequency, change in the timing of rainfall, and reduction of soil humidity. Successful adaptation to these changes will require the development of links between the knowledge systems of producers and scientists. Two-way participatory approaches to develop capacity and information that involve decision makers and scientists are appropriate approaches in this context of increased risk, uncertainty and vulnerability.
Practicum in adapted physical activity: a Dewey-inspired action research project.
Standal, Øyvind; Rugseth, Gro
2014-07-01
The purpose of this study was to investigate what adapted physical activity (APA) students learn from their practicum experiences. One cohort of APA students participated, and data were generated from an action research project that included observations, reflective journals, and a focus group interview. The theoretical framework for the study was Dewey's and Wackerhausen's theories of reflections. The findings show the objects of students' reflections, the kind of conceptual resources they draw on while reflecting, and their knowledge interests. In addition, two paradoxes are identified: the tension between reflecting from and on own values, and how practicum as a valued experience of reality can become too difficult to handle. In conclusion, we reflect on how practicum learning can be facilitated.
Future temperature in southwest Asia projected to exceed a threshold for human adaptability
NASA Astrophysics Data System (ADS)
Pal, Jeremy S.; Eltahir, Elfatih A. B.
2016-02-01
A human body may be able to adapt to extremes of dry-bulb temperature (commonly referred to as simply temperature) through perspiration and associated evaporative cooling provided that the wet-bulb temperature (a combined measure of temperature and humidity or degree of `mugginess’) remains below a threshold of 35 °C. (ref. ). This threshold defines a limit of survivability for a fit human under well-ventilated outdoor conditions and is lower for most people. We project using an ensemble of high-resolution regional climate model simulations that extremes of wet-bulb temperature in the region around the Arabian Gulf are likely to approach and exceed this critical threshold under the business-as-usual scenario of future greenhouse gas concentrations. Our results expose a specific regional hotspot where climate change, in the absence of significant mitigation, is likely to severely impact human habitability in the future.
Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi
2016-04-21
We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients.
NASA Astrophysics Data System (ADS)
Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E.; Lo, Yeh-Chi
2016-04-01
We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients.
Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi
2016-04-21
We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients. PMID:27008349
ERIC Educational Resources Information Center
Fitz, Don
The Client Observation Checklist (COC) was developed to evaluate Project ADAPT's intervention in three behavioral areas: bathing; dressing; and socialization. Project ADAPT is designed to provide services to meet the needs of chronically mentally ill residents of nursing homes. Specifically, the project provides staff trained to work with the…
Speckle reduction in optical coherence tomography by adaptive total variation method
NASA Astrophysics Data System (ADS)
Wu, Tong; Shi, Yaoyao; Liu, Youwen; He, Chongjun
2015-12-01
An adaptive total variation method based on the combination of speckle statistics and total variation restoration is proposed and developed for reducing speckle noise in optical coherence tomography (OCT) images. The statistical distribution of the speckle noise in OCT image is investigated and measured. With the measured parameters such as the mean value and variance of the speckle noise, the OCT image is restored by the adaptive total variation restoration method. The adaptive total variation restoration algorithm was applied to the OCT images of a volunteer's hand skin, which showed effective speckle noise reduction and image quality improvement. For image quality comparison, the commonly used median filtering method was also applied to the same images to reduce the speckle noise. The measured results demonstrate the superior performance of the adaptive total variation restoration method in terms of image signal-to-noise ratio, equivalent number of looks, contrast-to-noise ratio, and mean square error.
Project-Method Fit: Exploring Factors That Influence Agile Method Use
ERIC Educational Resources Information Center
Young, Diana K.
2013-01-01
While the productivity and quality implications of agile software development methods (SDMs) have been demonstrated, research concerning the project contexts where their use is most appropriate has yielded less definitive results. Most experts agree that agile SDMs are not suited for all project contexts. Several project and team factors have been…
Automatic multirate methods for ordinary differential equations. [Adaptive time steps
Gear, C.W.
1980-01-01
A study is made of the application of integration methods in which different step sizes are used for different members of a system of equations. Such methods can result in savings if the cost of derivative evaluation is high or if a system is sparse; however, the estimation and control of errors is very difficult and can lead to high overheads. Three approaches are discussed, and it is shown that the least intuitive is the most promising. 2 figures.
Adaptive error covariances estimation methods for ensemble Kalman filters
Zhen, Yicun; Harlim, John
2015-08-01
This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.
SPACES Project ARS AfricaE – Adaptive Resilience of Southern African ecosystems
NASA Astrophysics Data System (ADS)
Falge, Eva; Brümmer, Christian; Schmullius, Christiane; Hüttich, Christian; Scholes, Robert John; Midgley, Guy; Hickler, Thomas; Scheiter, Simon; Twine, Wayne; Bradshaw, Karen; Lück, Wolfgang; Thiel-Clemen, Thomas; Lenfers, Ulfia; Mukelabai, Mukufute; Kutsch, Werner
2015-04-01
Nowadays, many semi-arid ecosystems are affected by at least two different kinds of disturbances: land use (change) and climate change. Based on this, it can be hypothesized that even very resilient ecosystems may not return to their initial state after disturbance, but will rather adapt to a new steady-state. We name this phenomenon "Adaptive Resilience of Ecosystems" and use it as base for the research concept of ARS AfricaE. This project wants to go beyond older approaches that only describe structural changes in savannas and their drivers. It employs functional aspects, such as the investigation of biogeochemical cycles, but also targets a deeper understanding of the functional consequences of ecosystem changes caused by multiple disturbances, and defines "degradation" as a sustained loss in the broad set of ecosystem services, i.e. a decrease in natural capital. To achieve this goal, the project will • create a network of research clusters (with natural and altered vegetation) along an aridity gradient in the Greater Karoo, Kruger National Park in South Africa, and Kataba Forest Reserve in Zambia • link biogeochemical functions with ecosystem structure, diversity of species and eco-physiological properties • describe ecosystem disturbance (and recovery) in terms of ecosystem function such as carbon balance components and water use efficiency • build an individual-based model to predict ecosystem dynamics under (post) disturbance managements • combine this model with long-term landscape dynamic information derived from remote sensing and aerial photography • develop sustainable management strategies for disturbed ecosystems and land use change
ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆
Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk
2014-01-01
In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. PMID:24748725
Systems and Methods for Parameter Dependent Riccati Equation Approaches to Adaptive Control
NASA Technical Reports Server (NTRS)
Kim, Kilsoo (Inventor); Yucelen, Tansel (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
Systems and methods for adaptive control are disclosed. The systems and methods can control uncertain dynamic systems. The control system can comprise a controller that employs a parameter dependent Riccati equation. The controller can produce a response that causes the state of the system to remain bounded. The control system can control both minimum phase and non-minimum phase systems. The control system can augment an existing, non-adaptive control design without modifying the gains employed in that design. The control system can also avoid the use of high gains in both the observer design and the adaptive control law.
Projection methods for the numerical solution of Markov chain models
NASA Technical Reports Server (NTRS)
Saad, Youcef
1989-01-01
Projection methods for computing stationary probability distributions for Markov chain models are presented. A general projection method is a method which seeks an approximation from a subspace of small dimension to the original problem. Thus, the original matrix problem of size N is approximated by one of dimension m, typically much smaller than N. A particularly successful class of methods based on this principle is that of Krylov subspace methods which utilize subspaces of the form span(v,av,...,A(exp m-1)v). These methods are effective in solving linear systems and eigenvalue problems (Lanczos, Arnoldi,...) as well as nonlinear equations. They can be combined with more traditional iterative methods such as successive overrelaxation, symmetric successive overrelaxation, or with incomplete factorization methods to enhance convergence.
Ecological Scarcity Method: Adaptation and Implementation for Different Countries
NASA Astrophysics Data System (ADS)
Grinberg, Marina; Ackermann, Robert; Finkbeiner, Matthias
2012-12-01
The Ecological Scarcity Method is one of the methods for impact assessment in LCA. It enables to express different environmental impacts in single score units, eco-points. Such results are handy for decision-makers in policy or enterprises to improve environmental management. So far this method is mostly used in the country of its origin, Switzerland. Eco-factors derive from the national conditions. For other countries sometimes it is impossible to calculate all ecofactors. The solution of the problem is to create a set of transformation rules. The rules should take into account the regional differences, the level of society development, the grade of scarcity and other factors. The research is focused on the creation of transformation rules between Switzerland, Germany and the Russian Federation in case of GHG emissions.
A high-throughput multiplex method adapted for GMO detection.
Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique
2008-12-24
A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.
An Adaptive Kalman Filter Using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
An Adaptive Kalman Filter using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
The Pilates method and cardiorespiratory adaptation to training.
Tinoco-Fernández, Maria; Jiménez-Martín, Miguel; Sánchez-Caravaca, M Angeles; Fernández-Pérez, Antonio M; Ramírez-Rodrigo, Jesús; Villaverde-Gutiérrez, Carmen
2016-01-01
Although all authors report beneficial health changes following training based on the Pilates method, no explicit analysis has been performed of its cardiorespiratory effects. The objective of this study was to evaluate possible changes in cardiorespiratory parameters with the Pilates method. A total of 45 university students aged 18-35 years (77.8% female and 22.2% male), who did not routinely practice physical exercise or sports, volunteered for the study and signed informed consent. The Pilates training was conducted over 10 weeks, with three 1-hour sessions per week. Physiological cardiorespiratory responses were assessed using a MasterScreen CPX apparatus. After the 10-week training, statistically significant improvements were observed in mean heart rate (135.4-124.2 beats/min), respiratory exchange ratio (1.1-0.9) and oxygen equivalent (30.7-27.6) values, among other spirometric parameters, in submaximal aerobic testing. These findings indicate that practice of the Pilates method has a positive influence on cardiorespiratory parameters in healthy adults who do not routinely practice physical exercise activities. PMID:27357919
A new project on development and application of comprehensive downscaling methods over Hokkaido.
NASA Astrophysics Data System (ADS)
Inatsu, M.; Yamada, T. J.; Sato, T.; Nakamura, K.; Matsuoka, N.; Komatsu, A.; Pokhrel, Y. N.; Sugimoto, S.; Miyazaki, S.
2012-04-01
A new project on development and application of comprehensive downscaling methods over Hokkaido started as one of the branches of "Research Program on climate change adaptation" funded by Ministry of Education, Sports, Culture, Science, and Technology of Japan in 2010. Our group will develop two new downscaling algorithms in order to get more information on the uncertainty of high/low temperatures or heavy rainfall. Both of the algorithms called "sampling downscaling" and "hybrid downscaling" are based upon the mixed use of statistical and dynamical downscaling ideas. Another point of the project is to evaluate the effect of land-use changes in Hokkaido, where the major pioneering began only about a century ago. Scientific outcomes on climate changes in Hokkaido from the project will be provided to not only public sectors in Hokkaido but also people who live in Hokkaido through a graphical-user-interface system just like a weather forecast system in a forecast-center's webpage.
Restrictive Stochastic Item Selection Methods in Cognitive Diagnostic Computerized Adaptive Testing
ERIC Educational Resources Information Center
Wang, Chun; Chang, Hua-Hua; Huebner, Alan
2011-01-01
This paper proposes two new item selection methods for cognitive diagnostic computerized adaptive testing: the restrictive progressive method and the restrictive threshold method. They are built upon the posterior weighted Kullback-Leibler (KL) information index but include additional stochastic components either in the item selection index or in…
Projections of Suitable Wine Growing Regions and Varieties: Adaptation in Space or Place?
NASA Astrophysics Data System (ADS)
Forrestel, E. J.; Cook, B.; Garcia de Cortazar-Atauri, I.; Nicholas, K. A.; Parker, A.; van Leeuwen, C.; Wolkovich, E. M.
2015-12-01
Winegrapes (Vitis vinifera L) are the most valuable horticultural crop in the world with nearly eight million hectares of vineyards in cultivation. Different varieties of winegrapes (e.g., Grenache or Syrah) exhibit an unprecedented amount of phenological and genetic diversity for a cultivated species, which is an important resource to buffer against climate change. Matching phenological strategies of the different winegrape varieties to a particular climate is a fundamental aim for every vineyard manager, especially in the face of significant climatic shifts in many winegrape growing regions. Yet current projections of suitable winegrape growing regions based on future climate scenarios are limited in their utility, as they do not consider the possibility that other varieties better suited to a future climate could be planted within an existing region. For our projections, we built phenological models for the nine most-planted winegrapes globally, which constitutes over 40% of all planted hectares, using a global dataset of budburst, flowering, veraison and maturity. These models were then used to characterize the growing range of 1300 globally planted winegrape varieties. Combing these models with climate projection models under RCP 4.5 and 8.5 emission scenarios we examined future distributions of suitable wine growing regions, as well as the turnover of suitable varieties within existing regions. In some regions of the world, predicted climate change will not significantly alter the varieties that are able to grow, while in others there will need to be shifts in the region itself or in the varieties that are currently planted. Some regions will also see a significant increase in the number and diversity of varieties that can be grown. Our results suggest the need to utilize the full range of winegrape diversity available when considering adaptive strategies in response to changing climates.
Lesion insertion in the projection domain: Methods and initial results
Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Yu, Zhicong; Ma, Chi; McCollough, Cynthia
2015-12-15
Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated both axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically
A Massively Parallel Adaptive Fast Multipole Method on Heterogeneous Architectures
Lashuk, Ilya; Chandramowlishwaran, Aparna; Langston, Harper; Nguyen, Tuan-Anh; Sampath, Rahul S; Shringarpure, Aashay; Vuduc, Richard; Ying, Lexing; Zorin, Denis; Biros, George
2012-01-01
We describe a parallel fast multipole method (FMM) for highly nonuniform distributions of particles. We employ both distributed memory parallelism (via MPI) and shared memory parallelism (via OpenMP and GPU acceleration) to rapidly evaluate two-body nonoscillatory potentials in three dimensions on heterogeneous high performance computing architectures. We have performed scalability tests with up to 30 billion particles on 196,608 cores on the AMD/CRAY-based Jaguar system at ORNL. On a GPU-enabled system (NSF's Keeneland at Georgia Tech/ORNL), we observed 30x speedup over a single core CPU and 7x speedup over a multicore CPU implementation. By combining GPUs with MPI, we achieve less than 10 ns/particle and six digits of accuracy for a run with 48 million nonuniformly distributed particles on 192 GPUs.
Adaptive Management Methods to Protect the California Sacramento-San Joaquin Delta Water Resource
NASA Technical Reports Server (NTRS)
Bubenheim, David
2016-01-01
The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.
A convergent blind deconvolution method for post-adaptive-optics astronomical imaging
NASA Astrophysics Data System (ADS)
Prato, M.; La Camera, A.; Bonettini, S.; Bertero, M.
2013-06-01
In this paper, we propose a blind deconvolution method which applies to data perturbed by Poisson noise. The objective function is a generalized Kullback-Leibler (KL) divergence, depending on both the unknown object and unknown point spread function (PSF), without the addition of regularization terms; constrained minimization, with suitable convex constraints on both unknowns, is considered. The problem is non-convex and we propose to solve it by means of an inexact alternating minimization method, whose global convergence to stationary points of the objective function has been recently proved in a general setting. The method is iterative and each iteration, also called outer iteration, consists of alternating an update of the object and the PSF by means of a fixed number of iterations, also called inner iterations, of the scaled gradient projection (SGP) method. Therefore, the method is similar to other proposed methods based on the Richardson-Lucy (RL) algorithm, with SGP replacing RL. The use of SGP has two advantages: first, it allows one to prove global convergence of the blind method; secondly, it allows the introduction of different constraints on the object and the PSF. The specific constraint on the PSF, besides non-negativity and normalization, is an upper bound derived from the so-called Strehl ratio (SR), which is the ratio between the peak value of an aberrated versus a perfect wavefront. Therefore, a typical application, but not a unique one, is to the imaging of modern telescopes equipped with adaptive optics systems for the partial correction of the aberrations due to atmospheric turbulence. In the paper, we describe in detail the algorithm and we recall the results leading to its convergence. Moreover, we illustrate its effectiveness by means of numerical experiments whose results indicate that the method, pushed to convergence, is very promising in the reconstruction of non-dense stellar clusters. The case of more complex astronomical targets is
Error estimation and adaptive order nodal method for solving multidimensional transport problems
Zamonsky, O.M.; Gho, C.J.; Azmy, Y.Y.
1998-01-01
The authors propose a modification of the Arbitrarily High Order Transport Nodal method whereby they solve each node and each direction using different expansion order. With this feature and a previously proposed a posteriori error estimator they develop an adaptive order scheme to automatically improve the accuracy of the solution of the transport equation. They implemented the modified nodal method, the error estimator and the adaptive order scheme into a discrete-ordinates code for solving monoenergetic, fixed source, isotropic scattering problems in two-dimensional Cartesian geometry. They solve two test problems with large homogeneous regions to test the adaptive order scheme. The results show that using the adaptive process the storage requirements are reduced while preserving the accuracy of the results.
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.
Impedance adaptation methods of the piezoelectric energy harvesting
NASA Astrophysics Data System (ADS)
Kim, Hyeoungwoo
In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling
Participatory Scenario Planning for Climate Change Adaptation: the Maui Groundwater Project
NASA Astrophysics Data System (ADS)
Keener, V. W.; Brewington, L.; Finucane, M.
2015-12-01
For the last century, the island of Maui in Hawai'i has been the center of environmental, agricultural, and legal conflict with respect to both surface and groundwater allocation. Planning for sustainable future freshwater supply in Hawai'i requires adaptive policies and decision-making that emphasizes private and public partnerships and knowledge transfer between scientists and non-scientists. We have downscaled dynamical climate models to 1 km resolution in Maui and coupled them with a USGS Water Budget model and a participatory scenario building process to quantify future changes in island-scale climate and groundwater recharge under different land uses. Although these projections are uncertain, the integrated nature of the Pacific RISA research program has allowed us to take a multi-pronged approach to facilitate the uptake of climate information into policy and management. This presentation details the ongoing work to support the development of Hawai'i's first island-wide water use plan under the new climate adaptation directive. Participatory scenario planning began in 2012 to bring together a diverse group of ~100 decision-makers in state and local government, watershed restoration, agriculture, and conservation to 1) determine the type of information (climate variables, land use and development, agricultural practices) they would find helpful in planning for climate change, and 2) develop a set of nested scenarios that represent alternative climate and management futures. This integration of knowledge is an iterative process, resulting in flexible and transparent narratives of complex futures comprised of information at multiple scales. We will present an overview of the downscaling, scenario building, hydrological modeling processes, and stakeholder response.
NASA Astrophysics Data System (ADS)
He, Xinguang; Ren, Li
2009-07-01
SummaryIn this paper we present an adaptive multiscale finite element method for solving the unsaturated water flow problems in heterogeneous porous media spanning over many scales. The main purpose is to design a numerical method which is capable of adaptively capturing the large-scale behavior of the solution on a coarse-scale mesh without resolving all the small-scale details at each time step. This is accomplished by constructing the multiscale base functions that are adapted to the time change of the unsaturated hydraulic conductivity field. The key idea of our method is to use a criterion based on the temporal variation of the hydraulic conductivity field to determine when and where to update our multiscale base functions. As a consequence, these base functions are able to dynamically account for the spatio-temporal variability in the equation coefficients. We described the principle for constructing such a method in detail and gave an algorithm for implementing it. Numerical experiments were carried out for the unsaturated water flow equation with randomly generated lognormal hydraulic parameters to demonstrate the efficiency and accuracy of the proposed method. The results show that throughout the adaptive simulation, only a very small fraction of the multiscale base functions needs to be recomputed, and the level of accuracy of the adaptive method is higher than that of the multiscale finite element technique in which the base functions are not updated with the time change of the hydraulic conductivity.
On the use of adaptive moving grid methods in combustion problems
Hyman, J.M.; Larrouturou, B.
1986-01-01
The investigators have presented the reasons and advantages of adaptively moving the mesh points for the solution of time-dependent PDEs (partial differential equations) systems developing sharp gradients, and more specifically for combustion problems. Several available adaptive dynamic rezone methods have been briefly reviewed, and the effectiveness of these algorithms for combustion problems has been illustrated by the numerical solution of a simple flame propagation problem. 29 refs., 7 figs.
ERIC Educational Resources Information Center
Park, Sunyoung
2010-01-01
This thesis is a critical action research to explore the pedagogical challenges and possibilities by adapting a critical literacy in an EFL college writing class supported by a video-authoring project. Mainly, it focuses on three parts of the study; 1) How will develop the theoretical notions of a critical literacy in an EFL classroom, in…
Projection techniques as methods of particle-number symmetry restoration
Oudih, M. R.; Fellah, M.; Allal, N. H.; Benhamouda, N.
