Science.gov

Sample records for adaptive pulse shaping

  1. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  2. Adaptive engineering of coherent soft-x-rays by temporal and spatial laser-pulse shaping

    NASA Astrophysics Data System (ADS)

    Pfeifer, Thomas

    2005-03-01

    We demonstrate qualitative amplitude shaping of the coherent soft x-ray spectrum produced in the process of high-harmonic generation. This is accomplished by applying adaptive femtosecond pulse shaping methods. We performed the basic operations of complete spectral control by 1) selective generation of extended parts of the high-harmonic spectra, 2) tunable single harmonic generation and 3) creation of spectral holes (suppression of harmonics) in the plateau region of the spectrum. Our ability to qualitatively ``engineer'' the coherent spectral properties by application of temporal and spatial laser-pulse-shaping methods has immediate consequences for the developing field of attosecond x-ray science. Control over the spectrum is directly related to the control over the attosecond pulse shape as we will show by comparing experiment with simulation. In addition, even more important is the prospect to extend the field of coherent control into the soft x-ray range. In the future, the proposed technique will allow us to directly manipulate electronic motion on its natural attosecond time scale.

  3. Adaptive Control of Two-Photon Excitation of Green Fluorescent Protein with Shaped Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Nabekawa, Yasuo; Suda, Akira; Oishi, Yu; Mizuno, Hideaki; Miyawaki, Atsushi; Midorikawa, Katsumi

    For many years, it has been believed that a Fourier-transform-limited (FTL) laser pulse is the most effective light source for the generation of nonlinear phenomena, since the FTL pulse has the shortest pulse duration, that is, the highest intensity, that can be limited by the spectral width due to the principle of uncertainty. Recently, many reports have been published on the adaptive control of nonlinear phenomena with shaped femtosecond excitation laser pulses [1, 2]. Their reports have shown that the modification of the spectral and temporal phases of excitation pulses can increase or decrease the probabilities and efficiencies of such nonlinear phenomena. This method has been widely applied to studies on the active control of molecular motions or chemical reactions [3,4]. Considering further novel biological applications, we focus on the two-photon excited fluorescence (TPEF) of the green fluorescent protein (GFP) from the jellyfish Aequorea victoria. GFP is spontaneously fluorescent and is relatively nontoxic compared with other organic dyes used as optical markers. Therefore, it has been widely used as a "tag" material for the fluorescence observation of living cells [5]. Two-photon excitation microscopy (TPEM) is a powerful tool for biological real-time observation due to its various advantages, such as a clear contrast, good S/N ratio, and high spatial resolution [7]. From a practical point of view, however, there is a serious problem with TPEM, which is the photobleaching of a dye. The intensity of a fluorescence signal decreases significantly during observation. One of the reasons for this is that the chromophore structure is degraded by intense excitation laser pulses that are required for efficient two-photon excitation. In this study, therefore, we attempted to determine the optimal phase for maximizing the fluorescence efficiency of a GFP variant with excitation laser pulses of minimal intensity. We considered that GFP can be an ideal dye for the

  4. High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping.

    PubMed

    Prawiharjo, Jerry; Daga, Nikita K; Geng, Rui; Price, Jonathan H; Hanna, David C; Richardson, David J; Shepherd, David P

    2008-09-15

    The generation of high-fidelity femtosecond pulses is experimentally demonstrated in a fiber based chirped-pulse amplification (CPA) system through an adaptive amplitude and phase pre-shaping technique. A pulse shaper, based on a dual-layer liquid crystal spatial light modulator (LC-SLM), was implemented in the fiber CPA system for amplitude and phase shaping prior to amplification. The LC-SLM was controlled using a differential evolution algorithm, to maximize a two-photon absorption detector signal from the compressed fiber CPA output pulses. It is shown that this approach compensates for both accumulated phase from material dispersion and nonlinear phase modulation. A train of pulses was produced with an average power of 12.6W at a 50MHz repetition rate from our fiber CPA system, which were compressible to high fidelity pulses with a duration of 170 fs.

  5. Pulse shaping system

    DOEpatents

    Skeldon, Mark D.; Letzring, Samuel A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.

  6. Pulse shaping system

    DOEpatents

    Skeldon, M.D.; Letzring, S.A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.

  7. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  8. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  9. High-speed pulse-shape generator, pulse multiplexer

    DOEpatents

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  10. Ultrashort laser pulse beam shaping.

    PubMed

    Zhang, Shuyan; Ren, Yuhang; Lüpke, Gunter

    2003-02-01

    We calculated the temporal and spatial characteristics of an ultrashort laser pulse propagating through a diffractive beam-shaping system that converts a Gaussian beam into a beam with a uniform irradiance profile that was originally designed for continuous waves [Proc. SPIE 2863, 237(1996)]. The pulse front is found to be considerably curved for a 10-fs pulse, resulting in a temporal broadening of the pulse that increases with increasing radius. The spatial intensity distribution deviates significantly from a top-hat profile, whereas the fluence shows a homogeneous radial distribution.

  11. Pulse shaping on the Nova laser system

    SciTech Connect

    Lawson, J.K.; Speck, D.R.; Bibeau, C.; Weiland, T.L.

    1989-02-06

    Inertial confinement fusion requires temporally shaped pulses to achieve high gain efficiency. Recently, we demonstrated the ability to produce complex temporal pulse shapes at high power at 0.35 microns on the Nova laser system. 2 refs., 2 figs.

  12. Ultrafast pulse shaping: amplification and characterization.

    PubMed

    Fetterman, M; Goswami, D; Keusters, D; Yang, W; Rhee, J K; Warren, W

    1998-11-09

    We demonstrate high-resolution amplified pulse shaping using an acousto-optic modulator (AOM) at a center-wavelength of 795nm. The output pulses have energy of 200mJ/pulse and a transform-limited pulsewidth of 150fs. A spectral modulation of over 40 features is achieved in a single pulse. We characterize the pulses using the STRUT (Spectrally and Temporally Resolved Upconversion Technique). Using predistortion techniques, we demonstrate that the pulses can be shaped in amplitude and phase. We create a complex pulse shape with hyperbolic secant amplitude and hyperbolic tangent frequency sweep, which is useful for applications in adiabatic rapid passage experiments.

  13. Ultrafast pulse shaping: amplification and characterization

    NASA Astrophysics Data System (ADS)

    Fetterman, Matthew R.; Goswami, Debabrata; Keusters, Dorine; Yang, Weiguo; Rhee, June-Koo; Warren, Warren S.

    1998-11-01

    We demonstrate high-resolution amplified pulse shaping using an acousto-optic modulator (AOM) at a center-wavelength of 795nm. The output pulses have energy of 200mJ/pulse and a transform-limited pulsewidth of 150fs. A spectral modulation of over 40 features is achieved in a single pulse. We characterize the pulses using the STRUT (Spectrally and Temporally Resolved Upconversion Technique). Using predistortion techniques, we demonstrate that the pulses can be shaped in amplitude and phase. We create a complex pulse shape with hyperbolic secant amplitude and hyperbolic tangent frequency sweep, which is useful for applications in adiabatic rapid passage experiments.

  14. Dynamic Line-by-line Pulse Shaping

    NASA Astrophysics Data System (ADS)

    Willits, John Thomas

    In pursuit of optical arbitrary waveform generation (OAWG), line-by-line pulse shapers use dynamic masks that can be modulated at the repetition rate of an input pulse train. The pulse-to-pulse control of the output pulse train with the waveform fidelity provided by line-by-line pulse shaping creates the most arbitrary waveform output possible, OAWG. This thesis studies the theoretical dynamic effects of such a pulse shaper and presents efforts towards realization of OAWG. Pulse shaping theory is extended to include rapid waveform update for line-by-line pulse shaping. The fundamental tradeoff between response speed and waveform fidelity is illustrated by several examples. Line-by-line pulse shaping is demonstrated at a repetition rate of 890 MHz on a mode-locked titanium sapphire laser. This pulse shaper relies on a virtual imaged phased array (VIPA) to obtain the necessary high spectral resolution. The details of the VIPA's ideal and nonideal performance are analyzed, simulated and tested. Individual frequency modes from the mode-locked titanium sapphire laser are also resolved using the same VIPA paired with a diffraction grating creating a 2-D spectral brush with a resolution of 357 MHz. The advantages and nonideal effects of VIPA-based pulse shaping are investigated. Analysis of several high speed modulation techniques are explored. The optical system required to separate adjacent comb lines into different single mode (SM) fibers necessary for several modulation techniques is designed and tested.

  15. Ultrafast pulse shaping: Amplication, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Fetterman, Matthew Robert

    1999-10-01

    The phenomena of self-induced transparency and adiabatic rapid passage can be predicted from the Maxwell-Bloch equations. These equations govern the propagation of light through a two-level system, such as a gas of rubidium, which includes not only the effect of the atoms on the light pulse, but the effect of the light pulse on the atoms. Previous experimental work has demonstrated these effects. Theoretical work has predicted that a particular optical pulse shape, the secant hyperbolic pulse with tangent hyperbolic frequency sweep, will be particularly robust method of demonstrating adiabatic rapid passage. In this work, we experimentally study, for the first time, the effect of this pulse shape on an atomic system. Making a high energy shaped pulse required developing a unique laser system. Technology already existed that allowed us to generate amplified pulse shapes. Also, unamplified pulse shaping has been demonstrated. We demonstrate the amplified pulse shaping system. As we will show, this system is a versatile tool that allows us to shape pulses in the amplitude and phase domains. We also utilised an advanced detection tool, the STRUT, that allowed us to fully characterize the shaped femtosecond pulses. Using the techniques outlined in this work, we hope that other researchers will find it straightfoward to construct their own amplified pulse shaping system. Having shown the capability to do amplified pulse shaping, we applied this work to an atomic system, rubidium. The results were quite intriguing, although not what we initially had expected. The data shows that the pulses are being reshaped in the spectral domain, and the nature of that reshaping depends on the input pulse shape. They also show evidence of inversion, and that inversion depends on the pulse shape. Self-focusing is also observed. Using a computer simulation, it was shown that the results were in fact consistent with the Maxwell-Bloch equations. These surprising results from the rubidium

  16. Shaping Transmitted Pulses To Provide Synchronizing Signals

    NASA Technical Reports Server (NTRS)

    Satorius, Edgar H.; Mulligan, James J.

    1994-01-01

    Report presents theoretical analysis of relationships among: shapes and bandwidths of data pulses in pulse-amplitude modulation (PAM) and quadrature amplitude modulation (QAM); pulse-repetition rates (baud rates); and presence or absence of sinusoidal baud-frequency components in envelopes (magnitudes) of overall received signals.

  17. Modular, Parallel Pulse-Shaping Filter Architectures

    NASA Technical Reports Server (NTRS)

    Gray, Andrew A.

    2003-01-01

    Novel architectures based on parallel subconvolution frequency-domain filtering methods have been developed for modular processing rate reduction of discrete-time pulse-shaping filters. Such pulse-shaping is desirable and often necessary to obtain bandwidth efficiency in very-high-rate wireless communications systems. In principle, this processing could be implemented in very-large-scale integrated (VLSI) circuits. Whereas other approaches to digital pulse-shaping are based primarily on time-domain processing concepts, the theory and design rules of the architectures presented here are founded on frequency-domain processing that has advantages in certain systems.

  18. Pulse-shaping circuit for laser excitation

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J.

    1981-01-01

    Narrower, impedence-matched pulses initiate stabler electric discharges for gas lasers. Discharges are more efficient, more compact, capable of high repetition rate, and less expensive than conventional electron-beam apparatus, but gas tends to break down and form localized arcs. Pulse-shaping circuit compresses width of high-voltage pulses from relatively-slow rise-time voltage generator and gradually grades circuit impedance from inherent high impedance of generator to low impedence of gas.

  19. Pulse front adaptive optics: a new method for control of ultrashort laser pulses.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-07-27

    Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers.

  20. Multiple-beam pulse shaping and preamplification

    SciTech Connect

    Wilcox, R.B.; VanWonterghem, B.W.; Burkhart, S.C.; Davin, J.M.

    1994-11-09

    Glass fusion laser systems typically use a master oscillator-power amplifier (MOPA) architecture, where control of the optical pulse temporal and spatial parameters is accomplished mainly in the master oscillator and low power optics. The pulses from this low power ``front end`` are amplified in the power amplifier, which modifies the pulse shape temporally and spatially. Nonlinear frequency conversion crystals following the amplifier further change the pulse before it reaches the target. To effectively control the optical pulse on target for different types of experiments, and compensate for nonlinearity in the preceding optics, the front end system must be versatile enough to easily control many pulse parameters over a large range. The front end pulse generation system described in this article represents a new approach to this problem. The proposed National Ignition Facility (NIF) has 192 beamlines, each of which requires an input pulse of up to 12 Joules in around 4 ns equivalent square pulse length. Considerations of laser architecture for supplying each of these beamlines from a central oscillator system were crucial in the design of the front end. Previous lasers have used bulk optics to split a single oscillator signal and report beams to multiple amplifier chains. A key idea in the current design is to replace bulk optic transport with fibers, eliminating large opto-mechanical subsystems. Another important concept is convenient pulse forming using low voltage integrated optic modulators. The integrated optic and fiber optic concepts resulted in the current pulse generation designs for NEF. An important advantage is that each of the beamlines can have an independently controlled temporal pulse shape, which provides for precise balance of instantaneous power on target.

  1. Interactions between butterfly-shaped pulses in the inhomogeneous media

    SciTech Connect

    Liu, Wen-Jun; Huang, Long-Gang; Pan, Nan; Lei, Ming

    2014-10-15

    Pulse interactions affect pulse qualities during the propagation. Interactions between butterfly-shaped pulses are investigated to improve pulse qualities in the inhomogeneous media. In order to describe the interactions between butterfly-shaped pulses, analytic two-soliton solutions are derived. Based on those solutions, influences of corresponding parameters on pulse interactions are discussed. Methods to control the pulse interactions are suggested. - Highlights: • Interactions between butterfly-shaped pulses are investigated. • Methods to control the pulse interactions are suggested. • Analytic two-soliton solutions for butterfly-shaped pulses are derived.

  2. Measurements of Sonoluminescence Temporal Pulse Shape

    NASA Astrophysics Data System (ADS)

    Moran, Michael J.; Sweider, Daren

    1998-06-01

    Experiments using time-correlated photon counting and optical bandpass filters measure new features in the time and spectral dependences of single-bubble sonoluminescence (SBSL). The SBSL full width at half maximum (FWHM) varies with wavelength at 3 °C, but not at 24 °C. The pulse shapes are dominated by nearly Gaussian peaks with FWHM in the 150- to 300-ps range. At 3 °C, increases of pulse width with acoustic drive pressure are independent of wavelength. The pulses have extended tails that decay exponentially, with effective lifetimes of about 150 ps.

  3. Laser pulse shaping for high gradient accelerators

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  4. Pulse front control with adaptive optics

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  5. Shaping metallic glasses by electromagnetic pulsing

    PubMed Central

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-01-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460

  6. Shaping metallic glasses by electromagnetic pulsing

    NASA Astrophysics Data System (ADS)

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-02-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals.

  7. Shaping metallic glasses by electromagnetic pulsing.

    PubMed

    Kaltenboeck, Georg; Demetriou, Marios D; Roberts, Scott; Johnson, William L

    2016-02-08

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals.

  8. Pulse Shape Evolution, HER X-1

    NASA Technical Reports Server (NTRS)

    VanParadijs, Johannes A.

    1998-01-01

    This study focuses on the pulse shape evolution and spectral properties of the X-ray binary Her X-1 with regard to the well known 35-day cycle of Her X-1. A follow-up set of RXTE observations has been conducted in RXTE AO-2 phase and the two observation sets are being analyzed together. We presented results of early analysis of pulse shape evolution in "Proceedings of the Fourth Compton Symposium." More advanced analysis was presented at the HEAD meeting in November, 1997 in Estes Park, Colorado. A related study of the 35-day cycle using RXTE/ASM data, which laid out the overall picture within which the more detailed PCA observations could be placed has also been conducted. The results of this study have been published in The Astrophysical Journal, vol. 510, 974. A pair of papers on the detailed pulse evolution and the spectral/color evolution are currently being prepared for publication. Some of the significant results of this study have been a confirmation of the detailed pulse profile changes at the end of the Main High state in Her X-1 first observed by GINGA, observations of the pulse evolution in several Short High states which agree with the pulse evolution pattern predicted using a disk occultation model in the PhD Thesis of Scott 1993, observation of a systematic lengthening of the eclipse egress during the Main High state of the 35-day phase and observation of a new type of extended eclipse ingress during which pulsations cease to observed during the Short High state.

  9. New organic crystals for pulse shape discrimination

    SciTech Connect

    Hull, G; Zaitseva, N; Cherepy, N; Newby, J; Stoeffl, W; Payne, S

    2008-07-16

    Efficient, readily-available, low-cost, high-energy neutron detectors can play a central role in detecting illicit nuclear weapons since neutrons are a strong indication for the presence of fissile material such as Plutonium and Highly-Enriched Uranium. The main challenge in detecting fast neutrons consists in the discrimination of the signal from the gamma radiation background. At present, the only well-investigated organic crystal scintillator for fast neutron detection, in a n/{gamma} mixed field, is stilbene, which while offering good pulse shape discrimination, is not widely used because of its limited availability and high cost. In this work we report the results of our studies made with a number of new organic crystals, which exhibit pulse shape discrimination for detection of fast neutrons. In particular 1,1,4,4-tetraphenyl-1,3-butadiene features a light yield higher than anthracene and a Figure of Merit (FOM) for the pulse shape discrimination better than stilbene. New crystals are good candidates for the low-cost solution growth method, thus representing promising organic scintillators for widespread deployment for high-energy neutron detection.

  10. Encoded Dynamical Recoupling with Shaped Pulses

    NASA Astrophysics Data System (ADS)

    Li, Yunfan; Lidar, Daniel A.; Pryadko, Leonid P.

    2008-03-01

    Encoded Dynamical Recoupling is a passive error correction techique which can be used to enhance the performance of a quantum error correction code (QECC) against low-frequency component of the thermal bath. The elements of the stabilizer group are used in the decoupling cycle which makes the encoded logic operations fault-tolerant. We studied the effectiveness of this techique both analytically and numerically for several three- and five-qubit codes, with decoupling sequences utilizing either Gaussian or self-refocusing pulse shapes. When logic pulses are intercalated between the decoupling cycles, the technique may be very effective in cancelling constant perturbation terms, but its performance is much weaker against a time-dependent perturbation simulated as a classical correlated noise. The decoupling accuracy can be substantially improved if logic is applied slowly and concurrently with the decoupling, so that a certain adiabaticity condition is satisfied.

  11. Evolution of laser pulse shape in a parabolic plasma channel

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Gupta, D. N.; Suk, H.

    2017-01-01

    During high-intensity laser propagation in a plasma, the group velocity of a laser pulse is subjected to change with the laser intensity due to alteration in refractive index associated with the variation of the nonlinear plasma density. The pulse front sharpened while the back of the pulse broadened due to difference in the group velocity at different parts of the laser pulse. Thus the distortion in the shape of the laser pulse is expected. We present 2D particle-in-cell simulations demonstrating the controlling the shape distortion of a Gaussian laser pulse using a parabolic plasma channel. We show the results of the intensity distribution of laser pulse in a plasma with and without a plasma channel. It has been observed that the plasma channel helps in controlling the laser pulse shape distortion. The understanding of evolution of laser pulse shape may be crucial while applying the parabolic plasma channel for guiding the laser pulse in plasma based accelerators.

  12. Pulse Shaped 8-PSK Bandwidth Efficiency and Spectral Spike Elimination

    NASA Technical Reports Server (NTRS)

    Tao, Jian-Ping

    1998-01-01

    The most bandwidth-efficient communication methods are imperative to cope with the congested frequency bands. Pulse shaping methods have excellent effects on narrowing bandwidth and increasing band utilization. The position of the baseband filters for the pulse shaping is crucial. Post-modulation pulse shaping (a low pass filter is located after the modulator) can change signals from constant envelope to non-constant envelope, and non-constant envelope signals through non-linear device (a SSPA or TWT) can further spread the power spectra. Pre-modulation pulse shaping (a filter is located before the modulator) will have constant envelope. These two pulse shaping methods have different effects on narrowing the bandwidth and producing bit errors. This report studied the effect of various pre-modulation pulse shaping filters with respect to bandwidth, spectral spikes and bit error rate. A pre-modulation pulse shaped 8-ary Phase Shift Keying (8PSK) modulation was used throughout the simulations. In addition to traditional pulse shaping filters, such as Bessel, Butterworth and Square Root Raised Cosine (SRRC), other kinds of filters or pulse waveforms were also studied in the pre-modulation pulse shaping method. Simulations were conducted by using the Signal Processing Worksystem (SPW) software package on HP workstations which simulated the power spectral density of pulse shaped 8-PSK signals, end to end system performance and bit error rates (BERS) as a function of Eb/No using pulse shaping in an AWGN channel. These results are compared with the post-modulation pulse shaped 8-PSK results. The simulations indicate traditional pulse shaping filters used in pre-modulation pulse shaping may produce narrower bandwidth, but with worse BER than those in post-modulation pulse shaping. Theory and simulations show pre- modulation pulse shaping could also produce discrete line power spectra (spikes) at regular frequency intervals. These spikes may cause interference with adjacent

  13. Control of grating-coupled ultrafast surface plasmon pulse and its nonlinear emission by shaping femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Toma, Kazunori; Masaki, Yuta; Kusaba, Miyuki; Hirosawa, Kenichi; Kannari, Fumihiko

    2015-09-01

    Spatiotemporal nanofocusing of ultrafast surface plasmon polaritons (SPPs) coupled on a metal Au tapered tip with a curvature radius of a few tens of nanometers is deterministically controlled based on the measured plasmon response function. We control the SPP pulse shape and the second harmonic generation at the apex of the Au tapered tip by shaping the excitation femtosecond laser pulses based on the response function. We also adapted a similar control scheme for coherent anti-Stokes Raman scattering (CARS) and achieved selective CARS excitation of a single Raman mode of carbon nanotubes with only a single excitation laser pulse at the apex of the tip.

  14. Passive and active pulse stacking scheme for pulse shaping

    DOEpatents

    Harney, Robert C.; Schipper, John F.

    1977-01-01

    Apparatus and method for producing a sequence of radiation pulses with a pulse envelope of time variation which is controllable by an external electromagnetic signal applied to an active medium or by a sectored reflector, through which the radiation passes.

  15. Optimal control design of pulse shapes as analytic functions.

    PubMed

    Skinner, Thomas E; Gershenzon, Naum I

    2010-06-01

    Representing NMR pulse shapes by analytic functions is widely employed in procedures for optimizing performance. Insights concerning pulse dynamics can be applied to the choice of appropriate functions that target specific performance criteria, focusing the solution search and reducing the space of possible pulse shapes that must be considered to a manageable level. Optimal control theory can accommodate significantly larger parameter spaces and has been able to tackle problems of much larger scope than more traditional optimization methods. However, its numerically generated pulses, as currently constructed, do not readily incorporate the capabilities of particular functional forms, and the pulses are not guaranteed to vary smoothly in time, which can be a problem for faithful implementation on older hardware. An optimal control methodology is derived for generating pulse shapes as simple parameterized functions. It combines the benefits of analytic and numerical protocols in a single powerful algorithm that both complements and enhances existing optimization strategies.

  16. Pulse Shaped Constant Envelope 8-PSK Modulation Study

    NASA Technical Reports Server (NTRS)

    Tao, Jianping; Horan, Sheila

    1997-01-01

    This report provides simulation results for constant envelope pulse shaped 8 Level Phase Shift Keying (8 PSK) modulation for end to end system performance. In order to increase bandwidth utilization, pulse shaping is applied to signals before they are modulated. This report provides simulation results of power spectra and measurement of bit errors produced by pulse shaping in a non-linear channel with Additive White Gaussian Noise (AWGN). The pulse shaping filters can placed before (Type B) or after (Type A) signals are modulated. Three kinds of baseband filters, 5th order Butterworth, 3rd order Bessel and Square-Root Raised Cosine with different BTs or roll off factors, are utilized in the simulations. The simulations were performed on a Signal Processing Worksystem (SPW).

  17. Application of Bayes' theorem for pulse shape discrimination

    SciTech Connect

    Marleau, Peter; Monterial, Mateusz; Clarke, Shaun; Pozzi, Sara

    2015-06-14

    A Bayesian approach is proposed for pulse shape discrimination of photons and neutrons in liquid organic scinitillators. Instead of drawing a decision boundary, each pulse is assigned a photon or neutron confidence probability. In addition, this allows for photon and neutron classification on an event-by-event basis. The sum of those confidence probabilities is used to estimate the number of photon and neutron instances in the data. An iterative scheme, similar to an expectation-maximization algorithm for Gaussian mixtures, is used to infer the ratio of photons-to-neutrons in each measurement. Therefore, the probability space adapts to data with varying photon-to-neutron ratios. A time-correlated measurement of Am–Be and separate measurements of 137Cs, 60Co and 232Th photon sources were used to construct libraries of neutrons and photons. These libraries were then used to produce synthetic data sets with varying ratios of photons-to-neutrons. Probability weighted method that we implemented was found to maintain neutron acceptance rate of up to 90% up to photon-to-neutron ratio of 2000, and performed 9% better than the decision boundary approach. Furthermore, the iterative approach appropriately changed the probability space with an increasing number of photons which kept the neutron population estimate from unrealistically increasing.

  18. Application of Bayes' theorem for pulse shape discrimination

    DOE PAGES

    Marleau, Peter; Monterial, Mateusz; Clarke, Shaun; ...

    2015-06-14

    A Bayesian approach is proposed for pulse shape discrimination of photons and neutrons in liquid organic scinitillators. Instead of drawing a decision boundary, each pulse is assigned a photon or neutron confidence probability. In addition, this allows for photon and neutron classification on an event-by-event basis. The sum of those confidence probabilities is used to estimate the number of photon and neutron instances in the data. An iterative scheme, similar to an expectation-maximization algorithm for Gaussian mixtures, is used to infer the ratio of photons-to-neutrons in each measurement. Therefore, the probability space adapts to data with varying photon-to-neutron ratios. Amore » time-correlated measurement of Am–Be and separate measurements of 137Cs, 60Co and 232Th photon sources were used to construct libraries of neutrons and photons. These libraries were then used to produce synthetic data sets with varying ratios of photons-to-neutrons. Probability weighted method that we implemented was found to maintain neutron acceptance rate of up to 90% up to photon-to-neutron ratio of 2000, and performed 9% better than the decision boundary approach. Furthermore, the iterative approach appropriately changed the probability space with an increasing number of photons which kept the neutron population estimate from unrealistically increasing.« less

  19. Application of Bayes' theorem for pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Monterial, Mateusz; Marleau, Peter; Clarke, Shaun; Pozzi, Sara

    2015-09-01

    A Bayesian approach is proposed for pulse shape discrimination of photons and neutrons in liquid organic scinitillators. Instead of drawing a decision boundary, each pulse is assigned a photon or neutron confidence probability. This allows for photon and neutron classification on an event-by-event basis. The sum of those confidence probabilities is used to estimate the number of photon and neutron instances in the data. An iterative scheme, similar to an expectation-maximization algorithm for Gaussian mixtures, is used to infer the ratio of photons-to-neutrons in each measurement. Therefore, the probability space adapts to data with varying photon-to-neutron ratios. A time-correlated measurement of Am-Be and separate measurements of 137Cs, 60Co and 232Th photon sources were used to construct libraries of neutrons and photons. These libraries were then used to produce synthetic data sets with varying ratios of photons-to-neutrons. Probability weighted method that we implemented was found to maintain neutron acceptance rate of up to 90% up to photon-to-neutron ratio of 2000, and performed 9% better than the decision boundary approach. Furthermore, the iterative approach appropriately changed the probability space with an increasing number of photons which kept the neutron population estimate from unrealistically increasing.

  20. Nonlinear spatial focusing in random layered media by spectral pulse shaping

    NASA Astrophysics Data System (ADS)

    Han, Alex C.; Milner, Valery

    2016-02-01

    We demonstrate numerically a method of focusing two-photon fields inside one-dimensional random media. The approach is based on coherent control of backscattering achieved by adaptive spectral pulse shaping. The spectral phases of a femtosecond laser pulse are adjusted for the constructive interference of its backward-traveling components, resulting in an enhanced reflection from within the random system. A delayed forward-propagating second pulse overlaps with the controlled reflection, increasing the interpulse multiphoton field at a location determined by the delay between the two pulses. The technique is shown to be robust against the variations of the disorder and to work with realistic pulse-shaping parameters, hence enabling applications in controlling random lasing and multiphoton imaging in scattering materials.

  1. Pulse Shaping Entangling Gates and Error Supression

    NASA Astrophysics Data System (ADS)

    Hucul, D.; Hayes, D.; Clark, S. M.; Debnath, S.; Quraishi, Q.; Monroe, C.

    2011-05-01

    Control of spin dependent forces is important for generating entanglement and realizing quantum simulations in trapped ion systems. Here we propose and implement a composite pulse sequence based on the Molmer-Sorenson gate to decrease gate infidelity due to frequency and timing errors. The composite pulse sequence uses an optical frequency comb to drive Raman transitions simultaneously detuned from trapped ion transverse motional red and blue sideband frequencies. The spin dependent force displaces the ions in phase space, and the resulting spin-dependent geometric phase depends on the detuning. Voltage noise on the rf electrodes changes the detuning between the trapped ions' motional frequency and the laser, decreasing the fidelity of the gate. The composite pulse sequence consists of successive pulse trains from counter-propagating frequency combs with phase control of the microwave beatnote of the lasers to passively suppress detuning errors. We present the theory and experimental data with one and two ions where a gate is performed with a composite pulse sequence. This work supported by the U.S. ARO, IARPA, the DARPA OLE program, the MURI program; the NSF PIF Program; the NSF Physics Frontier Center at JQI; the European Commission AQUTE program; and the IC postdoc program administered by the NGA.

  2. Method and circuit for shaping laser output pulses

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor)

    1990-01-01

    The invention is a method and circuit for shaping laser pulses 17' in which a laser medium 12' in a laser resonator 10' that includes a Q-switch 14' and polarizer 13' which act in combination to control the loss of the resonator 10' and provide the laser output 17' representative of such loss. An optical diode 22' senses the level of the output pulse 17' and provides an output signal 23' that when amplified is used with a control voltage from a supply 29' provide a control signal 19' which is applied to Q-switch 14' to control the shape of the output pulse 17' by adjusting its length.

  3. ENDOR with band-selective shaped inversion pulses

    NASA Astrophysics Data System (ADS)

    Tait, Claudia E.; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  4. ENDOR with band-selective shaped inversion pulses.

    PubMed

    Tait, Claudia E; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  5. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Letzring, Samuel A.

    1993-01-01

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse.

  6. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, S.; Kessler, T.J.; Letzring, S.A.

    1993-11-16

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse. 10 figures.

  7. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform

    PubMed Central

    Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. PMID:27304979

  8. Shaped optimal control pulses for increased excitation bandwidth in EPR.

    PubMed

    Spindler, Philipp E; Zhang, Yun; Endeward, Burkhard; Gershernzon, Naum; Skinner, Thomas E; Glaser, Steffen J; Prisner, Thomas F

    2012-05-01

    A 1 ns resolution pulse shaping unit has been developed for pulsed EPR spectroscopy to enable 14-bit amplitude and phase modulation. Shaped broadband excitation pulses designed using optimal control theory (OCT) have been tested with this device at X-band frequency (9 GHz). FT-EPR experiments on organic radicals in solution have been performed with the new pulses, designed for uniform excitation over a significantly increased bandwidth compared to a classical rectangular π/2 pulse of the same B(1) amplitude. The concept of a dead-time compensated prefocused pulse has been introduced to EPR with a self-refocusing of 200 ns after the end of the pulse. Echo-like refocused signals have been recorded and compared to the performance of a classical Hahn-echo sequence. The impulse response function of the microwave setup has been measured and incorporated into the algorithm for designing OCT pulses, resulting in further significant improvements in performance. Experimental limitations and potential new applications of OCT pulses in EPR spectroscopy will be discussed.

