Science.gov

Sample records for adaptive protein evolution

  1. Adaptive evolution in an avian reproductive protein: ZP3.

    PubMed

    Calkins, Jennifer D; El-Hinn, Diana; Swanson, Willie J

    2007-11-01

    Proteins involved in reproduction appear to be evolving adaptively across taxa. This rapid evolution is thought to be the result of forces involved in sexual selection. One of the most often suggested of these forces is sexual conflict involving sperm competition and polyspermy avoidance. Bird species offer a unique opportunity to test this hypothesis since the avian egg coat tolerates physiological polyspermy, or the penetration of multiple sperm during fertilization, without negative effects on later development. Despite this, and the extensive amount of data gathered on sexual selection in birds, there are limited studies on the patterns of evolution of avian reproductive proteins. Here we present an analysis of the pattern of evolution of Zona Pellucida 3 (ZP3), a protein present on the avian egg coat. We found that, across several galliform and a single anseriform species, ZP3 appears to be diverging by positive adaptive evolution. In an exploratory analysis of portions of the gene in Callipepla californica we also found evidence of a selective sweep at the putative sperm binding region of the protein. In sum, ZP3 in birds, like reproductive proteins in other species, appears to be adaptively evolving. This result suggests that polyspermy avoidance is not sufficient to explain positive Darwinian selection in reproductive proteins across taxonomic groups. Clearly, the inclusion of bird species in the study of reproductive proteins across taxa promises to add greatly to the discussion of the factors driving the widespread phenomenon of adaptive evolution in reproductive proteins. PMID:17909693

  2. Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution

    PubMed Central

    Gong, Lizhi Ian; Bloom, Jesse D.

    2014-01-01

    Most experimental studies of epistasis in evolution have focused on adaptive changes—but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well-defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza—here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play. PMID:24811236

  3. Adaptive evolution of relish, a Drosophila NF-kappaB/IkappaB protein.

    PubMed

    Begun, D J; Whitley, P

    2000-03-01

    NF-kappaB and IkappaB proteins have central roles in regulation of inflammation and innate immunity in mammals. Homologues of these proteins also play an important role in regulation of the Drosophila immune response. Here we present a molecular population genetic analysis of Relish, a Drosophila NF-kappaB/IkappaB protein, in Drosophila simulans and D. melanogaster. We find strong evidence for adaptive protein evolution in D. simulans, but not in D. melanogaster. The adaptive evolution appears to be restricted to the IkappaB domain. A possible explanation for these results is that Relish is a site of evolutionary conflict between flies and their microbial pathogens.

  4. Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis.

    PubMed

    Galtier, Nicolas

    2016-01-01

    The rate at which genomes adapt to environmental changes and the prevalence of adaptive processes in molecular evolution are two controversial issues in current evolutionary genetics. Previous attempts to quantify the genome-wide rate of adaptation through amino-acid substitution have revealed a surprising diversity of patterns, with some species (e.g. Drosophila) experiencing a very high adaptive rate, while other (e.g. humans) are dominated by nearly-neutral processes. It has been suggested that this discrepancy reflects between-species differences in effective population size. Published studies, however, were mainly focused on model organisms, and relied on disparate data sets and methodologies, so that an overview of the prevalence of adaptive protein evolution in nature is currently lacking. Here we extend existing estimators of the amino-acid adaptive rate by explicitly modelling the effect of favourable mutations on non-synonymous polymorphism patterns, and we apply these methods to a newly-built, homogeneous data set of 44 non-model animal species pairs. Data analysis uncovers a major contribution of adaptive evolution to the amino-acid substitution process across all major metazoan phyla-with the notable exception of humans and primates. The proportion of adaptive amino-acid substitution is found to be positively correlated to species effective population size. This relationship, however, appears to be primarily driven by a decreased rate of nearly-neutral amino-acid substitution because of more efficient purifying selection in large populations. Our results reveal that adaptive processes dominate the evolution of proteins in most animal species, but do not corroborate the hypothesis that adaptive substitutions accumulate at a faster rate in large populations. Implications regarding the factors influencing the rate of adaptive evolution and positive selection detection in humans vs. other organisms are discussed. PMID:26752180

  5. Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis

    PubMed Central

    Galtier, Nicolas

    2016-01-01

    The rate at which genomes adapt to environmental changes and the prevalence of adaptive processes in molecular evolution are two controversial issues in current evolutionary genetics. Previous attempts to quantify the genome-wide rate of adaptation through amino-acid substitution have revealed a surprising diversity of patterns, with some species (e.g. Drosophila) experiencing a very high adaptive rate, while other (e.g. humans) are dominated by nearly-neutral processes. It has been suggested that this discrepancy reflects between-species differences in effective population size. Published studies, however, were mainly focused on model organisms, and relied on disparate data sets and methodologies, so that an overview of the prevalence of adaptive protein evolution in nature is currently lacking. Here we extend existing estimators of the amino-acid adaptive rate by explicitly modelling the effect of favourable mutations on non-synonymous polymorphism patterns, and we apply these methods to a newly-built, homogeneous data set of 44 non-model animal species pairs. Data analysis uncovers a major contribution of adaptive evolution to the amino-acid substitution process across all major metazoan phyla—with the notable exception of humans and primates. The proportion of adaptive amino-acid substitution is found to be positively correlated to species effective population size. This relationship, however, appears to be primarily driven by a decreased rate of nearly-neutral amino-acid substitution because of more efficient purifying selection in large populations. Our results reveal that adaptive processes dominate the evolution of proteins in most animal species, but do not corroborate the hypothesis that adaptive substitutions accumulate at a faster rate in large populations. Implications regarding the factors influencing the rate of adaptive evolution and positive selection detection in humans vs. other organisms are discussed. PMID:26752180

  6. Adaptive evolution of recently duplicated accessory gland protein genes in desert Drosophila.

    PubMed

    Wagstaff, Bradley J; Begun, David J

    2007-10-01

    The relationship between animal mating system variation and patterns of protein polymorphism and divergence is poorly understood. Drosophila provides an excellent system for addressing this issue, as there is abundant interspecific mating system variation. For example, compared to D. melanogaster subgroup species, repleta group species have higher remating rates, delayed sexual maturity, and several other interesting differences. We previously showed that accessory gland protein genes (Acp's) of Drosophila mojavensis and D. arizonae evolve more rapidly than Acp's in the D. melanogaster subgroup and that adaptive Acp protein evolution is likely more common in D. mojavensis/D. arizonae than in D. melanogaster/D. simulans. These findings are consistent with the idea that greater postcopulatory selection results in more adaptive evolution of seminal fluid proteins in the repleta group flies. Here we report another interesting evolutionary difference between the repleta group and the D. melanogaster subgroup Acp's. Acp gene duplications are present in D. melanogaster, but their high sequence divergence indicates that the fixation rate of duplicated Acp's has been low in this lineage. Here we report that D. mojavensis and D. arizonae genomes contain several very young duplicated Acp's and that these Acp's have experienced very rapid, adaptive protein divergence. We propose that rapid remating of female desert Drosophila generates selection for continuous diversification of the male Acp complement to improve male fertilization potential. Thus, mating system variation may be associated with adaptive protein divergence as well as with duplication of Acp's in Drosophila.

  7. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.

    PubMed

    Clifton, Ben E; Jackson, Colin J

    2016-02-18

    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity.

  8. Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait.

    PubMed

    Refki, Peter Nagui; Armisén, David; Crumière, Antonin Jean Johan; Viala, Séverine; Khila, Abderrahman

    2014-08-15

    Growth control scales morphological attributes and, therefore, provides a critical contribution to the evolution of adaptive traits. Yet, the genetic mechanisms underlying growth in the context of specific ecological adaptations are poorly understood. In water striders, adaptation to locomotion on the water surface is associated with allometric and functional changes in thoracic appendages, such that T2-legs, used as propelling oars, are longer than T3-legs, used as steering rudders. The Hox gene Ubx establishes this derived morphology by elongating T2-legs but shortening T3-legs. Using gene expression assays, RNAi knockdown, and comparative transcriptomics, we demonstrate that the evolution of water surface rowing as a novel means of locomotion is associated with the evolution of a dose-dependent promoting-repressing effect of Ubx on leg growth. In the water strider Limnoporus dissortis, T3-legs express six to seven times higher levels of Ubx compared to T2-legs. Ubx RNAi shortens T2-legs and the severity of this phenotype increases with increased depletion of Ubx protein. Conversely, Ubx RNAi lengthens T3-legs but this phenotype is partially rescued when Ubx protein is further depleted. This dose-dependent effect of Ubx on leg growth is absent in non-rowing relatives that retain the ancestral relative leg length. We also show that the spatial patterns of expression of dpp, wg, hh, egfr, dll, exd, hth, and dac are unchanged in Ubx RNAi treatments. This indicates that the dose-dependent opposite effect of Ubx on T2- and T3-legs operates without any apparent effect on the spatial expression of major leg patterning genes. Our data suggest that scaling of adaptive allometries can evolve through changes in the levels of expression of Hox proteins early during ontogeny, and in the sensitivity of the tissues that express them, without any major effects on pattern formation.

  9. Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait

    PubMed Central

    Refki, Peter Nagui; Armisén, David; Crumière, Antonin Jean Johan; Viala, Séverine; Khila, Abderrahman

    2014-01-01

    Growth control scales morphological attributes and, therefore, provides a critical contribution to the evolution of adaptive traits. Yet, the genetic mechanisms underlying growth in the context of specific ecological adaptations are poorly understood. In water striders, adaptation to locomotion on the water surface is associated with allometric and functional changes in thoracic appendages, such that T2-legs, used as propelling oars, are longer than T3-legs, used as steering rudders. The Hox gene Ubx establishes this derived morphology by elongating T2-legs but shortening T3-legs. Using gene expression assays, RNAi knockdown, and comparative transcriptomics, we demonstrate that the evolution of water surface rowing as a novel means of locomotion is associated with the evolution of a dose-dependent promoting-repressing effect of Ubx on leg growth. In the water strider Limnoporus dissortis, T3-legs express six to seven times higher levels of Ubx compared to T2-legs. Ubx RNAi shortens T2-legs and the severity of this phenotype increases with increased depletion of Ubx protein. Conversely, Ubx RNAi lengthens T3-legs but this phenotype is partially rescued when Ubx protein is further depleted. This dose-dependent effect of Ubx on leg growth is absent in non-rowing relatives that retain the ancestral relative leg length. We also show that the spatial patterns of expression of dpp, wg, hh, egfr, dll, exd, hth, and dac are unchanged in Ubx RNAi treatments. This indicates that the dose-dependent opposite effect of Ubx on T2- and T3-legs operates without any apparent effect on the spatial expression of major leg patterning genes. Our data suggest that scaling of adaptive allometries can evolve through changes in the levels of expression of Hox proteins early during ontogeny, and in the sensitivity of the tissues that express them, without any major effects on pattern formation. PMID:24886828

  10. Adaptive evolution of multicolored fluorescent proteins in reef-building corals.

    PubMed

    Field, Steven F; Bulina, Maria Y; Kelmanson, Ilya V; Bielawski, Joseph P; Matz, Mikhail V

    2006-03-01

    Here we investigate the evolutionary scenarios that led to the appearance of fluorescent color diversity in reef-building corals. We show that the mutations that have been responsible for the generation of new cyan and red phenotypes from the ancestral green were fixed with the help of positive natural selection. This fact strongly suggests that the color diversity is a product of adaptive evolution. An unexpected finding was a set of residues arranged as an intermolecular binding interface, which was also identified as a target of positive selection but is nevertheless not related to color diversification. We hypothesize that multicolored fluorescent proteins evolved as part of a mechanism regulating the relationships between the coral and its algal endosymbionts (zooxanthellae). We envision that the effect of the proteins' fluorescence on algal physiology may be achieved not only through photosynthesis modulation, but also through regulatory photosensors analogous to phytochromes and cryptochromes of higher plants. Such a regulation would require relatively subtle, but spectrally precise, modifications of the light field. Evolution of such a mechanism would explain both the adaptive diversification of colors and the coevolutionary chase at the putative algae-protein binding interface in coral fluorescent proteins.

  11. Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict.

    PubMed

    Deng, Cheng; Cheng, C-H Christina; Ye, Hua; He, Ximiao; Chen, Liangbiao

    2010-12-14

    The evolutionary model escape from adaptive conflict (EAC) posits that adaptive conflict between the old and an emerging new function within a single gene could drive the fixation of gene duplication, where each duplicate can freely optimize one of the functions. Although EAC has been suggested as a common process in functional evolution, definitive cases of neofunctionalization under EAC are lacking, and the molecular mechanisms leading to functional innovation are not well-understood. We report here clear experimental evidence for EAC-driven evolution of type III antifreeze protein gene from an old sialic acid synthase (SAS) gene in an Antarctic zoarcid fish. We found that an SAS gene, having both sialic acid synthase and rudimentary ice-binding activities, became duplicated. In one duplicate, the N-terminal SAS domain was deleted and replaced with a nascent signal peptide, removing pleiotropic structural conflict between SAS and ice-binding functions and allowing rapid optimization of the C-terminal domain to become a secreted protein capable of noncolligative freezing-point depression. This study reveals how minor functionalities in an old gene can be transformed into a distinct survival protein and provides insights into how gene duplicates facing presumed identical selection and mutation pressures at birth could take divergent evolutionary paths. PMID:21115821

  12. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers.

    PubMed

    Jansa, Sharon A; Voss, Robert S

    2011-01-01

    The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae) and pitvipers (Serpentes: Crotalinae). In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF), a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role.

  13. Adaptive evolution of tight junction protein claudin-14 in echolocating whales.

    PubMed

    Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J; Zhang, Shuyi

    2013-11-10

    Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats.

  14. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment.

    PubMed

    Gruber, David F; Gaffney, Jean P; Mehr, Shaadi; DeSalle, Rob; Sparks, John S; Platisa, Jelena; Pieribone, Vincent A

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein's fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment.

  15. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment

    PubMed Central

    Gruber, David F.; Gaffney, Jean P.; Mehr, Shaadi; DeSalle, Rob; Sparks, John S.; Platisa, Jelena; Pieribone, Vincent A.

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein’s fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment. PMID:26561348

  16. Detecting the signatures of adaptive evolution in protein-coding genes.

    PubMed

    Bielawski, Joseph P

    2013-01-01

    The field of molecular evolution, which includes genome evolution, is devoted to finding variation within and between groups of organisms and explaining the processes responsible for generating this variation. Many DNA changes are believed to have little to no functional effect, and a neutral process will best explain their evolution. Thus, a central task is to discover which changes had positive fitness consequences and were subject to Darwinian natural selection during the course of evolution. Due the size and complexity of modern molecular datasets, the field has come to rely extensively on statistical modeling techniques to meet this analytical challenge. For DNA sequences that encode proteins, one of the most powerful approaches is to employ a statistical model of codon evolution. This unit provides a general introduction to the practice of modeling codon evolution using the statistical framework of maximum likelihood. Four real-data analysis activities are used to illustrate the principles of parameter estimation, robustness, hypothesis testing, and site classification. Each activity includes an explicit analytical protocol based on programs provided by the Phylogenetic Analysis by Maximum Likelihood (PAML) package. PMID:23288462

  17. Duplication and Adaptive Evolution of a Key Centromeric Protein in Mimulus, a Genus with Female Meiotic Drive.

    PubMed

    Finseth, Findley R; Dong, Yuzhu; Saunders, Arpiar; Fishman, Lila

    2015-10-01

    The fundamental asymmetry of female meiosis creates an arena for genetic elements to compete for inclusion in the egg, promoting the selfish evolution of centromere variants that maximize their transmission to the future egg. Such "female meiotic drive" has been hypothesized to explain the paradoxically complex and rapidly evolving nature of centromeric DNA and proteins. Although theoretically widespread, few cases of active drive have been observed, thereby limiting the opportunities to directly assess the impact of centromeric drive on molecular variation at centromeres and binding proteins. Here, we characterize the molecular evolutionary patterns of CENH3, the centromere-defining histone variant, in Mimulus monkeyflowers, a genus with one of the few known cases of active centromere-associated female meiotic drive. First, we identify a novel duplication of CENH3 in diploid Mimulus, including in lineages with actively driving centromeres. Second, we demonstrate long-term adaptive evolution at several sites in the N-terminus of CENH3, a region with some meiosis-specific functions that putatively interacts with centromeric DNA. Finally, we infer that the paralogs evolve under different selective regimes; some sites in the N-terminus evolve under positive selection in the pro-orthologs or only one paralog (CENH3_B) and the paralogs exhibit significantly different patterns of polymorphism within populations. Our finding of long-term, adaptive evolution at CENH3 in the context of centromere-associated meiotic drive supports an antagonistic, coevolutionary battle for evolutionary dominance between centromeric DNA and binding proteins.

  18. Sexual selection and the adaptive evolution of PKDREJ protein in primates and rodents.

    PubMed

    Vicens, Alberto; Gómez Montoto, Laura; Couso-Ferrer, Francisco; Sutton, Keith A; Roldan, Eduardo R S

    2015-02-01

    PKDREJ is a testis-specific protein thought to be located on the sperm surface. Functional studies in the mouse revealed that loss of PKDREJ has effects on sperm transport and the ability to undergo an induced acrosome reaction. Thus, PKDREJ has been considered a potential target of post-copulatory sexual selection in the form of sperm competition. Proteins involved in reproductive processes often show accelerated evolution. In many cases, this rapid divergence is promoted by positive selection which may be driven, at least in part, by post-copulatory sexual selection. We analysed the evolution of the PKDREJ protein in primates and rodents and assessed whether PKDREJ divergence is associated with testes mass relative to body mass, which is a reliable proxy of sperm competition levels. Evidence of an association between the evolutionary rate of the PKDREJ gene and testes mass relative to body mass was not found in primates. Among rodents, evidence of positive selection was detected in the Pkdrej gene in the family Cricetidae but not in Muridae. We then assessed whether Pkdrej divergence is associated with episodes of sperm competition in these families. We detected a positive significant correlation between the evolutionary rates of Pkdrej and testes mass relative to body mass in cricetids. These findings constitute the first evidence of post-copulatory sexual selection influencing the evolution of a protein that participates in the mechanisms regulating sperm transport and the acrosome reaction, strongly suggesting that positive selection may act on these fertilization steps, leading to advantages in situations of sperm competition. PMID:25304980

  19. Molecular evolution and thermal adaptation

    NASA Astrophysics Data System (ADS)

    Chen, Peiqiu

    2011-12-01

    In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of

  20. Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals

    PubMed Central

    Zielezinski, Andrzej; Karlowski, Wojciech M

    2015-01-01

    The GW182 proteins are a key component of the miRNA-dependent post-transcriptional silencing pathway in animals. They function as scaffold proteins to mediate the interaction of Argonaute (AGO)-containing complexes with cytoplasmic poly(A)-binding proteins (PABP) and PAN2-PAN3 and CCR4-NOT deadenylases. The AGO-GW182 complexes mediate silencing of the target mRNA through induction of translational repression and/or mRNA degradation. Although the GW182 proteins are a subject of extensive experimental research in the recent years, very little is known about their origin and evolution. Here, based on complex functional annotation and phylogenetic analyses, we reveal 448 members of the GW182 protein family from the earliest animals to humans. Our results indicate that a single-copy GW182/TNRC6C progenitor gene arose with the emergence of multicellularity and it multiplied in the last common ancestor of vertebrates in 2 rounds of whole genome duplication (WGD) resulting in 3 genes. Before the divergence of vertebrates, both the AGO- and CCR4-NOT-binding regions of GW182s showed significant acceleration in the accumulation of amino acid changes, suggesting functional adaptation toward higher specificity to the molecules of the silencing complex. We conclude that the silencing ability of the GW182 proteins improves with higher position in the taxonomic classification and increasing complexity of the organism. The first reconstruction of the molecular journey of GW182 proteins from the ancestral metazoan protein to the current mammalian configuration provides new insight into development of the miRNA-dependent post-transcriptional silencing pathway in animals. PMID:26106978

  1. Extensive amino acid polymorphism at the pgm locus is consistent with adaptive protein evolution in Drosophila melanogaster.

    PubMed Central

    Verrelli, B C; Eanes, W F

    2000-01-01

    PGM plays a central role in the glycolytic pathway at the branch point leading to glycogen metabolism and is highly polymorphic in allozyme studies of many species. We have characterized the nucleotide diversity across the Pgm gene in Drosophila melanogaster and D. simulans to investigate the role that protein polymorphism plays at this crucial metabolic branch point shared with several other enzymes. Although D. melanogaster and D. simulans share common allozyme mobility alleles, we find these allozymes are the result of many different amino acid changes at the nucleotide level. In addition, specific allozyme classes within species contain several amino acid changes, which may explain the absence of latitudinal clines for PGM allozyme alleles, the lack of association of PGM allozymes with the cosmopolitan In(3L)P inversion, and the failure to detect differences between PGM allozymes in functional studies. We find a significant excess of amino acid polymorphisms within D. melanogaster when compared to the complete absence of fixed replacements with D. simulans. There is also strong linkage disequilibrium across the 2354 bp of the Pgm locus, which may be explained by a specific amino acid haplotype that is high in frequency yet contains an excess of singleton polymorphisms. Like G6pd, Pgm shows strong evidence for a branch point enzyme that exhibits adaptive protein evolution. PMID:11102370

  2. Adaptive evolution of molecular phenotypes

    NASA Astrophysics Data System (ADS)

    Held, Torsten; Nourmohammad, Armita; Lässig, Michael

    2014-09-01

    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak.

  3. "Preconceived Adaptation and Inverted Evolution"

    ERIC Educational Resources Information Center

    Jungwirth, E.

    1975-01-01

    Alerts teachers, science-test writers and other relevant persons to the problem of distorted concepts which might arise from careless and/or irresponsible usage of the language of science. Provides examples of semantic problems in writings related to the concepts of adaptation and evolution. (GS)

  4. Directed Evolution and In Silico Analysis of Reaction Centre Proteins Reveal Molecular Signatures of Photosynthesis Adaptation to Radiation Pressure

    PubMed Central

    Rea, Giuseppina; Lambreva, Maya; Polticelli, Fabio; Bertalan, Ivo; Antonacci, Amina; Pastorelli, Sandro; Damasso, Mario; Johanningmeier, Udo; Giardi, Maria Teresa

    2011-01-01

    Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues more sensitive to

  5. Adaptive evolution of animal toxin multigene families.

    PubMed

    Kordis, D; Gubensek, F

    2000-12-30

    Animal toxins comprise a diverse array of proteins that have a variety of biochemical and pharmacological functions. A large number of animal toxins are encoded by multigene families. From studies of several toxin multigene families at the gene level the picture is emerging that most have been functionally diversified by gene duplication and adaptive evolution. The number of pharmacological activities in most toxin multigene families results from their adaptive evolution. The molecular evolution of animal toxins has been analysed in some multigene families, at both the intraspecies and interspecies levels. In most toxin multigene families, the rate of non-synonymous to synonymous substitutions (dN/dS) is higher than one. Thus natural selection has acted to diversify coding sequences and consequently the toxin functions. The selection pressure for the rapid adaptive evolution of animal toxins is the need for quick immobilization of the prey in classical predator and prey interactions. Currently available evidence for adaptive evolution in animal toxin multigene families will be considered in this review.

  6. Weak Selection and Protein Evolution

    PubMed Central

    Akashi, Hiroshi; Osada, Naoki; Ohta, Tomoko

    2012-01-01

    The “nearly neutral” theory of molecular evolution proposes that many features of genomes arise from the interaction of three weak evolutionary forces: mutation, genetic drift, and natural selection acting at its limit of efficacy. Such forces generally have little impact on allele frequencies within populations from generation to generation but can have substantial effects on long-term evolution. The evolutionary dynamics of weakly selected mutations are highly sensitive to population size, and near neutrality was initially proposed as an adjustment to the neutral theory to account for general patterns in available protein and DNA variation data. Here, we review the motivation for the nearly neutral theory, discuss the structure of the model and its predictions, and evaluate current empirical support for interactions among weak evolutionary forces in protein evolution. Near neutrality may be a prevalent mode of evolution across a range of functional categories of mutations and taxa. However, multiple evolutionary mechanisms (including adaptive evolution, linked selection, changes in fitness-effect distributions, and weak selection) can often explain the same patterns of genome variation. Strong parameter sensitivity remains a limitation of the nearly neutral model, and we discuss concave fitness functions as a plausible underlying basis for weak selection. PMID:22964835

  7. Exploring protein fitness landscapes by directed evolution

    PubMed Central

    Romero, Philip A.; Arnold, Frances H.

    2010-01-01

    Preface Directed evolution circumvents our profound ignorance of how a protein's sequence encodes its function by using iterative rounds of random mutation and artificial selection to discover new and useful proteins. Proteins can be tuned to adapt to new functions or environments via simple adaptive walks involving small numbers of mutations. Directed evolution studies have demonstrated how rapidly at least some proteins can evolve under strong selection pressures, and, because the entire ‘fossil record’ of evolutionary intermediates is available for detailed study, they have provided new insight into the relationship between sequence and function. Directed evolution has also shown how mutations that are functionally neutral can set the stage for further adaptation. PMID:19935669

  8. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution

    PubMed Central

    Modahl, Cassandra M.; Mackessy, Stephen P.

    2016-01-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  9. Protein adaptations in archaeal extremophiles.

    PubMed

    Reed, Christopher J; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.

  10. Epistatic adaptive evolution of human color vision.

    PubMed

    Yokoyama, Shozo; Xing, Jinyi; Liu, Yang; Faggionato, Davide; Altun, Ahmet; Starmer, William T

    2014-12-01

    Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic) interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV)-free retinal environment, the short wavelength-sensitive (SWS1) visual pigment in human (human S1) switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45-30 million years ago, the middle and long wavelength-sensitive (MWS/LWS) pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments. PMID:25522367

  11. Epistatic Adaptive Evolution of Human Color Vision

    PubMed Central

    Yokoyama, Shozo; Xing, Jinyi; Liu, Yang; Faggionato, Davide; Altun, Ahmet; Starmer, William T.

    2014-01-01

    Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic) interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV)-free retinal environment, the short wavelength-sensitive (SWS1) visual pigment in human (human S1) switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45–30 million years ago, the middle and long wavelength-sensitive (MWS/LWS) pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments. PMID:25522367

  12. Epistatic adaptive evolution of human color vision.

    PubMed

    Yokoyama, Shozo; Xing, Jinyi; Liu, Yang; Faggionato, Davide; Altun, Ahmet; Starmer, William T

    2014-12-01

    Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic) interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV)-free retinal environment, the short wavelength-sensitive (SWS1) visual pigment in human (human S1) switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45-30 million years ago, the middle and long wavelength-sensitive (MWS/LWS) pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments.

  13. Evolution of adaptation mechanisms: Adaptation energy, stress, and oscillating death.

    PubMed

    Gorban, Alexander N; Tyukina, Tatiana A; Smirnova, Elena V; Pokidysheva, Lyudmila I

    2016-09-21

    In 1938, Selye proposed the notion of adaptation energy and published 'Experimental evidence supporting the conception of adaptation energy.' Adaptation of an animal to different factors appears as the spending of one resource. Adaptation energy is a hypothetical extensive quantity spent for adaptation. This term causes much debate when one takes it literally, as a physical quantity, i.e. a sort of energy. The controversial points of view impede the systematic use of the notion of adaptation energy despite experimental evidence. Nevertheless, the response to many harmful factors often has general non-specific form and we suggest that the mechanisms of physiological adaptation admit a very general and nonspecific description. We aim to demonstrate that Selye׳s adaptation energy is the cornerstone of the top-down approach to modelling of non-specific adaptation processes. We analyze Selye׳s axioms of adaptation energy together with Goldstone׳s modifications and propose a series of models for interpretation of these axioms. Adaptation energy is considered as an internal coordinate on the 'dominant path' in the model of adaptation. The phenomena of 'oscillating death' and 'oscillating remission' are predicted on the base of the dynamical models of adaptation. Natural selection plays a key role in the evolution of mechanisms of physiological adaptation. We use the fitness optimization approach to study of the distribution of resources for neutralization of harmful factors, during adaptation to a multifactor environment, and analyze the optimal strategies for different systems of factors.

  14. Evolution of Robustness to Protein Mistranslation by Accelerated Protein Turnover

    PubMed Central

    Farkas, Zoltán; Horvath, Peter; Bódi, Zoltán; Daraba, Andreea; Szamecz, Béla; Gut, Ivo; Bayes, Mónica; Santos, Manuel A. S.; Pál, Csaba

    2015-01-01

    Translational errors occur at high rates, and they influence organism viability and the onset of genetic diseases. To investigate how organisms mitigate the deleterious effects of protein synthesis errors during evolution, a mutant yeast strain was engineered to translate a codon ambiguously (mistranslation). It thereby overloads the protein quality-control pathways and disrupts cellular protein homeostasis. This strain was used to study the capacity of the yeast genome to compensate the deleterious effects of protein mistranslation. Laboratory evolutionary experiments revealed that fitness loss due to mistranslation can rapidly be mitigated. Genomic analysis demonstrated that adaptation was primarily mediated by large-scale chromosomal duplication and deletion events, suggesting that errors during protein synthesis promote the evolution of genome architecture. By altering the dosages of numerous, functionally related proteins simultaneously, these genetic changes introduced large phenotypic leaps that enabled rapid adaptation to mistranslation. Evolution increased the level of tolerance to mistranslation through acceleration of ubiquitin-proteasome–mediated protein degradation and protein synthesis. As a consequence of rapid elimination of erroneous protein products, evolution reduced the extent of toxic protein aggregation in mistranslating cells. However, there was a strong evolutionary trade-off between adaptation to mistranslation and survival upon starvation: the evolved lines showed fitness defects and impaired capacity to degrade mature ribosomes upon nutrient limitation. Moreover, as a response to an enhanced energy demand of accelerated protein turnover, the evolved lines exhibited increased glucose uptake by selective duplication of hexose transporter genes. We conclude that adjustment of proteome homeostasis to mistranslation evolves rapidly, but this adaptation has several side effects on cellular physiology. Our work also indicates that

  15. Fitness seascapes and adaptive evolution of the influenza virus

    NASA Astrophysics Data System (ADS)

    Lassig, Michael

    2014-03-01

    The seasonal human influenza A virus undergoes rapid genome evolution. This process is triggered by interactions with the host immune system and produces significant year-to-year sequence turnover in the population of circulating viral strains. We develop a dynamical fitness model that predicts the evolution of the viral population from one year to the next. Two factors are shown to determine the fitness of a viral strain: adaptive changes, which are under positive selection, and deleterious mutations, which affect conserved viral functions such as protein stability. Combined with the influenza strain tree, this fitness model maps the adaptive history of influenza A. We discuss the implications of our results for the statistical theory of adaptive evolution in asexual populations. Based on this and related systems, we touch upon the fundamental question of when evolution can be predicted. Joint work with Marta Luksza, Columbia University.

  16. Coordinated Evolution of Influenza A Surface Proteins

    PubMed Central

    Plotkin, Joshua B.; Bazykin, Georgii A.

    2015-01-01

    The surface proteins hemagglutinin (HA) and neuraminidase (NA) of human influenza A virus evolve under selection pressures to escape adaptive immune responses and antiviral drug treatments. In addition to these external selection pressures, some mutations in HA are known to affect the adaptive landscape of NA, and vice versa, because these two proteins are physiologically interlinked. However, the extent to which evolution of one protein affects the evolution of the other one is unknown. Here we develop a novel phylogenetic method for detecting the signatures of such genetic interactions between mutations in different genes – that is, inter-gene epistasis. Using this method, we show that influenza surface proteins evolve in a coordinated way, with mutations in HA affecting subsequent spread of mutations in NA and vice versa, at many sites. Of particular interest is our finding that the oseltamivir-resistance mutations in NA in subtype H1N1 were likely facilitated by prior mutations in HA. Our results illustrate that the adaptive landscape of a viral protein is remarkably sensitive to its genomic context and, more generally, that the evolution of any single protein must be understood within the context of the entire evolving genome. PMID:26247472

  17. Biophysics of protein evolution and evolutionary protein biophysics

    PubMed Central

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  18. Protein sequence comparison and protein evolution

    SciTech Connect

    Pearson, W.R.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  19. The adaptive evolution of the mammalian mitochondrial genome

    PubMed Central

    da Fonseca, Rute R; Johnson, Warren E; O'Brien, Stephen J; Ramos, Maria João; Antunes, Agostinho

    2008-01-01

    Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas). Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation. PMID:18318906

  20. Protein evolution on rugged landscapes

    SciTech Connect

    Macken, C.A. ); Perelson, A.S. Sante Fe Institute, NM )

    1989-08-01

    The authors analyze a mathematical model of protein evolution in which the evolutionary process is viewed as hill-climbing on a random fitness landscape. In studying the structure of such landscapes, they note that a large number of local optima exist, and they calculate the time and number of mutational changes until a protein gets trapped at a local optimum. Such a hill-climbing process may underlie the evolution of antibody molecules by somatic hypermutation.

  1. Adaptation, plant evolution, and the fossil record

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Niklas, K. J.

    1987-01-01

    The importance of adaptation in determining patterns of evolution has become an important focus of debate in evolutionary biology. As it pertains to paleobotany, the issue is whether or not adaptive evolution mediated by natural selection is sufficient to explain the stratigraphic distributions of taxa and character states observed in the plant fossil record. One means of addressing this question is the functional evaluation of stratigraphic series of plant organs set in the context of paleoenvironmental change and temporal patterns of floral composition within environments. For certain organ systems, quantitative estimates of biophysical performance can be made on the basis of structures preserved in the fossil record. Performance estimates for plants separated in time or space can be compared directly. Implicit in different hypotheses of the forces that shape the evolutionary record (e.g. adaptation, mass extinction, rapid environmental change, chance) are predictions about stratigraphic and paleoenvironmental trends in the efficacy of functional performance. Existing data suggest that following the evolution of a significant structural innovation, adaptation for improved functional performance can be a major determinant of evolutionary changes in plants; however, there are structural and development limits to functional improvement, and once these are reached, the structure in question may no longer figure strongly in selection until and unless a new innovation evolves. The Silurian-Devonian paleobotanical record is consistent with the hypothesis that the succession of lowland floodplain dominants preserved in the fossil record of this interval was determined principally by the repeated evolution of new taxa that rose to ecological importance because of competitive advantages conferred by improved biophysical performance. This does not seem to be equally true for Carboniferous-Jurassic dominants of swamp and lowland floodplain environments. In these cases

  2. Adaptive Evolution of the STRA6 Genes in Mammalian

    PubMed Central

    Wu, Jianghong; Xiang, Hui; Qi, Yunxia; Yang, Ding; Wang, Xiaojuan; Sun, Hailian; Wang, Feng; Liu, Bin

    2014-01-01

    Stimulated by retinoic acid 6 (STRA6) is the receptor for retinol binding protein and is relevant for the transport of retinol to specific sites such as the eye. The adaptive evolution mechanism that vertebrates have occupied nearly every habitat available on earth and adopted various lifestyles associated with different light conditions and visual challenges, as well as their role in development and adaptation is thus far unknown. In this work, we have investigated different aspects of vertebrate STRA6 evolution and used molecular evolutionary analyses to detect evidence of vertebrate adaptation to the lightless habitat. Free-ratio model revealed significant rate shifts immediately after the species divergence. The amino acid sites detected to be under positive selection are within the extracellular loops of STRA6 protein. Branch-site model A test revealed that STRA6 has undergone positive selection in the different phyla of mammalian except for the branch of rodent. The results suggest that interactions between different light environments and host may be driving adaptive change in STRA6 by competition between species. In support of this, we found that altered functional constraints may take place at some amino acid residues after speciation. We suggest that STRA6 has undergone adaptive evolution in different branch of vertebrate relation to habitat environment. PMID:25251323

  3. Adaptive evolution of genes underlying schizophrenia.

    PubMed

    Crespi, Bernard; Summers, Kyle; Dorus, Steve

    2007-11-22

    Schizophrenia poses an evolutionary-genetic paradox because it exhibits strongly negative fitness effects and high heritability, yet it persists at a prevalence of approximately 1% across all human cultures. Recent theory has proposed a resolution: that genetic liability to schizophrenia has evolved as a secondary consequence of selection for human cognitive traits. This hypothesis predicts that genes increasing the risk of this disorder have been subject to positive selection in the evolutionary history of humans and other primates. We evaluated this prediction using tests for recent selective sweeps in human populations and maximum-likelihood tests for selection during primate evolution. Significant evidence for positive selection was evident using one or both methods for 28 of 76 genes demonstrated to mediate liability to schizophrenia, including DISC1, DTNBP1 and NRG1, which exhibit especially strong and well-replicated functional and genetic links to this disorder. Strong evidence of non-neutral, accelerated evolution was found for DISC1, particularly for exon 2, the only coding region within the schizophrenia-associated haplotype. Additionally, genes associated with schizophrenia exhibited a statistically significant enrichment in their signals of positive selection in HapMap and PAML analyses of evolution along the human lineage, when compared with a control set of genes involved in neuronal activities. The selective forces underlying adaptive evolution of these genes remain largely unknown, but these findings provide convergent evidence consistent with the hypothesis that schizophrenia represents, in part, a maladaptive by-product of adaptive changes during human evolution.

  4. Adapting Digital Libraries to Continual Evolution

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Finch, Melinda; Ferebee, Michelle; Mackey, Calvin

    2002-01-01

    In this paper, we describe five investment streams (data storage infrastructure, knowledge management, data production control, data transport and security, and personnel skill mix) that need to be balanced against short-term operating demands in order to maximize the probability of long-term viability of a digital library. Because of the rapid pace of information technology change, a digital library cannot be a static institution. Rather, it has to become a flexible organization adapted to continuous evolution of its infrastructure.

  5. Evolution of speech-specific cognitive adaptations

    PubMed Central

    de Boer, Bart

    2015-01-01

    This paper argues that an evolutionary perspective is natural when investigating cognitive adaptations related to language. This is because there appears to be correspondence between traits that linguists consider interesting and traits that have undergone selective pressure related to language. The paper briefly reviews theoretical results that shed light on what kind of adaptations we can expect to have evolved and then reviews concrete work related to the evolution of adaptations for combinatorial speech. It turns out that there is as yet no strong direct evidence for cognitive traits that have undergone selection related to speech, but there is indirect evidence that indicates selection. However, the traits that may have undergone selection are expected to be continuously variable ones, rather than the discrete ones that linguists have focused on traditionally. PMID:26483746

  6. Evolution of speech-specific cognitive adaptations.

    PubMed

    de Boer, Bart

    2015-01-01

    This paper argues that an evolutionary perspective is natural when investigating cognitive adaptations related to language. This is because there appears to be correspondence between traits that linguists consider interesting and traits that have undergone selective pressure related to language. The paper briefly reviews theoretical results that shed light on what kind of adaptations we can expect to have evolved and then reviews concrete work related to the evolution of adaptations for combinatorial speech. It turns out that there is as yet no strong direct evidence for cognitive traits that have undergone selection related to speech, but there is indirect evidence that indicates selection. However, the traits that may have undergone selection are expected to be continuously variable ones, rather than the discrete ones that linguists have focused on traditionally.

  7. Venom Evolution: Gene Loss Shapes Phenotypic Adaptation.

    PubMed

    Casewell, Nicholas R

    2016-09-26

    Snake venoms are variable protein mixtures with a multitude of bioactivities. New work shows, surprisingly, that it is the loss of toxin-encoding genes that strongly influences venom function in rattlesnakes, highlighting how gene loss can underpin adaptive phenotypic change. PMID:27676304

  8. Procedure for Adaptive Laboratory Evolution of Microorganisms Using a Chemostat.

    PubMed

    Jeong, Haeyoung; Lee, Sang J; Kim, Pil

    2016-01-01

    Natural evolution involves genetic diversity such as environmental change and a selection between small populations. Adaptive laboratory evolution (ALE) refers to the experimental situation in which evolution is observed using living organisms under controlled conditions and stressors; organisms are thereby artificially forced to make evolutionary changes. Microorganisms are subject to a variety of stressors in the environment and are capable of regulating certain stress-inducible proteins to increase their chances of survival. Naturally occurring spontaneous mutations bring about changes in a microorganism's genome that affect its chances of survival. Long-term exposure to chemostat culture provokes an accumulation of spontaneous mutations and renders the most adaptable strain dominant. Compared to the colony transfer and serial transfer methods, chemostat culture entails the highest number of cell divisions and, therefore, the highest number of diverse populations. Although chemostat culture for ALE requires more complicated culture devices, it is less labor intensive once the operation begins. Comparative genomic and transcriptome analyses of the adapted strain provide evolutionary clues as to how the stressors contribute to mutations that overcome the stress. The goal of the current paper is to bring about accelerated evolution of microorganisms under controlled laboratory conditions.

  9. Procedure for Adaptive Laboratory Evolution of Microorganisms Using a Chemostat.

    PubMed

    Jeong, Haeyoung; Lee, Sang J; Kim, Pil

    2016-01-01

    Natural evolution involves genetic diversity such as environmental change and a selection between small populations. Adaptive laboratory evolution (ALE) refers to the experimental situation in which evolution is observed using living organisms under controlled conditions and stressors; organisms are thereby artificially forced to make evolutionary changes. Microorganisms are subject to a variety of stressors in the environment and are capable of regulating certain stress-inducible proteins to increase their chances of survival. Naturally occurring spontaneous mutations bring about changes in a microorganism's genome that affect its chances of survival. Long-term exposure to chemostat culture provokes an accumulation of spontaneous mutations and renders the most adaptable strain dominant. Compared to the colony transfer and serial transfer methods, chemostat culture entails the highest number of cell divisions and, therefore, the highest number of diverse populations. Although chemostat culture for ALE requires more complicated culture devices, it is less labor intensive once the operation begins. Comparative genomic and transcriptome analyses of the adapted strain provide evolutionary clues as to how the stressors contribute to mutations that overcome the stress. The goal of the current paper is to bring about accelerated evolution of microorganisms under controlled laboratory conditions. PMID:27684991

  10. Evolution-Based Functional Decomposition of Proteins.

    PubMed

    Rivoire, Olivier; Reynolds, Kimberly A; Ranganathan, Rama

    2016-06-01

    The essential biological properties of proteins-folding, biochemical activities, and the capacity to adapt-arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment-a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation. PMID:27254668

  11. Metallothionein protein evolution: a miniassay.

    PubMed

    Capdevila, Mercè; Atrian, Sílvia

    2011-10-01

    Metallothionein (MT) evolution is one of the most obscure yet fascinating aspects of the study of these atypical metal-binding peptides. The different members of the extremely heterogeneous MT protein superfamily probably evolved through a web of duplication, functional differentiation, and/or convergence events leading to the current scenario, which is particularly hard to interpret in terms of molecular evolution. Difficulties in drawing straight evolutionary relationships are reflected in the lack of definite MT classification criteria. Presently, MTs are categorized either according to a pure taxonomic clustering or depending on their metal binding preferences and specificities. Extremely well documented MT revisions were recently published. But beyond classic approaches, this review of MT protein evolution will bring together new aspects that have seldom been discussed before. Hence, the emergence of life on our planet, since metal ion utilization is accepted to be at the root of the emergence of living organisms, and global trends that underlie structural and functional MT diversification, will be presented. Major efforts are currently being devoted to identifying rules for function-constrained MT evolution that may be applied to different groups of organisms.

  12. Advances in the directed evolution of proteins

    PubMed Central

    Lane, Michael D.; Seelig, Burckhard

    2014-01-01

    Natural evolution has produced a great diversity of proteins that can be harnessed for numerous applications in biotechnology and pharmaceutical science. Commonly, specific applications require proteins to be tailored by protein engineering. Directed evolution is a type of protein engineering that yields proteins with the desired properties under well-defined conditions and in a practical time frame. While directed evolution has been employed for decades, recent creative developments enable the generation of proteins with previously inaccessible properties. Novel selection strategies, faster techniques, the inclusion of unnatural amino acids or modifications, and the symbiosis of rational design approaches and directed evolution continue to advance protein engineering. PMID:25309990

  13. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection.

    PubMed

    Bachert, Beth A; Choi, Soo J; Snyder, Anna K; Rio, Rita V M; Durney, Brandon C; Holland, Lisa A; Amemiya, Kei; Welkos, Susan L; Bozue, Joel A; Cote, Christopher K; Berisio, Rita; Lukomski, Slawomir

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer's exact test and Cramer's V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates.

  14. Evolution of cooperation on adaptively weighted networks.

    PubMed

    Cao, Lang; Ohtsuki, Hisashi; Wang, Bing; Aihara, Kazuyuki

    2011-03-01

    Recent studies have explored interactions between evolutionary game dynamics and population structure. Yet most studies so far mainly paid attention to unweighted and static networks. Here we explore evolutionary games played on dynamically weighted networks. Players update their strategies according to the payoffs they obtain. Players also update weights of their adjacent links depending on payoffs they gain through those links; profitable links are reinforced whereas unprofitable ones are weakened. The system is characterized by two time scales, the one for strategy update, β(S), and the other for weight adjustment, β(W). We find that, under a mean-field approximation, the asymptotic behavior of the system is described by the replicator equation with an effective payoff matrix, which is a combination of the original game matrix A and its transpose, A(T). Both analytical and numerical results show that such an adaptive weight adjustment mechanism dramatically promotes evolution of cooperation. PMID:21163270

  15. Bat echolocation calls: adaptation and convergent evolution

    PubMed Central

    Jones, Gareth; Holderied, Marc W

    2007-01-01

    Bat echolocation calls provide remarkable examples of ‘good design’ through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, laser scanning of habitat features and acoustic flight path tracking permit reconstruction of the flight paths of echolocating bats relative to obstacles and prey in nature. These methods show that echolocation calls are among the most intense airborne vocalizations produced by animals. Acoustic tracking has clarified how and why bats vary call structure in relation to flight speed. Bats using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localized accurately. Recent phylogenetic analyses based on gene sequences show that particular types of echolocation signals have evolved independently in several lineages of bats. Call design is often influenced more by perceptual challenges imposed by the environment than by phylogeny, and provides excellent examples of convergent evolution. Now that whole genome sequences of bats are imminent, understanding the functional genomics of echolocation will become a major challenge. PMID:17251105

  16. Bat echolocation calls: adaptation and convergent evolution.

    PubMed

    Jones, Gareth; Holderied, Marc W

    2007-04-01

    Bat echolocation calls provide remarkable examples of 'good design' through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, laser scanning of habitat features and acoustic flight path tracking permit reconstruction of the flight paths of echolocating bats relative to obstacles and prey in nature. These methods show that echolocation calls are among the most intense airborne vocalizations produced by animals. Acoustic tracking has clarified how and why bats vary call structure in relation to flight speed. Bats using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localized accurately. Recent phylogenetic analyses based on gene sequences show that particular types of echolocation signals have evolved independently in several lineages of bats. Call design is often influenced more by perceptual challenges imposed by the environment than by phylogeny, and provides excellent examples of convergent evolution. Now that whole genome sequences of bats are imminent, understanding the functional genomics of echolocation will become a major challenge.

  17. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection

    PubMed Central

    Bachert, Beth A.; Choi, Soo J.; Snyder, Anna K.; Rio, Rita V. M.; Durney, Brandon C.; Holland, Lisa A.; Amemiya, Kei; Welkos, Susan L.; Bozue, Joel A.; Cote, Christopher K.; Berisio, Rita; Lukomski, Slawomir

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer’s exact test and Cramer’s V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates. PMID:26356298

  18. Rapid evolution of reproductive proteins in abalone and Drosophila.

    PubMed

    Panhuis, Tami M; Clark, Nathaniel L; Swanson, Willie J

    2006-02-28

    Observations from different taxa, including plants, protozoa, insects and mammals, indicate that proteins involved in reproduction evolve rapidly. Several models of adaptive evolution have been proposed to explain this phenomenon, such as sexual conflict, sexual selection, self versus non-self recognition and pathogen resistance. Here we discuss the potential role of sexual conflict in the rapid evolution of reproductive genes in two different animal systems, abalone (Haliotis) and Drosophila. In abalone, we reveal how specific interacting sperm-egg proteins were identified and discuss this identification in the light of models for rapid protein evolution and speciation. For Drosophila, we describe the genomic approaches taken to identify male accessory gland proteins and female reproductive tract proteins. Patterns of protein evolution from both abalone and Drosophila support the predicted patterns of rapid protein evolution driven by sexual conflict. We stress however that other selective pressures may contribute to the rapid evolution that is observed. We conclude that the key to distinguishing between sexual conflict and other mechanisms of protein evolution will be an integration of genetic, experimental and theoretical data.

  19. Protein Evolution of Human Milk.

    PubMed

    Thakkar, Sagar K; Giuffrida, Francesca; Bertschy, Emmanuelle; De Castro, Antonio; Destaillats, Frédéric; Lee, Le Ye

    2016-01-01

    Given the documented short- and long-term advantages of breastfeeding, human milk (HM) as a sole source of nutrition for the first few months of newborn life is considered a normative standard. Each macroconstituent of HM plays a crucial role in the growth and development of the baby. Lipids are largely responsible for providing more than 50% of the energy as well as providing essential fatty acids and minor lipids that are integral to all cell membranes. Carbohydrates can be broadly divided into lactose and oligosaccharides, which are a readily digestible source of glucose and indigestible nonnutritive components, respectively. Proteins in HM provide essential amino acids indispensable for the growth of infants. What is more interesting is that protein concentration profoundly changes from colostrum to mature milk. In this report, we share data from an observatory, single-center, longitudinal trial assessing the constituents of HM collected 30, 60 and 120 days postpartum from 50 mothers (singleton deliveries: 25 male and 25 female infants). The protein content decreased with evolving stages of lactation from an average of 1.45 to 1.38 g/100 ml. The data did not show any gender differences as it was reported for lipid content at 120 days postpartum by our group. Additionally, we also share consolidated literature data on protein evolution of HM during the first year of lactation. PMID:27336906

  20. Accelerated evolution of constraint elements for hematophagic adaptation in mosquitoes.

    PubMed

    Wang, Ming-Shan; Adeola, Adeniyi C; Li, Yan; Zhang, Ya-Ping; Wu, Dong-Dong

    2015-11-18

    Comparative genomics is a powerful approach that comprehensively interprets the genome. Herein, we performed whole genome comparative analysis of 16 Diptera genomes, including four mosquitoes and 12 Drosophilae. We found more than 540 000 constraint elements (CEs) in the Diptera genome, with the majority found in the intergenic, coding and intronic regions. Accelerated elements (AEs) identified in mosquitoes were mostly in the protein-coding regions (>93%), which differs from vertebrates in genomic distribution. Some genes functionally enriched in blood digestion, body temperature regulation and insecticide resistance showed rapid evolution not only in the lineage of the recent common ancestor of mosquitoes (RCAM), but also in some mosquito lineages. This may be associated with lineage-specific traits and/or adaptations in comparison with other insects. Our findings revealed that although universally fast evolution acted on biological systems in RCAM, such as hematophagy, same adaptations also appear to have occurred through distinct degrees of evolution in different mosquito species, enabling them to be successful blood feeders in different environments.

  1. Evolution-Based Functional Decomposition of Proteins

    PubMed Central

    Rivoire, Olivier; Reynolds, Kimberly A.; Ranganathan, Rama

    2016-01-01

    The essential biological properties of proteins—folding, biochemical activities, and the capacity to adapt—arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment—a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation. PMID:27254668

  2. Adaptive evolution of the osmoregulation-related genes in cetaceans during secondary aquatic adaptation

    PubMed Central

    2013-01-01

    Background Osmoregulation was a primary challenge for cetaceans during the evolutionary transition from a terrestrial to a mainly hyperosmotic environment. Several physiological mechanisms have been suggested to maintain the water and salt balance in cetaceans, but their genetic and evolutionary bases remain poorly explored. The current study investigated the genes involved in osmoregulation in cetaceans and compared them with their counterparts in terrestrial mammals to test whether adaptive evolution occurred during secondary aquatic adaptation. Results The present study analyzed the molecular evolution of 11 osmoregulation-related genes in 11 cetacean species, which represented all of the major cetacean clades. The results demonstrated positive selection acting on angiotensin converting enzyme (ACE), angiotensinogen (AGT), SLC14A2, and aquaporin 2 (AQP2). This evidence for the positive selection of AQP2 and SLC14A2 suggests that the adaptive evolution of these genes has helped to enhance the capacity for water and urea transport, thereby leading to the concentration of urine, which is an efficient mechanism for maintaining the water balance. By contrast, a series of positively selected amino acid residues identified in the ACE and AGT (two key members of the renin-angiotensin-aldosterone system, RAAS) proteins of cetaceans suggests that RAAS might have been adapted to maintain the water and salt balance in response to a hyperosmotic environment. Radical amino acid changes in positively selected sites were distributed among most internal and terminal branches of the cetacean phylogeny, which suggests the pervasively adaptive evolution of osmoregulation since the origin of cetaceans and their subsequent diversification. Conclusions This is the first comprehensive analysis of the molecular evolution of osmoregulation-related genes in cetaceans in response to selection pressure from a generally hyperosmotic environment. Four genes, i.e., AQP2, SLC14A2, ACE, and AGT

  3. An Adaptive Threshold in Mammalian Neocortical Evolution

    PubMed Central

    Kalinka, Alex T.; Tomancak, Pavel; Huttner, Wieland B.

    2014-01-01

    Expansion of the neocortex is a hallmark of human evolution. However, determining which adaptive mechanisms facilitated its expansion remains an open question. Here we show, using the gyrencephaly index (GI) and other physiological and life-history data for 102 mammalian species, that gyrencephaly is an ancestral mammalian trait. We find that variation in GI does not evolve linearly across species, but that mammals constitute two principal groups above and below a GI threshold value of 1.5, approximately equal to 109 neurons, which may be characterized by distinct constellations of physiological and life-history traits. By integrating data on neurogenic period, neuroepithelial founder pool size, cell-cycle length, progenitor-type abundances, and cortical neuron number into discrete mathematical models, we identify symmetric proliferative divisions of basal progenitors in the subventricular zone of the developing neocortex as evolutionarily necessary for generating a 14-fold increase in daily prenatal neuron production, traversal of the GI threshold, and thus establishment of two principal groups. We conclude that, despite considerable neuroanatomical differences, changes in the length of the neurogenic period alone, rather than any novel neurogenic progenitor lineage, are sufficient to explain differences in neuron number and neocortical size between species within the same principal group. PMID:25405475

  4. Adaptation in protein fitness landscapes is facilitated by indirect paths

    PubMed Central

    Wu, Nicholas C; Dai, Lei; Olson, C Anders; Lloyd-Smith, James O; Sun, Ren

    2016-01-01

    The structure of fitness landscapes is critical for understanding adaptive protein evolution. Previous empirical studies on fitness landscapes were confined to either the neighborhood around the wild type sequence, involving mostly single and double mutants, or a combinatorially complete subgraph involving only two amino acids at each site. In reality, the dimensionality of protein sequence space is higher (20L) and there may be higher-order interactions among more than two sites. Here we experimentally characterized the fitness landscape of four sites in protein GB1, containing 204 = 160,000 variants. We found that while reciprocal sign epistasis blocked many direct paths of adaptation, such evolutionary traps could be circumvented by indirect paths through genotype space involving gain and subsequent loss of mutations. These indirect paths alleviate the constraint on adaptive protein evolution, suggesting that the heretofore neglected dimensions of sequence space may change our views on how proteins evolve. DOI: http://dx.doi.org/10.7554/eLife.16965.001 PMID:27391790

  5. Widespread adaptive evolution during repeated evolutionary radiations in New World lupins.

    PubMed

    Nevado, Bruno; Atchison, Guy W; Hughes, Colin E; Filatov, Dmitry A

    2016-01-01

    The evolutionary processes that drive rapid species diversification are poorly understood. In particular, it is unclear whether Darwinian adaptation or non-adaptive processes are the primary drivers of explosive species diversifications. Here we show that repeated rapid radiations within New World lupins (Lupinus, Leguminosae) were underpinned by a major increase in the frequency of adaptation acting on coding and regulatory changes genome-wide. This contrasts with far less frequent adaptation in genomes of slowly diversifying lupins and all other plant genera analysed. Furthermore, widespread shifts in optimal gene expression coincided with shifts to high rates of diversification and evolution of perenniality, a putative key adaptation trait thought to have triggered the evolutionary radiations in New World lupins. Our results reconcile long-standing debate about the relative importance of protein-coding and regulatory evolution, and represent the first unambiguous evidence for the rapid onset of lineage- and genome-wide accelerated Darwinian evolution during rapid species diversification. PMID:27498896

  6. Widespread adaptive evolution during repeated evolutionary radiations in New World lupins

    PubMed Central

    Nevado, Bruno; Atchison, Guy W.; Hughes, Colin E.; Filatov, Dmitry A.