2007-10-15
The accuracy of the variation before (VBP) and after (VAP) particle-number projection methods, the Lipkin-Nogami (LN) prescription, and the projected Lipkin-Nogami (PLN) method have been studied using two exactly solvable models. It is shown that the VBP and the LN methods are rather dubious not only in a weak pairing regime, but also in strong pairing for the evaluation of quantities other than the ground state energy. The PLN method provides good results for the ground and the excited state energies, but it must be used with caution for the occupation probabilities and the observables that strongly depend on it. It seems that the VAP is the only suitable method for a global description of the nuclear properties.
Projection techniques as methods of particle-number symmetry restoration
NASA Astrophysics Data System (ADS)
Oudih, M. R.; Fellah, M.; Allal, N. H.; Benhamouda, N.
2007-10-01
The accuracy of the variation before (VBP) and after (VAP) particle-number projection methods, the Lipkin-Nogami (LN) prescription, and the projected Lipkin-Nogami (PLN) method have been studied using two exactly solvable models. It is shown that the VBP and the LN methods are rather dubious not only in a weak pairing regime, but also in strong pairing for the evaluation of quantities other than the ground state energy. The PLN method provides good results for the ground and the excited state energies, but it must be used with caution for the occupation probabilities and the observables that strongly depend on it. It seems that the VAP is the only suitable method for a global description of the nuclear properties.
WRF4G project: Adaptation of WRF Model to Distributed Computing Infrastructures
NASA Astrophysics Data System (ADS)
Cofino, Antonio S.; Fernández Quiruelas, Valvanuz; García Díez, Markel; Blanco Real, Jose C.; Fernández, Jesús
2013-04-01
Nowadays Grid Computing is powerful computational tool which is ready to be used for scientific community in different areas (such as biomedicine, astrophysics, climate, etc.). However, the use of this distributed computing infrastructures (DCI) is not yet common practice in climate research, and only a few teams and applications in this area take advantage of this infrastructure. Thus, the first objective of this project is to popularize the use of this technology in the atmospheric sciences area. In order to achieve this objective, one of the most used applications has been taken (WRF; a limited- area model, successor of the MM5 model), that has a user community formed by more than 8000 researchers worldwide. This community develop its research activity on different areas and could benefit from the advantages of Grid resources (case study simulations, regional hind-cast/forecast, sensitivity studies, etc.). The WRF model is been used as input by many energy and natural hazards community, therefore those community will also benefit. However, Grid infrastructures have some drawbacks for the execution of applications that make an intensive use of CPU and memory for a long period of time. This makes necessary to develop a specific framework (middleware). This middleware encapsulates the application and provides appropriate services for the monitoring and management of the jobs and the data. Thus, the second objective of the project consists on the development of a generic adaptation of WRF for Grid (WRF4G), to be distributed as open-source and to be integrated in the official WRF development cycle. The use of this WRF adaptation should be transparent and useful to face any of the previously described studies, and avoid any of the problems of the Grid infrastructure. Moreover it should simplify the access to the Grid infrastructures for the research teams, and also to free them from the technical and computational aspects of the use of the Grid. Finally, in order to
A robust adaptive sampling method for faster acquisition of MR images.
Vellagoundar, Jaganathan; Machireddy, Ramasubba Reddy
2015-06-01
A robust adaptive k-space sampling method is proposed for faster acquisition and reconstruction of MR images. In this method, undersampling patterns are generated based on magnitude profile of a fully acquired 2-D k-space data. Images are reconstructed using compressive sampling reconstruction algorithm. Simulation experiments are done to assess the performance of the proposed method under various signal-to-noise ratio (SNR) levels. The performance of the method is better than non-adaptive variable density sampling method when k-space SNR is greater than 10dB. The method is implemented on a fully acquired multi-slice raw k-space data and a quality assurance phantom data. Data reduction of up to 60% is achieved in the multi-slice imaging data and 75% is achieved in the phantom imaging data. The results show that reconstruction accuracy is improved over non-adaptive or conventional variable density sampling method. The proposed sampling method is signal dependent and the estimation of sampling locations is robust to noise. As a result, it eliminates the necessity of mathematical model and parameter tuning to compute k-space sampling patterns as required in non-adaptive sampling methods.
A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations
NASA Astrophysics Data System (ADS)
Reboux, Sylvain; Schrader, Birte; Sbalzarini, Ivo F.
2012-05-01
We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.
A self-adaptive-grid method with application to airfoil flow
NASA Technical Reports Server (NTRS)
Nakahashi, K.; Deiwert, G. S.
1985-01-01
A self-adaptive-grid method is described that is suitable for multidimensional steady and unsteady computations. Based on variational principles, a spring analogy is used to redistribute grid points in an optimal sense to reduce the overall solution error. User-specified parameters, denoting both maximum and minimum permissible grid spacings, are used to define the all-important constants, thereby minimizing the empiricism and making the method self-adaptive. Operator splitting and one-sided controls for orthogonality and smoothness are used to make the method practical, robust, and efficient. Examples are included for both steady and unsteady viscous flow computations about airfoils in two dimensions, as well as for a steady inviscid flow computation and a one-dimensional case. These examples illustrate the precise control the user has with the self-adaptive method and demonstrate a significant improvement in accuracy and quality of the solutions.
NASA Astrophysics Data System (ADS)
Cai, Xiaochun; Hu, Yihua; Wang, Peng; Sun, Dujuan; Hu, Guilan
2009-10-01
The paper presents an adaptive segmentation and activity classification method for filamentous fungi image. Firstly, an adaptive structuring element (SE) construction algorithm is proposed for image background suppression. Based on watershed transform method, the color labeled segmentation of fungi image is taken. Secondly, the fungi elements feature space is described and the feature set for fungi hyphae activity classification is extracted. The growth rate evaluation of fungi hyphae is achieved by using SVM classifier. Some experimental results demonstrate that the proposed method is effective for filamentous fungi image processing.
Webster, Clayton G; Zhang, Guannan; Gunzburger, Max D
2012-10-01
Accurate predictive simulations of complex real world applications require numerical approximations to first, oppose the curse of dimensionality and second, converge quickly in the presence of steep gradients, sharp transitions, bifurcations or finite discontinuities in high-dimensional parameter spaces. In this paper we present a novel multi-dimensional multi-resolution adaptive (MdMrA) sparse grid stochastic collocation method, that utilizes hierarchical multiscale piecewise Riesz basis functions constructed from interpolating wavelets. The basis for our non-intrusive method forms a stable multiscale splitting and thus, optimal adaptation is achieved. Error estimates and numerical examples will used to compare the efficiency of the method with several other techniques.
Anderson, R W; Pember, R B; Elliott, N S
2001-10-22
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.
Component model reduction via the projection and assembly method
NASA Technical Reports Server (NTRS)
Bernard, Douglas E.
1989-01-01
The problem of acquiring a simple but sufficiently accurate model of a dynamic system is made more difficult when the dynamic system of interest is a multibody system comprised of several components. A low order system model may be created by reducing the order of the component models and making use of various available multibody dynamics programs to assemble them into a system model. The difficulty is in choosing the reduced order component models to meet system level requirements. The projection and assembly method, proposed originally by Eke, solves this difficulty by forming the full order system model, performing model reduction at the the system level using system level requirements, and then projecting the desired modes onto the components for component level model reduction. The projection and assembly method is analyzed to show the conditions under which the desired modes are captured exactly; to the numerical precision of the algorithm.
ERIC Educational Resources Information Center
Wang, Ze; Rohrer, David; Chuang, Chi-ching; Fujiki, Mayo; Herman, Keith; Reinke, Wendy
2015-01-01
This study compared 5 scoring methods in terms of their statistical assumptions. They were then used to score the Teacher Observation of Classroom Adaptation Checklist, a measure consisting of 3 subscales and 21 Likert-type items. The 5 methods used were (a) sum/average scores of items, (b) latent factor scores with continuous indicators, (c)…
Adaptation of the TCLP and SW-846 methods to radioactive mixed waste
Griest, W.H.; Schenley, R.L.; Caton, J.E.; Wolfe, P.F.
1994-07-01
Modifications of conventional sample preparation and analytical methods are necessary to provide radiation protection and to meet sensitivity requirements for regulated constituents when working with radioactive samples. Adaptations of regulatory methods for determining ``total`` Toxicity Characteristic Leaching Procedure (TCLP) volatile and semivolatile organics and pesticides, and for conducting aqueous leaching are presented.
Analytic energy gradient for the projected Hartree-Fock method
NASA Astrophysics Data System (ADS)
Schutski, Roman; Jiménez-Hoyos, Carlos A.; Scuseria, Gustavo E.
2014-05-01
We derive and implement the analytic energy gradient for the symmetry Projected Hartree-Fock (PHF) method avoiding the solution of coupled-perturbed HF-like equations, as in the regular unprojected method. Our formalism therefore has mean-field computational scaling and cost, despite the elaborate multi-reference character of the PHF wave function. As benchmark examples, we here apply our gradient implementation to the ortho-, meta-, and para-benzyne biradicals, and discuss their equilibrium geometries and vibrational frequencies.
A decoupled monolithic projection method for natural convection problems
NASA Astrophysics Data System (ADS)
Pan, Xiaomin; Kim, Kyoungyoun; Lee, Changhoon; Choi, Jung-Il
2016-06-01
We propose an efficient monolithic numerical procedure based on a projection method for solving natural convection problems. In the present monolithic method, the buoyancy, linear diffusion, and nonlinear convection terms are implicitly advanced by applying the Crank-Nicolson scheme in time. To avoid an otherwise inevitable iterative procedure in solving the monolithic discretized system, we use a linearization of the nonlinear convection terms and approximate block lower-upper (LU) decompositions along with approximate factorization. Numerical simulations demonstrate that the proposed method is more stable and computationally efficient than other semi-implicit methods, preserving temporal second-order accuracy.
An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations
NASA Astrophysics Data System (ADS)
Tian, Lulu; Xu, Yan; Kuerten, J. G. M.; van der Vegt, J. J. W.
2016-08-01
In this article, we develop a mesh adaptation algorithm for a local discontinuous Galerkin (LDG) discretization of the (non)-isothermal Navier-Stokes-Korteweg (NSK) equations modeling liquid-vapor flows with phase change. This work is a continuation of our previous research, where we proposed LDG discretizations for the (non)-isothermal NSK equations with a time-implicit Runge-Kutta method. To save computing time and to capture the thin interfaces more accurately, we extend the LDG discretization with a mesh adaptation method. Given the current adapted mesh, a criterion for selecting candidate elements for refinement and coarsening is adopted based on the locally largest value of the density gradient. A strategy to refine and coarsen the candidate elements is then provided. We emphasize that the adaptive LDG discretization is relatively simple and does not require additional stabilization. The use of a locally refined mesh in combination with an implicit Runge-Kutta time method is, however, non-trivial, but results in an efficient time integration method for the NSK equations. Computations, including cases with solid wall boundaries, are provided to demonstrate the accuracy, efficiency and capabilities of the adaptive LDG discretizations.
NASA Astrophysics Data System (ADS)
Moore, F.; Burke, M.
2015-12-01
A wide range of studies using a variety of methods strongly suggest that climate change will have a negative impact on agricultural production in many areas. Farmers though should be able to learn about a changing climate and to adjust what they grow and how they grow it in order to reduce these negative impacts. However, it remains unclear how effective these private (autonomous) adaptations will be, or how quickly they will be adopted. Constraining the uncertainty on this adaptation is important for understanding the impacts of climate change on agriculture. Here we review a number of empirical methods that have been proposed for understanding the rate and effectiveness of private adaptation to climate change. We compare these methods using data on agricultural yields in the United States and western Europe.
He, Xiaowei; Hou, Yanbin; Chen, Duofang; Jiang, Yuchuan; Shen, Man; Liu, Junting; Zhang, Qitan; Tian, Jie
2011-01-01
Bioluminescence tomography (BLT) is a promising tool for studying physiological and pathological processes at cellular and molecular levels. In most clinical or preclinical practices, fine discretization is needed for recovering sources with acceptable resolution when solving BLT with finite element method (FEM). Nevertheless, uniformly fine meshes would cause large dataset and overfine meshes might aggravate the ill-posedness of BLT. Additionally, accurately quantitative information of density and power has not been simultaneously obtained so far. In this paper, we present a novel multilevel sparse reconstruction method based on adaptive FEM framework. In this method, permissible source region gradually reduces with adaptive local mesh refinement. By using sparse reconstruction with l(1) regularization on multilevel adaptive meshes, simultaneous recovery of density and power as well as accurate source location can be achieved. Experimental results for heterogeneous phantom and mouse atlas model demonstrate its effectiveness and potentiality in the application of quantitative BLT.
The adaptive problems of female teenage refugees and their behavioral adjustment methods for coping
Mhaidat, Fatin
2016-01-01
This study aimed at identifying the levels of adaptive problems among teenage female refugees in the government schools and explored the behavioral methods that were used to cope with the problems. The sample was composed of 220 Syrian female students (seventh to first secondary grades) enrolled at government schools within the Zarqa Directorate and who came to Jordan due to the war conditions in their home country. The study used the scale of adaptive problems that consists of four dimensions (depression, anger and hostility, low self-esteem, and feeling insecure) and a questionnaire of the behavioral adjustment methods for dealing with the problem of asylum. The results indicated that the Syrian teenage female refugees suffer a moderate degree of adaptation problems, and the positive adjustment methods they have used are more than the negatives. PMID:27175098
NASA Technical Reports Server (NTRS)
Mccormick, S.; Quinlan, D.
1989-01-01
The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids (global and local) to provide adaptive resolution and fast solution of PDEs. Like all such methods, it offers parallelism by using possibly many disconnected patches per level, but is hindered by the need to handle these levels sequentially. The finest levels must therefore wait for processing to be essentially completed on all the coarser ones. A recently developed asynchronous version of FAC, called AFAC, completely eliminates this bottleneck to parallelism. This paper describes timing results for AFAC, coupled with a simple load balancing scheme, applied to the solution of elliptic PDEs on an Intel iPSC hypercube. These tests include performance of certain processes necessary in adaptive methods, including moving grids and changing refinement. A companion paper reports on numerical and analytical results for estimating convergence factors of AFAC applied to very large scale examples.
Lei, Xusheng; Li, Jingjing
2012-01-01
This paper presents an adaptive information fusion method to improve the accuracy and reliability of the altitude measurement information for small unmanned aerial rotorcraft during the landing process. Focusing on the low measurement performance of sensors mounted on small unmanned aerial rotorcraft, a wavelet filter is applied as a pre-filter to attenuate the high frequency noises in the sensor output. Furthermore, to improve altitude information, an adaptive extended Kalman filter based on a maximum a posteriori criterion is proposed to estimate measurement noise covariance matrix in real time. Finally, the effectiveness of the proposed method is proved by static tests, hovering flight and autonomous landing flight tests. PMID:23201993
The block adaptive multigrid method applied to the solution of the Euler equations
NASA Technical Reports Server (NTRS)
Pantelelis, Nikos
1993-01-01
In the present study, a scheme capable of solving very fast and robust complex nonlinear systems of equations is presented. The Block Adaptive Multigrid (BAM) solution method offers multigrid acceleration and adaptive grid refinement based on the prediction of the solution error. The proposed solution method was used with an implicit upwind Euler solver for the solution of complex transonic flows around airfoils. Very fast results were obtained (18-fold acceleration of the solution) using one fourth of the volumes of a global grid with the same solution accuracy for two test cases.
A comparison of locally adaptive multigrid methods: LDC, FAC and FIC
NASA Technical Reports Server (NTRS)
Khadra, Khodor; Angot, Philippe; Caltagirone, Jean-Paul
1993-01-01
This study is devoted to a comparative analysis of three 'Adaptive ZOOM' (ZOom Overlapping Multi-level) methods based on similar concepts of hierarchical multigrid local refinement: LDC (Local Defect Correction), FAC (Fast Adaptive Composite), and FIC (Flux Interface Correction)--which we proposed recently. These methods are tested on two examples of a bidimensional elliptic problem. We compare, for V-cycle procedures, the asymptotic evolution of the global error evaluated by discrete norms, the corresponding local errors, and the convergence rates of these algorithms.
Lei, Xusheng; Li, Jingjing
2012-01-01
This paper presents an adaptive information fusion method to improve the accuracy and reliability of the altitude measurement information for small unmanned aerial rotorcraft during the landing process. Focusing on the low measurement performance of sensors mounted on small unmanned aerial rotorcraft, a wavelet filter is applied as a pre-filter to attenuate the high frequency noises in the sensor output. Furthermore, to improve altitude information, an adaptive extended Kalman filter based on a maximum a posteriori criterion is proposed to estimate measurement noise covariance matrix in real time. Finally, the effectiveness of the proposed method is proved by static tests, hovering flight and autonomous landing flight tests. PMID:23201993
Yoshikawa, Takako; Morigami, Makoto; Sadr, Alireza; Tagami, Junji
2014-01-01
This study aimed to evaluate the effects of the light curing method and resin composite composition on marginal sealing and resin composite adaptation to the cavity wall. Cylindrical cavities were prepared on the buccal or lingual cervical regions. The teeth were restored using Clearfil Liner Bond 2V adhesive system and filled with Clearfil Photo Bright or Palfique Estelite resin composite. The resins were cured using the conventional or slow-start light curing method. After thermal cycling, the specimens were subjected to a dye penetration test. The slow-start curing method showed better resin composite adaptation to the cavity wall for both composites. Furthermore, the slow-start curing method resulted in significantly improved dentin marginal sealing compared with the conventional method for Clearfil Photo Bright. The light-cured resin composite, which exhibited increased contrast ratios duringpolymerization, seems to suggest high compensation for polymerization contraction stress when using the slow-start curing method.
A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES
Druckmueller, M.
2013-08-15
A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.
Large project experiences with object-oriented methods and reuse
NASA Technical Reports Server (NTRS)
Wessale, William; Reifer, Donald J.; Weller, David
1992-01-01
The SSVTF (Space Station Verification and Training Facility) project is completing the Preliminary Design Review of a large software development using object-oriented methods and systematic reuse. An incremental developmental lifecycle was tailored to provide early feedback and guidance on methods and products, with repeated attention to reuse. Object oriented methods were formally taught and supported by realistic examples. Reuse was readily accepted and planned by the developers. Schedule and budget issues were handled by agreements and work sharing arranged by the developers.
Projected discrete ordinates methods for numerical transport problems
Larsen, E.W.
1985-01-01
A class of Projected Discrete-Ordinates (PDO) methods is described for obtaining iterative solutions of discrete-ordinates problems with convergence rates comparable to those observed using Diffusion Synthetic Acceleration (DSA). The spatially discretized PDO solutions are generally not equal to the DSA solutions, but unlike DSA, which requires great care in the use of spatial discretizations to preserve stability, the PDO solutions remain stable and rapidly convergent with essentially arbitrary spatial discretizations. Numerical results are presented which illustrate the rapid convergence and the accuracy of solutions obtained using PDO methods with commonplace differencing methods.
A GPU-accelerated adaptive discontinuous Galerkin method for level set equation
NASA Astrophysics Data System (ADS)
Karakus, A.; Warburton, T.; Aksel, M. H.; Sert, C.
2016-01-01
This paper presents a GPU-accelerated nodal discontinuous Galerkin method for the solution of two- and three-dimensional level set (LS) equation on unstructured adaptive meshes. Using adaptive mesh refinement, computations are localised mostly near the interface location to reduce the computational cost. Small global time step size resulting from the local adaptivity is avoided by local time-stepping based on a multi-rate Adams-Bashforth scheme. Platform independence of the solver is achieved with an extensible multi-threading programming API that allows runtime selection of different computing devices (GPU and CPU) and different threading interfaces (CUDA, OpenCL and OpenMP). Overall, a highly scalable, accurate and mass conservative numerical scheme that preserves the simplicity of LS formulation is obtained. Efficiency, performance and local high-order accuracy of the method are demonstrated through distinct numerical test cases.
Automatic off-body overset adaptive Cartesian mesh method based on an octree approach
Peron, Stephanie; Benoit, Christophe
2013-01-01
This paper describes a method for generating adaptive structured Cartesian grids within a near-body/off-body mesh partitioning framework for the flow simulation around complex geometries. The off-body Cartesian mesh generation derives from an octree structure, assuming each octree leaf node defines a structured Cartesian block. This enables one to take into account the large scale discrepancies in terms of resolution between the different bodies involved in the simulation, with minimum memory requirements. Two different conversions from the octree to Cartesian grids are proposed: the first one generates Adaptive Mesh Refinement (AMR) type grid systems, and the second one generates abutting or minimally overlapping Cartesian grid set. We also introduce an algorithm to control the number of points at each adaptation, that automatically determines relevant values of the refinement indicator driving the grid refinement and coarsening. An application to a wing tip vortex computation assesses the capability of the method to capture accurately the flow features.
NASA Astrophysics Data System (ADS)
Kim, Youn Jin
2010-09-01
This study intends to quantify the effects of the surround luminance and noise of a given stimulus on the shape of spatial luminance contrast sensitivity function (CSF) and to propose an adaptive image quality evaluation method. The proposed image evaluation method extends a model called square-root integral (SQRI). The non-linear behaviour of the human visual system was taken into account by using CSF. This model can be defined as the square root integration of multiplication between display modulation transfer function and CSF. The CSF term in the original SQRI was replaced by the surround adaptive CSF quantified in this study and it is divided by the Fourier transform of a given stimulus for compensating for the noise adaptation.