  9. Pulse shape control in a dual cavity laser: numerical modeling

    NASA Astrophysics Data System (ADS)

    Yashkir, Yuri

    2006-04-01

    We present a numerical model of the laser system for generating a special shape of the pulse: a steep peak at the beginning followed by a long pulse tail. Laser pulses of this nature are required for various applications (laser material processing, optical breakdown spectroscopy, etc.). The laser system consists of two "overlapped" cavities with different round-trip times. The laser crystal, the Q-switching element, the back mirror, and the output coupler are shared. A shorter pulse is generated in a short cavity. A small fraction of this pulse is injected into the long cavity as a seed. It triggers generation of the longer pulse. The output emission from this hybrid laser produces a required pulse shape. Parameters of the laser pulse (ratios of durations and energies of short- and long- pulse components) can be controlled through cavity length and the output coupler reflection. Modelling of the laser system is based on a set of coupled rate equations for dynamic variables of the system: the inverse population in an active laser media and photon densities in coupled cavities. Numerical experiments were provided with typical parameters of a Nd:YAG laser to study the system behaviour for different combinations of parameters.

  10. Pulse-Shaping-Based Nonlinear Microscopy: Development and Applications

    NASA Astrophysics Data System (ADS)

    Flynn, Daniel Christopher

    The combination of optical microscopy and ultrafast spectroscopy make the spatial characterization of chemical kinetics on the femtosecond time scale possible. Commercially available octave-spanning Ti:Sapphire oscillators with sub-8 fs pulse durations can drive a multitude of nonlinear transitions across a significant portion of the visible spectrum with minimal average power. Unfortunately, dispersion from microscope objectives broadens pulse durations, decreases temporal resolution and lowers the peak intensities required for driving nonlinear transitions. In this dissertation, pulse shaping is used to compress laser pulses after the microscope objective. By using a binary genetic algorithm, pulse-shapes are designed to enable selective two-photon excitation. The pulse-shapes are demonstrated in two-photon fluorescence of live COS-7 cells expressing GFP-variants mAmetrine and tdTomato. The pulse-shaping approach is applied to a new multiphoton fluorescence resonance energy transfer (FRET) stoichiometry method that quantifies donor and acceptor molecules in complex, as well as the ratio of total donor to acceptor molecules. Compared to conventional multi-photon imaging techniques that require laser tuning or multiple laser systems to selectively excite individual fluorophores, the pulse-shaping approach offers rapid selective multifluorphore imaging at biologically relevant time scales. By splitting the laser beam into two beams and building a second pulse shaper, a pulse-shaping-based pump-probe microscope is developed. The technique offers multiple imaging modalities, such as excited state absorption (ESA), ground state bleach (GSB), and stimulated emission (SE), enhancing contrast of structures via their unique quantum pathways without the addition of contrast agents. Pulse-shaping based pump-probe microscopy is demonstrated for endogenous chemical-contrast imaging of red blood cells. In the second section of this dissertation, ultrafast spectroscopic

  11. Optimized pulse shapes for a resonator-induced phase gate

    NASA Astrophysics Data System (ADS)

    Cross, Andrew W.; Gambetta, Jay M.

    2015-03-01

    The resonator-induced phase gate is a multiqubit controlled-phase gate for fixed-frequency superconducting qubits. Through off-resonant driving of a bus resonator, statically coupled qubits acquire a state-dependent phase. However, photon loss leads to dephasing during the gate, and any residual entanglement between the resonator and qubits after the gate leads to decoherence. Here we consider how to shape the drive pulse to minimize these unwanted effects. First, we review how the gate's entangling and dephasing rates depend on the system parameters and validate closed-form solutions against direct numerical solution of a master equation. Next, we propose spline pulse shapes that reduce residual qubit-bus entanglement, are robust to imprecise knowledge of the resonator shift, and can be shortened by using higher-degree polynomials. Finally, we present a procedure that optimizes over the subspace of pulses that leave the resonator unpopulated. This finds shaped drive pulses that further reduce the gate duration. Assuming realistic parameters, we exhibit shaped pulses that have the potential to realize ˜212 ns spline pulse gates and ˜120 ns optimized gates with ˜6 ×10-4 average gate infidelity. These examples do not represent fundamental limits of the gate and, in principle, even shorter gates may be achievable.

  12. Optical sinc-shaped Nyquist pulses of exceptional quality.

    PubMed

    Soto, Marcelo A; Alem, Mehdi; Amin Shoaie, Mohammad; Vedadi, Armand; Brès, Camille-Sophie; Thévenaz, Luc; Schneider, Thomas

    2013-01-01

    Sinc-shaped Nyquist pulses possess a rectangular spectrum, enabling data to be encoded in a minimum spectral bandwidth and satisfying by essence the Nyquist criterion of zero inter-symbol interference (ISI). This property makes them very attractive for communication systems since data transmission rates can be maximized while the bandwidth usage is minimized. However, most of the pulse-shaping methods reported so far have remained rather complex and none has led to ideal sinc pulses. Here a method to produce sinc-shaped Nyquist pulses of very high quality is proposed based on the direct synthesis of a rectangular-shaped and phase-locked frequency comb. The method is highly flexible and can be easily integrated in communication systems, potentially offering a substantial increase in data transmission rates. Further, the high quality and wide tunability of the reported sinc-shaped pulses can also bring benefits to many other fields, such as microwave photonics, light storage and all-optical sampling.

  13. Optical sinc-shaped Nyquist pulses of exceptional quality

    PubMed Central

    Soto, Marcelo A.; Alem, Mehdi; Amin Shoaie, Mohammad; Vedadi, Armand; Brès, Camille-Sophie; Thévenaz, Luc; Schneider, Thomas

    2013-01-01

    Sinc-shaped Nyquist pulses possess a rectangular spectrum, enabling data to be encoded in a minimum spectral bandwidth and satisfying by essence the Nyquist criterion of zero inter-symbol interference (ISI). This property makes them very attractive for communication systems since data transmission rates can be maximized while the bandwidth usage is minimized. However, most of the pulse-shaping methods reported so far have remained rather complex and none has led to ideal sinc pulses. Here a method to produce sinc-shaped Nyquist pulses of very high quality is proposed based on the direct synthesis of a rectangular-shaped and phase-locked frequency comb. The method is highly flexible and can be easily integrated in communication systems, potentially offering a substantial increase in data transmission rates. Further, the high quality and wide tunability of the reported sinc-shaped pulses can also bring benefits to many other fields, such as microwave photonics, light storage and all-optical sampling. PMID:24301610

  14. Control of multiphoton molecular excitation with shaped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Xu, Bingwei

    The work presented in this dissertation describes the use of shaped femtosecond laser pulses to control the outcome of nonlinear optical process and thus to achieve the selectivity for multiphoton molecular transitions. This research could lead to applications in various fields including nonlinear optical spectroscopy, chemical identification, biological imaging, communications, photodynamic therapy, etc. In order to realize accurate pulse shaping of the femtosecond laser pulses, it is essential to measure and correct the spectral phase distortion of such pulses. A method called multiphoton intrapulse interference phase scan is used to do so throughout this dissertation. This method is highly accurate and reproducible, and has been proved in this work to be compatible with any femtosecond pulses regardless of bandwidth, intensity and repetition rate of the laser. The phase control of several quasi-octave laser sources is demonstrated in this dissertation, with the generation of 4.3 fs and 5.9 fs pulses that reach the theoretically predicted transform-limited pulse duration. The excellent phase control achieved also guarantees the reproducibility for selective multiphoton excitations by accurate phase and/or amplitude shaping. Selective two-photon excitation, stimulated Raman scattering and coherent anti-Stokes Raman scattering with a single broadband laser source are demonstrated in this dissertation. Pulse shaping is used to achieve a fast and robust approach to measure the two-photon excitation spectrum from fluorescent molecules, which provide important information for two-photon biological imaging. The selective excitation concept is also applied in the field of remote chemical identification. Detection of characteristic Raman lines for several chemicals using a single beam coherent anti-Stokes Raman scattering spectroscopy from a 12 meter standoff distance is shown, providing a promising approach to standoff detection of chemicals, hazardous contaminations

  15. SWIFT OBSERVATIONS OF GAMMA-RAY BURST PULSE SHAPES: GRB PULSE SPECTRAL EVOLUTION CLARIFIED

    SciTech Connect

    Hakkila, Jon; Lien, Amy; Sakamoto, Takanori; Morris, David; Neff, James E.; Giblin, Timothy W.

    2015-12-20

    Isolated Swift gamma-ray burst (GRB) pulses, like their higher-energy BATSE counterparts, emit the bulk of their pulsed emission as a hard-to-soft component that can be fitted by the Norris et al. empirical pulse model. This signal is overlaid by a fainter, three-peaked signal that can be modeled by the residual fit of Hakkila and Preece: the two fits combine to reproduce GRB pulses with distinctive three-peaked shapes. The precursor peak appears on or before the pulse rise and is often the hardest component, the central peak is the brightest, and the decay peak converts exponentially decaying emission into a long, soft, power-law tail. Accounting for systematic instrumental differences, the general characteristics of the fitted pulses are remarkably similar. Isolated GRB pulses are dominated by hard-to-soft evolution; this is more pronounced for asymmetric pulses than for symmetric ones. Isolated GRB pulses can also exhibit intensity tracking behaviors that, when observed, are tied to the timing of the three peaks: pulses with the largest maximum hardnesses are hardest during the precursor, those with smaller maximum hardnesses are hardest during the central peak, and all pulses can re-harden during the central peak and/or during the decay peak. Since these behaviors are essentially seen in all isolated pulses, the distinction between “hard-to-soft and “intensity-tracking” pulses really no longer applies. Additionally, the triple-peaked nature of isolated GRB pulses seems to indicate that energy is injected on three separate occasions during the pulse duration: theoretical pulse models need to account for this.

  16. Temporal pulse shaping: a key parameter for the laser welding of dental alloys.

    PubMed

    Bertrand, Caroline; Poulon-Quintin, Angeline

    2015-07-01

    This study aims to describe the effect of pulse shaping on the prevention of internal defects during laser welding for two dental alloys mainly used in prosthetic dentistry. Single spot, weld beads, and welds with 80 % overlapping were performed on Co-Cr-Mo and Pd-Ag-Sn cast plates with a pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser. A specific welding procedure using adapted parameters to each alloy was completed. All the possibilities for pulse shaping were tested: (1) the square pulse shape as a default setting, (2) a rising edge slope for gradual heating, (3) a falling edge slope to slow the cooling process, and (4) a combination of rising and falling edges. The optimization of the pulse shape is supposed to produce defect-free welds (crack, pores, voids). Cross-section SEM observations and Vickers microhardness measurements were made. Pd-Ag-Sn was highly sensitive to hot cracking, and Co-Cr-Mo was more sensitive to voids and small porosities (sometimes combined with cracks). Using a slow cooling ramp allowed a better control on the solidification process for those two alloys always preventing internal defects. A rapid slope should be preferred for Co-Cr-Mo alloys due to its low-laser beam reflectivity. On the opposite, for Pd-Ag-Sn alloy, a slow rising slope should be preferred because this alloy has a high-laser beam reflectivity.

  17. Neutron and Gamma Ray Pulse Shape Discrimination with Polyvinyltoluene

    SciTech Connect

    Lintereur, Azaree T.; Ely, James H.; Stave, Jean A.; McDonald, Benjamin S.

    2012-03-01

    The goal of this was research effort was to test the ability of two poly vinyltoluene research samples to produce recordable, distinguishable signals in response to gamma rays and neutrons. Pulse shape discrimination was performed to identify if the signal was generated by a gamma ray or a neutron. A standard figure of merit for pulse shape discrimination was used to quantify the gamma-neutron pulse separation. Measurements were made with gamma and neutron sources with and without shielding. The best figure of merit obtained was 1.77; this figure of merit was achieved with the first sample in response to an un-moderated 252Cf source shielded with 5.08 cm of lead.

  18. Pulse-shaping based two-photon FRET stoichiometry.

    PubMed

    Flynn, Daniel C; Bhagwat, Amar R; Brenner, Meredith H; Núñez, Marcos F; Mork, Briana E; Cai, Dawen; Swanson, Joel A; Ogilvie, Jennifer P

    2015-02-09

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.

  19. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    PubMed Central

    D’Ostilio, Kevin; Rothwell, John C; Murphy, David L

    2014-01-01

    Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286

  20. Shaping and timing gradient pulses to reduce MRI acoustic noise.

    PubMed

    Segbers, Marcel; Rizzo Sierra, Carlos V; Duifhuis, Hendrikus; Hoogduin, Johannes M

    2010-08-01

    A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an acoustic gradient coil response mainly during the rising and falling edge. In the falling edge, the coil acoustic response presents a 180 degrees phase difference compared to the rising edge. Therefore, by varying the width of the trapezoid and keeping the ramps constant, it is possible to suppress one selected frequency and its higher harmonics. This value is matched to one of the prominent resonance frequencies of the gradient coil system. The idea of cancelling a single frequency is extended to a second frequency, using two successive trapezoid-shaped pulses presented at a selected interval. Overall sound pressure level reduction of 6 and 10 dB is found for the two trapezoid shapes and a single pulse shape, respectively. The acoustically optimized pulse shape proposed is additionally tested in a simulated echo planar imaging readout train, obtaining a sound pressure level reduction of 12 dB for the best case.

  1. [Cell membrane electroporator with digital generation of random shaped pulses].

    PubMed

    Iakovenko, S A; Trubitsin, B V

    2003-01-01

    A Digital Poration System (DPS), a versatile device for electrotreatment of biological objects by electric field pulses; was designed, constructed, and implemented. A feature distinguishing DPS from the currently available electroporators based on capacitor discharge through the load is the use of a digital-to-analog converter card as a generator of pulses applied for electroporation of biological membranes, with further amplification of the pulse by both voltage and current. The shape of pulses, including bipolar pulses, is arbitrarily programmable in DPS unlike other electroporators providing exponentially decaying and square-wave pulses only. Thus, the application area of DPS is substantially extended. In DPS, many of the drawbacks inherent in capacitor electroporators are removed, including the need for an additional external pulse analyzer monitoring and logging the electroporation processes, the necessity to recharge the capacitor before any new pulse, a poor precision of setting and measuring the pulse parameters, the need for an additional generator of long-lasting low-voltage signals for electrophoresis of ions into the porated object, the need for additional AC generators for the alignment of cells before, after, and during electroporation, and the need for an additional microprocessor to control multi-pulse and/or repetitive protocols. DPS provides a slew rate of about 1 V/1 ns required for the electroporation of most mammalian somatic cells, with +/- 250 V output voltage and 500 Ohm load resistance. The application area of DPS is much wider than for the available porators. It includes electrochemotherapy, cell electrofusion, oocyte activation by mimicking calcium waves (the latter two are the crucial components of mammalian organism cloning technology), dielectrophoretic bunching and orientation ordering of cells, sorting of cells, and electrophoresis of charged species into the cells.

  2. Simultaneous mid-infrared pulse generation and shaping in engineered quasi-phase-matched nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Nakamura, Ryosuke

    2017-01-01

    Numerical simulations demonstrate that mid-infrared pulses are arbitrarily shaped during the differential frequency mixing of two femtosecond near-infrared pulses propagating in an engineered quasi-periodic poled medium with optical nonlinearity and group velocity dispersion. Shaped pulses, including linearly chirped pulses and pulse trains, are generated with high conversion efficiencies.

  3. Adaptive control system for pulsed megawatt klystrons

    DOEpatents

    Bolie, Victor W.

    1992-01-01

    The invention provides an arrangement for reducing waveform errors such as errors in phase or amplitude in output pulses produced by pulsed power output devices such as klystrons by generating an error voltage representing the extent of error still present in the trailing edge of the previous output pulse, using the error voltage to provide a stored control voltage, and applying the stored control voltage to the pulsed power output device to limit the extent of error in the leading edge of the next output pulse.

  4. Pulse front adaptive optics in two-photon microscopy.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-11-01

    Adaptive optics has been extensively studied for the correction of phase front aberrations in optical systems. In systems using ultrafast lasers, distortions can also exist in the pulse front (contour of constant intensity in space and time), but until now their correction has been mostly unexplored due to technological limitations. In this Letter, we apply newly developed pulse front adaptive optics, for the first time to our knowledge, to practical compensation of a two-photon fluorescence microscope. With adaptive correction of the system-induced pulse front distortion, improvements beyond conventional phase correction are demonstrated.

  5. Adaptive optics for ultra short pulsed lasers in UHV environment

    NASA Astrophysics Data System (ADS)

    Deneuville, Francois; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-02-01

    ISP SYSTEM has developed an electro-mechanical deformable mirror compatible with Ultra High Vacuum environment, suitable for ultra short pulsed lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations. μ-AME actuators are driven by stepper motors, and their patented special design allows controlling the force with a very high accuracy. Materials and assembly method have been adapted to UHV constraints and the performances were evaluated on a first application for a beam with a diameter of 250mm. A Strehl ratio above 0.9 was reached for this application. Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for standard MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The deformable mirror design allows changing easily an actuator or even the membrane if needed, in order to improve the facility availability. They are designed for circular, square or elliptical aperture from 30mm up to 500mm or more, with incidence angle from 0° to 45°. They can be equipped with passive or active cooling for high power lasers with high repetition rate.

  6. Optimization of Pulse Shape Discrimination of PROSPECT Liquid Scintillator Signals

    NASA Astrophysics Data System (ADS)

    Han, Ke; Prospect Collaboration

    2015-04-01

    PROSPECT, A Precision Oscillation and Spectrum Experiment, will use a segmented Li-6 doped liquid scintillator detector for precision measurement of the reactor anti-neutrino spectrum at the High Flux Isotope Reactor at Oak Ridge National Laboratory. PROSPECT also searches for very short baseline neutrino oscillation, an indication of the existence of eV-scale sterile neutrinos. Pulse shape analysis of the prompt anti-neutino signal and delayed neutron capture on Li-6 signal will greatly suppress background sources such as fast neutrons and accidental coincidence of gammas. In this talk, I will discuss different pulse shape parameters used in PROSPECT prototype detectors and multivariate optimization of event selection cuts based on those parameters.

  7. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses

    SciTech Connect

    Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.

    2009-10-15

    We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.

  8. On the Pulse Shape of Ground-Level Enhancements

    NASA Astrophysics Data System (ADS)

    Strauss, R. D.; Ogunjobi, O.; Moraal, H.; McCracken, K. G.; Caballero-Lopez, R. A.

    2017-04-01

    We study the temporal intensity profile, or pulse shape, of cosmic ray ground-level enhancements (GLEs) by calculating the rise ( τr) and decay (τd) times for a small subset of all available events. Although these quantities show very large inter-event variability, a linear dependence of τ_{ d} ≈ 3.5 τr is found. We interpret these observational findings in terms of an interplanetary transport model, thereby including the effects of scattering (in pitch-angle) as these particles propagate from (near) the Sun to Earth. It is shown that such a model can account for the observed trends in the pulse shape, illustrating that interplanetary transport must be taken into account when studying GLE events, especially their temporal profiles. Furthermore, depending on the model parameters, the pulse shape of GLEs may be determined entirely by interplanetary scattering, obscuring all information regarding the initial acceleration process, and hence making a classification between impulsive and gradual events, as is traditionally done, superfluous.

  9. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    NASA Astrophysics Data System (ADS)

    Pechousek, Jiri; Konecny, Daniel; Novak, Petr; Kouril, Lukas; Kohout, Pavel; Celiktas, Cuneyt; Vujtek, Milan

    2016-08-01

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  10. Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses

    SciTech Connect

    Xu Bingwei; Coello, Yves; Lozovoy, Vadim V.; Dantus, Marcos

    2010-11-10

    A fast and automated approach to measuring two-photon fluorescence excitation (TPE) spectra of fluorophores with high resolution ({approx}2 nm ) by pulse shaping ultrabroad-bandwidth femtosecond laser pulses is demonstrated. Selective excitation in the range of 675-990 nm was achieved by imposing a series of specially designed phase and amplitude masks on the excitation pulses using a pulse shaper. The method eliminates the need for laser tuning and is, thus, suitable for non-laser-expert use. The TPE spectrum of Fluorescein was compared with independent measurements and the spectra of the pH-sensitive dye 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in acidic and basic environments were measured for the first time using this approach.

  11. Study on the Depth, Rate, Shape, and Strength of Pulse with Cardiovascular Simulator.

    PubMed

    Lee, Ju-Yeon; Jang, Min; Shin, Sang-Hoon

    2017-01-01

    Pulse diagnosis is important in oriental medicine. The purpose of this study is explaining the mechanisms of pulse with a cardiovascular simulator. The simulator is comprised of the pulse generating part, the vessel part, and the measurement part. The pulse generating part was composed of motor, slider-crank mechanism, and piston pump. The vessel part, which was composed with the aorta and a radial artery, was fabricated with silicon to implement pulse wave propagation. The pulse parameters, such as the depth, rate, shape, and strength, were simulated. With changing the mean pressure, the floating pulse and the sunken pulse were generated. The change of heart rate generated the slow pulse and the rapid pulse. The control of the superposition time of the reflected wave generated the string-like pulse and the slippery pulse. With changing the pulse pressure, the vacuous pulse and the replete pulse were generated. The generated pulses showed good agreements with the typical pulses.

  12. Study on the Depth, Rate, Shape, and Strength of Pulse with Cardiovascular Simulator

    PubMed Central

    Lee, Ju-Yeon; Jang, Min

    2017-01-01

    Pulse diagnosis is important in oriental medicine. The purpose of this study is explaining the mechanisms of pulse with a cardiovascular simulator. The simulator is comprised of the pulse generating part, the vessel part, and the measurement part. The pulse generating part was composed of motor, slider-crank mechanism, and piston pump. The vessel part, which was composed with the aorta and a radial artery, was fabricated with silicon to implement pulse wave propagation. The pulse parameters, such as the depth, rate, shape, and strength, were simulated. With changing the mean pressure, the floating pulse and the sunken pulse were generated. The change of heart rate generated the slow pulse and the rapid pulse. The control of the superposition time of the reflected wave generated the string-like pulse and the slippery pulse. With changing the pulse pressure, the vacuous pulse and the replete pulse were generated. The generated pulses showed good agreements with the typical pulses. PMID:28246538

  13. Tissue Imaging and Multidimensional Spectroscopy Using Shaped Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Warren, Warren

    2007-03-01

    We use rapidly updatable, femtosecond pulse shaping and multidimensional spectroscopy to make new targets accessible by nonlinear optical imaging. For example, we observe two-photon absorption (TPA), sum frequency absorption (SFA) and self phase modulation (SPM)). Detection of TPA and related effects, such as the local quantum yield (fluorescence/absorption) permits direct observation of important endogenous molecular markers which are invisible in multiphoton fluorescence microscopy; it also permits excitation in the long-wavelength water windows which have significantly reduced scattering, but little endogenous two-photon fluorescence. The fundamental problem is that at the powers one might reasonably apply to tissue (e.g. 5 mW from a modelocked laser) typically 10-6of the light is removed by TPA, with the rest lost to scattering and linear absorption; and SPM does not broaden the spectrum in the dramatic way associated with (for example) continuum generation. A variety of solutions to these problems using femtosecond pulse shaping will be presented. The simplest solution, which uses amplitude modulation of a fs pulse train, has led to high quality microscopic images of the melanin distribution in melanotic lesions, and has led to discrimination between the different types of melanin in melanosomes. Shaping individual pulses instead of the envelope permits high sensitivity detection of both SPM and TPA via spectral hole refilling combined with heterodyne detection. We manufacture laser pulses with a narrow (ca. 3 nm) spectral hole, which can only be refilled by nonlinear processes; TPA causes refilling 180 degrees out of phase with the wings of the pulse, SPM is 90 degrees out of phase. By inserting a phase-coherent pedestal in the hole, then repeating the experiment with a different phase on a timescale rapid compared to any physiological processes, we can extract the phase of the refilling, hence the relative contributions of SPM and TPA. This method can

  14. Modeling the pressure pulse shape of piezoelectric lithotripters

    NASA Astrophysics Data System (ADS)

    Dreyer, Thomas; Riedlinger, Rainer

    2002-11-01

    Piezoelectric focusing transducers are widely used in extracorporeal lithotripsy. To optimize the therapeutically relevant focal pressure pulse it is necessary to affect the generated pulse shape at the transducer surface. Therefore a modeling approach is required containing the acousto-mechanical properties of the transducer structure as well as the influence of the electrical drive. The procedure presented here uses three dimensional transient finite element simulations to calculate an electro-acoustical impulse response of the transducer structure and linear systems theory to model the influence of the driving circuit on the emitted acoustical signal. Applying a short electrical pulse an acoustical impulse response can be simulated under plane wave conditions, which is valid at sufficiently large distances from the transducer. Focal pressures are estimated rapidly by linear calculations or accurately by a nonlinear propagation model. The influence of electrical drive conditions on the emitted acoustical signal is investigated very efficiently by a convolution with the desired electrical input, avoiding FEM simulations for each case. Reverting this process the required driving voltage course for a given pressure signal is determined. Alterations of the pressure signal in terms of pulse width and tensile components are demonstrated theoretically, varying the design parameters of the transducer.

  15. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  16. Pulse-shape discrimination in neutron depth profiling technique

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Červená, J.; Hnatowicz, V.; Havránek, V.; Hoffmann, J.; Pošta, S.; Fink, D.; Klett, R.

    1998-07-01

    Pulse-shape discrimination (PSD) is used for the first time for reduction of unwanted background in analyses of solid surfaces by neutron depth profiling method (NDP) based on the detection of charged particles from the (n, p) and (n, α) nuclear reactions induced by thermal neutrons on some light elements. The experimental PSD arrangement is described and its performance is demonstrated on the measurement of real sample. Background reduction by about two orders of magnitude in the energy region below 1 MeV leads to sensitivity improvement by about one order of magnitude and to extension of measurable depth region for some of light elements like N and Cl.

  17. Polystyrene-based scintillator with pulse-shape discrimination capability

    NASA Astrophysics Data System (ADS)

    Zhmurin, P. N.; Lebedev, V. N.; Titskaya, V. D.; Adadurov, A. F.; Elyseev, D. A.; Pereymak, V. N.

    2014-10-01

    Polystyrene-based scintillators with 2-phenyl-5-(4-tert-butylephenyl)-1,3,4-oxadiazole (tert-BuPPD) or 2,5-di-(3-methylphenyl)-1,3,4 oxadiazole (m-DMePPD) are proposed for pulse-shape n/γ-discrimination. These scintillators have improved mechanical properties, long operational time and high n/γ discrimination parameter - figure of merit (1.49 and 1.81 in a wide energy region), so they can be used as detectors of fast neutrons in the presence of gamma radiation background.

  18. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  19. Optimization of ultra-fast interactions using laser pulse temporal shaping controlled by a deterministic algorithm

    NASA Astrophysics Data System (ADS)

    Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Ruiz de la Cruz, A.; Solis, J.

    2014-02-01

    Femtosecond laser pulse temporal shaping techniques have led to important advances in different research fields like photochemistry, laser physics, non-linear optics, biology, or materials processing. This success is partly related to the use of optimal control algorithms. Due to the high dimensionality of the solution and control spaces, evolutionary algorithms are extensively applied and, among them, genetic ones have reached the status of a standard adaptive strategy. Still, their use is normally accompanied by a reduction of the problem complexity by different modalities of parameterization of the spectral phase. Exploiting Rabitz and co-authors' ideas about the topology of quantum landscapes, in this work we analyze the optimization of two different problems under a deterministic approach, using a multiple one-dimensional search (MODS) algorithm. In the first case we explore the determination of the optimal phase mask required for generating arbitrary temporal pulse shapes and compare the performance of the MODS algorithm to the standard iterative Gerchberg-Saxton algorithm. Based on the good performance achieved, the same method has been applied for optimizing two-photon absorption starting from temporally broadened laser pulses, or from laser pulses temporally and spectrally distorted by non-linear absorption in air, obtaining similarly good results which confirm the validity of the deterministic search approach.

  20. Optimization of ultra-fast interactions using laser pulse temporal shaping controlled by a deterministic algorithm

    NASA Astrophysics Data System (ADS)

    Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Ruiz de la Cruz, A.; Solis, J.

    2013-04-01

    Femtosecond laser pulse temporal shaping techniques have led to important advances in different research fields like photochemistry, laser physics, non-linear optics, biology, or materials processing. This success is partly related to the use of optimal control algorithms. Due to the high dimensionality of the solution and control spaces, evolutionary algorithms are extensively applied and, among them, genetic ones have reached the status of a standard adaptive strategy. Still, their use is normally accompanied by a reduction of the problem complexity by different modalities of parameterization of the spectral phase. Exploiting Rabitz and co-authors' ideas about the topology of quantum landscapes, in this work we analyze the optimization of two different problems under a deterministic approach, using a multiple one-dimensional search (MODS) algorithm. In the first case we explore the determination of the optimal phase mask required for generating arbitrary temporal pulse shapes and compare the performance of the MODS algorithm to the standard iterative Gerchberg-Saxton algorithm. Based on the good performance achieved, the same method has been applied for optimizing two-photon absorption starting from temporally broadened laser pulses, or from laser pulses temporally and spectrally distorted by non-linear absorption in air, obtaining similarly good results which confirm the validity of the deterministic search approach.

  1. The Effect of Pulse Shaping QPSK on Bandwidth Efficiency

    NASA Technical Reports Server (NTRS)

    Purba, Josua Bisuk Mubyarto; Horan, Shelia

    1997-01-01

    This research investigates the effect of pulse shaping QPSK on bandwidth efficiency over a non-linear channel. This investigation will include software simulations and the hardware implementation. Three kinds of filters: the 5th order Butterworth filter, the 3rd order Bessel filter and the Square Root Raised Cosine filter with a roll off factor (alpha) of 0.25,0.5 and 1, have been investigated as pulse shaping filters. Two different high power amplifiers, one a Traveling Wave Tube Amplifier (TWTA) and the other a Solid State Power Amplifier (SSPA) have been investigated in the hardware implementation. A significant improvement in the bandwidth utilization (rho) for the filtered data compared to unfiltered data through the non-linear channel is shown in the results. This method promises strong performance gains in a bandlimited channel when compared to unfiltered systems. This work was conducted at NMSU in the Center for Space Telemetering, and Telecommunications Systems in the Klipsch School of Electrical and Computer Engineering Department and is supported by a grant from the National Aeronautics and Space Administration (NASA) NAG5-1491.

  2. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    SciTech Connect

    Ellison, Chad M.; Perricone, Matthew J.; Faraone, Kevin M.; Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  3. Laboratory transferability of optimally shaped laser pulses for quantum control

    SciTech Connect

    Moore Tibbetts, Katharine; Xing, Xi; Rabitz, Herschel

    2014-02-21

    Optimal control experiments can readily identify effective shaped laser pulses, or “photonic reagents,” that achieve a wide variety of objectives. An important additional practical desire is for photonic reagent prescriptions to produce good, if not optimal, objective yields when transferred to a different system or laboratory. Building on general experience in chemistry, the hope is that transferred photonic reagent prescriptions may remain functional even though all features of a shaped pulse profile at the sample typically cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments. First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found to still produce near optimal yields on the second laser system. Third, transferring a collection of photonic reagents optimized on the first laser system to the second laser system reproduced systematic trends in photoproduct yields upon interaction with the homologous chemical family. These three transfers of photonic reagents are demonstrated to be successful upon paying reasonable attention to overall laser system characteristics. The ability to transfer photonic reagents from one laser system to another is analogous to well-established utilitarian operating procedures with traditional chemical reagents. The practical implications of the present results for experimental quantum control are discussed.

  4. Nonlinear 2D arm dynamics in response to continuous and pulse-shaped force perturbations.

    PubMed

    Happee, Riender; de Vlugt, Erwin; van Vliet, Bart

    2015-01-01

    Ample evidence exists regarding the nonlinearity of the neuromuscular system but linear models are widely applied to capture postural dynamics. This study quantifies the nonlinearity of human arm postural dynamics applying 2D continuous force perturbations (0.2-40 Hz) inducing three levels of hand displacement (5, 15, 45 mm RMS) followed by force-pulse perturbations inducing large hand displacements (up to 250 mm) in a position task (PT) and a relax task (RT) recording activity of eight shoulder and elbow muscles. The continuous perturbation data were used to analyze the 2D endpoint dynamics in the frequency domain and to identify reflexive and intrinsic parameters of a linear neuromuscular shoulder-elbow model. Subsequently, it was assessed to what extent the large displacements in response to force pulses could be predicted from the 'small amplitude' linear neuromuscular model. Continuous and pulse perturbation responses with varying amplitudes disclosed highly nonlinear effects. In PT, a larger continuous perturbation induced stiffening with a factor of 1.5 attributed to task adaptation evidenced by increased co-contraction and reflexive activity. This task adaptation was even more profound in the pulse responses where reflexes and displacements were strongly affected by the presence and amplitude of preceding continuous perturbations. In RT, a larger continuous perturbation resulted in yielding with a factor of 3.8 attributed to nonlinear mechanical properties as no significant reflexive activity was found. Pulse perturbations always resulted in yielding where a model fitted to the preceding 5-mm continuous perturbations predicted only 37% of the recorded peak displacements in RT and 79% in PT. This demonstrates that linear neuromuscular models, identified using continuous perturbations with small amplitudes, strongly underestimate displacements in pulse-shaped (e.g., impact) loading conditions. The data will be used to validate neuromuscular models including

  5. Shape threat detection via adaptive computed tomography

    NASA Astrophysics Data System (ADS)

    Masoudi, Ahmad; Thamvichai, Ratchaneekorn; Neifeld, Mark A.