    2016-01-01

    The evolutionary processes that drive rapid species diversification are poorly understood. In particular, it is unclear whether Darwinian adaptation or non-adaptive processes are the primary drivers of explosive species diversifications. Here we show that repeated rapid radiations within New World lupins (Lupinus, Leguminosae) were underpinned by a major increase in the frequency of adaptation acting on coding and regulatory changes genome-wide. This contrasts with far less frequent adaptation in genomes of slowly diversifying lupins and all other plant genera analysed. Furthermore, widespread shifts in optimal gene expression coincided with shifts to high rates of diversification and evolution of perenniality, a putative key adaptation trait thought to have triggered the evolutionary radiations in New World lupins. Our results reconcile long-standing debate about the relative importance of protein-coding and regulatory evolution, and represent the first unambiguous evidence for the rapid onset of lineage- and genome-wide accelerated Darwinian evolution during rapid species diversification. PMID:27498896

  7. OASes and STING: adaptive evolution in concert.

    PubMed

    Mozzi, Alessandra; Pontremoli, Chiara; Forni, Diego; Clerici, Mario; Pozzoli, Uberto; Bresolin, Nereo; Cagliani, Rachele; Sironi, Manuela

    2015-03-09

    OAS (2'-5'-oligoadenylate synthases) proteins and cyclic GMP-AMP synthase (cGAS, gene symbol: MB21D1) patrol the cytoplasm for the presence of foreign nucleic acids. Upon binding to double-stranded RNA or double-stranded DNA, OAS proteins and cGAS produce nucleotide second messengers to activate RNase L and STING (stimulator of interferon genes, gene symbol: TMEM173), respectively; this leads to the initiation of antiviral responses. We analyzed the evolutionary history of the MB21D1-TMEM173 and OAS-RNASEL axes in primates and bats and found evidence of widespread positive selection in both orders. In TMEM173, residue 230, a major determinant of response to natural ligands and to mimetic drugs (e.g., DMXAA), was positively selected in Primates and Chiroptera. In both orders, selection also targeted an α-helix/loop element in RNase L that modulates the enzyme preference for single-stranded RNA versus stem loops. Analysis of positively selected sites in OAS1, OAS2, and MB21D1 revealed parallel evolution, with the corresponding residues being selected in different genes. As this cannot result from gene conversion, these data suggest that selective pressure acting on OAS and MB21D1 genes is related to nucleic acid recognition and to the specific mechanism of enzyme activation, which requires a conformational change. Finally, a population genetics-phylogenetics analysis in humans, chimpanzees, and gorillas detected several positively selected sites in most genes. Data herein shed light into species-specific differences in infection susceptibility and in response to synthetic compounds, with relevance for the design of synthetic compounds as vaccine adjuvants.

  8. OASes and STING: adaptive evolution in concert.

    PubMed

    Mozzi, Alessandra; Pontremoli, Chiara; Forni, Diego; Clerici, Mario; Pozzoli, Uberto; Bresolin, Nereo; Cagliani, Rachele; Sironi, Manuela

    2015-04-01

    OAS (2'-5'-oligoadenylate synthases) proteins and cyclic GMP-AMP synthase (cGAS, gene symbol: MB21D1) patrol the cytoplasm for the presence of foreign nucleic acids. Upon binding to double-stranded RNA or double-stranded DNA, OAS proteins and cGAS produce nucleotide second messengers to activate RNase L and STING (stimulator of interferon genes, gene symbol: TMEM173), respectively; this leads to the initiation of antiviral responses. We analyzed the evolutionary history of the MB21D1-TMEM173 and OAS-RNASEL axes in primates and bats and found evidence of widespread positive selection in both orders. In TMEM173, residue 230, a major determinant of response to natural ligands and to mimetic drugs (e.g., DMXAA), was positively selected in Primates and Chiroptera. In both orders, selection also targeted an α-helix/loop element in RNase L that modulates the enzyme preference for single-stranded RNA versus stem loops. Analysis of positively selected sites in OAS1, OAS2, and MB21D1 revealed parallel evolution, with the corresponding residues being selected in different genes. As this cannot result from gene conversion, these data suggest that selective pressure acting on OAS and MB21D1 genes is related to nucleic acid recognition and to the specific mechanism of enzyme activation, which requires a conformational change. Finally, a population genetics-phylogenetics analysis in humans, chimpanzees, and gorillas detected several positively selected sites in most genes. Data herein shed light into species-specific differences in infection susceptibility and in response to synthetic compounds, with relevance for the design of synthetic compounds as vaccine adjuvants. PMID:25752600

  9. Evolution of Protein Lipograms: A Bioinformatics Problem

    ERIC Educational Resources Information Center

    White, Harold B., III; Dhurjati, Prasad

    2006-01-01

    A protein lacking one of the 20 common amino acids is a protein lipogram. This open-ended problem-based learning assignment deals with the evolution of proteins with biased amino acid composition. It has students query protein and metabolic databases to test the hypothesis that natural selection has reduced the frequency of each amino acid…

  10. Adaptive evolution of young gene duplicates in mammals

    PubMed Central

    Han, Mira V.; Demuth, Jeffery P.; McGrath, Casey L.; Casola, Claudio; Hahn, Matthew W.

    2009-01-01

    Duplicate genes act as a source of genetic material from which new functions arise. They exist in large numbers in every sequenced eukaryotic genome and may be responsible for many differences in phenotypes between species. However, recent work searching for the targets of positive selection in humans has largely ignored duplicated genes due to complications in orthology assignment. Here we find that a high proportion of young gene duplicates in the human, macaque, mouse, and rat genomes have experienced adaptive natural selection. Approximately 10% of all lineage-specific duplicates show evidence for positive selection on their protein sequences, larger than any reported amount of selection among single-copy genes in these lineages using similar methods. We also find that newly duplicated genes that have been transposed to new chromosomal locations are significantly more likely to have undergone positive selection than the ancestral copy. Human-specific duplicates evolving under adaptive natural selection include a surprising number of genes involved in neuronal and cognitive functions. Our results imply that genome scans for selection that ignore duplicated loci are missing a large fraction of all adaptive substitutions. The results are also in agreement with the classical model of evolution by gene duplication, supporting a common role for neofunctionalization in the long-term maintenance of gene duplicates. PMID:19411603

  11. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  12. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.

  13. Comparative genomics reveals insights into avian genome evolution and adaptation

    PubMed Central

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  14. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature.

    PubMed

    Ghalambor, Cameron K; Hoke, Kim L; Ruell, Emily W; Fischer, Eva K; Reznick, David N; Hughes, Kimberly A

    2015-09-17

    Phenotypic plasticity is the capacity for an individual genotype to produce different phenotypes in response to environmental variation. Most traits are plastic, but the degree to which plasticity is adaptive or non-adaptive depends on whether environmentally induced phenotypes are closer or further away from the local optimum. Existing theories make conflicting predictions about whether plasticity constrains or facilitates adaptive evolution. Debate persists because few empirical studies have tested the relationship between initial plasticity and subsequent adaptive evolution in natural populations. Here we show that the direction of plasticity in gene expression is generally opposite to the direction of adaptive evolution. We experimentally transplanted Trinidadian guppies (Poecilia reticulata) adapted to living with cichlid predators to cichlid-free streams, and tested for evolutionary divergence in brain gene expression patterns after three to four generations. We find 135 transcripts that evolved parallel changes in expression within the replicated introduction populations. These changes are in the same direction exhibited in a native cichlid-free population, suggesting rapid adaptive evolution. We find 89% of these transcripts exhibited non-adaptive plastic changes in expression when the source population was reared in the absence of predators, as they are in the opposite direction to the evolved changes. By contrast, the remaining transcripts exhibiting adaptive plasticity show reduced population divergence. Furthermore, the most plastic transcripts in the source population evolved reduced plasticity in the introduction populations, suggesting strong selection against non-adaptive plasticity. These results support models predicting that adaptive plasticity constrains evolution, whereas non-adaptive plasticity potentiates evolution by increasing the strength of directional selection. The role of non-adaptive plasticity in evolution has received relatively

  15. Emerging methods in protein co-evolution.

    PubMed

    de Juan, David; Pazos, Florencio; Valencia, Alfonso

    2013-04-01

    Co-evolution is a fundamental component of the theory of evolution and is essential for understanding the relationships between species in complex ecological networks. A wide range of co-evolution-inspired computational methods has been designed to predict molecular interactions, but it is only recently that important advances have been made. Breakthroughs in the handling of phylogenetic information and in disentangling indirect relationships have resulted in an improved capacity to predict interactions between proteins and contacts between different protein residues. Here, we review the main co-evolution-based computational approaches, their theoretical basis, potential applications and foreseeable developments.

  16. Genome Wide Analyses Reveal Little Evidence for Adaptive Evolution in Many Plant Species

    PubMed Central

    Gossmann, Toni I.; Song, Bao-Hua; Windsor, Aaron J.; Mitchell-Olds, Thomas; Dixon, Christopher J.; Kapralov, Maxim V.; Filatov, Dmitry A.; Eyre-Walker, Adam

    2010-01-01

    The relative contribution of advantageous and neutral mutations to the evolutionary process is a central problem in evolutionary biology. Current estimates suggest that whereas Drosophila, mice, and bacteria have undergone extensive adaptive evolution, hominids show little or no evidence of adaptive evolution in protein-coding sequences. This may be a consequence of differences in effective population size. To study the matter further, we have investigated whether plants show evidence of adaptive evolution using an extension of the McDonald–Kreitman test that explicitly models slightly deleterious mutations by estimating the distribution of fitness effects of new mutations. We apply this method to data from nine pairs of species. Altogether more than 2,400 loci with an average length of ≈280 nucleotides were analyzed. We observe very similar results in all species; we find little evidence of adaptive amino acid substitution in any comparison except sunflowers. This may be because many plant species have modest effective population sizes. PMID:20299543

  17. Urban Evolution: The Role of Water and Adaptation

    NASA Astrophysics Data System (ADS)

    Kaushal, S.

    2015-12-01

    The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth's population grows, infrastructure ages, and management decisions alter them. The concept of "urban evolution" was proposed in order to study changes in urban ecosystems over time. Urban evolution has exerted a major influence on Earth's water and elemental cycles from local to global scales over human history. A current understanding of urban evolution allows urban planning, management, and restoration to move beyond reactive management to predictive management. We explore two key mechanisms of urban evolution, urban selective pressure and adaptation, and their relationship to the evolution of modern water and biogeochemical cycles. Urban selective pressure is an environmental or societal driver contributing to urban adaptation. Urban adaptation is the sequential process by which an urban structure, function, or services becomes more fitted to its changing environment or human choices. We show how hydrological and biogeochemical traits evolve across successive generations of urban ecosystems via shifts in selective pressures and adaptations. We also discuss how urban evolution can be divided into distinct stages and transition periods of growth and expansion and decay and repair during the Anthropocene epoch. We explore multiple examples and drivers of urban evolution and adaptations including the role of unintended consequences and societal drivers. We also present a conceptual model for the evolution of urban waters from the Industrial Revolution to the present day emphasizing the role of urban adaptations in response to selective pressures. Finally, we conclude by proposing new concepts and questions for future research related to the urban evolution of water, material, and energy cycles.

  18. Evolution of niche width and adaptive diversification.

    PubMed

    Ackermann, Martin; Doebeli, Michael

    2004-12-01

    Theoretical models suggest that resource competition can lead to the adaptive splitting of consumer populations into diverging lineages, that is, to adaptive diversification. In general, diversification is likely if consumers use only a narrow range of resources and thus have a small niche width. Here we use analytical and numerical methods to study the consequences for diversification if the niche width itself evolves. We found that the evolutionary outcome depends on the inherent costs or benefits of widening the niche. If widening the niche did not have costs in terms of overall resource uptake, then the consumer evolved a niche that was wide enough for disruptive selection on the niche position to vanish; adaptive diversification was no longer observed. However, if widening the niche was costly, then the niche widths remained relatively narrow, allowing for adaptive diversification in niche position. Adaptive diversification and speciation resulting from competition for a broadly distributed resource is thus likely if the niche width is fixed and relatively narrow or free to evolve but subject to costs. These results refine the conditions for adaptive diversification due to competition and formulate them in a way that might be more amenable for experimental investigations. PMID:15696740

  19. Effects of metabolic rate on protein evolution.

    PubMed

    Gillooly, James F; McCoy, Michael W; Allen, Andrew P

    2007-12-22

    Since the modern evolutionary synthesis was first proposed early in the twentieth century, attention has focused on assessing the relative contribution of mutation versus natural selection on protein evolution. Here we test a model that yields general quantitative predictions on rates of protein evolution by combining principles of individual energetics with Kimura's neutral theory. The model successfully predicts much of the heterogeneity in rates of protein evolution for diverse eukaryotes (i.e. fishes, amphibians, reptiles, birds, mammals) from different thermal environments. Data also show that the ratio of non-synonymous to synonymous nucleotide substitution is independent of body size, and thus presumably of effective population size. These findings indicate that rates of protein evolution are largely controlled by mutation rates, which in turn are strongly influenced by individual metabolic rate.

  20. Detecting Non-Brownian Trait Evolution in Adaptive Radiations

    PubMed Central

    Freckleton, Robert P; Harvey, Paul H

    2006-01-01

    Many phylogenetic comparative methods that are currently widely used in the scientific literature assume a Brownian motion model for trait evolution, but the suitability of that model is rarely tested, and a number of important factors might affect whether this model is appropriate or not. For instance, we might expect evolutionary change in adaptive radiations to be driven by the availability of ecological niches. Such evolution has been shown to produce patterns of change that are different from those modelled by the Brownian process. We applied two tests for the assumption of Brownian motion that generally have high power to reject data generated under non-Brownian niche-filling models for the evolution of traits in adaptive radiations. As a case study, we used these tests to explore the evolution of feeding adaptations in two radiations of warblers. In one case, the patterns revealed do not accord with Brownian motion but show characteristics expected under certain niche-filling models. PMID:17090217

  1. Detecting non-Brownian trait evolution in adaptive radiations.

    PubMed

    Freckleton, Robert P; Harvey, Paul H

    2006-11-01

    Many phylogenetic comparative methods that are currently widely used in the scientific literature assume a Brownian motion model for trait evolution, but the suitability of that model is rarely tested, and a number of important factors might affect whether this model is appropriate or not. For instance, we might expect evolutionary change in adaptive radiations to be driven by the availability of ecological niches. Such evolution has been shown to produce patterns of change that are different from those modelled by the Brownian process. We applied two tests for the assumption of Brownian motion that generally have high power to reject data generated under non-Brownian niche-filling models for the evolution of traits in adaptive radiations. As a case study, we used these tests to explore the evolution of feeding adaptations in two radiations of warblers. In one case, the patterns revealed do not accord with Brownian motion but show characteristics expected under certain niche-filling models. PMID:17090217

  2. Exploring metazoan evolution through dynamic and holistic changes in protein families and domains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding proteome evolution is important for deciphering processes that drive species diversity and adaptation. Herein, the dynamics of change in protein families and protein domains over the course of metazoan evolution was explored. Change, as defined by birth/death and duplication/deletion ...

  3. The functional basis of adaptive evolution in chemostats

    PubMed Central

    Gresham, David; Hong, Jungeui

    2014-01-01

    Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks. PMID:25098268

  4. Protein cold adaptation: Role of physico-chemical parameters in adaptation of proteins to low temperatures.

    PubMed

    Shokrollahzade, Soheila; Sharifi, Fatemeh; Vaseghi, Akbar; Faridounnia, Maryam; Jahandideh, Samad

    2015-10-21

    During years 2007 and 2008, we published three papers (Jahandideh, 2007a, JTB, 246, 159-166; Jahandideh, 2007b, JTB, 248, 721-726; Jahandideh, 2008, JTB, 255, 113-118) investigating sequence and structural parameters in adaptation of proteins to low temperatures. Our studies revealed important features in cold-adaptation of proteins. Here, we calculate values of a new set of physico-chemical parameters and perform a comparative systematic analysis on a more comprehensive database of psychrophilic-mesophilic homologous protein pairs. Our obtained results confirm that psychrophilicity rules are not merely the inverse rules of thermostability; for instance, although contact order is reported as a key feature in thermostability, our results have shown no significant difference between contact orders of psychrophilic proteins compared to mesophilic proteins. We are optimistic that these findings would help future efforts to propose a strategy for designing cold-adapted proteins.

  5. Rapid evolution of adaptive niche construction in experimental microbial populations.

    PubMed

    Callahan, Benjamin J; Fukami, Tadashi; Fisher, Daniel S

    2014-11-01

    Many species engage in adaptive niche construction: modification of the local environment that increases the modifying organism's competitive fitness. Adaptive niche construction provides an alternative pathway to higher fitness, shaping the environment rather than conforming to it. Yet, experimental evidence for the evolutionary emergence of adaptive niche construction is lacking, leaving its role in evolution uncertain. Here we report a direct observation of the de novo evolution of adaptive niche construction in populations of the bacteria Pseudomonas fluorescens. In a laboratory experiment, we allowed several bacterial populations to adapt to a novel environment and assessed whether niche construction evolved over time. We found that adaptive niche construction emerged rapidly, within approximately 100 generations, and became ubiquitous after approximately 400 generations. The large fitness effect of this niche construction was dominated by the low fitness of evolved strains in the ancestrally modified environment: evolved niche constructors were highly dependent on their specific environmental modifications. Populations were subjected to frequent resetting of environmental conditions and severe reduction of spatial habitat structure, both of which are thought to make adaptive niche construction difficult to evolve. Our finding that adaptive niche construction nevertheless evolved repeatably suggests that it may play a more important role in evolution than generally thought.

  6. Modeling mitochondrial protein evolution using structural information.

    PubMed

    Liò, Pietro; Goldman, Nick

    2002-04-01

    We present two new models of protein sequence evolution based on structural properties of mitochondrial proteins. We compare these models with others currently used in phylogenetic analyses, investigating their performance over both short and long evolutionary distances. We find that our models that incorporate secondary structure information from mitochondrial proteins are statistically comparable with existing models when studying 13 mitochondrial protein data sets from eutherian mammals. However, our models give a significantly improved description of the evolutionary process when used with 12 mitochondrial proteins from a broader range of organisms including fungi, plants, protists, and bacteria. Our models may thus be of use in estimating mitochondrial protein phylogenies and for the study of processes of mitochondrial protein evolution, in particular for distantly related organisms.

  7. Lessons in Protein Design from Combined Evolution and Conformational Dynamics

    PubMed Central

    Tripathi, Swarnendu; Waxham, M. Neal; Cheung, Margaret S.; Liu, Yin

    2015-01-01

    Protein-protein interactions play important roles in the control of every cellular process. How natural selection has optimized protein design to produce molecules capable of binding to many partner proteins is a fascinating problem but not well understood. Here, we performed a combinatorial analysis of protein sequence evolution and conformational dynamics to study how calmodulin (CaM), which plays essential roles in calcium signaling pathways, has adapted to bind to a large number of partner proteins. We discovered that amino acid residues in CaM can be partitioned into unique classes according to their degree of evolutionary conservation and local stability. Holistically, categorization of CaM residues into these classes reveals enriched physico-chemical interactions required for binding to diverse targets, balanced against the need to maintain the folding and structural modularity of CaM to achieve its overall function. The sequence-structure-function relationship of CaM provides a concrete example of the general principle of protein design. We have demonstrated the synergy between the fields of molecular evolution and protein biophysics and created a generalizable framework broadly applicable to the study of protein-protein interactions. PMID:26388515

  8. Genomic mutation rates that neutralize adaptive evolution and natural selection.

    PubMed

    Gerrish, Philip J; Colato, Alexandre; Sniegowski, Paul D

    2013-08-01

    When mutation rates are low, natural selection remains effective, and increasing the mutation rate can give rise to an increase in adaptation rate. When mutation rates are high to begin with, however, increasing the mutation rate may have a detrimental effect because of the overwhelming presence of deleterious mutations. Indeed, if mutation rates are high enough: (i) adaptive evolution may be neutralized, resulting in a zero (or negative) adaptation rate despite the continued availability of adaptive and/or compensatory mutations, or (ii) natural selection may be neutralized, because the fitness of lineages bearing adaptive and/or compensatory mutations--whether established or newly arising--is eroded by excessive mutation, causing such lineages to decline in frequency. We apply these two criteria to a standard model of asexual adaptive evolution and derive mathematical expressions--some new, some old in new guise--delineating the mutation rates under which either adaptive evolution or natural selection is neutralized. The expressions are simple and require no a priori knowledge of organism- and/or environment-specific parameters. Our discussion connects these results to each other and to previous theory, showing convergence or equivalence of the different results in most cases.

  9. Genomic mutation rates that neutralize adaptive evolution and natural selection.

    PubMed

    Gerrish, Philip J; Colato, Alexandre; Sniegowski, Paul D

    2013-08-01

    When mutation rates are low, natural selection remains effective, and increasing the mutation rate can give rise to an increase in adaptation rate. When mutation rates are high to begin with, however, increasing the mutation rate may have a detrimental effect because of the overwhelming presence of deleterious mutations. Indeed, if mutation rates are high enough: (i) adaptive evolution may be neutralized, resulting in a zero (or negative) adaptation rate despite the continued availability of adaptive and/or compensatory mutations, or (ii) natural selection may be neutralized, because the fitness of lineages bearing adaptive and/or compensatory mutations--whether established or newly arising--is eroded by excessive mutation, causing such lineages to decline in frequency. We apply these two criteria to a standard model of asexual adaptive evolution and derive mathematical expressions--some new, some old in new guise--delineating the mutation rates under which either adaptive evolution or natural selection is neutralized. The expressions are simple and require no a priori knowledge of organism- and/or environment-specific parameters. Our discussion connects these results to each other and to previous theory, showing convergence or equivalence of the different results in most cases. PMID:23720539

  10. Stress-directed adaptive mutations and evolution.

    PubMed

    Wright, Barbara E

    2004-05-01

    Comparative biochemistry demonstrates that the metabolites, complex biochemical networks, enzymes and regulatory mechanisms essential to all living cells are conserved in amazing detail throughout evolution. Thus, in order to evolve, an organism must overcome new adverse conditions without creating different but equally dangerous alterations in its ongoing successful metabolic relationship with its environment. Evidence suggests that stable long-term acquisitive evolution results from minor increases in mutation rates of genes related to a particular stress, with minimal disturbance to the balanced and resilient metabolism critical for responding to an unpredictable environment. Microorganisms have evolved specific biochemical feedback mechanisms that direct mutations to genes derepressed by starvation or other stressors in their environment. Transcription of the activated genes creates localized supercoiling and DNA secondary structures with unpaired bases vulnerable to mutation. The resulting mutants provide appropriate variants for selection by the stress involved, thus accelerating evolution with minimal random damage to the genome. This model has successfully predicted mutation frequencies in genes of E. coli and humans. Stressed cells observed in the laboratory over hundreds of generations accumulate mutations that also arise by this mechanism. When this occurs in repair-deficient mutator strains with high rates of random mutation, the specific stress-directed mutations are also enhanced.

  11. The Stochastic Edge in Adaptive Evolution

    PubMed Central

    Brunet, Éric; Rouzine, Igor M.; Wilke, Claus O.

    2008-01-01

    In a recent article, Desai and Fisher proposed that the speed of adaptation in an asexual population is determined by the dynamics of the stochastic edge of the population, that is, by the emergence and subsequent establishment of rare mutants that exceed the fitness of all sequences currently present in the population. Desai and Fisher perform an elaborate stochastic calculation of the mean time τ until a new class of mutants has been established and interpret 1/τ as the speed of adaptation. As they note, however, their calculations are valid only for moderate speeds. This limitation arises from their method to determine τ: Desai and Fisher back extrapolate the value of τ from the best-fit class's exponential growth at infinite time. This approach is not valid when the population adapts rapidly, because in this case the best-fit class grows nonexponentially during the relevant time interval. Here, we substantially extend Desai and Fisher's analysis of the stochastic edge. We show that we can apply Desai and Fisher's method to high speeds by either exponentially back extrapolating from finite time or using a nonexponential back extrapolation. Our results are compatible with predictions made using a different analytical approach (Rouzine et al.) and agree well with numerical simulations. PMID:18493075

  12. An Adaptive Unified Differential Evolution Algorithm for Global Optimization

    SciTech Connect

    Qiang, Ji; Mitchell, Chad

    2014-11-03

    In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.

  13. Convergent Evolution During Local Adaptation to Patchy Landscapes

    PubMed Central

    2015-01-01

    Species often encounter, and adapt to, many patches of similar environmental conditions across their range. Such adaptation can occur through convergent evolution if different alleles arise in different patches, or through the spread of shared alleles by migration acting to synchronize adaptation across the species. The tension between the two reflects the constraint imposed on evolution by the underlying genetic architecture versus how effectively selection and geographic isolation act to inhibit the geographic spread of locally adapted alleles. This paper studies the balance between these two routes to adaptation in a model of continuous environments with patchy selection pressures. We address the following questions: How long does it take for a novel allele to appear in a patch where it is locally adapted through mutation? Or, through migration from another, already adapted patch? Which is more likely to occur, as a function of distance between the patches? What population genetic signal is left by the spread of migrant alleles? To answer these questions we examine the family structure underlying migration–selection equilibrium surrounding an already adapted patch, treating those rare families that reach new patches as spatial branching processes. A main result is that patches further apart than a critical distance will likely evolve independent locally adapted alleles; this distance is proportional to the spatial scale of selection (σ/sm, where σ is the dispersal distance and s m is the selective disadvantage of these alleles between patches), and depends linearly on log(s m/μ), where μ is the mutation rate. This provides a way to understand the role of geographic separation between patches in promoting convergent adaptation and the genomic signals it leaves behind. We illustrate these ideas using the convergent evolution of cryptic coloration in the rock pocket mouse, Chaetodipus intermedius, as an empirical example. PMID:26571125

  14. Convergent Evolution During Local Adaptation to Patchy Landscapes.

    PubMed

    Ralph, Peter L; Coop, Graham

    2015-11-01

    Species often encounter, and adapt to, many patches of similar environmental conditions across their range. Such adaptation can occur through convergent evolution if different alleles arise in different patches, or through the spread of shared alleles by migration acting to synchronize adaptation across the species. The tension between the two reflects the constraint imposed on evolution by the underlying genetic architecture versus how effectively selection and geographic isolation act to inhibit the geographic spread of locally adapted alleles. This paper studies the balance between these two routes to adaptation in a model of continuous environments with patchy selection pressures. We address the following questions: How long does it take for a novel allele to appear in a patch where it is locally adapted through mutation? Or, through migration from another, already adapted patch? Which is more likely to occur, as a function of distance between the patches? What population genetic signal is left by the spread of migrant alleles? To answer these questions we examine the family structure underlying migration-selection equilibrium surrounding an already adapted patch, treating those rare families that reach new patches as spatial branching processes. A main result is that patches further apart than a critical distance will likely evolve independent locally adapted alleles; this distance is proportional to the spatial scale of selection ([Formula: see text], where σ is the dispersal distance and sm is the selective disadvantage of these alleles between patches), and depends linearly on log(sm/μ), where μ is the mutation rate. This provides a way to understand the role of geographic separation between patches in promoting convergent adaptation and the genomic signals it leaves behind. We illustrate these ideas using the convergent evolution of cryptic coloration in the rock pocket mouse, Chaetodipus intermedius, as an empirical example. PMID:26571125

  15. Evolution of morphological and climatic adaptations in Veronica L. (Plantaginaceae)

    PubMed Central

    Wang, Jian-Cheng; Pan, Bo-Rong

    2016-01-01

    Perennials and annuals apply different strategies to adapt to the adverse environment, based on ‘tolerance’ and ‘avoidance’, respectively. To understand lifespan evolution and its impact on plant adaptability, we carried out a comparative study of perennials and annuals in the genus Veronica from a phylogenetic perspective. The results showed that ancestors of the genus Veronicawere likely to be perennial plants. Annual life history of Veronica has evolved multiple times and subtrees with more annual species have a higher substitution rate. Annuals can adapt to more xeric habitats than perennials. This indicates that annuals are more drought-resistant than their perennial relatives. Due to adaptation to similar selective pressures, parallel evolution occurs in morphological characters among annual species of Veronica. PMID:27602296

  16. Evolution of morphological and climatic adaptations in Veronica L. (Plantaginaceae)

    PubMed Central

    Wang, Jian-Cheng; Pan, Bo-Rong

    2016-01-01

    Perennials and annuals apply different strategies to adapt to the adverse environment, based on ‘tolerance’ and ‘avoidance’, respectively. To understand lifespan evolution and its impact on plant adaptability, we carried out a comparative study of perennials and annuals in the genus Veronica from a phylogenetic perspective. The results showed that ancestors of the genus Veronicawere likely to be perennial plants. Annual life history of Veronica has evolved multiple times and subtrees with more annual species have a higher substitution rate. Annuals can adapt to more xeric habitats than perennials. This indicates that annuals are more drought-resistant than their perennial relatives. Due to adaptation to similar selective pressures, parallel evolution occurs in morphological characters among annual species of Veronica.

  17. Evolution of morphological and climatic adaptations in Veronica L. (Plantaginaceae).

    PubMed

    Wang, Jian-Cheng; Pan, Bo-Rong; Albach, Dirk C

    2016-01-01

    Perennials and annuals apply different strategies to adapt to the adverse environment, based on 'tolerance' and 'avoidance', respectively. To understand lifespan evolution and its impact on plant adaptability, we carried out a comparative study of perennials and annuals in the genus Veronica from a phylogenetic perspective. The results showed that ancestors of the genus Veronicawere likely to be perennial plants. Annual life history of Veronica has evolved multiple times and subtrees with more annual species have a higher substitution rate. Annuals can adapt to more xeric habitats than perennials. This indicates that annuals are more drought-resistant than their perennial relatives. Due to adaptation to similar selective pressures, parallel evolution occurs in morphological characters among annual species of Veronica. PMID:27602296

  18. Principles of Adaptive Sorting Revealed by In Silico Evolution

    NASA Astrophysics Data System (ADS)

    Lalanne, Jean-Benoît; François, Paul

    2013-05-01

    Many biological networks have to filter out useful information from a vast excess of spurious interactions. In this Letter, we use computational evolution to predict design features of networks processing ligand categorization. The important problem of early immune response is considered as a case study. Rounds of evolution with different constraints uncover elaborations of the same network motif we name “adaptive sorting.” Corresponding network substructures can be identified in current models of immune recognition. Our work draws a deep analogy between immune recognition and biochemical adaptation.

  19. Global relationships in fluctuation and response in adaptive evolution.

    PubMed

    Furusawa, Chikara; Kaneko, Kunihiko

    2015-08-01

    Cells change their internal state to adapt to environmental changes, and evolve in response to the new conditions. The phenotype changes first via adaptation in response to environmental changes, and then through mutational changes in the genomic sequence, followed by selection in evolution. Here, we analysed simulated adaptive evolution using a simple cell model consisting of thousands of intracellular components, and found that the changes in their concentrations by adaptation are proportional to those by evolution across all the components, where the proportion coefficient between the two agreed well with the change in the growth rate of a cell. Furthermore, we demonstrate that the phenotypic variance in concentrations of cellular components due to (non-genetic) noise and to genomic alternations is proportional across all components. This implies that the specific phenotypes that are highly evolvable were already given by non-genetic fluctuations. These global relationships in cellular states were also supported by phenomenological theory based on steady reproduction and transcriptome analysis of laboratory evolution in Escherichia coli. These findings demonstrate that a possible evolutionary change in phenotypic state is highly restricted. Our results provide a basis for the development of a quantitative theory of plasticity and robustness in phenotypic evolution.

  20. Global relationships in fluctuation and response in adaptive evolution

    PubMed Central

    Furusawa, Chikara; Kaneko, Kunihiko

    2015-01-01

    Cells change their internal state to adapt to environmental changes, and evolve in response to the new conditions. The phenotype changes first via adaptation in response to environmental changes, and then through mutational changes in the genomic sequence, followed by selection in evolution. Here, we analysed simulated adaptive evolution using a simple cell model consisting of thousands of intracellular components, and found that the changes in their concentrations by adaptation are proportional to those by evolution across all the components, where the proportion coefficient between the two agreed well with the change in the growth rate of a cell. Furthermore, we demonstrate that the phenotypic variance in concentrations of cellular components due to (non-genetic) noise and to genomic alternations is proportional across all components. This implies that the specific phenotypes that are highly evolvable were already given by non-genetic fluctuations. These global relationships in cellular states were also supported by phenomenological theory based on steady reproduction and transcriptome analysis of laboratory evolution in Escherichia coli. These findings demonstrate that a possible evolutionary change in phenotypic state is highly restricted. Our results provide a basis for the development of a quantitative theory of plasticity and robustness in phenotypic evolution. PMID:26202686

  1. Adaptive evolution toward larger size in mammals

    PubMed Central

    Baker, Joanna; Meade, Andrew; Pagel, Mark; Venditti, Chris

    2015-01-01

    The notion that large body size confers some intrinsic advantage to biological species has been debated for centuries. Using a phylogenetic statistical approach that allows the rate of body size evolution to vary across a phylogeny, we find a long-term directional bias toward increasing size in the mammals. This pattern holds separately in 10 of 11 orders for which sufficient data are available and arises from a tendency for accelerated rates of evolution to produce increases, but not decreases, in size. On a branch-by-branch basis, increases in body size have been more than twice as likely as decreases, yielding what amounts to millions and millions of years of rapid and repeated increases in size away from the small ancestral mammal. These results are the first evidence, to our knowledge, from extant species that are compatible with Cope’s rule: the pattern of body size increase through time observed in the mammalian fossil record. We show that this pattern is unlikely to be explained by several nonadaptive mechanisms for increasing size and most likely represents repeated responses to new selective circumstances. By demonstrating that it is possible to uncover ancient evolutionary trends from a combination of a phylogeny and appropriate statistical models, we illustrate how data from extant species can complement paleontological accounts of evolutionary history, opening up new avenues of investigation for both. PMID:25848031

  2. Matricellular proteins in cardiac adaptation and disease.

    PubMed

    Frangogiannis, Nikolaos G

    2012-04-01

    The term matricellular proteins describes a family of structurally unrelated extracellular macromolecules that, unlike structural matrix proteins, do not play a primary role in tissue architecture, but are induced following injury and modulate cell-cell and cell-matrix interactions. When released to the matrix, matricellular proteins associate with growth factors, cytokines, and other bioactive effectors and bind to cell surface receptors transducing signaling cascades. Matricellular proteins are upregulated in the injured and remodeling heart and play an important role in regulation of inflammatory, reparative, fibrotic and angiogenic pathways. Thrombospondin (TSP)-1, -2, and -4 as well as tenascin-C and -X secreted protein acidic and rich in cysteine (SPARC), osteopontin, periostin, and members of the CCN family (including CCN1 and CCN2/connective tissue growth factor) are involved in a variety of cardiac pathophysiological conditions, including myocardial infarction, cardiac hypertrophy and fibrosis, aging-associated myocardial remodeling, myocarditis, diabetic cardiomyopathy, and valvular disease. This review discusses the properties and characteristics of the matricellular proteins and presents our current knowledge on their role in cardiac adaptation and disease. Understanding the role of matricellular proteins in myocardial pathophysiology and identification of the functional domains responsible for their actions may lead to design of peptides with therapeutic potential for patients with heart disease.

  3. Protein structure and neutral theory of evolution.

    PubMed

    Ptitsyn, O B; Volkenstein, M V

    1986-08-01

    The neutral theory of evolution is extended to the origin of protein molecules. Arguments are presented which suggest that the amino acid sequences of many globular proteins mainly represent "memorized" random sequences while biological evolution reduces to the "editing" these random sequences. Physical requirements for a functional globular protein are formulated and it is shown that many of these requirement do not involve strategical selection of amino acid sequences during biological evolution but are inherent also for typical random sequences. In particular, it is shown that random sequences of polar and amino acid residues can form alpha-helices and beta-strand with lengths and arrangement along the chain similar to those in real globular proteins. These alpha- and beta-regions in random sequences can form three-dimensional folding patterns also similar to those in proteins. The arguments are presented suggesting that even the tight packing of side groups inside protein core do not require very strong biological selection of amino acid sequences either. Thus many structural features of real proteins can exist also in random sequences and the biological selection is needed mainly for the creation of active site of protein and for their stability under physiological conditions.

  4. Link-based formalism for time evolution of adaptive networks

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Xiao, Gaoxi; Chen, Guanrong

    2013-09-01

    Network topology and nodal dynamics are two fundamental stones of adaptive networks. Detailed and accurate knowledge of these two ingredients is crucial for understanding the evolution and mechanism of adaptive networks. In this paper, by adopting the framework of the adaptive SIS model proposed by Gross [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.96.208701 96, 208701 (2006)] and carefully utilizing the information of degree correlation of the network, we propose a link-based formalism for describing the system dynamics with high accuracy and subtle details. Several specific degree correlation measures are introduced to reveal the coevolution of network topology and system dynamics.

  5. Pax6 in Collembola: Adaptive Evolution of Eye Regression.

    PubMed

    Hou, Ya-Nan; Li, Sheng; Luan, Yun-Xia

    2016-01-01

    Unlike the compound eyes in insects, collembolan eyes are comparatively simple: some species have eyes with different numbers of ocelli (1 + 1 to 8 + 8), and some species have no apparent eye structures. Pax6 is a universal master control gene for eye morphogenesis. In this study, full-length Pax6 cDNAs, Fc-Pax6 and Cd-Pax6, were cloned from an eyeless collembolan (Folsomia candida, soil-dwelling) and an eyed one (Ceratophysella denticulata, surface-dwelling), respectively. Their phylogenetic positions are between the two Pax6 paralogs in insects, eyeless (ey) and twin of eyeless (toy), and their protein sequences are more similar to Ey than to Toy. Both Fc-Pax6 and Cd-Pax6 could induce ectopic eyes in Drosophila, while Fc-Pax6 exhibited much weaker transactivation ability than Cd-Pax6. The C-terminus of collembolan Pax6 is indispensable for its transactivation ability, and determines the differences of transactivation ability between Fc-Pax6 and Cd-Pax6. One of the possible reasons is that Fc-Pax6 accumulated more mutations at some key functional sites of C-terminus under a lower selection pressure on eye development due to the dark habitats of F. candida. The composite data provide a first molecular evidence for the monophyletic origin of collembolan eyes, and indicate the eye degeneration of collembolans is caused by adaptive evolution. PMID:26856893

  6. Pax6 in Collembola: Adaptive Evolution of Eye Regression

    PubMed Central

    Hou, Ya-Nan; Li, Sheng; Luan, Yun-Xia

    2016-01-01

    Unlike the compound eyes in insects, collembolan eyes are comparatively simple: some species have eyes with different numbers of ocelli (1 + 1 to 8 + 8), and some species have no apparent eye structures. Pax6 is a universal master control gene for eye morphogenesis. In this study, full-length Pax6 cDNAs, Fc-Pax6 and Cd-Pax6, were cloned from an eyeless collembolan (Folsomia candida, soil-dwelling) and an eyed one (Ceratophysella denticulata, surface-dwelling), respectively. Their phylogenetic positions are between the two Pax6 paralogs in insects, eyeless (ey) and twin of eyeless (toy), and their protein sequences are more similar to Ey than to Toy. Both Fc-Pax6 and Cd-Pax6 could induce ectopic eyes in Drosophila, while Fc-Pax6 exhibited much weaker transactivation ability than Cd-Pax6. The C-terminus of collembolan Pax6 is indispensable for its transactivation ability, and determines the differences of transactivation ability between Fc-Pax6 and Cd-Pax6. One of the possible reasons is that Fc-Pax6 accumulated more mutations at some key functional sites of C-terminus under a lower selection pressure on eye development due to the dark habitats of F. candida. The composite data provide a first molecular evidence for the monophyletic origin of collembolan eyes, and indicate the eye degeneration of collembolans is caused by adaptive evolution. PMID:26856893

  7. Camelid genomes reveal evolution and adaptation to desert environments.

    PubMed

    Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

    2014-10-21

    Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments.

  8. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  9. The rule of declining adaptability in microbial evolution experiments

    PubMed Central

    Couce, Alejandro; Tenaillon, Olivier A.

    2015-01-01

    One of the most recurrent observations after two decades of microbial evolution experiments regards the dynamics of fitness change. In a given environment, low-fitness genotypes are recurrently observed to adapt faster than their more fit counterparts. Since adaptation is the main macroscopic outcome of Darwinian evolution, studying its patterns of change could potentially provide insight into key issues of evolutionary theory, from fixation dynamics to the genetic architecture of organisms. Here, we re-analyze several published datasets from experimental evolution with microbes and show that, despite large differences in the origin of the data, a pattern of inverse dependence of adaptability with fitness clearly emerges. In quantitative terms, it is remarkable to observe little if any degree of idiosyncrasy across systems as diverse as virus, bacteria and yeast. The universality of this phenomenon suggests that its emergence might be understood from general principles, giving rise to the exciting prospect that evolution might be statistically predictable at the macroscopic level. We discuss these possibilities in the light of the various theories of adaptation that have been proposed and delineate future directions of research. PMID:25815007

  10. Understanding protein evolution: from protein physics to Darwinian selection.

    PubMed

    Zeldovich, Konstantin B; Shakhnovich, Eugene I

    2008-01-01

    Efforts in whole-genome sequencing and structural proteomics start to provide a global view of the protein universe, the set of existing protein structures and sequences. However, approaches based on the selection of individual sequences have not been entirely successful at the quantitative description of the distribution of structures and sequences in the protein universe because evolutionary pressure acts on the entire organism, rather than on a particular molecule. In parallel to this line of study, studies in population genetics and phenomenological molecular evolution established a mathematical framework to describe the changes in genome sequences in populations of organisms over time. Here, we review both microscopic (physics-based) and macroscopic (organism-level) models of protein-sequence evolution and demonstrate that bridging the two scales provides the most complete description of the protein universe starting from clearly defined, testable, and physiologically relevant assumptions.

  11. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    PubMed Central

    2011-01-01

    Background The chloroplast-localized ribulose-1, 5-biphosphate carboxylase/oxygenase (Rubisco), the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO2. The large subunit (LSU) of Rubisco is encoded by the chloroplast rbcL gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure. Results We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in rbcL gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO2. Conclusions The gene rbcL has experienced bursts of adaptations in response to the changing concentration of CO2 in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional implications of such mutations put

  12. Adaptive Evolution Is Substantially Impeded by Hill-Robertson Interference in Drosophila.

    PubMed

    Castellano, David; Coronado-Zamora, Marta; Campos, Jose L; Barbadilla, Antonio; Eyre-Walker, Adam

    2016-02-01

    Hill-Robertson interference (HRi) is expected to reduce the efficiency of natural selection when two or more linked selected sites do not segregate freely, but no attempt has been done so far to quantify the overall impact of HRi on the rate of adaptive evolution for any given genome. In this work, we estimate how much HRi impedes the rate of adaptive evolution in the coding genome of Drosophila melanogaster. We compiled a data set of 6,141 autosomal protein-coding genes from Drosophila, from which polymorphism levels in D. melanogaster and divergence out to D. yakuba were estimated. The rate of adaptive evolution was calculated using a derivative of the McDonald-Kreitman test that controls for slightly deleterious mutations. We find that the rate of adaptive amino acid substitution at a given position of the genome is positively correlated to both the rate of recombination and the mutation rate, and negatively correlated to the gene density of the region. These correlations are robust to controlling for each other, for synonymous codon bias and for gene functions related to immune response and testes. We show that HRi diminishes the rate of adaptive evolution by approximately 27%. Interestingly, genes with low mutation rates embedded in gene poor regions lose approximately 17% of their adaptive substitutions whereas genes with high mutation rates embedded in gene rich regions lose approximately 60%. We conclude that HRi hampers the rate of adaptive evolution in Drosophila and that the variation in recombination, mutation, and gene density along the genome affects the HRi effect.

  13. The diversity challenge in directed protein evolution.

    PubMed

    Wong, Tuck Seng; Zhurina, Daria; Schwaneberg, Ulrich

    2006-05-01

    Over the past decade, we have witnessed a bloom in the field of evolutive protein engineering which is fueled by advances in molecular biology techniques and high-throughput screening technology. Directed protein evolution is a powerful algorithm using iterative cycles of random mutagenesis and screening for tailoring protein properties to our needs in industrial applications and for elucidating proteins' structure function relationships. This review summarizes, categorizes and discusses advantages and disadvantages of random mutagenesis methods used for generating genetic diversity. These random mutagenesis methods have been classified into four main categories depending on the method employed for nucleotide substitutions: enzyme based methods (Category I), synthetic chemistry based methods (Category II), whole cell methods (Category III) and combined methods (Category I-II, I-III and II-III). The basic principle of each method is discussed and varied mutagenic conditions are summarized in Tables and compared (benchmarked) to each other in terms of: mutational bias, controllable mutation frequency, ability to generate consecutive nucleotide substitutions and subset diversity, dependency on gene length, technical simplicity/robustness and cost-effectiveness. The latter comparison shows how highly-biased and limited current diversity creating methods are. Based on these limitations, strategies for generating diverse mutant libraries are proposed and discussed (RaMuS-Flowchart; KISS principle). We hope that this review provides, especially for researchers just entering the field of directed evolution, a guide for developing successful directed evolution strategies by selecting complementary methods for generating diverse mutant libraries.

  14. Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae).

    PubMed

    Bravo, Gustavo A; Remsen, J V; Brumfield, Robb T

    2014-10-01

    Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors.

  15. Adaptive Evolution of Conserved Noncoding Elements in Mammals

    PubMed Central

    Kim, Su Yeon; Pritchard, Jonathan K

    2007-01-01

    Conserved noncoding elements (CNCs) are an abundant feature of vertebrate genomes. Some CNCs have been shown to act as cis-regulatory modules, but the function of most CNCs remains unclear. To study the evolution of CNCs, we have developed a statistical method called the “shared rates test” to identify CNCs that show significant variation in substitution rates across branches of a phylogenetic tree. We report an application of this method to alignments of 98,910 CNCs from the human, chimpanzee, dog, mouse, and rat genomes. We find that ∼68% of CNCs evolve according to a null model where, for each CNC, a single parameter models the level of constraint acting throughout the phylogeny linking these five species. The remaining ∼32% of CNCs show departures from the basic model including speed-ups and slow-downs on particular branches and occasionally multiple rate changes on different branches. We find that a subset of the significant CNCs have evolved significantly faster than the local neutral rate on a particular branch, providing strong evidence for adaptive evolution in these CNCs. The distribution of these signals on the phylogeny suggests that adaptive evolution of CNCs occurs in occasional short bursts of evolution. Our analyses suggest a large set of promising targets for future functional studies of adaptation. PMID:17845075

  16. Development vs. behavior: a role for neural adaptation in evolution?

    PubMed

    Ghysen, Alain; Dambly-Chaudière, Christine

    2016-01-01

    We examine the evolution of sensory organ patterning in the lateral line system of fish. Based on recent studies of how this system develops in zebrafish, and on comparative analyses between zebrafish and tuna, we argue that the evolution of lateral line patterns is mostly determined by variations in the underlying developmental processes, independent of any selective pressure. Yet the development of major developmental innovations is so directly linked to their exploitation that it is hard not to think of them as selected for, i.e., adaptive. We propose that adaptation resides mostly in how the nervous system adjusts to new morphologies to make them functional, i.e., that species are neurally adapted to whatever morphology is provided to them by their own developmental program. We show that recent data on behavioral differences between cave forms (blind) and surface forms (eyed) of the mexican fish Astyanax fasciatus support this view, and we propose that this species might provide a unique opportunity to assess the nature of adaptation and of selection in animal evolution. PMID:27389980

  17. Harnessing recombination to speed adaptive evolution in Escherichia coli.

    PubMed

    Winkler, James; Kao, Katy C

    2012-09-01

    Evolutionary engineering typically involves asexual propagation of a strain to improve a desired phenotype. However, asexual populations suffer from extensive clonal interference, a phenomenon where distinct lineages of beneficial clones compete and are often lost from the population given sufficient time. Improved adaptive mutants can likely be generated by genetic exchange between lineages, thereby reducing clonal interference. We present a system that allows continuous in situ recombination by using an Esherichia coli F-based conjugation system lacking surface exclusion. Evolution experiments revealed that Hfr-mediated recombination significantly speeds adaptation in certain circumstances. These results show that our system is stable, effective, and suitable for use in evolutionary engineering applications.

  18. Influenza Virus Evolution, Host Adaptation and Pandemic Formation

    PubMed Central

    Taubenberger, Jeffery K.; Kash, John C.

    2010-01-01

    Newly emerging or `re-emerging' viral diseases continue to pose significant global public health threats. Prototypic are influenza viruses that are major causes of human respiratory infections and mortality. Influenza viruses can cause zoonotic infections and adapt to humans leading to sustained transmission and emergence of novel viruses. Mechanisms by which viruses evolve in one host, cause zoonotic infection and adapt to a new host species remain unelucidated. Here we review evolution of influenza A viruses in their reservoir hosts and discuss genetic changes associated with introduction of novel viruses into humans leading to pandemics and the establishment of seasonal viruses. PMID:20542248

  19. Adaptive evolution: evaluating empirical support for theoretical predictions.

    PubMed

    Olson-Manning, Carrie F; Wagner, Maggie R; Mitchell-Olds, Thomas

    2012-12-01

    Adaptive evolution is shaped by the interaction of population genetics, natural selection and underlying network and biochemical constraints. Variation created by mutation, the raw material for evolutionary change, is translated into phenotypes by flux through metabolic pathways and by the topography and dynamics of molecular networks. Finally, the retention of genetic variation and the efficacy of selection depend on population genetics and demographic history. Emergent high-throughput experimental methods and sequencing technologies allow us to gather more evidence and to move beyond the theory in different systems and populations. Here we review the extent to which recent evidence supports long-established theoretical principles of adaptation.

  20. Abundance and Temperature Dependency of Protein-Protein Interaction Revealed by Interface Structure Analysis and Stability Evolution.

    PubMed

    He, Yi-Ming; Ma, Bin-Guang

    2016-01-01

    Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions. PMID:27220911

  1. Abundance and Temperature Dependency of Protein-Protein Interaction Revealed by Interface Structure Analysis and Stability Evolution

    NASA Astrophysics Data System (ADS)

    He, Yi-Ming; Ma, Bin-Guang

    2016-05-01

    Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions.

  2. Evolution of feline immunodeficiency virus Gag proteins.

    PubMed

    Burkala, Evan; Poss, Mary

    2007-10-01

    We evaluated the predicted biochemical properties of Gag proteins from a diverse group of feline immunodeficiency viruses (FIV) to determine how different evolutionary histories of virus and host have changed or constrained these important structural proteins. Our data are based on FIV sequences derived from domestic cat (FIVfca), cougar (FIVpco), and lions (FIVple). Analyses consisted of determining the selective forces acting at each position in the protein and the comparing predictions for secondary structure, charge, hydrophobicity and flexibility for matrix, capsid and nucleocapsid, and the C-terminal peptide, which comprise the Gag proteins. We demonstrate that differences among the FIV Gag proteins have largely arisen by neutral evolution, although many neutrally evolving regions have maintained biochemical features. Regions with predicted differences in biochemical features appear to involve intramolecular interactions and structural elements that undergo conformational changes during particle maturation. In contrast, the majority of sites involved in intermolecular contacts on the protein surface are constrained by purifying selection. There is also conservation of sites that interact with host proteins associated with cellular trafficking and particle budding. NC is the only protein with evidence of positive selection, two of which occur in the N-terminal region responsible for RNA binding and interaction with host proteins.

  3. Constraint to adaptive evolution in response to global warming.

    PubMed

    Etterson, J R; Shaw, R G

    2001-10-01

    We characterized the genetic architecture of three populations of a native North American prairie plant in field conditions that simulate the warmer and more arid climates predicted by global climate models. Despite genetic variance for traits under selection, among-trait genetic correlations that are antagonistic to the direction of selection limit adaptive evolution within these populations. Predicted rates of evolutionary response are much slower than the predicted rate of climate change.

  4. [Episodes of adaptive evolution of mitochondrial genome in Asiatic salamanders (Amphibia, Caudata, Hynobiidae)].

    PubMed

    Maliarchuk, B A; Derenko, M V; Denisova, G A

    2014-02-01

    To elucidate the effect of natural selection on the evolution of mitochondrial DNA (mtDNA) in Asiatic salamanders of the family Hynobiidae, nucleotide sequences of 12 protein-coding genes were analyzed. Using a mixed effects model of evolution, it was found that, in spite of the pronounced effect of negative selection on the mtDNA evolution in Hynobiidae (which is typical for the animals in general), two phylogenetic clusters, the West Asian one, represented by the genera Ranodon and Paradactylodon, and North Eurasian one, represented by the genus Salamandrella, were formed under the influence of episodic positive selection. Analysis of protein sequences encoded by the mitochondrial genome also supported the influence of positive selection on the evolution of Hynobiidae at some stages of their cladogenesis. It is suggested that the signatures of adaptive evolution detected in the mtDNA of Hynobiidae were determined by the complex and long-lasting history of their formation, accompanied by adaptation to the changing environment. PMID:25711027

  5. Adaptive evolution of plastron shape in emydine turtles.

    PubMed

    Angielczyk, Kenneth D; Feldman, Chris R; Miller, Gretchen R

    2011-02-01

    Morphology reflects ecological pressures, phylogeny, and genetic and biophysical constraints. Disentangling their influence is fundamental to understanding selection and trait evolution. Here, we assess the contributions of function, phylogeny, and habitat to patterns of plastron (ventral shell) shape variation in emydine turtles. We quantify shape variation using geometric morphometrics, and determine the influence of several variables on shape using path analysis. Factors influencing plastron shape variation are similar between emydine turtles and the more inclusive Testudinoidea. We evaluate the fit of various evolutionary models to the shape data to investigate the selective landscape responsible for the observed morphological patterns. The presence of a hinge on the plastron accounts for most morphological variance, but phylogeny and habitat also correlate with shape. The distribution of shape variance across emydine phylogeny is most consistent with an evolutionary model containing two adaptive zones--one for turtles with kinetic plastra, and one for turtles with rigid plastra. Models with more complex adaptive landscapes often fit the data only as well as the null model (purely stochastic evolution). The adaptive landscape of plastron shape in Emydinae may be relatively simple because plastral kinesis imposes overriding mechanical constraints on the evolution of form.

  6. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    PubMed

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  7. Sex speeds adaptation by altering the dynamics of molecular evolution.

    PubMed

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.

  8. Sex speeds adaptation by altering the dynamics of molecular evolution.

    PubMed

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations. PMID:26909573

  9. Sex Speeds Adaptation by Altering the Dynamics of Molecular Evolution

    PubMed Central

    McDonald, Michael J.; Rice, Daniel P.; Desai, Michael M.

    2016-01-01

    Sex and recombination are pervasive throughout nature despite their substantial costs1. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology2,3. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation4. Theory has proposed a number of distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect)5,6 or by separating them from deleterious load (the ruby in the rubbish effect)7,8. Previous experiments confirm that sex can increase the rate of adaptation9–17, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here, we present the first comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations. PMID:26909573

  10. Protein evolution with an expanded genetic code

    PubMed Central

    Liu, Chang C.; Mack, Antha V.; Tsao, Meng-Lin; Mills, Jeremy H.; Lee, Hyun Soo; Choe, Hyeryun; Farzan, Michael; Schultz, Peter G.; Smider, Vaughn V.