A density-based adaptive quantum mechanical/molecular mechanical method.
Waller, Mark P; Kumbhar, Sadhana; Yang, Jack
2014-10-20
We present a density-based adaptive quantum mechanical/molecular mechanical (DBA-QM/MM) method, whereby molecules can switch layers from the QM to the MM region and vice versa. The adaptive partitioning of the molecular system ensures that the layer assignment can change during the optimization procedure, that is, on the fly. The switch from a QM molecule to a MM molecule is determined if there is an absence of noncovalent interactions to any atom of the QM core region. The presence/absence of noncovalent interactions is determined by analysis of the reduced density gradient. Therefore, the location of the QM/MM boundary is based on physical arguments, and this neatly removes some empiricism inherent in previous adaptive QM/MM partitioning schemes. The DBA-QM/MM method is validated by using a water-in-water setup and an explicitly solvated L-alanyl-L-alanine dipeptide. PMID:24954803
A density-based adaptive quantum mechanical/molecular mechanical method.
Waller, Mark P; Kumbhar, Sadhana; Yang, Jack
2014-10-20
We present a density-based adaptive quantum mechanical/molecular mechanical (DBA-QM/MM) method, whereby molecules can switch layers from the QM to the MM region and vice versa. The adaptive partitioning of the molecular system ensures that the layer assignment can change during the optimization procedure, that is, on the fly. The switch from a QM molecule to a MM molecule is determined if there is an absence of noncovalent interactions to any atom of the QM core region. The presence/absence of noncovalent interactions is determined by analysis of the reduced density gradient. Therefore, the location of the QM/MM boundary is based on physical arguments, and this neatly removes some empiricism inherent in previous adaptive QM/MM partitioning schemes. The DBA-QM/MM method is validated by using a water-in-water setup and an explicitly solvated L-alanyl-L-alanine dipeptide.
An adaptive mesh finite volume method for the Euler equations of gas dynamics
NASA Astrophysics Data System (ADS)
Mungkasi, Sudi
2016-06-01
The Euler equations have been used to model gas dynamics for decades. They consist of mathematical equations for the conservation of mass, momentum, and energy of the gas. For a large time value, the solution may contain discontinuities, even when the initial condition is smooth. A standard finite volume numerical method is not able to give accurate solutions to the Euler equations around discontinuities. Therefore we solve the Euler equations using an adaptive mesh finite volume method. In this paper, we present a new construction of the adaptive mesh finite volume method with an efficient computation of the refinement indicator. The adaptive method takes action automatically at around places having inaccurate solutions. Inaccurate solutions are reconstructed to reduce the error by refining the mesh locally up to a certain level. On the other hand, if the solution is already accurate, then the mesh is coarsened up to another certain level to minimize computational efforts. We implement the numerical entropy production as the mesh refinement indicator. As a test problem, we take the Sod shock tube problem. Numerical results show that the adaptive method is more promising than the standard one in solving the Euler equations of gas dynamics.
NASA Astrophysics Data System (ADS)
Walters, William J.; Haghighat, Alireza
2014-06-01
A new collision source method has been developed to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained separately, with potentially a different quadrature order. This allows for an optimal use of processing power, by using a high order quadrature for the first few iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and we call it the adaptive collision source method (ACS). The ACS methodolog y has been implemented in the TITAN discrete ordinates code, and has shown a speedup of 2-3 on a test problem, with very little loss of accuracy (within a provided adaptive tolerance). Further, the code has been extended to work in parallel environments by angular decomposition. Although the method requires increased parallel communication, tests have shown excellent scalability, with parallel fractions of up to 99%.
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
NASA Technical Reports Server (NTRS)
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
Tomographic fluorescence reconstruction by a spectral projected gradient pursuit method
NASA Astrophysics Data System (ADS)
Ye, Jinzuo; An, Yu; Mao, Yamin; Jiang, Shixin; Yang, Xin; Chi, Chongwei; Tian, Jie
2015-03-01
In vivo fluorescence molecular imaging (FMI) has played an increasingly important role in biomedical research of preclinical area. Fluorescence molecular tomography (FMT) further upgrades the two-dimensional FMI optical information to three-dimensional fluorescent source distribution, which can greatly facilitate applications in related studies. However, FMT presents a challenging inverse problem which is quite ill-posed and ill-conditioned. Continuous efforts to develop more practical and efficient methods for FMT reconstruction are still needed. In this paper, a method based on spectral projected gradient pursuit (SPGP) has been proposed for FMT reconstruction. The proposed method was based on the directional pursuit framework. A mathematical strategy named the nonmonotone line search was associated with the SPGP method, which guaranteed the global convergence. In addition, the Barzilai-Borwein step length was utilized to build the new step length of the SPGP method, which was able to speed up the convergence of this gradient method. To evaluate the performance of the proposed method, several heterogeneous simulation experiments including multisource cases as well as comparative analyses have been conducted. The results demonstrated that, the proposed method was able to achieve satisfactory source localizations with a bias less than 1 mm; the computational efficiency of the method was one order of magnitude faster than the contrast method; and the fluorescence reconstructed by the proposed method had a higher contrast to the background than the contrast method. All the results demonstrated the potential for practical FMT applications with the proposed method.
A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; Burkardt, John V.
2015-06-24
This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Solution of the Euler Equations
Anderson, R W; Elliott, N S; Pember, R B
2003-02-14
A new method that combines staggered grid arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the methods are driven by the need to reconcile traditional AMR techniques with the staggered variables and moving, deforming meshes associated with Lagrange based ALE schemes. We develop interlevel solution transfer operators and interlevel boundary conditions first in the case of purely Lagrangian hydrodynamics, and then extend these ideas into an ALE method by developing adaptive extensions of elliptic mesh relaxation techniques. Conservation properties of the method are analyzed, and a series of test problem calculations are presented which demonstrate the utility and efficiency of the method.
Applications of automatic mesh generation and adaptive methods in computational medicine
Schmidt, J.A.; Macleod, R.S.; Johnson, C.R.; Eason, J.C.
1995-12-31
Important problems in Computational Medicine exist that can benefit from the implementation of adaptive mesh refinement techniques. Biological systems are so inherently complex that only efficient models running on state of the art hardware can begin to simulate reality. To tackle the complex geometries associated with medical applications we present a general purpose mesh generation scheme based upon the Delaunay tessellation algorithm and an iterative point generator. In addition, automatic, two- and three-dimensional adaptive mesh refinement methods are presented that are derived from local and global estimates of the finite element error. Mesh generation and adaptive refinement techniques are utilized to obtain accurate approximations of bioelectric fields within anatomically correct models of the heart and human thorax. Specifically, we explore the simulation of cardiac defibrillation and the general forward and inverse problems in electrocardiography (ECG). Comparisons between uniform and adaptive refinement techniques are made to highlight the computational efficiency and accuracy of adaptive methods in the solution of field problems in computational medicine.
Development and evaluation of a method of calibrating medical displays based on fixed adaptation
Sund, Patrik Månsson, Lars Gunnar; Båth, Magnus
2015-04-15
Purpose: The purpose of this work was to develop and evaluate a new method for calibration of medical displays that includes the effect of fixed adaptation and by using equipment and luminance levels typical for a modern radiology department. Methods: Low contrast sinusoidal test patterns were derived at nine luminance levels from 2 to 600 cd/m{sup 2} and used in a two alternative forced choice observer study, where the adaptation level was fixed at the logarithmic average of 35 cd/m{sup 2}. The contrast sensitivity at each luminance level was derived by establishing a linear relationship between the ten pattern contrast levels used at every luminance level and a detectability index (d′) calculated from the fraction of correct responses. A Gaussian function was fitted to the data and normalized to the adaptation level. The corresponding equation was used in a display calibration method that included the grayscale standard display function (GSDF) but compensated for fixed adaptation. In the evaluation study, the contrast of circular objects with a fixed pixel contrast was displayed using both calibration methods and was rated on a five-grade scale. Results were calculated using a visual grading characteristics method. Error estimations in both observer studies were derived using a bootstrap method. Results: The contrast sensitivities for the darkest and brightest patterns compared to the contrast sensitivity at the adaptation luminance were 37% and 56%, respectively. The obtained Gaussian fit corresponded well with similar studies. The evaluation study showed a higher degree of equally distributed contrast throughout the luminance range with the calibration method compensated for fixed adaptation than for the GSDF. The two lowest scores for the GSDF were obtained for the darkest and brightest patterns. These scores were significantly lower than the lowest score obtained for the compensated GSDF. For the GSDF, the scores for all luminance levels were statistically
Adaptive non-local means method for speckle reduction in ultrasound images
NASA Astrophysics Data System (ADS)
Ai, Ling; Ding, Mingyue; Zhang, Xuming
2016-03-01
Noise removal is a crucial step to enhance the quality of ultrasound images. However, some existing despeckling methods cannot ensure satisfactory restoration performance. In this paper, an adaptive non-local means (ANLM) filter is proposed for speckle noise reduction in ultrasound images. The distinctive property of the proposed method lies in that the decay parameter will not take the fixed value for the whole image but adapt itself to the variation of the local features in the ultrasound images. In the proposed method, the pre-filtered image will be obtained using the traditional NLM method. Based on the pre-filtered result, the local gradient will be computed and it will be utilized to determine the decay parameter adaptively for each image pixel. The final restored image will be produced by the ANLM method using the obtained decay parameters. Simulations on the synthetic image show that the proposed method can deliver sufficient speckle reduction while preserving image details very well and it outperforms the state-of-the-art despeckling filters in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Experiments on the clinical ultrasound image further demonstrate the practicality and advantage of the proposed method over the compared filtering methods.
NASA Astrophysics Data System (ADS)
Ding, Xiaohong; Ji, Xuerong; Ma, Man; Hou, Jianyun
2013-11-01
The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure construction and seed selection are studied, so as to make it possible to improve the effectiveness and applicability of the adaptive growth method in stiffener layout design optimization of plates and shells. Three schemes of ground structures, which are comprised by different shell elements and beam elements, are proposed. It is found that the main stiffener layouts resulted from different ground structures are almost the same, but the ground structure comprised by 8-nodes shell elements and both 3-nodes and 2-nodes beam elements can result in clearest stiffener layout, and has good adaptability and low computational cost. An automatic seed selection approach is proposed, which is based on such selection rules that the seeds should be positioned on where the structural strain energy is great for the minimum compliance problem, and satisfy the dispersancy requirement. The adaptive growth method with the suggested key techniques is integrated into an ANSYS-based program, which provides a design tool for the stiffener layout design optimization of plates and shells. Typical design examples, including plate and shell structures to achieve minimum compliance and maximum bulking stability are illustrated. In addition, as a practical mechanical structural design example, the stiffener layout of an inlet structure for a large-scale electrostatic precipitator is also demonstrated. The design results show that the adaptive growth method integrated with the suggested key techniques can effectively and flexibly deal with stiffener layout design problem for plates and shells with complex geometrical shape and loading conditions to achieve various design objectives, thus it provides a new solution method for engineering structural topology design optimization.
Method for reducing the drag of blunt-based vehicles by adaptively increasing forebody roughness
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor); Saltzman, Edwin J. (Inventor); Moes, Timothy R. (Inventor); Iliff, Kenneth W. (Inventor)
2005-01-01
A method for reducing drag upon a blunt-based vehicle by adaptively increasing forebody roughness to increase drag at the roughened area of the forebody, which results in a decrease in drag at the base of this vehicle, and in total vehicle drag.
NASA Technical Reports Server (NTRS)
Kornilova, L. N.; Cowings, P. S.; Toscano, W. B.; Arlashchenko, N. I.; Korneev, D. Iu; Ponomarenko, A. V.; Salagovich, S. V.; Sarantseva, A. V.; Kozlovskaia, I. B.
2000-01-01
Presented are results of testing the method of adaptive biocontrol during preflight training of cosmonauts. Within the MIR-25 crew, a high level of controllability of the autonomous reactions was characteristic of Flight Commanders MIR-23 and MIR-25 and flight Engineer MIR-23, while Flight Engineer MIR-25 displayed a weak intricate dependence of these reactions on the depth of relaxation or strain.
Item Pocket Method to Allow Response Review and Change in Computerized Adaptive Testing
ERIC Educational Resources Information Center
Han, Kyung T.
2013-01-01
Most computerized adaptive testing (CAT) programs do not allow test takers to review and change their responses because it could seriously deteriorate the efficiency of measurement and make tests vulnerable to manipulative test-taking strategies. Several modified testing methods have been developed that provide restricted review options while…
Methods of Adapting Digital Content for the Learning Process via Mobile Devices
ERIC Educational Resources Information Center
Lopez, J. L. Gimenez; Royo, T. Magal; Laborda, Jesus Garcia; Calvo, F. Garde
2009-01-01
This article analyses different methods of adapting digital content for its delivery via mobile devices taking into account two aspects which are a fundamental part of the learning process; on the one hand, functionality of the contents, and on the other, the actual controlled navigation requirements that the learner needs in order to acquire high…
Hasse, J U; Weingaertner, D E
2016-01-01
As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) 'dynaklim - Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)', the Roadmap 2020 'Regional Climate Adaptation' has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap 'Water Sensitive Urban Design 2020'. With a focus on the process support tool 'KlimaFLEX', one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on.
Hasse, J U; Weingaertner, D E
2016-01-01
As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) 'dynaklim - Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)', the Roadmap 2020 'Regional Climate Adaptation' has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap 'Water Sensitive Urban Design 2020'. With a focus on the process support tool 'KlimaFLEX', one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on. PMID:27148728
Childhood Obesity Research Demonstration Project: Cross-Site Evaluation Methods
Lee, Rebecca E.; Mehta, Paras; Thompson, Debbe; Bhargava, Alok; Carlson, Coleen; Kao, Dennis; Layne, Charles S.; Ledoux, Tracey; O'Connor, Teresia; Rifai, Hanadi; Gulley, Lauren; Hallett, Allen M.; Kudia, Ousswa; Joseph, Sitara; Modelska, Maria; Ortega, Dana; Parker, Nathan; Stevens, Andria
2015-01-01
Abstract Introduction: The Childhood Obesity Research Demonstration (CORD) project links public health and primary care interventions in three projects described in detail in accompanying articles in this issue of Childhood Obesity. This article describes a comprehensive evaluation plan to determine the extent to which the CORD model is associated with changes in behavior, body weight, BMI, quality of life, and healthcare satisfaction in children 2–12 years of age. Design/Methods: The CORD Evaluation Center (EC-CORD) will analyze the pooled data from three independent demonstration projects that each integrate public health and primary care childhood obesity interventions. An extensive set of common measures at the family, facility, and community levels were defined by consensus among the CORD projects and EC-CORD. Process evaluation will assess reach, dose delivered, and fidelity of intervention components. Impact evaluation will use a mixed linear models approach to account for heterogeneity among project-site populations and interventions. Sustainability evaluation will assess the potential for replicability, continuation of benefits beyond the funding period, institutionalization of the intervention activities, and community capacity to support ongoing program delivery. Finally, cost analyses will assess how much benefit can potentially be gained per dollar invested in programs based on the CORD model. Conclusions: The keys to combining and analyzing data across multiple projects include the CORD model framework and common measures for the behavioral and health outcomes along with important covariates at the individual, setting, and community levels. The overall objective of the comprehensive evaluation will develop evidence-based recommendations for replicating and disseminating community-wide, integrated public health and primary care programs based on the CORD model. PMID:25679060
Matthews, Devin A.; Stanton, John F.
2015-02-14
The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q))
Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics
NASA Technical Reports Server (NTRS)
Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy
2006-01-01
This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.
An edge-based solution-adaptive method applied to the AIRPLANE code
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Thomas, Scott D.; Cliff, Susan E.
1995-01-01
Computational methods to solve large-scale realistic problems in fluid flow can be made more efficient and cost effective by using them in conjunction with dynamic mesh adaption procedures that perform simultaneous coarsening and refinement to capture flow features of interest. This work couples the tetrahedral mesh adaption scheme, 3D_TAG, with the AIRPLANE code to solve complete aircraft configuration problems in transonic and supersonic flow regimes. Results indicate that the near-field sonic boom pressure signature of a cone-cylinder is improved, the oblique and normal shocks are better resolved on a transonic wing, and the bow shock ahead of an unstarted inlet is better defined.
NASA Astrophysics Data System (ADS)
Chai, Runqi; Savvaris, Al; Tsourdos, Antonios
2016-06-01
In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.
An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors
NASA Technical Reports Server (NTRS)
Kopasakis, George; DeLaat, John C.; Chang, Clarence T.
2008-01-01
An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.
A velocity-correction projection method based immersed boundary method for incompressible flows
NASA Astrophysics Data System (ADS)
Cai, Shanggui
2014-11-01
In the present work we propose a novel direct forcing immersed boundary method based on the velocity-correction projection method of [J.L. Guermond, J. Shen, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal., 41 (1)(2003) 112]. The principal idea of immersed boundary method is to correct the velocity in the vicinity of the immersed object by using an artificial force to mimic the presence of the physical boundaries. Therefore, velocity-correction projection method is preferred to its pressure-correction counterpart in the present work. Since the velocity-correct projection method is considered as a dual class of pressure-correction method, the proposed method here can also be interpreted in the way that first the pressure is predicted by treating the viscous term explicitly without the consideration of the immersed boundary, and the solenoidal velocity is used to determine the volume force on the Lagrangian points, then the non-slip boundary condition is enforced by correcting the velocity with the implicit viscous term. To demonstrate the efficiency and accuracy of the proposed method, several numerical simulations are performed and compared with the results in the literature. China Scholarship Council.
Accelerated Test Method for Corrosion Protective Coatings Project
NASA Technical Reports Server (NTRS)
Falker, John; Zeitlin, Nancy; Calle, Luz
2015-01-01
This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.
Xia, Kelin; Zhan, Meng; Wan, Decheng; Wei, Guo-Wei
2011-01-01
Mesh deformation methods are a versatile strategy for solving partial differential equations (PDEs) with a vast variety of practical applications. However, these methods break down for elliptic PDEs with discontinuous coefficients, namely, elliptic interface problems. For this class of problems, the additional interface jump conditions are required to maintain the well-posedness of the governing equation. Consequently, in order to achieve high accuracy and high order convergence, additional numerical algorithms are required to enforce the interface jump conditions in solving elliptic interface problems. The present work introduces an interface technique based adaptively deformed mesh strategy for resolving elliptic interface problems. We take the advantages of the high accuracy, flexibility and robustness of the matched interface and boundary (MIB) method to construct an adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients. The proposed method generates deformed meshes in the physical domain and solves the transformed governed equations in the computational domain, which maintains regular Cartesian meshes. The mesh deformation is realized by a mesh transformation PDE, which controls the mesh redistribution by a source term. The source term consists of a monitor function, which builds in mesh contraction rules. Both interface geometry based deformed meshes and solution gradient based deformed meshes are constructed to reduce the L∞ and L2 errors in solving elliptic interface problems. The proposed adaptively deformed mesh based interface method is extensively validated by many numerical experiments. Numerical results indicate that the adaptively deformed mesh based interface method outperforms the original MIB method for dealing with elliptic interface problems. PMID:22586356
Refinement trajectory and determination of eigenstates by a wavelet based adaptive method
Pipek, Janos; Nagy, Szilvia
2006-11-07
The detail structure of the wave function is analyzed at various refinement levels using the methods of wavelet analysis. The eigenvalue problem of a model system is solved in granular Hilbert spaces, and the trajectory of the eigenstates is traced in terms of the resolution. An adaptive method is developed for identifying the fine structure localization regions, where further refinement of the wave function is necessary.
A two-dimensional adaptive spectral element method for the direct simulation of incompressible flow
NASA Astrophysics Data System (ADS)
Hsu, Li-Chieh
The spectral element method is a high order discretization scheme for the solution of nonlinear partial differential equations. The method draws its strengths from the finite element method for geometrical flexibility and spectral methods for high accuracy. Although the method is, in theory, very powerful for complex phenomena such as transitional flows, its practical implementation is limited by the arbitrary choice of domain discretization. For instance, it is hard to estimate the appropriate number of elements for a specific case. Selection of regions to be refined or coarsened is difficult especially as the flow becomes more complex and memory limits of the computer are stressed. We present an adaptive spectral element method in which the grid is automatically refined or coarsened in order to capture underresolved regions of the domain and to follow regions requiring high resolution as they develop in time. The objective is to provide the best and most efficient solution to a time-dependent nonlinear problem by continually optimizing resource allocation. The adaptivity is based on an error estimator which determines which regions need more resolution. The solution strategy is as follows: compute an initial solution with a suitable initial mesh, estimate errors in the solution locally in each element, modify the mesh according to the error estimators, interpolate old mesh solutions onto the new elements, and resume the numerical solution process. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flows has been developed. The adaptive algorithm effectively diagnoses and refines regions of the flow where complexity of the solution requires increased resolution. The method has been demonstrated on two-dimensional examples in heat conduction, Stokes and Navier-Stokes flows.