    2016-05-01

    X-ray Computed Tomography (CT) is used widely for screening purposes. Conventional x-ray threat detection systems employ image reconstruction and segmentation algorithms prior to making threat/no-threat decisions. We find that in many cases these pre-processing steps can degrade detection performance. Therefore in this work we will investigate methods that operate directly on the CT measurements. We analyze a fixed-gantry system containing 25 x-ray sources and 2200 photon counting detectors. We present a new method for improving threat detection performance. This new method is a so-called greedy adaptive algorithm which at each time step uses information from previous measurements to design the next measurement. We utilize sequential hypothesis testing (SHT) in order to derive both the optimal "next measurement" and the stopping criterion to insure a target probability of error Pe. We find that selecting the next x-ray source according to such a greedy adaptive algorithm, we can reduce Pe by a factor of 42.4× relative to the conventional measurement sequence employing all 25 sources in sequence.

  6. Adaptive evolution of plastron shape in emydine turtles.

    PubMed

    Angielczyk, Kenneth D; Feldman, Chris R; Miller, Gretchen R

    2011-02-01

    Morphology reflects ecological pressures, phylogeny, and genetic and biophysical constraints. Disentangling their influence is fundamental to understanding selection and trait evolution. Here, we assess the contributions of function, phylogeny, and habitat to patterns of plastron (ventral shell) shape variation in emydine turtles. We quantify shape variation using geometric morphometrics, and determine the influence of several variables on shape using path analysis. Factors influencing plastron shape variation are similar between emydine turtles and the more inclusive Testudinoidea. We evaluate the fit of various evolutionary models to the shape data to investigate the selective landscape responsible for the observed morphological patterns. The presence of a hinge on the plastron accounts for most morphological variance, but phylogeny and habitat also correlate with shape. The distribution of shape variance across emydine phylogeny is most consistent with an evolutionary model containing two adaptive zones--one for turtles with kinetic plastra, and one for turtles with rigid plastra. Models with more complex adaptive landscapes often fit the data only as well as the null model (purely stochastic evolution). The adaptive landscape of plastron shape in Emydinae may be relatively simple because plastral kinesis imposes overriding mechanical constraints on the evolution of form.

  7. Pulsed laser interactions with space debris: Target shape effects

    SciTech Connect

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.; Nikolaev, S.; Phipps, C. R.

    2013-05-24

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes. We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.

  8. Pulsed laser interactions with space debris: Target shape effects

    DOE PAGES

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.; ...

    2013-05-24

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes.more » We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.« less

  9. Temporal pulse shaping for smoothing of printed metal surfaces

    NASA Astrophysics Data System (ADS)

    Berg, Yuval; Zenou, Michael; Dolev, Omer; Kotler, Zvi

    2015-01-01

    The surfaces of laser-induced forward transfer (LIFT) printed metal structures show typical roughness characteristic of the metal droplet size (3 to 10 μm). Submicron voids are often observed in the bulk of such printed metal structures with consequences on the mechanical strength, chemical resistivity, and electrical conductivity. We present the results of our efforts to reduce surface roughness and bulk voids by controlled laser melting. We have used temporally shaped pulses from a fiber laser tunable in the range from 1 to 600 ns in order to improve the quality of LIFT printed copper and aluminum structures. For the best case shown, roughness was improved from RRMS=0.8 μm to RRMS=0.2 μm and the relative percentage of the voids was reduced from 7.3% to 0.9%.

  10. Pulse-shape discrimination scintillators for homeland security applications

    NASA Astrophysics Data System (ADS)

    Ellis, Mark E.; Duroe, Kirk; Kendall, Paul A.

    2016-09-01

    An extensive programme of research has been conducted for scintillation liquids and plastics capable of neutron-gamma discrimination for deployment in future passive and active Homeland Security systems to provide protection against radiological and nuclear threats. The more established detection materials such as EJ-301 and EJ-309 are compared with novel materials such as EJ-299-33 and p-terphenyl. This research also explores the benefits that can be gained from improvements in the analogue-to-digital sampling rate and sample bit resolution. Results are presented on the Pulse Shape Discrimination performance of various detector and data acquisition combinations and how optimum configurations from these studies have been developed into field-ready detector arrays. Early results from application-specific experimental configurations of multi-element detector arrays are presented.

  11. Duobinary pulse shaping for frequency chirp enabled complex modulation.

    PubMed

    Che, Di; Yuan, Feng; Khodakarami, Hamid; Shieh, William

    2016-09-01

    The frequency chirp of optical direct modulation (DM) used to be a performance barrier of optical transmission system, because it broadens the signal optical spectrum, which becomes more susceptible to chromatic dispersion induced inter-symbol interference (ISI). However, by considering the chirp as frequency modulation, the single DM simultaneously generates a 2-D signal containing the intensity and phase (namely, the time integral of frequency). This complex modulation concept significantly increases the optical signal to noise ratio (OSNR) sensitivity of DM systems. This Letter studies the duobinary pulse shaping (DB-PS) for chirp enabled DM and its impact on the optical bandwidth and system OSNR sensitivity. DB-PS relieves the bandwidth requirement, at the sacrifice of system OSNR sensitivity. As DB-PS induces a controlled ISI, the receiver requires one more tap for maximum likelihood sequence estimation (MLSE). We verify this modified MLSE with a 10-Gbaud duobinary PAM-4 transmission experiment.

  12. Comparison of pulse propagation and gain saturation characteristics among different input pulse shapes in semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Barua, Suchi; Das, Narottam; Nordholm, Sven; Razaghi, Mohammad

    2016-01-01

    This paper presents the pulse propagation and gain saturation characteristics for different input optical pulse shapes with different energy levels in semiconductor optical amplifiers (SOAs). A finite-difference beam propagation method (FD-BPM) is used to solve the modified nonlinear Schrödinger equation (MNLSE) for the simulation of nonlinear optical pulse propagation and gain saturation characteristics in the SOAs. In this MNLSE, the gain spectrum dynamics, gain saturation are taken into account those are depend on the carrier depletion, carrier heating, spectral hole-burning, group velocity dispersion, self-phase modulation and two photon absorption. From this simulation, we obtained the output waveforms and spectra for different input pulse shapes considering different input energy levels. It has shown that the output pulse shape has changed due to the variation of input parameters, such as input pulse shape, input pulse width, and input pulse energy levels. It also shown clearly that the peak position of the output waveforms are shifted toward the leading edge which is due to the gain saturation of the SOA. We also compared the gain saturation characteristics in the SOA for different input pulse shapes.

  13. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping

    NASA Astrophysics Data System (ADS)

    Gerrits, Th.; van den Berg, H. A. M.; Hohlfeld, J.; Bär, L.; Rasing, Th.

    2002-08-01

    Since the invention of the first magnetic memory disk in 1954, much effort has been put into enhancing the speed, bit density and reliability of magnetic memory devices. In the case of magnetic random access memory (MRAM) devices, fast coherent magnetization rotation by precession of the entire memory cell is desired, because reversal by domain-wall motion is much too slow. In principle, the fundamental limit of the switching speed via precession is given by half of the precession period. However, under-critically damped systems exhibit severe ringing and simulations show that, as a consequence, undesired back-switching of magnetic elements of an MRAM can easily be initiated by subsequent write pulses, threatening data integrity. We present a method to reverse the magnetization in under-critically damped systems by coherent rotation of the magnetization while avoiding any ringing. This is achieved by applying specifically shaped magnetic field pulses that match the intrinsic properties of the magnetic elements. We demonstrate, by probing all three magnetization components, that reliable precessional reversal in lithographically structured micrometre-sized elliptical permalloy elements is possible at switching times of about 200ps, which is ten times faster than the natural damping time constant.

  14. Shape-adaptable hyperlens for acoustic magnifying imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Hongkuan; Zhou, Xiaoming; Hu, Gengkai

    2016-11-01

    Previous prototypes of acoustic hyperlens consist of rigid channels, which are unable to adapt in shape to the object under detection. We propose to overcome this limitation by employing soft plastic tubes that could guide acoustics with robustness against bending deformation. Based on the idea of soft-tube acoustics, acoustic magnifying hyperlens with planar input and output surfaces has been fabricated and validated experimentally. The shape-adaption capability of the soft-tube hyperlens is demonstrated by a controlled experiment, in which the magnifying super-resolution images remain stable when the lens input surface is curved. Our study suggests a feasible route toward constructing the flexible channel-structured acoustic metamaterials with the shape-adaption capability, opening then an additional degree of freedom for full control of sound.

  15. Compact direct space-to-time pulse shaping with a phase-only spatial light modulator.

    PubMed

    Mansuryan, T; Kalashyan, M; Lhermite, J; Suran, E; Kermene, V; Barthelemy, A; Louradour, F

    2011-05-01

    A very compact and innovative pulse shaper is proposed and demonstrated. The standard architecture for pulse shaping that is composed of diffraction gratings associated with an amplitude-phase spatial light modulator (SLM) is replaced by a single phase-only SLM. It acts as a pulse stretcher and as an amplitude and phase modulator at the same time. Preliminary experiments demonstrate the accurate control of amplitude and phase of shaped pulses.

  16. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression

  17. Evolution of hole shape and size during short and ultrashort pulse laser deep drilling.

    PubMed

    Döring, Sven; Szilagyi, John; Richter, Sören; Zimmermann, Felix; Richardson, Martin; Tünnermann, Andreas; Nolte, Stefan

    2012-11-19

    A detailed study of the influence of the pulse duration, from the femtosecond to the nanosecond regime, on the evolution of the hole shape and depth during percussion drilling in silicon is presented. Real-time backlight imaging of the hole development is obtained for holes up to 2 mm deep with aspect ratios extending to 25:1. For low pulse energies, the hole-shape and drilling characteristics are similar for femtosecond, picoseconds and nanosecond regimes. At higher pulse energies, ns-pulses exhibit slower average drilling rates but eventually reach greater final depths. The shape of these holes is however dominated by branching and large internal cavities. For ps-pulses, a cylindrical shape is maintained with frequent small bulges on the side-walls. In contrast, fs-pulses cause only a limited number of imperfections on a tapered hole shape.

  18. Rugged adaptive landscapes shape a complex, sympatric radiation

    PubMed Central

    Pfaender, Jobst; Hadiaty, Renny K.; Schliewen, Ulrich K.; Herder, Fabian

    2016-01-01

    Strong disruptive ecological selection can initiate speciation, even in the absence of physical isolation of diverging populations. Species evolving under disruptive ecological selection are expected to be ecologically distinct but, at least initially, genetically weakly differentiated. Strong selection and the associated fitness advantages of narrowly adapted individuals, coupled with assortative mating, are predicted to overcome the homogenizing effects of gene flow. Theoretical plausibility is, however, contrasted by limited evidence for the existence of rugged adaptive landscapes in nature. We found evidence for multiple, disruptive ecological selection regimes that have promoted divergence in the sympatric, incipient radiation of ‘sharpfin’ sailfin silverside fishes in ancient Lake Matano (Sulawesi, Indonesia). Various modes of ecological specialization have led to adaptive morphological differences between the species, and differently adapted morphs display significant but incomplete reproductive isolation. Individual fitness and variation in morphological key characters show that disruptive selection shapes a rugged adaptive landscape in this small but complex incipient lake fish radiation. PMID:26763702

  19. Investigating the case of human nose shape and climate adaptation

    PubMed Central

    Zaidi, Arslan A.; Claes, Peter; McEcoy, Brian; Shriver, Mark D.

    2017-01-01

    The evolutionary reasons for variation in nose shape across human populations have been subject to continuing debate. An import function of the nose and nasal cavity is to condition inspired air before it reaches the lower respiratory tract. For this reason, it is thought the observed differences in nose shape among populations are not simply the result of genetic drift, but may be adaptations to climate. To address the question of whether local adaptation to climate is responsible for nose shape divergence across populations, we use Qst–Fst comparisons to show that nares width and alar base width are more differentiated across populations than expected under genetic drift alone. To test whether this differentiation is due to climate adaptation, we compared the spatial distribution of these variables with the global distribution of temperature, absolute humidity, and relative humidity. We find that width of the nares is correlated with temperature and absolute humidity, but not with relative humidity. We conclude that some aspects of nose shape may indeed have been driven by local adaptation to climate. However, we think that this is a simplified explanation of a very complex evolutionary history, which possibly also involved other non-neutral forces such as sexual selection. PMID:28301464

  20. Investigating the case of human nose shape and climate adaptation.

    PubMed

    Zaidi, Arslan A; Mattern, Brooke C; Claes, Peter; McEcoy, Brian; Hughes, Cris; Shriver, Mark D

    2017-03-01

    The evolutionary reasons for variation in nose shape across human populations have been subject to continuing debate. An import function of the nose and nasal cavity is to condition inspired air before it reaches the lower respiratory tract. For this reason, it is thought the observed differences in nose shape among populations are not simply the result of genetic drift, but may be adaptations to climate. To address the question of whether local adaptation to climate is responsible for nose shape divergence across populations, we use Qst-Fst comparisons to show that nares width and alar base width are more differentiated across populations than expected under genetic drift alone. To test whether this differentiation is due to climate adaptation, we compared the spatial distribution of these variables with the global distribution of temperature, absolute humidity, and relative humidity. We find that width of the nares is correlated with temperature and absolute humidity, but not with relative humidity. We conclude that some aspects of nose shape may indeed have been driven by local adaptation to climate. However, we think that this is a simplified explanation of a very complex evolutionary history, which possibly also involved other non-neutral forces such as sexual selection.

  1. Plasma Gradient Piston: a new approach to precision pulse shaping

    NASA Astrophysics Data System (ADS)

    Prisbrey, Shon T.

    2011-10-01

    We have successfully developed a method to create shaped pressure drives from large shocks that can be applied to a wide variety of experimental platforms. The method consists of transforming a large shock or blast wave into a ramped pressured drive by utilizing a graded density reservoir that unloads across a gap and stagnates against the sample being studied. The utilization of a graded density reservoir, different materials, and a gap transforms the energy in the initial large shock into a quasi-isentropic ramped compression. Control of the ramp history is via the size of the initial shock, the chosen reservoir materials, their densities, the thickness of each density layer, and the gap size. There are two keys to utilizing this approach to create ramped drives: the ability to produce a large shock, and making the layered density reservoir. A number of facilities can produce the strong initial shock (Z, Omega, NIF, Phoenix, high explosives, NIKE, LMJ, pulsed power,...). We have demonstrated ramped drives from 0.5 to 1.5 Mbar utilizing a large shock created at the Omega laser facility. We recently concluded a pair of NIF drive shots where we successfully converted a hohlraum-generated shock into a stepped, ramped pressure drive with a peak pressure of ~4 - 5 Mbar in a Ta sample. We will explain the basic concepts needed for producing a ramped pressure drive, compare experimental data with simulations from Omega (Pmax ~ 1 Mbar) and NIF (Pmax ~ 5-10 Mbar), and present designs for ramped, staged-shock designs up to Pmax ~ 30 Mbar. The approach that we have developed enables precision pulse shaping of the drive (applied pressure vs. time) via target characteristics, as opposed to tailoring laser power vs time or Z-pinch facility current vs time. This enables ramped, quasi-isentropic materials studies to be performed on a wide variety of HED facilities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

  2. Further considerations of adaptive canceller and pulse compression interactions

    NASA Astrophysics Data System (ADS)

    Gerlach, Karl

    1995-01-01

    The number of independent samples per channel needed so that the average adaptive range sidelobe level is within 3 dB of the quiescent range sidelobe level are derived. This analysis is used to predict the canceller weight calculation of a contaminating desired signal. It is shown that if the code length L of the desired waveform is less than or equal to the processing batch width K of the canceller, it is necessary to place the pulse compression after the adaptive canceller. Moreover, if L greater than K, the issue is not so clear-cut, thus tradeoff study is necessary.

  3. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    NASA Astrophysics Data System (ADS)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  4. Supercontinuum pulse shaping in the few-cycle regime.

    PubMed

    Hagemann, Franz; Gause, Oliver; Wöste, Ludger; Siebert, Torsten

    2013-03-11

    The synthesis of nearly arbitrary supercontinuum pulse forms is demonstrated with sub-pulse structures that maintain a temporal resolution in the few-cycle regime. Spectral broadening of the 35 fs input pulses to supercontinuum bandwidths is attained in a controlled two-stage sequential filamentation in air at atmospheric pressure, facilitating a homogeneous power density over the full spectral envelope in the visible to near infrared spectral range. Only standard optics and a liquid crystal spatial light modulator (LC-SLM) are employed for achieving pulse compression to the sub 5 fs regime with pulse energies of up to 60 μJ and a peak power of 12 GW. This constitutes the starting point for further pulse form synthesis via phase modulation within the sampling limit of the pulse shaper. Transient grating frequency-resolved optical gating (TG-FROG) allows for the characterization of pulse forms that extend over several hundred femtoseconds with few-cycle substructures.

  5. Second-order shaped pulsed for solid-state quantum computation

    SciTech Connect

    Sengupta, Pinaki

    2008-01-01

    We present the construction and detailed analysis of highly optimized self-refocusing pulse shapes for several rotation angles. We characterize the constructed pulses by the coefficients appearing in the Magnus expansion up to second order. This allows a semianalytical analysis of the performance of the constructed shapes in sequences and composite pulses by computing the corresponding leading-order error operators. Higher orders can be analyzed with the numerical technique suggested by us previously. We illustrate the technique by analyzing several composite pulses designed to protect against pulse amplitude errors, and on decoupling sequences for potentially long chains of qubits with on-site and nearest-neighbor couplings.

  6. Study of temporal pulse shape effects on W using simulations and laser heating

    NASA Astrophysics Data System (ADS)

    Yu, J. H.; De Temmerman, G.; Doerner, R. P.; van den Berg, M. A.

    2016-02-01

    Transient heat pulses with triangular, square, and ELM-like temporal shapes are investigated in order to further understand how transient plasma instabilities will affect plasma facing components in tokamaks. A solution to the 1D heat equation for triangular pulses allows the peak surface temperature to be written analytically for arbitrary rise times. The solution as well as ANSYS simulations reveal that a positive ramp (maximum rise time) triangular pulse has a higher peak surface temperature by a factor of \\sqrt{2} compared to that from a negative ramp (rise time = 0) pulse shape with equal energy density, peak power, and pulse width. Translating the results to ITER, an ELM or disruption pulse with the shortest rise time is the most benign compared to other pulse shapes with the same peak heat flux and same energy density.

  7. Effect of crash pulse shape on seat stroke requirements for limiting loads on occupants of aircraft

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1992-01-01

    An analytical study was made to provide comparative information on various crash pulse shapes that potentially could be used to test seats under conditions included in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats, show the effects that crash pulse shape can have on the seat stroke requirements necessary to maintain a specified limit loading on the seat/occupant during crash pulse loadings, compare results from certain analytical model pulses with approximations of actual crash pulses, and compare analytical seat results with experimental airplace crash data. Structural and seat/occupant displacement equations in terms of the maximum deceleration, velocity change, limit seat pan load, and pulse time for five potentially useful pulse shapes were derived; from these, analytical seat stroke data were obtained for conditions as specified in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats.

  8. Adaptive shaping of cortical response selectivity in the vibrissa pathway

    PubMed Central

    Zheng, He J. V.; Wang, Qi

    2015-01-01

    One embodiment of context-dependent sensory processing is bottom-up adaptation, where persistent stimuli decrease neuronal firing rate over hundreds of milliseconds. Adaptation is not, however, simply the fatigue of the sensory pathway, but shapes the information flow and selectivity to stimulus features. Adaptation enhances spatial discriminability (distinguishing stimulus location) while degrading detectability (reporting presence of the stimulus), for both the ideal observer of the cortex and awake, behaving animals. However, how the dynamics of the adaptation shape the cortical response and this detection and discrimination tradeoff is unknown, as is to what degree this phenomenon occurs on a continuum as opposed to a switching of processing modes. Using voltage-sensitive dye imaging in anesthetized rats to capture the temporal and spatial characteristics of the cortical response to tactile inputs, we showed that the suppression of the cortical response, in both magnitude and spatial spread, is continuously modulated by the increasing amount of energy in the adapting stimulus, which is nonuniquely determined by its frequency and velocity. Single-trial ideal observer analysis demonstrated a tradeoff between detectability and spatial discriminability up to a moderate amount of adaptation, which corresponds to the frequency range in natural whisking. This was accompanied by a decrease in both detectability and discriminability with high-energy adaptation, which indicates a more complex coupling between detection and discrimination than a simple switching of modes. Taken together, the results suggest that adaptation operates on a continuum and modulates the tradeoff between detectability and discriminability that has implications for information processing in ethological contexts. PMID:25787959

  9. Shape-adaptive discrete wavelet transform for coding arbitrarily shaped texture

    NASA Astrophysics Data System (ADS)

    Li, Shipeng; Li, Weiping

    1997-01-01

    This paper presents a shape adaptive discrete wavelet transform (SA-DWT) scheme for coding arbitrarily shaped texture. The proposed SA-DWT can be used for object-oriented image coding. The number of coefficients after SA-DWT is identical to the number of pels contained in the arbitrarily shaped image objects. The locality property of wavelet transform and self-similarity among subbands are well preserved throughout this process.For a rectangular region, the SA-DWT is identical to a standard wavelet transform. With SA-DWT, conventional wavelet based coding schemes can be readily extended to the coding of arbitrarily shaped objects. The proposed shape adaptive wavelet transform is not unitary but the small energy increase is restricted at the boundary of objects in subbands. Two approaches of using the SA-DWT algorithm for object-oriented image and video coding are presented. One is to combine scalar SA-DWT with embedded zerotree wavelet (EZW) coding technique, the other is an extension of the normal vector wavelet coding (VWC) technique to arbitrarily shaped objects. Results of applying SA-VWC to real arbitrarily shaped texture coding are also given at the end of this paper.

  10. Adaptive shaping of the behavioural and neuroendocrine phenotype during adolescence.

    PubMed

    Zimmermann, Tobias D; Kaiser, Sylvia; Hennessy, Michael B; Sachser, Norbert

    2017-02-22

    Environmental conditions during early life can adaptively shape the phenotype for the prevailing environment. Recently, it has been suggested that adolescence represents an additional temporal window for adaptive developmental plasticity, though supporting evidence is scarce. Previous work has shown that male guinea pigs living in large mixed-sex colonies develop a low-aggressive phenotype as part of a queuing strategy that is adaptive for integrating into large unfamiliar colonies. By contrast, males living in pairs during adolescence become highly aggressive towards strangers. Here, we tested whether the high-aggressive phenotype is adaptive under conditions of low population density, namely when directly competing with a single opponent for access to females. For that purpose, we established groups of one pair-housed male (PM), one colony-housed male (CM) and two females. PMs directed more aggression towards the male competitor and more courtship and mating towards females than did CMs. In consequence, PMs attained the dominant position in most cases and sired significantly more offspring. Moreover, they showed distinctly higher testosterone concentrations and elevated cortisol levels, which probably promoted enhanced aggressiveness while mobilizing necessary energy. Taken together, our results provide the clearest evidence to date for adaptive shaping of the phenotype by environmental influences during adolescence.

  11. Ultrafast temporal pulse shaping via phase-sensitive three-wave mixing.

    PubMed

    Yin, Y C; French, D; Jovanovic, I

    2010-08-16

    It is well-known that the process of optical parametric amplification (OPA) can be sensitive to the phases of the incident waves. In OPA realized by three-wave mixing, injection of all three waves into the same mode with appropriate phase relationship results in amplification of the signal phase, with an associated deamplification of the signal energy. Prospects for the use of this technique in the temporal domain for shaping ultrashort laser pulses are analyzed using a numerical model. Several representative pulse shaping capabilities of this technique are identified, which can significantly augment the performance of common passive pulse shaping methods operating in the Fourier domain. It is found that the use of phase-sensitive OPA shows a potential for significant compression of approximately 100 fs pulses, steepening of the rise time of ultrashort pulses, and production of pulse doublets and pulse trains. It is also shown that the group velocity mismatch can assist the shaping process. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems.

  12. Shape adaptive, robust iris feature extraction from noisy iris images.

    PubMed

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-10-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate.

  13. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    NASA Astrophysics Data System (ADS)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  14. Versatile shaping of a relativistic laser pulse from a nonuniform overdense plasma

    SciTech Connect

    Hur, Min Sup; Kim, Young-Kuk; Kulagin, Victor V.; Nam, Inhyuk; Suk, Hyyong

    2012-07-15

    We studied the versatile shaping of a petawatt laser pulse using its relativistic transparency in a thin overdense plasma slab. The novel concept here is to use the nonuniformity of the plasma slab in its density or thickness in the transverse direction to control the pulse shaping in both the longitudinal and transverse directions. From 2-dimensional particle-in-cell simulations, we succeeded in fabricating a front shape concave to the propagation direction, an extreme case of transverse shaping. A 1-dimensional analytic formula was then applied to predict the transverse shape, which showed good agreement with the simulations.

  15. Phylogeny and adaptation shape the teeth of insular mice.

    PubMed

    Ledevin, Ronan; Chevret, Pascale; Ganem, Guila; Britton-Davidian, Janice; Hardouin, Emilie A; Chapuis, Jean-Louis; Pisanu, Benoit; da Luz Mathias, Maria; Schlager, Stefan; Auffray, Jean-Christophe; Renaud, Sabrina

    2016-02-10

    By accompanying human travels since prehistorical times, the house mouse dispersed widely throughout the world, and colonized many islands. The origin of the travellers determined the phylogenetic source of the insular mice, which encountered diverse ecological and environmental conditions on the various islands. Insular mice are thus an exceptional model to disentangle the relative role of phylogeny, ecology and climate in evolution. Molar shape is known to vary according to phylogeny and to respond to adaptation. Using for the first time a three-dimensional geometric morphometric approach, compared with a classical two-dimensional quantification, the relative effects of size variation, phylogeny, climate and ecology were investigated on molar shape diversity across a variety of islands. Phylogeny emerged as the factor of prime importance in shaping the molar. Changes in competition level, mostly driven by the presence or absence of the wood mouse on the different islands, appeared as the second most important effect. Climate and size differences accounted for slight shape variation. This evidences a balanced role of random differentiation related to history of colonization, and of adaptation possibly related to resource exploitation.

  16. Phylogeny and adaptation shape the teeth of insular mice

    PubMed Central

    Ledevin, Ronan; Chevret, Pascale; Ganem, Guila; Britton-Davidian, Janice; Hardouin, Emilie A.; Chapuis, Jean-Louis; Pisanu, Benoit; da Luz Mathias, Maria; Schlager, Stefan; Auffray, Jean-Christophe; Renaud, Sabrina

    2016-01-01

    By accompanying human travels since prehistorical times, the house mouse dispersed widely throughout the world, and colonized many islands. The origin of the travellers determined the phylogenetic source of the insular mice, which encountered diverse ecological and environmental conditions on the various islands. Insular mice are thus an exceptional model to disentangle the relative role of phylogeny, ecology and climate in evolution. Molar shape is known to vary according to phylogeny and to respond to adaptation. Using for the first time a three-dimensional geometric morphometric approach, compared with a classical two-dimensional quantification, the relative effects of size variation, phylogeny, climate and ecology were investigated on molar shape diversity across a variety of islands. Phylogeny emerged as the factor of prime importance in shaping the molar. Changes in competition level, mostly driven by the presence or absence of the wood mouse on the different islands, appeared as the second most important effect. Climate and size differences accounted for slight shape variation. This evidences a balanced role of random differentiation related to history of colonization, and of adaptation possibly related to resource exploitation. PMID:26842576

  17. Programmable shaping of ultrabroad-bandwidth pulses from a Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Efimov, A.; Schaffer, C.; Reitze, D. H.

    1995-10-01

    We have used a commercially available liquid-crystal spatial light modulator within a reflective optics pulse-shaping apparatus to shape ultrashort pulses with temporal resolution approaching 10 fs. Using the spatial light modulator as a phase modulator, we produce a variety of complex ultrafast waveforms, including odd pulses, high repetition rate ( > 23 THz) pulse trains, and asymmetric pulse trains. We also show that it is possible to compensate for large amounts of high-order phase dispersion (in excess of 60 pi ) by appropriate cubic- and quartic-phase modulations of the pulse. Finally, we examine the limitations of shaping ultrabroad-bandwidth pulses. We find that, for specific classes of waveforms, Fourier-transform pulse-shaping techniques can be used for pulses with 5-fs durations, which exceed the current state of the art in ultrashort pulse generation. However, synthesis of general waveforms with 5-fs resolution will require compensating for nonlinear spatial dispersion of frequency in the masking plane. Copyright (c) 1995 Optical Society of America

  18. Design of a shape adaptive airfoil actuated by a Shape Memory Alloy strip for airplane tail

    NASA Astrophysics Data System (ADS)

    Shirzadeh, R.; Raissi Charmacani, K.; Tabesh, M.

    2011-04-01

    Of the factors that mainly affect the efficiency of the wing during a special flow regime, the shape of its airfoil cross section is the most significant. Airfoils are generally designed for a specific flight condition and, therefore, are not fully optimized in all flight conditions. It is very desirable to have an airfoil with the ability to change its shape based on the current regime. Shape memory alloy (SMA) actuators activate in response to changes in the temperature and can recover their original configuration after being deformed. This study presents the development of a method to control the shape of an airfoil using SMA actuators. To predict the thermomechanical behaviors of an SMA thin strip, 3D incremental formulation of the SMA constitutive model is implemented in FEA software package ABAQUS. The interactions between the airfoil structure and SMA thin strip actuator are investigated. Also, the aerodynamic performance of a standard airfoil with a plain flap is compared with an adaptive airfoil.

  19. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    SciTech Connect

    Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés

    2015-09-28

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  20. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    NASA Astrophysics Data System (ADS)

    Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés

    2015-09-01

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  1. BEBEtr and BUBI: J-compensated concurrent shaped pulses for 1H-13C experiments

    NASA Astrophysics Data System (ADS)

    Ehni, Sebastian; Luy, Burkhard

    2013-07-01

    Shaped pulses designed for broadband excitation, inversion and refocusing are important tools in modern NMR spectroscopy to achieve robust pulse sequences especially in heteronuclear correlation experiments. A large variety of mostly computer-optimized pulse shapes exist for different desired bandwidths, available rf-field strengths, and tolerance to B1-inhomogeneity. They are usually derived for a single spin 1/2, neglecting evolution due to J-couplings. While pulses with constant resulting phase are selfcompensated for heteronuclear coupling evolution as long as they are applied exclusively on a single nucleus, the situation changes for concurrently applied pulse shapes. Using the example of a 1H,13C two spin system, two J-compensated pulse pairs for the application in INEPT-type transfer elements were optimized: a point-to-point pulse sandwich called BEBEtr, consisting of a broadband excitation and time-reversed excitation pulse, and a combined universal rotation and point-to-point pulse pair called BUBI, which acts as a refocusing pulse on 1H and a corresponding inversion pulse on 13C. After a derivation of quality factors and optimization protocols, a theoretical and experimental comparison with conventionally derived BEBOP, BIBOP, and BURBOP-180° pulses is given. While the overall transfer efficiency of a single pulse pair is only reduced by approximately 0.1%, resulting transfer to undesired coherences is reduced by several percent. In experiments this can lead to undesired phase distortions for pairs of uncompensated pulse shapes and even differences in signal intensities of 5-10% in HSQC and up to 68% in more complex COB-HSQC experiments.

  2. Elongation of plasma channel generated by temporally shaped femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Chen, Anmin; Li, Suyu; Qi, Hongxia; Jiang, Yuanfei; Hu, Zhan; Huang, Xuri; Jin, Mingxing

    2017-01-01

    Temporally shaped femtosecond laser pulse is used to generate the air plasma channel. The length of plasma channel is optimized by a genetic algorithm. Compared with the transform-limited pulse, the temporally shaped femtosecond laser produced by the spatial light modulator with the genetic algorithm can lead to a significant increase in length and brightness of plasma channel in atmosphere. In particular, the length of the plasma channel produced by the optimized shaped pulse can be extended by 50%. This method can be especially advantageous in the context of femtosecond laser-induced plasma channel.