    2008-01-01

    We have devised a phage display system in which an expanded genetic code is available for directed evolution. This system allows selection to yield proteins containing unnatural amino acids should such sequences functionally outperform ones containing only the 20 canonical amino acids. We have optimized this system for use with several unnatural amino acids and provide a demonstration of its utility through the selection of anti-gp120 antibodies. One such phage-displayed antibody, selected from a naïve germline scFv antibody library in which six residues in VH CDR3 were randomized, contains sulfotyrosine and binds gp120 more effectively than a similarly displayed known sulfated antibody isolated from human serum. These experiments suggest that an expanded “synthetic” genetic code can confer a selective advantage in the directed evolution of proteins with specific properties. PMID:19004806

  11. Omnivory in lacertid lizards: adaptive evolution or constraint?

    PubMed

    Herrel, A; Vanhooydonck, B; Van Damme, R

    2004-09-01

    Feeding specializations such as herbivory are an often cited example of convergent and adaptive evolution. However, some groups such as lizards appear constrained in the evolution of morphological specializations associated with specialized diets. Here we examine whether the inclusion of plant matter into the diet of omnivorous lacertid lizards has resulted in morphological specializations and whether these specializations reflect biomechanical compromises as expected if omnivores are constrained by functional trade-offs. We examined external head shape, skull shape, tooth structure, intestinal tract length and bite performance as previous studies have suggested correlations between the inclusion of plants into the diet and these traits. Our data show that omnivorous lacertid lizards possess modifications of these traits that allow them to successfully exploit plant material as a food source. Conversely, few indications of a compromise phenotype could be detected, suggesting that the evolution towards herbivory is only mildly constrained by functional trade-offs.

  12. The Evolution of Multimeric Protein Assemblages

    PubMed Central

    Lynch, Michael

    2012-01-01

    Although the mechanisms by which complex cellular features evolve constitute one of the great unsolved problems of evolutionary biology, it is clear that the emergence of new protein–protein interactions, often accompanied by the diversification of duplicate genes, is involved. Using information on the levels of protein multimerization in major phylogenetic groups as a guide to the patterns that must be explained and relying on results from population-genetic theory to define the relative plausibility of alternative evolutionary pathways, a framework for understanding the evolution of dimers is developed. The resultant theory demonstrates that the likelihoods of alternative pathways for the emergence of protein complexes depend strongly on the effective population size. Nonetheless, it is equally clear that further advancements in this area will require comparative studies on the fitness consequences of alternative monomeric and dimeric proteins. PMID:22144639

  13. Towards the identification of the loci of adaptive evolution

    PubMed Central

    Pardo-Diaz, Carolina; Salazar, Camilo; Jiggins, Chris D

    2015-01-01

    1. Establishing the genetic and molecular basis underlying adaptive traits is one of the major goals of evolutionary geneticists in order to understand the connection between genotype and phenotype and elucidate the mechanisms of evolutionary change. Despite considerable effort to address this question, there remain relatively few systems in which the genes shaping adaptations have been identified. 2. Here, we review the experimental tools that have been applied to document the molecular basis underlying evolution in several natural systems, in order to highlight their benefits, limitations and suitability. In most cases, a combination of DNA, RNA and functional methodologies with field experiments will be needed to uncover the genes and mechanisms shaping adaptation in nature. PMID:25937885

  14. Protein disorder--a breakthrough invention of evolution?

    PubMed

    Schlessinger, Avner; Schaefer, Christian; Vicedo, Esmeralda; Schmidberger, Markus; Punta, Marco; Rost, Burkhard

    2011-06-01

    As an operational definition, we refer to regions in proteins that do not adopt regular three-dimensional structures in isolation, as disordered regions. An antipode to disorder would be 'well-structured' rather than 'ordered'. Here, we argue for the following three hypotheses. Firstly, it is more useful to picture disorder as a distinct phenomenon in structural biology than as an extreme example of protein flexibility. Secondly, there are many very different flavors of protein disorder, nevertheless, it seems advantageous to portray the universe of all possible proteins in terms of two main types: well-structured, disordered. There might be a third type 'other' but we have so far no positive evidence for this. Thirdly, nature uses protein disorder as a tool to adapt to different environments. Protein disorder is evolutionarily conserved and this maintenance of disorder is highly nontrivial. Increasingly integrating protein disorder into the toolbox of a living cell was a crucial step in the evolution from simple bacteria to complex eukaryotes. We need new advanced computational methods to study this new milestone in the advance of protein biology. PMID:21514145

  15. Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods

    PubMed Central

    2011-01-01

    Background A major goal in evolutionary biology is to understand the processes that shape the evolutionary trajectory of clades. The repeated and similar large-scale morphological evolutionary trends of distinct lineages suggest that adaptation by means of natural selection (functional constraints) is the major cause of parallel evolution, a very common phenomenon in extinct and extant lineages. However, parallel evolution can result from other processes, which are usually ignored or difficult to identify, such as developmental constraints. Hence, understanding the underlying processes of parallel evolution still requires further research. Results Herein, we present a possible case of parallel evolution between two ammonoid lineages (Auguritidae and Pinacitidae) of Early-Middle Devonian age (405-395 Ma), which are extinct cephalopods with an external, chambered shell. In time and through phylogenetic order of appearance, both lineages display a morphological shift toward more involute coiling (i.e. more tightly coiled whorls), larger adult body size, more complex suture line (the folded walls separating the gas-filled buoyancy-chambers), and the development of an umbilical lid (a very peculiar extension of the lateral shell wall covering the umbilicus) in the most derived taxa. Increased involution toward shells with closed umbilicus has been demonstrated to reflect improved hydrodynamic properties of the shell and thus likely results from similar natural selection pressures. The peculiar umbilical lid might have also added to the improvement of the hydrodynamic properties of the shell. Finally, increasing complexity of suture lines likely results from covariation induced by trends of increasing adult size and whorl overlap given the morphogenetic properties of the suture. Conclusions The morphological evolution of these two Devonian ammonoid lineages follows a near parallel evolutionary path for some important shell characters during several million years and

  16. Remote sensing image subpixel mapping based on adaptive differential evolution.

    PubMed

    Zhong, Yanfei; Zhang, Liangpei

    2012-10-01

    In this paper, a novel subpixel mapping algorithm based on an adaptive differential evolution (DE) algorithm, namely, adaptive-DE subpixel mapping (ADESM), is developed to perform the subpixel mapping task for remote sensing images. Subpixel mapping may provide a fine-resolution map of class labels from coarser spectral unmixing fraction images, with the assumption of spatial dependence. In ADESM, to utilize DE, the subpixel mapping problem is transformed into an optimization problem by maximizing the spatial dependence index. The traditional DE algorithm is an efficient and powerful population-based stochastic global optimizer in continuous optimization problems, but it cannot be applied to the subpixel mapping problem in a discrete search space. In addition, it is not an easy task to properly set control parameters in DE. To avoid these problems, this paper utilizes an adaptive strategy without user-defined parameters, and a reversible-conversion strategy between continuous space and discrete space, to improve the classical DE algorithm. During the process of evolution, they are further improved by enhanced evolution operators, e.g., mutation, crossover, repair, exchange, insertion, and an effective local search to generate new candidate solutions. Experimental results using different types of remote images show that the ADESM algorithm consistently outperforms the previous subpixel mapping algorithms in all the experiments. Based on sensitivity analysis, ADESM, with its self-adaptive control parameter setting, is better than, or at least comparable to, the standard DE algorithm, when considering the accuracy of subpixel mapping, and hence provides an effective new approach to subpixel mapping for remote sensing imagery.

  17. Insights into Arbovirus Evolution and Adaptation from Experimental Studies

    PubMed Central

    Ciota, Alexander T.; Kramer, Laura D.

    2010-01-01

    Arthropod-borne viruses (arboviruses) are maintained in nature by cycling between vertebrate hosts and haematophagous invertebrate vectors. These viruses are responsible for causing a significant public health burden throughout the world, with over 100 species having the capacity to cause human disease. Arbovirus outbreaks in previously naïve environments demonstrate the potential of these pathogens for expansion and emergence, possibly exacerbated more recently by changing climates. These recent outbreaks, together with the continued devastation caused by endemic viruses, such as Dengue virus which persists in many areas, demonstrate the need to better understand the selective pressures that shape arbovirus evolution. Specifically, a comprehensive understanding of host-virus interactions and how they shape both host-specific and virus-specific evolutionary pressures is needed to fully evaluate the factors that govern the potential for host shifts and geographic expansions. One approach to advance our understanding of the factors influencing arbovirus evolution in nature is the use of experimental studies in the laboratory. Here, we review the contributions that laboratory passage and experimental infection studies have made to the field of arbovirus adaptation and evolution, and how these studies contribute to the overall field of arbovirus evolution. In particular, this review focuses on the areas of evolutionary constraints and mutant swarm dynamics; how experimental results compare to theoretical predictions; the importance of arbovirus ecology in shaping viral swarms; and how current knowledge should guide future questions relevant to understanding arbovirus evolution. PMID:21994633

  18. Adaptive evolution of a key phytoplankton species to ocean acidification

    NASA Astrophysics Data System (ADS)

    Lohbeck, Kai T.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2012-05-01

    Ocean acidification, the drop in seawater pH associated with the ongoing enrichment of marine waters with carbon dioxide from fossil fuel burning, may seriously impair marine calcifying organisms. Our present understanding of the sensitivity of marine life to ocean acidification is based primarily on short-term experiments, in which organisms are exposed to increased concentrations of CO2. However, phytoplankton species with short generation times, in particular, may be able to respond to environmental alterations through adaptive evolution. Here, we examine the ability of the world's single most important calcifying organism, the coccolithophore Emiliania huxleyi, to evolve in response to ocean acidification in two 500-generation selection experiments. Specifically, we exposed E. huxleyi populations founded by single or multiple clones to increased concentrations of CO2. Around 500 asexual generations later we assessed their fitness. Compared with populations kept at ambient CO2 partial pressure, those selected at increased partial pressure exhibited higher growth rates, in both the single- and multiclone experiment, when tested under ocean acidification conditions. Calcification was partly restored: rates were lower under increased CO2 conditions in all cultures, but were up to 50% higher in adapted compared with non-adapted cultures. We suggest that contemporary evolution could help to maintain the functionality of microbial processes at the base of marine food webs in the face of global change.

  19. Evidence of adaptive evolution of alpine pheasants to high-altitude environment from mitogenomic perspective.

    PubMed

    Gu, Peng; Liu, Wei; Yao, Yong-fang; Ni, Qing-yong; Zhang, Ming-wang; Li, Di-yan; Xu, Huai-liang

    2016-01-01

    Adaptive evolutions to high-altitude adaptation have been intensively studied in mammals. However, considering the additional vertebrate groups, new perception regarding selection challenged by high-altitude stress on mitochondrial genome can be gained. To test this hypothesis, we compiled and analyzed the mitochondrial genomes of 5 alpine pheasants and 12 low-altitude species in Phasianidae. The results that evolutionary rates of ATP6 and ND6 showing significant fluctuation among branches when involved with five alpine pheasants revealed both genes might have implications with adapting to highland environment. The radical physico-chemical property changes identified by the modified MM01 model, including composition (C) and equilibrium constant (ionization of COOH) (Pk') in ATP6 and beta-structure tendencies (Pβ), Pk', and long-range non-bonded energy (El) in ND6, suggested that minor overall adjustments in size, protein conformation and relative orientation of reaction interfaces have been optimized to provide the ideal environments for electron transfer, proton translocation and generation of adenosine triphosphate (ATP). Additionally, three unique substitution sites were identified under selection in ND6, which could be potentially important adaptive changes contributing to cellular energy production. Our findings suggested that adaptive evolution may occur in alpine pheasants, which are an important complement to the knowledge of genetic mechanisms against the high-altitude environment in non-mammal animals.

  20. Evolution of collective action in adaptive social structures.

    PubMed

    Moreira, João A; Pacheco, Jorge M; Santos, Francisco C

    2013-01-01

    Many problems in nature can be conveniently framed as a problem of evolution of collective cooperative behaviour, often modelled resorting to the tools of evolutionary game theory in well-mixed populations, combined with an appropriate N-person dilemma. Yet, the well-mixed assumption fails to describe the population dynamics whenever individuals have a say in deciding which groups they will participate. Here we propose a simple model in which dynamical group formation is described as a result of a topological evolution of a social network of interactions. We show analytically how evolutionary dynamics under public goods games in finite adaptive networks can be effectively transformed into a N-Person dilemma involving both coordination and co-existence. Such dynamics would be impossible to foresee from more conventional 2-person interactions as well as from descriptions based on infinite, well-mixed populations. Finally, we show how stochastic effects help rendering cooperation viable, promoting polymorphic configurations in which cooperators prevail.

  1. Heterotachy, an important process of protein evolution.

    PubMed

    Lopez, P; Casane, D; Philippe, H

    2002-01-01

    Because of functional constraints, substitution rates vary among the positions of a protein but are usually assumed to be constant at a given site during evolution. The distribution of the rates across the sequence positions generally fits a Gamma distribution. Models of sequence evolution were accordingly designed and led to improved phylogenetic reconstruction. However, it has been convincingly demonstrated that the evolutionary rate of a given position is not always constant throughout time. We called such within-site rate variations heterotachy (for "different speed" in Greek). Yet, heterotachy was found among homologous sequences of distantly related organisms, often with different functions. In such cases, the functional constraints are likely different, which would explain the different distribution of variable sites. To evaluate the importance of heterotachy, we focused on amino acid sequences of mitochondrial cytochrome b, for which the function is likely the same in all vertebrates. Using 2,038 sequences, we demonstrate that 95% of the variable positions are heterotachous, i.e., underwent dramatic variations of substitution rate among vertebrate lineages. Heterotachy even occurs at small evolutionary scale, and in these cases it is very unlikely to be related to functional changes. Since a large number of sequences are required to efficiently detect heterotachy, the extent of this phenomenon could not be estimated for all proteins yet. It could be as large as for cytochrome b, since this protein is not a peculiar case. The observations made here open several new avenues of research, such as the understanding of the evolution of functional constraints or the improvement of phylogenetic reconstruction methods.

  2. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates.

    PubMed

    Montgomery, Stephen H; Capellini, Isabella; Venditti, Chris; Barton, Robert A; Mundy, Nicholas I

    2011-01-01

    The anatomical basis and adaptive function of the expansion in primate brain size have long been studied; however, we are only beginning to understand the genetic basis of these evolutionary changes. Genes linked to human primary microcephaly have received much attention as they have accelerated evolutionary rates along lineages leading to humans. However, these studies focus narrowly on apes, and the link between microcephaly gene evolution and brain evolution is disputed. We analyzed the molecular evolution of four genes associated with microcephaly (ASPM, CDK5RAP2, CENPJ, MCPH1) across 21 species representing all major clades of anthropoid primates. Contrary to prevailing assumptions, positive selection was not limited to or intensified along the lineage leading to humans. In fact we show that all four loci were subject to positive selection across the anthropoid primate phylogeny. We developed clearly defined hypotheses to explicitly test if selection on these loci was associated with the evolution of brain size. We found positive relationships between both CDK5RAP2 and ASPM and neonatal brain mass and somewhat weaker relationships between these genes and adult brain size. In contrast, there is no evidence linking CENPJ and MCPH1 to brain size evolution. The stronger association of ASPM and CDK5RAP2 evolution with neonatal brain size than with adult brain size is consistent with these loci having a direct effect on prenatal neuronal proliferation. These results suggest that primate brain size may have at least a partially conserved genetic basis. Our results contradict a previous study that linked adaptive evolution of ASPM to changes in relative cortex size; however, our analysis indicates that this conclusion is not robust. Our finding that the coding regions of two widely expressed loci has experienced pervasive positive selection in relation to a complex, quantitative developmental phenotype provides a notable counterexample to the commonly asserted

  3. Mapping the Geometric Evolution of Protein Folding Motor

    PubMed Central

    Hazam, Prakash Kishore; Shekhar, Shashi

    2016-01-01

    Polypeptide chain has an invariant main-chain and a variant side-chain sequence. How the side-chain sequence determines fold in terms of its chemical constitution has been scrutinized extensively and verified periodically. However, a focussed investigation on the directive effect of side-chain geometry may provide important insights supplementing existing algorithms in mapping the geometrical evolution of protein chains and its structural preferences. Geometrically, folding of protein structure may be envisaged as the evolution of its geometric variables: ϕ, and ψ dihedral angles of polypeptide main-chain directed by χ1, and χ2 of side chain. In this work, protein molecule is metaphorically modelled as a machine with 4 rotors ϕ, ψ, χ1 and χ2, with its evolution to the functional fold is directed by combinations of its rotor directions. We observe that differential rotor motions lead to different secondary structure formations and the combinatorial pattern is unique and consistent for particular secondary structure type. Further, we found that combination of rotor geometries of each amino acid is unique which partly explains how different amino acid sequence combinations have unique structural evolution and functional adaptation. Quantification of these amino acid rotor preferences, resulted in the generation of 3 substitution matrices, which later on plugged in the BLAST tool, for evaluating their efficiency in aligning sequences. We have employed BLOSUM62 and PAM30 as standard for primary evaluation. Generation of substitution matrices is a logical extension of the conceptual framework we attempted to build during the development of this work. Optimization of matrices following the conventional routines and possible application with biologically relevant data sets are beyond the scope of this manuscript, though it is a part of the larger project design. PMID:27716851

  4. Adaptive Evolution Coupled with Retrotransposon Exaptation Allowed for the Generation of a Human-Protein-Specific Coding Gene That Promotes Cancer Cell Proliferation and Metastasis in Both Haematological Malignancies and Solid Tumours: The Extraordinary Case of MYEOV Gene

    PubMed Central

    Papamichos, Spyros I.; Margaritis, Dimitrios; Kotsianidis, Ioannis

    2015-01-01

    The incidence of cancer in human is high as compared to chimpanzee. However previous analysis has documented that numerous human cancer-related genes are highly conserved in chimpanzee. Till date whether human genome includes species-specific cancer-related genes that could potentially contribute to a higher cancer susceptibility remains obscure. This study focuses on MYEOV, an oncogene encoding for two protein isoforms, reported as causally involved in promoting cancer cell proliferation and metastasis in both haematological malignancies and solid tumours. First we document, via stringent in silico analysis, that MYEOV arose de novo in Catarrhini. We show that MYEOV short-isoform start codon was evolutionarily acquired after Catarrhini/Platyrrhini divergence. Throughout the course of Catarrhini evolution MYEOV acquired a gradually elongated translatable open reading frame (ORF), a gradually shortened translation-regulatory upstream ORF, and alternatively spliced mRNA variants. A point mutation introduced in human allowed for the acquisition of MYEOV long-isoform start codon. Second, we demonstrate the precious impact of exonized transposable elements on the creation of MYEOV gene structure. Third, we highlight that the initial part of MYEOV long-isoform coding DNA sequence was under positive selection pressure during Catarrhini evolution. MYEOV represents a Primate Orphan Gene that acquired, via ORF expansion, a human-protein-specific coding potential. PMID:26568894

  5. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    PubMed

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-01

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population.

  6. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein.

    PubMed

    Gupta, Aditi; Adami, Christoph

    2016-03-01

    Epistatic interactions between residues determine a protein's adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1) using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient) condition that detects epistasis in most cases. We analyze the "fossils" of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing. We suggest that the mechanism of encoding new information into pairwise interactions is central to protein evolution not just in HIV-1 protease, but for any protein adapting to a changing environment. PMID

  7. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein.

    PubMed

    Gupta, Aditi; Adami, Christoph

    2016-03-01

    Epistatic interactions between residues determine a protein's adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1) using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient) condition that detects epistasis in most cases. We analyze the "fossils" of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing. We suggest that the mechanism of encoding new information into pairwise interactions is central to protein evolution not just in HIV-1 protease, but for any protein adapting to a changing environment.

  8. Historical Contingency in a Multigene Family Facilitates Adaptive Evolution of Toxin Resistance.

    PubMed

    McGlothlin, Joel W; Kobiela, Megan E; Feldman, Chris R; Castoe, Todd A; Geffeney, Shana L; Hanifin, Charles T; Toledo, Gabriela; Vonk, Freek J; Richardson, Michael K; Brodie, Edmund D; Pfrender, Michael E; Brodie, Edmund D

    2016-06-20

    Novel adaptations must originate and function within an already established genome [1]. As a result, the ability of a species to adapt to new environmental challenges is predicted to be highly contingent on the evolutionary history of its lineage [2-6]. Despite a growing appreciation of the importance of historical contingency in the adaptive evolution of single proteins [7-11], we know surprisingly little about its role in shaping complex adaptations that require evolutionary change in multiple genes. One such adaptation, extreme resistance to tetrodotoxin (TTX), has arisen in several species of snakes through coevolutionary arms races with toxic amphibian prey, which select for TTX-resistant voltage-gated sodium channels (Nav) [12-16]. Here, we show that the relatively recent origins of extreme toxin resistance, which involve the skeletal muscle channel Nav1.4, were facilitated by ancient evolutionary changes in two other members of the same gene family. A substitution conferring TTX resistance to Nav1.7, a channel found in small peripheral neurons, arose in lizards ∼170 million years ago (mya) and was present in the common ancestor of all snakes. A second channel found in larger myelinated neurons, Nav1.6, subsequently evolved resistance in four different snake lineages beginning ∼38 mya. Extreme TTX resistance has evolved at least five times within the past 12 million years via changes in Nav1.4, but only within lineages that previously evolved resistant Nav1.6 and Nav1.7. Our results show that adaptive protein evolution may be contingent upon enabling substitutions elsewhere in the genome, in this case, in paralogs of the same gene family. PMID:27291053

  9. Viruses are a dominant driver of protein adaptation in mammals

    PubMed Central

    Enard, David; Cai, Le; Gwennap, Carina; Petrov, Dmitri A

    2016-01-01

    Viruses interact with hundreds to thousands of proteins in mammals, yet adaptation against viruses has only been studied in a few proteins specialized in antiviral defense. Whether adaptation to viruses typically involves only specialized antiviral proteins or affects a broad array of virus-interacting proteins is unknown. Here, we analyze adaptation in ~1300 virus-interacting proteins manually curated from a set of 9900 proteins conserved in all sequenced mammalian genomes. We show that viruses (i) use the more evolutionarily constrained proteins within the cellular functions they interact with and that (ii) despite this high constraint, virus-interacting proteins account for a high proportion of all protein adaptation in humans and other mammals. Adaptation is elevated in virus-interacting proteins across all functional categories, including both immune and non-immune functions. We conservatively estimate that viruses have driven close to 30% of all adaptive amino acid changes in the part of the human proteome conserved within mammals. Our results suggest that viruses are one of the most dominant drivers of evolutionary change across mammalian and human proteomes. DOI: http://dx.doi.org/10.7554/eLife.12469.001 PMID:27187613

  10. Phenotype adjustment promotes adaptive evolution in a game without conflict.

    PubMed

    Yamaguchi, Sachi; Iwasa, Yoh

    2015-06-01

    Organisms may adjust their phenotypes in response to social and physical environments. Such phenotypic plasticity is known to help or retard adaptive evolution. Here, we study the evolutionary outcomes of adaptive phenotypic plasticity in an evolutionary game involving two players who have no conflicts of interest. A possible example is the growth and sex allocation of a lifelong pair of shrimps entrapped in the body of a sponge. We consider random pair formation, the limitation of total resources for growth, and the needs of male investment to fertilize eggs laid by the partner. We compare the following three different evolutionary dynamics: (1) No adjustment: each individual develops a phenotype specified by its own genotype; (2) One-player adjustment: the phenotype of the first player is specified by its own genotype, and the second player chooses the phenotype that maximizes its own fitness; (3) Two-player adjustment: the first player exhibits an initial phenotype specified by its own genotype, the second player chooses a phenotype given that of the first player, and finally, the first player readjusts its phenotype given that of the second player. We demonstrate that both one-player and two-player adjustments evolve to achieve maximum fitness. In contrast, the dynamics without adjustment fails in some cases to evolve outcomes with the highest fitness. For an intermediate range of male cost, the evolution of no adjustment realizes two hermaphrodites with equal size, whereas the one-player and two-player adjustments realize a small male and a large female.

  11. Adaptive evolution of rbcL in Conocephalum (Hepaticae, bryophytes).

    PubMed

    Miwa, Hidetsugu; Odrzykoski, Ireneusz J; Matsui, Atsushi; Hasegawa, Masami; Akiyama, Hiroyuki; Jia, Yu; Sabirov, Renat; Takahashi, Hideki; Boufford, David E; Murakami, Noriaki

    2009-07-15

    An excess of nonsynonymous substitutions over synonymous ones has been regarded as an important indicator of adaptive evolution or positive selection at the molecular level. We now report such a case for rbcL sequences among cryptic species in Conocephalum (Hepaticae, Bryophytes). This finding can be regarded as evidence of adaptive evolution in several cryptic species (especially in F and JN types) within the genus. Bryophytes are small land plants with simple morphology. We can therefore expect the existence of several biologically distinct units or cryptic species within each morphological species. In our previous study, we found three rbcL types in Asian Conocephalum japonicum (Thunb.) Grolle and also found evidence strongly suggesting that the three types are reproductively isolated cryptic species. Additionally, we examined rbcL sequence variation in six cryptic species of C. conicum (L.) Dumort. previously recognized by allozyme analyses. As a result, we were able to discriminate the six cryptic species based only on their rbcL sequences. We were able to show that rbcL sequence variation is also useful in finding cryptic species of C. conicum.

  12. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  13. Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions.

    PubMed

    Chemes, Lucía Beatriz; de Prat-Gay, Gonzalo; Sánchez, Ignacio Enrique

    2015-06-01

    Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functional output of a mimic depends on the motif and domain repertoire of the pathogen protein. Regulatory evolution mediated by linear motifs can be understood by measuring evolutionary rates, quantifying positive and negative selection and performing phylogenetic reconstructions of linear motif natural history. Convergent evolution of linear motif mimics is widespread among unrelated proteins from viral, prokaryotic and eukaryotic pathogens and can also take place within individual protein phylogenies. Statistics, biochemistry and laboratory models of infection link pathogen linear motifs to phenotypic traits such as tropism, virulence and oncogenicity. In vitro evolution experiments and analysis of natural sequences suggest that changes in linear motif composition underlie pathogen adaptation to a changing environment. PMID:25863584

  14. Adaptive molecular evolution of a defence gene in sexual but not functionally asexual evening primroses.

    PubMed

    Hersch-Green, E I; Myburg, H; Johnson, M T J

    2012-08-01

    Theory predicts that sexual reproduction provides evolutionary advantages over asexual reproduction by reducing mutational load and increasing adaptive potential. Here, we test the latter prediction in the context of plant defences against pathogens because pathogens frequently reduce plant fitness and drive the evolution of plant defences. Specifically, we ask whether sexual evening primrose plant lineages (Onagraceae) have faster rates of adaptive molecular evolution and altered gene expression of a class I chitinase, a gene implicated in defence against pathogens, than functionally asexual evening primrose lineages. We found that the ratio of amino acid to silent substitutions (K(a) /K(s) = 0.19 vs. 0.11 for sexual and asexual lineages, respectively), the number of sites identified to be under positive selection (four vs. zero for sexual and asexual lineages, respectively) and the expression of chitinase were all higher in sexual than in asexual lineages. Our results are congruent with the conclusion that a loss of sexual recombination and segregation in the Onagraceae negatively affects adaptive structural and potentially regulatory evolution of a plant defence protein.

  15. Mechanisms of adaptive evolution. Darwinism and Lamarckism restated.

    PubMed

    Aboitiz, F

    1992-07-01

    This article discusses the conceptual basis of the different mechanisms of adaptive evolution. It is argued that only two such mechanisms may conceivably exist, Lamarckism and Darwinism. Darwinism is the fundamental process generating the diversity of species. Some aspects of the gene-centered approach to Darwinism are questioned, since they do not account for the generation of biological diversity. Diversity in biological design must be explained in relation to the diversity of interactions of organisms (or other higher-level units) with their environment. This aspect is usually overlooked in gene-centered views of evolution. A variant of the gene-selectionist approach has been proposed to account for the spread of cultural traits in human societies. Alternatively, I argue that social evolution is rather driven by what I call pseudo-Lamarckian inheritance. Finally, I argue that Lamarckian and pseudo-Lamarckian inheritance are just special cases of faithful replication which are found in the development of some higher-order units, such as multicellular organisms and human societies.

  16. On the adaptivity and complexity embedded into differential evolution

    NASA Astrophysics Data System (ADS)

    Senkerik, Roman; Pluhacek, Michal; Zelinka, Ivan; Jasek, Roman

    2016-06-01

    This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performed on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.

  17. Adaptive network dynamics and evolution of leadership in collective migration

    NASA Astrophysics Data System (ADS)

    Pais, Darren; Leonard, Naomi E.

    2014-01-01

    The evolution of leadership in migratory populations depends not only on costs and benefits of leadership investments but also on the opportunities for individuals to rely on cues from others through social interactions. We derive an analytically tractable adaptive dynamic network model of collective migration with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership investment and social interaction. For large populations, our analysis of bifurcations with respect to investment cost explains the observed hysteretic effect associated with recovery of migration in fragmented environments. Further, we show a minimum connectivity threshold above which there is evolutionary branching into leader and follower populations. For small populations, we show how the topology of the underlying social interaction network influences the emergence and location of leaders in the adaptive system. Our model and analysis can be extended to study the dynamics of collective tracking or collective learning more generally. Thus, this work may inform the design of robotic networks where agents use decentralized strategies that balance direct environmental measurements with agent interactions.

  18. An adaptable standard for protein export from the endoplasmic reticulum.

    PubMed

    Wiseman, R Luke; Powers, Evan T; Buxbaum, Joel N; Kelly, Jeffery W; Balch, William E

    2007-11-16

    To provide an integrated view of endoplasmic reticulum (ER) function in protein export, we have described the interdependence of protein folding energetics and the adaptable biology of cellular protein folding and transport through the exocytic pathway. A simplified treatment of the protein homeostasis network and a formalism for how this network of competing pathways interprets protein folding kinetics and thermodynamics provides a framework for understanding cellular protein trafficking. We illustrate how folding and misfolding energetics, in concert with the adjustable biological capacities of the folding, degradation, and export pathways, collectively dictate an adaptable standard for protein export from the ER. A model of folding for export (FoldEx) establishes that no single feature dictates folding and transport efficiency. Instead, a network view provides insight into the basis for cellular diversity, disease origins, and protein homeostasis, and predicts strategies for restoring protein homeostasis in protein-misfolding diseases.

  19. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein

    PubMed Central

    Gupta, Aditi; Adami, Christoph

    2016-01-01

    Epistatic interactions between residues determine a protein’s adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1) using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient) condition that detects epistasis in most cases. We analyze the “fossils” of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing. We suggest that the mechanism of encoding new information into pairwise interactions is central to protein evolution not just in HIV-1 protease, but for any protein adapting to a changing environment. PMID

  20. Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation.

    PubMed

    Jobson, Richard W; Nielsen, Rasmus; Laakkonen, Liisa; Wikström, Mårten; Albert, Victor A

    2004-12-28

    Much recent attention in the study of adaptation of organismal form has centered on developmental regulation. As such, the highly conserved respiratory machinery of eukaryotic cells might seem an unlikely target for selection supporting novel morphologies. We demonstrate that a dramatic molecular evolutionary rate increase in subunit I of cytochrome c oxidase (COX) from an active-trapping lineage of carnivorous plants is caused by positive Darwinian selection. Bladderworts (Utricularia) trap plankton when water-immersed, negatively pressured suction bladders are triggered. The resetting of traps involves active ion transport, requiring considerable energy expenditure. As judged from the quaternary structure of bovine COX, the most profound adaptive substitutions are two contiguous cysteines absent in approximately 99.9% of databased COX I sequences from Eukaryota, Archaea, and Bacteria. This motif lies directly at the docking point of COX I helix 3 and cytochrome c, and modeling of bovine COX I suggests the possibility of an unprecedented helix-terminating disulfide bridge that could alter COX/cytochrome c dissociation kinetics. Thus, the key adaptation in Utricularia likely lies in molecular energetic changes that buttressed the mechanisms responsible for the bladderworts' radical morphological evolution. Along with evidence for COX evolution underlying expansion of the anthropoid neocortex, our findings underscore that important morphological and physiological innovations must often be accompanied by specific adaptations in proteins with basic cellular functions. PMID:15596720

  1. The elusive nature of adaptive mitochondrial DNA evolution of an arctic lineage prone to frequent introgression.

    PubMed

    Melo-Ferreira, José; Vilela, Joana; Fonseca, Miguel M; da Fonseca, Rute R; Boursot, Pierre; Alves, Paulo C

    2014-04-01

    Mitochondria play a fundamental role in cellular metabolism, being responsible for most of the energy production of the cell in the oxidative phosphorylation (OXPHOS) pathway. Mitochondrial DNA (mtDNA) encodes for key components of this process, but its direct role in adaptation remains far from understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread. Here, we analyzed the sequences of 11 complete mitogenomes (ten newly obtained) of hares of temperate and arctic origins (including two of arctic origin introgressed into temperate species). The analysis of patterns of codon substitutions along the reconstructed phylogeny showed evidence for positive selection in several codons in genes of the OXPHOS complexes, most notably affecting the arctic lineage. However, using theoretical models, no predictable effect of these differences was found on the structure and physicochemical properties of the encoded proteins, suggesting that the focus of selection may lie on complex interactions with nuclear encoded peptides. Also, a cloverleaf structure was detected in the control region only from the arctic mtDNA lineage, which may influence mtDNA replication and transcription. These results suggest that adaptation impacted the evolution of hare mtDNA and may have influenced the occurrence and consequences of the many reported cases of massive mtDNA introgression. However, the origin of adaptation remains elusive.

  2. Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation.

    PubMed

    Jobson, Richard W; Nielsen, Rasmus; Laakkonen, Liisa; Wikström, Mårten; Albert, Victor A

    2004-12-28

    Much recent attention in the study of adaptation of organismal form has centered on developmental regulation. As such, the highly conserved respiratory machinery of eukaryotic cells might seem an unlikely target for selection supporting novel morphologies. We demonstrate that a dramatic molecular evolutionary rate increase in subunit I of cytochrome c oxidase (COX) from an active-trapping lineage of carnivorous plants is caused by positive Darwinian selection. Bladderworts (Utricularia) trap plankton when water-immersed, negatively pressured suction bladders are triggered. The resetting of traps involves active ion transport, requiring considerable energy expenditure. As judged from the quaternary structure of bovine COX, the most profound adaptive substitutions are two contiguous cysteines absent in approximately 99.9% of databased COX I sequences from Eukaryota, Archaea, and Bacteria. This motif lies directly at the docking point of COX I helix 3 and cytochrome c, and modeling of bovine COX I suggests the possibility of an unprecedented helix-terminating disulfide bridge that could alter COX/cytochrome c dissociation kinetics. Thus, the key adaptation in Utricularia likely lies in molecular energetic changes that buttressed the mechanisms responsible for the bladderworts' radical morphological evolution. Along with evidence for COX evolution underlying expansion of the anthropoid neocortex, our findings underscore that important morphological and physiological innovations must often be accompanied by specific adaptations in proteins with basic cellular functions.

  3. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes.

    PubMed

    Xu, Qianghua; Cheng, Chi-Hing Christina; Hu, Peng; Ye, Hua; Chen, Zuozhou; Cao, Lixue; Chen, Lei; Shen, Yu; Chen, Liangbiao

    2008-06-01

    Hepcidin is a small bioactive peptide with dual roles as an antimicrobial peptide and as the principal hormonal regulator of iron homeostasis in human and mouse. Hepcidin homologs of very similar structures are found in lower vertebrates, all comprise approximately 20-25 amino acids with 8 highly conserved cysteines forming 4 intramolecular disulfide bonds, giving hepcidin a hairpin structure. Hepcidins are particularly diverse in teleost fishes, which may be related to the diversity of aquatic environments with varying degree of pathogen challenge, oxygenation, and iron concentration, factors known to alter hepcidin expression in mammals. We characterized the diversity of hepcidin genes of the Antarctic notothenioid fishes that are endemic to the world's coldest and most oxygen-rich marine water. Notothenioid fishes have at least 4 hepcidin variants, in 2 distinctive structural types. Type I hepcidins comprise 3 distinct variants that are homologs of the widespread 8-cysteine hepcidins. Type II is a novel 4-cysteine variant and therefore only 2 possible disulfide bonds, highly expressed in hematopoietic tissues. Analyses of d(N)/d(S) substitution rate ratios and likelihood ratio test under site-specific models detected significant signal of positive Darwinian selection on the mature hepcidin-coding sequence, suggesting adaptive evolution of notothenioid hepcidins. Genomic polymerase chain reaction and Southern hybridization showed that the novel type II hepcidin occurs exclusively in lineages of the Antarctic notothenioid radiation but not in the basal non-Antarctic taxa, and lineage-specific positive selection was detected on the branch leading to the type II hepcidin clade under branch-site models, suggesting adaptive evolution of the reduced cysteine variant in response to the polar environment. We also isolated a structurally distinct 4-cysteine (4cys) hepcidin from an Antarctic eelpout that is unrelated to the notothenioids but inhabits the same freezing

  4. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes.

    PubMed

    Xu, Qianghua; Cheng, Chi-Hing Christina; Hu, Peng; Ye, Hua; Chen, Zuozhou; Cao, Lixue; Chen, Lei; Shen, Yu; Chen, Liangbiao

    2008-06-01

    Hepcidin is a small bioactive peptide with dual roles as an antimicrobial peptide and as the principal hormonal regulator of iron homeostasis in human and mouse. Hepcidin homologs of very similar structures are found in lower vertebrates, all comprise approximately 20-25 amino acids with 8 highly conserved cysteines forming 4 intramolecular disulfide bonds, giving hepcidin a hairpin structure. Hepcidins are particularly diverse in teleost fishes, which may be related to the diversity of aquatic environments with varying degree of pathogen challenge, oxygenation, and iron concentration, factors known to alter hepcidin expression in mammals. We characterized the diversity of hepcidin genes of the Antarctic notothenioid fishes that are endemic to the world's coldest and most oxygen-rich marine water. Notothenioid fishes have at least 4 hepcidin variants, in 2 distinctive structural types. Type I hepcidins comprise 3 distinct variants that are homologs of the widespread 8-cysteine hepcidins. Type II is a novel 4-cysteine variant and therefore only 2 possible disulfide bonds, highly expressed in hematopoietic tissues. Analyses of d(N)/d(S) substitution rate ratios and likelihood ratio test under site-specific models detected significant signal of positive Darwinian selection on the mature hepcidin-coding sequence, suggesting adaptive evolution of notothenioid hepcidins. Genomic polymerase chain reaction and Southern hybridization showed that the novel type II hepcidin occurs exclusively in lineages of the Antarctic notothenioid radiation but not in the basal non-Antarctic taxa, and lineage-specific positive selection was detected on the branch leading to the type II hepcidin clade under branch-site models, suggesting adaptive evolution of the reduced cysteine variant in response to the polar environment. We also isolated a structurally distinct 4-cysteine (4cys) hepcidin from an Antarctic eelpout that is unrelated to the notothenioids but inhabits the same freezing

  5. Diversity and evolution of coral fluorescent proteins.

    PubMed

    Alieva, Naila O; Konzen, Karen A; Field, Steven F; Meleshkevitch, Ella A; Hunt, Marguerite E; Beltran-Ramirez, Victor; Miller, David J; Wiedenmann, Jörg; Salih, Anya; Matz, Mikhail V

    2008-07-16

    GFP-like fluorescent proteins (FPs) are the key color determinants in reef-building corals (class Anthozoa, order Scleractinia) and are of considerable interest as potential genetically encoded fluorescent labels. Here we report 40 additional members of the GFP family from corals. There are three major paralogous lineages of coral FPs. One of them is retained in all sampled coral families and is responsible for the non-fluorescent purple-blue color, while each of the other two evolved a full complement of typical coral fluorescent colors (cyan, green, and red) and underwent sorting between coral groups. Among the newly cloned proteins are a "chromo-red" color type from Echinopora forskaliana (family Faviidae) and pink chromoprotein from Stylophora pistillata (Pocilloporidae), both evolving independently from the rest of coral chromoproteins. There are several cyan FPs that possess a novel kind of excitation spectrum indicating a neutral chromophore ground state, for which the residue E167 is responsible (numeration according to GFP from A. victoria). The chromoprotein from Acropora millepora is an unusual blue instead of purple, which is due to two mutations: S64C and S183T. We applied a novel probabilistic sampling approach to recreate the common ancestor of all coral FPs as well as the more derived common ancestor of three main fluorescent colors of the Faviina suborder. Both proteins were green such as found elsewhere outside class Anthozoa. Interestingly, a substantial fraction of the all-coral ancestral protein had a chromohore apparently locked in a non-fluorescent neutral state, which may reflect the transitional stage that enabled rapid color diversification early in the history of coral FPs. Our results highlight the extent of convergent or parallel evolution of the color diversity in corals, provide the foundation for experimental studies of evolutionary processes that led to color diversification, and enable a comparative analysis of structural

  6. Diversity and Evolution of Coral Fluorescent Proteins

    PubMed Central

    Alieva, Naila O.; Konzen, Karen A.; Field, Steven F.; Meleshkevitch, Ella A.; Hunt, Marguerite E.; Beltran-Ramirez, Victor; Miller, David J.; Wiedenmann, Jörg; Salih, Anya; Matz, Mikhail V.

    2008-01-01

    GFP-like fluorescent proteins (FPs) are the key color determinants in reef-building corals (class Anthozoa, order Scleractinia) and are of considerable interest as potential genetically encoded fluorescent labels. Here we report 40 additional members of the GFP family from corals. There are three major paralogous lineages of coral FPs. One of them is retained in all sampled coral families and is responsible for the non-fluorescent purple-blue color, while each of the other two evolved a full complement of typical coral fluorescent colors (cyan, green, and red) and underwent sorting between coral groups. Among the newly cloned proteins are a “chromo-red” color type from Echinopora forskaliana (family Faviidae) and pink chromoprotein from Stylophora pistillata (Pocilloporidae), both evolving independently from the rest of coral chromoproteins. There are several cyan FPs that possess a novel kind of excitation spectrum indicating a neutral chromophore ground state, for which the residue E167 is responsible (numeration according to GFP from A. victoria). The chromoprotein from Acropora millepora is an unusual blue instead of purple, which is due to two mutations: S64C and S183T. We applied a novel probabilistic sampling approach to recreate the common ancestor of all coral FPs as well as the more derived common ancestor of three main fluorescent colors of the Faviina suborder. Both proteins were green such as found elsewhere outside class Anthozoa. Interestingly, a substantial fraction of the all-coral ancestral protein had a chromohore apparently locked in a non-fluorescent neutral state, which may reflect the transitional stage that enabled rapid color diversification early in the history of coral FPs. Our results highlight the extent of convergent or parallel evolution of the color diversity in corals, provide the foundation for experimental studies of evolutionary processes that led to color diversification, and enable a comparative analysis of structural

  7. Dual-phase evolution in complex adaptive systems

    PubMed Central

    Paperin, Greg; Green, David G.; Sadedin, Suzanne

    2011-01-01

    Understanding the origins of complexity is a key challenge in many sciences. Although networks are known to underlie most systems, showing how they contribute to well-known phenomena remains an issue. Here, we show that recurrent phase transitions in network connectivity underlie emergent phenomena in many systems. We identify properties that are typical of systems in different connectivity phases, as well as characteristics commonly associated with the phase transitions. We synthesize these common features into a common framework, which we term dual-phase evolution (DPE). Using this framework, we review the literature from several disciplines to show that recurrent connectivity phase transitions underlie the complex properties of many biological, physical and human systems. We argue that the DPE framework helps to explain many complex phenomena, including perpetual novelty, modularity, scale-free networks and criticality. Our review concludes with a discussion of the way DPE relates to other frameworks, in particular, self-organized criticality and the adaptive cycle. PMID:21247947

  8. Toxin-Resistant Sodium Channels: Parallel Adaptive Evolution across a Complete Gene Family

    PubMed Central

    Hillis, David M.; Lu, Ying; Kyle, John W.; Fozzard, Harry A.; Zakon, Harold H.

    2008-01-01

    Approximately 75% of vertebrate proteins belong to protein families encoded by multiple evolutionarily related genes, a pattern that emerged as a result of gene and genome duplications over the course of vertebrate evolution. In families of genes with similar or related functions, adaptation to a strong selective agent should involve multiple adaptive changes across the entire gene family. However, we know of no evolutionary studies that have explicitly addressed this point. Here, we show how 4 taxonomically diverse species of pufferfishes (Tetraodontidae) each evolved resistance to the guanidinium toxins tetrodotoxin (TTX) and saxitoxin (STX) via parallel amino acid replacements across all 8 sodium channels present in teleost fish genomes. This resulted in diverse suites of coexisting sodium channel types that all confer varying degrees of toxin resistance, yet show remarkable convergence among genes and phylogenetically diverse species. Using site-directed mutagenesis and expression of a vertebrate sodium channel, we also demonstrate that resistance to TTX/STX is enhanced up to 15-fold by single, frequently observed replacements at 2 sites that have not previously been implicated in toxin binding but show similar or identical replacements in pufferfishes and in distantly related vertebrate and nonvertebrate animals. This study presents an example of natural selection acting upon a complete gene family, repeatedly arriving at a diverse but limited number of adaptive changes within the same genome. To be maximally informative, we suggest that future studies of molecular adaptation should consider all functionally similar paralogs of the affected gene family. PMID:18258611

  9. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases.

    PubMed

    Kabir, M Enamul; Safar, Jiri G

    2014-01-01

    There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrP(C)) to a misfolded pathogenic conformer (PrP(Sc)). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrP(Sc). Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrP(Sc) particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrP(Sc). Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and

  10. Transcriptional abundance is not the single force driving the evolution of bacterial proteins

    PubMed Central

    2013-01-01

    Background Despite rapid progress in understanding the mechanisms that shape the evolution of proteins, the relative importance of various factors remain to be elucidated. In this study, we have assessed the effects of 16 different biological features on the evolutionary rates (ERs) of protein-coding sequences in bacterial genomes. Results Our analysis of 18 bacterial species revealed new correlations between ERs and constraining factors. Previous studies have suggested that transcriptional abundance overwhelmingly constrains the evolution of yeast protein sequences. This transcriptional abundance leads to selection against misfolding or misinteractions. In this study we found that there was no single factor in determining the evolution of bacterial proteins. Not only transcriptional abundance (codon adaptation index and expression level), but also protein-protein associations (PPAs), essentiality (ESS), subcellular localization of cytoplasmic membrane (SLM), transmembrane helices (TMH) and hydropathicity score (HS) independently and significantly affected the ERs of bacterial proteins. In some species, PPA and ESS demonstrate higher correlations with ER than transcriptional abundance. Conclusions Different forces drive the evolution of protein sequences in yeast and bacteria. In bacteria, the constraints are involved in avoiding a build-up of toxic molecules caused by misfolding/misinteraction (transcriptional abundance), while retaining important functions (ESS, PPA) and maintaining the cell membrane (SLM, TMH and HS). Each of these independently contributes to the variation in protein evolution. PMID:23914835

  11. Adaptive evolution of facial colour patterns in Neotropical primates.

    PubMed

    Santana, Sharlene E; Lynch Alfaro, Jessica; Alfaro, Michael E

    2012-06-01

    The rich diversity of primate faces has interested naturalists for over a century. Researchers have long proposed that social behaviours have shaped the evolution of primate facial diversity. However, the primate face constitutes a unique structure where the diverse and potentially competing functions of communication, ecology and physiology intersect, and the major determinants of facial diversity remain poorly understood. Here, we provide the first evidence for an adaptive role of facial colour patterns and pigmentation within Neotropical primates. Consistent with the hypothesis that facial patterns function in communication and species recognition, we find that species living in smaller groups and in sympatry with a higher number of congener species have evolved more complex patterns of facial colour. The evolution of facial pigmentation and hair length is linked to ecological factors, and ecogeographical rules related to UV radiation and thermoregulation are met by some facial regions. Our results demonstrate the interaction of behavioural and ecological factors in shaping one of the most outstanding facial diversities of any mammalian lineage.

  12. The Coevolution of Phycobilisomes: Molecular Structure Adapting to Functional Evolution

    PubMed Central

    Shi, Fei; Qin, Song; Wang, Yin-Chu

    2011-01-01

    Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin, phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably demonstrated by the sites coupled under physical-chemical interactions. PMID:21904470

  13. Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations.

    PubMed

    Cetinbaş, Murat; Shakhnovich, Eugene I

    2013-01-01

    Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics. PMID:24244114

  14. GNBP domain of Anopheles darlingi: are polymorphic inversions and gene variation related to adaptive evolution?

    PubMed

    Bridi, L C; Rafael, M S

    2016-02-01

    Anopheles darlingi is the main malaria vector in humans in South America. In the Amazon basin, it lives along the banks of rivers and lakes, which responds to the annual hydrological cycle (dry season and rainy season). In these breeding sites, the larvae of this mosquito feed on decomposing organic and microorganisms, which can be pathogenic and trigger the activation of innate immune system pathways, such as proteins Gram-negative binding protein (GNBP). Such environmental changes affect the occurrence of polymorphic inversions especially at the heterozygote frequency, which confer adaptative advantage compared to homozygous inversions. We mapped the GNBP probe to the An. darlingi 2Rd inversion by fluorescent in situ hybridization (FISH), which was a good indicator of the GNBP immune response related to the chromosomal polymorphic inversions and adaptative evolution. To better understand the evolutionary relations and time of divergence of the GNBP of An. darlingi, we compared it with nine other mosquito GNBPs. The results of the phylogenetic analysis of the GNBP sequence between the species of mosquitoes demonstrated three clades. Clade I and II included the GNBPB5 sequence, and clade III the sequence of GNBPB1. Most of these sequences of GNBP analyzed were homologous with that of subfamily B, including that of An. gambiae (87 %), therefore suggesting that GNBP of An. darling belongs to subfamily B. This work helps us understand the role of inversion polymorphism in evolution of An. darlingi.

  15. Evidence for adaptive evolution of olfactory receptor genes in 9 bird species.

    PubMed

    Steiger, Silke S; Fidler, Andrew E; Mueller, Jakob C; Kempenaers, Bart

    2010-01-01

    It has been suggested that positive selection, in particular selection favoring a change in the protein sequence, plays a role in the evolution of olfactory receptor (OR) gene repertoires in fish and mammals. ORs are 7-transmembrane domain (TM) proteins, members of the G-protein-coupled receptor superfamily in vertebrate genomes, and responsible for odorant binding and discrimination. OR gene repertoires in birds are surprisingly large and diverse, suggesting that birds have a keen olfactory sense. The aim of this study is to investigate signatures of positive selection in an expanded OR clade (group-gamma-c) that seems to be a characteristic of avian genomes. Using maximum-likelihood methods that estimate the d(N)/d(S) ratios and account for the effects of recombination, we show here that there is evidence for positive selection in group-gamma-c partial OR coding sequences of 9 bird species that are likely to have different olfactory abilities: the blue tit (Cyanistes caeruleus), the black coucal (Centropus grillii), the brown kiwi (Apteryx australis), the canary (Serinus canaria), the galah (Eolophus roseicapillus), the kakapo (Strigops habroptilus), the mallard (Anas platyrhynchos), the red jungle fowl (Gallus gallus), and the snow petrel (Pagodroma nivea). Positively selected codons were predominantly located in TMs, which in other vertebrates are involved in odorant binding. Our data suggest that 1) at least some avian OR genes have been subjected to adaptive evolution, 2) the extent of such adaptive evolution differs between bird species, and 3) positive selective pressures may have been stronger on the group-gamma-c OR genes of species that have well-developed olfactory abilities. PMID:19965911

  16. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    PubMed

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.

  17. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    PubMed

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  18. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    PubMed Central

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  19. [Insulin resistance as a mechanism of adaptation during human evolution].

    PubMed

    Ricart, W; Fernández-Real, J M

    2010-10-01

    The recent application of concepts of evolution to human disease is proving useful to understand certain pathophysiological mechanisms of different entities that span genomic alterations of immunity, respiratory and hormone function, and the circulatory and neural systems. However, effort has concentrated on explaining the keys to adaptation that define human metabolism and, since the early 1960s, several theories have been developed. This article reviews some of the hypotheses postulated in recent years on the potential benefit of insulin resistance and discusses the most recent knowledge. The concept of the thrifty gene seems to have been definitively refuted by current knowledge. The current paradigm describes an interaction between the metabolic and the immune systems resulting from their coevolution, promoted by evolutionary pressures triggered by fasting, infection and intake of different foods. The activation and regulation of these ancient mechanisms in integrated and interdependent areas defines insulin resistance as a survival strategy that is critical during fasting and in the fight against infection. The relationship with some components of the diet and, particularly, with the symbiotic intestinal microflora points to new paradigms in understanding the pathophysiology of obesity, metabolic syndrome and type 2 diabetes mellitus.

  20. Drosophila Adaptation to Viral Infection through Defensive Symbiont Evolution

    PubMed Central

    Faria, Vitor G.; Magalhães, Sara; Paulo, Tânia F.; Nolte, Viola; Schlötterer, Christian

    2016-01-01

    Microbial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading to their fixation. Flies carrying these selected Wolbachia variants have higher survival and fertility upon viral infection when compared to flies with the other variants. These findings demonstrate how the interaction of a host with pathogens shapes the genetic composition of symbiont populations. Furthermore, host adaptation can result from the evolution of its symbionts, with host and symbiont functioning as a single evolutionary unit. PMID:27684942

  1. [Insulin resistance as a mechanism of adaptation during human evolution].

    PubMed

    Ricart, W; Fernández-Real, J M

    2010-10-01

    The recent application of concepts of evolution to human disease is proving useful to understand certain pathophysiological mechanisms of different entities that span genomic alterations of immunity, respiratory and hormone function, and the circulatory and neural systems. However, effort has concentrated on explaining the keys to adaptation that define human metabolism and, since the early 1960s, several theories have been developed. This article reviews some of the hypotheses postulated in recent years on the potential benefit of insulin resistance and discusses the most recent knowledge. The concept of the thrifty gene seems to have been definitively refuted by current knowledge. The current paradigm describes an interaction between the metabolic and the immune systems resulting from their coevolution, promoted by evolutionary pressures triggered by fasting, infection and intake of different foods. The activation and regulation of these ancient mechanisms in integrated and interdependent areas defines insulin resistance as a survival strategy that is critical during fasting and in the fight against infection. The relationship with some components of the diet and, particularly, with the symbiotic intestinal microflora points to new paradigms in understanding the pathophysiology of obesity, metabolic syndrome and type 2 diabetes mellitus. PMID:20675202

  2. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment

    PubMed Central

    Suenaga, Hikaru

    2015-01-01

    Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and, therefore, enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose. PMID:26441940

  3. Rate and breadth of protein evolution are only weakly correlated

    PubMed Central

    2012-01-01

    Background Evolution at a protein site can be characterized from two different perspectives, by its rate and by the breadth of the set of acceptable amino acids. Results There is a weak positive correlation between rates and breadths of evolution, both across individual amino acid sites and across proteins. Conclusions Rate and breadth are two distinct, and only weakly correlated, characteristics of protein evolution. The most likely explanation of their positive correlation is heterogeneity of selective constraint, such that less functionally important sites evolve faster and can accept more amino acids. Reviewers This article was reviewed by Eugene V. Koonin, Arcady R. Mushegyan, and Eugene I. Shakhnovich. PMID:22336199

  4. Evolution: how fruit flies adapt to seasonal stresses.

    PubMed

    Williams, Karen D; Sokolowski, Marla B

    2009-01-27

    Fruit flies inhabit a wide range of latitudes, requiring adaptation to the varying local climates. A recent study reports evidence that the ability of North American flies to endure the winter involves adaptive polymorphism of the couch potato gene.