Locus coeruleus: From global projection system to adaptive regulation of behavior.
Aston-Jones, G; Waterhouse, B
2016-08-15
The brainstem nucleus locus coeruleus (LC) is a major source of norepinephrine (NE) projections throughout the CNS. This important property was masked in very early studies by the inability to visualize endogenous monoamines. The development of monoamine histofluorescence methods by Swedish scientists led to a plethora of studies, including a paper published in Brain Research by Loizou in 1969. That paper was highly cited (making it a focal point for the 50th anniversary issue of this journal), and helped to spark a large and continuing set of investigations to further refine our understating of the LC-NE system and its contribution to brain function and behavior. This paper very briefly reviews the ensuing advances in anatomical, physiological and behavioral aspects of the LC-NE system. Although its projections are ubiquitously present throughout the CNS, recent studies find surprising specificity within the organizational and operational domains of LC neurons. These and other findings lead us to expect that future work will unmask additional features of the LC-NE system and its roles in normative and pathological brain and behavioral processes. This article is part of a Special Issue entitled SI:50th Anniversary Issue.
Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation
NASA Astrophysics Data System (ADS)
Kompenhans, Moritz; Rubio, Gonzalo; Ferrer, Esteban; Valero, Eusebio
2016-02-01
In this paper three p-adaptation strategies based on the minimization of the truncation error are presented for high order discontinuous Galerkin methods. The truncation error is approximated by means of a τ-estimation procedure and enables the identification of mesh regions that require adaptation. Three adaptation strategies are developed and termed a posteriori, quasi-a priori and quasi-a priori corrected. All strategies require fine solutions, which are obtained by enriching the polynomial order, but while the former needs time converged solutions, the last two rely on non-converged solutions, which lead to faster computations. In addition, the high order method permits the spatial decoupling for the estimated errors and enables anisotropic p-adaptation. These strategies are verified and compared in terms of accuracy and computational cost for the Euler and the compressible Navier-Stokes equations. It is shown that the two quasi-a priori methods achieve a significant reduction in computational cost when compared to a uniform polynomial enrichment. Namely, for a viscous boundary layer flow, we obtain a speedup of 6.6 and 7.6 for the quasi-a priori and quasi-a priori corrected approaches, respectively.
A wavelet-optimized, very high order adaptive grid and order numerical method
NASA Technical Reports Server (NTRS)
Jameson, Leland
1996-01-01
Differencing operators of arbitrarily high order can be constructed by interpolating a polynomial through a set of data followed by differentiation of this polynomial and finally evaluation of the polynomial at the point where a derivative approximation is desired. Furthermore, the interpolating polynomial can be constructed from algebraic, trigonometric, or, perhaps exponential polynomials. This paper begins with a comparison of such differencing operator construction. Next, the issue of proper grids for high order polynomials is addressed. Finally, an adaptive numerical method is introduced which adapts the numerical grid and the order of the differencing operator depending on the data. The numerical grid adaptation is performed on a Chebyshev grid. That is, at each level of refinement the grid is a Chebvshev grid and this grid is refined locally based on wavelet analysis.
A Digitalized Gyroscope System Based on a Modified Adaptive Control Method.
Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen
2016-03-04
In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm.
Scale-adaptive tensor algebra for local many-body methods of electronic structure theory
Liakh, Dmitry I
2014-01-01
While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locally supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).
A Digitalized Gyroscope System Based on a Modified Adaptive Control Method.
Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen
2016-01-01
In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019
Investigation of the effects of color on judgments of sweetness using a taste adaptation method.
Hidaka, Souta; Shimoda, Kazumasa
2014-01-01
It has been reported that color can affect the judgment of taste. For example, a dark red color enhances the subjective intensity of sweetness. However, the underlying mechanisms of the effect of color on taste have not been fully investigated; in particular, it remains unclear whether the effect is based on cognitive/decisional or perceptual processes. Here, we investigated the effect of color on sweetness judgments using a taste adaptation method. A sweet solution whose color was subjectively congruent with sweetness was judged as sweeter than an uncolored sweet solution both before and after adaptation to an uncolored sweet solution. In contrast, subjective judgment of sweetness for uncolored sweet solutions did not differ between the conditions following adaptation to a colored sweet solution and following adaptation to an uncolored one. Color affected sweetness judgment when the target solution was colored, but the colored sweet solution did not modulate the magnitude of taste adaptation. Therefore, it is concluded that the effect of color on the judgment of taste would occur mainly in cognitive/decisional domains.
Huttunen, Sanna; Olsson, Sanna; Buchbender, Volker; Enroth, Johannes; Hedenäs, Lars; Quandt, Dietmar
2012-01-01
Adaptive evolution has often been proposed to explain correlations between habitats and certain phenotypes. In mosses, a high frequency of species with specialized sporophytic traits in exposed or epiphytic habitats was, already 100 years ago, suggested as due to adaptation. We tested this hypothesis by contrasting phylogenetic and morphological data from two moss families, Neckeraceae and Lembophyllaceae, both of which show parallel shifts to a specialized morphology and to exposed epiphytic or epilithic habitats. Phylogeny-based tests for correlated evolution revealed that evolution of four sporophytic traits is correlated with a habitat shift. For three of them, evolutionary rates of dual character-state changes suggest that habitat shifts appear prior to changes in morphology. This suggests that they could have evolved as adaptations to new habitats. Regarding the fourth correlated trait the specialized morphology had already evolved before the habitat shift. In addition, several other specialized "epiphytic" traits show no correlation with a habitat shift. Besides adaptive diversification, other processes thus also affect the match between phenotype and environment. Several potential factors such as complex genetic and developmental pathways yielding the same phenotypes, differences in strength of selection, or constraints in phenotypic evolution may lead to an inability of phylogeny-based comparative methods to detect potential adaptations.
A Digitalized Gyroscope System Based on a Modified Adaptive Control Method
Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen
2016-01-01
In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019
A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov Maxwell system
NASA Astrophysics Data System (ADS)
Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain; Sonnendrücker, Eric; Bertrand, Pierre
2008-08-01
In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to
A general, mass-preserving Navier-Stokes projection method
NASA Astrophysics Data System (ADS)
Salac, David
2016-07-01
The conservation of mass is a common issue with multiphase fluid simulations. In this work a novel projection method is presented which conserves mass both locally and globally. The fluid pressure is augmented with a time-varying component which accounts for any global mass change. The resulting system of equations is solved using an efficient Schur-complement method. Using the proposed method four numerical examples are performed: the evolution of a static bubble, the rise of a bubble, the breakup of a thin fluid thread, and the extension of a droplet in shear flow. The method is capable of conserving the mass even in situations with morphological changes such as droplet breakup.
SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method
Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J; Guo, X
2015-06-15
Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.
Galerkin projection methods for solving multiple related linear systems
Chan, T.F.; Ng, M.; Wan, W.L.
1996-12-31
We consider using Galerkin projection methods for solving multiple related linear systems A{sup (i)}x{sup (i)} = b{sup (i)} for 1 {le} i {le} s, where A{sup (i)} and b{sup (i)} are different in general. We start with the special case where A{sup (i)} = A and A is symmetric positive definite. The method generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed system, by the CG method and then projects the residuals of other systems orthogonally onto the generated Krylov subspace to get the approximate solutions. The whole process is repeated with another unsolved system as a seed until all the systems are solved. We observe in practice a super-convergence behaviour of the CG process of the seed system when compared with the usual CG process. We also observe that only a small number of restarts is required to solve all the systems if the right-hand sides are close to each other. These two features together make the method particularly effective. In this talk, we give theoretical proof to justify these observations. Furthermore, we combine the advantages of this method and the block CG method and propose a block extension of this single seed method. The above procedure can actually be modified for solving multiple linear systems A{sup (i)}x{sup (i)} = b{sup (i)}, where A{sup (i)} are now different. We can also extend the previous analytical results to this more general case. Applications of this method to multiple related linear systems arising from image restoration and recursive least squares computations are considered as examples.
Projection Method for Flows with Large Density Variations
NASA Technical Reports Server (NTRS)
Heinrich, Juan C.; Westra, Douglas G.
2007-01-01
Numerical models of solidification including a mushy zone are notoriously inefficient; most of them are based on formulations that require the coupled solution of the velocity components in the momentum equation greatly restricting the range of applicability of the models. There are only two models known to the authors that have used a projection or fractional step formulation, but none of these were used to model problems of any significant size. A third model was only applied to a partial mushy zone with no all-fluid region. Our initial attempts at modeling directional solidification in the presence of a developing mushy zone using a projection formulation encountered very serious difficulties once solidification starts. These difficulties were traced to the inability of the method to deal with large local density differences in the vicinity of the fluid-mush interface. As a result, a modified formulation of the projection method has been developed, that maintains the coupling between the body force and the pressure gradient and is presented in this work. The new formulation is shown to be robust and efficient, and can be applied to problems involving very large meshes. This is illustrated in this work through its application to simulations involving Pb-Sb and Pb-Sn alloys.
An adaptive Newton-method based on a dynamical systems approach
NASA Astrophysics Data System (ADS)
Amrein, Mario; Wihler, Thomas P.
2014-09-01
The traditional Newton method for solving nonlinear operator equations in Banach spaces is discussed within the context of the continuous Newton method. This setting makes it possible to interpret the Newton method as a discrete dynamical system and thereby to cast it in the framework of an adaptive step size control procedure. In so doing, our goal is to reduce the chaotic behavior of the original method without losing its quadratic convergence property close to the roots. The performance of the modified scheme is illustrated with various examples from algebraic and differential equations.
Adaptive mesh refinement techniques for the immersed interface method applied to flow problems.
Li, Zhilin; Song, Peng
2013-06-01
In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515-527). The interface is captured by the zero level set of a Lipschitz continuous function φ(x, y, t). Our adaptive mesh refinement is built within a small band of |φ(x, y, t)| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method.
Adaptive mesh refinement techniques for the immersed interface method applied to flow problems
Li, Zhilin; Song, Peng
2013-01-01
In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515–527). The interface is captured by the zero level set of a Lipschitz continuous function φ(x, y, t). Our adaptive mesh refinement is built within a small band of |φ(x, y, t)| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method. PMID:23794763
The direct simulation Monte Carlo method using unstructured adaptive mesh and its application
NASA Astrophysics Data System (ADS)
Wu, J.-S.; Tseng, K.-C.; Kuo, C.-H.
2002-02-01
The implementation of an adaptive mesh-embedding (h-refinement) scheme using unstructured grid in two-dimensional direct simulation Monte Carlo (DSMC) method is reported. In this technique, local isotropic refinement is used to introduce new mesh where the local cell Knudsen number is less than some preset value. This simple scheme, however, has several severe consequences affecting the performance of the DSMC method. Thus, we have applied a technique to remove the hanging node, by introducing the an-isotropic refinement in the interfacial cells between refined and non-refined cells. Not only does this remedy increase a negligible amount of work, but it also removes all the difficulties presented in the originals scheme. We have tested the proposed scheme for argon gas in a high-speed driven cavity flow. The results show an improved flow resolution as compared with that of un-adaptive mesh. Finally, we have used triangular adaptive mesh to compute a near-continuum gas flow, a hypersonic flow over a cylinder. The results show fairly good agreement with previous studies. In summary, the proposed simple mesh adaptation is very useful in computing rarefied gas flows, which involve both complicated geometry and highly non-uniform density variations throughout the flow field. Copyright
Adaptive Tracker Design with Identifier for Pendulum System by Conditional LMI Method and IROA
NASA Astrophysics Data System (ADS)
Hwang, Jiing-Dong; Tsai, Zhi-Ren
This paper proposes a robust adaptive fuzzy PID control scheme augmented with a supervisory controller for unknown systems. In this scheme, a generalized fuzzy model is used to describe a class of unknown systems. The control strategy allows each part of the control law, i.e., a supervisory controller, a compensator, and an adaptive fuzzy PID controller, to be designed incrementally according to different guidelines. The supervisory controller in the outer loop aims at enhancing system robustness in the face of extra disturbances, variation in system parameters, and parameter drift in the adaptation law. Furthermore, an H∞ control design method using the fuzzy Lyapunov function is presented for the design of the initial control gains that guarantees transient performance at the start of closed-loop control, which is generally overlooked in many adaptive control systems. This design of the initial control gains is a compound search strategy called conditional linear matrix inequality (CLMI) approach with IROA (Improved random optimal algorithm), it leads to less complex designs than a standard LMI method by fuzzy Lyapunov function. Numerical studies of the tracking control of an uncertain inverted pendulum system demonstrate the effectiveness of the control strategy. From results of this simulation, the generalized fuzzy model reduces the rule number of T-S fuzzy model indeed.
High-Frequency Wave Propagation by the Segment Projection Method
NASA Astrophysics Data System (ADS)
Engquist, Björn; Runborg, Olof; Tornberg, Anna-Karin
2002-05-01
Geometrical optics is a standard technique used for the approximation of high-frequency wave propagation. Computational methods based on partial differential equations instead of the traditional ray tracing have recently been applied to geometrical optics. These new methods have a number of advantages but typically exhibit difficulties with linear superposition of waves. In this paper we introduce a new partial differential technique based on the segment projection method in phase space. The superposition problem is perfectly resolved and so is the problem of computing amplitudes in the neighborhood of caustics. The computational complexity is of the same order as that of ray tracing. The new algorithm is described and a number of computational examples are given, including a simulation of waveguides.
Nucleon-deuteron scattering using the adiabatic projection method
NASA Astrophysics Data System (ADS)
Elhatisari, Serdar; Lee, Dean; Meißner, Ulf-G.; Rupak, Gautam
2016-06-01
In this paper we discuss the adiabatic projection method, a general framework for scattering and reaction calculations on the lattice. We also introduce several new techniques developed to study nucleus-nucleus scattering and reactions on the lattice. We present technical details of the method for large-scale problems. To estimate the systematic errors of the calculations we consider simple two-particle scattering on the lattice. Then we benchmark the accuracy and efficiency of the numerical methods by applying these to calculate fermion-dimer scattering in lattice effective field theory with and without a long-range Coulomb potential. The fermion-dimer calculations correspond to neutron-deuteron and proton-deuteron scattering in the spin-quartet channel at leading order in the pionless effective field theory.
On the Use of Adaptive Wavelet-based Methods for Ocean Modeling and Data Assimilation Problems
NASA Astrophysics Data System (ADS)
Vasilyev, Oleg V.; Yousuff Hussaini, M.; Souopgui, Innocent
2014-05-01
Latest advancements in parallel wavelet-based numerical methodologies for the solution of partial differential equations, combined with the unique properties of wavelet analysis to unambiguously identify and isolate localized dynamically dominant flow structures, make it feasible to start developing integrated approaches for ocean modeling and data assimilation problems that take advantage of temporally and spatially varying meshes. In this talk the Parallel Adaptive Wavelet Collocation Method with spatially and temporarily varying thresholding is presented and the feasibility/potential advantages of its use for ocean modeling are discussed. The second half of the talk focuses on the recently developed Simultaneous Space-time Adaptive approach that addresses one of the main challenges of variational data assimilation, namely the requirement to have a forward solution available when solving the adjoint problem. The issue is addressed by concurrently solving forward and adjoint problems in the entire space-time domain on a near optimal adaptive computational mesh that automatically adapts to spatio-temporal structures of the solution. The compressed space-time form of the solution eliminates the need to save or recompute forward solution for every time slice, as it is typically done in traditional time marching variational data assimilation approaches. The simultaneous spacio-temporal discretization of both the forward and the adjoint problems makes it possible to solve both of them concurrently on the same space-time adaptive computational mesh reducing the amount of saved data to the strict minimum for a given a priori controlled accuracy of the solution. The simultaneous space-time adaptive approach of variational data assimilation is demonstrated for the advection diffusion problem in 1D-t and 2D-t dimensions.
A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction
NASA Technical Reports Server (NTRS)
Bockelie, Michael J.; Eiseman, Peter R.
1990-01-01
A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.
Adaptive scene-based nonuniformity correction method for infrared-focal plane arrays
NASA Astrophysics Data System (ADS)
Torres, Sergio N.; Vera, Esteban M.; Reeves, Rodrigo A.; Sobarzo, Sergio K.
2003-08-01
The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with a fixed-pattern noise. In this paper we present an enhanced adaptive scene-based non-uniformity correction (NUC) technique. The method simultaneously estimates detector's parameters and performs the non-uniformity compensation using a neural network approach. In addition, the proposed method doesn't make any assumption on the kind or amount of non-uniformity presented on the raw data. The strength and robustness of the proposed method relies in avoiding the presence of ghosting artifacts through the use of optimization techniques in the parameter estimation learning process, such as: momentum, regularization, and adaptive learning rate. The proposed method has been tested with video sequences of simulated and real infrared data taken with an InSb IRFPA, reaching high correction levels, reducing the fixed pattern noise, decreasing the ghosting, and obtaining an effective frame by frame adaptive estimation of each detector's gain and offset.
Vortical Flow Prediction using an Adaptive Unstructured Grid Method. Chapter 11
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2009-01-01
A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
Development of the Adaptive Collision Source (ACS) method for discrete ordinates
Walters, W.; Haghighat, A.
2013-07-01
We have developed a new collision source method to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained, with potentially a different quadrature order. Traditionally, the flux from every iteration is combined, with the same quadrature applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iteration. This allows for an optimal use of processing power, by using a high order quadrature for the first few iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and we call it the adaptive collision source method (ACS). The ACS methodology has been implemented in the TITAN discrete ordinates code, and has shown a relative speedup of 1.5-2.5 on a test problem, for the same desired level of accuracy. (authors)
NASA Astrophysics Data System (ADS)
Shi, Lei; Wang, Z. J.
2015-08-01
Adjoint-based mesh adaptive methods are capable of distributing computational resources to areas which are important for predicting an engineering output. In this paper, we develop an adjoint-based h-adaptation approach based on the high-order correction procedure via reconstruction formulation (CPR) to minimize the output or functional error. A dual-consistent CPR formulation of hyperbolic conservation laws is developed and its dual consistency is analyzed. Super-convergent functional and error estimate for the output with the CPR method are obtained. Factors affecting the dual consistency, such as the solution point distribution, correction functions, boundary conditions and the discretization approach for the non-linear flux divergence term, are studied. The presented method is then used to perform simulations for the 2D Euler and Navier-Stokes equations with mesh adaptation driven by the adjoint-based error estimate. Several numerical examples demonstrate the ability of the presented method to dramatically reduce the computational cost comparing with uniform grid refinement.
A method for online verification of adapted fields using an independent dose monitor
Chang Jina; Norrlinger, Bernhard D.; Heaton, Robert K.; Jaffray, David A.; Cho, Young-Bin; Islam, Mohammad K.; Mahon, Robert
2013-07-15
Purpose: Clinical implementation of online adaptive radiotherapy requires generation of modified fields and a method of dosimetric verification in a short time. We present a method of treatment field modification to account for patient setup error, and an online method of verification using an independent monitoring system.Methods: The fields are modified by translating each multileaf collimator (MLC) defined aperture in the direction of the patient setup error, and magnifying to account for distance variation to the marked isocentre. A modified version of a previously reported online beam monitoring system, the integral quality monitoring (IQM) system, was investigated for validation of adapted fields. The system consists of a large area ion-chamber with a spatial gradient in electrode separation to provide a spatially sensitive signal for each beam segment, mounted below the MLC, and a calculation algorithm to predict the signal. IMRT plans of ten prostate patients have been modified in response to six randomly chosen setup errors in three orthogonal directions.Results: A total of approximately 49 beams for the modified fields were verified by the IQM system, of which 97% of measured IQM signal agree with the predicted value to within 2%.Conclusions: The modified IQM system was found to be suitable for online verification of adapted treatment fields.
An adaptive grid method for computing the high speed 3D viscous flow about a re-entry vehicle
NASA Technical Reports Server (NTRS)
Bockelie, Michael J.; Smith, Robert E.
1992-01-01
An algebraic solution adaptive grid generation method that allows adapting the grid in all three coordinate directions is presented. Techniques are described that maintain the integrity of the original vehicle definition for grid point movement on the vehicle surface and that avoid grid cross over in the boundary layer portion of the grid lying next to the vehicle surface. The adaptive method is tested by computing the Mach 6 hypersonic three dimensional viscous flow about a proposed Martian entry vehicle.
Vivid Motor Imagery as an Adaptation Method for Head Turns on a Short-Arm Centrifuge
NASA Technical Reports Server (NTRS)
Newby, N. J.; Mast, F. W.; Natapoff, A.; Paloski, W. H.