  3. Shape profile of acoustic radiation-induced static displacement pulses in solids

    NASA Astrophysics Data System (ADS)

    Cantrell, John H.; Yost, William T.

    2010-07-01

    In a recent article Narasimha et al. [J. Appl. Phys. 105, 073506 (2009)] claim to show that the shape of static displacement pulses generated by ultrasonic tone-bursts in nondispersive solids is that of a growing trapezoid in the spatial domain that leads to a flat-topped pulse shape in the time domain for a fixed spatial position. Flaws in their theoretical arguments are corrected to show that their model actually predicts a right-triangular pulse shape for nondispersive monocrystals in both the spatial and time domains as originally reported by Yost and Cantrell [Phys. Rev. B 30, 3221 (1984)] and Cantrell et al. [Phys. Rev. B 35, 9780 (1987)].

  4. Transform-limited picosecond pulse shaping based on temporal coherence synthesization.

    PubMed

    Park, Yongwoo; Asghari, Mohammad H; Ahn, Tae-Jung; Azaña, José

    2007-07-23

    A simple and efficient optical pulse re-shaper based on the concept of temporal coherence synthesization is proposed and analyzed in detail. Specifically, we demonstrate that an arbitrary chirp-free (transform-limited) optical pulse waveform can be synthesized from a given transform-limited Gaussian-like input optical pulse by coherently superposing a set of properly delayed replicas of this input pulse, e.g. using a conventional multi-arm interferometer. A practical implementation of this general concept based on the use of conventional concatenated two-arm interferometers is also suggested and demonstrated. This specific implementation allows the synthesis of any desired temporally-symmetric optical waveform with time features only limited by the input pulse bandwidth. A general optimization algorithm has been developed and applied for designing the system specifications (number of interferometers and relative time delays in these interferometers) that are required to achieve a desired optical pulse re-shaping operation. The required tolerances in this system have been also estimated and confirmed by numerical simulations. The proposed technique has been experimentally demonstrated by re-shaping an approximately 1-ps Gaussian-like optical pulse into various temporal shapes of practical interest, i.e. picosecond transform-limited flat-top, parabolic and triangular pulses (all centered at a wavelength of approximately 1550nm), using a simple two-stage interferometer setup. A remarkable synthesis accuracy and high energetic efficiency have been achieved for all these pulse re-shaping operations.

  5. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    PubMed

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  6. Contrast enhancement via shaped Raman pulses for thermal cold atom cloud interferometry

    NASA Astrophysics Data System (ADS)

    Luo, Yukun; Yan, Shuhua; Hu, Qingqing; Jia, Aiai; Wei, Chunhua; Yang, Jun

    2016-12-01

    Interferometry with thermal cold atom clouds provides high particle flux and low quantum projection noise but is limited by the rapid reduction of fringe contrast. We propose an improved method based on temporally shaped pulses to address the issue of the off-resonance dispersion and enhance the contrast. Theoretical analysis and construction principle for shaped pulses are demonstrated. The fidelity of single π and π/2 pulses as well as a complete interferometer sequence are investigated. Comparisons are ade between the traditional pulse and several alternative shaped pulses to verify the feasibility and find an efficient choice among them. Practical implementation scheme and possible error sources are also discussed. The results show a great improvement in contrast and robust phase response for high atomic temperature up to several tens of μK.

  7. Nyquist 4-ary pulse amplitude modulation scheme based on electrical Nyquist pulse shaping and fiber Bragg grating filter

    NASA Astrophysics Data System (ADS)

    Liu, Na; Chen, Xue; Ju, Cheng; Zhang, Qi; Wang, Huitao

    2015-04-01

    Intensity modulation and direct detection signal are sensitive to power fading and nonlinear intersymbol interference (ISI) induced by modulator chirp, fiber dispersion, and square-law photo-detection. We propose and experimentally demonstrate a Nyquist 4-ary pulse amplitude modulation and direct detection scheme relying on pulse-shaping with an electrical filter and optical equalization with a vestigial-sideband (VSB) filter in the transmitter. The power fading could be eliminated by using the VSB filter. Compared with conventional 4-ary pulse amplitude modulation, the Nyquist signal has a stronger resistance to nonlinear ISI.

  8. A new gamma-ray detector, 3-dimension, fast scanning table for pulse-shape analysis

    SciTech Connect

    Ginsz, M.; Duchene, G.; Didierjean, F.; Filliger, M.; Sigward, M.-H.; Pirard, B.

    2015-07-01

    The state-of-the art gamma-ray spectrometers such as AGATA and GRETA are using position sensitive multi-segmented HPGe crystals. Pulse-shape analysis (PSA) allows to retrieve the localisation of the gamma interactions and to perform gamma-ray tracking within germanium. The precision of the localisation depends on the quality of the pulse-shape database used for comparison. The IPHC laboratory developed a new fast scanning table allowing to measure experimental pulse shapes in the whole volume of any crystal. The results of the scan of an AGATA 36-fold segmented tapered coaxial detector are shown here, 48580 experimental pulse shapes are extracted within 2 weeks of scanning. These data will contribute to AGATA PSA performances, but have also applications for gamma cameras or Compton-suppressed detectors. (authors)

  9. Pulse-shaping of gain-switched pulse from multimode laser diode using fiber Sagnac interferometer.

    PubMed

    Wada, Kenji; Takamatsu, Shuji; Watanebe, Hideyuki; Matsuyama, Tetsuya; Horinaka, Hiromichi

    2008-11-24

    We propose a pulse-tail elimination and pulse shortening method using an optical interferometer, which is effective for picosecond chirped pulses from gain-switched multimode laser diodes. In a numerical simulation, when the delay distance between a chirped pulse and its replica in an optical interferometer matches two times the round-trip optical length of the laser cavity, the pulse-front and -rear tail parts are effectively eliminated from the input chirped pulse after passing through the optical interferometer. Using this method with a fiber Sagnac interferometer, a 33 ps pulse with a long-tail emitted from a gain-switched 1540 nm multimode laser diode was linearly transformed into a 20 ps pulse with a substantially reduced tail.

  10. Effects of pulse shape on strongly driven two-level systems

    SciTech Connect

    Conover, C. W. S.

    2011-12-15

    We present an experimental study of the dynamics of a two-level system driven by strong nonresonant electromagnetic pulses as a function of pulse intensity and detuning. We have explored the qualitative and quantitative behavior of the transition probability as a function of pulse area for five different temporal profiles: Lorentzian, Lorentzian squared, hyperbolic secant, hyperbolic secant squared, and Gaussian. The two-level system consists of a fine-structure doublet in sodium Rydberg states coupled by Raman transitions driven through far-off-resonance intermediate states. The pulses are in the microwave regime and have high fidelity and uniform intensity. Experiments show that, despite the similarity in the pulse shapes, the behavior of the population transfer versus intensity depends dramatically on the temporal shape and that the spectral properties and area of the pulse do not adequately describe the response.

  11. Adaptive slit beam shaping for direct laser written waveguides.

    PubMed

    Salter, P S; Jesacher, A; Spring, J B; Metcalf, B J; Thomas-Peter, N; Simmonds, R D; Langford, N K; Walmsley, I A; Booth, M J

    2012-02-15

    We demonstrate an improved method for fabricating optical waveguides in bulk materials by means of femtosecond laser writing. We use an LC spatial light modulator (SLM) to shape the beam focus by generating adaptive slit illumination in the pupil of the objective lens. A diffraction grating is applied in a strip across the SLM to simulate a slit, with the first diffracted order mapped onto the pupil plane of the objective lens while the zeroth order is blocked. This technique enables real-time control of the beam-shaping parameters during writing, facilitating the fabrication of more complicated structures than is possible using nonadaptive methods. Waveguides are demonstrated in fused silica with a coupling loss to single-mode fibers in the range of 0.2 to 0.5 dB and propagation loss <0.4 dB/cm.

  12. Low Temperature Shape Memory Alloys for Adaptive, Autonomous Systems Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Williams, Martha; Benafan, Othmane; Fesmire, James

    2015-01-01

    The objective of this joint activity between Kennedy Space Center (KSC) and Glenn Research Center (GRC) is to develop and evaluate the applicability of 2-way SMAs in proof-of-concept, low-temperature adaptive autonomous systems. As part of this low technology readiness (TRL) activity, we will develop and train low-temperature novel, 2-way shape memory alloys (SMAs) with actuation temperatures ranging from 0 C to 150 C. These experimental alloys will also be preliminary tested to evaluate their performance parameters and transformation (actuation) temperatures in low- temperature or cryogenic adaptive proof-of-concept systems. The challenge will be in the development, design, and training of the alloys for 2-way actuation at those temperatures.

  13. Shape memory alloy actuated adaptive exhaust nozzle for jet engine

    NASA Technical Reports Server (NTRS)

    Song, Gangbing (Inventor); Ma, Ning (Inventor)

    2009-01-01

    The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.

  14. Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues.

    PubMed

    Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E

    2016-01-01

    Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene.

  15. Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues

    PubMed Central

    Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E.

    2016-01-01

    Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene. PMID:27438267

  16. Direct measurement of group delay dispersion in metamagnetics for ultrafast pulse shaping.

    PubMed

    Brown, Dean P; Walker, Mark A; Urbas, Augustine M; Kildishev, Alexander V; Xiao, Shumin; Drachev, Vladimir P

    2012-10-08

    In this paper, we explore the use of magnetic resonant metamaterials, so called metamagnetics, as dispersive elements for optical pulse shaping. We measure both positive and negative group delay dispersion (GDD) values in a metamagnetic material using the multiphoton interference phase scan (MIIPS) technique and show pulse temporal profiles numerically. The results are compared with finite element models. These GDD properties of metamagnetics, along with previously shown tunability and loss control with gain media, enable their use in ultrashort pulse optical applications.

  17. Pulse shaping in the mid-infrared by a deformable mirror.

    PubMed

    Cartella, Andrea; Bonora, Stefano; Först, Michael; Cerullo, Giulio; Cavalleri, Andrea; Manzoni, Cristian

    2014-03-15

    We present a pulse-shaping scheme operating in the mid-infrared (MIR) wavelength range up to 20 μm. The spectral phase is controlled by a specially designed large stroke 32-actuator deformable mirror in a grating-based 4f configuration. We demonstrate the shaper capability of compressing the MIR pulses, imparting parabolic and third-order spectral phases and splitting the spectral content to create two independent pulses.

  18. Adaptive pulse width control and sampling for low power pulse oximetry.

    PubMed

    Gubbi, Sagar Venkatesh; Amrutur, Bharadwaj

    2015-04-01

    Remote sensing of physiological parameters could be a cost effective approach to improving health care, and low-power sensors are essential for remote sensing because these sensors are often energy constrained. This paper presents a power optimized photoplethysmographic sensor interface to sense arterial oxygen saturation, a technique to dynamically trade off SNR for power during sensor operation, and a simple algorithm to choose when to acquire samples in photoplethysmography. A prototype of the proposed pulse oximeter built using commercial-off-the-shelf (COTS) components is tested on 10 adults. The dynamic adaptation techniques described reduce power consumption considerably compared to our reference implementation, and our approach is competitive to state-of-the-art implementations. The techniques presented in this paper may be applied to low-power sensor interface designs where acquiring samples is expensive in terms of power as epitomized by pulse oximetry.

  19. Plasma shape control by pulsed solenoid on laser ion source

    DOE PAGES

    Sekine, M.; Ikeda, S.; Romanelli, M.; ...

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled bymore » the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.« less

  20. Plasma shape control by pulsed solenoid on laser ion source

    SciTech Connect

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.

  1. Shaping of attosecond pulses by phase-stabilized polarization gating

    SciTech Connect

    Sansone, G.; Benedetti, E.; Caumes, J. P.; Stagira, S.; Vozzi, C.; Nisoli, M.; Poletto, L.; Villoresi, P.; Strelkov, V.; Sola, I.; Elouga, L. B.; Zaier, A.; Mevel, E.; Constant, E.

    2009-12-15

    We demonstrate that the characteristics of the high-order harmonic spectra generated by few-cycle carrier-envelope phase-stabilized pulses can be finely adjusted by controlling the time-dependent ellipticity. The experimental measurements show evidence for the generation of single, pairs, and trains of attosecond pulses by controlling the time window of linear polarization of the driving pulses. The influence of the carrier-envelope phase on the generation process in different confinement configurations is interpreted and analyzed using a nonadiabatic stationary phase model. We show that the xuv emission depends critically on particular aspects of the fundamental electric field that allows us to steer the electron trajectories on the time scale of tens of attoseconds.

  2. Plasma shape control by pulsed solenoid on laser ion source

    NASA Astrophysics Data System (ADS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  3. Optimal pulse shaping for coherent control by the penalty algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Hai; Dussault, Jean-Pièrre; Bandrauk, André D.

    1994-04-01

    We use penalty methods coupled with unitary exponential operator methods to solve the optimal control problem for molecular time-dependent Schrödinger equations involving laser pulse excitations. A stable numerical algorithm is presented which propagates directly from initial states to given final states. Results are reported for an analytically solvable model for the complete inversion of a three-state system.

  4. Temporal shape manipulation of intense light pulses by coherent population trapping

    SciTech Connect

    Arkhipkin, V. G.; Timofeev, I. V.

    2006-02-15

    We describe how to control the temporal shape of adiabaton using peculiarities of propagation dynamics under coherent population trapping. Temporal compression is demonstrated as a special case of pulse shaping. The general case of unequal oscillator strengths of two optical transitions in an atom is considered.

  5. Adaptive beam shaping by controlled thermal lensing in optical elements.

    PubMed

    Arain, Muzammil A; Quetschke, Volker; Gleason, Joseph; Williams, Luke F; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J; Mueller, Guido; Tanner, D B; Reitze, David H

    2007-04-20

    We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO(2) laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

  6. Fluorescence anisotropy excitation by polarization-shaped laser pulses after transmission through a kagome fiber

    NASA Astrophysics Data System (ADS)

    Otto, J.; Patas, A.; Althoff, J.; Lindinger, A.

    2016-08-01

    We report improved fluorescence contrast between dyes by two-photon excitation with polarization-shaped laser pulses after transmission through a kagome fiber utilizing the anisotropy of the dye molecules. Particularly phase- and polarization-tailored pulse shapes are employed for two-photon excited fluorescence of dyes in a liquid environment at the distal end of the kagome fiber. The distortions due to the optical fiber properties are precompensated in order to receive predefined polarization-shaped laser pulses after the kagome fiber. This enables to optimally excite one dye in one polarization direction and simultaneously the other dye in the other polarization direction. The presented method has a high potential for endoscopic applications due to the unique properties of kagome fibers for guiding ultrashort laser pulses.

  7. Band-selective shaped pulse for high fidelity quantum control in diamond

    SciTech Connect

    Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin; Jiang, Qian-Qing; Li, Wu-Xia; Zhang, Fei-Hao; Gu, Chang-Zhi; Pan, Xin-Yu; Long, Gui-Lu

    2014-06-30

    High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host {sup 14}N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevels (e.g., of a nearby {sup 13}C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.

  8. Improved safety of retinal photocoagulation with a shaped beam and modulated pulse

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Brown, Jefferson; Paulus, Yannis M.; Nomoto, Hiroyuki; Palanker, Daniel

    2010-02-01

    Shorter pulse durations help confine thermal damage during retinal photocoagulation, decrease treatment time and minimize pain. However, safe therapeutic window (the ratio of threshold powers for rupture and mild coagulation) decreases with shorter exposures. A ring-shaped beam enables safer photocoagulation than conventional beams by reducing the maximum temperature in the center of the spot. Similarly, a temporal pulse modulation decreasing its power over time improves safety by maintaining constant temperature for a significant portion of the pulse. Optimization of the beam and pulse shapes was performed using a computational model. In vivo experiments were performed to verify the predicted improvement. With each of these approaches, the pulse duration can be decreased by a factor of two, from 20 ms down to 10 ms while maintaining the same therapeutic window.

  9. Enhancement of laser induced Au nanoparticle formation by femtosecond pulse shaping

    NASA Astrophysics Data System (ADS)

    Ferreira, P. H. D.; Silva, D. L.; Siqueira, J. P.; Balogh, D. T.; Canuto, S.; Misoguti, L.; Mendonca, C. R.

    2013-07-01

    We report the control of Au nanoparticle (NP) formation by using shaped 30 fs pulses, in a solution containing HAuCl4 and chitosan. By using a sinusoidal spectral phase, a periodic train of pulses is generated. When the period of the pulse train matches certain Raman resonances of chitosan, the reducing agent of the process, an enhancement of the Au NP formation is observed. Theoretical quantum chemical calculations indicate that the outer groups of the chitosan are mostly influenced by low Raman frequencies, which is in reasonably agreement with the experimental data and indicates an enhancement in the Au NP formation as the pulse train period increases (low frequency).

  10. Nyquist pulse shaping using arrayed waveguide grating routers.

    PubMed

    Xie, Yiwei; Zhuang, Leimeng; Zhu, Chen; Lowery, Arthur James

    2016-10-03

    We propose and demonstrate by simulations a novel Nyquist-WDM (N-WDM) superchannel transmitter based on an arrayed waveguide grating router (AWGR). This approach can generate Nyquist pulses at multiple wavelengths using a single AWGR. Results for a 3-channel 960-Gbit/s QPSK superchannel system show that a 10% guard band reduces the inter-channel interference (ICI) sufficiently. The design introduces less than 0.16-dB penalty when the waveguide loss is 2 dB/cm and 0.73-dB penalty when the standard deviation of phase error is 10°. Such Nyquist pulse shapers can be realised on a chip scale using photonic integrated circuits technology, and could be compactly integrated with other functional components to create single-chip N-WDM superchannel transmitters.

  11. Membrane and adaptively-shaped wings for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Lian, Yongsheng

    Micro air vehicles (MAVs), with wing span of 15 cm or less and flight speed around 10 m/s, have many applications in both civilian and military areas. The Reynolds number based on the given parameters is around 10 4, which often yields insufficient lift-to-drag ratio. Furthermore, one expects the unsteady effect to be noticeable for such flight vehicles. The flexible wing has been demonstrated to exhibit favorable characteristics such as passive adaptation to the flight; environment and delayed stall. The present study focuses on developing computational and modeling capabilities to better understand the MAV aerodynamics. Both flexible wings, utilizing membrane materials, and adaptively-shaped wings, utilizing piezo-actuated flaps, have been studied. In the adaptively-shaped wing study, we use piezo-actuated flaps to actively control the flow. We assess the impacts of the flap geometry, flapping amplitude, and turbulence; modeling on the flow structure with a parallel experimental effort. The membrane wing uses a passive control mechanism to delay the stall angle and to provide a smoother flight platform. Our study focuses on the mutual interactions between the membrane wing and its surrounding viscous flow. We compare the lift-to-drag ratio and the flow structure between the flexible wing and the corresponding rigid wing. We also investigate the aerodynamic characteristics associated with the low Reynolds number and low aspect ratio wing. To assist our study, we propose an automatic and efficient moving grid technique to facilitate the fluid and structure interaction computations; we also present a dynamic membrane model to study the intrinsic large deformation of the flexible membrane wing. Solutions obtained from the three-dimensional Navier-Stokes equations are presented to highlight, the salient features of the wing aerodynamics. Besides the aerodynamic study, we also perform shape optimization to improve the membrane wing performance. Since direct

  12. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  13. Adaptive shape coding for perceptual decisions in the human brain

    PubMed Central

    Kourtzi, Zoe; Welchman, Andrew E.

    2015-01-01

    In its search for neural codes, the field of visual neuroscience has uncovered neural representations that reflect the structure of stimuli of variable complexity from simple features to object categories. However, accumulating evidence suggests an adaptive neural code that is dynamically shaped by experience to support flexible and efficient perceptual decisions. Here, we review work showing that experience plays a critical role in molding midlevel visual representations for perceptual decisions. Combining behavioral and brain imaging measurements, we demonstrate that learning optimizes feature binding for object recognition in cluttered scenes, and tunes the neural representations of informative image parts to support efficient categorical judgements. Our findings indicate that similar learning mechanisms may mediate long-term optimization through development, tune the visual system to fundamental principles of feature binding, and optimize feature templates for perceptual decisions. PMID:26024511

  14. Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses.

    PubMed

    Shim, Sang-Hee; Strasfeld, David B; Zanni, Martin T

    2006-12-25

    A germanium acousto-optic modulator was recently reported (Shim et al., Optics Letters, 31, 838, 2006) that is capable of generating phase and amplitude shaped femtosecond pulses directly in the mid-infrared. In this paper, the design, implementation and performance of this novel mid-IR shaper is described in detail as is the sub-50 fs optical parametric amplifier that provides large bandwidth for generation of complex pulse shapes. These details include the acoustic power and wavelength dependence of the deflection efficiency, the phase stability of the shaper, the synchronization of electronics, and a study on how the mid-IR bandwidth of the optical parametric amplifier depends on its optical configuration. With these details quantified, the accuracy of the device is tested by creating a series of shaped pulses that are characterized by cross-correlation with well-known mid-IR reference pulses and by simulations. Test waveforms include optimally compressed, phase-chirped and amplitude-modulated mid-IR pulses. The shaped pulses are of sufficient quality that they will enable new experiments in 2D IR spectroscopy and in the coherent control of vibrations in ground electronic states.

  15. Investigation of novel shape-controlled linearly and circularly polarized attosecond pulse sources

    NASA Astrophysics Data System (ADS)

    Tóth, György; Tibai, Zoltán; Nagy-Csiha, Zsuzsanna; Márton, Zsuzsanna; Almási, Gábor; Hebling, János

    2016-02-01

    In this article, we investigate the temporal shape of one- or few-cycle, 20-180 nm central wavelength attosecond pulses that are produced in a scheme based on coherent undulator radiation. It is demonstrated, that the carrier-envelope phase (CEP) of the radiated electric field can be chosen arbitrarily by shaping the magnetic field of the radiator undulator appropriately. It is shown that the temporal shape and the spectrum of the generated electric field are influenced by the spatial shape and amplitude of the magnetic field of the radiator undulator for different central wavelength pulses, while both are practically independent of the energy of the initial electron bunch. Shape distortions at high K undulator parameters are also discussed.

  16. Beam shaping for laser-based adaptive optics in astronomy.

    PubMed

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-06-02

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%.

  17. Rovibrational wave packet manipulation using shaped mid infrared femtosecond pulses toward quantum computing

    NASA Astrophysics Data System (ADS)

    Tsubouchi, Masaaki; Momose, Takamasa

    2007-06-01

    Laser pulse shaping which was developed in near infrared (NIR) has been recently extended into mid infrared (MIR: 3 -- 10 μm). In the presented study, the signal output (NIR: 1.1 -- 1.5 μm) of an optical parametric amplifier was shaped with a Dazzler, and mixed in a AgGaS2 crystal with the idler pulse to generate MIR pulses. Although the relation between the shapes of NIR and MIR light is complicated due to DFG process in the crystal with finite (2 mm) thickness, the shape of MIR light can be completely characterized by comparing with calculated profiles. The shaped MIR light which is well characterized can be used to manipulate rovibrational wave packet on the electronic ground state. We simulated the wave packet motion and its observable by solving the time-dependent Schr"odinger equation, and discussed how the shape of MIR pulse is transferred into the wave packet. Application of rovibrational wave packet manipulation to quantum computation will be discussed.

  18. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    PubMed

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  19. Spectra and pulse shapes of a decoupled liquid hydrogen moderator

    SciTech Connect

    Brun, T. O.

    1997-09-01

    The neutron leakage current and time distributions have been determined experimentally for the decoupled liquid para-hydrogen moderator installed at the LANSCE pulsed spallation neutron source. The current measurements were performed using an ORDELA Neutron Beam Monitor (Model 4100N). The time distribution was measured with a time focused diffractometer using 'perfect' single crystals of silicon. In this report, a short discussion of the ortho-para hydrogen problem and an estimate of the ortho-para concentration in the circulating liquid hydrogen loop will be presented. This will be followed by a discussion of the neutron scattering cross sections and the empirical model used to fit the data. The results for the neutron leakage and the time distributions will be presented. (auth)

  20. Double dumbbell shaped AgNi alloy by pulsed electrodeposition

    SciTech Connect

    Dhanapal, K.; Vasumathi, M.; Santhi, Kalavathy; Narayanan, V. Stephen, A.

    2014-01-28

    Silver-Nickel is the well-known thermally immiscible system that makes them quite complex for the formation of alloy. This kind of alloy can be attained from electrodeposition method. In the present work, AgNi alloy was synthesized by pulsed electrodeposition in a single bath two electrode system with the use of anodic alumina membrane. The prepared AgNi alloy and pure Ag were characterized with X-ray Diffraction (XRD) for structural confirmation, Scanning Electron Microscopy (SEM) for morphological, and magnetic properties by Vibrating Sample Magnetometer, respectively. The X-ray Diffraction study shows the formation of cubic structure for pure Ag. SEM analysis reveals the double dumbbell morphology for AgNi alloy and spherically agglomeration for pure silver. Hysteresis behaviour from VSM measurement indicates that the AgNi alloy have good ferro-magnetic properties.

  1. Simultaneous ballistic deficit immunity and resilience to parallel noise sources: A new pulse shaping technique

    SciTech Connect

    Fabris, Lorenzo; Becker, John A.; Goulding, Frederick S.; Madden, Norman W.

    2000-10-11

    A new and different time variant pulse processing system has been developed based on a simple CR-RC filter and two analog switches. The new pulse processing technique combines both ballistic deficit immunity and resilience to parallel noise without a significant compromise to the low energy resolution, generally considered a mutually exclusive requirement. The filter is realized by combining two different pulse-shaping techniques. One of the techniques creates a low rate of curvature at the pulse peak, which reduces ballistic deficit, while the second technique increases the tolerance to low frequency noise by modifying the noise history. Several experimental measurements are presented, including tests on a co-planar grid CdZnTe detector. Improvements on both the resolution and line shape are shown for the 662 keV line of 137Cs.

  2. Realizing up-conversion fluorescence tuning in lanthanide-doped nanocrystals by femtosecond pulse shaping method

    PubMed Central

    Zhang, Shian; Yao, Yunhua; Shuwu, Xu; Liu, Pei; Ding, Jingxin; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong

    2015-01-01

    The ability to tune color output of nanomaterials is very important for their applications in laser, optoelectronic device, color display and multiplexed biolabeling. Here we first propose a femtosecond pulse shaping technique to realize the up-conversion fluorescence tuning in lanthanide-doped nanocrystals dispersed in the glass. The multiple subpulse formation by a square phase modulation can create different excitation pathways for various up-conversion fluorescence generations. By properly controlling these excitation pathways, the multicolor up-conversion fluorescence can be finely tuned. This color tuning by the femtosecond pulse shaping technique is realized in single material by single-color laser field, which is highly desirable for further applications of the lanthanide-doped nanocrystals. This femtosecond pulse shaping technique opens an opportunity to tune the color output in the lanthanide-doped nanocrystals, which may bring a new revolution in the control of luminescence properties of nanomaterials. PMID:26290391

  3. Study of the shower maximum depth by the method of detection of the EAS Cerenkov light pulse shape

    NASA Technical Reports Server (NTRS)

    Aliev, N.; Alimov, T.; Kakhkharov, M.; Khakimov, N.; Makhmudov, B. M.; Rakhimova, N.; Tashpulatov, R.; Khristiansen, G. B.; Prosin, V. V.; Zhukov, V. Y.

    1985-01-01

    The results of processing the data on the shape of the EAS Cerenkov light pulses recorded by the extensive air showers (EAS) array are presented. The pulse FWHM is used to find the mean depth of EAS maximum.

  4. Pulsed Shaping Based Ultra-Broadbandwidth Multidimensional Spectrocopic Methods

    DTIC Science & Technology

    2013-09-17

    August 16-21, 2009, Waterville Valley, NH. “ Femtosecond Coherent Anti-Stokes Raman Scattering (fs-CARS) Spectroscopy of N2 with a Shaped 7-fs Laser...Objective: Develop a greatly simplified approach to coherent anti-Stokes Raman scattering (CARS), allowing us to extend its diagnostic capability to...Wrzesinski, D. Pestov, V.V. Lozovoy, B. Xu, S. Roy, J.R. Gord, and M. Dantus, J. Raman Spectrosc. 42 (3), 393–398 (2011). “Group-Velocity

  5. Pulse shape discrimination and classification methods for continuous depth of interaction encoding PET detectors

    NASA Astrophysics Data System (ADS)

    Roncali, Emilie; Phipps, Jennifer E.; Marcu, Laura; Cherry, Simon R.

    2012-10-01

    In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2×2×20 mm3 phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors.

  6. Annular Pulse Shaping Technique for Large-Diameter Kolsky Bar Experiments on Concrete

    DTIC Science & Technology

    2014-10-01

    AFRL-RW-EG-TP-2014-005 Annular Pulse Shaping Technique for Large- Diameter Kolsky Bar Experiments on Concrete ...EXPERIMENTS ON CONCRETE N/A N/A 2502 9210 W0DT (1) Bradley E. Martin, RWMW (2) William F. Heard, Engineer Research and Development Center (3) Thomas...the dynamic compressive response of concretes . The purpose of implementing an annular pulse shaper design is to alleviate inertia-induced stresses in

  7. Rational Pulse-Shaping Filters for Almost MSK-Like Modulation

    DTIC Science & Technology

    1985-03-22

    OQPSK 3 MSK-like Formats 4 3. THE CLASS OF BASEBAND PULSE FUNCTIONS OPTIMIZED 5 4. THE OPTIMIZATION CRITERION 7 Optimization Constraints to...of an OQPSK Process 29 in RATIONAL PULSE-SHAPING FILTERS FOR ALMOST MSK-LIKE MODULATION 1. INTRODUCTION MSK-like modulation formats are those...filters. i DATA l2Tl q DATA ’ I I ARM FILTERS \\ — sin wjt Fig. 1 — Conventional QPSK implementation OQPSK Attempts in the data

  8. Shaping pulses using frequency conversion with a modulated picosecond free electron laser

    SciTech Connect

    Hooper, B.A.; Madey, J.M.J.

    1995-12-31

    Computer simulations and experiments indicate that we can shape the infrared picosecond pulses of the Mark III FEL in amplitude, frequency, and phase. Strongly modulated fundamental and second harmonic pulses have been generated by operating the Mark III FEL in the regime of strong sideband growth. In this paper, we present the results of simulations and experiments for second harmonic generation with fundamental inputs from 2 to 3 {mu}m.

  9. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    NASA Astrophysics Data System (ADS)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/I<3×10-7 in intensity and FASE/F<1.5×10-5 in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248nm light and a 1μm control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.

  10. Software realization of real-time neutrons and {gamma}-rays pulse shape discrimination using CUDA platform

    SciTech Connect

    Kolbasin, V. A.; Ivanov, A. I.; Pedash, V. Y.

    2011-07-01

    The two pulse shape discrimination methods were implemented in real-time. The pulse gradient analysis method was implemented programmatically on PC. The method based on artificial neural network was programmatically implemented using CUDA platform. It is shown that both implementations can provide up to 10{sup 6} pulses per second processing performance. The results for pulse shape discrimination using polycrystalline stilbene and LiF detectors were shown. (authors)

  11. Universal pulse shape scaling function and exponents: critical test for avalanche models applied to Barkhausen noise.

    PubMed

    Mehta, Amit P; Mills, Andrea C; Dahmen, Karin A; Sethna, James P

    2002-04-01

    In order to test if the universal aspects of Barkhausen noise in magnetic materials can be predicted from recent variants of the nonequilibrium zero-temperature Random Field Ising Model, we perform a quantitative study of the universal scaling function derived from the Barkhausen pulse shape in simulations and experiment. Through data collapses and scaling relations we determine the critical exponents tau and 1/sigma nu z in both simulation and experiment. Although we find agreement in the critical exponents, we find differences between theoretical and experimental pulse shape scaling functions as well as between different experiments.

  12. Chemical-contrast imaging with pulse-shaping based pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Flynn, Daniel C.; Bhagwat, Amar R.; Ogilvie, Jennifer P.