  5. Nutrient-dependent/pheromone-controlled adaptive evolution: a model

    PubMed Central

    Kohl, James Vaughn

    2013-01-01

    Background The prenatal migration of gonadotropin-releasing hormone (GnRH) neurosecretory neurons allows nutrients and human pheromones to alter GnRH pulsatility, which modulates the concurrent maturation of the neuroendocrine, reproductive, and central nervous systems, thus influencing the development of ingestive behavior, reproductive sexual behavior, and other behaviors. Methods This model details how chemical ecology drives adaptive evolution via: (1) ecological niche construction, (2) social niche construction, (3) neurogenic niche construction, and (4) socio-cognitive niche construction. This model exemplifies the epigenetic effects of olfactory/pheromonal conditioning, which alters genetically predisposed, nutrient-dependent, hormone-driven mammalian behavior and choices for pheromones that control reproduction via their effects on luteinizing hormone (LH) and systems biology. Results Nutrients are metabolized to pheromones that condition behavior in the same way that food odors condition behavior associated with food preferences. The epigenetic effects of olfactory/pheromonal input calibrate and standardize molecular mechanisms for genetically predisposed receptor-mediated changes in intracellular signaling and stochastic gene expression in GnRH neurosecretory neurons of brain tissue. For example, glucose and pheromones alter the hypothalamic secretion of GnRH and LH. A form of GnRH associated with sexual orientation in yeasts links control of the feedback loops and developmental processes required for nutrient acquisition, movement, reproduction, and the diversification of species from microbes to man. Conclusion An environmental drive evolved from that of nutrient ingestion in unicellular organisms to that of pheromone-controlled socialization in insects. In mammals, food odors and pheromones cause changes in hormones such as LH, which has developmental affects on pheromone-controlled sexual behavior in nutrient-dependent reproductively fit individuals

  6. Multifunctional adaptive NS1 mutations are selected upon human influenza virus evolution in the mouse.

    PubMed

    Forbes, Nicole E; Ping, Jihui; Dankar, Samar K; Jia, Jian-Jun; Selman, Mohammed; Keleta, Liya; Zhou, Yan; Brown, Earl G

    2012-01-01

    The role of the NS1 protein in modulating influenza A virulence and host range was assessed by adapting A/Hong Kong/1/1968 (H3N2) (HK-wt) to increased virulence in the mouse. Sequencing the NS genome segment of mouse-adapted variants revealed 11 mutations in the NS1 gene and 4 in the overlapping NEP gene. Using the HK-wt virus and reverse genetics to incorporate mutant NS gene segments, we demonstrated that all NS1 mutations were adaptive and enhanced virus replication (up to 100 fold) in mouse cells and/or lungs. All but one NS1 mutant was associated with increased virulence measured by survival and weight loss in the mouse. Ten of twelve NS1 mutants significantly enhanced IFN-β antagonism to reduce the level of IFN β production relative to HK-wt in infected mouse lungs at 1 day post infection, where 9 mutants induced viral yields in the lung that were equivalent to or significantly greater than HK-wt (up to 16 fold increase). Eight of 12 NS1 mutants had reduced or lost the ability to bind the 30 kDa cleavage and polyadenylation specificity factor (CPSF30) thus demonstrating a lack of correlation with reduced IFN β production. Mutant NS1 genes resulted in increased viral mRNA transcription (10 of 12 mutants), and protein production (6 of 12 mutants) in mouse cells. Increased transcription activity was demonstrated in the influenza mini-genome assay for 7 of 11 NS1 mutants. Although we have shown gain-of-function properties for all mutant NS genes, the contribution of the NEP mutations to phenotypic changes remains to be assessed. This study demonstrates that NS1 is a multifunctional virulence factor subject to adaptive evolution.

  7. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.

    PubMed

    Mahr, Regina; Gätgens, Cornelia; Gätgens, Jochem; Polen, Tino; Kalinowski, Jörn; Frunzke, Julia

    2015-11-01

    Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains.

  8. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.

    PubMed

    Mahr, Regina; Gätgens, Cornelia; Gätgens, Jochem; Polen, Tino; Kalinowski, Jörn; Frunzke, Julia

    2015-11-01

    Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains. PMID:26453945

  9. Genetic drift of human coronavirus OC43 spike gene during adaptive evolution.

    PubMed

    Ren, Lili; Zhang, Yue; Li, Jianguo; Xiao, Yan; Zhang, Jing; Wang, Ying; Chen, Lan; Paranhos-Baccalà, Gláucia; Wang, Jianwei

    2015-06-22

    Coronaviruses (CoVs) continuously threaten human health. However, to date, the evolutionary mechanisms that govern CoV strain persistence in human populations have not been fully understood. In this study, we characterized the evolution of the major antigen-spike (S) gene in the most prevalent human coronavirus (HCoV) OC43 using phylogenetic and phylodynamic analysis. Among the five known HCoV-OC43 genotypes (A to E), higher substitution rates and dN/dS values as well as more positive selection sites were detected in the S gene of genotype D, corresponding to the most dominant HCoV epidemic in recent years. Further analysis showed that the majority of substitutions were located in the S1 subunit. Among them, seven positive selection sites were chronologically traced in the temporal evolution routes of genotype D, and six were located around the critical sugar binding region in the N-terminal domain (NTD) of S protein, an important sugar binding domain of CoV. These findings suggest that the genetic drift of the S gene may play an important role in genotype persistence in human populations, providing insights into the mechanisms of HCoV-OC43 adaptive evolution.

  10. Tracking adaptive evolution in the structure, function and molecular phylogeny of haemoglobin in non-Antarctic notothenioid fish species

    NASA Astrophysics Data System (ADS)

    Verde, Cinzia; Parisi, Elio; di Prisco, Guido

    2006-04-01

    With the notable exception of Antarctic icefishes, haemoglobin (Hb) is present in all vertebrates. In polar fish, Hb evolution has included adaptations with implications at the biochemical, physiological and molecular levels. Cold adaptation has been shown to be also linked to small changes in primary structure and post-translational modifications in proteins, including hydrophobic remodelling and increased flexibility. A wealth of knowledge is available on the oxygen-transport system of fish inhabiting Antarctic waters, but very little is known on the structure and function of Hb of non-Antarctic notothenioid fishes. The comparison of the biochemical and physiological adaptations between cold-adapted and non-cold-adapted species is a powerful tool to understand whether (and to what extent) extreme environments require specific adaptations or simply select for phenotypically different life styles. This study focuses on structure, function and molecular phylogeny of Hb in Antarctic and non-Antarctic notothenioid fishes. The rationale is to use the primary structure of Hb as tool of choice to gain insight into the pathways of the evolution history of α and β globins of notothenioids and also as a basis for reconstructing the phylogenetic relationships among Antarctic and non-Antarctic species.

  11. An Adaptable Investigative Graduate Laboratory Course for Teaching Protein Purification

    ERIC Educational Resources Information Center

    Carroll, Christopher W.; Keller, Lani C.

    2014-01-01

    This adaptable graduate laboratory course on protein purification offers students the opportunity to explore a wide range of techniques while allowing the instructor the freedom to incorporate their own personal research interests. The course design involves two sequential purification schemes performed in a single semester. The first part…

  12. Adaptive laboratory evolution of Escherichia coli K-12 MG1655 for growth at high hydrostatic pressure

    PubMed Central

    Marietou, Angeliki; Nguyen, Alice T. T.; Allen, Eric E.; Bartlett, Douglas H.

    2015-01-01

    Much of microbial life on Earth grows and reproduces under the elevated hydrostatic pressure conditions that exist in deep-ocean and deep-subsurface environments. In this study adaptive laboratory evolution (ALE) experiments were conducted to investigate the possible modification of the piezosensitive Escherichia coli for improved growth at high pressure. After approximately 500 generations of selection, a strain was isolated that acquired the ability to grow at pressure non-permissive for the parental strain. Remarkably, this strain displayed growth properties and changes in the proportion and regulation of unsaturated fatty acids that indicated the acquisition of multiple piezotolerant properties. These changes developed concomitantly with a change in the gene encoding the acyl carrier protein, which is required for fatty acid synthesis. PMID:25610434

  13. Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life

    PubMed Central

    Faddeeva, A.; Studer, R. A.; Kraaijeveld, K.; Sie, D.; Ylstra, B.; Mariën, J.; op den Camp, H. J. M.; Datema, E.; den Dunnen, J. T.; van Straalen, N. M.; Roelofs, D.

    2015-01-01

    Background Collembola (springtails) represent a soil-living lineage of hexapods in between insects and crustaceans. Consequently, their genomes may hold key information on the early processes leading to evolution of Hexapoda from a crustacean ancestor. Method We assembled and annotated transcriptomes of the Collembola Folsomia candida and Orchesella cincta, and performed comparative analysis with protein-coding gene sequences of three crustaceans and three insects to identify adaptive signatures associated with the evolution of hexapods within the pancrustacean clade. Results Assembly of the springtail transcriptomes resulted in 37,730 transcripts with predicted open reading frames for F. candida and 32,154 for O. cincta, of which 34.2% were functionally annotated for F. candida and 38.4% for O. cincta. Subsequently, we predicted orthologous clusters among eight species and applied the branch-site test to detect episodic positive selection in the Hexapoda and Collembola lineages. A subset of 250 genes showed significant positive selection along the Hexapoda branch and 57 in the Collembola lineage. Gene Ontology categories enriched in these genes include metabolism, stress response (i.e. DNA repair, immune response), ion transport, ATP metabolism, regulation and development-related processes (i.e. eye development, neurological development). Conclusions We suggest that the identified gene families represent processes that have played a key role in the divergence of hexapods within the pancrustacean clade that eventually evolved into the most species-rich group of all animals, the hexapods. Furthermore, some adaptive signatures in collembolans may provide valuable clues to understand evolution of hexapods on land. PMID:26075903

  14. Adaptive Evolution of the Myo6 Gene in Old World Fruit Bats (Family: Pteropodidae)

    PubMed Central

    Shen, Bin; Han, Xiuqun; Jones, Gareth; Rossiter, Stephen J.; Zhang, Shuyi

    2013-01-01

    Myosin VI (encoded by the Myo6 gene) is highly expressed in the inner and outer hair cells of the ear, retina, and polarized epithelial cells such as kidney proximal tubule cells and intestinal enterocytes. The Myo6 gene is thought to be involved in a wide range of physiological functions such as hearing, vision, and clathrin-mediated endocytosis. Bats (Chiroptera) represent one of the most fascinating mammal groups for molecular evolutionary studies of the Myo6 gene. A diversity of specialized adaptations occur among different bat lineages, such as echolocation and associated high-frequency hearing in laryngeal echolocating bats, large eyes and a strong dependence on vision in Old World fruit bats (Pteropodidae), and specialized high-carbohydrate but low-nitrogen diets in both Old World and New World fruit bats (Phyllostomidae). To investigate what role(s) the Myo6 gene might fulfill in bats, we sequenced the coding region of the Myo6 gene in 15 bat species and used molecular evolutionary analyses to detect evidence of positive selection in different bat lineages. We also conducted real-time PCR assays to explore the expression levels of Myo6 in a range of tissues from three representative bat species. Molecular evolutionary analyses revealed that the Myo6 gene, which was widely considered as a hearing gene, has undergone adaptive evolution in the Old World fruit bats which lack laryngeal echolocation and associated high-frequency hearing. Real-time PCR showed the highest expression level of the Myo6 gene in the kidney among ten tissues examined in three bat species, indicating an important role for this gene in kidney function. We suggest that Myo6 has undergone adaptive evolution in Old World fruit bats in relation to receptor-mediated endocytosis for the preservation of protein and essential nutrients. PMID:23620821

  15. The appearance of the thymus and the integrated evolution of adaptive immune and neuroendocrine systems.

    PubMed

    Geenen, V

    2012-01-01

    The immune system may be considered as a sensory organ able to respond to different kinds of danger signals that are not detected by nervous cells. The immune response is not autonomous but also regulated by the central and peripheral nervous system, as well as by neuropeptides, vitamin D and neuroendocrine axes such as the corticotrope, somatotrope, thyrotrope and gonadotrope axes. During evolution, the thymus emerged concomitantly with recombinase-dependent adaptive immunity as an'immune brain' or a'master class' highly specialized in the orchestration of central immunological self-tolerance. This was an absolute requirement for survival of species because of the high risk of autotoxicity inherent to the stochastic generation of extreme diversity characterizing this novel adaptive type of immune defenses against non-self. The thymus now appears to be an obligatory intersection for the integrated evolution of the major systems of cell-to-cell signalling, the nervous, endocrine and immune systems. The presentation of many self-peptides by thymic major histocompatibility complex (MHC) proteins is controlled by the autoimmune regulator (AIRE) gene/protein and is responsible for the clonal deletion of self-reactive T cells. In the same time, by still unexplained mechanisms, MHC presentation of the same self-peptides in the thymus promotes the generation of self-specific FOXP3+ CD4+CD25+ natural regulatory T cells (nTreg) that are able to inhibit in periphery self-reactive CD4+ and CD8+ T cells having escaped the thymus censorship. Moreover, a thymus dysfunction is more and more established as the primary event driving the development of organ-specific autoimmunity, which is the tribute paid, mainly by mankind, for the preservation of self against non-self. Our novel knowledge about thymus physiology and physiopathology already serves as the basis for the development of various innovative and efficient immunomodulating strategies in pharmacology. PMID:22897070

  16. Chromosome inversions, adaptive cassettes and the evolution of species' ranges.

    PubMed

    Kirkpatrick, Mark; Barrett, Brian

    2015-05-01

    A chromosome inversion can spread when it captures locally adapted alleles or when it is introduced into a species by hybridization with adapted alleles that were previously absent. We present a model that shows how both processes can cause a species range to expand. Introgression of an inversion that carries novel, locally adapted alleles is a particularly powerful mechanism for range expansion. The model supports the earlier proposal that introgression of an inversion triggered a large range expansion of a malaria mosquito. These results suggest a role for inversions as cassettes of genes that can accelerate adaptation by crossing species boundaries, rather than protecting genomes from introgression.

  17. Chromosome inversions, adaptive cassettes and the evolution of species' ranges.

    PubMed

    Kirkpatrick, Mark; Barrett, Brian

    2015-05-01

    A chromosome inversion can spread when it captures locally adapted alleles or when it is introduced into a species by hybridization with adapted alleles that were previously absent. We present a model that shows how both processes can cause a species range to expand. Introgression of an inversion that carries novel, locally adapted alleles is a particularly powerful mechanism for range expansion. The model supports the earlier proposal that introgression of an inversion triggered a large range expansion of a malaria mosquito. These results suggest a role for inversions as cassettes of genes that can accelerate adaptation by crossing species boundaries, rather than protecting genomes from introgression. PMID:25583098

  18. How protein materials balance strength, robustness, and adaptability

    PubMed Central

    Buehler, Markus J.; Yung, Yu Ching

    2010-01-01

    Proteins form the basis of a wide range of biological materials such as hair, skin, bone, spider silk, or cells, which play an important role in providing key functions to biological systems. The focus of this article is to discuss how protein materials are capable of balancing multiple, seemingly incompatible properties such as strength, robustness, and adaptability. To illustrate this, we review bottom-up materiomics studies focused on the mechanical behavior of protein materials at multiple scales, from nano to macro. We focus on alpha-helix based intermediate filament proteins as a model system to explain why the utilization of hierarchical structural features is vital to their ability to combine strength, robustness, and adaptability. Experimental studies demonstrating the activation of angiogenesis, the growth of new blood vessels, are presented as an example of how adaptability of structure in biological tissue is achieved through changes in gene expression that result in an altered material structure. We analyze the concepts in light of the universality and diversity of the structural makeup of protein materials and discuss the findings in the context of potential fundamental evolutionary principles that control their nanoscale structure. We conclude with a discussion of multiscale science in biology and de novo materials design. PMID:20676305

  19. Characterizing Microbe-Environment Interactions Through Experimental Evolution: The Autonomous Adaptive Directed Evolution Chamber

    NASA Astrophysics Data System (ADS)

    Ibanez, C. R.; Blaich, J.; Owyang, S.; Storrs, A.; Moffet, A.; Wong, N.; Zhou, J.; Gentry, D.

    2015-12-01

    We are developing a laboratory system for studying micro- to meso-scale interactions between microorganisms and their physicochemical environments. The Autonomous Adaptive Directed Evolution Chamber (AADEC) cultures microorganisms in controlled,small-scale geochemical environments. It observes corresponding microbial interactions to these environments and has the ability to adjust thermal, chemical, and other parameters in real time in response to these interactions. In addition to the sensed data, the system allows the generation of time-resolved ecological, genomic, etc. samples on the order of microbial generations. The AADEC currently houses cultures in liquid media and controls UVC radiation, heat exposure, and nutrient supply. In a proof-of-concept experimental evolution application, it can increase UVC radiation resistance of Escherichia coli cultures by iteratively exposing them to UVC and allowing the surviving cells to regrow. A baseline characterization generated a million fold resistance increase. This demonstration uses a single-well growth chamber prototype, but it was limited by scalability. We have expanded upon this system by implementing a microwell plate compatible fluidics system and sensor housing. This microwell plate system increases the diversity of microbial interactions seen in response to the geochemical environments generated by the system, allowing greater control over individual cultures' environments and detection of rarer events. The custom microfluidic card matches the footprint of a standard microwell plate. This card enables controllable fluid flow between wells and introduces multiple separate exposure and sensor chambers, increasing the variety of sensors compatible with the system. This gives the device control over scale and the interconnectedness of environments within the system. The increased controllability of the multiwell system provides a platform for implementing machine learning algorithms that will autonomously

  20. Evolution of protein interactions: from interactomes to interfaces.

    PubMed

    Andreani, Jessica; Guerois, Raphael

    2014-07-15

    Protein-protein interactions lie at the heart of most cellular processes. Many experimental and computational studies aim to deepen our understanding of these interactions and improve our capacity to predict them. In this respect, the evolutionary perspective is most interesting, since the preservation of structure and function puts constraints on the evolution of proteins and their interactions. However, uncovering these constraints remains a challenge, and the description and detection of evolutionary signals in protein-protein interactions is currently a very active field of research. Here, we review recent works dissecting the mechanisms of protein-protein interaction evolution and exploring how to use evolutionary information to predict interactions, both at the global level of the interactome and at the detailed level of protein-protein interfaces. We first present to what extent protein-protein interactions are found to be conserved within interactomes and which properties can influence their conservation. We then discuss the evolutionary and co-evolutionary pressures applied on protein-protein interfaces. Finally, we describe how the computational prediction of interfaces can benefit from evolutionary inputs. PMID:24853495

  1. Statistics of knots, geometry of conformations, and evolution of proteins.

    PubMed

    Lua, Rhonald C; Grosberg, Alexander Y

    2006-05-01

    Like shoelaces, the backbones of proteins may get entangled and form knots. However, only a few knots in native proteins have been identified so far. To more quantitatively assess the rarity of knots in proteins, we make an explicit comparison between the knotting probabilities in native proteins and in random compact loops. We identify knots in proteins statistically, applying the mathematics of knot invariants to the loops obtained by complementing the protein backbone with an ensemble of random closures, and assigning a certain knot type to a given protein if and only if this knot dominates the closure statistics (which tells us that the knot is determined by the protein and not by a particular method of closure). We also examine the local fractal or geometrical properties of proteins via computational measurements of the end-to-end distance and the degree of interpenetration of its subchains. Although we did identify some rather complex knots, we show that native conformations of proteins have statistically fewer knots than random compact loops, and that the local geometrical properties, such as the crumpled character of the conformations at a certain range of scales, are consistent with the rarity of knots. From these, we may conclude that the known "protein universe" (set of native conformations) avoids knots. However, the precise reason for this is unknown--for instance, if knots were removed by evolution due to their unfavorable effect on protein folding or function or due to some other unidentified property of protein evolution.

  2. Statistics of knots, geometry of conformations, and evolution of proteins.

    PubMed

    Lua, Rhonald C; Grosberg, Alexander Y

    2006-05-01

    Like shoelaces, the backbones of proteins may get entangled and form knots. However, only a few knots in native proteins have been identified so far. To more quantitatively assess the rarity of knots in proteins, we make an explicit comparison between the knotting probabilities in native proteins and in random compact loops. We identify knots in proteins statistically, applying the mathematics of knot invariants to the loops obtained by complementing the protein backbone with an ensemble of random closures, and assigning a certain knot type to a given protein if and only if this knot dominates the closure statistics (which tells us that the knot is determined by the protein and not by a particular method of closure). We also examine the local fractal or geometrical properties of proteins via computational measurements of the end-to-end distance and the degree of interpenetration of its subchains. Although we did identify some rather complex knots, we show that native conformations of proteins have statistically fewer knots than random compact loops, and that the local geometrical properties, such as the crumpled character of the conformations at a certain range of scales, are consistent with the rarity of knots. From these, we may conclude that the known "protein universe" (set of native conformations) avoids knots. However, the precise reason for this is unknown--for instance, if knots were removed by evolution due to their unfavorable effect on protein folding or function or due to some other unidentified property of protein evolution. PMID:16710448

  3. Determinants of the rate of protein sequence evolution

    PubMed Central

    Zhang, Jianzhi; Yang, Jian-Rong

    2015-01-01

    The rate and mechanism of protein sequence evolution have been central questions in evolutionary biology since the 1960s. Although the rate of protein sequence evolution depends primarily on the level of functional constraint, exactly what constitutes functional constraint has remained unclear. The increasing availability of genomic data has allowed for much needed empirical examinations on the nature of functional constraint. These studies found that the evolutionary rate of a protein is predominantly influenced by its expression level rather than functional importance. A combination of theoretical and empirical analyses have identified multiple mechanisms behind these observations and demonstrated a prominent role that selection against errors in molecular and cellular processes plays in protein evolution. PMID:26055156

  4. Adaptable Lipid Matrix Promotes Protein-Protein Association in Membranes.

    PubMed

    Kuznetsov, Andrey S; Polyansky, Anton A; Fleck, Markus; Volynsky, Pavel E; Efremov, Roman G

    2015-09-01

    The cell membrane is "stuffed" with proteins, whose transmembrane (TM) helical domains spontaneously associate to form functionally active complexes. For a number of membrane receptors, a modulation of TM domains' oligomerization has been shown to contribute to the development of severe pathological states, thus calling for detailed studies of the atomistic aspects of the process. Despite considerable progress achieved so far, several crucial questions still remain: How do the helices recognize each other in the membrane? What is the driving force of their association? Here, we assess the dimerization free energy of TM helices along with a careful consideration of the interplay between the structure and dynamics of protein and lipids using atomistic molecular dynamics simulations in the hydrated lipid bilayer for three different model systems - TM fragments of glycophorin A, polyalanine and polyleucine peptides. We observe that the membrane driven association of TM helices exhibits a prominent entropic character, which depends on the peptide sequence. Thus, a single TM peptide of a given composition induces strong and characteristic perturbations in the hydrophobic core of the bilayer, which may facilitate the initial "communication" between TM helices even at the distances of 20-30 Å. Upon tight helix-helix association, the immobilized lipids accommodate near the peripheral surfaces of the dimer, thus disturbing the packing of the surrounding. The dimerization free energy of the modeled peptides corresponds to the strength of their interactions with lipids inside the membrane being the lowest for glycophorin A and similarly higher for both homopolymers. We propose that the ability to accommodate lipid tails determines the dimerization strength of TM peptides and that the lipid matrix directly governs their association. PMID:26575933

  5. Highly specific protein-protein interactions, evolution and negative design.

    PubMed

    Sear, Richard P

    2004-12-01

    We consider highly specific protein-protein interactions in proteomes of simple model proteins. We are inspired by the work of Zarrinpar et al (2003 Nature 426 676). They took a binding domain in a signalling pathway in yeast and replaced it with domains of the same class but from different organisms. They found that the probability of a protein binding to a protein from the proteome of a different organism is rather high, around one half. We calculate the probability of a model protein from one proteome binding to the protein of a different proteome. These proteomes are obtained by sampling the space of functional proteomes uniformly. In agreement with Zarrinpar et al we find that the probability of a protein binding a protein from another proteome is rather high, of order one tenth. Our results, together with those of Zarrinpar et al, suggest that designing, say, a peptide to block or reconstitute a single signalling pathway, without affecting any other pathways, requires knowledge of all the partners of the class of binding domains the peptide is designed to mimic. This knowledge is required to use negative design to explicitly design out interactions of the peptide with proteins other than its target. We also found that patches that are required to bind with high specificity evolve more slowly than those that are required only to not bind to any other patch. This is consistent with some analysis of sequence data for proteins engaged in highly specific interactions.

  6. Evolution and physics in comparative protein structure modeling.

    PubMed

    Fiser, András; Feig, Michael; Brooks, Charles L; Sali, Andrej

    2002-06-01

    From a physical perspective, the native structure of a protein is a consequence of physical forces acting on the protein and solvent atoms during the folding process. From a biological perspective, the native structure of proteins is a result of evolution over millions of years. Correspondingly, there are two types of protein structure prediction methods, de novo prediction and comparative modeling. We review comparative protein structure modeling and discuss the incorporation of physical considerations into the modeling process. A good starting point for achieving this aim is provided by comparative modeling by satisfaction of spatial restraints. Incorporation of physical considerations is illustrated by an inclusion of solvation effects into the modeling of loops.

  7. A complex-centric view of protein network evolution.

    PubMed

    Yosef, Nir; Kupiec, Martin; Ruppin, Eytan; Sharan, Roded

    2009-07-01

    The recent availability of protein-protein interaction networks for several species makes it possible to study protein complexes in an evolutionary context. In this article, we present a novel network-based framework for reconstructing the evolutionary history of protein complexes. Our analysis is based on generalizing evolutionary measures for single proteins to the level of whole subnetworks, comprehensively considering a broad set of computationally derived complexes and accounting for both sequence and interaction changes. Specifically, we compute sets of orthologous complexes across species, and use these to derive evolutionary rate and age measures for protein complexes. We observe significant correlations between the evolutionary properties of a complex and those of its member proteins, suggesting that protein complexes form early in evolution and evolve as coherent units. Additionally, our approach enables us to directly quantify the extent to which gene duplication has played a role in the evolution of complexes. We find that about one quarter of the sets of orthologous complexes have originated from evolutionary cores of homodimers that underwent duplication and divergence, testifying to the important role of gene duplication in protein complex evolution. PMID:19465379

  8. Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition.

    PubMed

    Celedon, Jose M; Cline, Kenneth

    2013-02-01

    Protein trafficking and localization in plastids involve a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to the organelle to avoid aggregation in the aqueous compartments. Soluble proteins faced a different kind of problem since some had to be transported across three membranes to reach their destination. Early studies suggested that chloroplasts addressed these issues by adapting ancient-prokaryotic machineries and integrating them with novel-eukaryotic systems, a process called 'conservative sorting'. In the last decade, detailed biochemical, genetic, and structural studies have unraveled the mechanisms of protein targeting and localization in chloroplasts, suggesting a highly integrated scheme where ancient and novel systems collaborate at different stages of the process. In this review we focus on the differences and similarities between chloroplast ancestral translocases and their prokaryotic relatives to highlight known modifications that adapted them to the eukaryotic situation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.

  9. Adaptive evolution of complex innovations through stepwise metabolic niche expansion.

    PubMed

    Szappanos, Balázs; Fritzemeier, Jonathan; Csörgő, Bálint; Lázár, Viktória; Lu, Xiaowen; Fekete, Gergely; Bálint, Balázs; Herczeg, Róbert; Nagy, István; Notebaart, Richard A; Lercher, Martin J; Pál, Csaba; Papp, Balázs

    2016-01-01

    A central challenge in evolutionary biology concerns the mechanisms by which complex metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic innovations accessible through the addition of a single reaction serve as stepping stones towards the later establishment of complex metabolic features in another environment. We demonstrate the feasibility of this hypothesis through three complementary analyses. First, using genome-scale metabolic modelling, we show that complex metabolic innovations in Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic approaches, we demonstrate that the acquisition patterns of complex metabolic pathways during the evolutionary history of bacterial genomes support the hypothesis. Third, we show how adaptation of laboratory populations of E. coli to one carbon source facilitates the later adaptation to another carbon source. Our work demonstrates how complex innovations can evolve through series of adaptive steps without the need to invoke non-adaptive processes. PMID:27197754

  10. Trichinella spiralis: the evolution of adaptation and parasitism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parasitism among nematodes has occurred in multiple, independent events. Deciphering processes that drive species diversity and adaptation are keys to understanding parasitism and advancing control strategies. Studies have been put forth on morphological and physiological aspects of parasitism and a...

  11. Interplay between chaperones and protein disorder promotes the evolution of protein networks.

    PubMed

    Pechmann, Sebastian; Frydman, Judith

    2014-06-01

    Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the importance of the cellular

  12. Interplay between Chaperones and Protein Disorder Promotes the Evolution of Protein Networks

    PubMed Central

    Pechmann, Sebastian; Frydman, Judith

    2014-01-01

    Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the importance of the cellular

  13. A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation.

    PubMed

    Gomez-Mestre, Ivan; Jovani, Roger

    2013-11-22

    An ongoing new synthesis in evolutionary theory is expanding our view of the sources of heritable variation beyond point mutations of fixed phenotypic effects to include environmentally sensitive changes in gene regulation. This expansion of the paradigm is necessary given ample evidence for a heritable ability to alter gene expression in response to environmental cues. In consequence, single genotypes are often capable of adaptively expressing different phenotypes in different environments, i.e. are adaptively plastic. We present an individual-based heuristic model to compare the adaptive dynamics of populations composed of plastic or non-plastic genotypes under a wide range of scenarios where we modify environmental variation, mutation rate and costs of plasticity. The model shows that adaptive plasticity contributes to the maintenance of genetic variation within populations, reduces bottlenecks when facing rapid environmental changes and confers an overall faster rate of adaptation. In fluctuating environments, plasticity is favoured by selection and maintained in the population. However, if the environment stabilizes and costs of plasticity are high, plasticity is reduced by selection, leading to genetic assimilation, which could result in species diversification. More broadly, our model shows that adaptive plasticity is a common consequence of selection under environmental heterogeneity, and hence a potentially common phenomenon in nature. Thus, taking adaptive plasticity into account substantially extends our view of adaptive evolution.

  14. Evolution of Ftz protein function in insects.

    PubMed

    Alonso, C R; Maxton-Kuechenmeister, J; Akam, M

    2001-09-18

    The Drosophila gene fushi tarazu (ftz) encodes a homeodomain-containing transcriptional regulator (Ftz) required at several stages during development. Drosophila melanogaster ftz (Dm-ftz) is first expressed in seven stripes defining alternate parasegments of the embryo--a "pair-rule" segmentation function [1, 2]. It is then expressed in specific neural precursor cells in the central nervous system and finally in the developing hindgut [3]. An Orthopteran ortholog of ftz (Sg-ftz, formally Dax) has been isolated from the grasshopper Schistocerca gregaria [4]. The pattern of Sg-ftz expression in Schistocerca embryos suggests that some developmental roles of the ftz gene are likely to be conserved between these two species (e.g., CNS functions) while others may have diverged (e.g., segmentation functions). To test whether the function of the Ftz protein itself differs between these two species, here we compare the functions of Sg-Ftz and Dm-Ftz proteins by expressing both in Drosophila embryos. Sg-ftz mimics only poorly several segmentation roles of Dm-ftz (engrailed activation, wingless repression, and embryonic cuticle transformation). However, the two proteins are similarly active in the rescue of a CNS-specific ftz mutant. These findings argue that this ftz CNS function is mediated by conserved parts of the protein, while efficient pair-rule function requires sequences present specifically in the Drosophila protein. PMID:11566109

  15. The expansion of amino-acid repeats is not associated to adaptive evolution in mammalian genes

    PubMed Central

    2009-01-01

    Background The expansion of amino acid repeats is determined by a high mutation rate and can be increased or limited by selection. It has been suggested that recent expansions could be associated with the potential of adaptation to new environments. In this work, we quantify the strength of this association, as well as the contribution of potential confounding factors. Results Mammalian positively selected genes have accumulated more recent amino acid repeats than other mammalian genes. However, we found little support for an accelerated evolutionary rate as the main driver for the expansion of amino acid repeats. The most significant predictors of amino acid repeats are gene function and GC content. There is no correlation with expression level. Conclusions Our analyses show that amino acid repeat expansions are causally independent from protein adaptive evolution in mammalian genomes. Relaxed purifying selection or positive selection do not associate with more or more recent amino acid repeats. Their occurrence is slightly favoured by the sequence context but mainly determined by the molecular function of the gene. PMID:20021652

  16. Molecular Architecture and Evolution of a Modular Spider Silk Protein Gene

    NASA Astrophysics Data System (ADS)

    Hayashi, Cheryl Y.; Lewis, Randolph V.

    2000-02-01

    Spider flagelliform silk is one of the most elastic natural materials known. Extensive sequencing of spider silk genes has shown that the exons and introns of the flagelliform gene underwent intragenic concerted evolution. The intron sequences are more homogenized within a species than are the exons. This pattern can be explained by extreme mutation and recombination pressures on the internally repetitive exons. The iterated sequences within exons encode protein structures that are critical to the function of silks. Therefore, attributes that make silks exceptional biomaterials may also hinder the fixation of optimally adapted protein sequences.

  17. Comparative Analysis of Testis Protein Evolution in Rodents

    PubMed Central

    Turner, Leslie M.; Chuong, Edward B.; Hoekstra, Hopi E.

    2008-01-01

    Genes expressed in testes are critical to male reproductive success, affecting spermatogenesis, sperm competition, and sperm–egg interaction. Comparing the evolution of testis proteins at different taxonomic levels can reveal which genes and functional classes are targets of natural and sexual selection and whether the same genes are targets among taxa. Here we examine the evolution of testis-expressed proteins at different levels of divergence among three rodents, mouse (Mus musculus), rat (Rattus norvegicus), and deer mouse (Peromyscus maniculatus), to identify rapidly evolving genes. Comparison of expressed sequence tags (ESTs) from testes suggests that proteins with testis-specific expression evolve more rapidly on average than proteins with maximal expression in other tissues. Genes with the highest rates of evolution have a variety of functional roles including signal transduction, DNA binding, and egg–sperm interaction. Most of these rapidly evolving genes have not been identified previously as targets of selection in comparisons among more divergent mammals. To determine if these genes are evolving rapidly among closely related species, we sequenced 11 of these genes in six Peromyscus species and found evidence for positive selection in five of them. Together, these results demonstrate rapid evolution of functionally diverse testis-expressed proteins in rodents, including the identification of amino acids under lineage-specific selection in Peromyscus. Evidence for positive selection among closely related species suggests that changes in these proteins may have consequences for reproductive isolation. PMID:18689890

  18. Protein evolution in the context of Drosophila development.

    PubMed

    Davis, Jerel C; Brandman, Onn; Petrov, Dmitri A

    2005-06-01

    The tempo at which a protein evolves depends not only on the rate at which mutations arise but also on the selective effects that those mutations have at the organismal level. It is intuitive that proteins functioning during different stages of development may be predisposed to having mutations of different selective effects. For example, it has been hypothesized that changes to proteins expressed during early development should have larger phenotypic consequences because later stages depend on them. Conversely, changes to proteins expressed much later in development should have smaller consequences at the organismal level. Here we assess whether proteins expressed at different times during Drosophila development vary systematically in their rates of evolution. We find that proteins expressed early in development and particularly during mid-late embryonic development evolve unusually slowly. In addition, proteins expressed in adult males show an elevated evolutionary rate. These two trends are independent of each other and cannot be explained by peculiar rates of mutation or levels of codon bias. Moreover, the observed patterns appear to hold across several functional classes of genes, although the exact developmental time of the slowest protein evolution differs among each class. We discuss our results in connection with data on the evolution of development.

  19. Collective Dynamics Differentiates Functional Divergence in Protein Evolution

    PubMed Central

    Glembo, Tyler J.; Farrell, Daniel W.; Gerek, Z. Nevin; Thorpe, M. F.; Ozkan, S. Banu

    2012-01-01

    Protein evolution is most commonly studied by analyzing related protein sequences and generating ancestral sequences through Bayesian and Maximum Likelihood methods, and/or by resurrecting ancestral proteins in the lab and performing ligand binding studies to determine function. Structural and dynamic evolution have largely been left out of molecular evolution studies. Here we incorporate both structure and dynamics to elucidate the molecular principles behind the divergence in the evolutionary path of the steroid receptor proteins. We determine the likely structure of three evolutionarily diverged ancestral steroid receptor proteins using the Zipping and Assembly Method with FRODA (ZAMF). Our predictions are within ∼2.7 Å all-atom RMSD of the respective crystal structures of the ancestral steroid receptors. Beyond static structure prediction, a particular feature of ZAMF is that it generates protein dynamics information. We investigate the differences in conformational dynamics of diverged proteins by obtaining the most collective motion through essential dynamics. Strikingly, our analysis shows that evolutionarily diverged proteins of the same family do not share the same dynamic subspace, while those sharing the same function are simultaneously clustered together and distant from those, that have functionally diverged. Dynamic analysis also enables those mutations that most affect dynamics to be identified. It correctly predicts all mutations (functional and permissive) necessary to evolve new function and ∼60% of permissive mutations necessary to recover ancestral function. PMID:22479170

  20. Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity

    PubMed Central

    Bartlett, Madelaine E.; Whipple, Clinton J.

    2013-01-01

    Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism’s phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL) cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic) diversity could come to represent part of natural selection’s source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; altered protein–protein interactions; altered domain content; altered activity as an activator or repressor; altered protein stability; and hypomorphic and hypermorphic alleles. There was also variability in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution. PMID:24124420

  1. Distinct genomic signatures of adaptation in pre- and postnatal environments during human evolution.

    PubMed

    Uddin, Monica; Goodman, Morris; Erez, Offer; Romero, Roberto; Liu, Guozhen; Islam, Munirul; Opazo, Juan C; Sherwood, Chet C; Grossman, Lawrence I; Wildman, Derek E

    2008-03-01

    The human genome evolution project seeks to reveal the genetic underpinnings of key phenotypic features that are distinctive of humans, such as a greatly enlarged cerebral cortex, slow development, and long life spans. This project has focused predominantly on genotypic changes during the 6-million-year descent from the last common ancestor (LCA) of humans and chimpanzees. Here, we argue that adaptive genotypic changes during earlier periods of evolutionary history also helped shape the distinctive human phenotype. Using comparative genome sequence data from 10 vertebrate species, we find a signature of human ancestry-specific adaptive evolution in 1,240 genes during their descent from the LCA with rodents. We also find that the signature of adaptive evolution is significantly different for highly expressed genes in human fetal and adult-stage tissues. Functional annotation clustering shows that on the ape stem lineage, an especially evident adaptively evolved biological pathway contains genes that function in mitochondria, are crucially involved in aerobic energy production, and are highly expressed in two energy-demanding tissues, heart and brain. Also, on this ape stem lineage, there was adaptive evolution among genes associated with human autoimmune and aging-related diseases. During more recent human descent, the adaptively evolving, highly expressed genes in fetal brain are involved in mediating neuronal connectivity. Comparing adaptively evolving genes from pre- and postnatal-stage tissues suggests that different selective pressures act on the development vs. the maintenance of the human phenotype.

  2. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution

    NASA Astrophysics Data System (ADS)

    Slater, Graham J.

    2015-04-01

    A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein-Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.

  3. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution.

    PubMed

    Slater, Graham J

    2015-04-21

    A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein-Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.

  4. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution

    PubMed Central

    Slater, Graham J.

    2015-01-01

    A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein–Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa. PMID:25901311

  5. Adaptive resolution simulation of an atomistic protein in MARTINI water

    SciTech Connect

    Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J.; Praprotnik, Matej

    2014-02-07

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecular dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations.

  6. Net protein oxidation is adapted to dietary protein intake in domestic cats (Felis silvestris catus).

    PubMed

    Russell, Kim; Murgatroyd, Peter R; Batt, Roger M

    2002-03-01

    Cats have a requirement for dietary protein two to three times that of omnivores and herbivores. This was reported to be due to the hepatic catabolic enzymes of this species being set to a permanently high level and, therefore, showing little adaptation to low dietary protein. A major mechanism for adapting to dietary protein in other species is amino acid oxidation (hereafter referred to as protein oxidation), and the objective of this study was to determine whether protein oxidation in cats was correlated with protein intake. Net protein and net fat oxidation in six adult cats were studied directly from gas exchanges using indirect calorimetry, after feeding moderate protein (MP; 35% energy) and high protein (HP; 52% energy) diets. Protein oxidation was significantly higher (P < 0.05) when cats were fed the HP diet (28.4 plus minus 0.7 mg/min) rather than the MP diet (20.4 plus minus 0.8 mg/min). Fat oxidation was significantly higher (P < 0.05) when cats consumed the MP diet (9.0 plus minus 0.7 mg/min) rather than the HP diet (4.7 plus minus 0.5 mg/min). Protein oxidation was significantly correlated (linear regression, R(2) = 46.0, P < 0.05) with protein intake such that the mean ratio of 18-h oxidation: 18-h intake was 1.2 on both diets. Fat oxidation was significantly correlated (linear regression, R(2) = 18.9, P < 0.05) with fat intake such that the mean ratio of 18-h fat oxidation: 18-h fat intake was 1.1 (MP) and 0.9 (HP). This study demonstrated that cats adapt net protein oxidation at these levels of protein intake, and the reason for the high dietary protein requirement of this species is, therefore, unclear.

  7. Time in Redox Adaptation Processes: From Evolution to Hormesis

    PubMed Central

    Sthijns, Mireille M. J. P. E.; Weseler, Antje R.; Bast, Aalt; Haenen, Guido R. M. M.

    2016-01-01

    Life on Earth has to adapt to the ever changing environment. For example, due to introduction of oxygen in the atmosphere, an antioxidant network evolved to cope with the exposure to oxygen. The adaptive mechanisms of the antioxidant network, specifically the glutathione (GSH) system, are reviewed with a special focus on the time. The quickest adaptive response to oxidative stress is direct enzyme modification, increasing the GSH levels or activating the GSH-dependent protective enzymes. After several hours, a hormetic response is seen at the transcriptional level by up-regulating Nrf2-mediated expression of enzymes involved in GSH synthesis. In the long run, adaptations occur at the epigenetic and genomic level; for example, the ability to synthesize GSH by phototrophic bacteria. Apparently, in an adaptive hormetic response not only the dose or the compound, but also time, should be considered. This is essential for targeted interventions aimed to prevent diseases by successfully coping with changes in the environment e.g., oxidative stress. PMID:27690013

  8. Teaching Noncovalent Interactions Using Protein Molecular Evolution

    ERIC Educational Resources Information Center

    Fornasari, Maria Silvina; Parisi, Gustavo; Echave, Julian

    2008-01-01

    Noncovalent interactions and physicochemical properties of amino acids are important topics in biochemistry courses. Here, we present a computational laboratory where the capacity of each of the 20 amino acids to maintain different noncovalent interactions are used to investigate the stabilizing forces in a set of proteins coming from organisms…

  9. Evolution of Respiratory Proteins across the Pancrustacea.

    PubMed

    Burmester, Thorsten

    2015-11-01

    Respiratory proteins enhance the capacity of the blood for oxygen transport and support intracellular storage and delivery of oxygen. Hemocyanin and hemoglobin are the respiratory proteins that occur in the Pancrustacea. The copper-containing hemocyanins evolved from phenoloxidases in the stem lineage of arthropods. For a long time, hemocyanins had only been known from the malacostracan crustaceans but recent studies identified hemocyanin also in Remipedia, Ostracoda, and Branchiura. Hemoglobins are common in the Branchiopoda but have also been sporadically found in other crustacean classes (Malacostraca, Copepoda, Thecostraca). Respiratory proteins had long been considered unnecessary in the hexapods because of the tracheal system. Only chironomids, some backswimmers, and the horse botfly, which all live under hypoxic conditions, were known exceptions and possess hemoglobins. However, recent data suggest that hemocyanins occur in most ametabolous and hemimetabolous insects. Phylogenetic analysis showed the hemocyanins of insects and Remipedia to be similar, suggesting a close relationship of these taxa. Hemocyanin has been lost in dragonflies, mayflies, and Eumetabola (Hemiptera + Holometabola). In cockroaches and grasshoppers, hemocyanin expression is restricted to the developing embryo while in adults oxygen is supplied solely by the tracheal system. This pattern suggests that hemocyanin was the oxygen-transport protein in the hemolymph of the last common ancestor of the pancrustaceans. The loss was probably associated with miniaturization, a period of restricted availability of oxygen, a change in life-style, or morphological changes. Once lost, hemocyanin was not regained. Some pancrustaceans also possess cellular globin genes with uncertain functions, which are expressed at low levels. When a respiratory protein was again required, hemoglobins evolved several times independently from cellular globins. PMID:26130703

  10. Evolution of Protein-binding DNA Sequences through Competitive Binding

    NASA Astrophysics Data System (ADS)

    Peng, Weiqun; Gerland, Ulrich; Hwa, Terence; Levine, Herbert

    2002-03-01

    The dynamics of in vitro DNA evolution controlled via competitive binding of DNA sequences to proteins has been explored in a recent serial transfer experiment footnote B. Dubertret, S.Liu, Q. Ouyang, A. Libchaber, Phys. Rev. Lett. 86, 6022 (2001).. Motivated by the experiment, we investigate a continuum model for this evolution process in various parameter regimes. We establish a self-consistent mean-field evolution equation, determine its dynamical properties and finite population size corrections. In addition, we discuss the experimental implications of our results.

  11. Intra-plastid protein trafficking; how plant cells adapted prokaryotic mechanisms to the eukaryotic condition

    PubMed Central

    Celedon, Jose M.; Cline, Kenneth

    2012-01-01

    Protein trafficking and localization in plastids involves a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to the organelle to avoid aggregation in the aqueous compartments. Soluble proteins faced a different kind of problem since some had to be transported across three membranes to reach their destination. Early studies suggested that chloroplasts addressed these issues by adapting ancient-prokaryotic machineries and integrating them with novel-eukaryotic systems, a process called ‘conservative sorting’. In the last decade, detailed biochemical, genetic, and structural studies have unraveled the mechanisms of protein targeting and localization in chloroplasts, suggesting a highly integrated scheme where ancient and novel systems collaborate at different stages of the process. In this review we focus on the differences and similarities between chloroplast ancestral translocases and their prokaryotic relatives to highlight known modifications that adapted them to the eukaryotic situation. PMID:22750312

  12. The evolution of human cells in terms of protein innovation.

    PubMed

    Sardar, Adam J; Oates, Matt E; Fang, Hai; Forrest, Alistair R R; Kawaji, Hideya; Gough, Julian; Rackham, Owen J L

    2014-06-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type-specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type-specific domain architectures.

  13. Exploring the evolution of protein function in Archaea

    PubMed Central

    2012-01-01

    Background Despite recent progress in studies of the evolution of protein function, the questions what were the first functional protein domains and what were their basic building blocks remain unresolved. Previously, we introduced the concept of elementary functional loops (EFLs), which are the functional units of enzymes that provide elementary reactions in biochemical transformations. They are presumably descendants of primordial catalytic peptides. Results We analyzed distant evolutionary connections between protein functions in Archaea based on the EFLs comprising them. We show examples of the involvement of EFLs in new functional domains, as well as reutilization of EFLs and functional domains in building multidomain structures and protein complexes. Conclusions Our analysis of the archaeal superkingdom yields the dominating mechanisms in different periods of protein evolution, which resulted in several levels of the organization of biochemical function. First, functional domains emerged as combinations of prebiotic peptides with the very basic functions, such as nucleotide/phosphate and metal cofactor binding. Second, domain recombination brought to the evolutionary scene the multidomain proteins and complexes. Later, reutilization and de novo design of functional domains and elementary functional loops complemented evolution of protein function. PMID:22646318

  14. Massively parallel sampling of lattice proteins reveals foundations of thermal adaptation

    NASA Astrophysics Data System (ADS)

    Venev, Sergey V.; Zeldovich, Konstantin B.

    2015-08-01

    Evolution of proteins in bacteria and archaea living in different conditions leads to significant correlations between amino acid usage and environmental temperature. The origins of these correlations are poorly understood, and an important question of protein theory, physics-based prediction of types of amino acids overrepresented in highly thermostable proteins, remains largely unsolved. Here, we extend the random energy model of protein folding by weighting the interaction energies of amino acids by their frequencies in protein sequences and predict the energy gap of proteins designed to fold well at elevated temperatures. To test the model, we present a novel scalable algorithm for simultaneous energy calculation for many sequences in many structures, targeting massively parallel computing architectures such as graphics processing unit. The energy calculation is performed by multiplying two matrices, one representing the complete set of sequences, and the other describing the contact maps of all structural templates. An implementation of the algorithm for the CUDA platform is available at http://www.github.com/kzeldovich/galeprot and calculates protein folding energies over 250 times faster than a single central processing unit. Analysis of amino acid usage in 64-mer cubic lattice proteins designed to fold well at different temperatures demonstrates an excellent agreement between theoretical and simulated values of energy gap. The theoretical predictions of temperature trends of amino acid frequencies are significantly correlated with bioinformatics data on 191 bacteria and archaea, and highlight protein folding constraints as a fundamental selection pressure during thermal adaptation in biological evolution.

  15. Beyond directed evolution - semi-rational protein engineering and design

    PubMed Central

    Lutz, Stefan

    2010-01-01

    Over the last two decades, directed evolution has transformed the field of protein engineering. The advances in understanding protein structure and function, in no insignificant part a result of directed evolution studies, are increasingly empowering scientists and engineers to device more effective methods for manipulating and tailoring biocatalysts. Abandoning large combinatorial libraries, the focus has shifted to small, functionally-rich libraries and rational design. A critical component to the success of these emerging engineering strategies are computational tools for the evaluation of protein sequence datasets and the analysis of conformational variations of amino acids in proteins. Highlighting the opportunities and limitations of such approaches, this review focuses on recent engineering and design examples that require screening or selection of small libraries. PMID:20869867

  16. New microRNAs in Drosophila--birth, death and cycles of adaptive evolution.

    PubMed

    Lyu, Yang; Shen, Yang; Li, Heng; Chen, Yuxin; Guo, Li; Zhao, Yixin; Hungate, Eric; Shi, Suhua; Wu, Chung-I; Tang, Tian

    2014-01-01

    The origin and evolution of new microRNAs (miRNAs) is important because they can impact the transcriptome broadly. As miRNAs can potentially emerge constantly and rapidly, their rates of birth and evolution have been extensively debated. However, most new miRNAs identified appear not to be biologically significant. After an extensive search, we identified 12 new miRNAs that emerged de novo in Drosophila melanogaster in the last 4 million years (Myrs) and have been evolving adaptively. Unexpectedly, even though they are adaptively evolving at birth, more than 94% of such new miRNAs disappear over time. They provide selective advantages, but only for a transient evolutionary period. After 30 Myrs, all surviving miRNAs make the transition from the adaptive phase of rapid evolution to the conservative phase of slow evolution, apparently becoming integrated into the transcriptional network. During this transition, the expression shifts from being tissue-specific, predominantly in testes and larval brain/gonads/imaginal discs, to a broader distribution in many other tissues. Interestingly, a measurable fraction (20-30%) of these conservatively evolving miRNAs experience "evolutionary rejuvenation" and begin to evolve rapidly again. These rejuvenated miRNAs then start another cycle of adaptive - conservative evolution. In conclusion, the selective advantages driving evolution of miRNAs are themselves evolving, and sometimes changing direction, which highlights the regulatory roles of miRNAs.

  17. Rapid evolution of outer egg membrane proteins in the Drosophila melanogaster subgroup: a case of ecologically driven evolution of female reproductive traits.

    PubMed

    Jagadeeshan, Santosh; Singh, Rama S

    2007-04-01

    Although sexual selection has been predominantly used to explain the rapid evolution of sexual traits, eggs of oviparous organisms directly face both the challenges of sexual selection as well as natural selection (environmental challenges, survival in niches, etc.). Being the outermost membrane in most insect eggs, the chorion layer is the interface between the embryo and the environment, thereby serving to protect the egg. Adaptive ecological radiations such as divergence in ovipositional substrate usage and host-plant specializations can therefore influence the evolution of eggshell proteins. We can hypothesize that proteins localized on the outer eggshell may be affected to a greater degree by ecological challenges compared with inner eggshell proteins, and therefore, proteins localized in the outer eggshell (chorion membrane) may evolve differently (faster) than proteins localized in the inner egg membrane (vitelline membrane). We compared the evolutionary divergence of vitelline with chorion membrane proteins in species of the melanogaster subgroup and found that chorion proteins as a group are indeed evolving faster than vitelline membrane proteins. At least one vitelline membrane protein (Vm32E), specifically localized on the outer eggshell, is also evolving faster than other vitelline membrane proteins suggesting that all proteins localized on the outer eggshell may be evolving rapidly. We also found evidence that specific codons in chorion proteins cp15 and cp16 are evolving under positive selection. Polymorphism surveys of cp16 revealed inflated levels of divergence relative to polymorphism in specific regions of the gene, indicating that these regions are under strong selection. At the morphological level, we found notable difference in eggshell surface morphologies between specialist (Drosophila sechellia and Drosophila erecta) and generalist species of Drosophila. We do not know if any of the chorion proteins actually interact with spermatozoids

  18. Selection in the Rapid Evolution of Gamete Recognition Proteins in Marine Invertebrates

    PubMed Central

    Vacquier, Victor D.; Swanson, Willie J.

    2011-01-01

    Animal fertilization is governed by the interaction (binding) of proteins on the surfaces of sperm and egg. In many examples presented herein, fertilization proteins evolve rapidly and show the signature of positive selection (adaptive evolution). This review describes the molecular evolution of fertilization proteins in sea urchins, abalone, and oysters, animals with external fertilization that broadcast their gametes into seawater. Theories regarding the selective forces responsible for the rapid evolution driven by positive selection seen in many fertilization proteins are discussed. This strong selection acting on divergence of interacting fertilization proteins might lead to prezygotic reproductive isolation and be a significant factor in the speciation process. Since only a fraction of all eggs are fertilized and only an infinitesimal fraction of male gametes succeed in fertilizing an egg, gametes are obviously a category of entities subjected to intense selection. It is curious that this is never mentioned in the literature dealing with selection, perhaps because we know so little about fitness differences among gametes.(ErnstMayr, 1997) PMID:21730046

  19. Adaptive evolution of sexual systems in pedunculate barnacles.

    PubMed

    Yusa, Yoichi; Yoshikawa, Mai; Kitaura, Jun; Kawane, Masako; Ozaki, Yuki; Yamato, Shigeyuki; Høeg, Jens T

    2012-03-01

    How and why diverse sexual systems evolve are fascinating evolutionary questions, but few empirical studies have dealt with these questions in animals. Pedunculate (gooseneck) barnacles show such diversity, including simultaneous hermaphroditism, coexistence of dwarf males and hermaphrodites (androdioecy), and coexistence of dwarf males and females (dioecy). Here, we report the first phylogenetically controlled test of the hypothesis that the ultimate cause of the diverse sexual systems and presence of dwarf males in this group is limited mating opportunities for non-dwarf individuals, owing to mating in small groups. Within the pedunculate barnacle phylogeny, dwarf males and females have evolved repeatedly. Females are more likely to evolve in androdioecious than hermaphroditic populations, suggesting that evolution of dwarf males has preceded that of females in pedunculates. Both dwarf males and females are associated with a higher proportion of solitary individuals in the population, corroborating the hypothesis that limited mating opportunities have favoured evolution of these diverse sexual systems, which have puzzled biologists since Darwin.