2006-01-01
from one another. For the perceived duration of sensations, the CG group again exhibited the least amount of adaptation. However, the rates of adaptation of the PA and the MA groups were indistinguishable, suggesting that the imagined pseudostimulus appeared to be just as effective a means of adaptation as the actual stimulus. The MA group's rate of adaptation to motion sickness symptoms was also comparable to the PA group. The use of vivid motor imagery may be an effective method for adapting to the illusory sensations and motion sickness symptoms produced by cross-coupled stimuli. For space-based AG applications, this technique may prove quite useful in retaining astronauts considered highly susceptible to motion sickness as it reduces the number of actual CCS required to attain adaptation.
The Adaptively Biased Molecular Dynamics method revisited: New capabilities and an application
NASA Astrophysics Data System (ADS)
Moradi, Mahmoud; Babin, Volodymyr; Roland, Christopher; Sagui, Celeste
2015-09-01
The free energy is perhaps one of the most important quantity required for describing biomolecular systems at equilibrium. Unfortunately, accurate and reliable free energies are notoriously difficult to calculate. To address this issue, we previously developed the Adaptively Biased Molecular Dynamics (ABMD) method for accurate calculation of rugged free energy surfaces (FES). Here, we briefly review the workings of the ABMD method with an emphasis on recent software additions, along with a short summary of a selected ABMD application based on the B-to-Z DNA transition. The ABMD method, along with current extensions, is currently implemented in the AMBER (ver.10-14) software package.
An adaptive grid method for computing time accurate solutions on structured grids
NASA Technical Reports Server (NTRS)
Bockelie, Michael J.; Smith, Robert E.; Eiseman, Peter R.
1991-01-01
The solution method consists of three parts: a grid movement scheme; an unsteady Euler equation solver; and a temporal coupling routine that links the dynamic grid to the Euler solver. The grid movement scheme is an algebraic method containing grid controls that generate a smooth grid that resolves the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling is performed with a grid prediction correction procedure that is simple to implement and provides a grid that does not lag the solution in time. The adaptive solution method is tested by computing the unsteady inviscid solutions for a one dimensional shock tube and a two dimensional shock vortex iteraction.
Adaptation of LASCA method for diagnostics of malignant tumours in laboratory animals
Ul'yanov, S S; Laskavyi, V N; Glova, Alina B; Polyanina, T I; Ul'yanova, O V; Fedorova, V A; Ul'yanov, A S
2012-05-31
The LASCA method is adapted for diagnostics of malignant neoplasms in laboratory animals. Tumours are studied in mice of Balb/c inbred line after inoculation of cells of syngeneic myeloma cell line Sp.2/0 Ag.8. The appropriateness of using the tLASCA method in tumour investigations is substantiated; its advantages in comparison with the sLASCA method are demonstrated. It is found that the most informative characteristic, indicating the presence of a tumour, is the fractal dimension of LASCA images.
Adaptation of LASCA method for diagnostics of malignant tumours in laboratory animals
NASA Astrophysics Data System (ADS)
Ul'yanov, S. S.; Laskavyi, V. N.; Glova, Alina B.; Polyanina, T. I.; Ul'yanova, O. V.; Fedorova, V. A.; Ul'yanov, A. S.
2012-05-01
The LASCA method is adapted for diagnostics of malignant neoplasms in laboratory animals. Tumours are studied in mice of Balb/c inbred line after inoculation of cells of syngeneic myeloma cell line Sp.2/0 — Ag.8. The appropriateness of using the tLASCA method in tumour investigations is substantiated; its advantages in comparison with the sLASCA method are demonstrated. It is found that the most informative characteristic, indicating the presence of a tumour, is the fractal dimension of LASCA images.
Writing-Intensive Multimedia Projects in the Instrumental Methods Course
NASA Astrophysics Data System (ADS)
van Ryswyk, Hal
2005-01-01
A writing-intensive, team-based multimedia project has been incorporated into the instrumental methods course. The project serves two student populations: students in the course gain an enhanced understanding of an instrumental technique through extensive, focused writing, while first-time instrument users outside of the course gain useful documentation and high-quality point-of-use training. In producing the projects, each three-student team selects an instrument available within the department and writes five short, concise documents: an introduction to the instrumental technique; an overview of its theory of operation; sampling considerations; step-by-step instructions for use (called the “quick-start” document); and a bibliography of printed and electronic resources. Next, the team produces story boards illustrating proper instrument startup, use, and shut down. These story boards form the basis for short (less than 90 seconds) films, shot with a digital video camcorder. Apple Computer’s iMovie is used to edit the footage and produce QuickTime movies. The finished documents, including a PDF version of the quick-start document and the QuickTime movies are pasted into a Web page template provided by the instructor. These multimedia pages are provided to potential users via the campus network.
A novel timestamp based adaptive clock method for circuit emulation service over packet network
NASA Astrophysics Data System (ADS)
Dai, Jin-you; Yu, Shao-hua
2007-11-01
It is necessary to transport TDM (time division multiplexing) over packet network such as IP and Ethernet, and synchronization is a problem when carrying TDM over the packet network. Clock methods for TDM over packet network are introduced. A new adaptive clock method is presented. The method is a kind of timestamp based adaptive method, but no timestamp needs transporting over packet network. By using the local oscillator and a counter, the timestamp information (local timestamp) related to the service clock of the remote PE (provide edge) and the near PE can be attained. By using D-EWMA filter algorithm, the noise caused by packet network can be filtered and the useful timestamp can be extracted out. With the timestamp and a voltage-controlled oscillator, clock frequency of near PE can be adjusted the same as clock frequency of the remote PE. A kind of simulation device is designed and a test network topology is set up to test and verify the method. The experiment result shows that synthetical performance of the new method is better than ordinary buffer based method and ordinary timestamp based method.
NASA Astrophysics Data System (ADS)
Kim, Nakwan
Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.
An Adaptive Mesh Refinement Strategy for Immersed Boundary/Interface Methods.
Li, Zhilin; Song, Peng
2012-01-01
An adaptive mesh refinement strategy is proposed in this paper for the Immersed Boundary and Immersed Interface methods for two-dimensional elliptic interface problems involving singular sources. The interface is represented by the zero level set of a Lipschitz function φ(x,y). Our adaptive mesh refinement is done within a small tube of |φ(x,y)|≤ δ with finer Cartesian meshes. The discrete linear system of equations is solved by a multigrid solver. The AMR methods could obtain solutions with accuracy that is similar to those on a uniform fine grid by distributing the mesh more economically, therefore, reduce the size of the linear system of the equations. Numerical examples presented show the efficiency of the grid refinement strategy.
An Adaptive Mesh Refinement Strategy for Immersed Boundary/Interface Methods
Li, Zhilin; Song, Peng
2012-01-01
An adaptive mesh refinement strategy is proposed in this paper for the Immersed Boundary and Immersed Interface methods for two-dimensional elliptic interface problems involving singular sources. The interface is represented by the zero level set of a Lipschitz function φ(x,y). Our adaptive mesh refinement is done within a small tube of |φ(x,y)|≤ δ with finer Cartesian meshes. The discrete linear system of equations is solved by a multigrid solver. The AMR methods could obtain solutions with accuracy that is similar to those on a uniform fine grid by distributing the mesh more economically, therefore, reduce the size of the linear system of the equations. Numerical examples presented show the efficiency of the grid refinement strategy. PMID:22670155
Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics
NASA Technical Reports Server (NTRS)
Stowers, S. T.; Bass, J. M.; Oden, J. T.
1993-01-01
A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.
NASA Astrophysics Data System (ADS)
Sheng, Qin; Sun, Hai-wei
2016-11-01
This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman-Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptive grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.
Liu, Hui; Zhang, Cai-Ming; Su, Zhi-Yuan; Wang, Kai; Deng, Kai
2015-01-01
The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms.
An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Padgett, Jill M. A.; Ilie, Silvana
2016-03-01
Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating the solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.
Quantification of organ motion based on an adaptive image-based scale invariant feature method
Paganelli, Chiara; Peroni, Marta
2013-11-15
Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT
A Formula for Fixing Troubled Projects: The Scientific Method Meets Leadership
NASA Technical Reports Server (NTRS)
Wagner, Sandra
2006-01-01
This presentation focuses on project management, specifically addressing project issues using the scientific method of problem-solving. Two sample projects where this methodology has been applied are provided.
Higher-Order, Space-Time Adaptive Finite Volume Methods: Algorithms, Analysis and Applications
Minion, Michael
2014-04-29
The four main goals outlined in the proposal for this project were: 1. Investigate the use of higher-order (in space and time) finite-volume methods for fluid flow problems. 2. Explore the embedding of iterative temporal methods within traditional block-structured AMR algorithms. 3. Develop parallel in time methods for ODEs and PDEs. 4. Work collaboratively with the Center for Computational Sciences and Engineering (CCSE) at Lawrence Berkeley National Lab towards incorporating new algorithms within existing DOE application codes.
System and method for adaptively deskewing parallel data signals relative to a clock
Jenkins, Philip Nord; Cornett, Frank N.
2008-10-07
A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.
System and method for adaptively deskewing parallel data signals relative to a clock
Jenkins, Philip Nord; Cornett, Frank N.
2011-10-04
A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.
Logically rectangular finite volume methods with adaptive refinement on the sphere.
Berger, Marsha J; Calhoun, Donna A; Helzel, Christiane; LeVeque, Randall J
2009-11-28
The logically rectangular finite volume grids for two-dimensional partial differential equations on a sphere and for three-dimensional problems in a spherical shell introduced recently have nearly uniform cell size, avoiding severe Courant number restrictions. We present recent results with adaptive mesh refinement using the GeoClaw software and demonstrate well-balanced methods that exactly maintain equilibrium solutions, such as shallow water equations for an ocean at rest over arbitrary bathymetry.
ERIC Educational Resources Information Center
Sutinen, Ari
2013-01-01
The project method became a famous teaching method when William Heard Kilpatrick published his article "Project Method" in 1918. The key idea in Kilpatrick's project method is to try to explain how pupils learn things when they work in projects toward different common objects. The same idea of pupils learning by work or action in an…
Adaptability and stability of genotypes of sweet sorghum by GGEBiplot and Toler methods.
de Figueiredo, U J; Nunes, J A R; da C Parrella, R A; Souza, E D; da Silva, A R; Emygdio, B M; Machado, J R A; Tardin, F D
2015-01-01
Sweet sorghum has considerable potential for ethanol and energy production. The crop is adaptable and can be grown under a wide range of cultivation conditions in marginal areas; however, studies of phenotypic stability are lacking under tropical conditions. Various methods can be used to assess the stability of the crop. Some of these methods generate the same basic information, whereas others provide additional information on genotype x environment (G x E) interactions and/or a description of the genotypes and environments. In this study, we evaluated the complementarity of two methods, GGEBiplot and Toler, with the aim of achieving more detailed information on G x E interactions and their implications for selection of sweet sorghum genotypes. We used data from 25 sorghum genotypes grown in different environments and evaluated the following traits: flowering (FLOW), green mass yield (GMY), total soluble solids (TSS), and tons of Brix per hectare (TBH). Significant G x E interactions were found for all traits. The most stable genotypes identified with the GGEBiplot method were CMSXS643 for FLOW, CMSXS644 and CMSXS647 for GMY, CMSXS646 and CMSXS637 for TSS, and BRS511 and CMSXSS647 for TBH. Especially for TBH, the genotype BRS511 was classified as doubly desirable by the Toler method; however, unlike the result of the GGEBiplot method, the genotype CMSXS647 was also found to be doubly undesirable. The two analytical methods were complementary and enabled a more reliable identification of adapted and stable genotypes.
Adaptive non-uniformity correction method based on temperature for infrared detector array
NASA Astrophysics Data System (ADS)
Zhang, Zhijie; Yue, Song; Hong, Pu; Jia, Guowei; Lei, Bo
2013-09-01
The existence of non-uniformities in the responsitivity of the element array is a severe problem typical to common infrared detector. These non-uniformities result in a "curtain'' like fixed pattern noises (FPN) that appear in the image. Some random noise can be restrained by the method kind of equalization method. But the fixed pattern noise can only be removed by .non uniformity correction method. The produce of non uniformities of detector array is the combined action of infrared detector array, readout circuit, semiconductor device performance, the amplifier circuit and optical system. Conventional linear correction techniques require costly recalibration due to the drift of the detector or changes in temperature. Therefore, an adaptive non-uniformity method is needed to solve this problem. A lot factors including detectors and environment conditions variety are considered to analyze and conduct the cause of detector drift. Several experiments are designed to verify the guess. Based on the experiments, an adaptive non-uniformity correction method is put forward in this paper. The strength of this method lies in its simplicity and low computational complexity. Extensive experimental results demonstrate the disadvantage of traditional non-uniformity correct method is conquered by the proposed scheme.
Shack-Hartmann wavefront sensor with large dynamic range by adaptive spot search method.
Shinto, Hironobu; Saita, Yusuke; Nomura, Takanori
2016-07-10
A Shack-Hartmann wavefront sensor (SHWFS) that consists of a microlens array and an image sensor has been used to measure the wavefront aberrations of human eyes. However, a conventional SHWFS has finite dynamic range depending on the diameter of the each microlens. The dynamic range cannot be easily expanded without a decrease of the spatial resolution. In this study, an adaptive spot search method to expand the dynamic range of an SHWFS is proposed. In the proposed method, spots are searched with the help of their approximate displacements measured with low spatial resolution and large dynamic range. By the proposed method, a wavefront can be correctly measured even if the spot is beyond the detection area. The adaptive spot search method is realized by using the special microlens array that generates both spots and discriminable patterns. The proposed method enables expanding the dynamic range of an SHWFS with a single shot and short processing time. The performance of the proposed method is compared with that of a conventional SHWFS by optical experiments. Furthermore, the dynamic range of the proposed method is quantitatively evaluated by numerical simulations.
NASA Astrophysics Data System (ADS)
Pedretti, Daniele; Fernàndez-Garcia, Daniel
2013-09-01
Particle tracking methods to simulate solute transport deal with the issue of having to reconstruct smooth concentrations from a limited number of particles. This is an error-prone process that typically leads to large fluctuations in the determined late-time behavior of breakthrough curves (BTCs). Kernel density estimators (KDE) can be used to automatically reconstruct smooth BTCs from a small number of particles. The kernel approach incorporates the uncertainty associated with subsampling a large population by equipping each particle with a probability density function. Two broad classes of KDE methods can be distinguished depending on the parametrization of this function: global and adaptive methods. This paper shows that each method is likely to estimate a specific portion of the BTCs. Although global methods offer a valid approach to estimate early-time behavior and peak of BTCs, they exhibit important fluctuations at the tails where fewer particles exist. In contrast, locally adaptive methods improve tail estimation while oversmoothing both early-time and peak concentrations. Therefore a new method is proposed combining the strength of both KDE approaches. The proposed approach is universal and only needs one parameter (α) which slightly depends on the shape of the BTCs. Results show that, for the tested cases, heavily-tailed BTCs are properly reconstructed with α ≈ 0.5 .
Anderson, R W; Pember, R B; Elliot, N S
2000-09-26
A new method for the solution of the unsteady Euler equations has been developed. The method combines staggered grid Lagrangian techniques with structured local adaptive mesh refinement (AMR). This method is a precursor to a more general adaptive arbitrary Lagrangian Eulerian (ALE-AMR) algorithm under development, which will facilitate the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required. Many of the core issues involved in the development of the ALE-AMR method hinge upon the integration of AMR with a Lagrange step, which is the focus of the work described here. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. These new algorithmic components are first developed in one dimension and are then generalized to two dimensions. Solutions of several model problems involving shock hydrodynamics are presented and discussed.
The C8 Health Project: Design, Methods, and Participants
Frisbee, Stephanie J.; Brooks, A. Paul; Maher, Arthur; Flensborg, Patsy; Arnold, Susan; Fletcher, Tony; Steenland, Kyle; Shankar, Anoop; Knox, Sarah S.; Pollard, Cecil; Halverson, Joel A.; Vieira, Verónica M.; Jin, Chuanfang; Leyden, Kevin M.; Ducatman, Alan M.
2009-01-01
Background The C8 Health Project was created, authorized, and funded as part of the settlement agreement reached in the case of Jack W. Leach, et al. v. E.I. du Pont de Nemours & Company (no. 01-C-608 W.Va., Wood County Circuit Court, filed 10 April 2002). The settlement stemmed from the perfluorooctanoic acid (PFOA, or C8) contamination of drinking water in six water districts in two states near the DuPont Washington Works facility near Parkersburg, West Virginia. Objectives This study reports on the methods and results from the C8 Health Project, a population study created to gather data that would allow class members to know their own PFOA levels and permit subsequent epidemiologic investigations. Methods Final study participation was 69,030, enrolled over a 13-month period in 2005–2006. Extensive data were collected, including demographic data, medical diagnoses (both self-report and medical records review), clinical laboratory testing, and determination of serum concentrations of 10 perfluorocarbons (PFCs). Here we describe the processes used to collect, validate, and store these health data. We also describe survey participants and their serum PFC levels. Results The population geometric mean for serum PFOA was 32.91 ng/mL, 500% higher than previously reported for a representative American population. Serum concentrations for perfluorohexane sulfonate and perfluorononanoic acid were elevated 39% and 73% respectively, whereas perfluorooctanesulfonate was present at levels similar to those in the U.S. population. Conclusions This largest known population study of community PFC exposure permits new evaluations of associations between PFOA, in particular, and a range of health parameters. These will contribute to understanding of the biology of PFC exposure. The C8 Health Project also represents an unprecedented effort to gather basic data on an exposed population; its achievements and limitations can inform future legal settlements for populations exposed to
SWAT system performance predictions. Project report. [SWAT (Short-Wavelength Adaptive Techniques)
Parenti, R.R.; Sasiela, R.J.
1993-03-10
In the next phase of Lincoln Laboratory's SWAT (Short-Wavelength Adaptive Techniques) program, the performance of a 241-actuator adaptive-optics system will be measured using a variety of synthetic-beacon geometries. As an aid in this experimental investigation, a detailed set of theoretical predictions has also been assembled. The computational tools that have been applied in this study include a numerical approach in which Monte-Carlo ray-trace simulations of accumulated phase error are developed, and an analytical analysis of the expected system behavior. This report describes the basis of these two computational techniques and compares their estimates of overall system performance. Although their regions of applicability tend to be complementary rather than redundant, good agreement is usually obtained when both sets of results can be derived for the same engagement scenario.... Adaptive optics, Phase conjugation, Atmospheric turbulence Synthetic beacon, Laser guide star.
Adaptive f-k deghosting method based on non-Gaussianity
NASA Astrophysics Data System (ADS)
Liu, Lei; Lu, Wenkai
2016-04-01
For conventional horizontal towed streamer data, the f-k deghosting method is widely used to remove receiver ghosts. In the traditional f-k deghosting method, the depth of the streamer and the sea surface reflection coefficient are two key ghost parameters. In general, for one seismic line, these two parameters are fixed for all shot gathers and given by the users. In practice, these two parameters often vary during acquisition because of the rough sea condition. This paper proposes an automatic method to adaptively obtain these two ghost parameters for every shot gather. Since the proposed method is based on the non-Gaussianity of the deghosting result, it is important to choose a proper non-Gaussian criterion to ensure high accuracy of the parameter estimation. We evaluate six non-Gaussian criteria by synthetic experiment. The conclusion of our experiment is expected to provide a reference for choosing the most appropriate criterion. We apply the proposed method on a 2D real field example. Experimental results show that the optimal parameters vary among shot gathers and validate effectiveness of the parameter estimation process. Moreover, despite that this method ignores the parameter variation within one shot, the adaptive deghosting results show improvements when compared with the deghosting results obtained by using constant parameters for the whole line.
ERIC Educational Resources Information Center
Schoorman, Dilys; Jean-Jacques, Velouse
2003-01-01
The primary focus of this article is a community-based project initiated under the auspices of the Palm Beach County School District's Office of Multicultural Affairs. The students in this district represent 150 countries and 104 language groups. The nation with the highest representation among this population is Haiti. Project CASAS (Community…
Limited-memory scaled gradient projection methods for real-time image deconvolution in microscopy
NASA Astrophysics Data System (ADS)
Porta, F.; Zanella, R.; Zanghirati, G.; Zanni, L.
2015-04-01
Gradient projection methods have given rise to effective tools for image deconvolution in several relevant areas, such as microscopy, medical imaging and astronomy. Due to the large scale of the optimization problems arising in nowadays imaging applications and to the growing request of real-time reconstructions, an interesting challenge to be faced consists in designing new acceleration techniques for the gradient schemes, able to preserve their simplicity and low computational cost of each iteration. In this work we propose an acceleration strategy for a state-of-the-art scaled gradient projection method for image deconvolution in microscopy. The acceleration idea is derived by adapting a step-length selection rule, recently introduced for limited-memory steepest descent methods in unconstrained optimization, to the special constrained optimization framework arising in image reconstruction. We describe how important issues related to the generalization of the step-length rule to the imaging optimization problem have been faced and we evaluate the improvements due to the acceleration strategy by numerical experiments on large-scale image deconvolution problems.