    2013-02-01

    Ultrafast pump-probe spectroscopy and pulse-shaping techniques are providing new modes of contrast for the field of multiphoton microscopy. Endogenous species such as heme proteins show rich nonlinear spectroscopic signatures of excited state absorption, stimulated emission and ground-state bleaching. Commercially available octave-spanning Ti:sapphire oscillators offer new opportunities for imaging based on pump-probe contrast. Spatial light modulators take advantage of this large bandwidth, shaping pulses of light to selectively excite molecular structures with similar spectral properties. We present two-color pump-probe imaging of heme proteins solutions and red blood cells.

  13. High-power diode-seeded thulium-doped fiber MOPA incorporating active pulse shaping

    NASA Astrophysics Data System (ADS)

    Shi, Hongxing; Tan, Fangzhou; Cao, Yi; Wang, Peng; Wang, Pu

    2016-10-01

    A turnkey fiber laser source generating high beam quality pulses with 240 W average power and arbitrary pulse shapes is presented in theory and experiment. It is based on semiconductor laser diode modulated by arbitrary waveform generator as a seed and polarization maintaining (PM) master oscillator power amplifier (MOPA) system to boost the pulse energy. Detailed experimental and theoretical studies are in a very good agreement. The polarization extinction ratio (PER) of system measured at maximum output power is beyond 17 dB with the excellent beam quality factor M 2 of 1.25.

  14. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ouyang, J. M.; Ge, Z. Y.; Zhang, G. B.; Wang, P.

    2013-07-15

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser.

  15. Arterial pulse shape measurement using self-mixing effect in a diode laser

    SciTech Connect

    Hast, J; Myllylae, Risto; Sorvoja, H; Miettinen, J

    2002-11-30

    The self-mixing effect in a diode laser and the Doppler technique are used for quantitative measurements of the cardiovascular pulses from radial arteries of human individuals. 738 cardiovascular pulses from 10 healthy volunteers were studied. The Doppler spectrograms reconstructed from the Doppler signal, which is measured from the radial displacement of the radial artery, are compared to the first derivative of the blood pressure signals measured from the middle finger by the Penaz technique. The mean correlation coefficient between the Doppler spectrograms and the first derivative of the blood pressure signals was 0.84, with a standard deviation of 0.05. Pulses with the correlation coefficient less than 0.7 were neglected in the study. Percentage of successfully detected pulses was 95.7%. It is shown that cardiovascular pulse shape from the radial artery can be measured noninvasively by using the self-mixing interferometry. (laser biology and medicine)

  16. Pulsed plane wave analytic solutions for generic shapes and the validation of Maxwell's equations solvers

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Vastano, John A.; Lomax, Harvard

    1992-01-01

    Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.

  17. Pulse-shaping algorithm of a coherent matter-wave-controlling reaction dynamics

    SciTech Connect

    Joergensen, Solvejg; Kosloff, Ronnie

    2004-07-01

    A pulse-shaping algorithm for a matter wave with the purpose of controlling a binary reaction has been designed. The scheme is illustrated for an Eley-Rideal reaction where an impinging matter-wave atom recombines with an adsorbed atom on a metal surface. The wave function of the impinging atom is shaped such that the desorbing molecule leaves the surface in a specific vibrational state.

  18. Soft shape-adaptive gripping device made from artificial muscle

    NASA Astrophysics Data System (ADS)

    Hamburg, E.; Vunder, V.; Johanson, U.; Kaasik, F.; Aabloo, A.

    2016-04-01

    We report on a multifunctional four-finger gripper for soft robotics, suitable for performing delicate manipulation tasks. The gripping device is comprised of separately driven gripping and lifting mechanisms, both made from a separate single piece of smart material - ionic capacitive laminate (ICL) also known as artificial muscle. Compared to other similar devices the relatively high force output of the ICL material allows one to construct a device able to grab and lift objects exceeding multiple times its own weight. Due to flexible design of ICL grips, the device is able to adapt the complex shapes of different objects and allows grasping single or multiple objects simultaneously without damage. The performance of the gripper is evaluated in two different configurations: a) the ultimate grasping strength of the gripping hand; and b) the maximum lifting force of the lifting actuator. The ICL is composed of three main layers: a porous membrane consisting of non-ionic polymer poly(vinylidene fluoride-co-hexafluoropropene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium trifluoromethane-sulfonate (EMITFS), and a reinforcing layer of woven fiberglass cloth. Both sides of the membrane are coated with a carbonaceous electrode. The electrodes are additionally covered with thin gold layers, serving as current collectors. Device made of this material operates silently, requires low driving voltage (<3 V), and is suitable for performing tasks in open air environment.

  19. Temporal Laser Pulse Shaping for RF Photocathode Guns: The Cheap and Easy way using UV Birefringent Crystals

    SciTech Connect

    Power, John G.; Jing Chunguang

    2009-01-22

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  20. Temporal laser pulse shaping for RF photocathode guns : the cheap and easy way using UV birefringent crystals.

    SciTech Connect

    Power, J. G.; Jing, C.; High Energy Physics; Euclid Techlabs, LLC

    2009-01-01

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  1. Comparison Between Digital and Analog Pulse Shape Discrimination Techniques For Neutron and Gamma Ray Separation

    SciTech Connect

    R. Aryaeinejad; John K. Hartwell

    2005-11-01

    Recent advancement in digital signal processing (DSP) using fast processors and computer makes it possible to be used in pulse shape discrimination applications. In this study, we have investigated the feasibility of using a DSP to distinguish between the neutrons and gamma rays by the shape of their pulses in a liquid scintillator detector (BC501), and have investigated pulse shape-based techniques to improve the resolution performance of room-temperature cadmium zinc telluride (CZT) detectors. For the neutron/gamma discrimination, the advantage of using a DSP over the analog method is that in analog system two separate charge-sensitive ADC's are required. One ADC is used to integrate the beginning of the pulse risetime while the second ADC is for integrating the tail part. Using a DSP eliminates the need for separate ADCs as one can easily get the integration of two parts of the pulse from the digital waveforms. This work describes the performance of these DSP techniques and compares the results with the analog method.

  2. A survey of pulse shape options for a revised plastic ablator ignition design

    SciTech Connect

    Clark, D. S.; Milovich, J. L.; Hinkel, D. E.; Salmonson, J. D.; Peterson, J. L.; Berzak Hopkins, L. F.; Eder, D. C.; Haan, S. W.; Jones, O. S.; Marinak, M. M.; Robey, H. F.; Smalyuk, V. A.; Weber, C. R.

    2014-11-15

    Recent experimental results using the “high foot” pulse shape for inertial confinement fusion ignition experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] have shown encouraging progress compared to earlier “low foot” experiments. These results strongly suggest that controlling ablation front instability growth can significantly improve implosion performance even in the presence of persistent, large, low-mode distortions. Simultaneously, hydrodynamic growth radiography experiments have confirmed that ablation front instability growth is being modeled fairly well in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes could be modified to improve one-dimensional implosion performance while maintaining the stability properties demonstrated with the high foot. This paper presents such a survey of pulse shapes intermediate between the low and high foot extremes in search of an intermediate foot optimum. Of the design space surveyed, it is found that a higher picket version of the low foot pulse shape shows the most promise for improved compression without loss of stability.

  3. Comparison Between Digital and Analog Pulse Shape Discrimination Techniques for Neutron and Gamma Ray Separation

    SciTech Connect

    Rahmat Aryaeinejad

    2005-10-01

    Recent advancements in digital signal processing (DSP) using fast processors and a computer allows one to envision using it in pulse shape discrimination. In this study, we have investigated the feasibility of using a DSP to distinguish between neutrons and gamma rays by the shape of their pulses in a liquid scintillator detector (BC501). For neutron/gamma discrimination, the advantage of using a DSP over the analog method is that in an analog system, two separate charge-sensitive ADCs are required. One ADC is used to integrate the beginning of the pulse rise time while the second ADC is for integrating the tail part. In DSP techniques the incoming pulses coming directly from the detector are immediately digitized and can be decomposed into individual pulses waveforms. This eliminates the need for separate ADCs as one can easily get the integration of two parts of the pulse from the digital waveforms. This work describes the performance of these DSP techniques and compares the results with the analog method.

  4. Optical processing deep inside optical materials using counterpropagating pulse-shaped spatial solitons

    NASA Astrophysics Data System (ADS)

    Hisaka, Masaki

    2016-10-01

    Optical processing using a pair of counterpropagating pulse-shaped spatial solitons to control the molecular structure deep inside an optical material is investigated. A femtosecond pulsed laser focused at the surface of a strontium barium niobate single crystal induces a pulse-shaped self-focusing second-harmonic beam. The two counterpropagating beams are involved in a head-on collision. Locally reversed crystal domains are formed at the collision point, assisted by external threshold controls such as crystal temperature and an electric dc field. The nonlinear interaction between the soliton collision and the approximate nonperiodic reversed domains induces a change in the second-harmonic intensity of the scattered and transmitted beams, thereby enabling the detection of locally reversed crystal domains.

  5. Investigation of pulse voltage shape effects on electrohydrodynamic jets using a vision measurement technique

    NASA Astrophysics Data System (ADS)

    Kwon, Kye-Si; Lee, Dae-Yong

    2013-06-01

    In this paper, we present a vision measurement technique to evaluate electrohydrodynamic (EHD) inkjet behavior, and discuss the effects of the pulse voltage shape on the EHD jets for drop-on-demand printing, including the falling and rising time in the pulse voltage. Sequential images acquired by a charge-coupled device (CCD) camera with a strobe light-emitting diode (LED) were used to visualize EHD jet behavior with respect to time. A vision algorithm was implemented in an EHD jet system to enable in situ measurement and analysis of EHD jets. A guideline for selecting pulse shape parameters is also presented, to enable the achievement of high-frequency reliable jets for drop-on-demand printing. Printing results are presented to demonstrate the drop consistency of jets.

  6. A compact pulse shape discriminator module for large neutron detector arrays

    NASA Astrophysics Data System (ADS)

    Venkataramanan, S.; Gupta, Arti; Golda, K. S.; Singh, Hardev; Kumar, Rakesh; Singh, R. P.; Bhowmik, R. K.

    2008-11-01

    A cost-effective high-performance pulse shape discriminator module has been developed to process signals from organic liquid scintillator-based neutron detectors. This module is especially designed for the large neutron detector array used for studies of nuclear reaction dynamics at the Inter University Accelerator Center (IUAC). It incorporates all the necessary pulse processing circuits required for neutron spectroscopy in a novel fashion by adopting the zero crossover technique for neutron-gamma (n- γ) pulse shape discrimination. The detailed layout of the circuit and different features of the module are described in the present paper. The quality of n- γ separation obtained with this electronics is much better than that of commercial modules especially in the low-energy region. The results obtained with our module are compared with similar setups available in other laboratories.

  7. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    SciTech Connect

    Lombigit, L. Yussup, N. Ibrahim, Maslina Mohd; Rahman, Nur Aira Abd; Rawi, M. Z. M.

    2015-04-29

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.

  8. Simultaneous SU(2) rotations on multiple quantum dot exciton qubits using a single shaped pulse

    NASA Astrophysics Data System (ADS)

    Mathew, Reuble; Yang, Hong Yi Shi; Hall, Kimberley C.

    2015-10-01

    Recent experimental demonstration of a parallel (π ,2 π ) single qubit rotation on excitons in two distant quantum dots [Nano Lett. 13, 4666 (2013), 10.1021/nl4018176] is extended in numerical simulations to the design of pulses for more general quantum state control, demonstrating the feasibility of full SU(2) rotations of each exciton qubit. Our results show that simultaneous high-fidelity quantum control is achievable within the experimentally accessible parameter space for commercial Fourier-domain pulse shaping systems. The identification of a threshold of distinguishability for the two quantum dots (QDs) for achieving high-fidelity parallel rotations, corresponding to a difference in transition energies of ˜0.25 meV , points to the possibility of controlling more than 10 QDs with a single shaped optical pulse.

  9. Full-density, net-shape powder consolidation using dynamic magnetic pulse pressures

    NASA Astrophysics Data System (ADS)

    Chelluri, Bhanu; Barber, John P.

    1999-07-01

    The full-density consolidation of powders into net-shape parts yields high green strength, low shrinkage, short sinter times, superior mechanical properties, and low manufacturing costs. The conventional lowcost, single-press, single-sinter process typically densifies powders at less than 65 percent green density. This article describes the Magnepress™ process, a powder-processing technique wherein pulsed magnetic pressures consolidate powders into full-density parts without admixed lubricants or binders. The Magnepress technique is especially suitable for producing net-shape products with radial symmetry (e.g., rods, cylindrical parts with internal features, tubular shapes, and high aspect-ratio specimens).

  10. Detection of coincident radiations in a single transducer by pulse shape analysis

    DOEpatents

    Warburton, William K.; Tan, Hui; Hennig, Wolfgang

    2008-03-11

    Pulse shape analysis determines if two radiations are in coincidence. A transducer is provided that, when it absorbs the first radiation produces an output pulse that is characterized by a shorter time constant and whose area is nominally proportional to the energy of the absorbed first radiation and, when it absorbs the second radiation produces an output pulse that is characterized by a longer time constant and whose area is nominally proportional to the energy of the absorbed second radiation. When radiation is absorbed, the output pulse is detected and two integrals are formed, the first over a time period representative of the first time constant and the second over a time period representative of the second time constant. The values of the two integrals are examined to determine whether the first radiation, the second radiation, or both were absorbed in the transducer, the latter condition defining a coincident event.

  11. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    NASA Astrophysics Data System (ADS)

    Yin, Yanchun

    The use of nonlinear optical interactions to perform nonclassical transformations of electromagnetic field is an area of considerable interest. Quantum phase amplification (QPA) has been previously proposed as a method to perform nonclassical manipulation of coherent light, which can be experimentally realized by use of nonlinear optical mixing processes, of which phase-sensitive three-wave mixing (PSTWM) is one convenient choice. QPA occurs when PSTWM is operated in the photon number deamplification mode, i.e., when the energy is coherently transferred among the low-frequency signal and idler waves and the high-frequency pump wave. The final state is nonclassical, with the field amplitude squeezed and the phase anti-squeezed. In the temporal domain, the use of QPA has been studied to facilitate nonlinear pulse shaping. This novel method directly shapes the temporal electric field amplitude and phase using the PSTWM in a degenerate and collinear configuration, which has been analyzed using a numerical model. Several representative pulse shaping capabilities of this technique have been identified, which can augment the performance of common passive pulse shaping methods operating in the Fourier domain. The analysis indicates that a simple quadratic variation of temporal phase facilitates pulse compression and self-steepening, with features significantly shorter than the original transform-limited pulse. Thus, PSTWM can act as a direct pulse compressor based on the combined effects of phase amplification and group velocity mismatch, even without the subsequent linear phase compensation. Furthermore, it is shown numerically that pulse doublets and pulse trains can be produced at the pump frequency by utilizing the residual linear phase of the signal. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems. The use of

  12. Neural Network Modeling of Weld Pool Shape in Pulsed-Laser Aluminum Welds

    SciTech Connect

    Iskander, Y.S.; Oblow, E.M.; Vitek, J.M.

    1998-11-16

    A neural network model was developed to predict the weld pool shape for pulsed-laser aluminum welds. Several different network architectures were examined and the optimum architecture was identified. The neural network was then trained and, in spite of the small size of the training data set, the network accurately predicted the weld pool shape profiles. The neural network output was in the form of four weld pool shape parameters (depth, width, half-width, and area) and these were converted into predicted weld pool profiles with the use of the actual experimental poo1 profiles as templates. It was also shown that the neural network model could reliably predict the change from conduction-mode type shapes to keyhole-mode shapes.

  13. Simultaneous ultrafast optical pulse train bursts generation and shaping based on Fourier series developments using superimposed fiber Bragg gratings.

    PubMed

    García-Muñoz, Víctor; Preciado, Miguel A; Muriel, Miguel A

    2007-08-20

    We propose an all-fiber method for the generation of ultrafast shaped pulse train bursts from a single pulse based on Fourier Series Developments (FDSs). The implementation of the FSD based filter only requires the use of a very simple non apodized Superimposed Fiber Bragg Grating (S-FBG) for the generation of the Shaped Output Pulse Train Burst (SOPTB). In this approach, the shape, the period and the temporal length of the generated SOPTB have no dependency on the input pulse rate.

  14. Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun

    NASA Astrophysics Data System (ADS)

    Yang, J.; Sakai, F.; Yanagida, T.; Yorozu, M.; Okada, Y.; Takasago, K.; Endo, A.; Yada, A.; Washio, M.

    2002-08-01

    A technique of laser-pulse shaping was developed for low-emittance electron-beam generation in a photocathode radio-frequency (rf) gun. The emittance growth due to space charge and rf effects in the rf gun was experimentally investigated with square and gaussian temporal pulse shapes. It was found that the square pulse shaping was a useful tool for both the reduction of nonlinear space-charge force and the correction of linear space charge. The normalized transverse rms emittance at 1 nC was obtained to be 1.20 pimm-mrad for the square pulse shape with pulse length of 9 ps full width at half maximum. The emittance was measured as a function of the electron bunch charge and the laser-pulse length.

  15. Pulse shape measurements using single shot-frequency resolved optical gating for high energy (80 J) short pulse (600 fs) laser

    SciTech Connect

    Palaniyappan, S.; Johnson, R.; Shimada, T.; Gautier, D. C.; Letzring, S.; Offermann, D. T.; Fernandez, J. C.; Shah, R. C.; Jung, D.; Hegelich, B. M.; Hoerlein, R.

    2010-10-15

    Relevant to laser based electron/ion accelerations, a single shot second harmonic generation frequency resolved optical gating (FROG) system has been developed to characterize laser pulses (80 J, {approx}600 fs) incident on and transmitted through nanofoil targets, employing relay imaging, spatial filter, and partially coated glass substrates to reduce spatial nonuniformity and B-integral. The device can be completely aligned without using a pulsed laser source. Variations of incident pulse shape were measured from durations of 613 fs (nearly symmetric shape) to 571 fs (asymmetric shape with pre- or postpulse). The FROG measurements are consistent with independent spectral and autocorrelation measurements.

  16. Numerical Analysis of the Output-Pulse Shaping Capability of Linear Transformer Drivers

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Sun, Fengju; Yin, Jiahui; Qiu, Aici

    2011-04-01

    Output-pulse shaping capability of a linear transformer driver (LTD) module under different conditions is studied, by conducting the whole circuit model simulation by using the PSPICE code. Results indicate that a higher impedance profile of the internal transmission line would lead to a wider adjustment range for the output current rise time and a narrower adjustment range for the current peak. The number of cavities in series has a positive effect on the output-pulse shaping capability of LTD. Such an improvement in the output-pulse shaping capability can primarily be ascribed to the increment in the axial electric length of LTD. For a triggering time interval longer than the time taken by a pulse to propagate through the length of one cavity, the output parameters of LTD could be improved significantly. The present insulating capability of gas switches and other elements in the LTD cavities may only tolerate a slightly longer deviation in the triggering time interval. It is feasible for the LTD module to reduce the output current rise time, though it is not useful to improve the peak power effectively.

  17. Mimicking of pulse shape-dependent learning rules with a quantum dot memristor

    NASA Astrophysics Data System (ADS)

    Maier, P.; Hartmann, F.; Rebello Sousa Dias, M.; Emmerling, M.; Schneider, C.; Castelano, L. K.; Kamp, M.; Marques, G. E.; Lopez-Richard, V.; Worschech, L.; Höfling, S.

    2016-10-01

    We present the realization of four different learning rules with a quantum dot memristor by tuning the shape, the magnitude, the polarity and the timing of voltage pulses. The memristor displays a large maximum to minimum conductance ratio of about 57 000 at zero bias voltage. The high and low conductances correspond to different amounts of electrons localized in quantum dots, which can be successively raised or lowered by the timing and shapes of incoming voltage pulses. Modifications of the pulse shapes allow altering the conductance change in dependence on the time difference. Hence, we are able to mimic different learning processes in neural networks with a single device. In addition, the device performance under pulsed excitation is emulated combining the Landauer-Büttiker formalism with a dynamic model for the quantum dot charging, which allows explaining the whole spectrum of learning responses in terms of structural parameters that can be adjusted during fabrication, such as gating efficiencies and tunneling rates. The presented memristor may pave the way for future artificial synapses with a stimulus-dependent capability of learning.

  18. Adiabat shape Laser Pulses for ablation front instability control and high fuel compression

    NASA Astrophysics Data System (ADS)

    Milovich, Jose; Jones, O. S.; Berzak-Hopkins, L.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Macphee, A. G.; Peterson, J. L.; Robey, H. F.; Smalyuk, V. A.; Weber, C. R.

    2014-10-01

    At the end of the NIC campaign a large body of experimental evidence showed that the point-design implosions driven by low-adiabat pulses had a high degree of mix. To reduce instability a high-adiabat (~3 × higher picket drive) design was fielded in the National Ignition Facility (NIF). The experimental results from this campaign have shown considerable improvement in performance (10 × neutron yields) over the point design with little evidence of mix. However, the adiabat of the implosions may be too high to achieve ignition for the available laser energy. To overcome this difficulty, and to take advantage of the high-picket drives, we have developed hybrid laser pulses that combined the virtue of both designs. These pulses can be thought of achieving adiabat shaping, where the ablator is set in a higher adiabat for instability control, while the fuel is maintained at a lower adiabat favoring higher fuel compression. Using these pulses, recent experiments at the NIF have indeed shown reduced growth rates. In this talk we will present the design of high-yield low-growth DT ignition experiments using these adiabat-shaped pulses. Work performed under the auspices of the U.S. D.O.E. by LLNL under contract DE-AC52-07NA27344.

  19. Complexity and simplicity of optimal control theory pulses shaped for controlling vibrational qubits.

    PubMed

    Shyshlov, Dmytro; Babikov, Dmitri

    2012-11-21

    In the context of molecular quantum computation the optimal control theory (OCT) is used to obtain shaped laser pulses for high-fidelity control of vibrational qubits. Optimization is done in time domain and the OCT algorithm varies values of electric field in each time step independently, tuning hundreds of thousands of parameters to find one optimal solution. Such flexibility is not available in experiments, where pulse shaping is done in frequency domain and the number of "tuning knobs" is much smaller. The question of possible experimental interpretations of theoretically found OCT solutions arises. In this work we analyze very accurate optimal pulse that we obtained for implementing quantum gate CNOT for the two-qubit system encoded into the exited vibrational states of thiophosgene molecule. Next, we try to alter this pulse by reducing the number of available frequency channels and intentionally introducing systematic and random errors (in frequency domain, by modifying the values of amplitudes and phases of different frequency components). We conclude that a very limited number of frequency components (only 32 in the model of thiophosgene) are really necessary for accurate control of the vibrational two-qubit system, and such pulses can be readily constructed using OCT. If the amplitude and phase errors of different frequency components do not exceed ±3% of the optimal values, one can still achieve accurate transformations of the vibrational two-qubit system, with gate fidelity of CNOT exceeding 0.99.

  20. Neural network modeling of pulsed-laser weld pool shapes in aluminum alloy welds

    SciTech Connect

    Vitek, J.M.; Iskander, Y.S.; Oblow, E.M.; Babu, S.S.; David, S.A.; Fuerschbach, P.W.; Smartt, H.B.; Pace, D.P. Tolle, C.R.

    1998-11-01

    A model was developed to predict the weld pool shape in pulsed Nd:YAG laser welds of aluminum alloy 5754. The model utilized neural network analysis to relate the weld process conditions to four pool shape parameters: penetration, width, width at half-penetration, and cross-sectional area. The model development involved the identification of the input (process) variables, the desired output (shape) variables, and the optimal neural network architecture. The latter was influenced by the number of defined inputs and outputs as well as the amount of data that was available for training the network. After appropriate training, the best network was identified and was used to predict the weld shape. A routine to convert the shape parameters into predicted weld profiles was also developed. This routine was based on the actual experimental weld profiles and did not impose an artificial analytical function to describe the weld profile. The neural network model was tested on experimental welds. The model predictions were excellent. It was found that the predicted shapes were within the experimental variations that were found along the length of the welds (due to the pulsed nature of the weld power) and the reproducibility of welds made under nominally identical conditions.

  1. Neural network modeling of pulsed-laser weld pool shapes in aluminum alloy welds

    SciTech Connect

    Vitek, J.M.; Iskander, Y.S.; Oblow, E.M.; Babu, S.S.; David, S.A.; Fuerschbach, P.W.; Smartt, H.B.

    1998-09-01

    A model was developed to predict the weld pool shape in pulsed Nd:YAG laser welds of aluminum alloy 5754. The model utilized neural network analysis to relate the weld process conditions to four pool shape parameters: (1) penetration width, (2) width at half-penetration, and (3) cross-sectional area. The model development involved the identification of the input (process) variables, the desired output (shape) variables, and the optimal neural network architecture. The latter was influenced by the number of defined inputs and outputs as well as the amount of data that was available for training the network. After appropriate training, die best network was identified and was used to predict the weld shape. A routine to convert the shape parameters into predicted weld profiles was also developed. This routine was based on the actual experimental weld profiles and did not impose an artificial analytical function to describe the weld profile. The neural network model was tested on experimental welds. The model predictions were excellent. It was found that the predicted shapes were within the experimental variations that were found along the length of the welds (due to the pulsed nature of the weld power) and the reproducibility of welds made under nominally identical conditions.

  2. Two-dimensional RI spectroscopy: Automation with pulse shaping and application to amyloid folding

    NASA Astrophysics Data System (ADS)

    Shim, Sang-Hee

    Two dimensional infrared (2D IR) spectroscopy has proven itself as a unique tool for probing the structures and dynamics of chemical and biological systems. Now, 2D IR spectroscopy has progressed to the point of being a ready-to-operate method for general researchers to address novel scientific questions. For that purpose, this thesis includes three practices: inventing a technique for mid-infrared pulse shaping; developing an automated method of collecting 2D IR spectra; applying it to delineate the pathway of amyloid formation. First, we developed a means to shape femtosecond pulses in the mid-infrared using a germanium acousto-optic modulator (Ge AOM). The Ge AOM directly modulates the amplitude and phase of mid-IR light between 2-18 mum, producing intense shaped pulses with high resolution and good phase stability. Second, we combined the pulse shaper with a pump-probe geometry to develop a new method of 2D IR spectroscopy. The pump-probe geometry simplifies the optical setup and produces properly phased absorptive lineshapes without additional data processing. The pulse shaper not only reproduces most conventional methods, but also allows new pulse shapes and phase combinations to further enhance 2D IR spectroscopy. Moreover, eliminating moving parts accelerates data collection so that an entire 2D IR spectrum can be obtained in <1 sec. Such ease of use, versatility and speed of our pulse shaping 2D IR method enables more sophisticated and reliable experiments. Finally, we tracked amyloid formation of human Islet amyloid polypeptide (hIAPP), related to type II diabetes. By continuously scanning 2D IR spectra, we can follow the hIAPP fibril formation indefinitely by collecting data on-the-fly without reinitiating the aggregation for each data point. We used isotope-labeling to probe the structural evolution of six different residues along the 37-residue hIAPP peptide. By separately monitoring the six residues, we found that the peptides nucleate near the turn

  3. A simple method of calculating pulse amplitudes and shapes arising from reflection from linear segments

    SciTech Connect

    Erickson, S.A. Jr.

    1988-01-02

    A new formulation for the amplitude and pulse shape from reflections from a linear segment for a bistatic planar geometry is presented. The formulation is useful in calculating reverberation from high intensity signals in an deep ocean basin where long range propagation can occur. This reverberation is important in calculating the acoustic interference to sonar arising from the detonation of nuclear or large chemical explosives, and for modeling long range active sonar. The reflections computed with the new formulation are significantly different from those of earlier versions of the reverberation model, with pulses generally shorter and more intense, leading to predictions of louder but more sporadic reverberation than previously estimated. 9 refs

  4. An alpha/beta/gamma health physics instrument with pulse-shape discrimination

    SciTech Connect

    McElhaney, S.A.; Chiles, M.M.; Ramsey, J.A.

    1990-01-01

    A recent breakthrough in alpha scintillation detector design supports the feasibility of extending this new technology to the development of a monolithic alpha/beta/gamma ({alpha}/{beta}/{gamma}) scintillation detector. The new scintillator is physically robust and chemically resistant to environmental conditions encountered in radiation monitoring, and yet inexpensive to manufacture. The use of pulse-shape discrimination electronics allows pulses from each scintillator to be separated for particle identification. An {alpha}/{beta}/{gamma} detector has a wide variety of possible applications including laundry monitoring, wastewater monitoring, air sampling, and health physics instrumentation. 2 refs., 1 fig.

  5. Nanoscale-shape-mediated coupling between temperature and densification in intense pulsed light sintering

    NASA Astrophysics Data System (ADS)

    Bansal, S.; Malhotra, R.

    2016-12-01

    In intense pulsed light sintering (IPL), pulsed large-area visible light from a xenon lamp is absorbed by nanoparticle films or patterns and converted to heat, resulting in rapid sintering of the nanoparticles. This work experimentally characterizes IPL of silver nanoparticle films. A newly observed turning point in the evolution of film temperature during IPL is correlated to the observation, in literature and in this work, that film densification levels off beyond a critical pulse fluence and number of pulses. A computational model is developed that couples electromagnetic finite element analysis, heat transfer models and densification models to predict the evolution of film temperature and density during IPL. This model is able to capture the experimentally observed turning point in temperature during IPL, whereas current models of IPL are unable to do so. It is shown that the temperature turning point occurs due to a coupling between optical absorption and densification in the nanoparticle film, mediated by a change in nanoscale shape of the deposited nanoparticles due to interparticle neck growth. Further, it is found that the optical fluence per pulse has a greater effect on the achievable film density in IPL, as compared to the number of pulses.

  6. Creating Extended and Dense Plasma Channels in Air by Using Spatially and Temporally Shaped Ultra-Intense Laser Pulses

    DTIC Science & Technology

    2011-08-16

    operating at 1064 nm wavelength. The maximum pulse energy of the heater laser is 3.3 J. The heater pulses are combined with femtosecond igniter pulses...properties of the optical fiber where lasers pulses propagate. Figure 3: Top row, left: Temporal waveforms of the Airy pulse with -60,000 fs3...γ equals 105 (W·m)−1, and the zero dispersion wavelength of the fiber is 745 nm. The coupling efficiency of the shaped laser pulses into the fiber in

  7. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, W.H.; Berliner, R.R.

    1994-09-13

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

  8. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, William H.; Berliner, Ronald R.

    1994-01-01

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

  9. Pulse shape discrimination for background rejection in germanium gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Feffer, P. T.; Smith, D. M.; Campbell, R. D.; Primbsch, J. H.; Lin, R. P.

    1989-01-01

    A pulse-shape discrimination (PSD) technique is developed to reject the beta-decay background resulting from activation of Ge gamma-ray detectors by cosmic-ray secondaries. These beta decays are a major source of background at 0.2-2 MeV energies in well shielded Ge detector systems. The technique exploits the difference between the detected current pulse shapes of single- and multiple-site energy depositions within the detector: beta decays are primarily single-site events, while photons at these energies typically Compton scatter before being photoelectrically absorbed to produce multiple-site events. Depending upon the amount of background due to sources other than beta decay, PSD can more than double the detector sensitivity.

  10. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

    NASA Astrophysics Data System (ADS)

    Bruyneel, B.; Birkenbach, B.; Reiter, P.

    2016-03-01

    The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a γ-ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed.

  11. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    SciTech Connect

    Marcos Dantus

    2008-09-23

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10^16 W/cm^2. In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  12. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation

    PubMed Central

    Zapata, J. D.; Steinberg, D.; Saito, L. A. M.; de Oliveira, R. E. P.; Cárdenas, A. M.; de Souza, E. A. Thoroh

    2016-01-01

    We demonstrated a method to construct high efficiency saturable absorbers based on the evanescent light field interaction of CVD monolayer graphene deposited on side-polished D-shaped optical fiber. A set of samples was fabricated with two different core-graphene distances (0 and 1 μm), covered with graphene ranging between 10 and 25 mm length. The mode-locking was achieved and the best pulse duration was 256 fs, the shortest pulse reported in the literature with CVD monolayer graphene in EDFL. As result, we find a criterion between the polarization relative extinction ratio in the samples and the pulse duration, which relates the better mode-locking performance with the higher polarization extinction ratio of the samples. This criterion also provides a better understanding of the graphene distributed saturable absorbers and their reproducible performance as optoelectronic devices for optical applications. PMID:26856886

  13. Influence of phase cancellation and pulse shape artifacts on ultrasonic spectrum analysis

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Cantrell, J. H., Jr.; Winfree, W. P.