  20. The evolution and diversification of plant microtubule-associated proteins.

    PubMed

    Gardiner, John

    2013-07-01

    Plant evolution is marked by major advances in structural characteristics that facilitated the highly successful colonization of dry land. Underlying these advances is the evolution of genes encoding specialized proteins that form novel microtubular arrays of the cytoskeleton. This review investigates the evolution of plant families of microtubule-associated proteins (MAPs) through the recently sequenced genomes of Arabidopsis thaliana, Oryza sativa, Selaginella moellendorffii, Physcomitrella patens, Volvox carteri and Chlamydomonas reinhardtii. The families of MAPs examined are AIR9, CLASP, CRIPT, MAP18, MOR1, TON, EB1, AtMAP70, SPR2, SPR1, WVD2 and MAP65 families (abbreviations are defined in the footnote to Table 1). Conjectures are made regarding the evolution of MAPs in plants in relation to the evolution of multicellularity, oriented cell division and vasculature. Angiosperms in particular have high numbers of proteins that are involved in promotion of helical growth or its suppression, and novel plant microtubular structures may have acted as a catalyst for the development of novel plant MAPs. Comparisons of plant MAP gene families with those of animals show that animals may have more flexibility in the structure of their microtubule cytoskeletons than plants, but with both plants and animals possessing many MAP splice variants. PMID:23551562

  1. From lifetime to evolution: timescales of human gut microbiota adaptation.

    PubMed

    Quercia, Sara; Candela, Marco; Giuliani, Cristina; Turroni, Silvia; Luiselli, Donata; Rampelli, Simone; Brigidi, Patrizia; Franceschi, Claudio; Bacalini, Maria Giulia; Garagnani, Paolo; Pirazzini, Chiara

    2014-01-01

    Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota (GM) is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The GM continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations in diet or specific host physiological and immunological needs at different ages. On the other hand, the microbiota plasticity was strategic to face changes in lifestyle and dietary habits along the course of the recent evolutionary history, that has driven the passage from Paleolithic hunter-gathering societies to Neolithic agricultural farmers to modern Westernized societies. PMID:25408692

  2. From lifetime to evolution: timescales of human gut microbiota adaptation

    PubMed Central

    Quercia, Sara; Candela, Marco; Giuliani, Cristina; Turroni, Silvia; Luiselli, Donata; Rampelli, Simone; Brigidi, Patrizia; Franceschi, Claudio; Bacalini, Maria Giulia; Garagnani, Paolo; Pirazzini, Chiara

    2014-01-01

    Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota (GM) is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The GM continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations in diet or specific host physiological and immunological needs at different ages. On the other hand, the microbiota plasticity was strategic to face changes in lifestyle and dietary habits along the course of the recent evolutionary history, that has driven the passage from Paleolithic hunter-gathering societies to Neolithic agricultural farmers to modern Westernized societies. PMID:25408692

  3. Fecundity increase supports adaptive radiation hypothesis in spider web evolution

    PubMed Central

    Coddington, Jonathan A; Agnarsson, Ingi

    2009-01-01

    Identifying the mechanisms driving adaptive radiations is key to explaining the diversity of life. The extreme reliance of spiders upon silk for survival provides an exceptional system in which to link patterns of diversification to adaptive changes in silk use. Most of the world’s 41,000 species of spiders belong to two apical lineages of spiders that exhibit quite different silk ecologies, distinct from their ancestors. Orb spiders spin highly stereotyped webs that are suspended in air and utilize a chemical glue to make them adhesive. RTA clade spiders mostly abandoned silk capture webs altogether. We recently proposed that these two clades present very different evolutionary routes of achieving the same key innovation—escape from the constraints imposed by spinning webs that contain a relatively costly type of physically adhesive cribellate silk. Here, we test the prediction that orb and RTA clade spiders are not only more diverse, but also have higher fecundity than other spiders. We show that RTA clade spiders average 23% higher fecundity and orb spiders average 123% higher fecundity than their ancestors. This supports a functional link between the adaptive escape from cribellate silk and increased resource allocation to reproduction in spiders. PMID:20195450

  4. Fecundity increase supports adaptive radiation hypothesis in spider web evolution.

    PubMed

    Blackledge, Todd A; Coddington, Jonathan A; Agnarsson, Ingi

    2009-11-01

    Identifying the mechanisms driving adaptive radiations is key to explaining the diversity of life. The extreme reliance of spiders upon silk for survival provides an exceptional system in which to link patterns of diversification to adaptive changes in silk use. Most of the world's 41,000 species of spiders belong to two apical lineages of spiders that exhibit quite different silk ecologies, distinct from their ancestors. Orb spiders spin highly stereotyped webs that are suspended in air and utilize a chemical glue to make them adhesive. RTA clade spiders mostly abandoned silk capture webs altogether. We recently proposed that these two clades present very different evolutionary routes of achieving the same key innovation-escape from the constraints imposed by spinning webs that contain a relatively costly type of physically adhesive cribellate silk. Here, we test the prediction that orb and RTA clade spiders are not only more diverse, but also have higher fecundity than other spiders. We show that RTA clade spiders average 23% higher fecundity and orb spiders average 123% higher fecundity than their ancestors. This supports a functional link between the adaptive escape from cribellate silk and increased resource allocation to reproduction in spiders.

  5. Fisheries-induced neutral and adaptive evolution in exploited fish populations and consequences for their adaptive potential

    PubMed Central

    Marty, Lise; Dieckmann, Ulf; Ernande, Bruno

    2015-01-01

    Fishing may induce neutral and adaptive evolution affecting life-history traits, and molecular evidence has shown that neutral genetic diversity has declined in some exploited populations. Here, we theoretically study the interplay between neutral and adaptive evolution caused by fishing. An individual-based eco-genetic model is devised that includes neutral and functional loci in a realistic ecological setting. In line with theoretical expectations, we find that fishing induces evolution towards slow growth, early maturation at small size and higher reproductive investment. We show, first, that the choice of genetic model (based on either quantitative genetics or gametic inheritance) influences the evolutionary recovery of traits after fishing ceases. Second, we analyse the influence of three factors possibly involved in the lack of evolutionary recovery: the strength of selection, the effect of genetic drift and the loss of adaptive potential. We find that evolutionary recovery is hampered by an association of weak selection differentials with reduced additive genetic variances. Third, the contribution of fisheries-induced selection to the erosion of functional genetic diversity clearly dominates that of genetic drift only for the traits related to maturation. Together, our results highlight the importance of taking into account population genetic variability in predictions of eco-evolutionary dynamics. PMID:25667602

  6. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    The community succession mechanism of Acidithiobacillus sp. coupling with adaptive evolution of adsorption performance were systematically investigated. Specifically, the μmax of attached and free cells was increased and peak time was moved ahead, indicating both cell growth of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was promoted. In the mixed strains system, the domination courses of A. thiooxidans was dramatically shortened from 22th day to 15th day, although community structure finally approached to the normal system. Compared to A. ferrooxidans, more positive effects of adaptive evolution on cell growth of A. thiooxidans were shown in either single or mixed strains system. Moreover, higher concentrations of sulfate and ferric ions indicated that both sulfur and iron metabolism was enhanced, especially of A. thiooxidans. Consistently, copper ion production was improved from 65.5 to 88.5 mg/L. This new adaptive evolution and community succession mechanism may be useful for guiding similar bioleaching processes.

  7. Evolution of glucose utilization: Glucokinase and glucokinase regulator protein

    PubMed Central

    Irwin, David M.; Tan, Huanran

    2014-01-01

    Glucose is an essential nutrient that must be distributed throughout the body to provide energy to sustain physiological functions. Glucose is delivered to distant tissues via be blood stream, and complex systems have evolved to maintain the levels of glucose within a narrow physiological range. Phosphorylation of glucose, by glucokinase, is an essential component of glucose homeostasis, both from the regulatory and metabolic point-of-view. Here we review the evolution of glucose utilization from the perspective of glucokinase. We discuss the origin of glucokinase, its evolution within the hexokinase gene family, and the evolution of its interacting regulatory partner, glucokinase regulatory protein (GCKR). Evolution of the structure and sequence of both glucokinase and GCKR have been necessary to optimize glucokinase in its role in glucose metabolism. PMID:24075984

  8. A New Take on John Maynard Smith's Concept of Protein Space for Understanding Molecular Evolution

    PubMed Central

    Hartl, Daniel L.

    2016-01-01

    Much of the public lacks a proper understanding of Darwinian evolution, a problem that can be addressed with new learning and teaching approaches to be implemented both inside the classroom and in less formal settings. Few analogies have been as successful in communicating the basics of molecular evolution as John Maynard Smith’s protein space analogy (1970), in which he compared protein evolution to the transition between the terms WORD and GENE, changing one letter at a time to yield a different, meaningful word (in his example, the preferred path was WORD → WORE → GORE → GONE → GENE). Using freely available computer science tools (Google Books Ngram Viewer), we offer an update to Maynard Smith’s analogy and explain how it might be developed into an exploratory and pedagogical device for understanding the basics of molecular evolution and, more specifically, the adaptive landscape concept. We explain how the device works through several examples and provide resources that might facilitate its use in multiple settings, ranging from public engagement activities to formal instruction in evolution, population genetics, and computational biology. PMID:27736867

  9. Cosmic radiation and evolution of life on earth: Roles of environment, adaptation and selection

    NASA Astrophysics Data System (ADS)

    Todd, P.

    1994-10-01

    The role of ionizing radiation in general, and cosmic radiation in particular, in the evolution of organisms on the earth by adaptation and natural selection is considered in a series of questions: (1) Are there times during the evolution of the earth and of life when genetic material could be exposed to heavy ion radiation? (2) Throughout the course of chemical and biological evolution on the earth, what fraction of environmental mutagenesis could be attributable to cosmic and/or solar ionizing radiation? (3) Is ionizing radiation an agent of adaptation or selection, or both? (4) What can the cladistics of the evolution of genetic repair tell us about the global history of genotoxic selection pressures? (How much genetic diversity can be attributed to the selection of radiation-damage repair processes?

  10. Advances on molecular mechanism of the adaptive evolution of Chiroptera (bats).

    PubMed

    Yunpeng, Liang; Li, Yu

    2015-01-01

    As the second biggest animal group in mammals, Chiroptera (bats) demonstrates many unique adaptive features in terms of flight, echolocation, auditory acuity, feeding habit, hibernation and immune defense, providing an excellent system for understanding the molecular basis of how organisms adapt to the living environments encountered. In this review, we summarize the researches on the molecular mechanism of the adaptive evolution of Chiroptera, especially the recent researches at the genome levels, suggesting a far more complex evolutionary pattern and functional diversity than previously thought. In the future, along with the increasing numbers of Chiroptera species genomes available, new evolutionary patterns and functional divergence will be revealed, which can promote the further understanding of this animal group and the molecular mechanism of adaptive evolution.

  11. Temperate phages both mediate and drive adaptive evolution in pathogen biofilms

    PubMed Central

    Davies, Emily V.; James, Chloe E.; Williams, David; O’Brien, Siobhan; Fothergill, Joanne L.; Haldenby, Sam; Paterson, Steve; Winstanley, Craig

    2016-01-01

    Temperate phages drive genomic diversification in bacterial pathogens. Phage-derived sequences are more common in pathogenic than nonpathogenic taxa and are associated with changes in pathogen virulence. High abundance and mobilization of temperate phages within hosts suggests that temperate phages could promote within-host evolution of bacterial pathogens. However, their role in pathogen evolution has not been experimentally tested. We experimentally evolved replicate populations of Pseudomonas aeruginosa with or without a community of three temperate phages active in cystic fibrosis (CF) lung infections, including the transposable phage, ɸ4, which is closely related to phage D3112. Populations grew as free-floating biofilms in artificial sputum medium, mimicking sputum of CF lungs where P. aeruginosa is an important pathogen and undergoes evolutionary adaptation and diversification during chronic infection. Although bacterial populations adapted to the biofilm environment in both treatments, population genomic analysis revealed that phages altered both the trajectory and mode of evolution. Populations evolving with phages exhibited a greater degree of parallel evolution and faster selective sweeps than populations without phages. Phage ɸ4 integrated randomly into the bacterial chromosome, but integrations into motility-associated genes and regulators of quorum sensing systems essential for virulence were selected in parallel, strongly suggesting that these insertional inactivation mutations were adaptive. Temperate phages, and in particular transposable phages, are therefore likely to facilitate adaptive evolution of bacterial pathogens within hosts. PMID:27382184

  12. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution

    PubMed Central

    Covert, Arthur W.; Lenski, Richard E.; Wilke, Claus O.; Ofria, Charles

    2013-01-01

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions. PMID:23918358

  13. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution.

    PubMed

    Covert, Arthur W; Lenski, Richard E; Wilke, Claus O; Ofria, Charles

    2013-08-20

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions.

  14. Experimental evolution of a bacteriophage virus reveals the trajectory of adaptation across a fecundity/longevity trade-off.

    PubMed

    Heineman, Richard H; Brown, Sam P

    2012-01-01

    Life history theory attempts to account for how organisms lead their lives, balancing the conflicting demands of reproduction and survival. Here, we track the genomic and phenotypic evolution of the bacteriophage virus T7 across a postulated fecundity/longevity constraint. We adapted T7 to a challenging survival environment (6M urea). Our evolved strain displayed a significant improvement in propagule survival, coupled with a significant loss of fecundity (reduced growth rate on host cells). However, the increased resistance to urea did not generalise to increased resistance against temperature stress, highlighting that propagule durability is environment dependent. Previous comparative studies predicted that changes in propagule resistance would be mediated by changes in capsid proteins or gene deletions. In contrast, we found that point mutations in internal core protein genes (6.7 and 16) were responsible for the increased urea resistance of our evolved strain. Prior to the emergence of the 6.7 and 16 mutations, a distinct set of 5-point mutations peaked at over 20% prevalence before attenuating, suggestive of negative epistatic interactions during adaptation. Our results illustrate that parasites can adapt to specific transmission environments, and that this adaptation can impose costs on the subsequent ability to exploit host cells, potentially constraining durable parasites to lower virulence.

  15. MANET: tracing evolution of protein architecture in metabolic networks

    PubMed Central

    Kim, Hee Shin; Mittenthal, Jay E; Caetano-Anollés, Gustavo

    2006-01-01

    Background Cellular metabolism can be characterized by networks of enzymatic reactions and transport processes capable of supporting cellular life. Our aim is to find evolutionary patterns and processes embedded in the architecture and function of modern metabolism, using information derived from structural genomics. Description The Molecular Ancestry Network (MANET) project traces evolution of protein architecture in biomolecular networks. We describe metabolic MANET, a database that links information in the Structural Classification of Proteins (SCOP), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and phylogenetic reconstructions depicting the evolution of protein fold architecture. Metabolic MANET literally 'paints' the ancestries of enzymes derived from rooted phylogenomic trees directly onto over one hundred metabolic subnetworks, enabling the study of evolutionary patterns at global and local levels. An initial analysis of painted subnetworks reveals widespread enzymatic recruitment and an early origin of amino acid metabolism. Conclusion MANET maps evolutionary relationships directly and globally onto biological networks, and can generate and test hypotheses related to evolution of metabolism. We anticipate its use in the study of other networks, such as signaling and other protein-protein interaction networks. PMID:16854231

  16. Successive Gain of Insulator Proteins in Arthropod Evolution

    PubMed Central

    Heger, Peter; George, Rebecca; Wiehe, Thomas

    2013-01-01

    Alteration of regulatory DNA elements or their binding proteins may have drastic consequences for morphological evolution. Chromatin insulators are one example of such proteins and play a fundamental role in organizing gene expression. While a single insulator protein, CTCF (CCCTC-binding factor), is known in vertebrates, Drosophila melanogaster utilizes six additional factors. We studied the evolution of these proteins and show here that—in contrast to the bilaterian-wide distribution of CTCF—all other D. melanogaster insulators are restricted to arthropods. The full set is present exclusively in the genus Drosophila whereas only two insulators, Su(Hw) and CTCF, existed at the base of the arthropod clade and all additional factors have been acquired successively at later stages. Secondary loss of factors in some lineages further led to the presence of different insulator subsets in arthropods. Thus, the evolution of insulator proteins within arthropods is an ongoing and dynamic process that reshapes and supplements the ancient CTCF-based system common to bilaterians. Expansion of insulator systems may therefore be a general strategy to increase an organism’s gene regulatory repertoire and its potential for morphological plasticity. PMID:24094345

  17. Successive gain of insulator proteins in arthropod evolution.

    PubMed

    Heger, Peter; George, Rebecca; Wiehe, Thomas

    2013-10-01

    Alteration of regulatory DNA elements or their binding proteins may have drastic consequences for morphological evolution. Chromatin insulators are one example of such proteins and play a fundamental role in organizing gene expression. While a single insulator protein, CTCF (CCCTC-binding factor), is known in vertebrates, Drosophila melanogaster utilizes six additional factors. We studied the evolution of these proteins and show here that-in contrast to the bilaterian-wide distribution of CTCF-all other D. melanogaster insulators are restricted to arthropods. The full set is present exclusively in the genus Drosophila whereas only two insulators, Su(Hw) and CTCF, existed at the base of the arthropod clade and all additional factors have been acquired successively at later stages. Secondary loss of factors in some lineages further led to the presence of different insulator subsets in arthropods. Thus, the evolution of insulator proteins within arthropods is an ongoing and dynamic process that reshapes and supplements the ancient CTCF-based system common to bilaterians. Expansion of insulator systems may therefore be a general strategy to increase an organism's gene regulatory repertoire and its potential for morphological plasticity.

  18. Gene duplication and the evolution of moonlighting proteins

    PubMed Central

    Espinosa-Cantú, Adriana; Ascencio, Diana; Barona-Gómez, Francisco; DeLuna, Alexander

    2015-01-01

    Gene duplication is a recurring phenomenon in genome evolution and a major driving force in the gain of biological functions. Here, we examine the role of gene duplication in the origin and maintenance of moonlighting proteins, with special focus on functional redundancy and innovation, molecular tradeoffs, and genetic robustness. An overview of specific examples-mainly from yeast-suggests a widespread conservation of moonlighting behavior in duplicate genes after long evolutionary times. Dosage amplification and incomplete subfunctionalization appear to be prevalent in the maintenance of multifunctionality. We discuss the role of gene-expression divergence and paralog responsiveness in moonlighting proteins with overlapping biochemical properties. Future studies analyzing multifunctional genes in a more systematic and comprehensive manner will not only enable a better understanding of how this emerging class of protein behavior originates and is maintained, but also provide new insights on the mechanisms of evolution by gene duplication. PMID:26217376

  19. Brain evolution and development: adaptation, allometry and constraint.

    PubMed

    Montgomery, Stephen H; Mundy, Nicholas I; Barton, Robert A

    2016-09-14

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns.

  20. Brain evolution and development: adaptation, allometry and constraint

    PubMed Central

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  1. Brain evolution and development: adaptation, allometry and constraint.

    PubMed

    Montgomery, Stephen H; Mundy, Nicholas I; Barton, Robert A

    2016-09-14

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  2. Genetic constraints on adaptive evolution in principle and in practice

    NASA Astrophysics Data System (ADS)

    Weinreich, Daniel

    2014-03-01

    Geneticists have long recognized that pairs of mutations often produce surprising effects on the organism, given their effects in isolation. Such mutational interactions are called epistasis. Importantly, epistasis among mutations influencing an organism's survival or reproductive success can constrain the temporal order in which mutations will be favored by natural selection. After exploring these theoretical considerations more fully, we will demonstrate substantial epistatic constraint on the evolution of an enzyme that confers bacterial antibiotic resistance. Such epistatically induced constraints turn out to be rather common in enzyme evolution, and we will briefly discuss recent work that seeks to explicate its mechanistic basis using methods of molecular and structural biology. Finally we observe that the epistatic interaction between two mutations itself often varies with genetic context, implying the existence of higher-order interactions. We present a computational framework for assessing magnitude of epistatic interactions of all orders, and show that non-negligible epistatic interactions of all orders are common in a diverse set of biological systems. Work supported by NIGMS Award R01GM095728 and NSF Emerging Frontiers Award 1038657

  3. Adaptive evolution of sexual systems in pedunculate barnacles

    PubMed Central

    Yusa, Yoichi; Yoshikawa, Mai; Kitaura, Jun; Kawane, Masako; Ozaki, Yuki; Yamato, Shigeyuki; Høeg, Jens T.

    2012-01-01

    How and why diverse sexual systems evolve are fascinating evolutionary questions, but few empirical studies have dealt with these questions in animals. Pedunculate (gooseneck) barnacles show such diversity, including simultaneous hermaphroditism, coexistence of dwarf males and hermaphrodites (androdioecy), and coexistence of dwarf males and females (dioecy). Here, we report the first phylogenetically controlled test of the hypothesis that the ultimate cause of the diverse sexual systems and presence of dwarf males in this group is limited mating opportunities for non-dwarf individuals, owing to mating in small groups. Within the pedunculate barnacle phylogeny, dwarf males and females have evolved repeatedly. Females are more likely to evolve in androdioecious than hermaphroditic populations, suggesting that evolution of dwarf males has preceded that of females in pedunculates. Both dwarf males and females are associated with a higher proportion of solitary individuals in the population, corroborating the hypothesis that limited mating opportunities have favoured evolution of these diverse sexual systems, which have puzzled biologists since Darwin. PMID:21881138

  4. Adaptation to marginal habitats by evolution of increased phenotypic plasticity.

    PubMed

    Chevin, L-M; Lande, R

    2011-07-01

    In an island population receiving immigrants from a larger continental population, gene flow causes maladaptation, decreasing mean fitness and producing continued directional selection to restore the local mean phenotype to its optimum. We show that this causes higher plasticity to evolve on the island than on the continent at migration-selection equilibrium, assuming genetic variation of reaction norms is such that phenotypic variance is higher on the island, where phenotypes are not canalized. For a species distributed continuously in space along an environmental gradient, higher plasticity evolves at the edges of the geographic range, and in environments where phenotypes are not canalized. Constant or evolving partially adaptive plasticity also alleviates maladaptation owing to gene flow in a heterogeneous environment and produces higher mean fitness and larger population size in marginal populations, preventing them from becoming sinks and facilitating invasion of new habitats. Our results shed light on the widely observed involvement of partially adaptive plasticity in phenotypic clines, and on the mechanisms causing geographic variation in plasticity.

  5. Adaptive specializations, social exchange, and the evolution of human intelligence

    PubMed Central

    Cosmides, Leda; Barrett, H. Clark; Tooby, John

    2010-01-01

    Blank-slate theories of human intelligence propose that reasoning is carried out by general-purpose operations applied uniformly across contents. An evolutionary approach implies a radically different model of human intelligence. The task demands of different adaptive problems select for functionally specialized problem-solving strategies, unleashing massive increases in problem-solving power for ancestrally recurrent adaptive problems. Because exchange can evolve only if cooperators can detect cheaters, we hypothesized that the human mind would be equipped with a neurocognitive system specialized for reasoning about social exchange. Whereas humans perform poorly when asked to detect violations of most conditional rules, we predicted and found a dramatic spike in performance when the rule specifies an exchange and violations correspond to cheating. According to critics, people's uncanny accuracy at detecting violations of social exchange rules does not reflect a cheater detection mechanism, but extends instead to all rules regulating when actions are permitted (deontic conditionals). Here we report experimental tests that falsify these theories by demonstrating that deontic rules as a class do not elicit the search for violations. We show that the cheater detection system functions with pinpoint accuracy, searching for violations of social exchange rules only when these are likely to reveal the presence of someone who intends to cheat. It does not search for violations of social exchange rules when these are accidental, when they do not benefit the violator, or when the situation would make cheating difficult. PMID:20445099

  6. Domain organizations of modular extracellular matrix proteins and their evolution.

    PubMed

    Engel, J

    1996-11-01

    Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.

  7. Host-plant adaptation drives the parallel evolution of reproductive isolation.

    PubMed

    Nosil, Patrik; Crespi, Bernard J; Sandoval, Cristina P

    2002-05-23

    Parallel evolution of similar traits in independent populations that inhabit ecologically similar environments strongly implicates natural selection as the cause of evolution. Parallel speciation is a special form of parallel evolution where traits that determine reproductive isolation evolve repeatedly, in closely related populations, as by-products of adaptation to ecological conditions. The outcome of such parallel evolution is that ecologically divergent pairs of populations exhibit greater levels of reproductive isolation than ecologically similar pairs of populations of a similar or younger age. The parallel evolution of reproductive isolation provides strong evidence for natural selection in the process of speciation, but only one conclusive example from nature is known. Populations of the walking-stick insect Timema cristinae that use different host-plant species have diverged in body size and shape, host preference, behaviour and the relative frequency of two highly cryptic colour-pattern morphs. Here we report that divergent selection for host adaptation, and not genetic drift, has promoted the parallel evolution of sexual isolation in this species. Our findings represent a clear demonstration that host-plant adaptation can play a crucial and repeatable role in the early stages of speciation.

  8. Go forth, evolve and prosper: the genetic basis of adaptive evolution in an invasive species.

    PubMed

    Franks, Steven J; Munshi-South, Jason

    2014-05-01

    Invasive species stand accused of a familiar litany of offences, including displacing native species, disrupting ecological processes and causing billions of dollars in ecological damage (Cox 1999). Despite these transgressions, invasive species have at least one redeeming virtue--they offer us an unparalleled opportunity to investigate colonization and responses of populations to novel conditions in the invaded habitat (Elton 1958; Sakai et al. 2001). Invasive species are by definition colonists that have arrived and thrived in a new location. How they are able to thrive is of great interest, especially considering a paradox of invasion (Sax & Brown 2000): if many populations are locally adapted (Leimu & Fischer 2008), how could species introduced into new locations become so successful? One possibility is that populations adjust to the new conditions through plasticity--increasing production of allelopathic compounds (novel weapons), or taking advantage of new prey, for example. Alternatively, evolution could play a role, with the populations adapting to the novel conditions of the new habitat. There is increasing evidence, based on phenotypic data, for rapid adaptive evolution in invasive species (Franks et al. 2012; Colautti & Barrett 2013; Sultan et al. 2013). Prior studies have also demonstrated genetic changes in introduced populations using neutral markers, which generally do not provide information on adaptation. Thus, the genetic basis of adaptive evolution in invasive species has largely remained unknown. In this issue of Molecular Ecology, Vandepitte et al. (2014) provide some of the first evidence in invasive populations for molecular genetic changes directly linked to adaptation.

  9. Protein structure refinement with adaptively restrained homologous replicas.

    PubMed

    Della Corte, Dennis; Wildberg, André; Schröder, Gunnar F

    2016-09-01

    A novel protein refinement protocol is presented which utilizes molecular dynamics (MD) simulations of an ensemble of adaptively restrained homologous replicas. This approach adds evolutionary information to the force field and reduces random conformational fluctuations by coupling of several replicas. It is shown that this protocol refines the majority of models from the CASP11 refinement category and that larger conformational changes of the starting structure are possible than with current state of the art methods. The performance of this protocol in the CASP11 experiment is discussed. We found that the quality of the refined model is correlated with the structural variance of the coupled replicas, which therefore provides a good estimator of model quality. Furthermore, some remarkable refinement results are discussed in detail. Proteins 2016; 84(Suppl 1):302-313. © 2015 Wiley Periodicals, Inc. PMID:26441154

  10. Convergent evolution of novel protein function in shrew and lizard venom.

    PubMed

    Aminetzach, Yael T; Srouji, John R; Kong, Chung Yin; Hoekstra, Hopi E

    2009-12-01

    How do proteins evolve novel functions? To address this question, we are studying the evolution of a mammalian toxin, the serine protease BLTX [1], from the salivary glands of the North American shrew Blarina brevicauda. Here, we examine the molecular changes responsible for promoting BLTX toxicity. First, we show that regulatory loops surrounding the BLTX active site have evolved adaptively via acquisition of small insertions and subsequent accelerated sequence evolution. Second, these mutations introduce a novel chemical environment into the catalytic cleft of BLTX. Third, molecular-dynamic simulations show that the observed changes create a novel chemical and physical topology consistent with increased enzyme catalysis. Finally, we show that a toxic serine protease from the Mexican beaded lizard (GTX) [2] has evolved convergently through almost identical functional changes. Together, these results suggest that the evolution of toxicity might be predictable-arising via adaptive structural modification of analogous labile regulatory loops of an ancestral serine protease-and thus might aid in the identification of other toxic proteins. PMID:19879144

  11. The structure of the protein universe and genome evolution.

    PubMed

    Koonin, Eugene V; Wolf, Yuri I; Karev, Georgy P

    2002-11-14

    Despite the practically unlimited number of possible protein sequences, the number of basic shapes in which proteins fold seems not only to be finite, but also to be relatively small, with probably no more than 10,000 folds in existence. Moreover, the distribution of proteins among these folds is highly non-homogeneous -- some folds and superfamilies are extremely abundant, but most are rare. Protein folds and families encoded in diverse genomes show similar size distributions with notable mathematical properties, which also extend to the number of connections between domains in multidomain proteins. All these distributions follow asymptotic power laws, such as have been identified in a wide variety of biological and physical systems, and which are typically associated with scale-free networks. These findings suggest that genome evolution is driven by extremely general mechanisms based on the preferential attachment principle.

  12. Substrate adaptabilities of Thermotogae mannan binding proteins as a function of their evolutionary histories.

    PubMed

    Boucher, Nathalie; Noll, Kenneth M

    2016-09-01

    The Thermotogae possess a large number of ATP-binding cassette (ABC) transporters, including two mannan binding proteins, ManD and CelE (previously called ManE). We show that a gene encoding an ancestor of these was acquired by the Thermotogae from the archaea followed by gene duplication. To address the functional evolution of these proteins as a consequence of their evolutionary histories, we measured the binding affinities of ManD and CelE orthologs from representative Thermotogae. Both proteins bind cellobiose, cellotriose, cellotetraose, β-1,4-mannotriose, and β-1,4-mannotetraose. The CelE orthologs additionally bind β-1,4-mannobiose, laminaribiose, laminaritriose and sophorose while the ManD orthologs additionally only weakly bind β-1,4-mannobiose. The CelE orthologs have higher unfolding temperatures than the ManD orthologs. An examination of codon sites under positive selection revealed that many of these encode residues located near or in the binding site, suggesting that the proteins experienced selective pressures in regions that might have changed their functions. The gene arrangement, phylogeny, binding properties, and putative regulatory networks suggest that the ancestral mannan binding protein was a CelE ortholog which gave rise to the ManD orthologs. This study provides a window on how one class of proteins adapted to new functions and temperatures to fit the physiologies of their new hosts. PMID:27457081

  13. The genomic signatures of Shigella evolution, adaptation and geographical spread.

    PubMed

    The, Hao Chung; Thanh, Duy Pham; Holt, Kathryn E; Thomson, Nicholas R; Baker, Stephen

    2016-04-01

    Shigella spp. are some of the key pathogens responsible for the global burden of diarrhoeal disease. These facultative intracellular bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Escherichia coli and Salmonella spp. The genus Shigella comprises four different species, each consisting of several serogroups, all of which show phenotypic similarity, including invasive pathogenicity. DNA sequencing suggests that this similarity results from the convergent evolution of different Shigella spp. founders. Here, we review the evolutionary relationships between Shigella spp. and E . coli, and we highlight how the genomic plasticity of these bacteria and their acquisition of a distinctive virulence plasmid have enabled the development of such highly specialized pathogens. Furthermore, we discuss the insights that genotyping and whole-genome sequencing have provided into the phylogenetics and intercontinental spread of Shigella spp. PMID:26923111

  14. The genomic signatures of Shigella evolution, adaptation and geographical spread.

    PubMed

    The, Hao Chung; Thanh, Duy Pham; Holt, Kathryn E; Thomson, Nicholas R; Baker, Stephen

    2016-04-01

    Shigella spp. are some of the key pathogens responsible for the global burden of diarrhoeal disease. These facultative intracellular bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Escherichia coli and Salmonella spp. The genus Shigella comprises four different species, each consisting of several serogroups, all of which show phenotypic similarity, including invasive pathogenicity. DNA sequencing suggests that this similarity results from the convergent evolution of different Shigella spp. founders. Here, we review the evolutionary relationships between Shigella spp. and E . coli, and we highlight how the genomic plasticity of these bacteria and their acquisition of a distinctive virulence plasmid have enabled the development of such highly specialized pathogens. Furthermore, we discuss the insights that genotyping and whole-genome sequencing have provided into the phylogenetics and intercontinental spread of Shigella spp.

  15. Rapid Evolution of Coral Proteins Responsible for Interaction with the Environment

    SciTech Connect

    Voolstra, Christian R.; Sunagawa, Shinichi; Matz, Mikhail V.; Bayer, Till; Aranda, Manuel; Buschiazzo, Emmanuel; DeSalvo, Michael K.; Lindquist, Erika; Szmant, Alina M.; Coffroth, Mary Alice; Medina, Monica

    2011-01-31

    Background: Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. Methodology/Principal Findings: We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7percent of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineagespecific) genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. Conclusion/Relevance: This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals? evolutionary response to global climate change.

  16. The evolution of adhesiveness as a social adaptation.

    PubMed

    Garcia, Thomas; Doulcier, Guilhem; De Monte, Silvia

    2015-11-27

    Cellular adhesion is a key ingredient to sustain collective functions of microbial aggregates. Here, we investigate the evolutionary origins of adhesion and the emergence of groups of genealogically unrelated cells with a game-theoretical model. The considered adhesiveness trait is costly, continuous and affects both group formation and group-derived benefits. The formalism of adaptive dynamics reveals two evolutionary stable strategies, at each extreme on the axis of adhesiveness. We show that cohesive groups can evolve by small mutational steps, provided the population is already endowed with a minimum adhesiveness level. Assortment between more adhesive types, and in particular differential propensities to leave a fraction of individuals ungrouped at the end of the aggregation process, can compensate for the cost of increased adhesiveness. We also discuss the change in the social nature of more adhesive mutations along evolutionary trajectories, and find that altruism arises before directly beneficial behavior, despite being the most challenging form of cooperation.

  17. Diversity and adaptive evolution of Saccharomyces wine yeast: a review.

    PubMed

    Marsit, Souhir; Dequin, Sylvie

    2015-11-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains.

  18. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    PubMed Central

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  19. Structural adaptations of proteins to different biological membranes

    PubMed Central

    Pogozheva, Irina D.; Tristram-Nagle, Stephanie; Mosberg, Henry I.; Lomize, Andrei L.

    2013-01-01

    To gain insight into adaptations of proteins to their membranes, intrinsic hydrophobic thicknesses, distributions of different chemical groups and profiles of hydrogen-bonding capacities (α and β) and the dipolarity/polarizability parameter (π*) were calculated for lipid-facing surfaces of 460 integral α-helical, β-barrel and peripheral proteins from eight types of biomembranes. For comparison, polarity profiles were also calculated for ten artificial lipid bilayers that have been previously studied by neutron and X-ray scattering. Estimated hydrophobic thicknesses are 30-31 Å for proteins from endoplasmic reticulum, thylakoid, and various bacterial plasma membranes, but differ for proteins from outer bacterial, inner mitochondrial and eukaryotic plasma membranes (23.9, 28.6 and 33.5 Å, respectively). Protein and lipid polarity parameters abruptly change in the lipid carbonyl zone that matches the calculated hydrophobic boundaries. Maxima of positively charged protein groups correspond to the location of lipid phosphates at 20-22 Å distances from the membrane center. Locations of Tyr atoms coincide with hydrophobic boundaries, while distributions maxima of Trp rings are shifted by 3-4 Å toward the membrane center. Distributions of Trp atoms indicate the presence of two 5-8 Å-wide midpolar regions with intermediate π* values within the hydrocarbon core, whose size and symmetry depend on the lipid composition of membrane leaflets. Midpolar regions are especially asymmetric in outer bacterial membranes and cell membranes of mesophilic but not hyperthermophilic archaebacteria, indicating the larger width of the central nonpolar region in the later case. In artificial lipid bilayers, midpolar regions are observed up to the level of acyl chain double bonds. PMID:23811361

  20. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  1. Adaptive evolution of threonine deaminase in plant defense against insect herbivores

    SciTech Connect

    Gonzales-Vigil, Eliana; Bianchetti, Christopher M.; Phillips, Jr., George N.; Howe, Gregg A.

    2011-11-07

    Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to {alpha}-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gut of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.

  2. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown

    PubMed Central

    McGowen, Michael R.; Grossman, Lawrence I.; Wildman, Derek E.

    2012-01-01

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10 000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains. PMID:22740643

  3. Population diversity and adaptive evolution in keratinization genes: impact of environment in shaping skin phenotypes.

    PubMed

    Gautam, Pramod; Chaurasia, Amit; Bhattacharya, Aniket; Grover, Ritika; Mukerji, Mitali; Natarajan, Vivek T

    2015-03-01

    Several studies have demonstrated the role of climatic factors in shaping skin phenotypes, particularly pigmentation. Keratinization is another well-designed feature of human skin, which is involved in modulating transepidermal water loss (TEWL). Although this physiological process is closely linked to climate, presently it is not clear whether genetic diversity is observed in keratinization and whether this process also responds to the environmental pressure. To address this, we adopted a multipronged approach, which involved analysis of 1) copy number variations in diverse Indian and HapMap populations from varied geographical regions; 2) genetic association with geoclimatic parameters in 61 populations of dbCLINE database in a set of 549 genes from four processes namely keratinization, pigmentation, epidermal differentiation, and housekeeping functions; 3) sequence divergence in 4,316 orthologous promoters and corresponding exonic regions of human and chimpanzee with macaque as outgroup, and 4) protein sequence divergence (Ka/Ks) across nine vertebrate classes, which differ in their extent of TEWL. Our analyses demonstrate that keratinization and epidermal differentiation genes are under accelerated evolution in the human lineage, relative to pigmentation and housekeeping genes. We show that this entire pathway may have been driven by environmental selection pressure through concordant functional polymorphisms across several genes involved in skin keratinization. Remarkably, this underappreciated function of skin may be a crucial determinant of adaptation to diverse environmental pressures across world populations.

  4. Mathematical model for adaptive evolution of populations based on a complex domain

    PubMed Central

    Ibrahim, Rabha W.; Ahmad, M.Z.; Al-Janaby, Hiba F.

    2015-01-01

    A mutation is ultimately essential for adaptive evolution in all populations. It arises all the time, but is mostly fixed by enzymes. Further, most do consider that the evolution mechanism is by a natural assortment of variations in organisms in line for random variations in their DNA, and the suggestions for this are overwhelming. The altering of the construction of a gene, causing a different form that may be communicated to succeeding generations, produced by the modification of single base units in DNA, or the deletion, insertion, or rearrangement of larger units of chromosomes or genes. This altering is called a mutation. In this paper, a mathematical model is introduced to this reality. The model describes the time and space for the evolution. The tool is based on a complex domain for the space. We show that the evolution is distributed with the hypergeometric function. The Boundedness of the evolution is imposed by utilizing the Koebe function. PMID:26858564

  5. Molecular evolution of seminal proteins in field crickets.

    PubMed

    Andrés, José A; Maroja, Luana S; Bogdanowicz, Steven M; Swanson, Willie J; Harrison, Richard G

    2006-08-01

    In sexually reproducing organisms, male ejaculates are complex traits that are potentially subject to many different selection pressures. Recent experimental evidence supports the hypothesis that postmating sexual selection, and particularly sexual conflict, may play a key role in the evolution of the proteinaceous components of ejaculates. However, this evidence is based almost entirely on the study of Drosophila, a species with a mating system characterized by a high cost of mating for females. In this paper, we broaden our understanding of the role of selection on the evolution of seminal proteins by characterizing these proteins in field crickets, a group of insects in which females appear to benefit from mating multiply. We have used an experimental protocol that can be applied to other organisms for which complete genome sequences are not yet available. By combining an evolutionary expressed sequence tag screen of the male accessory gland in 2 focal species (Gryllus firmus and Gryllus pennsylvanicus) with a bioinformatics approach, we have been able to identify as many as 30 seminal proteins. Evolutionary analyses among 5 species of the genus Gryllus suggest that seminal protein genes evolve more rapidly than genes encoding proteins that are not involved with reproduction. The rates of synonymous substitution (dS) are similar in genes encoding seminal proteins and genes encoding "housekeeping" proteins. For the same comparison, the rate of fixation of nonsynonymous substitutions (dN) is 3 times higher in genes encoding seminal proteins, suggesting that the divergence of seminal proteins in field crickets has been accelerated by positive Darwinian selection. In spite of the contrasting characteristics of the Drosophila and Gryllus mating systems, the mean selection parameter omega and the proportion of loci estimated to be affected by positive selection are very similar.

  6. Gradually Adaptive Frameworks: Reasonable Disagreement and the Evolution of Evaluative Systems in Music Education

    ERIC Educational Resources Information Center

    Haskins, Stanley

    2013-01-01

    The concept of "gradually adaptive frameworks" is introduced as a model with the potential to describe the evolution of belief evaluative systems through the consideration of reasonable arguments and evidence. This concept is demonstrated through an analysis of specific points of disagreement between David Elliott's praxial philosophy…

  7. Gradually Adaptive Frameworks: Reasonable Disagreement and the Evolution of Evaluative Systems in Music Education

    ERIC Educational Resources Information Center

    Haskins, Stanley

    2013-01-01

    The concept of "gradually adaptive frameworks" is introduced as a model with the potential to describe the evolution of belief evaluative systems through the consideration of reasonable arguments and evidence. This concept is demonstrated through an analysis of specific points of disagreement between David Elliott's praxial…

  8. Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral.

    PubMed

    Ackerly, David D

    2004-05-01

    Small leaves and low specific leaf area (SLA) have long been viewed as adaptations to Mediterranean-type climates in many species of evergreen woody plants. However, paleobotanical and floristic evidence suggests that in many cases these traits originated prior to the advent of the summer-drought climate regime. In this study, molecular phylogenies and ancestral state reconstructions were used to test the hypothesis of adaptive leaf evolution in 12 lineages of evergreen shrubs in the California chaparral. Across all lineages there was a small but significant shift toward lower SLA, but there were no trends in leaf size evolution. For individual lineages, adaptive changes were detected in only three cases for SLA and in one case for leaf size. Three of these cases of evolutionary change were observed in taxa derived from cool temperate ancestors (e.g., Heteromeles). In contrast, most lineages originating from subtropical ancestors exhibited relative stasis in leaf trait evolution (e.g., Ceanothus). The absence of change suggests that ancestors of chaparral taxa had already acquired appropriate traits that contributed to their success under Mediterranean-type climates. These results illustrate how biogeographic history may influence patterns of trait evolution and adaptation and highlight the contribution of ecological sorting processes to the assembly and functional ecology of regional biotas.

  9. Rapid adaptive evolution of northeastern coyotes via hybridization with wolves.

    PubMed

    Kays, Roland; Curtis, Abigail; Kirchman, Jeremy J

    2010-02-23

    The dramatic expansion of the geographical range of coyotes over the last 90 years is partly explained by changes to the landscape and local extinctions of wolves, but hybridization may also have facilitated their movement. We present mtDNA sequence data from 686 eastern coyotes and measurements of 196 skulls related to their two-front colonization pattern. We find evidence for hybridization with Great Lakes wolves only along the northern front, which is correlated with larger skull size, increased sexual dimorphism and a five times faster colonization rate than the southern front. Northeastern haplotype diversity is low, suggesting that this population was founded by very few females moving across the Saint Lawrence River. This northern front then spread south and west, eventually coming in contact with an expanding front of non-hybrid coyotes in western New York and Pennsylvania. We suggest that hybridization with wolves in Canada introduced adaptive variation that contributed to larger size, which in turn allowed eastern coyotes to better hunt deer, allowing a more rapid colonization of new areas than coyotes without introgressed wolf genes. Thus, hybridization is a conduit by which genetic variation from an extirpated species has been reintroduced into northeastern USA, enabling northeastern coyotes to occupy a portion of the niche left vacant by wolves.

  10. The evolution of adhesiveness as a social adaptation

    PubMed Central

    Garcia, Thomas; Doulcier, Guilhem; De Monte, Silvia

    2015-01-01

    Cellular adhesion is a key ingredient to sustain collective functions of microbial aggregates. Here, we investigate the evolutionary origins of adhesion and the emergence of groups of genealogically unrelated cells with a game-theoretical model. The considered adhesiveness trait is costly, continuous and affects both group formation and group-derived benefits. The formalism of adaptive dynamics reveals two evolutionary stable strategies, at each extreme on the axis of adhesiveness. We show that cohesive groups can evolve by small mutational steps, provided the population is already endowed with a minimum adhesiveness level. Assortment between more adhesive types, and in particular differential propensities to leave a fraction of individuals ungrouped at the end of the aggregation process, can compensate for the cost of increased adhesiveness. We also discuss the change in the social nature of more adhesive mutations along evolutionary trajectories, and find that altruism arises before directly beneficial behavior, despite being the most challenging form of cooperation. DOI: http://dx.doi.org/10.7554/eLife.08595.001 PMID:26613415

  11. Putative RNA-directed adaptive mutations in cancer evolution

    PubMed Central

    Auboeuf, Didier

    2016-01-01

    ABSTRACT Understanding the molecular mechanisms behind the capacity of cancer cells to adapt to the tumor microenvironment and to anticancer therapies is a major challenge. In this context, cancer is believed to be an evolutionary process where random mutations and the selection process shape the mutational pattern and phenotype of cancer cells. This article challenges the notion of randomness of some cancer-associated mutations by describing molecular mechanisms involving stress-mediated biogenesis of mRNA-derived small RNAs able to target and increase the local mutation rate of the genomic loci they originate from. It is proposed that the probability of some mutations at specific loci could be increased in a stress-specific and RNA-depending manner. This would increase the probability of generating mutations that could alleviate stress situations, such as those triggered by anticancer drugs. Such a mechanism is made possible because tumor- and anticancer drug-associated stress situations trigger both cellular reprogramming and inflammation, which leads cancer cells to express molecular tools allowing them to “attack” and mutate their own genome in an RNA-directed manner. PMID:27715501

  12. Unfolding Thermodynamics of Cysteine-Rich Proteins and Molecular Thermal-Adaptation of Marine Ciliates

    PubMed Central

    Cazzolli, Giorgia; Škrbić, Tatjana; Guella, Graziano; Faccioli, Pietro

    2013-01-01

    Euplotes nobilii and Euplotes raikovi are phylogenetically closely allied species of marine ciliates, living in polar and temperate waters, respectively. Their evolutional relation and the sharply different temperatures of their natural environments make them ideal organisms to investigate thermal-adaptation. We perform a comparative study of the thermal unfolding of disulfide-rich protein pheromones produced by these ciliates. Recent circular dichroism (CD) measurements have shown that the two psychrophilic (E. nobilii) and mesophilic (E. raikovi) protein families are characterized by very different melting temperatures, despite their close structural homology. The enhanced thermal stability of the E. raikovi pheromones is realized notwithstanding the fact that these proteins form, as a rule, a smaller number of disulfide bonds. We perform Monte Carlo (MC) simulations in a structure-based coarse-grained (CG) model to show that the higher stability of the E. raikovi pheromones is due to the lower locality of the disulfide bonds, which yields a lower entropy increase in the unfolding process. Our study suggests that the higher stability of the mesophilic E. raikovi phermones is not mainly due to the presence of a strongly hydrophobic core, as it was proposed in the literature. In addition, we argue that the molecular adaptation of these ciliates may have occurred from cold to warm, and not from warm to cold. To provide a testable prediction, we identify a point-mutation of an E. nobilii pheromone that should lead to an unfolding temperature typical of that of E. raikovi pheromones. PMID:24970199

  13. How does spatial dispersal network affect the evolution of parasite local adaptation?

    PubMed

    Vogwill, Tom; Fenton, Andy; Brockhurst, Michael A

    2010-06-01

    Studying patterns of parasite local adaptation can provide insights into the spatiotemporal dynamics of host-parasite coevolution. Many factors, both biotic and abiotic, have been identified that influence parasite local adaptation. In particular, dispersal and population structuring are considered important determinants of local adaptation. We investigated how the shape of the spatial dispersal network within experimental landscapes affected local adaptation of a bacteriophage parasite to its bacterial host. Regardless of landscape topology, dispersal always led to the evolution of phages with broader infectivity range. However, when the spatial dispersal network resulted in spatial variation in the breadth of phage infectivity range, significant levels of parasite local adaptation and local maladaptation were detected within the same landscape using the local versus foreign definition of local adaptation. By contrast, local adaptation was not detected using the home versus away or local versus global definitions of local adaptation. This suggests that spatial dispersal networks may play an important role in driving parasite local adaptation, particularly when the shape of the dispersal network generates nonuniform levels of host resistance or parasite infectivity throughout a species' range. PMID:20050909

  14. Reproductive protein evolution in two cryptic species of marine chordate

    PubMed Central

    2011-01-01

    Background Reproductive character displacement (RCD) is a common and taxonomically widespread pattern. In marine broadcast spawning organisms, behavioral and mechanical isolation are absent and prezygotic barriers between species often operate only during the fertilization process. Such barriers are usually a consequence of differences in the way in which sperm and egg proteins interact, so RCD can be manifest as faster evolution of these proteins between species in sympatry than allopatry. Rapid evolution of these proteins often appears to be a consequence of positive (directional) selection. Here, we identify a set of candidate gamete recognition proteins (GRPs) in the ascidian Ciona intestinalis and showed that these GRPs evolve more rapidly than control proteins (those not involved in gamete recognition). Choosing a subset of these gamete recognition proteins that show evidence of positive selection (CIPRO37.40.1, CIPRO60.5.1, CIPRO100.7.1), we then directly test the RCD hypothesis by comparing divergence (omega) and polymorphism (McDonald-Kreitman, Tajima's D, Fu and Li's D and F, Fay and Wu's H) statistics in sympatric and allopatric populations of two distinct forms of C. intestinalis (Types A and B) between which there are strong post-zygotic barriers. Results Candidate gamete recognition proteins from two lineages of C. intestinalis (Type A and B) are evolving more rapidly than control proteins, consistent with patterns seen in insects and mammals. However, ω (dN/dS) is not significantly different between the sympatric and allopatric populations, and none of the polymorphism statistics show significant differences between sympatric and allopatric populations. Conclusions Enhanced prezygotic isolation in sympatry has become a well-known feature of gamete recognition proteins in marine broadcast spawners. But in most cases the evolutionary process or processes responsible for this pattern have not been identified. Although gamete recognition proteins in C

  15. Molecular evolution of monotreme and marsupial whey acidic protein genes.

    PubMed

    Sharp, Julie A; Lefèvre, Christophe; Nicholas, Kevin R

    2007-01-01

    Whey acidic protein (WAP), a major whey protein present in milk of a number of mammalian species has characteristic cysteine-rich domains known as four-disulfide cores (4-DSC). Eutherian WAP, expressed in the mammary gland throughout lactation, has two 4-DSC domains, (DI-DII) whereas marsupial WAP, expressed only during mid-late lactation, contains an additional 4-DSC (DIII), and has a DIII-D1-DII configuration. We report the expression and evolution of echidna (Tachyglossus aculeatus) and platypus (Onithorhynchus anatinus) WAP cDNAs. Predicted translation of monotreme cDNAs showed echidna WAP contains two 4-DSC domains corresponding to DIII-DII, whereas platypus WAP contains an additional domain at the C-terminus with homology to DII and has the configuration DIII-DII-DII. Both monotreme WAPs represent new WAP protein configurations. We propose models for evolution of the WAP gene in the mammalian lineage either through exon loss from an ancient ancestor or by rapid evolution via the process of exon shuffling. This evolutionary outcome may reflect differences in lactation strategy between marsupials, monotremes, and eutherians, and give insight to biological function of the gene products. WAP four-disulfide core domain 2 (WFDC2) proteins were also identified in echidna, platypus and tammar wallaby (Macropus eugenii) lactating mammary cells. WFDC2 proteins are secreted proteins not previously associated with lactation. Mammary gland expression of tammar WFDC2 during the course of lactation showed WFDC2 was elevated during pregnancy, reduced in early lactation and absent in mid-late lactation.

  16. Limits of Adaptation: The Evolution of Selective Neutrality

    PubMed Central

    Hartl, Daniel L.; Dykhuizen, Daniel E.; Dean, Antony M.

    1985-01-01

    Many enzymes in intermediary metabolism manifest saturation kinetics in which flux is a concave function of enzyme activity and often of the Michaelis-Menten form. The result is that, when natural selection favors increased enzyme activity so as to maximize flux, a point of diminishing returns will be attained in which any increase in flux results in a disproportionately small increase in fitness. Enzyme activity ultimately will reach a level at which the favorable effect of an increase in activity is of the order 1/(4Ne) or smaller, where Ne is the effective population number. At this point, many mutations that result in small changes in activity will result in negligible changes in fitness and will be selectively nearly neutral. We propose that this process is a mechanism whereby conditions for the occurrence of nearly neutral mutations and gene substitutions can be brought about by the long-continued action of natural selection. Evidence for the hypothesis derives from metabolic theory, direct studies of flux, studies of null and other types of alleles in Drosophila melanogaster and chemostat studies in Escherichia coli. Limitations and complications of the theory include changes in environment or genetic background, enzymes with sharply defined optima of activity, overdominance, pleiotropy, multifunctional enzymes and branched metabolic pathways. We conclude that the theory is a useful synthesis that unites many seemingly unrelated observations. The principal theoretical conclusion is that the conditions for the occurrence of neutral evolution can be brought about as an indirect result of the action of natural selection. PMID:3932127

  17. Two-photon directed evolution of green fluorescent proteins

    PubMed Central

    Stoltzfus, Caleb R.; Barnett, Lauren M.; Drobizhev, Mikhail; Wicks, Geoffrey; Mikhaylov, Alexander; Hughes, Thomas E.; Rebane, Aleksander

    2015-01-01

    Directed evolution has been used extensively to improve the properties of a variety of fluorescent proteins (FPs). Evolutionary strategies, however, have not yet been used to improve the two-photon absorption (2PA) properties of a fluorescent protein, properties that are important for two-photon imaging in living tissues, including the brain. Here we demonstrate a technique for quantitatively screening the two-photon excited fluorescence (2PEF) efficiency and 2PA cross section of tens of thousands of mutant FPs expressed in E. coli colonies. We use this procedure to move EGFP through three rounds of two-photon directed evolution leading to new variants showing up to a 50% enhancement in peak 2PA cross section and brightness within the near-IR tissue transparency wavelength range. PMID:26145791

  18. Anomalous diffusion in neutral evolution of model proteins

    NASA Astrophysics Data System (ADS)

    Nelson, Erik D.; Grishin, Nick V.

    2015-06-01

    Protein evolution is frequently explored using minimalist polymer models, however, little attention has been given to the problem of structural drift, or diffusion. Here, we study neutral evolution of small protein motifs using an off-lattice heteropolymer model in which individual monomers interact as low-resolution amino acids. In contrast to most earlier models, both the length and folded structure of the polymers are permitted to change. To describe structural change, we compute the mean-square distance (MSD) between monomers in homologous folds separated by n neutral mutations. We find that structural change is episodic, and, averaged over lineages (for example, those extending from a single sequence), exhibits a power-law dependence on n . We show that this exponent depends on the alignment method used, and we analyze the distribution of waiting times between neutral mutations. The latter are more disperse than for models required to maintain a specific fold, but exhibit a similar power-law tail.

  19. Two-photon directed evolution of green fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Caleb R.; Barnett, Lauren M.; Drobizhev, Mikhail; Wicks, Geoffrey; Mikhaylov, Alexander; Hughes, Thomas E.; Rebane, Aleksander

    2015-07-01

    Directed evolution has been used extensively to improve the properties of a variety of fluorescent proteins (FPs). Evolutionary strategies, however, have not yet been used to improve the two-photon absorption (2PA) properties of a fluorescent protein, properties that are important for two-photon imaging in living tissues, including the brain. Here we demonstrate a technique for quantitatively screening the two-photon excited fluorescence (2PEF) efficiency and 2PA cross section of tens of thousands of mutant FPs expressed in E. coli colonies. We use this procedure to move EGFP through three rounds of two-photon directed evolution leading to new variants showing up to a 50% enhancement in peak 2PA cross section and brightness within the near-IR tissue transparency wavelength range.

  20. Did Convergent Protein Evolution Enable Phytoplasmas to Generate 'Zombie Plants'?

    PubMed

    Rümpler, Florian; Gramzow, Lydia; Theißen, Günter; Melzer, Rainer

    2015-12-01

    Phytoplasmas are pathogenic bacteria that reprogram plant development such that leaf-like structures instead of floral organs develop. Infected plants are sterile and mainly serve to propagate phytoplasmas and thus have been termed 'zombie plants'. The developmental reprogramming relies on specific interactions of the phytoplasma protein SAP54 with a small subset of MADS-domain transcription factors. Here, we propose that SAP54 folds into a structure that is similar to that of the K-domain, a protein-protein interaction domain of MADS-domain proteins. We suggest that undergoing convergent structural and sequence evolution, SAP54 evolved to mimic the K-domain. Given the high specificity of resulting developmental alterations, phytoplasmas might be used to study flower development in genetically intractable plants.

  1. Did Convergent Protein Evolution Enable Phytoplasmas to Generate 'Zombie Plants'?

    PubMed

    Rümpler, Florian; Gramzow, Lydia; Theißen, Günter; Melzer, Rainer

    2015-12-01

    Phytoplasmas are pathogenic bacteria that reprogram plant development such that leaf-like structures instead of floral organs develop. Infected plants are sterile and mainly serve to propagate phytoplasmas and thus have been termed 'zombie plants'. The developmental reprogramming relies on specific interactions of the phytoplasma protein SAP54 with a small subset of MADS-domain transcription factors. Here, we propose that SAP54 folds into a structure that is similar to that of the K-domain, a protein-protein interaction domain of MADS-domain proteins. We suggest that undergoing convergent structural and sequence evolution, SAP54 evolved to mimic the K-domain. Given the high specificity of resulting developmental alterations, phytoplasmas might be used to study flower development in genetically intractable plants. PMID:26463218

  2. Adaptive cluster expansion approach for predicting the structure evolution of graphene oxide

    SciTech Connect

    Li, Xi-Bo; Guo, Pan; Wang, D.; Liu, Li-Min; Zhang, Yongsheng

    2014-12-14

    An adaptive cluster expansion (CE) method is used to explore surface adsorption and growth processes. Unlike the traditional CE method, suitable effective cluster interaction (ECI) parameters are determined, and then the selected fixed number of ECIs is continually optimized to predict the stable configurations with gradual increase of adatom coverage. Comparing with traditional CE method, the efficiency of the adaptive CE method could be greatly enhanced. As an application, the adsorption and growth of oxygen atoms on one side of pristine graphene was carefully investigated using this method in combination with first-principles calculations. The calculated results successfully uncover the structural evolution of graphene oxide for the different numbers of oxygen adatoms on graphene. The aggregation behavior of the stable configurations for different oxygen adatom coverages is revealed for increasing coverages of oxygen atoms. As a targeted method, adaptive CE can also be applied to understand the evolution of other surface adsorption and growth processes.