Souza-Junior, Eduardo José; de Souza-Régis, Marcos Ribeiro; Alonso, Roberta Caroline Bruschi; de Freitas, Anderson Pinheiro; Sinhoreti, Mario Alexandre Coelho; Cunha, Leonardo Gonçalves
2011-01-01
The aim of the present study was to evaluate the influence of curing methods and composite volumes on the marginal and internal adaptation of composite restoratives. Two cavities with different volumes (Lower volume: 12.6 mm(3); Higher volume: 24.5 mm(3)) were prepared on the buccal surface of 60 bovine teeth and restored using Filtek Z250 in bulk filling. For each cavity, specimens were randomly assigned into three groups according to the curing method (n=10): 1) continuous light (CL: 27 seconds at 600 mW/cm(2)); 2) soft-start (SS: 10 seconds at 150 mW/cm(2)+24 seconds at 600 mW/cm(2)); and 3) pulse delay (PD: five seconds at 150 mW/cm(2)+three minutes with no light+25 seconds at 600 mW/cm(2)). The radiant exposure for all groups was 16 J/cm(2). Marginal adaptation was measured with the dye staining gap procedure, using Caries Detector. Outer margins were stained for five seconds and the gap percentage was determined using digital images on a computer measurement program (Image Tool). Then, specimens were sectioned in slices and stained for five seconds, and the internal gaps were measured using the same method. Data were submitted to two-way analysis of variance and Tukey test (p<0.05). Composite volume had a significant influence on superficial and internal gap formation, depending on the curing method. For CL groups, restorations with higher volume showed higher marginal gap incidence than did the lower volume restorations. Additionally, the effect of the curing method depended on the volume. Regarding marginal adaptation, SS resulted in a significant reduction of gap formation, when compared to CL, for higher volume restorations. For lower volume restorations, there was no difference among the curing methods. For internal adaptation, the modulated curing methods SS and PD promoted a significant reduction of gap formation, when compared to CL, only for the lower volume restoration. Therefore, in similar conditions of the cavity configuration, the higher the
NASA Astrophysics Data System (ADS)
Burago, N. G.; Nikitin, I. S.; Yakushev, V. L.
2016-06-01
Techniques that improve the accuracy of numerical solutions and reduce their computational costs are discussed as applied to continuum mechanics problems with complex time-varying geometry. The approach combines shock-capturing computations with the following methods: (1) overlapping meshes for specifying complex geometry; (2) elastic arbitrarily moving adaptive meshes for minimizing the approximation errors near shock waves, boundary layers, contact discontinuities, and moving boundaries; (3) matrix-free implementation of efficient iterative and explicit-implicit finite element schemes; (4) balancing viscosity (version of the stabilized Petrov-Galerkin method); (5) exponential adjustment of physical viscosity coefficients; and (6) stepwise correction of solutions for providing their monotonicity and conservativeness.
Adaptively biased molecular dynamics: An umbrella sampling method with a time-dependent potential
NASA Astrophysics Data System (ADS)
Babin, Volodymyr; Karpusenka, Vadzim; Moradi, Mahmoud; Roland, Christopher; Sagui, Celeste
We discuss an adaptively biased molecular dynamics (ABMD) method for the computation of a free energy surface for a set of reaction coordinates. The ABMD method belongs to the general category of umbrella sampling methods with an evolving biasing potential. It is characterized by a small number of control parameters and an O(t) numerical cost with simulation time t. The method naturally allows for extensions based on multiple walkers and replica exchange mechanism. The workings of the method are illustrated with a number of examples, including sugar puckering, and free energy landscapes for polymethionine and polyproline peptides, and for a short β-turn peptide. ABMD has been implemented into the latest version (Case et al., AMBER 10; University of California: San Francisco, 2008) of the AMBER software package and is freely available to the simulation community.
Parallel level-set methods on adaptive tree-based grids
NASA Astrophysics Data System (ADS)
Mirzadeh, Mohammad; Guittet, Arthur; Burstedde, Carsten; Gibou, Frederic
2016-10-01
We present scalable algorithms for the level-set method on dynamic, adaptive Quadtree and Octree Cartesian grids. The algorithms are fully parallelized and implemented using the MPI standard and the open-source p4est library. We solve the level set equation with a semi-Lagrangian method which, similar to its serial implementation, is free of any time-step restrictions. This is achieved by introducing a scalable global interpolation scheme on adaptive tree-based grids. Moreover, we present a simple parallel reinitialization scheme using the pseudo-time transient formulation. Both parallel algorithms scale on the Stampede supercomputer, where we are currently using up to 4096 CPU cores, the limit of our current account. Finally, a relevant application of the algorithms is presented in modeling a crystallization phenomenon by solving a Stefan problem, illustrating a level of detail that would be impossible to achieve without a parallel adaptive strategy. We believe that the algorithms presented in this article will be of interest and useful to researchers working with the level-set framework and modeling multi-scale physics in general.
An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments.
Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui
2016-01-01
As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs' tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N₀), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods. PMID:26805853
An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments.
Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui
2016-01-23
As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs' tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N₀), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods.
An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments
Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui
2016-01-01
As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs’ tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N0), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods. PMID:26805853
Lee, W H; Kim, T-S; Cho, M H; Ahn, Y B; Lee, S Y
2006-12-01
In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.
Conservation strategies to adapt to projected climate change impacts in Malawi
Technology Transfer Automated Retrieval System (TEKTRAN)
There is potential for climate change to have negative effects on agricultural production via extreme events (Pruski and Nearing, 2002b; Zhang et al., 2012; Walthall 2012), and there is a need to implement conservation practices for climate change adaptation (Delgado et al. 2011; 2013). Recent repo...
Encoding and simulation of daily rainfall records via adaptations of the fractal multifractal method
NASA Astrophysics Data System (ADS)
Maskey, M.; Puente, C. E.; Sivakumar, B.; Cortis, A.
2015-12-01
A deterministic geometric approach, the fractal-multifractal (FM) method, is adapted to encode and simulate daily rainfall records exhibiting noticeable intermittency. Using data sets gathered at Laikakota in Bolivia and Tinkham in Washington State, USA, it is demonstrated that the adapted FM approach can, within the limits of accuracy of measured sets and using only a few geometric parameters, encode and simulate the erratic rainfall records reasonably well. The FM procedure does not only preserve the statistical attributes of the records such as histogram, entropy function and distribution of zeroes, but also captures the overall texture inherent in the rather complex intermittent sets. As such, the FM deterministic representations may be used to supplement stochastic frameworks for data coding and simulation.
Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method
NASA Astrophysics Data System (ADS)
Barcarolo, D. A.; Le Touzé, D.; Oger, G.; de Vuyst, F.
2014-09-01
SPH simulations are usually performed with a uniform particle distribution. New techniques have been recently proposed to enable the use of spatially varying particle distributions, which encouraged the development of automatic adaptivity and particle refinement/derefinement algorithms. All these efforts resulted in very interesting and promising procedures leading to more efficient and faster SPH simulations. In this article, a family of particle refinement techniques is reviewed and a new derefinement technique is proposed and validated through several test cases involving both free-surface and viscous flows. Besides, this new procedure allows higher resolutions in the regions requiring increased accuracy. Moreover, several levels of refinement can be used with this new technique, as often encountered in adaptive mesh refinement techniques in mesh-based methods.
A DAFT DL_POLY distributed memory adaptation of the Smoothed Particle Mesh Ewald method
NASA Astrophysics Data System (ADS)
Bush, I. J.; Todorov, I. T.; Smith, W.
2006-09-01
The Smoothed Particle Mesh Ewald method [U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103 (1995) 8577] for calculating long ranged forces in molecular simulation has been adapted for the parallel molecular dynamics code DL_POLY_3 [I.T. Todorov, W. Smith, Philos. Trans. Roy. Soc. London 362 (2004) 1835], making use of a novel 3D Fast Fourier Transform (DAFT) [I.J. Bush, The Daresbury Advanced Fourier transform, Daresbury Laboratory, 1999] that perfectly matches the Domain Decomposition (DD) parallelisation strategy [W. Smith, Comput. Phys. Comm. 62 (1991) 229; M.R.S. Pinches, D. Tildesley, W. Smith, Mol. Sim. 6 (1991) 51; D. Rapaport, Comput. Phys. Comm. 62 (1991) 217] of the DL_POLY_3 code. In this article we describe software adaptations undertaken to import this functionality and provide a review of its performance.
Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method
NASA Astrophysics Data System (ADS)
Agbaglah, Gilou; Delaux, Sébastien; Fuster, Daniel; Hoepffner, Jérôme; Josserand, Christophe; Popinet, Stéphane; Ray, Pascal; Scardovelli, Ruben; Zaleski, Stéphane
2011-02-01
We describe computations performed using the Gerris code, an open-source software implementing finite volume solvers on an octree adaptive grid together with a piecewise linear volume of fluid interface tracking method. The parallelisation of Gerris is achieved by domain decomposition. We show examples of the capabilities of Gerris on several types of problems. The impact of a droplet on a layer of the same liquid results in the formation of a thin air layer trapped between the droplet and the liquid layer that the adaptive refinement allows to capture. It is followed by the jetting of a thin corolla emerging from below the impacting droplet. The jet atomisation problem is another extremely challenging computational problem, in which a large number of small scales are generated. Finally we show an example of a turbulent jet computation in an equivalent resolution of 6×1024 cells. The jet simulation is based on the configuration of the Deepwater Horizon oil leak.
An adaptive segment method for smoothing lidar signal based on noise estimation
NASA Astrophysics Data System (ADS)
Wang, Yuzhao; Luo, Pingping
2014-10-01
An adaptive segmentation smoothing method (ASSM) is introduced in the paper to smooth the signal and suppress the noise. In the ASSM, the noise is defined as the 3σ of the background signal. An integer number N is defined for finding the changing positions in the signal curve. If the difference of adjacent two points is greater than 3Nσ, the position is recorded as an end point of the smoothing segment. All the end points detected as above are recorded and the curves between them will be smoothed separately. In the traditional method, the end points of the smoothing windows in the signals are fixed. The ASSM creates changing end points in different signals and the smoothing windows could be set adaptively. The windows are always set as the half of the segmentations and then the average smoothing method will be applied in the segmentations. The Iterative process is required for reducing the end-point aberration effect in the average smoothing method and two or three times are enough. In ASSM, the signals are smoothed in the spacial area nor frequent area, that means the frequent disturbance will be avoided. A lidar echo was simulated in the experimental work. The echo was supposed to be created by a space-born lidar (e.g. CALIOP). And white Gaussian noise was added to the echo to act as the random noise resulted from environment and the detector. The novel method, ASSM, was applied to the noisy echo to filter the noise. In the test, N was set to 3 and the Iteration time is two. The results show that, the signal could be smoothed adaptively by the ASSM, but the N and the Iteration time might be optimized when the ASSM is applied in a different lidar.
A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection
Zhang, Guannan; Webster, Clayton G; Gunzburger, Max D; Burkardt, John V
2014-03-01
This work proposes and analyzes a hyper-spherical adaptive hi- erarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the the- oretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a func- tion representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smooth- ness of the hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity anal- yses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.
Cen, Guanjun; Yu, Yonghao; Zeng, Xianru; Long, Xiuzhen; Wei, Dewei; Gao, Xuyuan; Zeng, Tao
2015-01-01
In insects, the frequency distribution of the measurements of sclerotized body parts is generally used to classify larval instars and is characterized by a multimodal overlap between instar stages. Nonparametric methods with fixed bandwidths, such as histograms, have significant limitations when used to fit this type of distribution, making it difficult to identify divisions between instars. Fixed bandwidths have also been chosen somewhat subjectively in the past, which is another problem. In this study, we describe an adaptive kernel smoothing method to differentiate instars based on discontinuities in the growth rates of sclerotized insect body parts. From Brooks' rule, we derived a new standard for assessing the quality of instar classification and a bandwidth selector that more accurately reflects the distributed character of specific variables. We used this method to classify the larvae of Austrosimulium tillyardianum (Diptera: Simuliidae) based on five different measurements. Based on head capsule width and head capsule length, the larvae were separated into nine instars. Based on head capsule postoccipital width and mandible length, the larvae were separated into 8 instars and 10 instars, respectively. No reasonable solution was found for antennal segment 3 length. Separation of the larvae into nine instars using head capsule width or head capsule length was most robust and agreed with Crosby's growth rule. By strengthening the distributed character of the separation variable through the use of variable bandwidths, the adaptive kernel smoothing method could identify divisions between instars more effectively and accurately than previous methods.
Cen, Guanjun; Zeng, Xianru; Long, Xiuzhen; Wei, Dewei; Gao, Xuyuan; Zeng, Tao
2015-01-01
In insects, the frequency distribution of the measurements of sclerotized body parts is generally used to classify larval instars and is characterized by a multimodal overlap between instar stages. Nonparametric methods with fixed bandwidths, such as histograms, have significant limitations when used to fit this type of distribution, making it difficult to identify divisions between instars. Fixed bandwidths have also been chosen somewhat subjectively in the past, which is another problem. In this study, we describe an adaptive kernel smoothing method to differentiate instars based on discontinuities in the growth rates of sclerotized insect body parts. From Brooks’ rule, we derived a new standard for assessing the quality of instar classification and a bandwidth selector that more accurately reflects the distributed character of specific variables. We used this method to classify the larvae of Austrosimulium tillyardianum (Diptera: Simuliidae) based on five different measurements. Based on head capsule width and head capsule length, the larvae were separated into nine instars. Based on head capsule postoccipital width and mandible length, the larvae were separated into 8 instars and 10 instars, respectively. No reasonable solution was found for antennal segment 3 length. Separation of the larvae into nine instars using head capsule width or head capsule length was most robust and agreed with Crosby’s growth rule. By strengthening the distributed character of the separation variable through the use of variable bandwidths, the adaptive kernel smoothing method could identify divisions between instars more effectively and accurately than previous methods. PMID:26546689
A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; Burkardt, John V.
2015-06-24
This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the newmore » technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less
NASA Astrophysics Data System (ADS)
Bu, Guochao; Wang, Pei
2016-04-01
Terrestrial laser scanning (TLS) has been used to extract accurate forest biophysical parameters for inventory purposes. The diameter at breast height (DBH) is a key parameter for individual trees because it has the potential for modeling the height, volume, biomass, and carbon sequestration potential of the tree based on empirical allometric scaling equations. In order to extract the DBH from the single-scan data of TLS automatically and accurately within a certain range, we proposed an adaptive circle-ellipse fitting method based on the point cloud transect. This proposed method can correct the error caused by the simple circle fitting method when a tree is slanted. A slanted tree was detected by the circle-ellipse fitting analysis, then the corresponding slant angle was found based on the ellipse fitting result. With this information, the DBH of the trees could be recalculated based on reslicing the point cloud data at breast height. Artificial stem data simulated by a cylindrical model of leaning trees and the scanning data acquired with the RIEGL VZ-400 were used to test the proposed adaptive fitting method. The results shown that the proposed method can detect the trees and accurately estimate the DBH for leaning trees.
Johansson, A Torbjorn; White, Paul R
2011-08-01
This paper proposes an adaptive filter-based method for detection and frequency estimation of whistle calls, such as the calls of birds and marine mammals, which are typically analyzed in the time-frequency domain using a spectrogram. The approach taken here is based on adaptive notch filtering, which is an established technique for frequency tracking. For application to automatic whistle processing, methods for detection and improved frequency tracking through frequency crossings as well as interfering transients are developed and coupled to the frequency tracker. Background noise estimation and compensation is accomplished using order statistics and pre-whitening. Using simulated signals as well as recorded calls of marine mammals and a human whistled speech utterance, it is shown that the proposed method can detect more simultaneous whistles than two competing spectrogram-based methods while not reporting any false alarms on the example datasets. In one example, it extracts complete 1.4 and 1.8 s bottlenose dolphin whistles successfully through frequency crossings. The method performs detection and estimates frequency tracks even at high sweep rates. The algorithm is also shown to be effective on human whistled utterances. PMID:21877804
Calvo, Juan Francisco; San José, Sol; Garrido, LLuís; Puertas, Enrique; Moragues, Sandra; Pozo, Miquel; Casals, Joan
2013-10-01
To introduce an approach for online adaptive replanning (i.e., dose-guided radiosurgery) in frameless stereotactic radiosurgery, when a 6-dimensional (6D) robotic couch is not available in the linear accelerator (linac). Cranial radiosurgical treatments are planned in our department using intensity-modulated technique. Patients are immobilized using thermoplastic mask. A cone-beam computed tomography (CBCT) scan is acquired after the initial laser-based patient setup (CBCT{sub setup}). The online adaptive replanning procedure we propose consists of a 6D registration-based mapping of the reference plan onto actual CBCT{sub setup}, followed by a reoptimization of the beam fluences (“6D plan”) to achieve similar dosage as originally was intended, while the patient is lying in the linac couch and the original beam arrangement is kept. The goodness of the online adaptive method proposed was retrospectively analyzed for 16 patients with 35 targets treated with CBCT-based frameless intensity modulated technique. Simulation of reference plan onto actual CBCT{sub setup}, according to the 4 degrees of freedom, supported by linac couch was also generated for each case (4D plan). Target coverage (D99%) and conformity index values of 6D and 4D plans were compared with the corresponding values of the reference plans. Although the 4D-based approach does not always assure the target coverage (D99% between 72% and 103%), the proposed online adaptive method gave a perfect coverage in all cases analyzed as well as a similar conformity index value as was planned. Dose-guided radiosurgery approach is effective to assure the dose coverage and conformity of an intracranial target volume, avoiding resetting the patient inside the mask in a “trial and error” way so as to remove the pitch and roll errors when a robotic table is not available.
The stochastic control of the F-8C aircraft using the Multiple Model Adaptive Control (MMAC) method
NASA Technical Reports Server (NTRS)
Athans, M.; Dunn, K. P.; Greene, E. S.; Lee, W. H.; Sandel, N. R., Jr.
1975-01-01
The purpose of this paper is to summarize results obtained for the adaptive control of the F-8C aircraft using the so-called Multiple Model Adaptive Control method. The discussion includes the selection of the performance criteria for both the lateral and the longitudinal dynamics, the design of the Kalman filters for different flight conditions, the 'identification' aspects of the design using hypothesis testing ideas, and the performance of the closed loop adaptive system.
Self-adaptive method for high frequency multi-channel analysis of surface wave method
Technology Transfer Automated Retrieval System (TEKTRAN)
When the high frequency multi-channel analysis of surface waves (MASW) method is conducted to explore soil properties in the vadose zone, existing rules for selecting the near offset and spread lengths cannot satisfy the requirements of planar dominant Rayleigh waves for all frequencies of interest ...
Adaptation to environmental change is not a new concept. Humans have shown throughout history a capacity for adapting to different climates and environmental changes. Farmers, foresters, civil engineers, have all been forced to adapt to numerous challenges to overcome adversity...
Spanish Multicenter Normative Studies (NEURONORMA Project): methods and sample characteristics.
Peña-Casanova, Jordi; Blesa, Rafael; Aguilar, Miquel; Gramunt-Fombuena, Nina; Gómez-Ansón, Beatriz; Oliva, Rafael; Molinuevo, José Luis; Robles, Alfredo; Barquero, María Sagrario; Antúnez, Carmen; Martínez-Parra, Carlos; Frank-García, Anna; Fernández, Manuel; Alfonso, Verónica; Sol, Josep M
2009-06-01
This paper describes the methods and sample characteristics of a series of Spanish normative studies (The NEURONORMA project). The primary objective of our research was to collect normative and psychometric information on a sample of people aged over 49 years. The normative information was based on a series of selected, but commonly used, neuropsychological tests covering attention, language, visuo-perceptual abilities, constructional tasks, memory, and executive functions. A sample of 356 community dwelling individuals was studied. Demographics, socio-cultural, and medical data were collected. Cognitive normality was validated via informants and a cognitive screening test. Norms were calculated for midpoint age groups. Effects of age, education, and sex were determined. The use of these norms should improve neuropsychological diagnostic accuracy in older Spanish subjects. These data may also be of considerable use for comparisons with other normative studies. Limitations of these normative data are also commented on.
An HP Adaptive Discontinuous Galerkin Method for Hyperbolic Conservation Laws. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1994-01-01
This dissertation addresses various issues for model classes of hyperbolic conservation laws. The basic approach developed in this work employs a new family of adaptive, hp-version, finite element methods based on a special discontinuous Galerkin formulation for hyperbolic problems. The discontinuous Galerkin formulation admits high-order local approximations on domains of quite general geometry, while providing a natural framework for finite element approximations and for theoretical developments. The use of hp-versions of the finite element method makes possible exponentially convergent schemes with very high accuracies in certain cases; the use of adaptive hp-schemes allows h-refinement in regions of low regularity and p-enrichment to deliver high accuracy, while keeping problem sizes manageable and dramatically smaller than many conventional approaches. The use of discontinuous Galerkin methods is uncommon in applications, but the methods rest on a reasonable mathematical basis for low-order cases and has local approximation features that can be exploited to produce very efficient schemes, especially in a parallel, multiprocessor environment. The place of this work is to first and primarily focus on a model class of linear hyperbolic conservation laws for which concrete mathematical results, methodologies, error estimates, convergence criteria, and parallel adaptive strategies can be developed, and to then briefly explore some extensions to more general cases. Next, we provide preliminaries to the study and a review of some aspects of the theory of hyperbolic conservation laws. We also provide a review of relevant literature on this subject and on the numerical analysis of these types of problems.