    1979-01-01

    Both continuous wave and Fourier transformed pulse ultrasonic spectroscopy are being applied to material and flow characterization. Ideal samples and flaws (flat, parallel, and homogeneous) and ideal ultrasonic apparatus (producing delta function stress waves) provide acoustic spectra which can be partially inverted. However, in the presence of material inhomogeneity, lack of sample flatness or parallelism, or finite risetime pulses, the spectra become quite complex and produce phase cancellations at the transducer as well as pulse shape spectral artifacts. In this paper, we examine the nature of these artifacts for both simple and practical samples. Sample spectra are contrasted for several different transducer/electronic systems. Spectra obtained with a phase insensitive acousto-electric transducer (AET) combined with a frequency tracked tone-burst spectroscopy (TBS) method are presented. Analysis of the test configuration is shown to produce spectra consistent with that obtained with the AET-TBS combination.

  14. Pulse-shaping versus digital backpropagation in 224Gbit/s PDM-16QAM transmission.

    PubMed

    Behrens, Carsten; Makovejs, Sergejs; Killey, Robert I; Savory, Seb J; Chen, Ming; Bayvel, Polina

    2011-07-04

    We investigate the transmission performance of 224Gbit/s polarization-division-multiplexed 16-state quadrature amplitude modulation (PDM-16QAM) for systems employing standard single mode fiber (SSMF) and erbium doped fiber amplifiers (EDFAs). We consider the effectiveness of return-to-zero (RZ) data pulses with varying duty cycles and digital backpropagation (DBP) in reducing nonlinear distortion in wavelength-division- multiplexed (WDM) links with 3, 5, 7 and 9 channels. Similar improvement in transmission reach of 18-25% was achieved either by pulse-carving at the transmitter or by DBP, yielding maximum transmission distances of up to 1760km for RZ-pulse-shapes and 1280km for NRZ.

  15. Multibeam second-harmonic generation by spatiotemporal shaping of femtosecond pulses.

    PubMed

    Martínez-Cuenca, Raúl; Mendoza-Yero, Omel; Alonso, Benjamín; Sola, Íñigo Juan; Mínguez-Vega, Gladys; Lancis, Jesús

    2012-03-01

    We present a technique for efficient generation of the second-harmonic signal at several points of a nonlinear crystal simultaneously. Multispot operation is performed by using a diffractive optical element that splits the near-infrared light of a mode-locked Ti:sapphire laser into an arbitrary array of beams that are transformed into an array of foci at the nonlinear crystal. We show that, for pulse temporal durations under 100 fs, spatiotemporal shaping of the pulse is mandatory to overcome chromatic dispersion effects that spread both in space and time the foci showing a reduced peak intensity that prevents nonlinear phenomena. We experimentally demonstrate arbitrary irradiance patterns for the second-harmonic signal consisting of more than 100 spots with a multipass amplifier delivering 28 fs, 0.8 mJ pulses at 1 kHz repetition rate.

  16. Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Bobkov, K. K.; Bubnov, M. M.; Aleshkina, S. S.; Likhachev, M. E.

    2017-01-01

    Experimental observation of long-term output mode shape degradation in pulsed Yb-doped fiber amplifiers is reported for the first time. The process occurs in large mode area Yb-doped fibers and is caused by the formation of the long period grating responsible for power transfer from the fundamental mode to the first high-order mode. The linkage between the process and photodarkening was revealed.

  17. Parametrically polarization-shaped pulses via a hollow-core photonic crystal fiber

    SciTech Connect

    Weise, Fabian; Achazi, Georg; Lindinger, Albrecht

    2010-11-15

    We present a procedure to generate parametrically shaped pulses after propagation through a microstructured hollow-core photonic crystal fiber. The properties of the fiber are characterized and employed to analytically design sequences of subpulses which are available after the fiber. In these sequences, each subpulse can be individually controlled in its physically intuitive parameters: position in time, energy, phase, and chirp as well as the polarization state with orientation, ellipticity, and helicity. Various endoscopic applications may arise from this approach.

  18. Phase-cycling coherent anti-Stokes Raman scattering using shaped femtosecond laser pulses.

    PubMed

    Li, Baolei; Warren, Warren S; Fischer, Martin C

    2010-12-06

    We demonstrate a homodyne coherent anti-Stokes Raman scattering (CARS) technique based on femtosecond laser pulse shaping. This technique utilizes fast phase cycling to extract nonlinear Raman signatures with a self-generated reference signal acting as a local oscillator. The local oscillator is generated at the focus and is intrinsically stable relative to the Raman signal even in highly scattering samples. We can therefore retrieve phase information from the Raman signal and can suppress the ubiquitous non-resonant background.

  19. Micro drilling using deformable mirror for beam shaping of ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Smarra, Marco; Strube, Anja; Dickmann, Klaus

    2016-03-01

    Using ultra-short laser pulses for micro structuring or drilling applications reduces the thermal influence to the surrounding material. The best achievable beam profile equals a Gaussian beam. Drilling with this beam profile results in cylindrical holes. To vary the shape of the holes, the beam can either be scanned or - for single pulse and percussion drilling - manipulated by masks or lenses. A high flexible method for beam shaping can be realized by using a deformable mirror. This mirror contains a piezo-electric ceramic, which can be deformed by an electric potential. By separating the ceramic into independent controllable segments, the shape of the surface can be varied individually. Due to the closed surface of the mirror, there is no loss of intensity due to diffraction. The mirror deformation is controlled by Zernike polynomials and results e.g. in a lens behavior. In this study a deformable mirror was used to generate e.g. slits in thin steel foils by percussion drilling using ultra-short laser pulses. The influence of the cylindrical deformation to the laser beam and the resulting geometry of the generated holes was studied. It was demonstrated that due to the high update rate up to 150 Hz the mirror surface can be varied in each scan cycle, which results in a high flexible drilling process.

  20. Forward-Masking Patterns Produced by Symmetric and Asymmetric Pulse Shapes in Electric Hearing

    PubMed Central

    MACHEREY, OLIVIER; van WIERINGEN, ASTRID; CARLYON, ROBERT P.; DHOOGE, INGEBORG; WOUTERS, JAN

    2010-01-01

    Two forward-masking experiments were conducted with six cochlear implant listeners to test whether asymmetric pulse shapes would improve the place-specificity of stimulation compared to symmetric ones. The maskers were either cathodic-first symmetric biphasic, pseudomonophasic (i.e. with a second anodic phase longer and lower in amplitude than the first phase), or “delayed pseudomonophasic” (identical to pseudomonophasic but with an inter-phase gap) stimuli. In Experiment 1, forward-masking patterns for monopolar maskers were obtained by keeping each masker fixed on a middle electrode of the array and measuring the masked thresholds of a monopolar signal presented on several other electrodes. The results were very variable and no difference between pulse shapes was found. In Experiment 2, six maskers were used in a wide bipolar (BP + 9) configuration: the same three pulse shapes as in Experiment 1, either cathodic-first relative to the most apical or relative to the most basal electrode of the bipolar channel. The pseudomonophasic masker showed a stronger excitation proximal to the electrode of the bipolar pair for which the short, high-amplitude phase was anodic. However, no difference was obtained with the symmetric and, more surprisingly, with the delayed pseudomonophasic maskers. Implications for cochlear implant design are discussed. PMID:20058980

  1. Root Raised Cosine (RRC) Filters and Pulse Shaping in Communication Systems

    NASA Technical Reports Server (NTRS)

    Cubukcu, Erkin

    2012-01-01

    This presentation briefly discusses application of the Root Raised Cosine (RRC) pulse shaping in the space telecommunication. Use of the RRC filtering (i.e., pulse shaping) is adopted in commercial communications, such as cellular technology, and used extensively. However, its use in space communication is still relatively new. This will possibly change as the crowding of the frequency spectrum used in the space communication becomes a problem. The two conflicting requirements in telecommunication are the demand for high data rates per channel (or user) and need for more channels, i.e., more users. Theoretically as the channel bandwidth is increased to provide higher data rates the number of channels allocated in a fixed spectrum must be reduced. Tackling these two conflicting requirements at the same time led to the development of the RRC filters. More channels with wider bandwidth might be tightly packed in the frequency spectrum achieving the desired goals. A link model with the RRC filters has been developed and simulated. Using 90% power Bandwidth (BW) measurement definition showed that the RRC filtering might improve spectrum efficiency by more than 75%. Furthermore using the matching RRC filters both in the transmitter and receiver provides the improved Bit Error Rate (BER) performance. In this presentation the theory of three related concepts, namely pulse shaping, Inter Symbol Interference (ISI), and Bandwidth (BW) will be touched upon. Additionally the concept of the RRC filtering and some facts about the RRC filters will be presented

  2. A generalization of MSK-type signaling based upon input data symbol pulse shaping

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1976-01-01

    Minimum-shift-keying (MSK), which is a special case of continuous phase frequency-shift-keying (CPFSK) with frequency deviation ratio equal to 0.5, is known to be spectrally equivalent to a form of offset quadrature phase-shift-keying (OQPSK) in which the symbol pulse shape is a half-cycle sinusoid rather than the usual rectangular form. Appropriate shaping of the input data symbols allows one to generate an entire class of constant envelope, MSK-type signals, whose spectral properties are in some applications more desirable than those of MSK or OQPSK. The present study derives and presents a set of conditions on the input pulse shaping which in turn describes the class of envelope shapes allowable. The autocorrelation function and power spectral density of this class of signals are then derived, and specific examples are given to illustrate the desirable spectral properties. Such properties are important considerations in system design where interchannel and intersymbol interference degradations must be kept to a minimum.

  3. Adaptive repair device concept with shape memory polymer

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Liu, Liwu; Lan, Xin; Su, Bo; Leng, Jinsong; Liu, Yanju

    2017-02-01

    Shape memory polymer (SMP) is a new kind of intelligent polymer, which can be activated by an external stimulus to change and subsequently recover its original shape. Due to this shape memory effect, SMP can be used in a wide range of engineering and biomedical applications. This paper details an application of SMP on manufacturing of a fracture fixation. The basic properties were characterized by dynamic mechanical analysis, and the stress relaxation and fatigue were established. An SMP-based fracture fixator was designed, analyzed, and optimized. Finally, the fixator was fabricated and the fixed effects were verified by experiment in vitro. The performance of the SMP-based fixator was excellent and proved to be a potential replacement for the traditional fracture fixator.

  4. Polarization-independent etching of fused silica based on electrons dynamics control by shaped femtosecond pulse trains for microchannel fabrication.

    PubMed

    Yan, X; Jiang, L; Li, X; Zhang, K; Xia, B; Liu, P; Qu, L; Lu, Y

    2014-09-01

    We propose an approach to realize polarization-independent etching of fused silica by using temporally shaped femtosecond pulse trains to control the localized transient electrons dynamics. Instead of nanograting formation using traditional unshaped pulses, for the pulse delay of pulse trains larger than 1 ps, coherent field-vector-related coupling is not possible and field orientation is lost. The exponential growth of the periodic structures is interrupted. In this case, disordered and interconnected nanostructures are formed, which is probably the main reason of etching independence on the laser polarization. As an application example, square-wave-shaped and arc-shaped microchannels are fabricated by using pulse trains to demonstrate the advantage of the proposed method in fabricating high-aspect-ratio and three-dimensional microchannels.

  5. Neutron/gamma pulse shape discrimination (PSD) in plastic scintillators with digital PSD electronics

    NASA Astrophysics Data System (ADS)

    Hutcheson, Anthony L.; Simonson, Duane L.; Christophersen, Marc; Phlips, Bernard F.; Charipar, Nicholas A.; Piqué, Alberto

    2013-05-01

    Pulse shape discrimination (PSD) is a common method to distinguish between pulses produced by gamma rays and neutrons in scintillator detectors. This technique takes advantage of the property of many scintillators that excitations by recoil protons and electrons produce pulses with different characteristic shapes. Unfortunately, many scintillating materials with good PSD properties have other, undesirable properties such as flammability, toxicity, low availability, high cost, and/or limited size. In contrast, plastic scintillator detectors are relatively low-cost, and easily handled and mass-produced. Recent studies have demonstrated efficient PSD in plastic scintillators using a high concentration of fluorescent dyes. To further investigate the PSD properties of such systems, mixed plastic scintillator samples were produced and tested. The addition of up to 30 wt. % diphenyloxazole (DPO) and other chromophores in polyvinyltoluene (PVT) results in efficient detection with commercial detectors. These plastic scintillators are produced in large diameters up to 4 inches by melt blending directly in a container suitable for in-line detector use. This allows recycling and reuse of materials while varying the compositions. This strategy also avoids additional sample handling and polishing steps required when using removable molds. In this presentation, results will be presented for different mixed-plastic compositions and compared with known scintillating materials

  6. Fiber optic based heart-rate and pulse pressure shape monitor

    NASA Astrophysics Data System (ADS)

    Kokkinos, D.; Dehipawala, S.; Holden, T.; Cheung, E.; Musa, M.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2012-01-01

    Macro-bending fiber optic based heart-rate and pulse pressure shape monitors have been fabricated and tested for non-invasive measurement. Study of fiber bending loss and its stability and variations are very important especially for sensor designs based on optical fiber bending. Wavelengths from 1300 nm to 1550 nm have been used with fabrication based on multimode fiber, single mode fiber, and photonic crystal fiber. The smallest studied curvature would demand the use of single mode standard fibers. The collected data series show high quality suitable for random series analysis. Fractal property of optically measured pulse pressure data has been observed to correlate with physical activity. Correlation to EKG signal suggests that the fabricated monitors are capable of measuring the differential time delays at wrist and leg locations. The difference in time delay could be used to formulate a velocity parameter for diagnostics. The pulse shape information collected by the fiber sensor provides additional parameters for the analysis of the fractal nature of the heart. The application to real time measurement of blood vessel stiffness with this optical non-invasive fiber sensor is discussed.

  7. Pulse shape effects on the measurement of temperature using a Brillouin-based optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Galindez, Carlos; Madruga, Francisco-Javier; Cobo, Adolfo; Conde, Olga; Lopez-Higuera, Jose-Miguel

    2007-04-01

    Distributed fiber sensing based on Brillouin gain scattering (BGS) principle is a useful way to develop devices capable to measure temperature or/and strain in optical fibers. New effects or technologies that could achieve a larger distance and/or a better spatial resolution are a topic of special interest in this fiber sensing area. The influence of the probe-pulse shape in the interaction between the pulsed light and the continuous wave laser in a pump-probe system is presented. The purpose of this study is to improve the spatial resolution of the measurement without losing stability in the BGS. Also it is showed how the backscattering Brillouin gain is affected by inducing variations on the final value of the BGS intensity; this effect is illustrated by using an experimental set up based on the Brillouin optical time-domain analysis (BOTDA). Theoretical analysis of the probe pulse in the Brillouin shift and intensity value using triangular, sinc and saw tooth shapes around the medium phonon life time (~10ns) are presented; as well as the experimental results and possible applications are explained.

  8. Shape anomaly detection under strong measurement noise: An analytical approach to adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Krasichkov, Alexander S.; Grigoriev, Eugene B.; Bogachev, Mikhail I.; Nifontov, Eugene M.

    2015-10-01

    We suggest an analytical approach to the adaptive thresholding in a shape anomaly detection problem. We find an analytical expression for the distribution of the cosine similarity score between a reference shape and an observational shape hindered by strong measurement noise that depends solely on the noise level and is independent of the particular shape analyzed. The analytical treatment is also confirmed by computer simulations and shows nearly perfect agreement. Using this analytical solution, we suggest an improved shape anomaly detection approach based on adaptive thresholding. We validate the noise robustness of our approach using typical shapes of normal and pathological electrocardiogram cycles hindered by additive white noise. We show explicitly that under high noise levels our approach considerably outperforms the conventional tactic that does not take into account variations in the noise level.

  9. Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses.

    PubMed

    Woo, Jihwan; Miller, Charles A; Abbas, Paul J

    2009-05-01

    The Hodgkin-Huxley (HH) model does not simulate the significant changes in auditory nerve fiber (ANF) responses to sustained stimulation that are associated with neural adaptation. Given that the electric stimuli used by cochlear prostheses can result in adapted responses, a computational model incorporating an adaptation process is warranted if such models are to remain relevant and contribute to related research efforts. In this paper, we describe the development of a modified HH single-node model that includes potassium ion ( K(+)) concentration changes in response to each action potential. This activity-related change results in an altered resting potential, and hence, excitability. Our implementation of K(+)-related changes uses a phenomenological approach based upon K(+) accumulation and dissipation time constants. Modeled spike times were computed using repeated presentations of modeled pulse-train stimuli. Spike-rate adaptation was characterized by rate decrements and time constants and compared against ANF data from animal experiments. Responses to relatively low (250 pulse/s) and high rate (5000 pulse/s) trains were evaluated and the novel adaptation model results were compared against model results obtained without the adaptation mechanism. In addition to spike-rate changes, jitter and spike intervals were evaluated and found to change with the addition of modeled adaptation. These results provide one means of incorporating a heretofore neglected (although important) aspect of ANF responses to electric stimuli. Future studies could include evaluation of alternative versions of the adaptation model elements and broadening the model to simulate a complete axon, and eventually, a spatially realistic model of the electrically stimulated nerve within extracochlear tissues.

  10. Adaptive electron beam shaping using a photoemission gun and spatial light modulator

    NASA Astrophysics Data System (ADS)

    Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; Kiefer, Jacob; Bazarov, Ivan

    2015-02-01

    The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam image to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.

  11. Simulated annealing algorithm applied in adaptive near field beam shaping

    NASA Astrophysics Data System (ADS)

    Yu, Zhan; Ma, Hao-tong; Du, Shao-jun

    2010-11-01

    Laser beam shaping is required in many applications for improving the efficiency of the laser systems. In this paper, the near field beam shaping based on the combination of simulated annealing algorithm and Zernike polynomials is demonstrated. Considering phase distribution can be represented by the expansion of Zernike polynomials, the problem of searching appropriate phase distribution can be changed into a problem of optimizing a vector made up of Zernike coefficients. The feasibility of this method is validated theoretically by translating the Gaussian beam into square quasi-flattop beam in the near field. Finally, the closed control loop system constituted by phase only liquid crystal spatial light modulator and simulated annealing algorithm is used to prove the validity of the technique. The experiment results show that the system can generate laser beam with desired intensity distributions.

  12. Cell tracking using phase-adaptive shape prior.

    PubMed

    Law, Y N

    2013-11-01

    Automated tracking of cell population is very crucial for quantitative measurements of dynamic cell-cycle behaviour of individual cells. This problem involves several subproblems and a high accuracy of each step is essential to avoid error propagation. In this paper, we propose a holistic three-component system to tackle this problem. For each phase, we first learn a mean shape as well as a model of the temporal dynamics of transformation, which are used for estimating a shape prior for the cell in the current frame. We then segment the cell using a level set-based shape prior model. Finally, we identify its phase based on the goodness-of-fit of the data to the segmentation model. This phase information is also used for fine-tuning the segmentation result. We evaluate the performance of our method empirically in various aspects and in tracking individual cells from HeLa H2B-GFP cell population. Highly accurate validation results confirm the robustness of our method in many realistic scenarios and the essentiality of each component of our integrating system.

  13. Shaping Embodied Neural Networks for Adaptive Goal-directed Behavior

    PubMed Central

    Chao, Zenas C.; Bakkum, Douglas J.; Potter, Steve M.

    2008-01-01

    The acts of learning and memory are thought to emerge from the modifications of synaptic connections between neurons, as guided by sensory feedback during behavior. However, much is unknown about how such synaptic processes can sculpt and are sculpted by neuronal population dynamics and an interaction with the environment. Here, we embodied a simulated network, inspired by dissociated cortical neuronal cultures, with an artificial animal (an animat) through a sensory-motor loop consisting of structured stimuli, detailed activity metrics incorporating spatial information, and an adaptive training algorithm that takes advantage of spike timing dependent plasticity. By using our design, we demonstrated that the network was capable of learning associations between multiple sensory inputs and motor outputs, and the animat was able to adapt to a new sensory mapping to restore its goal behavior: move toward and stay within a user-defined area. We further showed that successful learning required proper selections of stimuli to encode sensory inputs and a variety of training stimuli with adaptive selection contingent on the animat's behavior. We also found that an individual network had the flexibility to achieve different multi-task goals, and the same goal behavior could be exhibited with different sets of network synaptic strengths. While lacking the characteristic layered structure of in vivo cortical tissue, the biologically inspired simulated networks could tune their activity in behaviorally relevant manners, demonstrating that leaky integrate-and-fire neural networks have an innate ability to process information. This closed-loop hybrid system is a useful tool to study the network properties intermediating synaptic plasticity and behavioral adaptation. The training algorithm provides a stepping stone towards designing future control systems, whether with artificial neural networks or biological animats themselves. PMID:18369432

  14. 3-D Modeling of Modifications to the Z Accelerator for Generating Shaped Pulses

    NASA Astrophysics Data System (ADS)

    Pointon, Timothy D.; Savage, Mark E.; Harjes, Henry C.

    2002-12-01

    One option to temporally shape the power pulse at the load on the Z accelerator at Sandia National Laboratories is timing delays between the 36 pulse-forming lines. However, this can lead to the formation of magnetic nulls in the vacuum section, with the potential for greatly increasing electron losses to—and possibly damaging—the anode. Three-dimensional computer simulations are now being conducted to study this concern. The simulation geometry models a single level of Z, with a radial transmission line driven by nine parallel-plate lines. Every third line is driven early relative to the other six. Results from preliminary runs without particle emission are presented. Voltage and current diagnostics agree quite well with circuit simulations, and spatial field profiles illustrate the evolution of the magnetic nulls in detail.

  15. Improving the power efficiency of SOA-based UWB over fiber systems via pulse shape randomization

    NASA Astrophysics Data System (ADS)

    Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.

    2016-09-01

    A simple pulse shape randomization scheme is considered in this paper for improving the performance of ultra wide band (UWB) communication systems using On Off Keying (OOK) or pulse position modulation (PPM) formats. The advantage of the proposed scheme, which can be either employed for impulse radio (IR) or for carrier-based systems, is first theoretically studied based on closed-form derivations of power spectral densities. Then, we investigate an application to an IR-UWB over optical fiber system, by utilizing the 4th and 5th orders of Gaussian derivatives. Our approach proves to be effective for 1 Gbps-PPM and 2 Gbps-OOK transmissions, with an advantage in terms of power efficiency for short distances. We also examine the performance for a system employing an in-line Semiconductor Optical Amplifier (SOA) with the view to achieve a reach extension, while limiting the cost and system complexity.

  16. Parameter adaptation in a simplified pulse-coupled neural network

    NASA Astrophysics Data System (ADS)

    Szekely, Geza; Lindblad, Thomas

    1999-03-01

    In a general purpose pulse coupled neural network (PCNN) algorithm the following parameters are used: 2 weight matrices, 3 time constants, 3 normalization factors and 2 further parameters. In a given application, one has to determine the near optimal parameter set to achieve the desired goal. Here a simplified PCNN is described which contains a parameter fitting part, in the least squares sense. Given input and a desired output image, the program is able to determine the optimal value of a selected PCNN parameter. This method can be extended to more general PCNN algorithms, because partial derivatives are not required for the fitting. Only the sum of squares of the differences is used.

  17. Pulse-shape-dependent strong-field ionization viewed with velocity-map imaging

    SciTech Connect

    Geissler, Dominik; Weinacht, Thomas C.; Rozgonyi, Tamas; Gonzalez-Vazquez, Jesus

    2011-11-15

    We explore strong field molecular ionization with velocity map imaging of fragment ions produced by dissociation following ionization. Our measurements and ab initio electronic structure calculations allow us to identify various electronic states of the molecular cation populated during ionization, with multiple pathways to individual states highlighted by the pulse shape dependence. In addition, we show that relative populations can be reconstructed from our measurements. The results illustrate how strong field molecular ionization can be complicated by the presence and interaction of multiple cationic states during ionization.

  18. Pulse-shape discrimination in neutron depth profiling radioanalytical methods. Part II

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Červená, J.; Hnatowicz, V.; Havránek, V.; Hoffmann, J.; Pošta, S.; Fink, D.

    1999-01-01

    Pulse shape discrimination (PSD) is used for the reduction of radiation background in the depth sensitive neutron depth profiling method (NDP) based on the detection of charged particles from the (n, α) and (n, p) nuclear reactions induced by thermal neutrons on some light elements. The experimental NDP-PSD arrangement is described and its performance is demonstrated on the measurement of real samples. Background reduction by several orders of magnitude in the region below 1 MeV leads to a corresponding sensitivity improvement and to an extension of the measurable depth region for some light elements.

  19. Digital pulse-shape analysis with a TRACE early silicon prototype

    NASA Astrophysics Data System (ADS)

    Mengoni, D.; Dueñas, J. A.; Assié, M.; Boiano, C.; John, P. R.; Aliaga, R. J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzáles, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V. V.; Perez-Vidal, R.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente Dobón, J. J.

    2014-11-01

    A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 μm thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.

  20. In situ imaging of hole shape evolution in ultrashort pulse laser drilling.

    PubMed

    Döring, Sven; Richter, Sören; Nolte, Stefan; Tünnermann, Andreas

    2010-09-13

    For the first time, in situ the hole shape evolution during ultrashort pulse laser drilling in semiconductor material is imaged. The trans-illumination of the sample at a wavelength of 1.06 µm is projected onto a standard CCD camera during the ablation, providing an image of the contour of the ablated structure perpendicular to the irradiation for drilling. This demonstrated technique enables a direct, high resolution investigation of the temporal evolution of the drilling process in the depth of the material without complex sample preparation or post processing.

  1. Boundary conditions for arbitrarily shaped and tightly focused laser pulses in electromagnetic codes

    NASA Astrophysics Data System (ADS)

    Thiele, Illia; Skupin, Stefan; Nuter, Rachel

    2016-09-01

    Investigation of laser matter interaction with electromagnetic codes requires to implement sources for the electromagnetic fields. A way to do so is to prescribe the fields at the numerical box boundaries in order to achieve the desired fields inside the numerical box. Here we show that the often used paraxial approximation can lead to unexpected field profiles with strong impact on the laser matter interaction results. We propose an efficient numerical algorithm to compute the required laser boundary conditions consistent with the Maxwell's equations for arbitrarily shaped, tightly focused laser pulses.

  2. Temperature gain correction for CsI(Tl) detection systems based on digital pulse shape analysis

    NASA Astrophysics Data System (ADS)

    Silva, J.; Fiori, E.; Isaak, J.; Löher, B.; Savran, D.; Vencelj, M.; Wamers, F.

    2015-03-01

    In this paper we propose a pulse shape based method for monitoring the interior temperature of a CsI(Tl) crystal in order to correct the temperature dependence in the energy calibration of the corresponding detector system. The gain dependence on temperature of the CsI(Tl) detector was measured using both, a photomultiplier tube (PMT) and an avalanche photodiode (APD) readout photosensor. The analysis shows that the gain shifts due to temperature variations can be corrected to a precision of better than 1% with both the PMT and the APD, well below the CsI(Tl) intrinsic energy resolution for ~1 MeV γ-rays.

  3. Adaptation in hindsight: dynamics and drivers shaping urban wastewater systems.

    PubMed

    Neumann, Marc B; Rieckermann, Jörg; Hug, Thomas; Gujer, Willi

    2015-03-15

    Well-planned urban infrastructure should meet critical loads during its design lifetime. In order to proceed with design, engineers are forced to make numerous assumptions with very little supporting information about the development of various drivers. For the wastewater sector, these drivers include the future amount and composition of the generated wastewater, effluent requirements, technologies, prices of inputs such as energy or chemicals, and the value of outputs produced such as nutrients for fertilizer use. When planning wastewater systems, there is a lack of methods to address discrepancies between the timescales at which fundamental changes in these drivers can occur, and the long physical life expectancy of infrastructure (on the order of 25-80 years). To explore these discrepancies, we take a hindsight perspective of the long-term development of wastewater infrastructure and assess the stability of assumptions made during previous designs. Repeatedly we find that the drivers influencing wastewater loads, environmental requirements or technological innovation can change at smaller timescales than the infrastructure design lifetime, often in less than a decade. Our analysis shows that i) built infrastructure is continuously confronted with challenges it was not conceived for, ii) significant adaptation occurs during a structure's lifetime, and iii) "muddling-through" is the pre-dominant strategy for adaptive management. As a consequence, we argue, there is a need to explore robust design strategies which require the systematic use of scenario planning methods and instruments to increase operational, structural, managerial, institutional and financial flexibility. Hindsight studies, such as this one, may inform the development of robust design strategies and assist in the transition to more explicit forms of adaptive management for urban infrastructures.

  4. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity

    PubMed Central

    Rodriguez, Paulo C.; Ochoa, Augusto C.; Al-Khami, Amir A.

    2017-01-01

    Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted. PMID:28223985

  5. The shape effect of space debris on recoil impulse by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Wang, Chenglin; Zhang, Yan; Wang, Kunpeng

    2016-10-01

    Removing space debris by high-energy pulsed laser may be the most effective way to mitigate the threat posed by the increasing space debris. Laser ablation of a thin surface layer causes recoil impulse, which will lower the orbit perigee of space debris and accelerate the atmospheric capture. When the laser beam vertically irradiates a flat debris, it requires a certain laser fluence to reach the optimal impulse coupling, and the recoil impulse is parallel to the laser beam. However, the incident laser fluence varies in different parts of a non-flat surface. We have taken the shape effect into account to propose a numerical method of calculating the recoil impulse. Taking cylinder debris as the target, we have compared the recoil impulse in different laser fluences through simulation experiments, which implies that a higher laser fluence than the optimal one is needed to obtain a larger recoil impulse for irregularly shaped space debris.

  6. Demonstration of Radiation Pulse Shaping with Nested-Tungsten-Wire-Array Z Pinches for High-Yield Inertial Confinement Fusion

    SciTech Connect

    Cuneo, M.E.; Vesey, R.A.; Sinars, D.B.; Waisman, E.M.; Lemke, R.W.; Bliss, D.E.; Stygar, W.A.; Porter, J.L.; Mazarakis, M.G.; Chandler, G.A.; Mehlhorn, T.A.; Chittenden, J.P.; Lebedev, S.V.; Schroen, D.G.

    2005-10-28

    Nested wire-array Z pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH{sub 2} foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations.

  7. Pulse Compression Degradation Due to Open Loop Adaptive Cancellation. Part 3.

    DTIC Science & Technology

    1991-08-23

    An exact expression for the perturbed range sidelobe level of a compressed pulse that has been preprocessed through an adaptive canceller is derived...good approximate expression is also obtained for evaluating the perturbed range sidelobe level. This report derives the number of independent samples per...channel (main and auxiliaries) necessary so that the average adaptive range sidelobe level is within 3 dB of the quiescent range sidelobe level

  8. Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask.

    PubMed

    Wilson, Jesse W; Schlup, Philip; Bartels, Randy A

    2007-07-09

    An ultrafast pulse shaper, capable of both phase and amplitude shaping, is constructed using a single high-resolution liquid crystal phase mask. The shaper is calibrated with an inline spectral interferometry technique. Amplitude shaping is accomplished by writing to the mask a phase grating, whose period is smaller than the spectral focus, diffracting away selected frequencies in a controllable manner.

  9. Cellular pulse-coupled neural network with adaptive weights for image segmentation and its VLSI implementation

    NASA Astrophysics Data System (ADS)

    Schreiter, Juerg; Ramacher, Ulrich; Heittmann, Arne; Matolin, Daniel; Schuffny, Rene

    2004-05-01

    We present a cellular pulse coupled neural network with adaptive weights and its analog VLSI implementation. The neural network operates on a scalar image feature, such as grey scale or the output of a spatial filter. It detects segments and marks them with synchronous pulses of the corresponding neurons. The network consists of integrate-and-fire neurons, which are coupled to their nearest neighbors via adaptive synaptic weights. Adaptation follows either one of two empirical rules. Both rules lead to spike grouping in wave like patterns. This synchronous activity binds groups of neurons and labels the corresponding image segments. Applications of the network also include feature preserving noise removal, image smoothing, and detection of bright and dark spots. The adaptation rules are insensitive for parameter deviations, mismatch and non-ideal approximation of the implied functions. That makes an analog VLSI implementation feasible. Simulations showed no significant differences in the synchronization properties between networks using the ideal adaptation rules and networks resembling implementation properties such as randomly distributed parameters and roughly implemented adaptation functions. A prototype is currently being designed and fabricated using an Infineon 130nm technology. It comprises a 128 × 128 neuron array, analog image memory, and an address event representation pulse output.