  3. A shift from magnitude to sign epistasis during adaptive evolution of a bacterial social trait.

    PubMed

    Zee, Peter C; Mendes-Soares, Helena; Yu, Yuen-Tsu N; Kraemer, Susanne A; Keller, Heike; Ossowski, Stephan; Schneeberger, Korbinian; Velicer, Gregory J

    2014-09-01

    Although the importance of epistasis in evolution has long been recognized, remarkably little is known about the processes by which epistatic interactions evolve in real time in specific biological systems. Here, we have characterized how the epistatic fitness relationship between a social gene and an adapting genome changes radically over a short evolutionary time frame in the social bacterium Myxococcus xanthus. We show that a highly beneficial effect of this social gene in the ancestral genome is gradually reduced--and ultimately reversed into a deleterious effect--over the course of an experimental adaptive trajectory in which a primitive form of novel cooperation evolved. This reduction and reversal of a positive social allelic effect is driven solely by changes in the genetic context in which the gene is expressed as new mutations are sequentially fixed during adaptive evolution, and explicitly demonstrates a significant evolutionary change in the genetic architecture of an ecologically important social trait.

  4. Comparative Genomics Identifies Epidermal Proteins Associated with the Evolution of the Turtle Shell

    PubMed Central

    Holthaus, Karin Brigit; Strasser, Bettina; Sipos, Wolfgang; Schmidt, Heiko A.; Mlitz, Veronika; Sukseree, Supawadee; Weissenbacher, Anton; Tschachler, Erwin; Alibardi, Lorenzo; Eckhart, Leopold

    2016-01-01

    The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation. PMID:26601937

  5. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification.

    PubMed

    Schlüter, Lothar; Lohbeck, Kai T; Gröger, Joachim P; Riebesell, Ulf; Reusch, Thorsten B H

    2016-07-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2-adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  6. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects

    PubMed Central

    Dey, Snigdhadip; Proulx, Stephen R.; Teotónio, Henrique

    2016-01-01

    All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia–anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia–anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than

  7. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification.

    PubMed

    Schlüter, Lothar; Lohbeck, Kai T; Gröger, Joachim P; Riebesell, Ulf; Reusch, Thorsten B H

    2016-07-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2-adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses.

  8. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects.

    PubMed

    Dey, Snigdhadip; Proulx, Stephen R; Teotónio, Henrique

    2016-02-01

    All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia-anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia-anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than

  9. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification

    PubMed Central

    Schlüter, Lothar; Lohbeck, Kai T.; Gröger, Joachim P.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2016-01-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2–adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  10. Exploiting Adaptive Laboratory Evolution of Streptomyces clavuligerus for Antibiotic Discovery and Overproduction

    PubMed Central

    Charusanti, Pep; Fong, Nicole L.; Nagarajan, Harish; Pereira, Alban R.; Li, Howard J.; Abate, Elisa A.; Su, Yongxuan; Gerwick, William H.; Palsson, Bernhard O.

    2012-01-01

    Adaptation is normally viewed as the enemy of the antibiotic discovery and development process because adaptation among pathogens to antibiotic exposure leads to resistance. We present a method here that, in contrast, exploits the power of adaptation among antibiotic producers to accelerate the discovery of antibiotics. A competition-based adaptive laboratory evolution scheme is presented whereby an antibiotic-producing microorganism is competed against a target pathogen and serially passed over time until the producer evolves the ability to synthesize a chemical entity that inhibits growth of the pathogen. When multiple Streptomyces clavuligerus replicates were adaptively evolved against methicillin-resistant Staphylococcus aureus N315 in this manner, a strain emerged that acquired the ability to constitutively produce holomycin. In contrast, no holomycin could be detected from the unevolved wild-type strain. Moreover, genome re-sequencing revealed that the evolved strain had lost pSCL4, a large 1.8 Mbp plasmid, and acquired several single nucleotide polymorphisms in genes that have been shown to affect secondary metabolite biosynthesis. These results demonstrate that competition-based adaptive laboratory evolution can constitute a platform to create mutants that overproduce known antibiotics and possibly to discover new compounds as well. PMID:22470465

  11. Can the experimental evolution programme help us elucidate the genetic basis of adaptation in nature?

    PubMed

    Bailey, Susan F; Bataillon, Thomas

    2016-01-01

    There have been a variety of approaches taken to try to characterize and identify the genetic basis of adaptation in nature, spanning theoretical models, experimental evolution studies and direct tests of natural populations. Theoretical models can provide formalized and detailed hypotheses regarding evolutionary processes and patterns, from which experimental evolution studies can then provide important proofs of concepts and characterize what is biologically reasonable. Genetic and genomic data from natural populations then allow for the identification of the particular factors that have and continue to play an important role in shaping adaptive evolution in the natural world. Further to this, experimental evolution studies allow for tests of theories that may be difficult or impossible to test in natural populations for logistical and methodological reasons and can even generate new insights, suggesting further refinement of existing theories. However, as experimental evolution studies often take place in a very particular set of controlled conditions--that is simple environments, a small range of usually asexual species, relatively short timescales--the question remains as to how applicable these experimental results are to natural populations. In this review, we discuss important insights coming from experimental evolution, focusing on four key topics tied to the evolutionary genetics of adaptation, and within those topics, we discuss the extent to which the experimental work compliments and informs natural population studies. We finish by making suggestions for future work in particular a need for natural population genomic time series data, as well as the necessity for studies that combine both experimental evolution and natural population approaches.

  12. Rapid evolution in response to introduced predators II: the contribution of adaptive plasticity

    PubMed Central

    Latta, Leigh C; Bakelar, Jeremy W; Knapp, Roland A; Pfrender, Michael E

    2007-01-01

    Background Introductions of non-native species can significantly alter the selective environment for populations of native species, which can respond through phenotypic plasticity or genetic adaptation. We examined phenotypic and genetic responses of Daphnia populations to recent introductions of non-native fish to assess the relative roles of phenotypic plasticity versus genetic change in causing the observed patterns. The Daphnia community in alpine lakes throughout the Sierra Nevada of California (USA) is ideally suited for investigation of rapid adaptive evolution because there are multiple lakes with and without introduced fish predators. We conducted common-garden experiments involving presence or absence of chemical cues produced by fish and measured morphological and life-history traits in Daphnia melanica populations collected from lakes with contrasting fish stocking histories. The experiment allowed us to assess the degree of population differentiation due to fish predation and examine the contribution of adaptive plasticity in the response to predator introduction. Results Our results show reductions in egg number and body size of D. melanica in response to introduced fish. These phenotypic changes have a genetic basis but are partly due to a direct response to chemical cues from fish via adaptive phenotypic plasticity. Body size showed the largest phenotypic change, on the order of nine phenotypic standard deviations, with approximately 11% of the change explained by adaptive plasticity. Both evolutionary and plastic changes in body size and egg number occurred but no changes in the timing of reproduction were observed. Conclusion Native Daphnia populations exposed to chemical cues produced by salmonid fish predators display adaptive plasticity for body size and fecundity. The magnitude of adaptive plasticity was insufficient to explain the total phenotypic change, so the realized change in phenotypic means in populations exposed to introduced fish may

  13. ELAV proteins along evolution: back to the nucleus?

    PubMed

    Colombrita, Claudia; Silani, Vincenzo; Ratti, Antonia

    2013-09-01

    The complex interplay of post-transcriptional regulatory mechanisms mediated by RNA-binding proteins (RBP) at different steps of RNA metabolism is pivotal for the development of the nervous system and the maintenance of adult brain activities. In this review, we will focus on the highly conserved ELAV gene family encoding for neuronal-specific RBPs which are necessary for proper neuronal differentiation and important for synaptic plasticity process. In the evolution from Drosophila to man, ELAV proteins seem to have changed their biological functions in relation to their different subcellular localization. While in Drosophila, they are localized in the nuclear compartment of neuronal cells and regulate splicing and polyadenylation, in mammals, the neuronal ELAV proteins are mainly present in the cytoplasm where they participate in regulating mRNA target stability, translation and transport into neurites. However, recent data indicate that the mammalian ELAV RBPs also have nuclear activities, similarly to their fly counterpart, being them able to continuously shuttle between the cytoplasm and the nucleus. Here, we will review and comment on all the biological functions associated with neuronal ELAV proteins along evolution and will show that the post-transcriptional regulatory network mediated by these RBPs in the brain is highly complex and only at an initial stage of being fully understood. This article is part of a Special Issue entitled 'RNA and splicing regulation in neurodegeneration'.

  14. Rapid Evolution of Virus Sequences in Intrinsically Disordered Protein Regions

    PubMed Central

    Gitlin, Leonid; Hagai, Tzachi; LaBarbera, Anthony; Solovey, Mark; Andino, Raul

    2014-01-01

    Nodamura Virus (NoV) is a nodavirus originally isolated from insects that can replicate in a wide variety of hosts, including mammals. Because of their simplicity and ability to replicate in many diverse hosts, NoV, and the Nodaviridae in general, provide a unique window into the evolution of viruses and host-virus interactions. Here we show that the C-terminus of the viral polymerase exhibits extreme structural and evolutionary flexibility. Indeed, fewer than 10 positively charged residues from the 110 amino acid-long C-terminal region of protein A are required to support RNA1 replication. Strikingly, this region can be replaced by completely unrelated protein sequences, yet still produce a functional replicase. Structure predictions, as well as evolutionary and mutational analyses, indicate that the C-terminal region is structurally disordered and evolves faster than the rest of the viral proteome. Thus, the function of an intrinsically unstructured protein region can be independent of most of its primary sequence, conferring both functional robustness and sequence plasticity on the protein. Our results provide an experimental explanation for rapid evolution of unstructured regions, which enables an effective exploration of the sequence space, and likely function space, available to the virus. PMID:25502394

  15. Rapid evolution of virus sequences in intrinsically disordered protein regions.

    PubMed

    Gitlin, Leonid; Hagai, Tzachi; LaBarbera, Anthony; Solovey, Mark; Andino, Raul

    2014-12-01

    Nodamura Virus (NoV) is a nodavirus originally isolated from insects that can replicate in a wide variety of hosts, including mammals. Because of their simplicity and ability to replicate in many diverse hosts, NoV, and the Nodaviridae in general, provide a unique window into the evolution of viruses and host-virus interactions. Here we show that the C-terminus of the viral polymerase exhibits extreme structural and evolutionary flexibility. Indeed, fewer than 10 positively charged residues from the 110 amino acid-long C-terminal region of protein A are required to support RNA1 replication. Strikingly, this region can be replaced by completely unrelated protein sequences, yet still produce a functional replicase. Structure predictions, as well as evolutionary and mutational analyses, indicate that the C-terminal region is structurally disordered and evolves faster than the rest of the viral proteome. Thus, the function of an intrinsically unstructured protein region can be independent of most of its primary sequence, conferring both functional robustness and sequence plasticity on the protein. Our results provide an experimental explanation for rapid evolution of unstructured regions, which enables an effective exploration of the sequence space, and likely function space, available to the virus. PMID:25502394

  16. Increasing protein production by directed vector backbone evolution

    PubMed Central

    2013-01-01

    Recombinant protein production in prokaryotic and eukaryotic organisms was a key enabling technology for the rapid development of industrial and molecular biotechnology. However, despite all progress the improvement of protein production is an ongoing challenge and of high importance for cost-effective enzyme production. With the epMEGAWHOP mutagenesis protocol for vector backbone optimization we report a novel directed evolution based approach to increase protein production levels by randomly introducing mutations in the vector backbone. In the current study we validate the epMEGAWHOP mutagenesis protocol for three different expression systems. The latter demonstrated the general applicability of the epMEGAWHOP method. Cellulase and lipase production was doubled in one round of directed evolution by random mutagenesis of pET28a(+) and pET22b(+) vector backbones. Protease production using the vector pHY300PLK was increased ~4-times with an average of ~1.25 mutations per kb vector backbone. The epMEGAWHOP does not require any rational understanding of the expression machinery and can generally be applied to enzymes, expression vectors and related hosts. epMEGAWHOP is therefore from our point of view a robust, rapid and straight forward alternative for increasing protein production in general and for biotechnological applications. PMID:23890095

  17. Evolution of yolk protein genes in the Echinodermata.

    PubMed

    Prowse, Thomas A A; Byrne, Maria

    2012-01-01

    Vitellogenin genes (vtg) encode large lipid transfer proteins (LLTPs) that are typically female-specific, functioning as precursors to major yolk proteins (MYPs). Within the phylum Echinodermata, however, the MYP of the Echinozoa (Echinoidea + Holothuroidea) is expressed by an unrelated transferrin-like gene that has a reproductive function in both sexes. We investigated egg proteins in the Asterozoa (Asteroidea + Ophiuroidea), a sister clade to the Echinozoa, showing that eggs of the asteroid Parvulastra exigua contain a vitellogenin protein (Vtg). vtg is expressed by P. exigua, a species with large eggs and nonfeeding larvae, and by the related asterinid Patiriella regularis which has small eggs and feeding larvae. In the Asteroidea, therefore, the reproductive function of vtg is conserved despite significant life history evolution. Like the echinozoan MYP gene, asteroid vtg is expressed in both sexes and may play a role in the development of both ovaries and testes. Phylogenetic analysis indicated that a putative Vtg from the sea urchin genome, a likely pseudogene, does not clade with asteroid Vtg. We propose the following sequence as a potential pathway for the evolution of YP genes in the Echinodermata: (1) the ancestral echinoderm produced YPs derived from Vtg, (2) bisexual vtg expression subsequently evolved in the echinoderm lineage, (3) the reproductive function of vtg was assumed by a transferrin-like gene in the ancestral echinozoan, and (4) redundant echinozoan vtg was released from stabilizing selection.

  18. Insights into the evolution of the CSP gene family through the integration of evolutionary analysis and comparative protein modeling.

    PubMed

    Kulmuni, Jonna; Havukainen, Heli

    2013-01-01

    Insect chemical communication and chemosensory systems rely on proteins coded by several gene families. Here, we have combined protein modeling with evolutionary analysis in order to study the evolution and structure of chemosensory proteins (CSPs) within arthropods and, more specifically, in ants by using the data available from sequenced genomes. Ants and other social insects are especially interesting model systems for the study of chemosensation, as they communicate in a highly complex social context and much of their communication relies on chemicals. Our ant protein models show how this complexity has shaped CSP evolution; the proteins are highly modifiable by their size, surface charge and binding pocket. Based on these findings, we divide ant CSPs into three groups: typical insect CSPs, an ancient 5-helical CSP and hymenopteran CSPs with a small binding pocket, and suggest that these groups likely serve different functions. The hymenopteran CSPs have duplicated repeatedly in individual ant lineages. In these CSPs, positive selection has driven surface charge changes, an observation which has possible implications for the interaction between CSPs and ligands or odorant receptors. Our phylogenetic analysis shows that within the Arthropoda the only highly conserved gene is the ancient 5-helical CSP, which is likely involved in an essential ubiquitous function rather than chemosensation. During insect evolution, the 6-helical CSPs have diverged and perform chemosensory functions among others. Our results contribute to the general knowledge of the structural differences between proteins underlying chemosensation and highlight those protein properties which have been affected by adaptive evolution. PMID:23723994

  19. Crowding in extremophiles: linkage between solvation and weak protein-protein interactions, stability and dynamics, provides insight into molecular adaptation.

    PubMed

    Ebel, Christine; Zaccai, Giuseppe

    2004-01-01

    The study of the molecular adaptation of microorganisms to extreme environments (solvent, temperature, etc.) has provided tools to investigate the complex relationships between protein-solvent and protein-protein interactions, protein stability and protein dynamics, and how they are modulated by the crowded environment of the cell. We have evaluated protein-solvent and protein-protein interactions by solution experiments (analytical ultracentrifugation, small angle neutron and X-ray scattering, density) and crystallography, and protein dynamics by energy resolved neutron scattering. This review concerns work from our laboratory on (i) proteins from extreme halophilic Archaea, and (ii) psychrophile, mesophile, thermophile and hyperthermophile bacterial cells.

  20. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation.

    PubMed

    Colautti, Robert I; Lau, Jennifer A

    2015-05-01

    Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change. PMID:25891044

  1. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation.

    PubMed

    Colautti, Robert I; Lau, Jennifer A

    2015-05-01

    Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change.

  2. Molecular Evolution Directs Protein Translation Using Unnatural Amino Acids.

    PubMed

    Cox, Vanessa E; Gaucher, Eric A

    2015-12-02

    Unnatural amino acids have in recent years established their importance in a wide range of fields, from pharmaceuticals to polymer science. Unnatural amino acids can increase the number of chemical groups within proteins and thus expand or enhance biological function. Our ability to utilize these important building blocks, however, has been limited by the inherent difficulty in incorporating these molecules into proteins. To address this challenge, researchers have examined how the canonical twenty amino acids are incorporated, regulated, and modified in nature. This review focuses on achievements and techniques used to engineer the ribosomal protein-translation machinery, including the introduction of orthogonal translation components, how directed evolution enhances the incorporation of unnatural amino acids, and the potential utility of ancient biomolecules for this process.

  3. Molecular adaptation of photoprotection: triplet states in light-harvesting proteins.

    PubMed

    Gall, Andrew; Berera, Rudi; Alexandre, Maxime T A; Pascal, Andrew A; Bordes, Luc; Mendes-Pinto, Maria M; Andrianambinintsoa, Sandra; Stoitchkova, Katerina V; Marin, Alessandro; Valkunas, Leonas; Horton, Peter; Kennis, John T M; van Grondelle, Rienk; Ruban, Alexander; Robert, Bruno

    2011-08-17

    The photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective function. We show that the creation of the carotenoid triplet states in the light-harvesting complexes may occur without detectable conformational changes, in contrast to that found for carotenoids in solution. However, in plant light-harvesting complexes, the triplet wavefunction is shared between the carotenoids and their adjacent chlorophylls. This is not observed for the antenna proteins of purple bacteria, where the triplet is virtually fully located on the carotenoid molecule. These results explain the faster triplet-triplet transfer times in plant light-harvesting complexes. We show that this molecular mechanism, which spreads the location of the triplet wavefunction through the pigments of plant light-harvesting complexes, results in the absence of any detectable chlorophyll triplet in these complexes upon excitation, and we propose that it emerged as a photoprotective adaptation during the evolution of oxygenic photosynthesis.

  4. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis

    DOE PAGES

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.; Mavrici, Daniela; Waldo, Geoffrey S.; Hung, Li -Wei; Sacchettini, James C.; Terwilliger, Thomas C.; Alber, Tom; Mayer, Claudine

    2014-12-31

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows thatmore » Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.« less

  5. Reciprocal Influence of Protein Domains in the Cold-Adapted Acyl Aminoacyl Peptidase from Sporosarcina psychrophila

    PubMed Central

    Parravicini, Federica; Natalello, Antonino; Papaleo, Elena; De Gioia, Luca; Doglia, Silvia Maria; Lotti, Marina; Brocca, Stefania

    2013-01-01

    Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic α/β-hydrolase domain and by an N-terminal β-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named α1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the α1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the β-propeller. The α1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated β-propeller. A single charged residue (E10) in the α1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution. PMID:23457536

  6. Subfamily-Specific Adaptations in the Structures of Two Penicillin-Binding Proteins from Mycobacterium tuberculosis

    PubMed Central

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.; Mavrici, Daniela; Waldo, Geoffrey S.; Hung, Li-Wei; Sacchettini, James C.; Terwilliger, Thomas C.; Alber, Tom

    2014-01-01

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows that Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis. PMID:25551456

  7. Toward a general theory of adaptive radiation: insights from microbial experimental evolution.

    PubMed

    Kassen, Rees

    2009-06-01

    The history of life has been punctuated by unusually spectacular periods of evolutionary diversification called adaptive radiation. Darwin's finches in the Galapagos, cichlid fishes in African Rift and Nicaraguan crater lakes, and the emergence of mammals at the end of the Cretaceous are hallmark examples. Although we have learned much from these and other case studies about the mechanisms thought to drive adaptive radiations, convincing experimental tests of theory are often lacking for the simple reason that it is usually impossible to "rewind the tape of life," as Stephen Jay Gould was fond of saying, and run it again. This situation has changed dramatically in recent years with the increasing emphasis on the use of microbial populations which, because of their small size and rapid generation times, make possible the construction of replicated, manipulative experiments to study evolution in the laboratory. Here I review the contributions that microbial experimental evolution has made to our understanding of the ecological and genetic mechanisms underlying adaptive radiation. I focus on three major gaps in the theory of adaptive radiation--the paucity of direct tests of mechanism, the genetics of diversification, and the limits and constraints on the progress of radiations--with the aim of pointing the way toward the development of a more general theory of adaptive radiation.

  8. Adaptive evolution of baker's yeast in a dough-like environment enhances freeze and salinity tolerance.

    PubMed

    Aguilera, Jaime; Andreu, Pasqual; Randez-Gil, Francisca; Prieto, Jose Antonio

    2010-03-01

    We used adaptive evolution to improve freeze tolerance of industrial baker's yeast. Our hypothesis was that adaptation to low temperature is accompanied by enhanced resistance of yeast to freezing. Based on this hypothesis, yeast was propagated in a flour-free liquid dough model system, which contained sorbitol and NaCl, by successive batch refreshments maintained constantly at 12°C over at least 200 generations. Relative to the parental population, the maximal growth rate (µ(max)) under the restrictive conditions, increased gradually over the time course of the experiment. This increase was accompanied by enhanced freeze tolerance. However, these changes were not the consequence of genetic adaptation to low temperature, a fact that was confirmed by prolonged selection of yeast cells in YPD at 12°C. Instead, the experimental populations showed a progressive increase in NaCl tolerance. This phenotype was likely achieved at the expense of others traits, since evolved cells showed a ploidy reduction, a defect in the glucose derepression mechanism and a loss in their ability to utilize gluconeogenic carbon sources. We discuss the genetic flexibility of S. cerevisiae in terms of adaptation to the multiple constraints of the experimental design applied to drive adaptive evolution and the technologically advantageous phenotype of the evolved population. PMID:21255321

  9. Evolution of taxis responses in virtual bacteria: non-adaptive dynamics.

    PubMed

    Goldstein, Richard A; Soyer, Orkun S

    2008-05-23

    Bacteria are able to sense and respond to a variety of external stimuli, with responses that vary from stimuli to stimuli and from species to species. The best-understood is chemotaxis in the model organism Escherichia coli, where the dynamics and the structure of the underlying pathway are well characterised. It is not clear, however, how well this detailed knowledge applies to mechanisms mediating responses to other stimuli or to pathways in other species. Furthermore, there is increasing experimental evidence that bacteria integrate responses from different stimuli to generate a coherent taxis response. We currently lack a full understanding of the different pathway structures and dynamics and how this integration is achieved. In order to explore different pathway structures and dynamics that can underlie taxis responses in bacteria, we perform a computational simulation of the evolution of taxis. This approach starts with a population of virtual bacteria that move in a virtual environment based on the dynamics of the simple biochemical pathways they harbour. As mutations lead to changes in pathway structure and dynamics, bacteria better able to localise with favourable conditions gain a selective advantage. We find that a certain dynamics evolves consistently under different model assumptions and environments. These dynamics, which we call non-adaptive dynamics, directly couple tumbling probability of the cell to increasing stimuli. Dynamics that are adaptive under a wide range of conditions, as seen in the chemotaxis pathway of E. coli, do not evolve in these evolutionary simulations. However, we find that stimulus scarcity and fluctuations during evolution results in complex pathway dynamics that result both in adaptive and non-adaptive dynamics depending on basal stimuli levels. Further analyses of evolved pathway structures show that effective taxis dynamics can be mediated with as few as two components. The non-adaptive dynamics mediating taxis responses

  10. Evolutionary Genomics and Adaptive Evolution of the Hedgehog Gene Family (Shh, Ihh and Dhh) in Vertebrates

    PubMed Central

    Pereira, Joana; Johnson, Warren E.; O’Brien, Stephen J.; Jarvis, Erich D.; Zhang, Guojie; Gilbert, M. Thomas P.; Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots. PMID:25549322

  11. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh) in vertebrates.

    PubMed

    Pereira, Joana; Johnson, Warren E; O'Brien, Stephen J; Jarvis, Erich D; Zhang, Guojie; Gilbert, M Thomas P; Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog--Shh; Indian hedgehog--Ihh; and Desert hedgehog--Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots. PMID:25549322

  12. The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii

    PubMed Central

    Ramasamy, Sukanya; Ometto, Lino; Crava, Cristina M.; Revadi, Santosh; Kaur, Rupinder; Horner, David S.; Pisani, Davide; Dekker, Teun; Anfora, Gianfranco; Rota-Stabelli, Omar

    2016-01-01

    How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila. We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes. We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors—Or85a and Or22a—are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii. PMID:27435796

  13. Hominoid seminal protein evolution and ancestral mating behavior.

    PubMed

    Carnahan, Sarah J; Jensen-Seaman, Michael I

    2008-10-01

    Hominoid mating systems show extensive variation among species. The degree of sexual dimorphism in body size and canine size varies among primates in accordance with their mating system, as does the testes size and the consistency of ejaculated semen, in response to differing levels of sperm competition. To investigate patterns of evolution at hominoid seminal proteins and to make inferences regarding the mating systems of extinct taxa, we sequenced the entire coding region of the prostate-specific transglutaminase (TGM4) gene in human, chimpanzee, bonobo, western lowland gorilla, eastern lowland gorilla, orangutan, and siamang, including multiple humans, chimps, and gorillas. Partial DNA sequence of the coding regions was also obtained for one eastern lowland gorilla at the semenogelin genes (SEMG1 and SEMG2), which code for the predominant proteins in semen. Patterns of nucleotide variation and inferred protein sequence change were evaluated within and between species. Combining the present data with previous studies demonstrates a high rate of amino acid substitutions, and low intraspecific variation, at seminal proteins in Pan, presumably driven by strong sperm competition. Both gorilla species apparently possess nonfunctional TGM4, SEMG1, and SEMG2 genes, suggesting that gorillas have had low sperm competition, and therefore their current polygynous mating system, for a long time before their divergence. Similarly, orangutans show longstanding stasis at TGM4, which may be interpreted as evidence for an unchanging mating system for most of their evolution after their divergence from African apes. In contrast to the great apes, the data from humans could be interpreted as evidence of fluctuations between different mating systems or alternatively as a relaxed functional constraint in these proteins. It is our hope that this study is a first step toward developing a model to predict ancestral mating systems from extant molecular data to complement interpretations

  14. A branch-heterogeneous model of protein evolution for efficient inference of ancestral sequences.

    PubMed

    Groussin, M; Boussau, B; Gouy, M

    2013-07-01

    Most models of nucleotide or amino acid substitution used in phylogenetic studies assume that the evolutionary process has been homogeneous across lineages and that composition of nucleotides or amino acids has remained the same throughout the tree. These oversimplified assumptions are refuted by the observation that compositional variability characterizes extant biological sequences. Branch-heterogeneous models of protein evolution that account for compositional variability have been developed, but are not yet in common use because of the large number of parameters required, leading to high computational costs and potential overparameterization. Here, we present a new branch-nonhomogeneous and nonstationary model of protein evolution that captures more accurately the high complexity of sequence evolution. This model, henceforth called Correspondence and likelihood analysis (COaLA), makes use of a correspondence analysis to reduce the number of parameters to be optimized through maximum likelihood, focusing on most of the compositional variation observed in the data. The model was thoroughly tested on both simulated and biological data sets to show its high performance in terms of data fitting and CPU time. COaLA efficiently estimates ancestral amino acid frequencies and sequences, making it relevant for studies aiming at reconstructing and resurrecting ancestral amino acid sequences. Finally, we applied COaLA on a concatenate of universal amino acid sequences to confirm previous results obtained with a nonhomogeneous Bayesian model regarding the early pattern of adaptation to optimal growth temperature, supporting the mesophilic nature of the Last Universal Common Ancestor.

  15. Protein design by fusion: implications for protein structure prediction and evolution

    SciTech Connect

    Skorupka, Katarzyna; Han, Seong Kyu; Nam, Hyun-Jun; Kim, Sanguk; Faham, Salem

    2013-11-19

    Domain fusion is a useful tool in protein design. Here, the structure of a fusion of the heterodimeric flagella-assembly proteins FliS and FliC is reported. Although the ability of the fusion protein to maintain the structure of the heterodimer may be apparent, threading-based structural predictions do not properly fuse the heterodimer. Additional examples of naturally occurring heterodimers that are homologous to full-length proteins were identified. These examples highlight that the designed protein was engineered by the same tools as used in the natural evolution of proteins and that heterodimeric structures contain a wealth of information, currently unused, that can improve structural predictions.

  16. Two Goose-Type Lysozymes in Mytilus galloprovincialis: Possible Function Diversification and Adaptive Evolution

    PubMed Central

    Wang, Qing; Zhang, Linbao; Zhao, Jianmin; You, Liping; Wu, Huifeng

    2012-01-01

    Two goose-type lysozymes (designated as MGgLYZ1 and MGgLYZ2) were identified from the mussel Mytilus galloprovincialis. MGgLYZ1 mRNA was widely expressed in the examined tissues and responded sensitively to bacterial challenge in hemocytes, while MGgLYZ2 mRNA was predominately expressed and performed its functions in hepatopancreas. However, immunolocalization analysis showed that both these lysozymes were expressed in all examined tissues with the exception of adductor muscle. Recombinant MGgLYZ1 and MGgLYZ2 could inhibit the growth of several Gram-positive and Gram-negative bacteria, and they both showed the highest activity against Pseudomonas putida with the minimum inhibitory concentration (MIC) of 0.95–1.91 µM and 1.20–2.40 µM, respectively. Protein sequences analysis revealed that MGgLYZ2 had lower isoelectric point and less protease cutting sites than MGgLYZ1. Recombinant MGgLYZ2 exhibited relative high activity at acidic pH of 4–5, while MGgLYZ1 have an optimum pH of 6. These results indicated MGgLYZ2 adapted to acidic environment and perhaps play an important role in digestion. Genomic structure analysis suggested that both MGgLYZ1 and MGgLYZ2 genes are composed of six exons with same length and five introns, indicating these genes were conserved and might originate from gene duplication during the evolution. Selection pressure analysis showed that MGgLYZ1 was under nearly neutral selection while MGgLYZ2 evolved under positive selection pressure with three positively selected amino acid residues (Y102, L200 and S202) detected in the mature peptide. All these findings suggested MGgLYZ2 perhaps served as a digestive lysozyme under positive selection pressure during the evolution while MGgLYZ1 was mainly involved in innate immune responses. PMID:23028813

  17. The TALE face of Hox proteins in animal evolution.

    PubMed

    Merabet, Samir; Galliot, Brigitte

    2015-01-01

    Hox genes are major regulators of embryonic development. One of their most conserved functions is to coordinate the formation of specific body structures along the anterior-posterior (AP) axis in Bilateria. This architectural role was at the basis of several morphological innovations across bilaterian evolution. In this review, we traced the origin of the Hox patterning system by considering the partnership with PBC and Meis proteins. PBC and Meis belong to the TALE-class of homeodomain-containing transcription factors and act as generic cofactors of Hox proteins for AP axis patterning in Bilateria. Recent data indicate that Hox proteins acquired the ability to interact with their TALE partners in the last common ancestor of Bilateria and Cnidaria. These interactions relied initially on a short peptide motif called hexapeptide (HX), which is present in Hox and non-Hox protein families. Remarkably, Hox proteins can also recruit the TALE cofactors by using specific PBC Interaction Motifs (SPIMs). We describe how a functional Hox/TALE patterning system emerged in eumetazoans through the acquisition of SPIMs. We anticipate that interaction flexibility could be found in other patterning systems, being at the heart of the astonishing morphological diversity observed in the animal kingdom.

  18. PROFESS: a PROtein function, evolution, structure and sequence database.

    PubMed

    Triplet, Thomas; Shortridge, Matthew D; Griep, Mark A; Stark, Jaime L; Powers, Robert; Revesz, Peter

    2010-07-06

    The proliferation of biological databases and the easy access enabled by the Internet is having a beneficial impact on biological sciences and transforming the way research is conducted. There are approximately 1100 molecular biology databases dispersed throughout the Internet. To assist in the functional, structural and evolutionary analysis of the abundant number of novel proteins continually identified from whole-genome sequencing, we introduce the PROFESS (PROtein Function, Evolution, Structure and Sequence) database. Our database is designed to be versatile and expandable and will not confine analysis to a pre-existing set of data relationships. A fundamental component of this approach is the development of an intuitive query system that incorporates a variety of similarity functions capable of generating data relationships not conceived during the creation of the database. The utility of PROFESS is demonstrated by the analysis of the structural drift of homologous proteins and the identification of potential pancreatic cancer therapeutic targets based on the observation of protein-protein interaction networks. Database URL: http://cse.unl.edu/~profess/

  19. Protein flexibility facilitates quaternary structure assembly and evolution.

    PubMed

    Marsh, Joseph A; Teichmann, Sarah A

    2014-05-01

    The intrinsic flexibility of proteins allows them to undergo large conformational fluctuations in solution or upon interaction with other molecules. Proteins also commonly assemble into complexes with diverse quaternary structure arrangements. Here we investigate how the flexibility of individual protein chains influences the assembly and evolution of protein complexes. We find that flexibility appears to be particularly conducive to the formation of heterologous (i.e., asymmetric) intersubunit interfaces. This leads to a strong association between subunit flexibility and homomeric complexes with cyclic and asymmetric quaternary structure topologies. Similarly, we also observe that the more nonhomologous subunits that assemble together within a complex, the more flexible those subunits tend to be. Importantly, these findings suggest that subunit flexibility should be closely related to the evolutionary history of a complex. We confirm this by showing that evolutionarily more recent subunits are generally more flexible than evolutionarily older subunits. Finally, we investigate the very different explorations of quaternary structure space that have occurred in different evolutionary lineages. In particular, the increased flexibility of eukaryotic proteins appears to enable the assembly of heteromeric complexes with more unique components.

  20. The TALE face of Hox proteins in animal evolution

    PubMed Central

    Merabet, Samir; Galliot, Brigitte

    2015-01-01

    Hox genes are major regulators of embryonic development. One of their most conserved functions is to coordinate the formation of specific body structures along the anterior-posterior (AP) axis in Bilateria. This architectural role was at the basis of several morphological innovations across bilaterian evolution. In this review, we traced the origin of the Hox patterning system by considering the partnership with PBC and Meis proteins. PBC and Meis belong to the TALE-class of homeodomain-containing transcription factors and act as generic cofactors of Hox proteins for AP axis patterning in Bilateria. Recent data indicate that Hox proteins acquired the ability to interact with their TALE partners in the last common ancestor of Bilateria and Cnidaria. These interactions relied initially on a short peptide motif called hexapeptide (HX), which is present in Hox and non-Hox protein families. Remarkably, Hox proteins can also recruit the TALE cofactors by using specific PBC Interaction Motifs (SPIMs). We describe how a functional Hox/TALE patterning system emerged in eumetazoans through the acquisition of SPIMs. We anticipate that interaction flexibility could be found in other patterning systems, being at the heart of the astonishing morphological diversity observed in the animal kingdom. PMID:26347770

  1. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    PubMed

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution.

  2. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    PubMed

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution. PMID:23475937

  3. Ecological adaptation and species recognition drives vocal evolution in neotropical suboscine birds.

    PubMed

    Seddon, Nathalie

    2005-01-01

    Given that evolutionary divergence in mating signals leads to reproductive isolation in numerous animal taxa, understanding what drives signal divergence is fundamental to our understanding of speciation. Mating signals are thought to diverge via several processes, including (1) as a by-product of morphological adaptation, (2) through direct adaptation to the signaling environment, or (3) to facilitate species recognition. According to the first two hypotheses, birdsongs diversify in different foraging niches and habitats as a product of selection for optimal morphology and efficient sound transmission, respectively. According to the third hypothesis, they diversify as a result of selection against maladaptive hybridization. In this study I test all three hypotheses by examining the influence of morphology, acoustic environment, and the presence of closely related congeners on song structure in 163 species of antbird (Thamnophilidae). Unlike oscine passerines, these Neotropical suboscines make ideal subjects because they develop their songs without learning. In other words, patterns of vocal divergence are not complicated by cultural evolution. In support of the morphological adaptation hypothesis, body mass correlates with the acoustic frequency of songs, and bill size with temporal patterning. These relationships were robust, even when controlling for phylogenetic inertia using independent contrasts, suggesting that there has been correlated evolution between morphological and acoustic traits. The results also support the acoustic adaptation hypothesis: birds which habitually sing in the understory and canopy produce higher-pitched songs than those that sing in the midstory, suggesting that song structure is related to the sound transmission properties of different habitat strata. Finally, the songs of sympatric pairs of closely related species are more divergent than those of allopatric pairs, as predicted by the species recognition hypothesis. To my knowledge

  4. Ecological adaptation and species recognition drives vocal evolution in neotropical suboscine birds.

    PubMed

    Seddon, Nathalie

    2005-01-01

    Given that evolutionary divergence in mating signals leads to reproductive isolation in numerous animal taxa, understanding what drives signal divergence is fundamental to our understanding of speciation. Mating signals are thought to diverge via several processes, including (1) as a by-product of morphological adaptation, (2) through direct adaptation to the signaling environment, or (3) to facilitate species recognition. According to the first two hypotheses, birdsongs diversify in different foraging niches and habitats as a product of selection for optimal morphology and efficient sound transmission, respectively. According to the third hypothesis, they diversify as a result of selection against maladaptive hybridization. In this study I test all three hypotheses by examining the influence of morphology, acoustic environment, and the presence of closely related congeners on song structure in 163 species of antbird (Thamnophilidae). Unlike oscine passerines, these Neotropical suboscines make ideal subjects because they develop their songs without learning. In other words, patterns of vocal divergence are not complicated by cultural evolution. In support of the morphological adaptation hypothesis, body mass correlates with the acoustic frequency of songs, and bill size with temporal patterning. These relationships were robust, even when controlling for phylogenetic inertia using independent contrasts, suggesting that there has been correlated evolution between morphological and acoustic traits. The results also support the acoustic adaptation hypothesis: birds which habitually sing in the understory and canopy produce higher-pitched songs than those that sing in the midstory, suggesting that song structure is related to the sound transmission properties of different habitat strata. Finally, the songs of sympatric pairs of closely related species are more divergent than those of allopatric pairs, as predicted by the species recognition hypothesis. To my knowledge

  5. From Environment to Man: Genome Evolution and Adaptation of Human Opportunistic Bacterial Pathogens

    PubMed Central

    Aujoulat, Fabien; Roger, Frédéric; Bourdier, Alice; Lotthé, Anne; Lamy, Brigitte; Marchandin, Hélène; Jumas-Bilak, Estelle

    2012-01-01

    Environment is recognized as a huge reservoir for bacterial species and a source of human pathogens. Some environmental bacteria have an extraordinary range of activities that include promotion of plant growth or disease, breakdown of pollutants, production of original biomolecules, but also multidrug resistance and human pathogenicity. The versatility of bacterial life-style involves adaptation to various niches. Adaptation to both open environment and human specific niches is a major challenge that involves intermediate organisms allowing pre-adaptation to humans. The aim of this review is to analyze genomic features of environmental bacteria in order to explain their adaptation to human beings. The genera Pseudomonas, Aeromonas and Ochrobactrum provide valuable examples of opportunistic behavior associated to particular genomic structure and evolution. Particularly, we performed original genomic comparisons among aeromonads and between the strictly intracellular pathogens Brucella spp. and the mild opportunistic pathogens Ochrobactrum spp. We conclude that the adaptation to human could coincide with a speciation in action revealed by modifications in both genomic and population structures. This adaptation-driven speciation could be a major mechanism for the emergence of true pathogens besides the acquisition of specialized virulence factors. PMID:24704914

  6. The red queen in the corn: agricultural weeds as models of rapid adaptive evolution.

    PubMed

    Vigueira, C C; Olsen, K M; Caicedo, A L

    2013-04-01

    Weeds are among the greatest pests of agriculture, causing billions of dollars in crop losses each year. As crop field management practices have changed over the past 12 000 years, weeds have adapted in turn to evade human removal. This evolutionary change can be startlingly rapid, making weeds an appealing system to study evolutionary processes that occur over short periods of time. An understanding of how weeds originate and adapt is needed for successful management; however, relatively little emphasis has been placed on genetically characterizing these systems. Here, we review the current literature on agricultural weed origins and their mechanisms of adaptation. Where possible, we have included examples that have been genetically well characterized. Evidence for three possible, non-mutually exclusive weed origins (from wild species, crop-wild hybrids or directly from crops) is discussed with respect to what is known about the microevolutionary signatures that result from these processes. We also discuss what is known about the genetic basis of adaptive traits in weeds and the range of genetic mechanisms that are responsible. With a better understanding of genetic mechanisms underlying adaptation in weedy species, we can address the more general process of adaptive evolution and what can be expected as we continue to apply selective pressures in agroecosystems around the world.

  7. The red queen in the corn: agricultural weeds as models of rapid adaptive evolution

    PubMed Central

    Vigueira, C C; Olsen, K M; Caicedo, A L

    2013-01-01

    Weeds are among the greatest pests of agriculture, causing billions of dollars in crop losses each year. As crop field management practices have changed over the past 12 000 years, weeds have adapted in turn to evade human removal. This evolutionary change can be startlingly rapid, making weeds an appealing system to study evolutionary processes that occur over short periods of time. An understanding of how weeds originate and adapt is needed for successful management; however, relatively little emphasis has been placed on genetically characterizing these systems. Here, we review the current literature on agricultural weed origins and their mechanisms of adaptation. Where possible, we have included examples that have been genetically well characterized. Evidence for three possible, non-mutually exclusive weed origins (from wild species, crop-wild hybrids or directly from crops) is discussed with respect to what is known about the microevolutionary signatures that result from these processes. We also discuss what is known about the genetic basis of adaptive traits in weeds and the range of genetic mechanisms that are responsible. With a better understanding of genetic mechanisms underlying adaptation in weedy species, we can address the more general process of adaptive evolution and what can be expected as we continue to apply selective pressures in agroecosystems around the world. PMID:23188175

  8. Effects of Protein Conformation in Docking: Improved Pose Prediction through Protein Pocket Adaptation

    PubMed Central

    Jain, Ajay N.

    2009-01-01

    Computational methods for docking ligands have been shown to be remarkably dependent on precise protein conformation, where acceptable results in pose prediction have been generally possible only in the artificial case of re-docking a ligand into a protein binding site whose conformation was determined in the presence of the same ligand (the “cognate” docking problem). In such cases, on well curated protein/ligand complexes, accurate dockings can be returned as top-scoring over 75% of the time using tools such as Surflex-Dock. A critical application of docking in modeling for lead optimization requires accurate pose prediction for novel ligands, ranging from simple synthetic analogs to very different molecular scaffolds. Typical results for widely used programs in the “cross-docking case” (making use of a single fixed protein conformation) have rates closer to 20% success. By making use of protein conformations from multiple complexes, Surflex-Dock yields an average success rate of 61% across eight pharmaceutically relevant targets. Following docking, protein pocket adaptation and rescoring identifies single pose families that are correct an average of 67% of the time. Consideration of the best of two pose families (from alternate scoring regimes) yields a 75% mean success rate. PMID:19340588

  9. Evolution of Protein Synthesis from an RNA World

    PubMed Central

    Noller, Harry F.

    2012-01-01

    SUMMARY Because of the molecular complexity of the ribosome and protein synthesis, it is a challenge to imagine how translation could have evolved from a primitive RNA World. Two specific suggestions are made here to help to address this, involving separate evolution of the peptidyl transferase and decoding functions. First, it is proposed that translation originally arose not to synthesize functional proteins, but to provide simple (perhaps random) peptides that bound to RNA, increasing its available structure space, and therefore its functional capabilities. Second, it is proposed that the decoding site of the ribosome evolved from a mechanism for duplication of RNA. This process involved homodimeric “duplicator RNAs,” resembling the anticodon arms of tRNAs, which directed ligation of trinucleotides in response to an RNA template. PMID:20610545

  10. Evolution of regulatory networks towards adaptability and stability in a changing environment

    NASA Astrophysics Data System (ADS)

    Lee, Deok-Sun

    2014-11-01

    Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.

  11. Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution.

    PubMed

    Flegr, Jaroslav

    2013-01-16

    Punctuational theories of evolution suggest that adaptive evolution proceeds mostly, or even entirely, in the distinct periods of existence of a particular species. The mechanisms of this punctuated nature of evolution suggested by the various theories differ. Therefore the predictions of particular theories concerning various evolutionary phenomena also differ.Punctuational theories can be subdivided into five classes, which differ in their mechanism and their evolutionary and ecological implications. For example, the transilience model of Templeton (class III), genetic revolution model of Mayr (class IV) or the frozen plasticity theory of Flegr (class V), suggests that adaptive evolution in sexual species is operative shortly after the emergence of a species by peripatric speciation--while it is evolutionary plastic. To a major degree, i.e. throughout 98-99% of their existence, sexual species are evolutionarily frozen (class III) or elastic (class IV and V) on a microevolutionary time scale and evolutionarily frozen on a macroevolutionary time scale and can only wait for extinction, or the highly improbable return of a population segment to the plastic state due to peripatric speciation.The punctuational theories have many evolutionary and ecological implications. Most of these predictions could be tested empirically, and should be analyzed in greater depth theoretically. The punctuational theories offer many new predictions that need to be tested, but also provide explanations for a much broader spectrum of known biological phenomena than classical gradualistic evolutionary theories.

  12. Within-host co-evolution of chronic viruses and the adaptive immune system

    NASA Astrophysics Data System (ADS)

    Nourmohammad, Armita

    We normally think of evolution occurring in a population of organisms, in response to their external environment. Rapid evolution of cellular populations also occurs within our bodies, as the adaptive immune system works to eliminate infection. Some pathogens, such as HIV, are able to persist in a host for extended periods of time, during which they also evolve to evade the immune response. In this talk I will introduce an analytical framework for the rapid co-evolution of B-cell and viral populations, based on the molecular interactions between them. Since the co-evolution of antibodies and viruses is perpetually out of equilibrium, I will show how to quantify the amount of adaptation in each of the two populations by analysis of their co-evolutionary history. I will discuss the consequences of competition between lineages of antibodies, and characterize the fate of a given lineage dependent on the state of the antibody and viral populations. In particular, I will discuss the conditions for emergence of highly potent broadly neutralizing antibodies, which are now recognized as critical for designing an effective vaccine against HIV.

  13. Adaptive evolution in locomotor performance: How selective pressures and functional relationships produce diversity.

    PubMed

    Scales, Jeffrey A; Butler, Marguerite A

    2016-01-01

    Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity.

  14. Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution

    PubMed Central

    2013-01-01

    Abstract Punctuational theories of evolution suggest that adaptive evolution proceeds mostly, or even entirely, in the distinct periods of existence of a particular species. The mechanisms of this punctuated nature of evolution suggested by the various theories differ. Therefore the predictions of particular theories concerning various evolutionary phenomena also differ. Punctuational theories can be subdivided into five classes, which differ in their mechanism and their evolutionary and ecological implications. For example, the transilience model of Templeton (class III), genetic revolution model of Mayr (class IV) or the frozen plasticity theory of Flegr (class V), suggests that adaptive evolution in sexual species is operative shortly after the emergence of a species by peripatric speciation – while it is evolutionary plastic. To a major degree, i.e. throughout 98-99% of their existence, sexual species are evolutionarily frozen (class III) or elastic (class IV and V) on a microevolutionary time scale and evolutionarily frozen on a macroevolutionary time scale and can only wait for extinction, or the highly improbable return of a population segment to the plastic state due to peripatric speciation. The punctuational theories have many evolutionary and ecological implications. Most of these predictions could be tested empirically, and should be analyzed in greater depth theoretically. The punctuational theories offer many new predictions that need to be tested, but also provide explanations for a much broader spectrum of known biological phenomena than classical gradualistic evolutionary theories. Reviewers This article was reviewed by Claus Wilke, Pierre Pantarotti and David Penny (nominated by Anthony Poole). PMID:23324625

  15. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution

    PubMed Central

    Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping; Zheng, Yixin; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Cheng, Yuan-Chung; Chen, Hao Ming

    2015-01-01

    Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer. PMID:26315066

  16. Analysis of Adaptive Evolution in Lyssavirus Genomes Reveals Pervasive Diversifying Selection during Species Diversification

    PubMed Central

    Voloch, Carolina M.; Capellão, Renata T.; Mello, Beatriz; Schrago, Carlos G.

    2014-01-01

    Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups. PMID:25415197

  17. Evolution of adaptive diversity and genetic connectivity in Arctic charr (Salvelinus alpinus) in Iceland

    PubMed Central

    Kapralova, K H; Morrissey, M B; Kristjánsson, B K; Ólafsdóttir, G Á; Snorrason, S S; Ferguson, M M

    2011-01-01

    The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr. PMID:21224880

  18. Evidence for widespread adaptive evolution of gene expression in budding yeast.

    PubMed

    Fraser, Hunter B; Moses, Alan M; Schadt, Eric E

    2010-02-16

    Changes in gene expression have been proposed to underlie many, or even most, adaptive differences between species. Despite the increasing acceptance of this view, only a handful of cases of adaptive gene expression evolution have been demonstrated. To address this discrepancy, we introduce a simple test for lineage-specific selection on gene expression. Applying the test to genome-wide gene expression data from the budding yeast Saccharomyces cerevisiae, we find that hundreds of gene expression levels have been subject to lineage-specific selection. Comparing these findings with independent population genetic evidence of selective sweeps suggests that this lineage-specific selection has resulted in recent sweeps at over a hundred genes, most of which led to increased transcript levels. Examination of the implicated genes revealed a specific biochemical pathway--ergosterol biosynthesis--where the expression of multiple genes has been subject to selection for reduced levels. In sum, these results suggest that adaptive evolution of gene expression is common in yeast, that regulatory adaptation can occur at the level of entire pathways, and that similar genome-wide scans may be possible in other species, including humans.

  19. Using Experimental Evolution to Study Adaptations for Life within the Family

    PubMed Central

    Schrader, Matthew; Jarrett, Benjamin J. M.; Kilner, Rebecca M.

    2015-01-01

    Parents of many species provision their young, and the extent of parental provisioning constitutes a major component of the offspring’s social environment. Thus, a change in parental provisioning can alter selection on offspring, resulting in the coevolution of parental and offspring traits. Although this reasoning is central to our evolutionary understanding of family life, there is little direct evidence that selection by parents causes evolutionary change in their offspring. Here we use experimental evolution to examine how populations of burying beetles adapt to a change in posthatching parental provisioning. We measured the performance of larvae descended from lab populations that had been maintained with and without posthatching parental care (Full Care and No Care populations). We found that adaptation to the absence of posthatching care led to rapid and consistent changes in larval survival in the absence of care. Specifically, larvae from No Care populations had higher survival in the absence of care than larvae from Full Care populations. Other measures of larval performance, such as the ability of larvae to consume a breeding carcass and larval mass at dispersal, did not differ between the Full Care and No Care populations. Nevertheless, our results show that populations can adapt rapidly to a change in the extent of parental care and that experimental evolution can be used to study such adaptation. PMID:25905504

  20. Biophysical and structural considerations for protein sequence evolution

    PubMed Central

    2011-01-01

    Background Protein sequence evolution is constrained by the biophysics of folding and function, causing interdependence between interacting sites in the sequence. However, current site-independent models of sequence evolutions do not take this into account. Recent attempts to integrate the influence of structure and biophysics into phylogenetic models via statistical/informational approaches have not resulted in expected improvements in model performance. This suggests that further innovations are needed for progress in this field. Results Here we develop a coarse-grained physics-based model of protein folding and binding function, and compare it to a popular informational model. We find that both models violate the assumption of the native sequence being close to a thermodynamic optimum, causing directional selection away from the native state. Sampling and simulation show that the physics-based model is more specific for fold-defining interactions that vary less among residue type. The informational model diffuses further in sequence space with fewer barriers and tends to provide less support for an invariant sites model, although amino acid substitutions are generally conservative. Both approaches produce sequences with natural features like dN/dS < 1 and gamma-distributed rates across sites. Conclusions Simple coarse-grained models of protein folding can describe some natural features of evolving proteins but are currently not accurate enough to use in evolutionary inference. This is partly due to improper packing of the hydrophobic core. We suggest possible improvements on the representation of structure, folding energy, and binding function, as regards both native and non-native conformations, and describe a large number of possible applications for such a model. PMID:22171550

  1. Simulated evolution of protein-protein interaction networks with realistic topology.

    PubMed

    Peterson, G Jack; Pressé, Steve; Peterson, Kristin S; Dill, Ken A

    2012-01-01

    We model the evolution of eukaryotic protein-protein interaction (PPI) networks. In our model, PPI networks evolve by two known biological mechanisms: (1) Gene duplication, which is followed by rapid diversification of duplicate interactions. (2) Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the target protein's neighborhood. We find good agreement of the model on 10 different network properties compared to high-confidence experimental PPI networks in yeast, fruit flies, and humans. Key findings are: (1) PPI networks evolve modular structures, with no need to invoke particular selection pressures. (2) Proteins in cells have on average about 6 degrees of separation, similar to some social networks, such as human-communication and actor networks. (3) Unlike social networks, which have a shrinking diameter (degree of maximum separation) over time, PPI networks are predicted to grow in diameter. (4) The model indicates that evolutionarily old proteins should have higher connectivities and be more centrally embedded in their networks. This suggests a way in which present-day proteomics data could provide insights into biological evolution.