Investigation of self-adaptive LED surgical lighting based on entropy contrast enhancing method
NASA Astrophysics Data System (ADS)
Liu, Peng; Wang, Huihui; Zhang, Yaqin; Shen, Junfei; Wu, Rengmao; Zheng, Zhenrong; Li, Haifeng; Liu, Xu
2014-05-01
Investigation was performed to explore the possibility of enhancing contrast by varying the spectral distribution (SPD) of the surgical lighting. The illumination scenes with different SPDs were generated by the combination of a self-adaptive white light optimization method and the LED ceiling system, the images of biological sample are taken by a CCD camera and then processed by an 'Entropy' based contrast evaluation model which is proposed specific for surgery occasion. Compared with the neutral white LED based and traditional algorithm based image enhancing methods, the illumination based enhancing method turns out a better performance in contrast enhancing and improves the average contrast value about 9% and 6%, respectively. This low cost method is simple, practicable, and thus may provide an alternative solution for the expensive visual facility medical instruments.
A Cartesian Adaptive Level Set Method for Two-Phase Flows
NASA Technical Reports Server (NTRS)
Ham, F.; Young, Y.-N.
2003-01-01
In the present contribution we develop a level set method based on local anisotropic Cartesian adaptation as described in Ham et al. (2002). Such an approach should allow for the smallest possible Cartesian grid capable of resolving a given flow. The remainder of the paper is organized as follows. In section 2 the level set formulation for free surface calculations is presented and its strengths and weaknesses relative to the other free surface methods reviewed. In section 3 the collocated numerical method is described. In section 4 the method is validated by solving the 2D and 3D drop oscilation problem. In section 5 we present some results from more complex cases including the 3D drop breakup in an impulsively accelerated free stream, and the 3D immiscible Rayleigh-Taylor instability. Conclusions are given in section 6.
Adaptive method for real-time gait phase detection based on ground contact forces.
Yu, Lie; Zheng, Jianbin; Wang, Yang; Song, Zhengge; Zhan, Enqi
2015-01-01
A novel method is presented to detect real-time gait phases based on ground contact forces (GCFs) measured by force sensitive resistors (FSRs). The traditional threshold method (TM) sets a threshold to divide the GCFs into on-ground and off-ground statuses. However, TM is neither an adaptive nor real-time method. The threshold setting is based on body weight or the maximum and minimum GCFs in the gait cycles, resulting in different thresholds needed for different walking conditions. Additionally, the maximum and minimum GCFs are only obtainable after data processing. Therefore, this paper proposes a proportion method (PM) that calculates the sums and proportions of GCFs wherein the GCFs are obtained from FSRs. A gait analysis is then implemented by the proposed gait phase detection algorithm (GPDA). Finally, the PM reliability is determined by comparing the detection results between PM and TM. Experimental results demonstrate that the proposed PM is highly reliable in all walking conditions. In addition, PM could be utilized to analyze gait phases in real time. Finally, PM exhibits strong adaptability to different walking conditions.
Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines
NASA Technical Reports Server (NTRS)
Kopasakis, George; DeLaat, John C.; Chang, Clarence T.
2004-01-01
This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the mechanism of intra-harmonic coupling.
Patched based methods for adaptive mesh refinement solutions of partial differential equations
Saltzman, J.
1997-09-02
This manuscript contains the lecture notes for a course taught from July 7th through July 11th at the 1997 Numerical Analysis Summer School sponsored by C.E.A., I.N.R.I.A., and E.D.F. The subject area was chosen to support the general theme of that year`s school which is ``Multiscale Methods and Wavelets in Numerical Simulation.`` The first topic covered in these notes is a description of the problem domain. This coverage is limited to classical PDEs with a heavier emphasis on hyperbolic systems and constrained hyperbolic systems. The next topic is difference schemes. These schemes are the foundation for the adaptive methods. After the background material is covered, attention is focused on a simple patched based adaptive algorithm and its associated data structures for square grids and hyperbolic conservation laws. Embellishments include curvilinear meshes, embedded boundary and overset meshes. Next, several strategies for parallel implementations are examined. The remainder of the notes contains descriptions of elliptic solutions on the mesh hierarchy, elliptically constrained flow solution methods and elliptically constrained flow solution methods with diffusion.
Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J
2015-09-01
Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples.
Zhou, Hui; Kunz, Thomas; Schwartz, Howard
2011-01-01
Traditional oscillators used in timing modules of CDMA and WiMAX base stations are large and expensive. Applying cheaper and smaller, albeit more inaccurate, oscillators in timing modules is an interesting research challenge. An adaptive control algorithm is presented to enhance the oscillators to meet the requirements of base stations during holdover mode. An oscillator frequency stability model is developed for the adaptive control algorithm. This model takes into account the control loop which creates the correction signal when the timing module is in locked mode. A recursive prediction error method is used to identify the system model parameters. Simulation results show that an oscillator enhanced by our adaptive control algorithm improves the oscillator performance significantly, compared with uncorrected oscillators. Our results also show the benefit of explicitly modeling the control loop. Finally, the cumulative time error upper bound of such enhanced oscillators is investigated analytically and comparison results between the analytical and simulated upper bound are provided. The results show that the analytical upper bound can serve as a practical guide for system designers. PMID:21244973
Comparative adaptation accuracy of acrylic denture bases evaluated by two different methods.
Lee, Chung-Jae; Bok, Sung-Bem; Bae, Ji-Young; Lee, Hae-Hyoung
2010-08-01
This study examined the adaptation accuracy of acrylic denture base processed using fluid-resin (PERform), injection-moldings (SR-Ivocap, Success, Mak Press), and two compression-molding techniques. The adaptation accuracy was measured primarily by the posterior border gaps at the mid-palatal area using a microscope and subsequently by weighing of the weight of the impression material between the denture base and master cast using hand-mixed and automixed silicone. The correlation between the data measured using these two test methods was examined. The PERform and Mak Press produced significantly smaller maximum palatal gap dimensions than the other groups (p<0.05). Mak Press also showed a significantly smaller weight of automixed silicone material than the other groups (p<0.05), while SR-Ivocap and Success showed similar adaptation accuracy to the compression-molding denture. The correlationship between the magnitude of the posterior border gap and the weight of the silicone impression materials was affected by either the material or mixing variables.
Zhou, Hui; Kunz, Thomas; Schwartz, Howard
2011-01-01
Traditional oscillators used in timing modules of CDMA and WiMAX base stations are large and expensive. Applying cheaper and smaller, albeit more inaccurate, oscillators in timing modules is an interesting research challenge. An adaptive control algorithm is presented to enhance the oscillators to meet the requirements of base stations during holdover mode. An oscillator frequency stability model is developed for the adaptive control algorithm. This model takes into account the control loop which creates the correction signal when the timing module is in locked mode. A recursive prediction error method is used to identify the system model parameters. Simulation results show that an oscillator enhanced by our adaptive control algorithm improves the oscillator performance significantly, compared with uncorrected oscillators. Our results also show the benefit of explicitly modeling the control loop. Finally, the cumulative time error upper bound of such enhanced oscillators is investigated analytically and comparison results between the analytical and simulated upper bound are provided. The results show that the analytical upper bound can serve as a practical guide for system designers.
Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation
NASA Technical Reports Server (NTRS)
Pavlock, Kate M.
2011-01-01
Lessons Learne: 1. Design-out unnecessary risk to prevent excessive mitigation management during flight. 2. Consider iterative checkouts to confirm or improve human factor characteristics. 3. Consider the total flight test profile to uncover unanticipated human-algorithm interactions. 4. Consider test card cadence as a metric to assess test readiness. 5. Full-scale flight test is critical to development, maturation, and acceptance of adaptive control laws for operational use.
Adaptive control system having hedge unit and related apparatus and methods
NASA Technical Reports Server (NTRS)
Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)
2007-01-01
The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.
Adaptive control system having hedge unit and related apparatus and methods
NASA Technical Reports Server (NTRS)
Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)
2003-01-01
The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.
Prism adaptation and neck muscle vibration in healthy individuals: are two methods better than one?
Guinet, M; Michel, C
2013-12-19
Studies involving therapeutic combinations reveal an important benefit in the rehabilitation of neglect patients when compared to single therapies. In light of these observations our present work examines, in healthy individuals, sensorimotor and cognitive after-effects of prism adaptation and neck muscle vibration applied individually or simultaneously. We explored sensorimotor after-effects on visuo-manual open-loop pointing, visual and proprioceptive straight-ahead estimations. We assessed cognitive after-effects on the line bisection task. Fifty-four healthy participants were divided into six groups designated according to the exposure procedure used with each: 'Prism' (P) group; 'Vibration with a sensation of body rotation' (Vb) group; 'Vibration with a move illusion of the LED' (Vl) group; 'Association with a sensation of body rotation' (Ab) group; 'Association with a move illusion of the LED' (Al) group; and 'Control' (C) group. The main findings showed that prism adaptation applied alone or combined with vibration showed significant adaptation in visuo-manual open-loop pointing, visual straight-ahead and proprioceptive straight-ahead. Vibration alone produced significant after-effects on proprioceptive straight-ahead estimation in the Vl group. Furthermore all groups (except C group) showed a rightward neglect-like bias in line bisection following the training procedure. This is the first demonstration of cognitive after-effects following neck muscle vibration in healthy individuals. The simultaneous application of both methods did not produce significant greater after-effects than prism adaptation alone in both sensorimotor and cognitive tasks. These results are discussed in terms of transfer of sensorimotor plasticity to spatial cognition in healthy individuals.
Adaptive methods of two-scale edge detection in post-enhancement visual pattern processing
NASA Astrophysics Data System (ADS)
Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.
2008-04-01
Adaptive methods are defined and experimentally studied for a two-scale edge detection process that mimics human visual perception of edges and is inspired by the parvo-cellular (P) and magno-cellular (M) physiological subsystems of natural vision. This two-channel processing consists of a high spatial acuity/coarse contrast channel (P) and a coarse acuity/fine contrast (M) channel. We perform edge detection after a very strong non-linear image enhancement that uses smart Retinex image processing. Two conditions that arise from this enhancement demand adaptiveness in edge detection. These conditions are the presence of random noise further exacerbated by the enhancement process, and the equally random occurrence of dense textural visual information. We examine how to best deal with both phenomena with an automatic adaptive computation that treats both high noise and dense textures as too much information, and gracefully shifts from a smallscale to medium-scale edge pattern priorities. This shift is accomplished by using different edge-enhancement schemes that correspond with the (P) and (M) channels of the human visual system. We also examine the case of adapting to a third image condition, namely too little visual information, and automatically adjust edge detection sensitivities when sparse feature information is encountered. When this methodology is applied to a sequence of images of the same scene but with varying exposures and lighting conditions, this edge-detection process produces pattern constancy that is very useful for several imaging applications that rely on image classification in variable imaging conditions.
Data-adapted moving least squares method for 3-D image interpolation
NASA Astrophysics Data System (ADS)
Jang, Sumi; Nam, Haewon; Lee, Yeon Ju; Jeong, Byeongseon; Lee, Rena; Yoon, Jungho
2013-12-01
In this paper, we present a nonlinear three-dimensional interpolation scheme for gray-level medical images. The scheme is based on the moving least squares method but introduces a fundamental modification. For a given evaluation point, the proposed method finds the local best approximation by reproducing polynomials of a certain degree. In particular, in order to obtain a better match to the local structures of the given image, we employ locally data-adapted least squares methods that can improve the classical one. Some numerical experiments are presented to demonstrate the performance of the proposed method. Five types of data sets are used: MR brain, MR foot, MR abdomen, CT head, and CT foot. From each of the five types, we choose five volumes. The scheme is compared with some well-known linear methods and other recently developed nonlinear methods. For quantitative comparison, we follow the paradigm proposed by Grevera and Udupa (1998). (Each slice is first assumed to be unknown then interpolated by each method. The performance of each interpolation method is assessed statistically.) The PSNR results for the estimated volumes are also provided. We observe that the new method generates better results in both quantitative and visual quality comparisons.
System and method for adaptively deskewing parallel data signals relative to a clock
Jenkins, Philip Nord; Cornett, Frank N.
2006-04-18
A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. Each of the plurality of delayed signals is compared to a reference signal to detect changes in the skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in the detected skew.
FALCON: A method for flexible adaptation of local coordinates of nuclei.
König, Carolin; Hansen, Mads Bøttger; Godtliebsen, Ian H; Christiansen, Ove
2016-02-21
We present a flexible scheme for calculating vibrational rectilinear coordinates with well-defined strict locality on a certain set of atoms. Introducing a method for Flexible Adaption of Local COordinates of Nuclei (FALCON) we show how vibrational subspaces can be "grown" in an adaptive manner. Subspace Hessian matrices are set up and used to calculate and analyze vibrational modes and frequencies. FALCON coordinates can more generally be used to construct vibrational coordinates for describing local and (semi-local) interacting modes with desired features. For instance, spatially local vibrations can be approximately described as internal motion within only a group of atoms and delocalized modes can be approximately expressed as relative motions of rigid groups of atoms. The FALCON method can support efficiency in the calculation and analysis of vibrational coordinates and energies in the context of harmonic and anharmonic calculations. The features of this method are demonstrated on a few small molecules, i.e., formylglycine, coumarin, and dimethylether as well as for the amide-I band and low-frequency modes of alanine oligomers and alpha conotoxin.
FALCON: A method for flexible adaptation of local coordinates of nuclei
NASA Astrophysics Data System (ADS)
König, Carolin; Hansen, Mads Bøttger; Godtliebsen, Ian H.; Christiansen, Ove
2016-02-01
We present a flexible scheme for calculating vibrational rectilinear coordinates with well-defined strict locality on a certain set of atoms. Introducing a method for Flexible Adaption of Local COordinates of Nuclei (FALCON) we show how vibrational subspaces can be "grown" in an adaptive manner. Subspace Hessian matrices are set up and used to calculate and analyze vibrational modes and frequencies. FALCON coordinates can more generally be used to construct vibrational coordinates for describing local and (semi-local) interacting modes with desired features. For instance, spatially local vibrations can be approximately described as internal motion within only a group of atoms and delocalized modes can be approximately expressed as relative motions of rigid groups of atoms. The FALCON method can support efficiency in the calculation and analysis of vibrational coordinates and energies in the context of harmonic and anharmonic calculations. The features of this method are demonstrated on a few small molecules, i.e., formylglycine, coumarin, and dimethylether as well as for the amide-I band and low-frequency modes of alanine oligomers and alpha conotoxin.
NASA Technical Reports Server (NTRS)
Kim, Hyoungin; Liou, Meng-Sing
2011-01-01
In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems
Adaptive explicit and implicit finite element methods for transient thermal analysis
NASA Technical Reports Server (NTRS)
Probert, E. J.; Hassan, O.; Morgan, K.; Peraire, J.
1992-01-01
The application of adaptive finite element methods to the solution of transient heat conduction problems in two dimensions is investigated. The computational domain is represented by an unstructured assembly of linear triangular elements and the mesh adaptation is achieved by local regeneration of the grid, using an error estimation procedure coupled to an automatic triangular mesh generator. Two alternative solution procedures are considered. In the first procedure, the solution is advanced by explicit timestepping, with domain decomposition being used to improve the computational efficiency of the method. In the second procedure, an algorithm for constructing continuous lines which pass only once through each node of the mesh is employed. The lines are used as the basis of a fully implicit method, in which the equation system is solved by line relaxation using a block tridiagonal equation solver. The numerical performance of the two procedures is compared for the analysis of a problem involving a moving heat source applied to a convectively cooled cylindrical leading edge.
A three-dimensional adaptive grid method. [for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Nakahashi, K.; Deiwert, G. S.
1985-01-01
A three-dimensional solution-adaptive-grid scheme is described which is suitable for complex fluid flows. This method, using tension and torsion spring analogies, was previously developed and successfully applied for two-dimensional flows. In the present work, a collection of three-dimensional flow fields are used to demonstrate the feasibility and versatility of this concept to include an added dimension. Flow fields considered include: (1) supersonic flow past an aerodynamic afterbody with a propulsive jet at incidence to the free stream, (2) supersonic flow past a blunt fin mounted on a solid wall, and (3) supersonic flow over a bump. In addition to generating three-dimensional solution-adapted grids, the method can also be used effectively as an initial grid generator. The utility of the method lies in: (1) optimum distribution of discrete grid points, (2) improvement of accuracy, (3) improved computational efficiency, (4) minimization of data base sizes, and (5) simplified three-dimensional grid generation.
FALCON: A method for flexible adaptation of local coordinates of nuclei.
König, Carolin; Hansen, Mads Bøttger; Godtliebsen, Ian H; Christiansen, Ove
2016-02-21
We present a flexible scheme for calculating vibrational rectilinear coordinates with well-defined strict locality on a certain set of atoms. Introducing a method for Flexible Adaption of Local COordinates of Nuclei (FALCON) we show how vibrational subspaces can be "grown" in an adaptive manner. Subspace Hessian matrices are set up and used to calculate and analyze vibrational modes and frequencies. FALCON coordinates can more generally be used to construct vibrational coordinates for describing local and (semi-local) interacting modes with desired features. For instance, spatially local vibrations can be approximately described as internal motion within only a group of atoms and delocalized modes can be approximately expressed as relative motions of rigid groups of atoms. The FALCON method can support efficiency in the calculation and analysis of vibrational coordinates and energies in the context of harmonic and anharmonic calculations. The features of this method are demonstrated on a few small molecules, i.e., formylglycine, coumarin, and dimethylether as well as for the amide-I band and low-frequency modes of alanine oligomers and alpha conotoxin. PMID:26896977
Wagner, Roland; Helin, Tapio; Obereder, Andreas; Ramlau, Ronny
2016-02-20
The imaging quality of modern ground-based telescopes such as the planned European Extremely Large Telescope is affected by atmospheric turbulence. In consequence, they heavily depend on stable and high-performance adaptive optics (AO) systems. Using measurements of incoming light from guide stars, an AO system compensates for the effects of turbulence by adjusting so-called deformable mirror(s) (DMs) in real time. In this paper, we introduce a novel reconstruction method for ground layer adaptive optics. In the literature, a common approach to this problem is to use Bayesian inference in order to model the specific noise structure appearing due to spot elongation. This approach leads to large coupled systems with high computational effort. Recently, fast solvers of linear order, i.e., with computational complexity O(n), where n is the number of DM actuators, have emerged. However, the quality of such methods typically degrades in low flux conditions. Our key contribution is to achieve the high quality of the standard Bayesian approach while at the same time maintaining the linear order speed of the recent solvers. Our method is based on performing a separate preprocessing step before applying the cumulative reconstructor (CuReD). The efficiency and performance of the new reconstructor are demonstrated using the OCTOPUS, the official end-to-end simulation environment of the ESO for extremely large telescopes. For more specific simulations we also use the MOST toolbox. PMID:26906596
Wavefront detection method of a single-sensor based adaptive optics system.
Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li
2015-08-10
In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS. PMID:26367988
NASA Astrophysics Data System (ADS)
Danaila, Ionut; Moglan, Raluca; Hecht, Frédéric; Le Masson, Stéphane
2014-10-01
We present a new numerical system using finite elements with mesh adaptivity for the simulation of solid-liquid phase change systems. In the liquid phase, the natural convection flow is simulated by solving the incompressible Navier-Stokes equations with Boussinesq approximation. A variable viscosity model allows the velocity to progressively vanish in the solid phase, through an intermediate mushy region. The phase change is modeled by introducing an implicit enthalpy source term in the heat equation. The final system of equations describing the liquid-solid system by a single domain approach is solved using a Newton iterative algorithm. The space discretization is based on a P2-P1 Taylor-Hood finite elements and mesh adaptivity by metric control is used to accurately track the solid-liquid interface or the density inversion interface for water flows. The numerical method is validated against classical benchmarks that progressively add strong non-linearities in the system of equations: natural convection of air, natural convection of water, melting of a phase-change material and water freezing. Very good agreement with experimental data is obtained for each test case, proving the capability of the method to deal with both melting and solidification problems with convection. The presented numerical method is easy to implement using FreeFem++ software using a syntax close to the mathematical formulation.
Directionally adaptive finite element method for multidimensional Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Tan, Zhiqiang; Varghese, Philip L.