  10. Simulation results of Pulse Shape Discrimination (PSD) for background reduction in INTEGRAL Spectrometer (SPI) germanium detectors

    NASA Technical Reports Server (NTRS)

    Slassi-Sennou, S. A.; Boggs, S. E.; Feffer, P. T.; Lin, R. P.

    1997-01-01

    Pulse Shape Discrimination (PSD) for background reduction will be used in the INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL) imaging spectrometer (SPI) to improve the sensitivity from 200 keV to 2 MeV. The observation of significant astrophysical gamma ray lines in this energy range is expected, where the dominant component of the background is the beta(sup -) decay in the Ge detectors due to the activation of Ge nuclei by cosmic rays. The sensitivity of the SPI will be improved by rejecting beta(sup -) decay events while retaining photon events. The PSD technique will distinguish between single and multiple site events. Simulation results of PSD for INTEGRAL-type Ge detectors using a numerical model for pulse shape generation are presented. The model was shown to agree with the experimental results for a narrow inner bore closed end cylindrical detector. Using PSD, a sensitivity improvement factor of the order of 2.4 at 0.8 MeV is expected.

  11. Baseband pulse shaping for pi /4 FQPSK in nonlinearly amplified mobile channels

    NASA Astrophysics Data System (ADS)

    Subasinghe-Dias, Dileeka; Feher, Kamilo

    1994-10-01

    We apply baseband pulse shaping techniques for pi /4 QPSK in order to reduce the spectral regeneration of the bandlimited carrier after nonlinear amplification. These Feher's patented techniques, namely, pi /4 FQPSK (superposed QPSK) and pi /4 CTPSK (controlled transition PSK), may also be noncoherently demodulated. Application of these techniques is in fast fading, power efficient channels, typical of the mobile radio environment. Patents related to FQPSK are described. Computer simulation and experimental studies demonstrate that with these baseband waveshaping techniques, carrier envelope fluctuations are significantly reduced, and the out-of-band power after nonlinear amplification is suppressed by up to 20 dB compared to pi /4 QPSK. In frequency noninterleaved land or satellite mobile radio systems operating in a nonlinear, fading and ACI (adjacent channel interference) environment, these techniques may achieve 20%-50% higher spectral efficiency compared to pi /4 QPSK. In mobile cellular systems using pi /4 QPSK, such as the new North American and the Japanese digital cellular systems, the application of these baseband pulse shapes may allow more convenient and less costly amplifier linearization.

  12. Shape-dependent magnetic properties of Co nanostructure arrays synthesized by pulsed laser melting

    NASA Astrophysics Data System (ADS)

    Shirato, N.; Sherrill, S.; Gangopadhyay, A. K.; Kalyanaraman, R.

    2016-06-01

    One dimensional (1D) magnetic nanowires show unique magnetic behaviors, such as large coercivity and high remanence, in comparison to the bulk and thin film materials. Here, planar arrays of Co nanowires, nanorods and nanoparticles were fabricated from thin Co films by a nanosecond pulsed laser interference irradiation technique. Magnetic force microscopy (MFM) and surface magneto-optic Kerr effect (SMOKE) techniques were used to study the individual and average magnetic properties of the nanostructures. Magnetic domain orientation was found to depend on the in-plane aspect ratio of the nanostructure. The magnetic orientation was out-of-plane for in-plane aspect ratio ranging from 1 to 1.4 and transitioned to an in-plane orientation for aspect ratios greater than 1.4 (such as in nanorods and nanowires). Our results also showed that polycrystalline Co nanowires showed much higher coercivity and remanence as compared to bulk and thin film materials, as well as shapes with smaller aspect ratio. This result was attributed mainly to the shape anisotropy. This study demonstrated that nanosecond pulsed laser synthesis is capable of fabricating various nanostructures in a simple, robust and rapid manner and SMOKE is a reliable technique to rapidly characterize such magnetic nanostructures.

  13. Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-12-01

    While progress towards hot-spot ignition has been made achieving an alpha-heating dominated state in high-foot implosion experiments [Hurricane et al., Nat. Phys. 12, 800 (2016)] on the National Ignition Facility, improvements are needed to increase the fuel compression for the enhancement of the neutron yield. A strategy is proposed to improve the fuel compression through the recompression of a shock/compression wave generated by the end of the main drive portion of a high-foot pulse shape. Two methods for the peak pulse recompression, namely, the decompression-and-recompression (DR) and simple recompression schemes, are investigated and compared. Radiation hydrodynamic simulations confirm that the peak pulse recompression can clearly improve fuel compression without significantly compromising the implosion stability. In particular, when the convergent DR shock is tuned to encounter the divergent shock from the capsule center at a suitable position, not only the neutron yield but also the stability of stagnating hot-spot can be noticeably improved, compared to the conventional high-foot implosions [Hurricane et al., Phys. Plasmas 21, 056314 (2014)].

  14. Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging.

    PubMed

    Fu, J C; Chen, C C; Chai, J W; Wong, S T C; Li, I C

    2010-06-01

    We propose an automatic hybrid image segmentation model that integrates the statistical expectation maximization (EM) model and the spatial pulse coupled neural network (PCNN) for brain magnetic resonance imaging (MRI) segmentation. In addition, an adaptive mechanism is developed to fine tune the PCNN parameters. The EM model serves two functions: evaluation of the PCNN image segmentation and adaptive adjustment of the PCNN parameters for optimal segmentation. To evaluate the performance of the adaptive EM-PCNN, we use it to segment MR brain image into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The performance of the adaptive EM-PCNN is compared with that of the non-adaptive EM-PCNN, EM, and Bias Corrected Fuzzy C-Means (BCFCM) algorithms. The result is four sets of boundaries for the GM and the brain parenchyma (GM+WM), the two regions of most interest in medical research and clinical applications. Each set of boundaries is compared with the golden standard to evaluate the segmentation performance. The adaptive EM-PCNN significantly outperforms the non-adaptive EM-PCNN, EM, and BCFCM algorithms in gray mater segmentation. In brain parenchyma segmentation, the adaptive EM-PCNN significantly outperforms the BCFCM only. However, the adaptive EM-PCNN is better than the non-adaptive EM-PCNN and EM on average. We conclude that of the three approaches, the adaptive EM-PCNN yields the best results for gray matter and brain parenchyma segmentation.

  15. Active pulse shaping for end-pumped Nd:YVO4 amplifier with high gain.

    PubMed

    Nie, Mingming; Liu, Qiang; Ji, Encai; Cao, Xuezhe; Fu, Xing; Gong, Mali

    2017-03-15

    We demonstrated the active shaping for a solid-state Nd:YVO4 amplifier with a high average gain of 39.2 dB. The average output power was 8.3 W with respect to the input power of 1 mW. A range of common and useful pulse shapes was generated at the final output. In addition, a very flat square pulse was produced with a root-mean-square less than 3% in amplitude. A numerical method was proposed to realize active shaping without an experimental test for the Nd:YVO4 amplifier, showing great potential for the design of lasers with both high peak power (>100  kW) and a desired pulse shape.

  16. Unsupervised learning approach to adaptive differential pulse code modulation.

    PubMed

    Griswold, N C; Sayood, K

    1982-04-01

    This research is concerned with investigating the problem of data compression utilizing an unsupervised estimation algorithm. This extends previous work utilizing a hybrid source coder which combines an orthogonal transformation with differential pulse code modulation (DPCM). The data compression is achieved in the DPCM loop, and it is the quantizer of this scheme which is approached from an unsupervised learning procedure. The distribution defining the quantizer is represented as a set of separable Laplacian mixture densities for two-dimensional images. The condition of identifiability is shown for the Laplacian case and a decision directed estimate of both the active distribution parameters and the mixing parameters are discussed in view of a Bayesian structure. The decision directed estimators, although not optimum, provide a realizable structure for estimating the parameters which define a distribution which has become active. These parameters are then used to scale the optimum (in the mean square error sense) Laplacian quantizer. The decision criteria is modified to prevent convergence to a single distribution which in effect is the default condition for a variance estimator. This investigation was applied to a test image and the resulting data demonstrate improvement over other techniques using fixed bit assignments and ideal channel conditions.

  17. Energy-optimal electrical-stimulation pulses shaped by the Least-Action Principle.

    PubMed

    Krouchev, Nedialko I; Danner, Simon M; Vinet, Alain; Rattay, Frank; Sawan, Mohamad

    2014-01-01

    Electrical stimulation (ES) devices interact with excitable neural tissue toward eliciting action potentials (AP's) by specific current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e.g. minimized side-effects) and engineering (e.g. maximized battery-life) efficiency. This has typically been addressed by simulation (of a given excitable-tissue model) and iterative numerical optimization with hard discontinuous constraints--e.g. AP's are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain--e.g. may converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP). First, we derive in closed form the general template of the membrane-potential's temporal trajectory, which minimizes the ES energy integral over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further validated by enabling a general comparison to the conventional simulation and optimization results from the literature, including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the pulse's shape whereas a rectangular pulse is most frequently

  18. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine

    2005-01-01

    Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element

  19. Athletic differences in the characteristics of the photoplethysmographic pulse shape: effect of maximal oxygen uptake and maximal muscular voluntary contraction.

    PubMed

    Wang, Anran; Yang, Lin; Liu, Chengyu; Cui, Jingxuan; Li, Yao; Yang, Xingxing; Zhang, Song; Zheng, Dingchang

    2015-01-01

    This study aimed to investigate the athletic differences in the characteristics of the photoplethysmographic (PPG) pulse shape. 304 athletes were enrolled and divided into three subgroups according to a typical sport classification in terms of the maximal oxygen uptake (MaxO2_low, MaxO2_middle and MaxO2_high groups) or the maximal muscular voluntary contraction (MMVC_low, MMVC_middle, and MMVC_high groups). Finger PPG pulses were digitally recorded and then normalized to derive the pulse area, pulse peak time T p , dicrotic notch time T n , and pulse reflection index (RI). The four parameters were finally compared between the three subgroups categorized by MaxO2 or by MMVC. In conclusion, it has been demonstrated by quantifying the characteristics of the PPG pulses in different athletes that MaxO2, but not MMVC, had significant effect on the arterial properties.

  20. The role of GABAergic inhibition in shaping directional selectivity of bat inferior collicular neurons determined with temporally patterned pulse trains.

    PubMed

    Zhou, X M; Jen, P H-S

    2002-11-01

    This study examined the role of GABAergic inhibition in shaping directional selectivity of neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. When determined with temporally patterned pulse trains at different pulse repetition rates, 93 inferior colliculus neurons displayed three types of directional selectivity curves. A directionally selective curve always showed a maximum to a certain azimuthal angle (the best angle). A hemifield curve showed a maximum to a range of contralateral azimuthal angles. A non-directional curve did not show a maximum to any particular azimuthal angles. Directional selectivity curves of 42% neurons changed from hemifield or non-directional to directionally selective and the best angles of 16-21% neurons shifted toward the midline with increasing pulse repetition rate of pulse trains. Directional selectivity curves of most (74%) neurons that discharged impulses to each pulse of a pulse train also became sharper with increasing pulse repetition rate of pulse trains. Bicuculline application produced more pronounced broadening of directional selective curves of inferior colliculus neurons at higher than at lower pulse repetition rates. As a result, pulse repetition rate-dependent directional selectivity of inferior colliculus neurons was abolished. Possible mechanisms and biological significance of these findings are discussed.

  1. Electro-bending characterization of adaptive 3D fiber reinforced plastics based on shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ashir, Moniruddoza; Hahn, Lars; Kluge, Axel; Nocke, Andreas; Cherif, Chokri

    2016-03-01

    The industrial importance of fiber reinforced plastics (FRPs) is growing steadily in recent years, which are mostly used in different niche products, has been growing steadily in recent years. The integration of sensors and actuators in FRP is potentially valuable for creating innovative applications and therefore the market acceptance of adaptive FRP is increasing. In particular, in the field of highly stressed FRP, structural integrated systems for continuous component parts monitoring play an important role. This presented work focuses on the electro-mechanical characterization of adaptive three-dimensional (3D)FRP with integrated textile-based actuators. Here, the friction spun hybrid yarn, consisting of shape memory alloy (SMA) in wire form as core, serves as an actuator. Because of the shape memory effect, the SMA-hybrid yarn returns to its original shape upon heating that also causes the deformation of adaptive 3D FRP. In order to investigate the influences of the deformation behavior of the adaptive 3D FRP, investigations in this research are varied according to the structural parameters such as radius of curvature of the adaptive 3D FRP, fabric types and number of layers of the fabric in the composite. Results show that reproducible deformations can be realized with adaptive 3D FRP and that structural parameters have a significant impact on the deformation capability.

  2. Efficient pulse compression for LPI waveforms based on a nonparametric iterative adaptive approach

    NASA Astrophysics Data System (ADS)

    Li, Zhengzheng; Nepal, Ramesh; Zhang, Yan; Blake, WIlliam

    2015-05-01

    In order to achieve low probability-of-intercept (LPI), radar waveforms are usually long and randomly generated. Due to the randomized nature, Matched filter responses (autocorrelation) of those waveforms can have high sidelobes which would mask weaker targets near a strong target, limiting radar's ability to distinguish close-by targets. To improve resolution and reduced sidelobe contaminations, a waveform independent pulse compression filter is desired. Furthermore, the pulse compression filter needs to be able to adapt to received signal to achieve optimized performance. As many existing pulse techniques require intensive computation, real-time implementation is infeasible. This paper introduces a new adaptive pulse compression technique for LPI waveforms that is based on a nonparametric iterative adaptive approach (IAA). Due to the nonparametric nature, no parameter tuning is required for different waveforms. IAA can achieve super-resolution and sidelobe suppression in both range and Doppler domains. Also it can be extended to directly handle the matched filter (MF) output (called MF-IAA), which further reduces the computational load. The practical impact of LPI waveform operations on IAA and MF-IAA has not been carefully studied in previous work. Herein the typical LPI waveforms such as random phase coding and other non- PI waveforms are tested with both single-pulse and multi-pulse IAA processing. A realistic airborne radar simulator as well as actual measured radar data are used for the validations. It is validated that in spite of noticeable difference with different test waveforms, the IAA algorithms and its improvement can effectively achieve range-Doppler super-resolution in realistic data.

  3. A photonic-assisted periodic triangular-shaped pulses generator based on FWM effect in an SOA

    NASA Astrophysics Data System (ADS)

    Yuan, Jin; Ning, Tigang; Li, Jing; Chen, Hongyao; Li, Yueqin; Zhang, Chan

    2016-12-01

    We propose a photonic-assisted triangular-shaped pulse train generator based on four-wave mixing effect (FWM) in a semiconductor optical amplifier (SOA). A dual-parallel Mach-Zehnder operated at quadrupling RF modulation is employed to generate two primary sidebands (±2nd) in spectrum of the triangular-shaped pulse. Then the FWM effect leads to generation of two new frequency components. By setting the modulation index and bias current of the SOA properly, the generated harmonics of optical intensity can be corresponding to the Fourier components of typical periodic triangular pulses. Finally, a triangular pulse train with tunable repetition rate can be obtained. Numerical simulations have been taken to evaluate the impact of several key parameters to make the scheme more practical.

  4. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  5. Novel thermal effect at nanoshell heating by pulsed laser irradiation: hoop-shaped hot zone formation.

    PubMed

    Avetisyan, Yuri A; Yakunin, Alexander N; Tuchin, Valery V

    2012-10-01

    Photonic nanotechnologies have good perspectives to be widely used in biophotonics. In this study we have developed an approach for calculation of nanoparticle temperature field accounting for absorbed local intensity at pulse laser radiation of composite spherical nanoparticles (nanoshells). This approach allowed us to analyze spatial inhomogeneities of light field diffracted into a nanoshell and corresponding distribution of the absorption energy and to provide numerical solution of time-dependent heat conduction equation accounting for corresponding spatially inhomogeneous distribution of heating sources. We were able to predict the appearance of a novel thermal effect - hoop-shaped hot zone on the nanoshell surface. The observed effect has potential applications in cell biology and medicine for controlled cell optoporation and nanosurgery, as well as cancer cell killing.

  6. Triplet harvesting plastic scintillators with neutron-gamma pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    van Loef, Edgar V.; Feng, Patrick; Markosyan, Gary; Shirwadkar, Urmila; Doty, Patrick; Shah, Kanai

    2014-09-01

    In this paper we report on plastic scintillators that contain organometallic iridium compounds as triplet harvesting complexes for neutron-gamma pulse shape discrimination (PSD). Our results show that these plastic scintillators have a relatively high light output (higher than BGO) and exhibit very good neutron-gamma PSD with a Figure-of-Merit of ≥ 2.0 at 2.5 MeVee cut-off energy. Under X-ray excitation, the radioluminescence spectrum exhibits a broad band between 400 and 650 nm peaking at 470 nm which is well-matched to bialkali photomultiplier tubes and UV-enhanced photodiodes. The scintillation decay due to Ir3+ luminescence is of the order of 1 us.

  7. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.

    2016-09-01

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.

  8. A real-time n/γ digital pulse shape discriminator based on FPGA.

    PubMed

    Li, Shiping; Xu, Xiufeng; Cao, Hongrui; Yuan, Guoliang; Yang, Qingwei; Yin, Zejie

    2013-02-01

    A FPGA-based real-time digital pulse shape discriminator has been employed to distinguish between neutrons (n) and gammas (γ) in the Neutron Flux Monitor (NFM) for International Thermonuclear Experimental Reactor (ITER). The discriminator takes advantages of the Field Programmable Gate Array (FPGA) parallel and pipeline process capabilities to carry out the real-time sifting of neutrons in n/γ mixed radiation fields, and uses the rise time and amplitude inspection techniques simultaneously as the discrimination algorithm to observe good n/γ separation. Some experimental results have been presented which show that this discriminator can realize the anticipated goals of NFM perfectly with its excellent discrimination quality and zero dead time.

  9. Statistical and Machine-Learning Classifier Framework to Improve Pulse Shape Discrimination System Design

    SciTech Connect

    Wurtz, R.; Kaplan, A.

    2015-10-28

    Pulse shape discrimination (PSD) is a variety of statistical classifier. Fully-­realized statistical classifiers rely on a comprehensive set of tools for designing, building, and implementing. PSD advances rely on improvements to the implemented algorithm. PSD advances can be improved by using conventional statistical classifier or machine learning methods. This paper provides the reader with a glossary of classifier-­building elements and their functions in a fully-­designed and operational classifier framework that can be used to discover opportunities for improving PSD classifier projects. This paper recommends reporting the PSD classifier’s receiver operating characteristic (ROC) curve and its behavior at a gamma rejection rate (GRR) relevant for realistic applications.

  10. Fast-Neutron Spectrometry Using a 3He Ionization Chamber and Digital Pulse Shape Analysis

    SciTech Connect

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-05-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type 3He proportional counter to measure the fast neutron spectra of bare 252Cf and 241AmBe neutron sources. Measurements have also been made to determine the attenuated fast neutron spectra of 252Cf shielded by several materials including water, graphite, liquid nitrogen, magnesium, and tungsten. Rise-time dPSA has been employed using the common rise-time approach for analyzing n +3He ? 1H + 3H ionization events and a new approach has been developed to improve the fidelity of these measurements. Simulations have been performed for the different experimental arrangements and are compared, demonstrating general agreement between the dPSA processed fast neutron spectra and predictions.

  11. Energy-Optimal Electrical-Stimulation Pulses Shaped by the Least-Action Principle

    PubMed Central

    Krouchev, Nedialko I.; Danner, Simon M.; Vinet, Alain; Rattay, Frank; Sawan, Mohamad

    2014-01-01

    Electrical stimulation (ES) devices interact with excitable neural tissue toward eliciting action potentials (AP’s) by specific current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e.g. minimized side-effects) and engineering (e.g. maximized battery-life) efficiency. This has typically been addressed by simulation (of a given excitable-tissue model) and iterative numerical optimization with hard discontinuous constraints - e.g. AP’s are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain - e.g. may converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP). First, we derive in closed form the general template of the membrane-potential’s temporal trajectory, which minimizes the ES energy integral over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further validated by enabling a general comparison to the conventional simulation and optimization results from the literature, including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the pulse’s shape whereas a rectangular pulse is most

  12. A Shape Memory Polymer Dialysis Needle Adapter for the Reduction of Hemodynamic Stress within Arteriovenous Grafts

    SciTech Connect

    Ortega, J M; Small, W; Wilson, T S; Benett, W; Loge, J; Maitland, D J

    2006-08-16

    A deployable, shape memory polymer adapter is investigated for reducing the hemodynamic stress caused by a dialysis needle flow within an arteriovenous graft. Computational fluid dynamics simulations of dialysis sessions with and without the adapter demonstrate that the adapter provides a significant decrease in the wall shear stress. In vitro flow visualization measurements are made within a graft model following delivery and actuation of a prototype shape memory polymer adapter. Vascular access complications resulting from arteriovenous (AV) graft failures account for over $1 billion per year in the health care costs of dialysis patients in the U.S.[1] The primary mode of failure of arteriovenous fistulas (AVF's) and polytetrafluoroethylene (PTFE) grafts is the development of intimal hyperplasia (IH) and the subsequent formation of stenotic lesions, resulting in a graft flow decline. The hemodynamic stresses arising within AVF's and PTFE grafts play an important role in the pathogenesis of IH. Studies have shown that vascular damage can occur in regions where there is flow separation, oscillation, or extreme values of wall shear stress (WSS).[2] Nevaril et al.[3] show that exposure of red blood cells to WSS's on the order of 1500 dynes/cm2 can result in hemolysis. Hemodynamic stress from dialysis needle flow has recently been investigated for the role it plays in graft failure. Using laser Doppler velocimetry measurements, Unnikrishnan et al.[4] show that turbulence intensities are 5-6 times greater in the AV flow when the needle flow is present and that increased levels of turbulence exist for approximately 7-8cm downstream of the needle. Since the AVF or PTFE graft is exposed to these high levels of hemodynamic stress several hours each week during dialysis sessions, it is quite possible that needle flow is an important contributor to vascular access occlusion.[4] We present a method for reducing the hemodynamic stress in an AV graft by tailoring the fluid

  13. Pulsed field actuation of Ni-Mn-Ga ferromagnetic shape memory alloy single crystal

    NASA Astrophysics Data System (ADS)

    Marioni, M.; Bono, D.; Banful, A. B.; del Rosario, M.; Rodriguez, E.; Peterson, B. W.; Allen, S. M.; O'Handley, R. C.

    2003-10-01

    Ferromagnetic Shape Memory Alloy Ni-Mn-Ga has twin boundaries in the martensitic phase that move when a suitable magnetic field is applied. In this fashion strains of up to 6% have been observed for static fields in single crystals [1]. Recently 2.5% strain has been demonstrated [2] in Ni-Mn-Ga single crystals for oscillating fields up to frequencies of 75 Hz (150 Hz actuation). This work studies the actuation of single crystals when pulsed fields are applied. Fields in the 0.4-1.5MA/m-range were generated in an air coil with rise times of the order of 1ms and below. The elongation of the samples is measured with a light beam reflected off the tip of the crystal. Single twin boundaries have been observed to advance 0.16 mm during 600 μsec-ong pulses. Actuation has been shown to be possible at least up to frequencies of 1700 Hz.

  14. LASER BIOLOGY AND MEDICINE: Arterial pulse shape measurement using self-mixing effect in a diode laser

    NASA Astrophysics Data System (ADS)

    Hast, J.; Myllylä, Risto; Sorvoja, H.; Miettinen, J.

    2002-11-01

    The self-mixing effect in a diode laser and the Doppler technique are used for quantitative measurements of the cardiovascular pulses from radial arteries of human individuals. 738 cardiovascular pulses from 10 healthy volunteers were studied. The Doppler spectrograms reconstructed from the Doppler signal, which is measured from the radial displacement of the radial artery, are compared to the first derivative of the blood pressure signals measured from the middle finger by the Penaz technique. The mean correlation coefficient between the Doppler spectrograms and the first derivative of the blood pressure signals was 0.84, with a standard deviation of 0.05. Pulses with the correlation coefficient less than 0.7 were neglected in the study. Percentage of successfully detected pulses was 95.7%. It is shown that cardiovascular pulse shape from the radial artery can be measured noninvasively by using the self-mixing interferometry.

  15. Communication: Analytical optimal pulse shapes obtained with the aid of genetic algorithms: Controlling the photoisomerization yield of retinal

    NASA Astrophysics Data System (ADS)

    Guerrero, R. D.; Arango, C. A.; Reyes, A.

    2016-07-01

    We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.

  16. Shape adaptation of long bone structures using a contour based approach.

    PubMed

    Roberts, M D; Hart, R T

    2005-06-01

    In this work, an approach for mechanically driven shape adaptation of long bone structures is presented which utilizes contour descriptions to track morphological changes at different bone cross sections. A script-based procedure is used to iteratively generate a solid geometry and finite element (FE) model from these contours, perform a stress analysis, and then update the contour shapes using the results of the stress analysis using a prescribed remodeling rule. Because a remeshing operation is performed at each timestep the method is able to effectively simulate large changes in geometry. Several examples of shape adaptation of idealized and geometrically accurate long-bone structures are presented using a variety of remodeling signals and parameters.

  17. Pulse width modulation-based temperature tracking for feedback control of a shape memory alloy actuator.

    PubMed

    Ayvali, Elif; Desai, Jaydev P

    2014-04-01

    This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories.

  18. Directed dewetting of amorphous silicon film by a donut-shaped laser pulse

    NASA Astrophysics Data System (ADS)

    Yoo, Jae-Hyuck; In, Jung Bin; Zheng, Cheng; Sakellari, Ioanna; Raman, Rajesh N.; Matthews, Manyalibo J.; Elhadj, Selim; Grigoropoulos, Costas P.

    2015-04-01

    Irradiation of a thin film with a beam-shaped laser is proposed to achieve site-selectively controlled dewetting of the film into nanoscale structures. As a proof of concept, the laser-directed dewetting of an amorphous silicon thin film on a glass substrate is demonstrated using a donut-shaped laser beam. Upon irradiation of a single laser pulse, the silicon film melts and dewets on the substrate surface. The irradiation with the donut beam induces an unconventional lateral temperature profile in the film, leading to thermocapillary-induced transport of the molten silicon to the center of the beam spot. Upon solidification, the ultrathin amorphous silicon film is transformed to a crystalline silicon nanodome of increased height. This morphological change enables further dimensional reduction of the nanodome as well as removal of the surrounding film material by isotropic silicon etching. These results suggest that laser-based dewetting of thin films can be an effective way for scalable manufacturing of patterned nanostructures.

  19. Motion-adapted pulse sequences for oriented sample (OS) solid-state NMR of biopolymers.

    PubMed

    Lu, George J; Opella, Stanley J

    2013-08-28

    One of the main applications of solid-state NMR is to study the structure and dynamics of biopolymers, such as membrane proteins, under physiological conditions where the polypeptides undergo global motions as they do in biological membranes. The effects of NMR radiofrequency irradiations on nuclear spins are strongly influenced by these motions. For example, we previously showed that the MSHOT-Pi4 pulse sequence yields spectra with resonance line widths about half of those observed using the conventional pulse sequence when applied to membrane proteins undergoing rapid uniaxial rotational diffusion in phospholipid bilayers. In contrast, the line widths were not changed in microcrystalline samples where the molecules did not undergo global motions. Here, we demonstrate experimentally and describe analytically how some Hamiltonian terms are susceptible to sample motions, and it is their removal through the critical π/2 Z-rotational symmetry that confers the "motion adapted" property to the MSHOT-Pi4 pulse sequence. This leads to the design of separated local field pulse sequence "Motion-adapted SAMPI4" and is generalized to an approach for the design of decoupling sequences whose performance is superior in the presence of molecular motions. It works by cancelling the spin interaction by explicitly averaging the reduced Wigner matrix to zero, rather than utilizing the 2π nutation to average spin interactions. This approach is applicable to both stationary and magic angle spinning solid-state NMR experiments.

  20. Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses via Chirped Optical Parametric Amplification and Indirect Pulse Shaping.

    PubMed

    Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Li, Jie; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-04-03

    We present an approach for both efficient generation and amplification of 4-12 μm pulses by tailoring the phase matching of the nonlinear crystal Zinc Germanium Phosphide (ZGP) in a narrowband-pumped optical parametric chirped pulse amplifier (OPCPA) and a broadband-pumped dual-chirped optical parametric amplifier (DC-OPA), respectively. Preliminary experimental results are obtained for generating 1.8-4.2 μm super broadband spectra, which can be used to seed both the signal of the OPCPA and the pump of the DC-OPA. The theoretical pump-to-idler conversion efficiency reaches 27% in the DC-OPA pumped by a chirped broadband Cr(2+):ZnSe/ZnS laser, enabling the generation of  Terawatt-level 4-12 μm pulses with an available large-aperture ZGP. Furthermore, the 4-12 μm idler pulses can be compressed to sub-cycle pulses by compensating the tailored positive chirp of the idler pulses using the bulk compressor NaCl, and by indirectly controlling the higher-order idler phase through tuning the signal (2.4-4.0 μm) phase with a commercially available acousto-optic programmable dispersive filter (AOPDF). A similar approach is also described for generating high-energy 4-12 μm sub-cycle pulses via OPCPA pumped by a 2 μm Ho:YLF laser.

  1. Pulse compression degradation due to open loop adaptive cancellation, part 3

    NASA Astrophysics Data System (ADS)

    Gerlach, Karl

    1991-08-01

    An exact expression for the perturbed range sidelobe level of a compressed pulse that has been preprocessed through an adaptive canceller is derived. This result is a generalization of past research (parts 1 and 2, NRL Reports 9107 and 9309) where the signal was assumed to be completely contained within the canceller's processing batch. In this report, we allow the signal to extend over an arbitrary number of canceller processing batches. A good approximate expression is also obtained for evaluating the perturbed range sidelobe level. This report derives the number of independent samples per channel (main and auxiliaries) necessary so that the average adaptive range sidelobe level is within 3 dB of the quiescent range sidelobe level. Furthermore, the same analysis is used to predict the canceller noise power level that is induced by the desired signal's presence in the canceller weight calculation. Placement of the pulse compressor before or after the canceller is also considered. It Is shown that if the desired waveform's code length L is less than or equal to the canceller's processing batch width K, it is desirable to place the pulse compression after the adaptive canceller. If L greater than K, then the issue is not so clear-cut, and a trade-off study is necessary.

  2. Effect of Beam Smoothing and Pulse Shape on the Implosion of DD-Filled CH Shell Targets on OMEGA

    NASA Astrophysics Data System (ADS)

    Delettrez, J. A.; Glebov, V. Yu.; Marshall, F. J.; Stoeckl, C.; Yaakobi, B.; Meyerhofer, D. D.

    1999-11-01

    Over the past two years several implosion experiments were carried out on the 60-beam OMEGA laser in which DD-filled CH shells (some with a CHTi layer imbedded) were irradiated with various laser pulse shapes and smoothing conditions. Target CH shell thicknesses varied from 20 μm to 27 μm with DD-fill variations from 3 to 20 atm, sometimes mixed with ^3He. Two pulse shapes---a 1-ns square pulse and a 2.5-ns pulse with a 10%, 1-ns foot, with and without SSD---provide several levels of laser imprint. Diagnostics include measured neutron yields, fuel ion temperatures, fuel ρR, and shell ρR. Simulations for these experimental conditions were carried out with the 2-D hydrocode ORCHID. The results are compared with the experimental results. The degradation of target performance due to laser nonuniformity is analyzed by comparing the 2-D results with those of 1-D simulations. The effects of pulse shape, target thickness, convergence ratio, and smoothing are presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority.

  3. Thermal neutron detection using alkali halide scintillators with Li-6 and pulse shape discrimination

    SciTech Connect

    Brubaker, Erik; Dibble, Dean C.; Mengesha, Wondwosen; Yang, Pin

    2013-09-01

    An ideal 3He detector replacement for the near- to medium-term future will use materials that are easy to produce and well understood, while maintaining thermal neutron detection efficiency and gamma rejection close to the 3He standard. Toward this end, we investigated the use of standard alkali halide scintillators interfaced with 6Li and read out with photomultiplier tubes (PMTs). Thermal neutrons are captured on 6Li with high efficiency, emitting high-energy and triton (3H) reaction products. These particles deposit energy in the scintillator, providing a thermal neutron signal; discrimination against gamma interactions is possible via pulse shape discrimination (PSD), since heavy particles produce faster pulses in alkali halide crystals. We constructed and tested two classes of detectors based on this concept. In one case 6Li is used as a dopant in polycrystalline NaI; in the other case a thin Li foil is used as a conversion layer. In the configurations studied here, these systems are sensitive to both gamma and neutron radiation, with discrimination between the two and good energy resolution for gamma spectroscopy. We present results from our investigations, including measurements of the neutron efficiency and gamma rejection for the two detector types. We also show a comparison with Cs2LiYCl6:Ce (CLYC), which is emerging as the standard scintillator for simultaneous gamma and thermal neutron detection, and also allows PSD. We conclude that 6Li foil with CsI scintillating crystals has near-term promise as a thermal neutron detector in applications previously dominated by 3He detectors. The other approach, 6Li-doped alkali halides, has some potential, but require more work to understand material properties and improve fabrication processes.