  2. Simulated evolution of protein-protein interaction networks with realistic topology.

    PubMed

    Peterson, G Jack; Pressé, Steve; Peterson, Kristin S; Dill, Ken A

    2012-01-01

    We model the evolution of eukaryotic protein-protein interaction (PPI) networks. In our model, PPI networks evolve by two known biological mechanisms: (1) Gene duplication, which is followed by rapid diversification of duplicate interactions. (2) Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the target protein's neighborhood. We find good agreement of the model on 10 different network properties compared to high-confidence experimental PPI networks in yeast, fruit flies, and humans. Key findings are: (1) PPI networks evolve modular structures, with no need to invoke particular selection pressures. (2) Proteins in cells have on average about 6 degrees of separation, similar to some social networks, such as human-communication and actor networks. (3) Unlike social networks, which have a shrinking diameter (degree of maximum separation) over time, PPI networks are predicted to grow in diameter. (4) The model indicates that evolutionarily old proteins should have higher connectivities and be more centrally embedded in their networks. This suggests a way in which present-day proteomics data could provide insights into biological evolution. PMID:22768057

  3. Anomalous diffusion in neutral evolution of model proteins.

    PubMed

    Nelson, Erik D; Grishin, Nick V

    2015-06-01

    Protein evolution is frequently explored using minimalist polymer models, however, little attention has been given to the problem of structural drift, or diffusion. Here, we study neutral evolution of small protein motifs using an off-lattice heteropolymer model in which individual monomers interact as low-resolution amino acids. In contrast to most earlier models, both the length and folded structure of the polymers are permitted to change. To describe structural change, we compute the mean-square distance (MSD) between monomers in homologous folds separated by n neutral mutations. We find that structural change is episodic, and, averaged over lineages (for example, those extending from a single sequence), exhibits a power-law dependence on n. We show that this exponent depends on the alignment method used, and we analyze the distribution of waiting times between neutral mutations. The latter are more disperse than for models required to maintain a specific fold, but exhibit a similar power-law tail. PMID:26172648

  4. Gene evolution and functions of extracellular matrix proteins in teeth

    PubMed Central

    Yoshizaki, Keigo; Yamada, Yoshihiko

    2013-01-01

    The extracellular matrix (ECM) not only provides physical support for tissues, but it is also critical for tissue development, homeostasis and disease. Over 300 ECM molecules have been defined as comprising the “core matrisome” in mammals through the analysis of whole genome sequences. During tooth development, the structure and functions of the ECM dynamically change. In the early stages, basement membranes (BMs) separate two cell layers of the dental epithelium and the mesenchyme. Later in the differentiation stages, the BM layer is replaced with the enamel matrix and the dentin matrix, which are secreted by ameloblasts and odontoblasts, respectively. The enamel matrix genes and the dentin matrix genes are each clustered in two closed regions located on human chromosome 4 (mouse chromosome 5), except for the gene coded for amelogenin, the major enamel matrix protein, which is located on the sex chromosomes. These genes for enamel and dentin matrix proteins are derived from a common ancestral gene, but as a result of evolution, they diverged in terms of their specific functions. These matrix proteins play important roles in cell adhesion, polarity, and differentiation and mineralization of enamel and dentin matrices. Mutations of these genes cause diseases such as odontogenesis imperfect (OI) and amelogenesis imperfect (AI). In this review, we discuss the recently defined terms matrisome and matrixome for ECMs, as well as focus on genes and functions of enamel and dentin matrix proteins. PMID:23539364

  5. A neural network dynamics that resembles protein evolution

    NASA Astrophysics Data System (ADS)

    Ferrán, Edgardo A.; Ferrara, Pascual

    1992-06-01

    We use neutral networks to classify proteins according to their sequence similarities. A network composed by 7 × 7 neurons, was trained with the Kohonen unsupervised learning algorithm using, as inputs, matrix patterns derived from the bipeptide composition of cytochrome c proteins belonging to 76 different species. As a result of the training, the network self-organized the activation of its neurons into topologically ordered maps, wherein phylogenetically related sequences were positioned close to each other. The evolution of the topological map during learning, in a representative computational experiment, roughly resembles the way in which one species evolves into several others. For instance, sequences corresponding to vertebrates, initially grouped together into one neuron, were placed in a contiguous zone of the final neural map, with sequences of fishes, amphibia, reptiles, birds and mammals associated to different neurons. Some apparent wrong classifications are due to the fact that some proteins have a greater degree of sequence identity than the one expected by phylogenetics. In the final neural map, each synaptic vector may be considered as the pattern corresponding to the ancestor of all the proteins that are attached to that neuron. Although it may be also tempting to link real time with learning epochs and to use this relationship to calibrate the molecular evolutionary clock, this is not correct because the evolutionary time schedule obtained with the neural network depends highly on the discrete way in which the winner neighborhood is decreased during learning.

  6. HIV-specific probabilistic models of protein evolution.

    PubMed

    Nickle, David C; Heath, Laura; Jensen, Mark A; Gilbert, Peter B; Mullins, James I; Kosakovsky Pond, Sergei L

    2007-06-06

    Comparative sequence analyses, including such fundamental bioinformatics techniques as similarity searching, sequence alignment and phylogenetic inference, have become a mainstay for researchers studying type 1 Human Immunodeficiency Virus (HIV-1) genome structure and evolution. Implicit in comparative analyses is an underlying model of evolution, and the chosen model can significantly affect the results. In general, evolutionary models describe the probabilities of replacing one amino acid character with another over a period of time. Most widely used evolutionary models for protein sequences have been derived from curated alignments of hundreds of proteins, usually based on mammalian genomes. It is unclear to what extent these empirical models are generalizable to a very different organism, such as HIV-1-the most extensively sequenced organism in existence. We developed a maximum likelihood model fitting procedure to a collection of HIV-1 alignments sampled from different viral genes, and inferred two empirical substitution models, suitable for describing between-and within-host evolution. Our procedure pools the information from multiple sequence alignments, and provided software implementation can be run efficiently in parallel on a computer cluster. We describe how the inferred substitution models can be used to generate scoring matrices suitable for alignment and similarity searches. Our models had a consistently superior fit relative to the best existing models and to parameter-rich data-driven models when benchmarked on independent HIV-1 alignments, demonstrating evolutionary biases in amino-acid substitution that are unique to HIV, and that are not captured by the existing models. The scoring matrices derived from the models showed a marked difference from common amino-acid scoring matrices. The use of an appropriate evolutionary model recovered a known viral transmission history, whereas a poorly chosen model introduced phylogenetic error. We argue that

  7. Comparative genomics and evolution of proteins involved in RNA metabolism

    PubMed Central

    Anantharaman, Vivek; Koonin, Eugene V.; Aravind, L.

    2002-01-01

    RNA metabolism, broadly defined as the compendium of all processes that involve RNA, including transcription, processing and modification of transcripts, translation, RNA degradation and its regulation, is the central and most evolutionarily conserved part of cell physiology. A comprehensive, genome-wide census of all enzymatic and non-enzymatic protein domains involved in RNA metabolism was conducted by using sequence profile analysis and structural comparisons. Proteins related to RNA metabolism comprise from 3 to 11% of the complete protein repertoire in bacteria, archaea and eukaryotes, with the greatest fraction seen in parasitic bacteria with small genomes. Approximately one-half of protein domains involved in RNA metabolism are present in most, if not all, species from all three primary kingdoms and are traceable to the last universal common ancestor (LUCA). The principal features of LUCA’s RNA metabolism system were reconstructed by parsimony-based evolutionary analysis of all relevant groups of orthologous proteins. This reconstruction shows that LUCA possessed not only the basal translation system, but also the principal forms of RNA modification, such as methylation, pseudouridylation and thiouridylation, as well as simple mechanisms for polyadenylation and RNA degradation. Some of these ancient domains form paralogous groups whose evolution can be traced back in time beyond LUCA, towards low-specificity proteins, which probably functioned as cofactors for ribozymes within the RNA world framework. The main lineage-specific innovations of RNA metabolism systems were identified. The most notable phase of innovation in RNA metabolism coincides with the advent of eukaryotes and was brought about by the merge of the archaeal and bacterial systems via mitochondrial endosymbiosis, but also involved emergence of several new, eukaryote-specific RNA-binding domains. Subsequent, vast expansions of these domains mark the origin of alternative splicing in animals

  8. Niche evolution and adaptive radiation: Testing the order of trait divergence

    USGS Publications Warehouse

    Ackerly, D.D.; Schwilk, D.W.; Webb, C.O.

    2006-01-01

    In the course of an adaptive radiation, the evolution of niche parameters is of particular interest for understanding modes of speciation and the consequences for coexistence of related species within communities. We pose a general question: In the course of an evolutionary radiation, do traits related to within-community niche differences (?? niche) evolve before or after differentiation of macrohabitat affinity or climatic tolerances (?? niche)? Here we introduce a new test to address this question, based on a modification of the method of independent contrasts. The divergence order test (DOT) is based on the average age of the nodes on a tree, weighted by the absolute magnitude of the contrast at each node for a particular trait. The comparison of these weighted averages reveals whether large divergences for one trait have occurred earlier or later in the course of diversification, relative to a second trait; significance is determined by bootstrapping from maximum-likelihood ancestral state reconstructions. The method is applied to the evolution of Ceanothus, a woody plant group in California, in which co-occurring species exhibit significant differences in a key leaf trait (specific leaf area) associated with contrasting physiological and life history strategies. Co-occurring species differ more for this trait than expected under a null model of community assembly. This ?? niche difference evolved early in the divergence of two major subclades within Ceanothus, whereas climatic distributions (?? niche traits) diversified later within each of the subclades. However, rapid evolution of climate parameters makes inferences of early divergence events highly uncertain, and differentiation of the ?? niche might have taken place throughout the evolution of the group, without leaving a clear phylogenetic signal. Similar patterns observed in several plant and animal groups suggest that early divergence of ?? niche traits might be a common feature of niche evolution in

  9. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota

    PubMed Central

    Gubry-Rangin, Cécile; Kratsch, Christina; Williams, Tom A.; McHardy, Alice C.; Embley, T. Martin; Prosser, James I.; Macqueen, Daniel J.

    2015-01-01

    The Thaumarchaeota is an abundant and ubiquitous phylum of archaea that plays a major role in the global nitrogen cycle. Previous analyses of the ammonia monooxygenase gene amoA suggest that pH is an important driver of niche specialization in these organisms. Although the ecological distribution and ecophysiology of extant Thaumarchaeota have been studied extensively, the evolutionary rise of these prokaryotes to ecological dominance in many habitats remains poorly understood. To characterize processes leading to their diversification, we investigated coevolutionary relationships between amoA, a conserved marker gene for Thaumarchaeota, and soil characteristics, by using deep sequencing and comprehensive environmental data in Bayesian comparative phylogenetics. These analyses reveal a large and rapid increase in diversification rates during early thaumarchaeotal evolution; this finding was verified by independent analyses of 16S rRNA. Our findings suggest that the entire Thaumarchaeota diversification regime was strikingly coupled to pH adaptation but less clearly correlated with several other tested environmental factors. Interestingly, the early radiation event coincided with a period of pH adaptation that enabled the terrestrial Thaumarchaeota ancestor to initially move from neutral to more acidic and alkaline conditions. In contrast to classic evolutionary models, whereby niches become rapidly filled after adaptive radiation, global diversification rates have remained stably high in Thaumarchaeota during the past 400–700 million years, suggesting an ongoing high rate of niche formation or switching for these microbes. Our study highlights the enduring importance of environmental adaptation during thaumarchaeotal evolution and, to our knowledge, is the first to link evolutionary diversification to environmental adaptation in a prokaryotic phylum. PMID:26170282

  10. Evolution of genomic structural variation and genomic architecture in the adaptive radiations of African cichlid fishes.

    PubMed

    Fan, Shaohua; Meyer, Axel

    2014-01-01

    African cichlid fishes are an ideal system for studying explosive rates of speciation and the origin of diversity in adaptive radiation. Within the last few million years, more than 2000 species have evolved in the Great Lakes of East Africa, the largest adaptive radiation in vertebrates. These young species show spectacular diversity in their coloration, morphology and behavior. However, little is known about the genomic basis of this astonishing diversity. Recently, five African cichlid genomes were sequenced, including that of the Nile Tilapia (Oreochromis niloticus), a basal and only relatively moderately diversified lineage, and the genomes of four representative endemic species of the adaptive radiations, Neolamprologus brichardi, Astatotilapia burtoni, Metriaclima zebra, and Pundamila nyererei. Using the Tilapia genome as a reference genome, we generated a high-resolution genomic variation map, consisting of single nucleotide polymorphisms (SNPs), short insertions and deletions (indels), inversions and deletions. In total, around 18.8, 17.7, 17.0, and 17.0 million SNPs, 2.3, 2.2, 1.4, and 1.9 million indels, 262, 306, 162, and 154 inversions, and 3509, 2705, 2710, and 2634 deletions were inferred to have evolved in N. brichardi, A. burtoni, P. nyererei, and M. zebra, respectively. Many of these variations affected the annotated gene regions in the genome. Different patterns of genetic variation were detected during the adaptive radiation of African cichlid fishes. For SNPs, the highest rate of evolution was detected in the common ancestor of N. brichardi, A. burtoni, P. nyererei, and M. zebra. However, for the evolution of inversions and deletions, we found that the rates at the terminal taxa are substantially higher than the rates at the ancestral lineages. The high-resolution map provides an ideal opportunity to understand the genomic bases of the adaptive radiation of African cichlid fishes.

  11. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota.

    PubMed

    Gubry-Rangin, Cécile; Kratsch, Christina; Williams, Tom A; McHardy, Alice C; Embley, T Martin; Prosser, James I; Macqueen, Daniel J

    2015-07-28

    The Thaumarchaeota is an abundant and ubiquitous phylum of archaea that plays a major role in the global nitrogen cycle. Previous analyses of the ammonia monooxygenase gene amoA suggest that pH is an important driver of niche specialization in these organisms. Although the ecological distribution and ecophysiology of extant Thaumarchaeota have been studied extensively, the evolutionary rise of these prokaryotes to ecological dominance in many habitats remains poorly understood. To characterize processes leading to their diversification, we investigated coevolutionary relationships between amoA, a conserved marker gene for Thaumarchaeota, and soil characteristics, by using deep sequencing and comprehensive environmental data in Bayesian comparative phylogenetics. These analyses reveal a large and rapid increase in diversification rates during early thaumarchaeotal evolution; this finding was verified by independent analyses of 16S rRNA. Our findings suggest that the entire Thaumarchaeota diversification regime was strikingly coupled to pH adaptation but less clearly correlated with several other tested environmental factors. Interestingly, the early radiation event coincided with a period of pH adaptation that enabled the terrestrial Thaumarchaeota ancestor to initially move from neutral to more acidic and alkaline conditions. In contrast to classic evolutionary models, whereby niches become rapidly filled after adaptive radiation, global diversification rates have remained stably high in Thaumarchaeota during the past 400-700 million years, suggesting an ongoing high rate of niche formation or switching for these microbes. Our study highlights the enduring importance of environmental adaptation during thaumarchaeotal evolution and, to our knowledge, is the first to link evolutionary diversification to environmental adaptation in a prokaryotic phylum.

  12. Rapid evolution of an adaptive cyanogenesis cline in introduced North American white clover (Trifolium repens L.).

    PubMed

    Kooyers, Nicholas J; Olsen, Kenneth M

    2012-05-01

    White clover is polymorphic for cyanogenesis (HCN production after tissue damage), and this herbivore defence polymorphism has served as a classic model for studying adaptive variation. The cyanogenic phenotype requires two interacting biochemical components; the presence/absence of each component is controlled by a simple Mendelian gene (Ac/ac and Li/li). Climate-associated cyanogenesis clines occur in both native (Eurasian) and introduced populations worldwide, with cyanogenic plants predominating in warmer locations. Moreover, previous studies have suggested that epistatic selection may act within populations to maintain cyanogenic (AcLi) plants and acyanogenic plants that lack both components (acli plants) at the expense of plants possessing a single component (Acli and acLi plants). Here, we examine the roles of selection, gene flow and demography in the evolution of a latitudinal cyanogenesis cline in introduced North American populations. Using 1145 plants sampled across a 1650 km transect, we determine the distribution of cyanogenesis variation across the central United States and investigate whether clinal variation is adaptive or an artefact of population introduction history. We also test for the evidence of epistatic selection. We detect a clear latitudinal cline, with cyanogenesis frequencies increasing from 11% to 86% across the transect. Population structure analysis using nine microsatellite loci indicates that the cline is adaptive and not a by-product of demographic history. However, we find no evidence for epistatic selection within populations. Our results provide strong evidence for rapid adaptive evolution in these introduced populations, and they further suggest that the mechanisms maintaining adaptive variation may vary among populations of a species.

  13. Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host.

    PubMed

    Klemm, Elizabeth J; Gkrania-Klotsas, Effrossyni; Hadfield, James; Forbester, Jessica L; Harris, Simon R; Hale, Christine; Heath, Jennifer N; Wileman, Thomas; Clare, Simon; Kane, Leanne; Goulding, David; Otto, Thomas D; Kay, Sally; Doffinger, Rainer; Cooke, Fiona J; Carmichael, Andrew; Lever, Andrew M L; Parkhill, Julian; MacLennan, Calman A; Kumararatne, Dinakantha; Dougan, Gordon; Kingsley, Robert A

    2016-01-01

    Host adaptation is a key factor contributing to the emergence of new bacterial, viral and parasitic pathogens. Many pathogens are considered promiscuous because they cause disease across a range of host species, while others are host-adapted, infecting particular hosts(1). Host adaptation can potentially progress to host restriction, where the pathogen is strictly limited to a single host species and is frequently associated with more severe symptoms. Host-adapted and host-restricted bacterial clades evolve from within a broader host-promiscuous species and sometimes target different niches within their specialist hosts, such as adapting from a mucosal to a systemic lifestyle. Genome degradation, marked by gene inactivation and deletion, is a key feature of host adaptation, although the triggers initiating genome degradation are not well understood. Here, we show that a chronic systemic non-typhoidal Salmonella infection in an immunocompromised human patient resulted in genome degradation targeting genes that are expendable for a systemic lifestyle. We present a genome-based investigation of a recurrent blood-borne Salmonella enterica serotype Enteritidis (S. Enteritidis) infection covering 15 years in an interleukin-12 β1 receptor-deficient individual that developed into an asymptomatic chronic infection. The infecting S. Enteritidis harboured a mutation in the mismatch repair gene mutS that accelerated the genomic mutation rate. Phylogenetic analysis and phenotyping of multiple patient isolates provides evidence for a remarkable level of within-host evolution that parallels genome changes present in successful host-restricted bacterial pathogens but never before observed on this timescale. Our analysis identifies common pathways of host adaptation and demonstrates the role that immunocompromised individuals can play in this process. PMID:27572160

  14. Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host

    PubMed Central

    Klemm, Elizabeth J; Gkrania-Klotsas, Effrossyni; Hadfield, James; Forbester, Jessica L; Harris, Simon R; Hale, Christine; Heath, Jennifer N; Wileman, Thomas; Clare, Simon; Kane, Leanne; Goulding, David; Otto, Thomas D; Kay, Sally; Doffinger, Rainer; Cooke, Fiona J; Carmichael, Andrew; Lever, Andrew ML; Parkhill, Julian; MacLennan, Calman A; Kumararatne, Dinakantha

    2016-01-01

    Summary Host adaptation is a key factor contributing to the emergence of new bacterial, viral and parasitic pathogens. Many pathogens are considered promiscuous because they cause disease across a range of host species, while others are host-adapted, infecting particular hosts1. Host adaptation can potentially progress to host restriction where the pathogen is strictly limited to a single host species and is frequently associated with more severe symptoms. Host-adapted and host-restricted bacterial clades evolve from within a broader host-promiscuous species and sometimes target different niches within their specialist hosts, such as adapting from a mucosal to a systemic lifestyle. Genome degradation, marked by gene inactivation and deletion, is a key feature of host adaptation, although the triggers initiating genome degradation are not well understood. Here, we show that a chronic systemic non-typhoidal Salmonella infection in an immunocompromised human patient resulted in genome degradation targeting genes that are expendable for a systemic lifestyle. We present a genome-based investigation of a recurrent blood-borne Salmonella enterica serotype Enteritidis (S. Enteritidis) infection covering 15 years in an interleukin (IL)-12 β-1 receptor-deficient individual that developed into an asymptomatic chronic infection. The infecting S. Enteritidis harbored a mutation in the mismatch repair gene mutS that accelerated the genomic mutation rate. Phylogenetic analysis and phenotyping of multiple patient isolates provides evidence for a remarkable level of within-host evolution that parallels genome changes present in successful host-restricted bacterial pathogens but never before observed on this timescale. Our analysis identifies common pathways of host adaptation and demonstrates the role that immunocompromised individuals can play in this process. PMID:27127642

  15. Conservation and diversification of Msx protein in metazoan evolution.

    PubMed

    Takahashi, Hirokazu; Kamiya, Akiko; Ishiguro, Akira; Suzuki, Atsushi C; Saitou, Naruya; Toyoda, Atsushi; Aruga, Jun

    2008-01-01

    Msx (/msh) family genes encode homeodomain (HD) proteins that control ontogeny in many animal species. We compared the structures of Msx genes from a wide range of Metazoa (Porifera, Cnidaria, Nematoda, Arthropoda, Tardigrada, Platyhelminthes, Mollusca, Brachiopoda, Annelida, Echiura, Echinodermata, Hemichordata, and Chordata) to gain an understanding of the role of these genes in phylogeny. Exon-intron boundary analysis suggested that the position of the intron located N-terminally to the HDs was widely conserved in all the genes examined, including those of cnidarians. Amino acid (aa) sequence comparison revealed 3 new evolutionarily conserved domains, as well as very strong conservation of the HDs. Two of the three domains were associated with Groucho-like protein binding in both a vertebrate and a cnidarian Msx homolog, suggesting that the interaction between Groucho-like proteins and Msx proteins was established in eumetazoan ancestors. Pairwise comparison among the collected HDs and their C-flanking aa sequences revealed that the degree of sequence conservation varied depending on the animal taxa from which the sequences were derived. Highly conserved Msx genes were identified in the Vertebrata, Cephalochordata, Hemichordata, Echinodermata, Mollusca, Brachiopoda, and Anthozoa. The wide distribution of the conserved sequences in the animal phylogenetic tree suggested that metazoan ancestors had already acquired a set of conserved domains of the current Msx family genes. Interestingly, although strongly conserved sequences were recovered from the Vertebrata, Cephalochordata, and Anthozoa, the sequences from the Urochordata and Hydrozoa showed weak conservation. Because the Vertebrata-Cephalochordata-Urochordata and Anthozoa-Hydrozoa represent sister groups in the Chordata and Cnidaria, respectively, Msx sequence diversification may have occurred differentially in the course of evolution. We speculate that selective loss of the conserved domains in Msx family

  16. The Evolution of Function in Strictosidine Synthase-like Proteins

    PubMed Central

    Hicks, Michael A.; Barber, Alan E.; Giddings, Lesley-Ann; Caldwell, Jenna; O’Connor, Sarah E.; Babbitt, Patricia C.

    2013-01-01

    The exponential growth of sequence data provides abundant information for the discovery of new enzyme reactions. Correctly annotating the functions of highly diverse proteins can be difficult, however, hindering use of this information. Global analysis of large superfamilies of related proteins is a powerful strategy for understanding the evolution of reactions by identifying catalytic commonalities and differences in reaction and substrate specificity, even when only a few members have been biochemically or structurally characterized. A comparison of >2500 sequences sharing the six-bladed β-propeller fold establishes sequence, structural and functional links among the three subgroups of the functionally diverse N6P superfamily: the arylesterase-like and senescence marker protein-30/gluconolactonase/luciferin-regenerating enzyme-like (SGL) subgroups, representing enzymes that catalyze lactonase and related hydrolytic reactions, and the so-called “strictosidine synthase-like” (SSL) subgroup. Metal-coordinating residues were identified as broadly conserved in the active sites of all three subgroups except for a few proteins from the SSL subgroup, which have been experimentally determined to catalyze the quite different strictosidine synthase (SS) reaction, a metal-independent condensation reaction. Despite these differences, comparison of conserved catalytic features of the arylesterase-like and SGL enzymes with the SSs identified similar structural and mechanistic attributes between the hydrolytic reactions catalyzed by the former and the condensation reaction catalyzed by SS. The results also suggest that despite their annotations, the great majority of these >500 SSL sequences do not catalyze the SS reaction; rather, they likely catalyze hydrolytic reactions typical of the other two subgroups instead. This prediction was confirmed experimentally for one of these proteins. PMID:21948213

  17. Conservation and diversification of Msx protein in metazoan evolution.

    PubMed

    Takahashi, Hirokazu; Kamiya, Akiko; Ishiguro, Akira; Suzuki, Atsushi C; Saitou, Naruya; Toyoda, Atsushi; Aruga, Jun

    2008-01-01

    Msx (/msh) family genes encode homeodomain (HD) proteins that control ontogeny in many animal species. We compared the structures of Msx genes from a wide range of Metazoa (Porifera, Cnidaria, Nematoda, Arthropoda, Tardigrada, Platyhelminthes, Mollusca, Brachiopoda, Annelida, Echiura, Echinodermata, Hemichordata, and Chordata) to gain an understanding of the role of these genes in phylogeny. Exon-intron boundary analysis suggested that the position of the intron located N-terminally to the HDs was widely conserved in all the genes examined, including those of cnidarians. Amino acid (aa) sequence comparison revealed 3 new evolutionarily conserved domains, as well as very strong conservation of the HDs. Two of the three domains were associated with Groucho-like protein binding in both a vertebrate and a cnidarian Msx homolog, suggesting that the interaction between Groucho-like proteins and Msx proteins was established in eumetazoan ancestors. Pairwise comparison among the collected HDs and their C-flanking aa sequences revealed that the degree of sequence conservation varied depending on the animal taxa from which the sequences were derived. Highly conserved Msx genes were identified in the Vertebrata, Cephalochordata, Hemichordata, Echinodermata, Mollusca, Brachiopoda, and Anthozoa. The wide distribution of the conserved sequences in the animal phylogenetic tree suggested that metazoan ancestors had already acquired a set of conserved domains of the current Msx family genes. Interestingly, although strongly conserved sequences were recovered from the Vertebrata, Cephalochordata, and Anthozoa, the sequences from the Urochordata and Hydrozoa showed weak conservation. Because the Vertebrata-Cephalochordata-Urochordata and Anthozoa-Hydrozoa represent sister groups in the Chordata and Cnidaria, respectively, Msx sequence diversification may have occurred differentially in the course of evolution. We speculate that selective loss of the conserved domains in Msx family

  18. Rapid Evolution of the Sequences and Gene Repertoires of Secreted Proteins in Bacteria

    PubMed Central

    Rocha, Eduardo P. C.

    2012-01-01

    Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation. PMID:23189144

  19. Diversity and evolution of the small multidrug resistance protein family

    PubMed Central

    Bay, Denice C; Turner, Raymond J

    2009-01-01

    Background Members of the small multidrug resistance (SMR) protein family are integral membrane proteins characterized by four α-helical transmembrane strands that confer resistance to a broad range of antiseptics and lipophilic quaternary ammonium compounds (QAC) in bacteria. Due to their short length and broad substrate profile, SMR proteins are suggested to be the progenitors for larger α-helical transporters such as the major facilitator superfamily (MFS) and drug/metabolite transporter (DMT) superfamily. To explore their evolutionary association with larger multidrug transporters, an extensive bioinformatics analysis of SMR sequences (> 300 Bacteria taxa) was performed to expand upon previous evolutionary studies of the SMR protein family and its origins. Results A thorough annotation of unidentified/putative SMR sequences was performed placing sequences into each of the three SMR protein subclass designations, namely small multidrug proteins (SMP), suppressor of groEL mutations (SUG), and paired small multidrug resistance (PSMR) using protein alignments and phylogenetic analysis. Examination of SMR subclass distribution within Bacteria and Archaea taxa identified specific Bacterial classes that uniquely encode for particular SMR subclass members. The extent of selective pressure acting upon each SMR subclass was determined by calculating the rate of synonymous to non-synonymous nucleotide substitutions using Syn-SCAN analysis. SUG and SMP subclasses are maintained under moderate selection pressure in comparison to integron and plasmid encoded SMR homologues. Conversely, PSMR sequences are maintained under lower levels of selection pressure, where one of the two PSMR pairs diverges in sequence more rapidly than the other. SMR genomic loci surveys identified potential SMR efflux substrates based on its gene association to putative operons that encode for genes regulating amino acid biogenesis and QAC-like metabolites. SMR subclass protein transmembrane domain

  20. Phylogeny and evolution of Rab7 and Rab9 proteins

    PubMed Central

    Mackiewicz, Paweł; Wyroba, Elżbieta

    2009-01-01

    Background An important role in the evolution of intracellular trafficking machinery in eukaryotes played small GTPases belonging to the Rab family known as pivotal regulators of vesicle docking, fusion and transport. The Rab family is very diversified and divided into several specialized subfamilies. We focused on the VII functional group comprising Rab7 and Rab9, two related subfamilies, and analysed 210 sequences of these proteins. Rab7 regulates traffic from early to late endosomes and from late endosome to vacuole/lysosome, whereas Rab9 participates in transport from late endosomes to the trans-Golgi network. Results Although Rab7 and Rab9 proteins are quite small and show heterogeneous rates of substitution in different lineages, we found a phylogenetic signal and inferred evolutionary relationships between them. Rab7 proteins evolved before radiation of main eukaryotic supergroups while Rab9 GTPases diverged from Rab7 before split of choanoflagellates and metazoans. Additional duplication of Rab9 and Rab7 proteins resulting in several isoforms occurred in the early evolution of vertebrates and next in teleost fishes and tetrapods. Three Rab7 lineages emerged before divergence of monocots and eudicots and subsequent duplications of Rab7 genes occurred in particular angiosperm clades. Interestingly, several Rab7 copies were identified in some representatives of excavates, ciliates and amoebozoans. The presence of many Rab copies is correlated with significant differences in their expression level. The diversification of analysed Rab subfamilies is also manifested by non-conserved sequences and structural features, many of which are involved in the interaction with regulators and effectors. Individual sites discriminating different subgroups of Rab7 and Rab9 GTPases have been identified. Conclusion Phylogenetic reconstructions of Rab7 and Rab9 proteins were performed by a variety of methods. These Rab GTPases show diversification both at the phylogenetic

  1. Extensive Positive Selection Drives the Evolution of Nonstructural Proteins in Lineage C Betacoronaviruses

    PubMed Central

    Cagliani, Rachele; Mozzi, Alessandra; Pozzoli, Uberto; Al-Daghri, Nasser; Clerici, Mario; Sironi, Manuela

    2016-01-01

    ABSTRACT Middle East respiratory syndrome-related coronavirus (MERS-CoV) spreads to humans via zoonotic transmission from camels. MERS-CoV belongs to lineage C of betacoronaviruses (betaCoVs), which also includes viruses isolated from bats and hedgehogs. A large portion of the betaCoV genome consists of two open reading frames (ORF1a and ORF1b) that are translated into polyproteins. These are cleaved by viral proteases to generate 16 nonstructural proteins (nsp1 to nsp16) which compose the viral replication-transcription complex. We investigated the evolution of ORF1a and ORF1b in lineage C betaCoVs. Results indicated widespread positive selection, acting mostly on ORF1a. The proportion of positively selected sites in ORF1a was much higher than that previously reported for the surface-exposed spike protein. Selected sites were unevenly distributed, with nsp3 representing the preferential target. Several pairs of coevolving sites were also detected, possibly indicating epistatic interactions; most of these were located in nsp3. Adaptive evolution at nsp3 is ongoing in MERS-CoV strains, and two selected sites (G720 and R911) were detected in the protease domain. While position 720 is variable in camel-derived viruses, suggesting that the selective event does not represent a specific adaptation to humans, the R911C substitution was observed only in human-derived MERS-CoV isolates, including the viral strain responsible for the recent South Korean outbreak. It will be extremely important to assess whether these changes affect host range or other viral phenotypes. More generally, data herein indicate that CoV nsp3 represents a major selection target and that nsp3 sequencing should be envisaged in monitoring programs and field surveys. IMPORTANCE Both severe acute respiratory syndrome coronavirus (SARS-CoV) and MERS-CoV originated in bats and spread to humans via an intermediate host. This clearly highlights the potential for coronavirus host shifting and the relevance

  2. Identifying innovation in laboratory studies of cultural evolution: rates of retention and measures of adaptation.

    PubMed

    Caldwell, Christine A; Cornish, Hannah; Kandler, Anne

    2016-03-19

    In recent years, laboratory studies of cultural evolution have become increasingly prevalent as a means of identifying and understanding the effects of cultural transmission on the form and functionality of transmitted material. The datasets generated by these studies may provide insights into the conditions encouraging, or inhibiting, high rates of innovation, as well as the effect that this has on measures of adaptive cultural change. Here we review recent experimental studies of cultural evolution with a view to elucidating the role of innovation in generating observed trends. We first consider how tasks are presented to participants, and how the corresponding conceptualization of task success is likely to influence the degree of intent underlying any deviations from perfect reproduction. We then consider the measures of interest used by the researchers to track the changes that occur as a result of transmission, and how these are likely to be affected by differing rates of retention. We conclude that considering studies of cultural evolution from the perspective of innovation provides us with valuable insights that help to clarify important differences in research designs, which have implications for the likely effects of variation in retention rates on measures of cultural adaptation.

  3. Evolution of nutrient acquisition: when adaptation fills the gap between contrasting ecological theories

    PubMed Central

    Boudsocq, S.; Barot, S.; Loeuille, N.

    2011-01-01

    Although plant strategies for acquiring nutrients have been widely studied from a functional point of view, their evolution is still not well understood. In this study, we investigate the evolutionary dynamics of these strategies and determine how they influence ecosystem properties. To do so, we use a simple nutrient-limited ecosystem model in which plant ability to take up nutrients is subject to adaptive dynamics. We postulate the existence of a trade-off between this ability and mortality. We show that contrasting strategies are possible as evolutionary outcomes, depending on the shape of the trade-off and, when nitrogen is considered as the limiting nutrient, on the intensity of symbiotic fixation. Our model enables us to bridge these evolutionary outcomes to classical ecological theories such as Hardin's tragedy of the commons and Tilman's rule of R*. Evolution does not systematically maximize plant biomass or primary productivity. On the other hand, each evolutionary outcome leads to a decrease in the availability of the limiting mineral nutrient, supporting the work of Tilman on competition between plants for a single resource. Our model shows that evolution can be used to link different classical ecological results and that adaptation may influence ecosystem properties in contrasted ways. PMID:20798113

  4. Adaptive and nonadaptive genome size evolution in Karst endemic flora of China.

    PubMed

    Kang, Ming; Tao, Junjie; Wang, Jing; Ren, Chen; Qi, Qingwen; Xiang, Qiu-Yun; Huang, Hongwen

    2014-06-01

    Genome size variation is of fundamental biological importance and has been a longstanding puzzle in evolutionary biology. Several hypotheses for genome size evolution including neutral, maladaptive, and adaptive models have been proposed, but the relative importance of these models remains controversial. Primulina is a genus that is highly diversified in the Karst region of southern China, where genome size variation and the underlying evolutionary mechanisms are poorly understood. We reconstructed the phylogeny of Primulina using DNA sequences for 104 species and determined the genome sizes of 101 species. We examined the phylogenetic signal in genome size variation, and tested the fit to different evolutionary models and for correlations with variation in latitude and specific leaf area (SLA). The results showed that genome size, SLA and latitudinal variation all displayed strong phylogenetic signals, but were best explained by different evolutionary models. Furthermore, significant positive relationships were detected between genome size and SLA and between genome size and latitude. Our study is the first to investigate genome size evolution on such a comprehensive scale and in the Karst region flora. We conclude that genome size in Primulina is phylogenetically conserved but its variation among species is a combined outcome of both neutral and adaptive evolution.

  5. Evolution of nutrient acquisition: when adaptation fills the gap between contrasting ecological theories.

    PubMed

    Boudsocq, S; Barot, S; Loeuille, N

    2011-02-01

    Although plant strategies for acquiring nutrients have been widely studied from a functional point of view, their evolution is still not well understood. In this study, we investigate the evolutionary dynamics of these strategies and determine how they influence ecosystem properties. To do so, we use a simple nutrient-limited ecosystem model in which plant ability to take up nutrients is subject to adaptive dynamics. We postulate the existence of a trade-off between this ability and mortality. We show that contrasting strategies are possible as evolutionary outcomes, depending on the shape of the trade-off and, when nitrogen is considered as the limiting nutrient, on the intensity of symbiotic fixation. Our model enables us to bridge these evolutionary outcomes to classical ecological theories such as Hardin's tragedy of the commons and Tilman's rule of R*. Evolution does not systematically maximize plant biomass or primary productivity. On the other hand, each evolutionary outcome leads to a decrease in the availability of the limiting mineral nutrient, supporting the work of Tilman on competition between plants for a single resource. Our model shows that evolution can be used to link different classical ecological results and that adaptation may influence ecosystem properties in contrasted ways. PMID:20798113

  6. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.

    PubMed

    Chen, Shuang; Xu, Yan

    2014-08-01

    High tolerance towards ethanol is a desirable property for the Saccharomyces cerevisiae strains used in the alcoholic beverage industry. To improve the ethanol tolerance of an industrial Chinese rice wine yeast, a sequential batch fermentation strategy was used to adaptively evolve a chemically mutagenized Chinese rice wine G85 strain. The high level of ethanol produced under Chinese rice wine-like fermentation conditions was used as the selective pressure. After adaptive evolution of approximately 200 generations, mutant G85X-8 was isolated and shown to have markedly increased ethanol tolerance. The evolved strain also showed higher osmotic and temperature tolerances than the parental strain. Laboratory Chinese rice wine fermentation showed that the evolved G85X-8 strain was able to catabolize sugars more completely than the parental G85 strain. A higher level of yeast cell activity was found in the fermentation mash produced by the evolved strain, but the aroma profiles were similar between the evolved and parental strains. The improved ethanol tolerance in the evolved strain might be ascribed to the altered fatty acids composition of the cell membrane and higher intracellular trehalose concentrations. These results suggest that adaptive evolution is an efficient approach for the non-recombinant modification of industrial yeast strains.

  7. The evolution of annelids reveals two adaptive routes to the interstitial realm.

    PubMed

    Struck, Torsten Hugo; Golombek, Anja; Weigert, Anne; Franke, Franziska Anni; Westheide, Wilfried; Purschke, Günter; Bleidorn, Christoph; Halanych, Kenneth Michael

    2015-08-01

    Many animals permanently inhabit the marine interstitium, the space between sand grains [1, 2]. Different evolutionary scenarios may explain the existence of interstitial animals [3, 4]. These scenarios include (1) that the interstitial realm is the ancestral habitat of bilaterians [5, 6], (2) that interstitial taxa evolved from larger ancestors by miniaturization, or (3) progenesis [3]. The first view mirrors the former hypothesis that interstitial annelids, called archiannelids, were at the base of the annelid radiation [7]. Based on morphological data, however, progenesis is generally favored for interstitial annelids today [3, 4, 8]. Herein, our phylogenomic approach revealed that interstitial archiannelids are robustly placed into two groups nested within the annelid tree. Evolution of the first group comprising among others Dinophilidae is best explained by progenesis. In contrast, the second group comprising Protodrilida and Polygordiidae appears to have evolved by stepwise miniaturization adapting from coarser to finer sediments. Thus, in addition to progenesis [3, 4], miniaturization, thought to be too slow for an adaptation to the interstitium [3], is an important second route allowing adaptation to interstitial environments. Both progenesis and miniaturization should be considered when investigating evolution of interstitial taxa [1, 3].

  8. Evolution dynamics of a model for gene duplication under adaptive conflict

    NASA Astrophysics Data System (ADS)

    Ancliff, Mark; Park, Jeong-Man

    2014-06-01

    We present and solve the dynamics of a model for gene duplication showing escape from adaptive conflict. We use a Crow-Kimura quasispecies model of evolution where the fitness landscape is a function of Hamming distances from two reference sequences, which are assumed to optimize two different gene functions, to describe the dynamics of a mixed population of individuals with single and double copies of a pleiotropic gene. The evolution equations are solved through a spin coherent state path integral, and we find two phases: one is an escape from an adaptive conflict phase, where each copy of a duplicated gene evolves toward subfunctionalization, and the other is a duplication loss of function phase, where one copy maintains its pleiotropic form and the other copy undergoes neutral mutation. The phase is determined by a competition between the fitness benefits of subfunctionalization and the greater mutational load associated with maintaining two gene copies. In the escape phase, we find a dynamics of an initial population of single gene sequences only which escape adaptive conflict through gene duplication and find that there are two time regimes: until a time t* single gene sequences dominate, and after t* double gene sequences outgrow single gene sequences. The time t* is identified as the time necessary for subfunctionalization to evolve and spread throughout the double gene sequences, and we show that there is an optimum mutation rate which minimizes this time scale.

  9. Adaptive gains through repeated gene loss: parallel evolution of cyanogenesis polymorphisms in the genus Trifolium (Fabaceae).

    PubMed

    Olsen, Kenneth M; Kooyers, Nicholas J; Small, Linda L

    2014-08-01

    Variation in cyanogenesis (hydrogen cyanide release following tissue damage) was first noted in populations of white clover more than a century ago, and subsequent decades of research have established this system as a classic example of an adaptive chemical defence polymorphism. Here, we document polymorphisms for cyanogenic components in several relatives of white clover, and we determine the molecular basis of this trans-specific adaptive variation. One hundred and thirty-nine plants, representing 13 of the 14 species within Trifolium section Trifoliastrum, plus additional species across the genus, were assayed for cyanogenic components (cyanogenic glucosides and their hydrolysing enzyme, linamarase) and for the presence of underlying cyanogenesis genes (CYP79D15 and Li, respectively). One or both cyanogenic components were detected in seven species, all within section Trifoliastrum; polymorphisms for the presence/absence (PA) of components were detected in six species. In a pattern that parallels our previous findings for white clover, all observed biochemical polymorphisms correspond to gene PA polymorphisms at CYP79D15 and Li. Relationships of DNA sequence haplotypes at the cyanogenesis loci and flanking genomic regions suggest independent evolution of gene deletions within species. This study thus provides evidence for the parallel evolution of adaptive biochemical polymorphisms through recurrent gene deletions in multiple species.

  10. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling

    SciTech Connect

    Vrugt, Jasper A; Hyman, James M; Robinson, Bruce A; Higdon, Dave; Ter Braak, Cajo J F; Diks, Cees G H

    2008-01-01

    Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. Here we show that significant improvements to the efficiency of MCMC simulation can be made by using a self-adaptive Differential Evolution learning strategy within a population-based evolutionary framework. This scheme, entitled DiffeRential Evolution Adaptive Metropolis or DREAM, runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and orientation of the proposal distribution in randomized subspaces during the search. Ergodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally superior to other adaptive MCMC sampling approaches. The DREAM scheme significantly enhances the applicability of MCMC simulation to complex, multi-modal search problems.

  11. A resurrection study reveals rapid adaptive evolution within populations of an invasive plant.

    PubMed

    Sultan, Sonia E; Horgan-Kobelski, Tim; Nichols, Lauren M; Riggs, Charlotte E; Waples, Ryan K

    2013-02-01

    The future spread and impact of an introduced species will depend on how it adapts to the abiotic and biotic conditions encountered in its new range, so the potential for rapid evolution subsequent to species introduction is a critical, evolutionary dimension of invasion biology. Using a resurrection approach, we provide a direct test for change over time within populations in a species' introduced range, in the Asian shade annual Polygonum cespitosum. We document, over an 11-year period, the evolution of increased reproductive output as well as greater physiological and root-allocational plasticity in response to the more open, sunny conditions found in the North American range in which the species has become invasive. These findings show that extremely rapid adaptive modifications to ecologically-important traits and plastic expression patterns can evolve subsequent to a species' introduction, within populations established in its introduced range. This study is one of the first to directly document evolutionary change in adaptive plasticity. Such rapid evolutionary changes can facilitate the spread of introduced species into novel habitats and hence contribute to their invasive success in a new range. The data also reveal how evolutionary trajectories can differ among populations in ways that can influence invasion dynamics.

  12. Flagellated algae protein evolution suggests the prevalence of lineage-specific rules governing evolutionary rates of eukaryotic proteins.

    PubMed

    Chang, Ting-Yan; Liao, Ben-Yang

    2013-01-01

    Understanding the general rules governing the rate of protein evolution is fundamental to evolutionary biology. However, attempts to address this issue in yeasts and mammals have revealed considerable differences in the relative importance of determinants for protein evolutionary rates. This phenomenon was previously explained by the fact that yeasts and mammals are different in many cellular and genomic properties. Flagellated algae species have several cellular and genomic characteristics that are intermediate between yeasts and mammals. Using partial correlation analyses on the evolution of 6,921 orthologous proteins from Chlamydomonas reinhardtii and Volvox carteri, we examined factors influencing evolutionary rates of proteins in flagellated algae. Previous studies have shown that mRNA abundance and gene compactness are strong determinants for protein evolutionary rates in yeasts and mammals, respectively. We show that both factors also influence algae protein evolution with mRNA abundance having a larger impact than gene compactness on the rates of algae protein evolution. More importantly, among all the factors examined, coding sequence (CDS) length has the strongest (positive) correlation with protein evolutionary rates. This correlation between CDS length and the rates of protein evolution is not due to alignment-related issues or domain density. These results suggest no simple and universal rules governing protein evolutionary rates across different eukaryotic lineages. Instead, gene properties influence the rate of protein evolution in a lineage-specific manner. PMID:23563973

  13. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    PubMed Central

    Nielsen, Jens

    2015-01-01

    ABSTRACT A major challenge for the production of ethanol from biomass-derived feedstocks is to develop yeasts that can sustain growth under the variety of inhibitory conditions present in the production process, e.g., high osmolality, high ethanol titers, and/or elevated temperatures (≥40°C). Using adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40°C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses. Thermotolerant yeast strains showed horizontal displacement of their thermal reaction norms to higher temperatures. Hence, their optimal and maximum growth temperatures increased by about 3°C, whereas they showed a growth trade-off at temperatures below 34°C. Computational analysis of the physical properties of proteins showed that the lethal temperature for yeast is around 49°C, as a large fraction of the yeast proteins denature above this temperature. Our analysis also indicated that the number of functions involved in controlling the growth rate decreased in the thermotolerant strains compared with the number in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures. In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance to inhibitory conditions found in industrial ethanol production processes. PMID:26199325

  14. The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1977-01-01

    A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.

  15. Protein evolution of ANTP and PRD homeobox genes

    PubMed Central

    2008-01-01

    Background Although homeobox genes have been the subject of many studies, little is known about the main amino acid changes that occurred early in the evolution of genes belonging to different classes. Results In this study, we report a method for the fast and efficient retrieval of sequences belonging to the ANTP (HOXL and NKL) and PRD classes. Furthermore, we look for diagnostic amino acid residues that can be used to distinguish HOXL, NKL and PRD genes. Conclusion The reported protein features will facilitate the robust classification of homeobox genes from newly sequenced bilaterian genomes. Nevertheless, in non-bilaterian genomes our findings must be cautiously applied. In principle, as long as a good manually curated data set is available the approach here described can be applied to non-bilaterian organisms as well. Our results help focus experimental studies onto investigating the biochemical functions of key homeodomain residues in different gene classes. PMID:18620554

  16. Proteins induced during adaptation of Acetobacter aceti to high acetate concentrations.

    PubMed

    Steiner, P; Sauer, U

    2001-12-01

    As a typical product of microbial metabolism, the weak acid acetate is well known for its cytotoxic effects. In contrast to most other microbes, the so-called acetic acid bacteria can acquire significant resistance to high acetate concentrations when properly adapted to such hostile conditions. To characterize the molecular events that are associated with this adaptation, we analyzed global protein expression levels during adaptation of Acetobacter aceti by two-dimensional gel electrophoresis. Adaptation was achieved by using serial batch and continuous cultivations with increasing acetate supplementation. Computer-aided analysis revealed a complex proteome response with at least 50 proteins that are specifically induced by adaptation to acetate but not by other stress conditions, such as heat or oxidative or osmotic stress. Of these proteins, 19 were significantly induced in serial batch and continuous cultures and were thus noted as acetate adaptation proteins (Aaps). Here we present first microsequence information on such Aaps from A. aceti. Membrane-associated processes appear to be of major importance for adaptation, because some of the Aap bear N-terminal sequence homology to membrane proteins and 11 of about 40 resolved proteins from membrane protein-enriched fractions are significantly induced.

  17. Proteins Induced during Adaptation of Acetobacter aceti to High Acetate Concentrations

    PubMed Central

    Steiner, Peter; Sauer, Uwe

    2001-01-01

    As a typical product of microbial metabolism, the weak acid acetate is well known for its cytotoxic effects. In contrast to most other microbes, the so-called acetic acid bacteria can acquire significant resistance to high acetate concentrations when properly adapted to such hostile conditions. To characterize the molecular events that are associated with this adaptation, we analyzed global protein expression levels during adaptation of Acetobacter aceti by two-dimensional gel electrophoresis. Adaptation was achieved by using serial batch and continuous cultivations with increasing acetate supplementation. Computer-aided analysis revealed a complex proteome response with at least 50 proteins that are specifically induced by adaptation to acetate but not by other stress conditions, such as heat or oxidative or osmotic stress. Of these proteins, 19 were significantly induced in serial batch and continuous cultures and were thus noted as acetate adaptation proteins (Aaps). Here we present first microsequence information on such Aaps from A. aceti. Membrane-associated processes appear to be of major importance for adaptation, because some of the Aap bear N-terminal sequence homology to membrane proteins and 11 of about 40 resolved proteins from membrane protein-enriched fractions are significantly induced. PMID:11722895

  18. Evolution of context dependent regulation by expansion of feast/famine regulatory proteins

    SciTech Connect

    Plaisier, Christopher L.; Lo, Fang -Yin; Ashworth, Justin; Brooks, Aaron N.; Beer, Karlyn D.; Kaur, Amardeep; Pan, Min; Reiss, David J.; Facciotti, Marc T.; Baliga, Nitin S.

    2014-11-14

    Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions that mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.

  19. Evolution of context dependent regulation by expansion of feast/famine regulatory proteins

    DOE PAGES

    Plaisier, Christopher L.; Lo, Fang -Yin; Ashworth, Justin; Brooks, Aaron N.; Beer, Karlyn D.; Kaur, Amardeep; Pan, Min; Reiss, David J.; Facciotti, Marc T.; Baliga, Nitin S.

    2014-11-14

    Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions thatmore » mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.« less

  20. The Evolution of the Secreted Regulatory Protein Progranulin

    PubMed Central

    Palfree, Roger G. E.; Bennett, Hugh P. J.; Bateman, Andrew

    2015-01-01

    Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide

  1. Co-evolution of metabolism and protein sequences.

    PubMed

    Schütte, Moritz; Klitgord, Niels; Segrè, Daniel; Ebenhöh, Oliver

    2010-01-01

    The set of chemicals producible and usable by metabolic pathways must have evolved in parallel with the enzymes that catalyze them. One implication of this common historical path should be a correspondence between the innovation steps that gradually added new metabolic reactions to the biosphere-level biochemical toolkit, and the gradual sequence changes that must have slowly shaped the corresponding enzyme structures. However, global signatures of a long-term co-evolution have not been identified. Here we search for such signatures by computing correlations between inter-reaction distances on a metabolic network, and sequence distances of the corresponding enzyme proteins. We perform our calculations using the set of all known metabolic reactions, available from the KEGG database. Reaction-reaction distance on the metabolic network is computed as the length of the shortest path on a projection of the metabolic network, in which nodes are reactions and edges indicate whether two reactions share a common metabolite, after removal of cofactors. Estimating the distance between enzyme sequences in a meaningful way requires some special care: for each enzyme commission (EC) number, we select from KEGG a consensus set of protein sequences using the cluster of orthologous groups of proteins (COG) database. We define the evolutionary distance between protein sequences as an asymmetric transition probability between two enzymes, derived from the corresponding pair-wise BLAST scores. By comparing the distances between sequences to the minimal distances on the metabolic reaction graph, we find a small but statistically significant correlation between the two measures. This suggests that the evolutionary walk in enzyme sequence space has locally mirrored, to some extent, the gradual expansion of metabolism. PMID:20238426

  2. Mean Protein Evolutionary Distance: A Method for Comparative Protein Evolution and Its Application

    PubMed Central

    Wise, Michael J.

    2013-01-01

    Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED), measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins’ roles. Different species’ proteomes can also be compared because the results, consistent across virus subtypes, concisely reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus, human immunodeficiency virus (HIV), dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From this analysis, host interaction proteins including hemagglutinin (influenza), and viroporins agnoprotein (polyomavirus), p7 (hepatitis C) and VPU (HIV) emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including L (measles), PB1/PB2 (influenza) and VP1 (rotavirus), and internal serine proteases such as NS3 (dengue and hepatitis C virus) emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.edu.au/~michaelw/ftp/src/meaped.tar.gz. PMID:23613826

  3. Evolutionary Adaptation of an AraC-Like Regulatory Protein in Citrobacter rodentium and Escherichia Species

    PubMed Central

    Tan, Aimee; Petty, Nicola K.; Hocking, Dianna; Bennett-Wood, Vicki; Wakefield, Matthew; Praszkier, Judyta; Tauschek, Marija; Yang, Ji

    2015-01-01

    The evolution of pathogenic bacteria is a multifaceted and complex process, which is strongly influenced by the horizontal acquisition of genetic elements and their subsequent expression in their new hosts. A well-studied example is the RegA regulon of the enteric pathogen Citrobacter rodentium. The RegA regulatory protein is a member of the AraC/XylS superfamily, which coordinates the expression of a gene repertoire that is necessary for full pathogenicity of this murine pathogen. Upon stimulation by an exogenous, gut-associated signal, namely, bicarbonate ions, RegA activates the expression of a series of genes, including virulence factors, such as autotransporters, fimbriae, a dispersin-like protein, and the grlRA operon on the locus of enterocyte effacement pathogenicity island. Interestingly, the genes encoding RegA homologues are distributed across the genus Escherichia, encompassing pathogenic and nonpathogenic subtypes. In this study, we carried out a series of bioinformatic, transcriptional, and functional analyses of the RegA regulons of these bacteria. Our results demonstrated that regA has been horizontally transferred to Escherichia spp. and C. rodentium. Comparative studies of two RegA homologues, namely, those from C. rodentium and E. coli SMS-3-5, a multiresistant environmental strain of E. coli, showed that the two regulators acted similarly in vitro but differed in terms of their abilities to activate the virulence of C. rodentium in vivo, which evidently was due to their differential activation of grlRA. Our data indicate that RegA from C. rodentium has strain-specific adaptations that facilitate infection of its murine host. These findings shed new light on the development of virulence by C. rodentium and on the evolution of virulence-regulatory genes of bacterial pathogens in general. PMID:25624355

  4. Evolutionary adaptation of an AraC-like regulatory protein in Citrobacter rodentium and Escherichia species.

    PubMed

    Tan, Aimee; Petty, Nicola K; Hocking, Dianna; Bennett-Wood, Vicki; Wakefield, Matthew; Praszkier, Judyta; Tauschek, Marija; Yang, Ji; Robins-Browne, Roy

    2015-04-01

    The evolution of pathogenic bacteria is a multifaceted and complex process, which is strongly influenced by the horizontal acquisition of genetic elements and their subsequent expression in their new hosts. A well-studied example is the RegA regulon of the enteric pathogen Citrobacter rodentium. The RegA regulatory protein is a member of the AraC/XylS superfamily, which coordinates the expression of a gene repertoire that is necessary for full pathogenicity of this murine pathogen. Upon stimulation by an exogenous, gut-associated signal, namely, bicarbonate ions, RegA activates the expression of a series of genes, including virulence factors, such as autotransporters, fimbriae, a dispersin-like protein, and the grlRA operon on the locus of enterocyte effacement pathogenicity island. Interestingly, the genes encoding RegA homologues are distributed across the genus Escherichia, encompassing pathogenic and nonpathogenic subtypes. In this study, we carried out a series of bioinformatic, transcriptional, and functional analyses of the RegA regulons of these bacteria. Our results demonstrated that regA has been horizontally transferred to Escherichia spp. and C. rodentium. Comparative studies of two RegA homologues, namely, those from C. rodentium and E. coli SMS-3-5, a multiresistant environmental strain of E. coli, showed that the two regulators acted similarly in vitro but differed in terms of their abilities to activate the virulence of C. rodentium in vivo, which evidently was due to their differential activation of grlRA. Our data indicate that RegA from C. rodentium has strain-specific adaptations that facilitate infection of its murine host. These findings shed new light on the development of virulence by C. rodentium and on the evolution of virulence-regulatory genes of bacterial pathogens in general.

  5. Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host

    PubMed Central

    Wang, Shuai; Wang, Sen; Luo, Yingfeng; Xiao, Lihua; Luo, Xuenong; Gao, Shenghan; Dou, Yongxi; Zhang, Huangkai; Guo, Aijiang; Meng, Qingshu; Hou, Junling; Zhang, Bing; Zhang, Shaohua; Yang, Meng; Meng, Xuelian; Mei, Hailiang; Li, Hui; He, Zilong; Zhu, Xueliang; Tan, Xinyu; Zhu, Xing-quan; Yu, Jun; Cai, Jianping; Zhu, Guan; Hu, Songnian; Cai, Xuepeng

    2016-01-01

    Taenia saginata, Taenia solium and Taenia asiatica (beef, pork and Asian tapeworms, respectively) are parasitic flatworms of major public health and food safety importance. Among them, T. asiatica is a newly recognized species that split from T. saginata via an intermediate host switch ∼1.14 Myr ago. Here we report the 169- and 168-Mb draft genomes of T. saginata and T. asiatica. Comparative analysis reveals that high rates of gene duplications and functional diversifications might have partially driven the divergence between T. asiatica and T. saginata. We observe accelerated evolutionary rates, adaptive evolutions in homeostasis regulation, tegument maintenance and lipid uptakes, and differential/specialized gene family expansions in T. asiatica that may favour its hepatotropism in the new intermediate host. We also identify potential targets for developing diagnostic or intervention tools against human tapeworms. These data provide new insights into the evolution of Taenia parasites, particularly the recent speciation of T. asiatica. PMID:27653464

  6. Sex-specific adaptation drives early sex chromosome evolution in Drosophila.

    PubMed

    Zhou, Qi; Bachtrog, Doris

    2012-07-20

    Most species' sex chromosomes are derived from ancient autosomes and show few signatures of their origins. We studied the sex chromosomes of Drosophila miranda, where a neo-Y chromosome originated only approximately 1 million years ago. Whole-genome and transcriptome analysis reveals massive degeneration of the neo-Y, that male-beneficial genes on the neo-Y are more likely to undergo accelerated protein evolution, and that neo-Y genes evolve biased expression toward male-specific tissues--the shrinking gene content of the neo-Y becomes masculinized. In contrast, although older X chromosomes show a paucity of genes expressed in male tissues, neo-X genes highly expressed in male-specific tissues undergo increased rates of protein evolution if haploid in males. Thus, the response to sex-specific selection can shift at different stages of X differentiation, resulting in masculinization or demasculinization of the X-chromosomal gene content.