1993-01-01
A directionally adaptive finite element method for multidimensional compressible flows is presented. Quadrilateral and hexahedral elements are used because they have several advantages over triangular and tetrahedral elements. Unlike traditional methods that use quadrilateral/hexahedral elements, our method allows an element to be divided in each of the three directions in 3D and two directions in 2D. Some restrictions on mesh structure are found to be necessary, especially in 3D. The refining and coarsening procedures, and the treatment of constraints are given. A new implementation of upwind schemes in the constrained finite element system is presented. Some example problems, including a Mach 10 shock interaction with the walls of a 2D channel, a 2D viscous compression corner flow, and inviscid and viscous 3D flows in square channels, are also shown.
NASA Astrophysics Data System (ADS)
Ding, Jie; Lei, Bo; Hong, Pu; Wang, Chensheng
2011-11-01
This paper introduces a novel method to adaptively diminish the effects of disturbance in the airborne camera shooting traffic video. Based on the moving vector of the tracked vehicle, a search area in the next frame is predicted, which is the area of interest (AOI) to the mean-shift method. Background color estimation is performed according to the previous tracking, which is used to judge whether there is possible disturbance in the predicted search area in the next frame. Without disturbance, the difference image of vehicle and background could be used as input features to the mean-shift algorithm; with disturbance, the histogram of colors in the predict area is calculated to find the most and second disturbing color. Experiments proved this method could diminish or eliminate the effects of homochromous disturbance and lead to more precise and more robust tracking.
An adaptive distance-based group contribution method for thermodynamic property prediction.
He, Tanjin; Li, Shuang; Chi, Yawei; Zhang, Hong-Bo; Wang, Zhi; Yang, Bin; He, Xin; You, Xiaoqing
2016-09-14
In the search for an accurate yet inexpensive method to predict thermodynamic properties of large hydrocarbon molecules, we have developed an automatic and adaptive distance-based group contribution (DBGC) method. The method characterizes the group interaction within a molecule with an exponential decay function of the group-to-group distance, defined as the number of bonds between the groups. A database containing the molecular bonding information and the standard enthalpy of formation (Hf,298K) for alkanes, alkenes, and their radicals at the M06-2X/def2-TZVP//B3LYP/6-31G(d) level of theory was constructed. Multiple linear regression (MLR) and artificial neural network (ANN) fitting were used to obtain the contributions from individual groups and group interactions for further predictions. Compared with the conventional group additivity (GA) method, the DBGC method predicts Hf,298K for alkanes more accurately using the same training sets. Particularly for some highly branched large hydrocarbons, the discrepancy with the literature data is smaller for the DBGC method than the conventional GA method. When extended to other molecular classes, including alkenes and radicals, the overall accuracy level of this new method is still satisfactory. PMID:27522953
NASA Astrophysics Data System (ADS)
Coleman, S.; Hurley, S.; Koliba, C.; Zia, A.; Exler, S.
2014-12-01
Eutrophication and nutrient pollution of surface waters occur within complex governance, social, hydrologic and biophysical basin contexts. The pervasive and perennial nutrient pollution in Lake Champlain Basin, despite decades of efforts, exemplifies problems found across the world's surface waters. Stakeholders with diverse values, interests, and forms of explicit and tacit knowledge determine water quality impacts through land use, agricultural and water resource decisions. Uncertainty, ambiguity and dynamic feedback further complicate the ability to promote the continual provision of water quality and ecosystem services. Adaptive management of water resources and land use requires mechanisms to allow for learning and integration of new information over time. The transdisciplinary Research on Adaptation to Climate Change (RACC) team is working to build regional adaptive capacity in Lake Champlain Basin while studying and integrating governance, land use, hydrological, and biophysical systems to evaluate implications for adaptive management. The RACC team has engaged stakeholders through mediated modeling workshops, online forums, surveys, focus groups and interviews. In March 2014, CSS2CC.org, an interactive online forum to source and identify adaptive interventions from a group of stakeholders across sectors was launched. The forum, based on the Delphi Method, brings forward the collective wisdom of stakeholders and experts to identify potential interventions and governance designs in response to scientific uncertainty and ambiguity surrounding the effectiveness of any strategy, climate change impacts, and the social and natural systems governing water quality and eutrophication. A Mediated Modeling Workshop followed the forum in May 2014, where participants refined and identified plausible interventions under different governance, policy and resource scenarios. Results from the online forum and workshop can identify emerging consensus across scales and sectors
A hybrid incremental projection method for thermal-hydraulics applications
NASA Astrophysics Data System (ADS)
Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong
2016-07-01
A new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya-Babuška-Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie-Chow interpolation or by using a Petrov-Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes, and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.
A hybrid incremental projection method for thermal-hydraulics applications
Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong
2016-05-04
In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes,more » and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.« less
Adaptation of Regional Representative Soil Project and Soil Judging for Cameroon
ERIC Educational Resources Information Center
Che, Celestine Akuma
2013-01-01
Representative regional soils have agricultural, cultural, economic, environmental, and historical importance to Cameroon. Twenty seven regional representative soils have been identified in Cameroon. A set of laboratory exercises, assignments and exam questions have been developed utilizing the Regional Representative Soil Project (RRSP) that…
Olsen, Jeffrey R.; Noel, Camille E.; Baker, Kenneth; Santanam, Lakshmi; Michalski, Jeff M.; Parikh, Parag J.
2012-04-01
Purpose: We have created an automated process using real-time tracking data to evaluate the adequacy of planning target volume (PTV) margins in prostate cancer, allowing a process of adaptive radiotherapy with minimal physician workload. We present an analysis of PTV adequacy and a proposed adaptive process. Methods and Materials: Tracking data were analyzed for 15 patients who underwent step-and-shoot multi-leaf collimation (SMLC) intensity-modulated radiation therapy (IMRT) with uniform 5-mm PTV margins for prostate cancer using the Calypso Registered-Sign Localization System. Additional plans were generated with 0- and 3-mm margins. A custom software application using the planned dose distribution and structure location from computed tomography (CT) simulation was developed to evaluate the dosimetric impact to the target due to motion. The dose delivered to the prostate was calculated for the initial three, five, and 10 fractions, and for the entire treatment. Treatment was accepted as adequate if the minimum delivered prostate dose (D{sub min}) was at least 98% of the planned D{sub min}. Results: For 0-, 3-, and 5-mm PTV margins, adequate treatment was obtained in 3 of 15, 12 of 15, and 15 of 15 patients, and the delivered D{sub min} ranged from 78% to 99%, 96% to 100%, and 99% to 100% of the planned D{sub min}. Changes in D{sub min} did not correlate with magnitude of prostate motion. Treatment adequacy during the first 10 fractions predicted sufficient dose delivery for the entire treatment for all patients and margins. Conclusions: Our adaptive process successfully used real-time tracking data to predict the need for PTV modifications, without the added burden of physician contouring and image analysis. Our methods are applicable to other uses of real-time tracking, including hypofractionated treatment.
The Adaptive Biasing Force Method: Everything You Always Wanted To Know but Were Afraid To Ask
2014-01-01
In the host of numerical schemes devised to calculate free energy differences by way of geometric transformations, the adaptive biasing force algorithm has emerged as a promising route to map complex free-energy landscapes. It relies upon the simple concept that as a simulation progresses, a continuously updated biasing force is added to the equations of motion, such that in the long-time limit it yields a Hamiltonian devoid of an average force acting along the transition coordinate of interest. This means that sampling proceeds uniformly on a flat free-energy surface, thus providing reliable free-energy estimates. Much of the appeal of the algorithm to the practitioner is in its physically intuitive underlying ideas and the absence of any requirements for prior knowledge about free-energy landscapes. Since its inception in 2001, the adaptive biasing force scheme has been the subject of considerable attention, from in-depth mathematical analysis of convergence properties to novel developments and extensions. The method has also been successfully applied to many challenging problems in chemistry and biology. In this contribution, the method is presented in a comprehensive, self-contained fashion, discussing with a critical eye its properties, applicability, and inherent limitations, as well as introducing novel extensions. Through free-energy calculations of prototypical molecular systems, many methodological aspects are examined, from stratification strategies to overcoming the so-called hidden barriers in orthogonal space, relevant not only to the adaptive biasing force algorithm but also to other importance-sampling schemes. On the basis of the discussions in this paper, a number of good practices for improving the efficiency and reliability of the computed free-energy differences are proposed. PMID:25247823
Compact integration factor methods for complex domains and adaptive mesh refinement.
Liu, Xinfeng; Nie, Qing
2010-08-10
Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed.
An adaptive multifluid interface-capturing method for compressible flow in complex geometries
Greenough, J.A.; Beckner, V.; Pember, R.B.; Crutchfield, W.Y.; Bell, J.B.; Colella, P.
1995-04-01
We present a numerical method for solving the multifluid equations of gas dynamics using an operator-split second-order Godunov method for flow in complex geometries in two and three dimensions. The multifluid system treats the fluid components as thermodynamically distinct entities and correctly models fluids with different compressibilities. This treatment allows a general equation-of-state (EOS) specification and the method is implemented so that the EOS references are minimized. The current method is complementary to volume-of-fluid (VOF) methods in the sense that a VOF representation is used, but no interface reconstruction is performed. The Godunov integrator captures the interface during the solution process. The basic multifluid integrator is coupled to a Cartesian grid algorithm that also uses a VOF representation of the fluid-body interface. This representation of the fluid-body interface allows the algorithm to easily accommodate arbitrarily complex geometries. The resulting single grid multifluid-Cartesian grid integration scheme is coupled to a local adaptive mesh refinement algorithm that dynamically refines selected regions of the computational grid to achieve a desired level of accuracy. The overall method is fully conservative with respect to the total mixture. The method will be used for a simple nozzle problem in two-dimensional axisymmetric coordinates.
Compact integration factor methods for complex domains and adaptive mesh refinement
Liu, Xinfeng; Nie, Qing
2010-01-01
Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed. PMID:20543883
Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P
2015-03-01
Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical.
MAD Adaptive Optics Imaging of High-luminosity Quasars: A Pilot Project
NASA Astrophysics Data System (ADS)
Liuzzo, E.; Falomo, R.; Paiano, S.; Treves, A.; Uslenghi, M.; Arcidiacono, C.; Baruffolo, A.; Diolaiti, E.; Farinato, J.; Lombini, M.; Moretti, A.; Ragazzoni, R.; Brast, R.; Donaldson, R.; Kolb, J.; Marchetti, E.; Tordo, S.
2016-08-01
We present near-IR images of five luminous quasars at z ˜ 2 and one at z ˜ 4 obtained with an experimental adaptive optics (AO) instrument at the European Southern Observatory Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these nonoptimal conditions, the resulting images of point sources have cores of FWHM ˜ 0.2 arcsec. We are able to characterize the host galaxy properties for two sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with AO systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2-3 kpc) quasar host galaxies for quasi-stellar objects at z = 2 with nucleus K-magnitude spanning from 15 to 20 (corresponding to absolute magnitude -31 to -26) and host galaxies that are 4 mag fainter than their nuclei.
Hejč, Jakub; Vítek, Martin; Ronzhina, Marina; Nováková, Marie; Kolářová, Jana
2015-09-01
We present a novel wavelet-based ECG delineation method with robust classification of P wave and T wave. The work is aimed on an adaptation of the method to long-term experimental electrograms (EGs) measured on isolated rabbit heart and to evaluate the effect of global ischemia in experimental EGs on delineation performance. The algorithm was tested on a set of 263 rabbit EGs with established reference points and on human signals using standard Common Standards for Quantitative Electrocardiography Standard Database (CSEDB). On CSEDB, standard deviation (SD) of measured errors satisfies given criterions in each point and the results are comparable to other published works. In rabbit signals, our QRS detector reached sensitivity of 99.87% and positive predictivity of 99.89% despite an overlay of spectral components of QRS complex, P wave and power line noise. The algorithm shows great performance in suppressing J-point elevation and reached low overall error in both, QRS onset (SD = 2.8 ms) and QRS offset (SD = 4.3 ms) delineation. T wave offset is detected with acceptable error (SD = 12.9 ms) and sensitivity nearly 99%. Variance of the errors during global ischemia remains relatively stable, however more failures in detection of T wave and P wave occur. Due to differences in spectral and timing characteristics parameters of rabbit based algorithm have to be highly adaptable and set more precisely than in human ECG signals to reach acceptable performance. PMID:26577367
An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization
Khan, Omar Usman
2016-01-01
Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection.
An Adaptive Fast Multipole Boundary Element Method for Poisson-Boltzmann Electrostatics
Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, Jonathan
2009-01-01
The numerical solution of the Poisson Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the computational cost and memory usage. Here, we present an updated version of the solver by using an adaptive FMM for accelerating the convolution type matrix-vector multiplications. The adaptive algorithm, when compared to our previous nonadaptive one, not only significantly improves the performance of the overall memory usage but also remarkably speeds the calculation because of an improved load balancing between the local- and far-field calculations. We have also implemented a node-patch discretization scheme that leads to a reduction of unknowns by a factor of 2 relative to the constant element method without sacrificing accuracy. As a result of these improvements, the new solver makes the PB calculation truly feasible for large-scale biomolecular systems such as a 30S ribosome molecule even on a typical 2008 desktop computer.
An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization.
Nisar, Shibli; Khan, Omar Usman; Tariq, Muhammad
2016-01-01
Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection. PMID:27642291
NASA Technical Reports Server (NTRS)
Kopasakis, George
2004-01-01
An adaptive feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even the downstream turbine blades. This can significantly decrease the safe operating lives of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors under NASA's Propulsion and Power Program. This control methodology has been developed and tested in a partnership of the NASA Glenn Research Center, Pratt & Whitney, United Technologies Research Center, and the Georgia Institute of Technology. Initial combustor rig testing of the controls algorithm was completed during 2002. Subsequently, the test results were analyzed and improvements to the method were incorporated in 2003, which culminated in the final status of this controls algorithm. This control methodology is based on adaptive phase shifting. The combustor pressure oscillations are sensed and phase shifted, and a high-frequency fuel valve is actuated to put pressure oscillations into the combustor to cancel pressure oscillations produced by the instability.
Simulating Multi-scale Fluid Flows Using Adaptive Mesh Refinement Methods
NASA Astrophysics Data System (ADS)
Rowe, Kristopher; Lamb, Kevin
2015-11-01
When modelling flows with disparate length scales one must use a computational mesh that is fine enough to capture the smallest phenomena of interest. Traditional computational fluid dynamics models apply a mesh of uniform resolution to the entire computational domain; however, if the smallest scales of interest are isolated much of the computational resources used in these simulations will be wasted in regions where they are not needed. Adaptive mesh refinement methods seek to only apply resolution where it is needed. Beginning with a single coarse grid, a nested hierarchy of block structured grids is built in regions of the fluid flow where more resolution is necessary. As the fluid flow varies in time this hierarchy of grids is dynamically rebuilt to follow the phenomena of interest. Through the modelling of the interaction of vortices with wall boundary layers, it will be demonstrated that adaptive mesh refinement methods will produce equivalent results to traditional single resolution codes while using less processors, memory, and wall-clock time. Additionally, it is possible to model such flows to higher Reynolds numbers than have been feasible previously. This work was supported by NSERC and SHARCNET.
An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization
Khan, Omar Usman
2016-01-01
Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection. PMID:27642291
Grid coupling mechanism in the semi-implicit adaptive Multi-Level Multi-Domain method
NASA Astrophysics Data System (ADS)
Innocenti, M. E.; Tronci, C.; Markidis, S.; Lapenta, G.
2016-05-01
The Multi-Level Multi-Domain (MLMD) method is a semi-implicit adaptive method for Particle-In-Cell plasma simulations. It has been demonstrated in the past in simulations of Maxwellian plasmas, electrostatic and electromagnetic instabilities, plasma expansion in vacuum, magnetic reconnection [1, 2, 3]. In multiple occasions, it has been commented on the coupling between the coarse and the refined grid solutions. The coupling mechanism itself, however, has never been explored in depth. Here, we investigate the theoretical bases of grid coupling in the MLMD system. We obtain an evolution law for the electric field solution in the overlap area of the MLMD system which highlights a dependance on the densities and currents from both the coarse and the refined grid, rather than from the coarse grid alone: grid coupling is obtained via densities and currents.
NASA Astrophysics Data System (ADS)
Zanotti, O.; Dumbser, M.; Fambri, F.
2016-05-01
We describe a new method for the solution of the ideal MHD equations in special relativity which adopts the following strategy: (i) the main scheme is based on Discontinuous Galerkin (DG) methods, allowing for an arbitrary accuracy of order N+1, where N is the degree of the basis polynomials; (ii) in order to cope with oscillations at discontinuities, an ”a-posteriori” sub-cell limiter is activated, which scatters the DG polynomials of the previous time-step onto a set of 2N+1 sub-cells, over which the solution is recomputed by means of a robust finite volume scheme; (iii) a local spacetime Discontinuous-Galerkin predictor is applied both on the main grid of the DG scheme and on the sub-grid of the finite volume scheme; (iv) adaptive mesh refinement (AMR) with local time-stepping is used. We validate the new scheme and comment on its potential applications in high energy astrophysics.
NASA Astrophysics Data System (ADS)
Le Jeune, L.; Robert, S.; Dumas, P.; Membre, A.; Prada, C.
2015-03-01
In this paper, we propose an ultrasonic adaptive imaging method based on the phased-array technology and the synthetic focusing algorithm Total Focusing Method (TFM). The general principle is to image the surface by applying the TFM algorithm in a semi-infinite water medium. Then, the reconstructed surface is taken into account to make a second TFM image inside the component. In the surface reconstruction step, the TFM algorithm has been optimized to decrease computation time and to limit noise in water. In the second step, the ultrasonic paths through the reconstructed surface are calculated by the Fermat's principle and an iterative algorithm, and the classical TFM is applied to obtain an image inside the component. This paper presents several results of TFM imaging in components of different geometries, and a result obtained with a new technology of probes equipped with a flexible wedge filled with water (manufactured by Imasonic).
NASA Astrophysics Data System (ADS)
Anderson, Robert; Pember, Richard; Elliott, Noah
2001-11-01
We present a method, ALE-AMR, for modeling unsteady compressible flow that combines a staggered grid arbitrary Lagrangian-Eulerian (ALE) scheme with structured local adaptive mesh refinement (AMR). The ALE method is a three step scheme on a staggered grid of quadrilateral cells: Lagrangian advance, mesh relaxation, and remap. The AMR scheme uses a mesh hierarchy that is dynamic in time and is composed of nested structured grids of varying resolution. The integration algorithm on the hierarchy is a recursive procedure in which the coarse grids are advanced a single time step, the fine grids are advanced to the same time, and the coarse and fine grid solutions are synchronized. The novel details of ALE-AMR are primarily motivated by the need to reconcile and extend AMR techniques typically employed for stationary rectangular meshes with cell-centered quantities to the moving quadrilateral meshes with staggered quantities used in the ALE scheme. Solutions of several test problems are discussed.
NASA Astrophysics Data System (ADS)
Niccolini, G.; Alcolea, J.
Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).
Adaptive neural network nonlinear control for BTT missile based on the differential geometry method
NASA Astrophysics Data System (ADS)
Wu, Hao; Wang, Yongji; Xu, Jiangsheng
2007-11-01
A new nonlinear control strategy incorporated the differential geometry method with adaptive neural networks is presented for the nonlinear coupling system of Bank-to-Turn missile in reentry phase. The basic control law is designed using the differential geometry feedback linearization method, and the online learning neural networks are used to compensate the system errors due to aerodynamic parameter errors and external disturbance in view of the arbitrary nonlinear mapping and rapid online learning ability for multi-layer neural networks. The online weights and thresholds tuning rules are deduced according to the tracking error performance functions by Levenberg-Marquardt algorithm, which will make the learning process faster and more stable. The six degree of freedom simulation results show that the attitude angles can track the desired trajectory precisely. It means that the proposed strategy effectively enhance the stability, the tracking performance and the robustness of the control system.
New convergence results for the scaled gradient projection method
NASA Astrophysics Data System (ADS)
Bonettini, S.; Prato, M.
2015-09-01
The aim of this paper is to deepen the convergence analysis of the scaled gradient projection (SGP) method, proposed by Bonettini et al in a recent paper for constrained smooth optimization. The main feature of SGP is the presence of a variable scaling matrix multiplying the gradient, which may change at each iteration. In the last few years, extensive numerical experimentation showed that SGP equipped with a suitable choice of the scaling matrix is a very effective tool for solving large scale variational problems arising in image and signal processing. In spite of the very reliable numerical results observed, only a weak convergence theorem is provided establishing that any limit point of the sequence generated by SGP is stationary. Here, under the only assumption that the objective function is convex and that a solution exists, we prove that the sequence generated by SGP converges to a minimum point, if the scaling matrices sequence satisfies a simple and implementable condition. Moreover, assuming that the gradient of the objective function is Lipschitz continuous, we are also able to prove the {O}(1/k) convergence rate with respect to the objective function values. Finally, we present the results of a numerical experience on some relevant image restoration problems, showing that the proposed scaling matrix selection rule performs well also from the computational point of view.