  7. Co-evolution of Hormone Metabolism and Signaling Networks Expands Plant Adaptive Plasticity.

    PubMed

    Weng, Jing-Ke; Ye, Mingli; Li, Bin; Noel, Joseph P

    2016-08-11

    Classically, hormones elicit specific cellular responses by activating dedicated receptors. Nevertheless, the biosynthesis and turnover of many of these hormone molecules also produce chemically related metabolites. These molecules may also possess hormonal activities; therefore, one or more may contribute to the adaptive plasticity of signaling outcomes in host organisms. Here, we show that a catabolite of the plant hormone abscisic acid (ABA), namely phaseic acid (PA), likely emerged in seed plants as a signaling molecule that fine-tunes plant physiology, environmental adaptation, and development. This trait was facilitated by both the emergence-selection of a PA reductase that modulates PA concentrations and by the functional diversification of the ABA receptor family to perceive and respond to PA. Our results suggest that PA serves as a hormone in seed plants through activation of a subset of ABA receptors. This study demonstrates that the co-evolution of hormone metabolism and signaling networks can expand organismal resilience.

  8. Evolution of eye development in the darkness of caves: adaptation, drift, or both?

    PubMed Central

    2013-01-01

    Animals inhabiting the darkness of caves are generally blind and de-pigmented, regardless of the phylum they belong to. Survival in this environment is an enormous challenge, the most obvious being to find food and mates without the help of vision, and the loss of eyes in cave animals is often accompanied by an enhancement of other sensory apparatuses. Here we review the recent literature describing developmental biology and molecular evolution studies in order to discuss the evolutionary mechanisms underlying adaptation to life in the dark. We conclude that both genetic drift (neutral hypothesis) and direct and indirect selection (selective hypothesis) occurred together during the loss of eyes in cave animals. We also identify some future directions of research to better understand adaptation to total darkness, for which integrative analyses relying on evo-devo approaches associated with thorough ecological and population genomic studies should shed some light. PMID:24079393

  9. Co-evolution of Hormone Metabolism and Signaling Networks Expands Plant Adaptive Plasticity.

    PubMed

    Weng, Jing-Ke; Ye, Mingli; Li, Bin; Noel, Joseph P

    2016-08-11

    Classically, hormones elicit specific cellular responses by activating dedicated receptors. Nevertheless, the biosynthesis and turnover of many of these hormone molecules also produce chemically related metabolites. These molecules may also possess hormonal activities; therefore, one or more may contribute to the adaptive plasticity of signaling outcomes in host organisms. Here, we show that a catabolite of the plant hormone abscisic acid (ABA), namely phaseic acid (PA), likely emerged in seed plants as a signaling molecule that fine-tunes plant physiology, environmental adaptation, and development. This trait was facilitated by both the emergence-selection of a PA reductase that modulates PA concentrations and by the functional diversification of the ABA receptor family to perceive and respond to PA. Our results suggest that PA serves as a hormone in seed plants through activation of a subset of ABA receptors. This study demonstrates that the co-evolution of hormone metabolism and signaling networks can expand organismal resilience. PMID:27518563

  10. Phylogenomic analyses reveal convergent patterns of adaptive evolution in elephant and human ancestries.

    PubMed

    Goodman, Morris; Sterner, Kirstin N; Islam, Munirul; Uddin, Monica; Sherwood, Chet C; Hof, Patrick R; Hou, Zhuo-Cheng; Lipovich, Leonard; Jia, Hui; Grossman, Lawrence I; Wildman, Derek E

    2009-12-01

    Specific sets of brain-expressed genes, such as aerobic energy metabolism genes, evolved adaptively in the ancestry of humans and may have evolved adaptively in the ancestry of other large-brained mammals. The recent addition of genomes from two afrotherians (elephant and tenrec) to the expanding set of publically available sequenced mammalian genomes provided an opportunity to test this hypothesis. Elephants resemble humans by having large brains and long life spans; tenrecs, in contrast, have small brains and short life spans. Thus, we investigated whether the phylogenomic patterns of adaptive evolution are more similar between elephant and human than between either elephant and tenrec lineages or human and mouse lineages, and whether aerobic energy metabolism genes are especially well represented in the elephant and human patterns. Our analyses encompassed approximately 6,000 genes in each of these lineages with each gene yielding extensive coding sequence matches in interordinal comparisons. Each gene's nonsynonymous and synonymous nucleotide substitution rates and dN/dS ratios were determined. Then, from gene ontology information on genes with the higher dN/dS ratios, we identified the more prevalent sets of genes that belong to specific functional categories and that evolved adaptively. Elephant and human lineages showed much slower nucleotide substitution rates than tenrec and mouse lineages but more adaptively evolved genes. In correlation with absolute brain size and brain oxygen consumption being largest in elephants and next largest in humans, adaptively evolved aerobic energy metabolism genes were most evident in the elephant lineage and next most evident in the human lineage.

  11. Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs

    PubMed Central

    Patarnello, Tomaso; Cozzi, Bruno; Negrisolo, Enrico

    2016-01-01

    The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its metabolism to a different medium than that of its mainland ancestors. Our analysis focussed on identifying the factors that influenced the evolution of Cetacea tRNA double-helix elements, which play a pivotal role in the formation of the secondary and tertiary structures of each tRNA and consequently manipulate the whole translation machinery of the mitochondrion. Our analyses showed that the substitution pathways in the stems of different tRNAs were influenced by various factors, determining a molecular evolution that was unique to each of the 22 tRNAs. Our data suggested that the composition, AT-skew, and GC-skew of the tRNA stems were the main factors influencing the substitution process. In particular, the range of variation and the fluctuation of these parameters affected the fate of single tRNAs. Strong heterogeneity was observed among the different species of Cetacea. Finally, it appears that the evolution of mitochondrial tRNAs was also shaped by the environments in which the Cetacean taxa differentiated. This latter effect was particularly evident in toothed whales that either live in freshwater or are deep divers. PMID:27336480

  12. Out of the blue: adaptive visual pigment evolution accompanies Amazon invasion.

    PubMed

    Van Nynatten, Alexander; Bloom, Devin; Chang, Belinda S W; Lovejoy, Nathan R

    2015-07-01

    Incursions of marine water into South America during the Miocene prompted colonization of freshwater habitats by ancestrally marine species and present a unique opportunity to study the molecular evolution of adaptations to varying environments. Freshwater and marine environments are distinct in both spectra and average intensities of available light. Here, we investigate the molecular evolution of rhodopsin, the photosensitive pigment in the eye that activates in response to light, in a clade of South American freshwater anchovies derived from a marine ancestral lineage. Using likelihood-based comparative sequence analyses, we found evidence for positive selection in the rhodopsin of freshwater anchovy lineages at sites known to be important for aspects of rhodopsin function such as spectral tuning. No evidence was found for positive selection in marine lineages, nor in three other genes not involved in vision. Our results suggest that an increased rate of rhodopsin evolution was driven by diversification into freshwater habitats, thereby constituting a rare example of molecular evolution mirroring large-scale palaeogeographic events. PMID:26224386

  13. Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs.

    PubMed

    Montelli, Stefano; Peruffo, Antonella; Patarnello, Tomaso; Cozzi, Bruno; Negrisolo, Enrico

    2016-01-01

    The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its metabolism to a different medium than that of its mainland ancestors. Our analysis focussed on identifying the factors that influenced the evolution of Cetacea tRNA double-helix elements, which play a pivotal role in the formation of the secondary and tertiary structures of each tRNA and consequently manipulate the whole translation machinery of the mitochondrion. Our analyses showed that the substitution pathways in the stems of different tRNAs were influenced by various factors, determining a molecular evolution that was unique to each of the 22 tRNAs. Our data suggested that the composition, AT-skew, and GC-skew of the tRNA stems were the main factors influencing the substitution process. In particular, the range of variation and the fluctuation of these parameters affected the fate of single tRNAs. Strong heterogeneity was observed among the different species of Cetacea. Finally, it appears that the evolution of mitochondrial tRNAs was also shaped by the environments in which the Cetacean taxa differentiated. This latter effect was particularly evident in toothed whales that either live in freshwater or are deep divers. PMID:27336480

  14. Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation.

    PubMed

    Burbrink, Frank T; Chen, Xin; Myers, Edward A; Brandley, Matthew C; Pyron, R Alexander

    2012-12-01

    Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification.

  15. Binding constraints on the evolution of enzymes and signalling proteins: the important role of negative pleiotropy.

    PubMed

    Liberles, David A; Tisdell, Makayla D M; Grahnen, Johan A

    2011-07-01

    A number of biophysical and population-genetic processes influence amino acid substitution rates. It is commonly recognized that proteins must fold into a native structure with preference over an unfolded state, and must bind to functional interacting partners favourably to function properly. What is less clear is how important folding and binding specificity are to amino acid substitution rates. A hypothesis of the importance of binding specificity in constraining sequence and functional evolution is presented. Examples include an evolutionary simulation of a population of SH2 sequences evolved by threading through the structure and binding to a native ligand, as well as SH3 domain signalling in yeast and selection for specificity in enzymatic reactions. An example in vampire bats where negative pleiotropy appears to have been adaptive is presented. Finally, considerations of compartmentalization and macromolecular crowding on negative pleiotropy are discussed. PMID:21490020

  16. The eunuch phenomenon: adaptive evolution of genital emasculation in sexually dimorphic spiders.

    PubMed

    Kuntner, Matjaž; Agnarsson, Ingi; Li, Daiqin

    2015-02-01

    Under natural and sexual selection traits often evolve that secure paternity or maternity through self-sacrifice to predators, rivals, offspring, or partners. Emasculation-males removing their genitals-is an unusual example of such behaviours. Known only in insects and spiders, the phenomenon's adaptiveness is difficult to explain, yet its repeated origins and association with sexual size dimorphism (SSD) and sexual cannibalism suggest an adaptive significance. In spiders, emasculation of paired male sperm-transferring organs - secondary genitals - (hereafter, palps), results in 'eunuchs'. This behaviour has been hypothesized to be adaptive because (i) males plug female genitals with their severed palps (plugging hypothesis), (ii) males remove their palps to become better fighters in male-male contests (better-fighter hypothesis), perhaps reaching higher agility due to reduced total body mass (gloves-off hypothesis), and (iii) males achieve prolonged sperm transfer through severed genitals (remote-copulation hypothesis). Prior research has provided evidence in support of these hypotheses in some orb-weaving spiders but these explanations are far from general. Seeking broad macroevolutionary patterns of spider emasculation, we review the known occurrences, weigh the evidence in support of the hypotheses in each known case, and redefine more precisely the particular cases of emasculation depending on its timing in relation to maturation and mating: 'pre-maturation', 'mating', and 'post-mating'. We use a genus-level spider phylogeny to explore emasculation evolution and to investigate potential evolutionary linkage between emasculation, SSD, lesser genital damage (embolic breakage), and sexual cannibalism (females consuming their mates). We find a complex pattern of spider emasculation evolution, all cases confined to Araneoidea: emasculation evolved at least five and up to 11 times, was lost at least four times, and became further modified at least once. We also find

  17. The eunuch phenomenon: adaptive evolution of genital emasculation in sexually dimorphic spiders.

    PubMed

    Kuntner, Matjaž; Agnarsson, Ingi; Li, Daiqin

    2015-02-01

    Under natural and sexual selection traits often evolve that secure paternity or maternity through self-sacrifice to predators, rivals, offspring, or partners. Emasculation-males removing their genitals-is an unusual example of such behaviours. Known only in insects and spiders, the phenomenon's adaptiveness is difficult to explain, yet its repeated origins and association with sexual size dimorphism (SSD) and sexual cannibalism suggest an adaptive significance. In spiders, emasculation of paired male sperm-transferring organs - secondary genitals - (hereafter, palps), results in 'eunuchs'. This behaviour has been hypothesized to be adaptive because (i) males plug female genitals with their severed palps (plugging hypothesis), (ii) males remove their palps to become better fighters in male-male contests (better-fighter hypothesis), perhaps reaching higher agility due to reduced total body mass (gloves-off hypothesis), and (iii) males achieve prolonged sperm transfer through severed genitals (remote-copulation hypothesis). Prior research has provided evidence in support of these hypotheses in some orb-weaving spiders but these explanations are far from general. Seeking broad macroevolutionary patterns of spider emasculation, we review the known occurrences, weigh the evidence in support of the hypotheses in each known case, and redefine more precisely the particular cases of emasculation depending on its timing in relation to maturation and mating: 'pre-maturation', 'mating', and 'post-mating'. We use a genus-level spider phylogeny to explore emasculation evolution and to investigate potential evolutionary linkage between emasculation, SSD, lesser genital damage (embolic breakage), and sexual cannibalism (females consuming their mates). We find a complex pattern of spider emasculation evolution, all cases confined to Araneoidea: emasculation evolved at least five and up to 11 times, was lost at least four times, and became further modified at least once. We also find

  18. Multiobjective Image Color Quantization Algorithm Based on Self-Adaptive Hybrid Differential Evolution

    PubMed Central

    Xia, Xuewen

    2016-01-01

    In recent years, some researchers considered image color quantization as a single-objective problem and applied heuristic algorithms to solve it. This paper establishes a multiobjective image color quantization model with intracluster distance and intercluster separation as its objectives. Inspired by a multipopulation idea, a multiobjective image color quantization algorithm based on self-adaptive hybrid differential evolution (MoDE-CIQ) is then proposed to solve this model. Two numerical experiments on four common test images are conducted to analyze the effectiveness and competitiveness of the multiobjective model and the proposed algorithm. PMID:27738423

  19. Function and evolution of ubiquitous bacterial signaling adapter phosphopeptide recognition domain FHA.

    PubMed

    Weiling, Hong; Xiaowen, Yu; Chunmei, Li; Jianping, Xie

    2013-03-01

    Forkhead-associated domain (FHA) is a phosphopeptide recognition domain embedded in some regulatory proteins. With similar fold type to important eukaryotic signaling molecules such as Smad2 and IRF3, the role of bacterial FHA domain is intensively pursued. Reported bacterial FHA domain roles include: regulation of glutamate and lipids production, regulation of cell shape, type III secretion, ethambutol resistance, sporulation, signal transduction, carbohydrate storage and transport, and pathogenic and symbiotic host-bacterium interactions. To provide basis for the studies of other bacterial FHA domain containing proteins, the status of bacterial FHA functionality and evolution were summarized.

  20. Evolution of lactation: ancient origin and extreme adaptations of the lactation system.

    PubMed

    Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R

    2010-01-01

    Lactation, an important characteristic of mammalian reproduction, has evolved by exploiting a diversity of strategies across mammals. Comparative genomics and transcriptomics experiments have now allowed a more in-depth analysis of the molecular evolution of lactation. Milk cell and mammary gland genomic studies have started to reveal conserved milk proteins and other components of the lactation system of monotreme, marsupial, and eutherian lineages. These analyses confirm the ancient origin of the lactation system and provide useful insight into the function of specific milk proteins in the control of lactation. These studies also illuminate the role of milk in the regulation of growth and development of the young beyond simple nutritive aspects.

  1. Roles of adaptation, chance and history in the evolution of the dinoflagellate Prorocentrum triestinum

    NASA Astrophysics Data System (ADS)

    Flores-Moya, Antonio; Costas, Eduardo; López-Rodas, Victoria

    2008-08-01

    Evolutionary changes depend on adaptive evolution and two other components that traditionally have not been taken into account: chance and history. However, concepts in evolutionary biology are very often supported by descriptive studies but not by empirical approach. In order to disentangle the three components of evolutionary change, we have investigated the effects of long-term selection pressure on fitness and cell size in the bloom-forming dinoflagellate, Prorocentrum triestinum Schiller, under increased nutrient concentrations and temperature. Two strains of P. triestinum, previously adapted to grow under standard conditions (f/2 medium, 20°C), were grown under increased nutrient concentrations and temperature (f medium, 25°C) until fitness and cell size were invariant as a function of time (720 days, corresponding to c. 400 generations). The mean value for fitness of both strains of P. triestinum showed a significant increase whereas a decrease in mean cell size was found. The changes in fitness have adaptive value, but the changes in cell size were due to both adaptation and the contribution of chance-plus-history.

  2. Evolutionary constraints on adaptive evolution during range expansion in an invasive plant.

    PubMed

    Colautti, Robert I; Eckert, Christopher G; Barrett, Spencer C H

    2010-06-22

    Biological invasions may expose populations to strong selection for local adaptation along geographical gradients in climate. However, evolution during contemporary timescales can be constrained by low standing genetic variation and genetic correlations among life-history traits. We examined limits to local adaptation associated with northern migration of the invasive wetland plant purple loosestrife (Lythrum salicaria) using a selection model incorporating a trade-off between flowering time and size at reproduction, and common garden experiments of populations sampled along a latitudinal transect of approximately 1200 km in eastern North America. A strong trade-off between flowering time and size at reproduction caused early-flowering plants to be smaller with reduced seed production in northern populations. Northward spread was associated with a decline in genetic variance within populations and an increase in genetic skew for flowering time and size, with limited genetic variation for small, early-flowering genotypes. These patterns were predicted by our selection model of local adaptation to shorter growing seasons and were not consistent with expectations from non-adaptive processes. Reduced fecundity may limit population growth and rates of spread in northern populations. Identifying genetic constraints on key life-history traits can provide novel insights into invasion dynamics and the causes of range limits in introduced species. PMID:20164098

  3. Transcriptome analyses provide insights into the phylogeny and adaptive evolution of the mangrove fern genus Acrostichum

    PubMed Central

    Zhang, Zhang; He, Ziwen; Xu, Shaohua; Li, Xinnian; Guo, Wuxia; Yang, Yuchen; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2016-01-01

    The mangrove fern genus Acrostichum grows in the extremely unstable marine intertidal zone under harsh conditions, such as high salt concentrations, tidal rhythms and long-term climate changes. To explore the phylogenetic relationships and molecular mechanisms underlying adaptations in this genus, we sequenced the transcriptomes of two species of Acrostichum, A. aureum and A. speciosum, as well as a species in the sister genus, Ceratopteris thalictroides. We obtained 47,517, 36,420 and 60,823 unigenes for the three ferns, of which 24.39–45.63% were annotated using public databases. The estimated divergence time revealed that Acrostichum adapted to the coastal region during the late Cretaceous, whereas the two mangrove ferns from the Indo West-Pacific (IWP) area diverged more recently. Two methods (the modified branch-site model and the Kh method) were used to identify several positively selected genes, which may contribute to differential adaptation of the two Acrostichum species to different light and salt conditions. Our study provides abundant transcriptome data and new insights into the evolution and adaptations of mangrove ferns in the inhospitable intertidal zone. PMID:27782130

  4. Genetic Adaptation to Salt Stress in Experimental Evolution of Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Zhou, Aifen; Hillesland, Kristina; He, Zhili; Joachimiak, Marcin; Zane, Grant; Dehal, Paramvir; Arkin, Adam; Stahl, David; Wall, Judy; Hazen, Terry; Zhou, Jizhong; Baidoo, Edward; Benke, Peter; Mukhopadhyay, Aindrila

    2010-05-17

    High salinity is one of the most common environmental stressors. In order to understand how environmental organisms adapt to salty environment, an experiment evolution with sulfate reducing bacteria Desulfovibrio vugaris Hildenborough was conducted. Control lines and salt-stressed lines (6 lines each) grown in minimal medium LS4D or LS4D + 100 mM NaCl were transferred for 1200 generations. The salt tolerance was tested with LS4D supplemented with 250 mM NaCl. Statistical analysis of the growth data suggested that all lines adapted to their evolutionary environment. In addition, the control lines performed better than the ancestor with faster growth rate, higher biomass yield and shorter lag phase under salty environment they did not evolve in. However, the salt-adapted lines performed better than the control lines on measures of growth rate and yield under salty environment, suggesting that the salt?evolved lines acquired mutations specific to having extra salt in LS4D. Growth data and gene transcription data suggested that populations tended to improve till 1000 generations and active mutations tended to be fixed at the stage of 1000 generations. Point mutations and insertion/deletions were identified in isolated colonies from salt-adapted and control lines via whole genome sequencing. Glu, Gln and Ala appears to be the major osmoprotectant in evolved salt-stressed line. Ongoing studies are now characterizing the contribution of specific mutations identified in the salt-evolved D. vulgaris.

  5. Epigenetic resolution of the ‘curse of complexity’ in adaptive evolution of complex traits

    PubMed Central

    Badyaev, Alexander V

    2014-01-01

    The age of most genes exceeds the longevity of their genomic and physiological associations by many orders of magnitude. Such transient contexts modulate the expression of ancient genes to produce currently appropriate and often highly distinct developmental and functional outcomes. The efficacy of such adaptive modulation is diminished by the high dimensionality of complex organisms and associated vast areas of neutrality in their genotypic and developmental networks (and, thus, weak natural selection). Here I explore whether epigenetic effects facilitate adaptive modulation of complex phenotypes by effectively reducing the dimensionality of their deterministic networks and thus delineating their developmental and evolutionary trajectories even under weak selection. Epigenetic effects that link unconnected or widely dispersed elements of genotype space in ecologically relevant time could account for the rapid appearance of functionally integrated adaptive modifications. On an organismal time scale, conceptually similar processes occur during recurrent epigenetic reprogramming of somatic stem cells to produce, recurrently and reversibly, a bewildering array of differentiated and persistent cell lineages, all sharing identical genomic sequences despite strongly distinct phenotypes. I discuss whether close dependency of onset, scope and duration of epigenetic effects on cellular and genomic context in stem cells could provide insights into contingent modulation of conserved genomic material on a much longer evolutionary time scale. I review potential empirical examples of epigenetic bridges that reduce phenotype dimensionality and accomplish rapid adaptive modulation in the evolution of novelties, expression of behavioural types, and stress-induced ossification schedules. PMID:24882810

  6. Evolutionary constraints on adaptive evolution during range expansion in an invasive plant.

    PubMed

    Colautti, Robert I; Eckert, Christopher G; Barrett, Spencer C H

    2010-06-22

    Biological invasions may expose populations to strong selection for local adaptation along geographical gradients in climate. However, evolution during contemporary timescales can be constrained by low standing genetic variation and genetic correlations among life-history traits. We examined limits to local adaptation associated with northern migration of the invasive wetland plant purple loosestrife (Lythrum salicaria) using a selection model incorporating a trade-off between flowering time and size at reproduction, and common garden experiments of populations sampled along a latitudinal transect of approximately 1200 km in eastern North America. A strong trade-off between flowering time and size at reproduction caused early-flowering plants to be smaller with reduced seed production in northern populations. Northward spread was associated with a decline in genetic variance within populations and an increase in genetic skew for flowering time and size, with limited genetic variation for small, early-flowering genotypes. These patterns were predicted by our selection model of local adaptation to shorter growing seasons and were not consistent with expectations from non-adaptive processes. Reduced fecundity may limit population growth and rates of spread in northern populations. Identifying genetic constraints on key life-history traits can provide novel insights into invasion dynamics and the causes of range limits in introduced species.

  7. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    PubMed

    Luján, Adela M; Maciá, María D; Yang, Liang; Molin, Søren; Oliver, Antonio; Smania, Andrea M

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  8. Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30 °C

    PubMed Central

    Caspeta, Luis; Chen, Yun; Nielsen, Jens

    2016-01-01

    Exposure to long-term environmental changes across >100s of generations results in adapted phenotypes, but little is known about how metabolic and transcriptional responses are optimized in these processes. Here, we show that thermotolerant yeast strains selected by adaptive laboratory evolution to grow at increased temperature, activated a constitutive heat stress response when grown at the optimal ancestral temperature, and that this is associated with a reduced growth rate. This preventive response was perfected by additional transcriptional changes activated when the cultivation temperature is increased. Remarkably, the sum of global transcriptional changes activated in the thermotolerant strains when transferred from the optimal to the high temperature, corresponded, in magnitude and direction, to the global changes observed in the ancestral strain exposed to the same transition. This demonstrates robustness of the yeast transcriptional program when exposed to heat, and that the thermotolerant strains streamlined their path to rapidly and optimally reach post-stress transcriptional and metabolic levels. Thus, long-term adaptation to heat improved yeasts ability to rapidly adapt to increased temperatures, but this also causes a trade-off in the growth rate at the optimal ancestral temperature. PMID:27229477

  9. Evolution and protein interactions of AP2 proteins in Brassicaceae: Evidence linking development and environmental responses.

    PubMed

    Zeng, Liping; Yin, Yue; You, Chenjiang; Pan, Qianli; Xu, Duo; Jin, Taijie; Zhang, Bailong; Ma, Hong

    2016-06-01

    Plants have evolved a large number of transcription factors (TF), which are enriched among duplicate genes, highlighting their roles in complex regulatory networks. The APETALA2/EREBP-like genes constitute a large plant TF family and participate in development and stress responses. To probe the conservation and divergence of AP2/EREBP genes, we analyzed the duplication patterns of this family in Brassicaceae and identified interacting proteins of representative Arabidopsis AP2/EREBP proteins. We found that many AP2/EREBP duplicates generated early in Brassicaceae history were quickly lost, but many others were retained in all tested Brassicaceae species, suggesting early functional divergence followed by persistent conservation. In addition, the sequences of the AP2 domain and exon numbers were highly conserved in rosids. Furthermore, we used 16 A. thaliana AP2/EREBP proteins as baits in yeast screens and identified 1,970 potential AP2/EREBP-interacting proteins, with a small subset of interactions verified in planta. Many AP2 genes also exhibit reduced expression in an anther-defective mutant, providing a possible link to developmental regulation. The putative AP2-interacting proteins participate in many functions in development and stress responses, including photomorphogenesis, flower development, pathogenesis, drought and cold responses, abscisic acid and auxin signaling. Our results present the AP2/EREBP evolution patterns in Brassicaceae, and support a proposed interaction network of AP2/EREBP proteins and their putative interacting proteins for further study. PMID:26472270

  10. Exploiting Expert Knowledge of Protein-Protein Interactions in a Computational Evolution System for Detecting Epistasis

    NASA Astrophysics Data System (ADS)

    Pattin, Kristine A.; Payne, Joshua L.; Hill, Douglas P.; Caldwell, Thomas; Fisher, Jonathan M.; Moore, Jason H.

    The etiology of common human disease often involves a complex genetic architecture, where numerous points of genetic variation interact to influence disease susceptibility. Automating the detection of such epistatic genetic risk factors poses a major computational challenge, as the number of possible gene-gene interactions increases combinatorially with the number of sequence variations. Previously, we addressed this challenge with the development of a computational evolution system (CES) that incorporates greater biological realism than traditional artificial evolution methods. Our results demonstrated that CES is capable of efficiently navigating these large and rugged epistatic landscapes toward the discovery of biologically meaningful genetic models of disease predisposition. Further, we have shown that the efficacy of CES is improved dramatically when the system is provided with statistical expert knowledge. We anticipate that biological expert knowledge, such as genetic regulatory or protein-protein interaction maps, will provide complementary information, and further improve the ability of CES to model the genetic architectures of common human disease. The goal of this study is to test this hypothesis, utilizing publicly available protein-protein interaction information. We show that by incorporating this source of expert knowledge, the system is able to identify functional interactions that represent more concise models of disease susceptibility with improved accuracy. Our ability to incorporate biological knowledge into learning algorithms is an essential step toward the routine use of methods such as CES for identifying genetic risk factors for common human diseases.

  11. Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis

    PubMed Central

    Sun, Baofa; Li, Tong; Xiao, Jinhua; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shunmin; Huang, Dawei

    2016-01-01

    Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although horizontal gene transfer (HGT) facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians.

  12. Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis

    PubMed Central

    Sun, Baofa; Li, Tong; Xiao, Jinhua; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shunmin; Huang, Dawei

    2016-01-01

    Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although horizontal gene transfer (HGT) facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians. PMID:27630622

  13. Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis.

    PubMed

    Sun, Baofa; Li, Tong; Xiao, Jinhua; Liu, Li; Zhang, Peng; Murphy, Robert W; He, Shunmin; Huang, Dawei

    2016-01-01

    Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although horizontal gene transfer (HGT) facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians. PMID:27630622

  14. Dynamic evolution of mitochondrial ribosomal proteins in Holozoa.

    PubMed

    Scheel, Bettina M; Hausdorf, Bernhard

    2014-07-01

    We studied the highly dynamic evolution of mitochondrial ribosomal proteins (MRPs) in Holozoa. Most major clades within Holozoa are characterized by gains and/or losses of MRPs. The usefulness of gains of MRPs as rare genomic changes in phylogenetics is undermined by the high frequency of secondary losses. However, phylogenetic analyses of the MRP sequences provide evidence for the Acrosomata hypothesis, a sister group relationship between Ctenophora and Bilateria. An extensive restructuring of the mitochondrial genome and, as a consequence, of the mitochondrial ribosomes occurred in the ancestor of metazoans. The last MRP genes encoded in the mitochondrial genome were either moved to the nuclear genome or were lost. The strong decrease in size of the mitochondrial genome was probably caused by selection for rapid replication of mitochondrial DNA during oogenesis in the metazoan ancestor. A phylogenetic analysis of MRPL56 sequences provided evidence for a horizontal gene transfer of the corresponding MRP gene between metazoans and Dictyostelidae (Amoebozoa). The hypothesis that the requisition of additional MRPs compensated for a loss of rRNA segments in the mitochondrial ribosomes is corroborated by a significant negative correlation between the number of MRPs and length of the rRNA. Newly acquired MRPs evolved faster than bacterial MRPs and positions in eukaryote-specific MRPs were more strongly affected by coevolution than positions in prokaryotic MRPs in accordance with the necessity to fit these proteins into the pre-existing structure of the mitoribosome. PMID:24631858

  15. Evolution of Viral Proteins Originated De Novo by Overprinting

    PubMed Central

    Sabath, Niv; Wagner, Andreas; Karlin, David

    2012-01-01

    New protein-coding genes can originate either through modification of existing genes or de novo. Recently, the importance of de novo origination has been recognized in eukaryotes, although eukaryotic genes originated de novo are relatively rare and difficult to identify. In contrast, viruses contain many de novo genes, namely those in which an existing gene has been “overprinted” by a new open reading frame, a process that generates a new protein-coding gene overlapping the ancestral gene. We analyzed the evolution of 12 experimentally validated viral genes that originated de novo and estimated their relative ages. We found that young de novo genes have a different codon usage from the rest of the genome. They evolve rapidly and are under positive or weak purifying selection. Thus, young de novo genes might have strain-specific functions, or no function, and would be difficult to detect using current genome annotation methods that rely on the sequence signature of purifying selection. In contrast to young de novo genes, older de novo genes have a codon usage that is similar to the rest of the genome. They evolve slowly and are under stronger purifying selection. Some of the oldest de novo genes evolve under stronger selection pressure than the ancestral gene they overlap, suggesting an evolutionary tug of war between the ancestral and the de novo gene. PMID:22821011

  16. Dynamic evolution of mitochondrial ribosomal proteins in Holozoa.

    PubMed

    Scheel, Bettina M; Hausdorf, Bernhard

    2014-07-01

    We studied the highly dynamic evolution of mitochondrial ribosomal proteins (MRPs) in Holozoa. Most major clades within Holozoa are characterized by gains and/or losses of MRPs. The usefulness of gains of MRPs as rare genomic changes in phylogenetics is undermined by the high frequency of secondary losses. However, phylogenetic analyses of the MRP sequences provide evidence for the Acrosomata hypothesis, a sister group relationship between Ctenophora and Bilateria. An extensive restructuring of the mitochondrial genome and, as a consequence, of the mitochondrial ribosomes occurred in the ancestor of metazoans. The last MRP genes encoded in the mitochondrial genome were either moved to the nuclear genome or were lost. The strong decrease in size of the mitochondrial genome was probably caused by selection for rapid replication of mitochondrial DNA during oogenesis in the metazoan ancestor. A phylogenetic analysis of MRPL56 sequences provided evidence for a horizontal gene transfer of the corresponding MRP gene between metazoans and Dictyostelidae (Amoebozoa). The hypothesis that the requisition of additional MRPs compensated for a loss of rRNA segments in the mitochondrial ribosomes is corroborated by a significant negative correlation between the number of MRPs and length of the rRNA. Newly acquired MRPs evolved faster than bacterial MRPs and positions in eukaryote-specific MRPs were more strongly affected by coevolution than positions in prokaryotic MRPs in accordance with the necessity to fit these proteins into the pre-existing structure of the mitoribosome.

  17. Influenza A Virus Polymerase Is a Site for Adaptive Changes during Experimental Evolution in Bat Cells

    PubMed Central

    Poole, Daniel S.; Yú, Shuǐqìng; Caì, Yíngyún; Dinis, Jorge M.; Müller, Marcel A.; Jordan, Ingo; Friedrich, Thomas C.; Kuhn, Jens H.

    2014-01-01

    ABSTRACT The recent identification of highly divergent influenza A viruses in bats revealed a new, geographically dispersed viral reservoir. To investigate the molecular mechanisms of host-restricted viral tropism and the potential for transmission of viruses between humans and bats, we exposed a panel of cell lines from bats of diverse species to a prototypical human-origin influenza A virus. All of the tested bat cell lines were susceptible to influenza A virus infection. Experimental evolution of human and avian-like viruses in bat cells resulted in efficient replication and created highly cytopathic variants. Deep sequencing of adapted human influenza A virus revealed a mutation in the PA polymerase subunit not previously described, M285K. Recombinant virus with the PA M285K mutation completely phenocopied the adapted virus. Adaptation of an avian virus-like virus resulted in the canonical PB2 E627K mutation that is required for efficient replication in other mammals. None of the adaptive mutations occurred in the gene for viral hemagglutinin, a gene that frequently acquires changes to recognize host-specific variations in sialic acid receptors. We showed that human influenza A virus uses canonical sialic acid receptors to infect bat cells, even though bat influenza A viruses do not appear to use these receptors for virus entry. Our results demonstrate that bats are unique hosts that select for both a novel mutation and a well-known adaptive mutation in the viral polymerase to support replication. IMPORTANCE Bats constitute well-known reservoirs for viruses that may be transferred into human populations, sometimes with fatal consequences. Influenza A viruses have recently been identified in bats, dramatically expanding the known host range of this virus. Here we investigated the replication of human influenza A virus in bat cell lines and the barriers that the virus faces in this new host. Human influenza A and B viruses infected cells from geographically and

  18. A Dynamic Model for the Evolution of Protein Structure.

    PubMed

    Tal, Guy; Boca, Simina Maria; Mittenthal, Jay; Caetano-Anollés, Gustavo

    2016-05-01

    Domains are folded structures and evolutionary building blocks of protein molecules. Their three-dimensional atomic conformations, which define biological functions, can be coarse-grained into levels of a hierarchy. Here we build global dynamical models for the evolution of domains at fold and fold superfamily (FSF) levels. We fit the models with data from phylogenomic trees of domain structures and evaluate the distributions of the resulting parameters and their implications. The trees were inferred from a census of domain structures in hundreds of genomes from all three superkingdoms of life. The models used birth-death differential equations with the global abundances of structures as state variables, with one set of equations for folds and another for FSFs. Only the transitions present in the tree are assumed possible. Each fold or FSF diversifies in variants, eventually producing a new fold or FSF. The parameters specify rates of generation of variants and of new folds or FSFs. The equations were solved for the parameters by simplifying the trees to a comb-like topology, treating branches as emerging directly from a trunk. We found that the rate constants for folds and FSFs evolved similarly. These parameters showed a sharp transient change at about 1.5 Gyrs ago. This time coincides with a period in which domains massively combined in proteins and their arrangements distributed in novel lineages during the rise of organismal diversification. Our simulations suggest that exploration of protein structure space occurs through coarse-grained discoveries that undergo fine-grained elaboration. PMID:27146880

  19. Adaptive responses and invasion: the role of plasticity and evolution in snail shell morphology

    PubMed Central

    Kistner, Erica J; Dybdahl, Mark F

    2013-01-01

    Invasive species often exhibit either evolved or plastic adaptations in response to spatially varying environmental conditions. We investigated whether evolved or plastic adaptation was driving variation in shell morphology among invasive populations of the New Zealand mud snail (Potamopyrgus antipodarum) in the western United States. We found that invasive populations exhibit considerable shell shape variation and inhabit a variety of flow velocity habitats. We investigated the importance of evolution and plasticity by examining variation in shell morphological traits 1) between the parental and F1 generations for each population and 2) among populations of the first lab generation (F1) in a common garden, full-sib design using Canonical Variate Analyses (CVA). We compared the F1 generation to the parental lineages and found significant differences in overall shell shape indicating a plastic response. However, when examining differences among the F1 populations, we found that they maintained among-population shell shape differences, indicating a genetic response. The F1 generation exhibited a smaller shell morph more suited to the low-flow common garden environment within a single generation. Our results suggest that phenotypic plasticity in conjunction with evolution may be driving variation in shell morphology of this widespread invasive snail. PMID:23467920

  20. Chewing on the trees: Constraints and adaptation in the evolution of the primate mandible.

    PubMed

    Meloro, Carlo; Cáceres, Nilton Carlos; Carotenuto, Francesco; Sponchiado, Jonas; Melo, Geruza Leal; Passaro, Federico; Raia, Pasquale

    2015-07-01

    Chewing on different food types is a demanding biological function. The classic assumption in studying the shape of feeding apparatuses is that animals are what they eat, meaning that adaptation to different food items accounts for most of their interspecific variation. Yet, a growing body of evidence points against this concept. We use the primate mandible as a model structure to investigate the complex interplay among shape, size, diet, and phylogeny. We find a weak but significant impact of diet on mandible shape variation in primates as a whole but not in anthropoids and catarrhines as tested in isolation. These clades mainly exhibit allometric shape changes, which are unrelated to diet. Diet is an important factor in the diversification of strepsirrhines and platyrrhines and a phylogenetic signal is detected in all primate clades. Peaks in morphological disparity occur during the Oligocene (between 37 and 25 Ma) supporting the notion that an adaptive radiation characterized the evolution of South American monkeys. In all primate clades, the evolution of mandible size is faster than its shape pointing to a strong effect of allometry on ecomorphological diversification in this group.

  1. Evolution of cooperation facilitated by reinforcement learning with adaptive aspiration levels.

    PubMed

    Tanabe, Shoma; Masuda, Naoki

    2012-01-21

    Repeated interaction between individuals is the main mechanism for maintaining cooperation in social dilemma situations. Variants of tit-for-tat (repeating the previous action of the opponent) and the win-stay lose-shift strategy are known as strong competitors in iterated social dilemma games. On the other hand, real repeated interaction generally allows plasticity (i.e., learning) of individuals based on the experience of the past. Although plasticity is relevant to various biological phenomena, its role in repeated social dilemma games is relatively unexplored. In particular, if experience-based learning plays a key role in promotion and maintenance of cooperation, learners should evolve in the contest with nonlearners under selection pressure. By modeling players using a simple reinforcement learning model, we numerically show that learning enables the evolution of cooperation. We also show that numerically estimated adaptive dynamics appositely predict the outcome of evolutionary simulations. The analysis of the adaptive dynamics enables us to capture the obtained results as an affirmative example of the Baldwin effect, where learning accelerates the evolution to optimality. PMID:22037063

  2. Evolution of cooperation facilitated by reinforcement learning with adaptive aspiration levels.

    PubMed

    Tanabe, Shoma; Masuda, Naoki

    2012-01-21

    Repeated interaction between individuals is the main mechanism for maintaining cooperation in social dilemma situations. Variants of tit-for-tat (repeating the previous action of the opponent) and the win-stay lose-shift strategy are known as strong competitors in iterated social dilemma games. On the other hand, real repeated interaction generally allows plasticity (i.e., learning) of individuals based on the experience of the past. Although plasticity is relevant to various biological phenomena, its role in repeated social dilemma games is relatively unexplored. In particular, if experience-based learning plays a key role in promotion and maintenance of cooperation, learners should evolve in the contest with nonlearners under selection pressure. By modeling players using a simple reinforcement learning model, we numerically show that learning enables the evolution of cooperation. We also show that numerically estimated adaptive dynamics appositely predict the outcome of evolutionary simulations. The analysis of the adaptive dynamics enables us to capture the obtained results as an affirmative example of the Baldwin effect, where learning accelerates the evolution to optimality.

  3. Chewing on the trees: Constraints and adaptation in the evolution of the primate mandible.

    PubMed

    Meloro, Carlo; Cáceres, Nilton Carlos; Carotenuto, Francesco; Sponchiado, Jonas; Melo, Geruza Leal; Passaro, Federico; Raia, Pasquale

    2015-07-01

    Chewing on different food types is a demanding biological function. The classic assumption in studying the shape of feeding apparatuses is that animals are what they eat, meaning that adaptation to different food items accounts for most of their interspecific variation. Yet, a growing body of evidence points against this concept. We use the primate mandible as a model structure to investigate the complex interplay among shape, size, diet, and phylogeny. We find a weak but significant impact of diet on mandible shape variation in primates as a whole but not in anthropoids and catarrhines as tested in isolation. These clades mainly exhibit allometric shape changes, which are unrelated to diet. Diet is an important factor in the diversification of strepsirrhines and platyrrhines and a phylogenetic signal is detected in all primate clades. Peaks in morphological disparity occur during the Oligocene (between 37 and 25 Ma) supporting the notion that an adaptive radiation characterized the evolution of South American monkeys. In all primate clades, the evolution of mandible size is faster than its shape pointing to a strong effect of allometry on ecomorphological diversification in this group. PMID:26095445

  4. Computer-Aided Protein Directed Evolution: a Review of Web Servers, Databases and other Computational Tools for Protein Engineering.

    PubMed

    Verma, Rajni; Schwaneberg, Ulrich; Roccatano, Danilo

    2012-01-01

    The combination of computational and directed evolution methods has proven a winning strategy for protein engineering. We refer to this approach as computer-aided protein directed evolution (CAPDE) and the review summarizes the recent developments in this rapidly growing field. We will restrict ourselves to overview the availability, usability and limitations of web servers, databases and other computational tools proposed in the last five years. The goal of this review is to provide concise information about currently available computational resources to assist the design of directed evolution based protein engineering experiment.

  5. Setting the PAS, the role of circadian PAS domain proteins during environmental adaptation in plants

    PubMed Central

    Vogt, Julia H. M.; Schippers, Jos H. M.

    2015-01-01

    The per-ARNT-sim (PAS) domain represents an ancient protein module that can be found across all kingdoms of life. The domain functions as a sensing unit for a diverse array of signals, including molecular oxygen, small metabolites, and light. In plants, several PAS domain-containing proteins form an integral part of the circadian clock and regulate responses to environmental change. Moreover, these proteins function in pathways that control development and plant stress adaptation responses. Here, we discuss the role of PAS domain-containing proteins in anticipation, and adaptation to environmental changes in plants. PMID:26217364

  6. Multihost experimental evolution of the pathogen Ralstonia solanacearum unveils genes involved in adaptation to plants.

    PubMed

    Guidot, Alice; Jiang, Wei; Ferdy, Jean-Baptiste; Thébaud, Christophe; Barberis, Patrick; Gouzy, Jérôme; Genin, Stéphane

    2014-11-01

    Ralstonia solanacearum, the causal agent of a lethal bacterial wilt plant disease, infects an unusually wide range of hosts. These hosts can further be split into plants where R. solanacearum is known to cause disease (original hosts) and those where this bacterium can grow asymptomatically (distant hosts). Moreover, this pathogen is able to adapt to many plants as supported by field observations reporting emergence of strains with enlarged pathogenic properties. To investigate the genetic bases of host adaptation, we conducted evolution experiments by serial passages of a single clone of the pathogen on three original and two distant hosts over 300 bacterial generations and then analyzed the whole-genome of nine evolved clones. Phenotypic analysis of the evolved clones showed that the pathogen can increase its fitness on both original and distant hosts although the magnitude of fitness increase was greater on distant hosts. Only few genomic modifications were detected in evolved clones compared with the ancestor but parallel evolutionary changes in two genes were observed in independent evolved populations. Independent mutations in the regulatory gene efpR were selected for in three populations evolved on beans, a distant host. Reverse genetic approaches confirmed that these mutations were associated with fitness gain on bean plants. This work provides a first step toward understanding the within-host evolutionary dynamics of R. solanacearum during infection and identifying bacterial genes subjected to in planta selection. The discovery of EfpR as a determinant conditioning host adaptation of the pathogen illustrates how experimental evolution coupled with whole-genome sequencing is a potent tool to identify novel molecular players involved in central life-history traits.

  7. Identification and evolution of structurally dominant nodes in protein-protein interaction networks.

    PubMed

    Wang, Pei; Yu, Xinghuo; Lü, Jinhu

    2014-02-01

    It is well known that protein-protein interaction (PPI) networks are typical evolving complex networks. Identification of important nodes has been an emerging popular topic in complex networks. Many indexes have been proposed to measure the importance of nodes in complex networks, such as degree, closeness, betweenness, k-shell, clustering coefficient, semi-local centrality, eigenvector centrality. Based on multivariate statistical analysis, through integrating the above indexes and further considering the appearances of nodes in network motifs, this paper aims at developing a new measure to characterize the structurally dominant proteins (SDP) in PPI networks. Moreover, we will further investigate the evolution of the defined dominant nodes in temporal evolving real-world and artificial PPI networks. Our results indicate that the constructed artificial networks have some similar statistical properties as those of the real-world evolving networks. In this case, the artificial PPI networks can be used to further investigate the above evolution characteristics of the real-world evolving networks. Simulation results reveal that SDP in the yeast PPI networks are evolutionary conserved, however, the undominant nodes evolve rapidly. Furthermore, PPI networks are very robust against random mutations, while fragile yet with certain robustness to targeted mutations on SDP. Our investigations shed some light on the future applications of the evolving characteristics of bio-molecular networks, such as reengineering of particular networks for technological, synthetic or pharmacological purposes. PMID:24681922

  8. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution.

    PubMed

    Price, Christopher T D; Richards, Ashley M; Von Dwingelo, Juanita E; Samara, Hala A; Abu Kwaik, Yousef

    2014-02-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, invades and proliferates within a diverse range of free-living amoeba in the environment, but upon transmission to humans, the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host, but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. Legionella pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy.

  9. Molecular evolution of herpesviruses: genomic and protein sequence comparisons.

    PubMed Central

    Karlin, S; Mocarski, E S; Schachtel, G A

    1994-01-01

    Phylogenetic reconstruction of herpesvirus evolution is generally founded on amino acid sequence comparisons of specific proteins. These are relevant to the evolution of the specific gene (or set of genes), but the resulting phylogeny may vary depending on the particular sequence chosen for analysis (or comparison). In the first part of this report, we compare 13 herpesvirus genomes by using a new multidimensional methodology based on distance measures and partial orderings of dinucleotide relative abundances. The sequences were analyzed with respect to (i) genomic compositional extremes; (ii) total distances within and between genomes; (iii) partial orderings among genomes relative to a set of sequence standards; (iv) concordance correlations of genome distances; and (v) consistency with the alpha-, beta-, gammaherpesvirus classification. Distance assessments within individual herpesvirus genomes show each to be quite homogeneous relative to the comparisons between genomes. The gammaherpesviruses, Epstein-Barr virus (EBV), herpesvirus saimiri, and bovine herpesvirus 4 are both diverse and separate from other herpesvirus classes, whereas alpha- and betaherpesviruses overlap. The analysis revealed that the most central genome (closest to a consensus herpesvirus genome and most individual herpesvirus sequences of different classes) is that of human herpesvirus 6, suggesting that this genome is closest to a progenitor herpesvirus. The shorter DNA distances among alphaherpesviruses supports the hypothesis that the alpha class is of relatively recent ancestry. In our collection, equine herpesvirus 1 (EHV1) stands out as the most central alphaherpesvirus, suggesting it may approximate an ancestral alphaherpesvirus. Among all herpesviruses, the EBV genome is closest to human sequences. In the DNA partial orderings, the chicken sequence collection is invariably as close as or closer to all herpesvirus sequences than the human sequence collection is, which may imply that

  10. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change.

    PubMed

    Anderson, Jill T; Inouye, David W; McKinney, Amy M; Colautti, Robert I; Mitchell-Olds, Tom

    2012-09-22

    Anthropogenic climate change has already altered the timing of major life-history transitions, such as the initiation of reproduction. Both phenotypic plasticity and adaptive evolution can underlie rapid phenological shifts in response to climate change, but their relative contributions are poorly understood. Here, we combine a continuous 38 year field survey with quantitative genetic field experiments to assess adaptation in the context of climate change. We focused on Boechera stricta (Brassicaeae), a mustard native to the US Rocky Mountains. Flowering phenology advanced significantly from 1973 to 2011, and was strongly associated with warmer temperatures and earlier snowmelt dates. Strong directional selection favoured earlier flowering in contemporary environments (2010-2011). Climate change could drive this directional selection, and promote even earlier flowering as temperatures continue to increase. Our quantitative genetic analyses predict a response to selection of 0.2 to 0.5 days acceleration in flowering per generation, which could account for more than 20 per cent of the phenological change observed in the long-term dataset. However, the strength of directional selection and the predicted evolutionary response are likely much greater now than even 30 years ago because of rapidly changing climatic conditions. We predict that adaptation will likely be necessary for long-term in situ persistence in the context of climate change.

  11. Rapid adaptive evolution of colour vision in the threespine stickleback radiation.

    PubMed

    Rennison, Diana J; Owens, Gregory L; Heckman, Nancy; Schluter, Dolph; Veen, Thor

    2016-05-11

    Vision is a sensory modality of fundamental importance for many animals, aiding in foraging, detection of predators and mate choice. Adaptation to local ambient light conditions is thought to be commonplace, and a match between spectral sensitivity and light spectrum is predicted. We use opsin gene expression to test for local adaptation and matching of spectral sensitivity in multiple independent lake populations of threespine stickleback populations derived since the last ice age from an ancestral marine form. We show that sensitivity across the visual spectrum is shifted repeatedly towards longer wavelengths in freshwater compared with the ancestral marine form. Laboratory rearing suggests that this shift is largely genetically based. Using a new metric, we found that the magnitude of shift in spectral sensitivity in each population corresponds strongly to the transition in the availability of different wavelengths of light between the marine and lake environments. We also found evidence of local adaptation by sympatric benthic and limnetic ecotypes to different light environments within lakes. Our findings indicate rapid parallel evolution of the visual system to altered light conditions. The changes have not, however, yielded a close matching of spectrum-wide sensitivity to wavelength availability, for reasons we discuss.

  12. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change.

    PubMed

    Anderson, Jill T; Inouye, David W; McKinney, Amy M; Colautti, Robert I; Mitchell-Olds, Tom

    2012-09-22

    Anthropogenic climate change has already altered the timing of major life-history transitions, such as the initiation of reproduction. Both phenotypic plasticity and adaptive evolution can underlie rapid phenological shifts in response to climate change, but their relative contributions are poorly understood. Here, we combine a continuous 38 year field survey with quantitative genetic field experiments to assess adaptation in the context of climate change. We focused on Boechera stricta (Brassicaeae), a mustard native to the US Rocky Mountains. Flowering phenology advanced significantly from 1973 to 2011, and was strongly associated with warmer temperatures and earlier snowmelt dates. Strong directional selection favoured earlier flowering in contemporary environments (2010-2011). Climate change could drive this directional selection, and promote even earlier flowering as temperatures continue to increase. Our quantitative genetic analyses predict a response to selection of 0.2 to 0.5 days acceleration in flowering per generation, which could account for more than 20 per cent of the phenological change observed in the long-term dataset. However, the strength of directional selection and the predicted evolutionary response are likely much greater now than even 30 years ago because of rapidly changing climatic conditions. We predict that adaptation will likely be necessary for long-term in situ persistence in the context of climate change. PMID:22787021

  13. Rapid adaptive evolution of colour vision in the threespine stickleback radiation.

    PubMed

    Rennison, Diana J; Owens, Gregory L; Heckman, Nancy; Schluter, Dolph; Veen, Thor

    2016-05-11

    Vision is a sensory modality of fundamental importance for many animals, aiding in foraging, detection of predators and mate choice. Adaptation to local ambient light conditions is thought to be commonplace, and a match between spectral sensitivity and light spectrum is predicted. We use opsin gene expression to test for local adaptation and matching of spectral sensitivity in multiple independent lake populations of threespine stickleback populations derived since the last ice age from an ancestral marine form. We show that sensitivity across the visual spectrum is shifted repeatedly towards longer wavelengths in freshwater compared with the ancestral marine form. Laboratory rearing suggests that this shift is largely genetically based. Using a new metric, we found that the magnitude of shift in spectral sensitivity in each population corresponds strongly to the transition in the availability of different wavelengths of light between the marine and lake environments. We also found evidence of local adaptation by sympatric benthic and limnetic ecotypes to different light environments within lakes. Our findings indicate rapid parallel evolution of the visual system to altered light conditions. The changes have not, however, yielded a close matching of spectrum-wide sensitivity to wavelength availability, for reasons we discuss. PMID:27147098

  14. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution

    PubMed Central

    Tang, Xian-Chun; Agnihothram, Sudhakar S.; Jiao, Yongjun; Stanhope, Jeremy; Graham, Rachel L.; Peterson, Eric C.; Avnir, Yuval; Tallarico, Aimee St. Clair; Sheehan, Jared; Zhu, Quan; Baric, Ralph S.; Marasco, Wayne A.

    2014-01-01

    The newly emerging Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes a Severe Acute Respiratory Syndrome-like disease with ∼43% mortality. Given the recent detection of virus in dromedary camels, zoonotic transfer of MERS-CoV to humans is suspected. In addition, little is known about the role of human neutralizing Ab (nAb) pressure as a driving force in MERS-CoV adaptive evolution. Here, we used a well-characterized nonimmune human Ab-phage library and a panning strategy with proteoliposomes and cells to identify seven human nAbs against the receptor-binding domain (RBD) of the MERS-CoV Spike protein. These nAbs bind to three different epitopes in the RBD and human dipeptidyl peptidase 4 (hDPP4) interface with subnanomolar/nanomolar binding affinities and block the binding of MERS-CoV Spike protein with its hDPP4 receptor. Escape mutant assays identified five amino acid residues that are critical for neutralization escape. Despite the close proximity of the three epitopes on the RBD interface, escape from one epitope did not have a major impact on neutralization with Abs directed to a different epitope. Importantly, the majority of escape mutations had negative impacts on hDPP4 receptor binding and viral fitness. To our knowledge, these results provide the first report on human nAbs against MERS-CoV that may contribute to MERS-CoV clearance and evolution. Moreover, in the absence of a licensed vaccine or antiviral for MERS, this panel of nAbs offers the possibility of developing human mAb-based immunotherapy, especially for health-care workers. PMID:24778221

  15. Adaptive Evolution of a Tagged Chimeric Gammaretrovirus: Identification of Novel cis-Acting Elements That Modulate Splicing

    PubMed Central

    Logg, Christopher R.; Baranick, Brian T.; Lemp, Nathan A.; Kasahara, Noriyuki

    2010-01-01

    Summary Retroviruses are well known for their ability to incorporate envelope proteins from other retroviral strains and genera and even from other virus families. This characteristic has been widely exploited for the generation of replication-defective retroviral vectors, including those derived from murine leukemia virus (MLV), bearing heterologous envelope proteins. We desired to investigate the possibility of “genetically” pseudotyping replication-competent MLV by replacing the native env gene in a full-length viral genome with that of another gammaretrovirus. We previously developed repli