  4. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    PubMed

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  5. Digital Pulse Shape Analysis with Phoswich Detectors to Simplify Coincidence Measurements of Radioactive Xenon

    SciTech Connect

    Hennig, Wolfgang; Tan, Hui; Warburton, William K.; McIntyre, Justin I.

    2005-08-31

    The Comprehensive Nuclear-Test-Ban Treaty establishes a network of monitoring stations to detect radioactive Xenon in the atmosphere from nuclear weapons testing. One such monitoring system is the Automated Radio-xenon Sampler/Analyzer (ARSA) developed at Pacific Northwest National Laboratory, which uses a complex arrangement of separate beta and gamma detectors to detect beta-gamma coincidences from the Xe isotopes of interest. The coincidence measurement is very sensitive, but the large number of detectors and photomultiplier tubes require careful calibration which makes the system hard to use. It has been suggested that beta-gamma coincidences could be detected with only a single photomultiplier tube and electronics channel by using a phoswich detector consisting of optically coupled beta and gamma detectors (Ely, 2003). In that work, rise time analysis of signals from a phoswich detector was explored as a method to determine if interactions occurred in either the beta or the gamma detector or in both simultaneously. However, this approach was not able to detect coincidences with the required sensitivity or to measure the beta and gamma energies with sufficient precision for Xenon monitoring. In this paper, we present a new algorithm to detect coincidences by pulse shape analysis of the signals from a BC-404/CsI(Tl) phoswich detector. Implemented on fast digital readout electronics, the algorithm achieves clear separation of beta only, gamma only and coincidence events, accurate measurement of both beta and gamma energies, and has an error rate for detecting coincidences of less than 0.1%. Monte Carlo simulations of radiation transport and light collection were performed to optimize design parameters for a replacement detector module for the ARSA system, obtaining an estimated coincidence detection efficiency of 82-92% and a background rejection rate better than 99%. The new phoswich/pulse shape analysis method is thus suitable to simplify the existing ARSA

  6. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian honeycreepers.

    PubMed

    Tokita, Masayoshi; Yano, Wataru; James, Helen F; Abzhanov, Arhat

    2017-02-05

    Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.

  7. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian honeycreepers

    PubMed Central

    Tokita, Masayoshi; Yano, Wataru; James, Helen F.

    2017-01-01

    Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994122

  8. Diversity Takes Shape: Understanding the Mechanistic and Adaptive Basis of Bacterial Morphology

    PubMed Central

    2016-01-01

    The modern age of metagenomics has delivered unprecedented volumes of data describing the genetic and metabolic diversity of bacterial communities, but it has failed to provide information about coincident cellular morphologies. Much like metabolic and biosynthetic capabilities, morphology comprises a critical component of bacterial fitness, molded by natural selection into the many elaborate shapes observed across the bacterial domain. In this essay, we discuss the diversity of bacterial morphology and its implications for understanding both the mechanistic and the adaptive basis of morphogenesis. We consider how best to leverage genomic data and recent experimental developments in order to advance our understanding of bacterial shape and its functional importance. PMID:27695035

  9. Laser pulse design using optimal control theory-based adaptive simulated annealing technique: vibrational transitions and photo-dissociation

    NASA Astrophysics Data System (ADS)

    Nath, Bikram; Mondal, Chandan Kumar

    2014-08-01

    We have designed and optimised a combined laser pulse using optimal control theory-based adaptive simulated annealing technique for selective vibrational excitations and photo-dissociation. Since proper choice of pulses for specific excitation and dissociation phenomena is very difficult, we have designed a linearly combined pulse for such processes and optimised the different parameters involved in those pulses so that we can get an efficient combined pulse. The technique makes us free from choosing any arbitrary type of pulses and makes a ground to check their suitability. We have also emphasised on how we can improve the performance of simulated annealing technique by introducing an adaptive step length of the different variables during the optimisation processes. We have also pointed out on how we can choose the initial temperature for the optimisation process by introducing heating/cooling step to reduce the annealing steps so that the method becomes cost effective.

  10. Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses via Chirped Optical Parametric Amplification and Indirect Pulse Shaping

    PubMed Central

    Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Li, Jie; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-01-01

    We present an approach for both efficient generation and amplification of 4–12 μm pulses by tailoring the phase matching of the nonlinear crystal Zinc Germanium Phosphide (ZGP) in a narrowband-pumped optical parametric chirped pulse amplifier (OPCPA) and a broadband-pumped dual-chirped optical parametric amplifier (DC-OPA), respectively. Preliminary experimental results are obtained for generating 1.8–4.2 μm super broadband spectra, which can be used to seed both the signal of the OPCPA and the pump of the DC-OPA. The theoretical pump-to-idler conversion efficiency reaches 27% in the DC-OPA pumped by a chirped broadband Cr2+:ZnSe/ZnS laser, enabling the generation of  Terawatt-level 4–12 μm pulses with an available large-aperture ZGP. Furthermore, the 4–12 μm idler pulses can be compressed to sub-cycle pulses by compensating the tailored positive chirp of the idler pulses using the bulk compressor NaCl, and by indirectly controlling the higher-order idler phase through tuning the signal (2.4–4.0 μm) phase with a commercially available acousto-optic programmable dispersive filter (AOPDF). A similar approach is also described for generating high-energy 4–12 μm sub-cycle pulses via OPCPA pumped by a 2 μm Ho:YLF laser. PMID:28367966

  11. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    NASA Astrophysics Data System (ADS)

    Kelley, R. P.; Murer, D.; Ray, H.; Jordan, K. A.

    2015-03-01

    An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the 4He detector. A further understanding of this mechanism in the 4He detector will advance the use of this system as a neutron spectrometer. For 252Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a 252Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  12. Analysis of the scintillation mechanism in a pressurized {sup 4}He fast neutron detector using pulse shape fitting

    SciTech Connect

    Kelley, R.P. Ray, H.; Jordan, K.A.; Murer, D.

    2015-03-15

    An empirical investigation of the scintillation mechanism in a pressurized {sup 4}He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a {sup 252}Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the {sup 4}He detector. A further understanding of this mechanism in the {sup 4}He detector will advance the use of this system as a neutron spectrometer. For {sup 252}Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a {sup 252}Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  13. Pulse shape distortion of output signals from single-crystal CVD diamond detector in few-GHz broadband amplifiers

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Shimaoka, T.; Kaneko, J. H.; Murakami, H.; Miyazaki, D.; Tsubota, M.; Chayahara, A.; Umezawa, H.; Shikata, S.

    2014-04-01

    The response of a diamond detector made from a single crystal grown by chemical vapour deposition was studied using a broadband amplifier. A short pulse width of {\\sim}1\\ \\text{ns} for 241Am-α-particles was observed with a digital oscilloscope. To discuss pulse shape distortion from the detector in a measurement system, we simulated waveforms with a SPICE simulator using an equivalent circuit model that contained three main parts: detector, amplifier, and oscilloscope. In the simulation, we found that the pulse width spread by more than 200 ps following amplification. We discuss the effects of the detector read-out circuit time constant on the observed waveforms and confirm that the pulse width spread was restrained by use of a short time constant compared with carrier drift time in diamond crystals.

  14. Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains

    NASA Astrophysics Data System (ADS)

    Yuan, Yanping; Jiang, Lan; Li, Xin; Wang, Cong; Lu, Yongfeng

    2012-11-01

    A quantum model is proposed to investigate femtosecond laser pulse trains processing of dielectrics by including the plasma model with the consideration of laser particle-wave duality. Central wavelengths (400 nm and 800 nm) strongly impact the surface plasmon field distribution, the coupling field intensity distribution (between the absorbed intensity and the surface plasma), and the distribution of transient localized free electron density in the material. This, in turn, significantly changes the localized transient optical/thermal properties during laser materials processing. The effects of central wavelengths on ablation shapes and subwavelength ripples are discussed. The simulation results show that: (1) ablation shapes and the spacing of subwavelength ripples can be adjusted by localized transient electron dynamics control using femtosecond laser pulse trains; (2) the adjustment of the radii of ablation shapes is stronger than that of the periods of subwavelength ripples.

  15. Brain shape convergence in the adaptive radiation of New World monkeys.

    PubMed

    Aristide, Leandro; dos Reis, Sergio Furtado; Machado, Alessandra C; Lima, Inaya; Lopes, Ricardo T; Perez, S Ivan

    2016-02-23

    Primates constitute one of the most diverse mammalian clades, and a notable feature of their diversification is the evolution of brain morphology. However, the evolutionary processes and ecological factors behind these changes are largely unknown. In this work, we investigate brain shape diversification of New World monkeys during their adaptive radiation in relation to different ecological dimensions. Our results reveal that brain diversification in this clade can be explained by invoking a model of adaptive peak shifts to unique and shared optima, defined by a multidimensional ecological niche hypothesis. Particularly, we show that the evolution of convergent brain phenotypes may be related to ecological factors associated with group size (e.g., social complexity). Together, our results highlight the complexity of brain evolution and the ecological significance of brain shape changes during the evolutionary diversification of a primate clade.

  16. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine

    2005-01-01

    The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.

  17. Brain shape convergence in the adaptive radiation of New World monkeys

    PubMed Central

    Aristide, Leandro; dos Reis, Sergio Furtado; Machado, Alessandra C.; Lima, Inaya; Lopes, Ricardo T.; Perez, S. Ivan

    2016-01-01

    Primates constitute one of the most diverse mammalian clades, and a notable feature of their diversification is the evolution of brain morphology. However, the evolutionary processes and ecological factors behind these changes are largely unknown. In this work, we investigate brain shape diversification of New World monkeys during their adaptive radiation in relation to different ecological dimensions. Our results reveal that brain diversification in this clade can be explained by invoking a model of adaptive peak shifts to unique and shared optima, defined by a multidimensional ecological niche hypothesis. Particularly, we show that the evolution of convergent brain phenotypes may be related to ecological factors associated with group size (e.g., social complexity). Together, our results highlight the complexity of brain evolution and the ecological significance of brain shape changes during the evolutionary diversification of a primate clade. PMID:26858427

  18. Transient space-charge-limited current pulse shapes in molecularly doped polymers

    NASA Astrophysics Data System (ADS)

    Goldie, D. M.

    1999-12-01

    The transient current response of molecularly doped polymers have been numerically modelled under space-charge-limited (SCL) conditions for the situation in which a step potential is applied to an ideal injecting contact. Under trap-free conditions, the transient SCL current pulse shape is found to be sensitive not only to the underlying field dependence of the injected carrier mobilities and diffusivities, but also to the magnitude of the applied step potential. A progressive reduction in the ratio of the peak current density jp to the final steady-state magnitude jss is obtained by increasing either the field strength of the mobility or the relative amount of diffusion. It is demonstrated, however, that for times preceding the location tp of the current peak, the rate of current increase displays a gradual transition from a super-linear to linear time dependence upon the introduction of diffusion. The diminishing observability of jp/jss is accompanied by a shift in the position of tp relative to the space-charge-free carrier transit time t0. The classical fixed-mobility value tp/t0 = 0.786 is modestly reduced as the field strength of the mobility or amount of carrier diffusion is enhanced. The numerical predictions are compared with experimental SCL current transients obtained from hydrazone doped polyester samples fitted with gold contacts.

  19. Fast-neutron spectrometry using a ³He ionization chamber and digital pulse shape analysis.

    PubMed

    Chichester, D L; Johnson, J T; Seabury, E H

    2012-08-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type (3)He ionization chamber to measure the fast-neutron spectra of a deuterium-deuterium electronic neutron generator, a bare (252)Cf spontaneous fission neutron source, and of the transmitted fast neutron spectra of a (252)Cf source attenuated by water, graphite, liquid nitrogen, and magnesium. Rise-time dPSA has been employed using the common approach for analyzing n +(3)He→(1)H+(3)H ionization events and improved to account for wall-effect and pile-up events, increasing the fidelity of these measurements. Simulations have been performed of the different experimental arrangements and compared with the measurements, demonstrating general agreement between the dPSA-processed fast-neutron spectra and predictions. The fast-neutron resonance features of the attenuation cross sections of the attenuating materials are clearly visible within the resolution limits of the electronics used for the measurements, and the potential applications of high-resolution fast-neutron spectrometry for nuclear nonproliferation and safeguards measurements are discussed.

  20. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    NASA Astrophysics Data System (ADS)

    Joyce, Malcolm J.; Agar, Stewart; Aspinall, Michael D.; Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie

    2016-10-01

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×107 per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm3 concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  1. Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus

    SciTech Connect

    Giacomelli, L.; Conroy, S.; Gorini, G.; Horton, L.; Murari, A.; Popovichev, S.; Syme, D. B.

    2014-02-15

    The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/γ discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.

  2. Adaptive pulsed laser line extraction for terrain reconstruction using a dynamic vision sensor

    PubMed Central

    Brandli, Christian; Mantel, Thomas A.; Hutter, Marco; Höpflinger, Markus A.; Berner, Raphael; Siegwart, Roland; Delbruck, Tobi

    2014-01-01

    Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor (DVS) with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor's ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500 Hz were achieved using a line laser of 3 mW at a distance of 45 cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2 mm. PMID:24478619

  3. Adaptive pulsed laser line extraction for terrain reconstruction using a dynamic vision sensor.

    PubMed

    Brandli, Christian; Mantel, Thomas A; Hutter, Marco; Höpflinger, Markus A; Berner, Raphael; Siegwart, Roland; Delbruck, Tobi

    2013-01-01

    Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor (DVS) with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor's ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500 Hz were achieved using a line laser of 3 mW at a distance of 45 cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2 mm.

  4. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  5. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses.

    PubMed

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  6. Pulse-Shape Analysis of Neutron-Induced Scintillation Light in Ni-doped 6LiF/ZnS

    SciTech Connect

    Cowles, Christian C.; Behling, Richard S.; Imel, G. R.; Kouzes, Richard T.; Lintereur, Azaree; Robinson, Sean M.; Stave, Sean C.; Siciliano, Edward R.; Wang, Zheming

    2016-10-06

    Abstract–Alternatives to 3He are being investigated for gamma-ray insensitive neutron detection applications, including plutonium assay. One promising material is lithium-6 fluoride with silver activated zinc sulfide 6LiF/ZnS(Ag) in conjunction with a wavelength shifting plastic. Doping the 6LiF/ZnS(Ag) with nickel (Ni) has been proposed as a means of reducing the decay time of neutron signal pulses. This research performed a pulse shape comparison between Ni-doped and non-doped 6LiF/ZnS(Ag) neutron pulses. The Ni-doped 6LiF/ZnS(Ag) had a 32.7% ± 0.3 increase in neutron pulse height and a 32.4% ± 0.3 decrease in neutron pulse time compared to the non-doped 6LiF/ZnS(Ag). Doping 6LiF/ZnS(Ag) with nickel may allow neutron detector operation with improved signal to noise ratios, and reduced pulse pileup affects, increasing the accuracy and range of source activities with which such a detector could operate.

  7. Adaptive changes in prey vulnerability shape the response of predator populations to mortality.

    PubMed

    Abrams, Peter A

    2009-11-21

    Simple models are used to explore how adaptive changes in prey vulnerability alter the population response of their predator to increased mortality. If the mortality is an imposed harvest, the change in prey vulnerability also influences the relationship between harvest effort and yield of the predator. The models assume that different prey phenotypes share a single resource, but have different vulnerabilities to the predator. Decreased vulnerability is assumed to decrease resource consumption rate. Adaptive change may occur by phenotypic changes in the traits of a single species or by shifts in the abundances of a pair of coexisting species or morphs. The response of the predator population is influenced by the shape of the predator's functional response, the shape of resource density dependence, and the shape of the tradeoff between vulnerability and food intake in the prey. Given a linear predator functional response, adaptive prey defense tends to produce a decelerating decline in predator population size with increased mortality. Prey defense may also greatly increase the range of mortality rates that allow predator persistence. If the predator has a type-2 response with a significant handling time, adaptive prey defense may have a greater variety of effects on the predator's response to mortality, sometimes producing alternative attractors, population cycles, or increased mean predator density. Situations in which there is disruptive selection on prey defense often imply a bimodal change in yield as a function of harvesting effort, with a minimum at intermediate effort. These results argue against using single-species models of density dependent growth to manage predatory species, and illustrate the importance of incorporating anti-predator behavior into models in applied population ecology.

  8. Pulse-Shape Effects in Ionization of Atomic Hydrogen by Short-Pulse XUV Intense Laser Radiation

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus; Venzke, Joel; Grum Grzhimailo, Alexei N.

    2015-05-01

    In a recent publication, we investigated a displacement effect in strong-field atomic ionization by an XUV pulse. We found that the angular momentum of the ejected electron and, therefore, its angular distribution were strongly affected by the details in the short ramp-on/off characteristics of various pulses, all of which were otherwise identical with a plateau in the envelope function that was significantly longer than the ramp-on/off phase. In the present work, we studied the effect in more detail, especially regarding the role of the plateau, which is unlikely to occur in a realistic experimental setup. As expected, great care must be taken in setting up theoretical models to ensure that the pulses are, at least in principle, experimentally realizable. This work is supported by the United States National Science Foundation under grant No. PHY-1430245 and the XSEDE allocation PHY-090031, and by the Russian Foundation for Basic Research under Grant No. 12-02-01123.

  9. Liquid mixing enhanced by pulse width modulation in a Y-shaped jet configuration

    NASA Astrophysics Data System (ADS)

    Xia, Qingfeng; Zhong, Shan

    2013-04-01

    In this paper, mixing between two fluid streams, which are injected into a planar mixing channel via a Y-shaped confluence section at the same volume flow rate, is studied experimentally. The injection of the two fluid streams is controlled by two separate solenoid valves, which are operated with a phase difference of 180°, using pulse width modulation. The experiments are conducted using water at a mean Reynolds number between 83 and 250, a range of pulsation frequencies and two duty cycles (25 and 50%). Both particle-image velocimetry and planar laser-induced fluorescence technique are used to visualize the flow patterns and to quantify the mixing degree in the mixing channel. This experiment shows that the pulsation of each jet produces vortical structures, which promotes mixing via vortex entrainment and vortex breakup, and at the same time the mixing is also greatly enhanced by sequential segmentation produced by a 180° out-of-phase pulsation of the two jets. This mixing enhancement method is effective at a Reynolds number greater than 125 with a mixing degree of 0.9 being achieved. For the Reynolds numbers studied in the present experiments, an optimal frequency exists, which corresponds to a Strouhal number in the range of 0.5-2. Furthermore, at a given mean Reynolds number a lower duty cycle is found to produce a better mixing due to the resultant higher instantaneous Reynolds number in the jet flow. It is also found that pulsation of only one jet can produce a similar mixing effect.

  10. Organic scintillators with pulse shape discrimination for detection of radiation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mabe, Andrew; Carman, M. Leslie; Glenn, Andrew M.; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-09-01

    The detection of neutrons in the presence of gamma-ray fields has important applications in the fields of nuclear physics, homeland security, and medical imaging. Organic scintillators provide several attractive qualities as neutron detection materials including low cost, fast response times, ease of scaling, and the ability to implement pulse shape discrimination (PSD) to discriminate between neutrons and gamma-rays. This talk will focus on amorphous organic scintillators both in plastic form and small-molecule organic glass form. The first section of this talk will describe recent advances and improvements in the performance of PSD-capable plastic scintillators. The primary advances described in regard to modification of the polymer matrix, evaluation of new scintillating dyes, improved fabrication conditions, and implementation of additives which impart superior performance and mechanical properties to PSD-capable plastics as compared to commercially-available plastics and performance comparable to PSD-capable liquids. The second section of this talk will focus on a class of small-molecule organic scintillators based on modified indoles and oligophenylenes which form amorphous glasses as PSD-capable neutron scintillation materials. Though indoles and oligophenylenes have been known for many decades, their PSD properties have not been investigated and their scintillation properties only scantily investigated. Well-developed synthetic methodologies have permitted the synthesis of a library of structural analogs of these compounds as well as the investigation of their scintillation properties. The emission wavelengths of many indoles are in the sensitive region of common photomultiplier tubes, making them appropriate to be used as scintillators in either pure or doped form. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work has been supported by the U

  11. Reorganizing and shaping of embedded near-coalescence silver nanoparticles with off-resonance femtosecond laser pulses.

    PubMed

    Baraldi, G; Gonzalo, J; Solis, J; Siegel, J

    2013-06-28

    We demonstrate that 2D distributions of non-spherical near-coalescence silver nanoparticles (NPs) embedded in an ultrathin dielectric film can be reorganized, shaped and aligned by exposure to ultrashort laser pulses. As-grown samples prepared by pulsed laser deposition show a broad absorption band with a surface plasmon resonance (SPR) at 650 nm, which can be blue-shifted down to 440 nm and transformed to show polarization anisotropy. In situ white light probing of the spectral sample transmission allows control during irradiation of the position and polarization anisotropy of the SPR, effectively controlling particle reorganization and shaping. Using the high spatial resolution of the optical probe technique (better than 10 μm), the dependence of the nanoparticle shape and distribution on the local fluence can be studied in a single irradiated region. The results inferred from the spectral measurements have been confirmed by TEM studies, showing the formation of nanoparticles with prolate shape, preferential alignment along the polarization axis of the laser and a narrow size distribution. This simple and efficient approach for NP shaping and the straightforward extension to multilayer systems offer excellent perspectives for optical encoding, multidimensional data storage and fabrication of complex, polarization-sensitive spectral masks starting from thin films with near-coalescence distributions of NPs.

  12. Note: Compact high voltage pulse transformer made using a capacitor bank assembled in the shape of primary.

    PubMed

    Shukla, Rohit; Banerjee, Partha; Sharma, Surender K; Das, Rashmita; Deb, Pankaj; Prabaharan, T; Das, Basanta; Adhikary, Biswajit; Verma, Rishi; Shyam, Anurag

    2011-10-01

    The experimental results of an air-core pulse transformer are presented, which is very compact (<10 Kg in weight) and is primed by a capacitor bank that is fabricated in such a way that the capacitor bank with its switch takes the shape of single-turn rectangular shaped primary of the transformer. A high voltage capacitor assembly (pulse-forming-line capacitor, PFL) of 5.1 nF is connected with the secondary of transformer. The transformer output voltage is 160 kV in its second peak appearing in less than 2 μS from the beginning of the capacitor discharge. The primary capacitor bank can be charged up to a maximum of 18 kV, with the voltage delivery of 360 kV in similar capacitive loads.

  13. Pulse-shape discrimination and energy quenching of alpha particles in Cs2LiLaBr6:Ce3+

    DOE PAGES

    Mesick, Katherine Elizabeth; Coupland, Daniel David S.; Stonehill, Laura Catherine

    2016-10-19

    Cs2LiLaBr6:Ce3+ (CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. Here, we also measured the electron-equivalent-energy of the alpha particlesmore » in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas.« less

  14. The angular dependence of pulse shape discrimination and detection sensitivity in cylindrical and cubic EJ-309 organic liquid scintillators

    NASA Astrophysics Data System (ADS)

    Jones, A. R.; Joyce, M. J.

    2017-01-01

    Liquid scintillators are used widely for neutron detection and for the assay of nuclear materials. However, due to the constituents of the detector and the nitrogen void within the detector cell, usually incorporated to accommodate any expansion that might occur to avoid leakage, fluctuations in detector response have been observed associated with the orientation of the detector when in use. In this work the angular dependence of the pulse-shape discrimination performance in an EJ309 liquid scintillator has been investigated with 252Cf in terms of the separation of γ -ray and neutron events, described quantitatively by the figure-of-merit. A subtle dependence in terms of pulse-shape discrimination is observed. In contrast, a more significant dependence of detection sensitivity with the angle of orientation is evident.

  15. Adaptive feature selection using v-shaped binary particle swarm optimization

    PubMed Central

    Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers. PMID:28358850

  16. Experimental evaluation of shape memory alloy actuation technique in adaptive antenna design concepts

    NASA Technical Reports Server (NTRS)

    Kefauver, W. Neill; Carpenter, Bernie F.

    1994-01-01

    Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.

  17. Simulation of picosecond pulse propagation in fibre-based radiation shaping units

    NASA Astrophysics Data System (ADS)

    Kuptsov, G. V.; Petrov, V. V.; Laptev, A. V.; Petrov, V. A.; Pestryakov, E. V.

    2016-09-01

    We have performed a numerical simulation of picosecond pulse propagation in a combined stretcher consisting of a segment of a telecommunication fibre and diffraction holographic gratings. The process of supercontinuum generation in a nonlinear photoniccrystal fibre pumped by picosecond pulses is simulated by solving numerically the generalised nonlinear Schrödinger equation; spectral and temporal pulse parameters are determined. Experimental data are in good agreement with simulation results. The obtained results are used to design a high-power femtosecond laser system with a pulse repetition rate of 1 kHz.

  18. Pulse-shape control of two-color interference in high-order-harmonic generation

    NASA Astrophysics Data System (ADS)

    Hamilton, K. R.; van der Hart, H. W.; Brown, A. C.

    2017-01-01

    We report on calculations of harmonic generation by neon in a mixed (800-nm + time-delayed 400-nm) laser pulse scheme. In contrast with previous studies we employ a short (few-cycle) 400-nm pulse, finding that this affords control of the interference between electron trajectories contributing to the cutoff harmonics. The inclusion of the 400-nm pulse enhances the yield and cutoff energy, both of which exhibit a strong dependence on the time delay between the two pulses. Using a combination of time-dependent R -matrix theory and a classical trajectory model, we assess the mechanisms leading to these effects.

  19. Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET detector.

    PubMed

    Chang, Chen-Ming; Cates, Joshua W; Levin, Craig S

    2017-01-07

    It is well known that a PET detector capable of measuring both photon time-of-flight (TOF) and depth-of-interaction (DOI) improves the image quality and accuracy. Phoswich designs have been realized in PET detectors to measure DOI for more than a decade. However, PET detectors based on phoswich designs put great demand on the readout circuits, which have to differentiate the pulse shape produced by different crystal layers. A simple pulse shape discrimination approach is required to realize the phoswich designs in a clinical PET scanner, which consists of thousands of scintillation crystal elements. In this work, we studied time-over-threshold (ToT) as a pulse shape parameter for DOI. The energy, timing and DOI performance were evaluated for a phoswich detector design comprising [Formula: see text] mm LYSO:Ce crystal optically coupled to [Formula: see text] mm calcium co-doped LSO:Ce,Ca(0.4%) crystal read out by a silicon photomultiplier (SiPM). A DOI accuracy of 97.2% has been achieved for photopeak events using the proposed time-over-threshold (ToT) processing. The energy resolution without correction for SiPM non-linearity was [Formula: see text]% and [Formula: see text]% FWHM at 511 keV for LYSO and LSO crystal layers, respectively. The coincidence time resolution for photopeak events ranges from 164.6 ps to 183.1 ps FWHM, depending on the layer combinations. The coincidence time resolution for inter-crystal scatter events ranges from 214.6 ps to 418.3 ps FWHM, depending on the energy windows applied. These results show great promises of using ToT for pulse shape discrimination in a TOF phoswich detector since a ToT measurement can be easily implemented in readout electronics.

  20. Long-Term Time Variability in the X-Ray Pulse Shape of the Crab Nebula Pulsar

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    2000-01-01

    This is the final performance report for our grant 'Long-Term Time Variability in the X-Ray Pulse Shape of the Crab Nebula Pulsar.' In the first year of this grant, we received the 50,000-second ROSAT (German acronym for X-ray satellite) High Resolution Images (HRI) observation of the Crab Nebula pulsar. We used the data to create a 65-ms-resolution pulse profile and compared it to a similar pulse profile obtained in 1991. No statistically significant differences were found. These results were presented at the January 1998 meeting of the American Astronomical Society. Since then, we have performed more sensitive analyses to search for potential changes in the pulse profile shape between the two data sets. Again, no significant variability was found. In order to augment this long (six-year) baseline data set, we have analyzed archival observations of the Crab Nebula pulsar with the Rossi X-Ray Timing Explorer (RXTE). While these observations have shorter time baselines than the ROSAT data set, their higher signal-to-noise offers similar sensitivity to long-term variability. Again, no significant variations have been found, confirming our ROSAT results. This work was done in collaboration with Prof. Stephen Eikenberry, Cornell University. These analyses will be included in Cornell University graduate student Dae-Sik Moon's doctoral thesis.

  1. Adaptive Bessel-autocorrelation of ultrashort pulses with phase-only spatial light modulators

    NASA Astrophysics Data System (ADS)

    Huferath-von Luepke, Silke; Bock, Martin; Grunwald, Ruediger

    2009-06-01

    Recently, we proposed a new approach of a noncollinear correlation technique for ultrashort-pulsed coherent optical signals which was referred to as Bessel-autocorrelator (BAC). The BAC-principle combines the advantages of Bessellike nondiffracting beams like stable propagation, angular robustness and self-reconstruction with the principle of temporal autocorrelation. In comparison to other phase-sensitive measuring techniques, autocorrelation is most straightforward and time-effective because of non-iterative data processing. The analysis of nonlinearly converted fringe patterns of pulsed Bessel-like beams reveals their temporal signature from details of fringe envelopes. By splitting the beams with axicon arrays into multiple sub-beams, transversal resolution is approximated. Here we report on adaptive implementations of BACs with improved phase resolution realized by phase-only liquid-crystal-on-silicon spatial light modulators (LCoS-SLMs). Programming microaxicon phase functions in gray value maps enables for a flexible variation of phase and geometry. Experiments on the diagnostics of few-cycle pulses emitted by a mode-locked Ti:sapphire laser oscillator at wavelengths around 800 nm with 2D-BAC and angular tuned BAC were performed. All-optical phase shift BAC and fringe free BAC approaches are discussed.

  2. Ipsilateral medial olivocochlear reflex adaptation of the primary-source DPOAE component measured with pulsed tones

    NASA Astrophysics Data System (ADS)

    Dalhoff, Ernst; Zelle, Dennis; Gummer, Anthony W.

    2015-12-01

    Measurement of contralateral suppression or ipsilateral adaptation of DPOAE due to the medial olivocochlear reflex (MOCR) in humans has so far been complicated by interference between the two major contributors to a DPOAE signal, namely, the nonlinear and the reflection-source components. For instance, while the MOCR has been shown to act inhibitory to the cochlear amplifier, a considerable share of the measured responses has been reported to be of the excitatory type (e.g. 22% for contralateral adaptation in [11]), and it has been shown that the magnitudes of ipsilateral adaptation as well as contralateral suppression depend on the precise frequency choice relative to the position of dips in the DPOAE fine structure [3, 8]. To separate MOCR effects on both source components, we developed a paradigm consisting of five short f2 pulses presented during a 0.35 s on-period of the f1 primary within blocks of 1.35 s length. The responses at f1 and f2 were cancelled using the primary-tone phase variation technique [13]. In 16 normal-hearing subjects, we measured MOCR-induced ipsilateral adaptation at three near-by frequencies in the DPOAE fine structure, corresponding roughly to characteristic interference states between the two major source components of a DPOAE, i.e. constructive, destructive and quadrature interference. Measurements were performed in the frequency range 1.7 ≤ f2 ≤ 2 kHz, f2/f1 = 1.2, and with moderate primary-tone levels (L2 = 45 dB SPL, L1 = 57 dB SPL). Analysis of the DPOAE time traces showed that the nonlinear component typically presents inhibitory adaptation between the 1st and the 5th pulses (median: 0.92 dB). Fitting a single exponential function to the pooled data yielded adaptation of 1.49 dB. From 26 statistically significant MOCR effects (P < 0.1) ranging between 0.29 and 2.81 dB, no excitatory response was detected. The separation of the DPOAE sources when analysing MOCR effects on ipsilateral DPOAE offers the potential of investigating

  3. Adaptation of spherical harmonic transform for color shape reconstruction and retrieval using quaternion algebra

    NASA Astrophysics Data System (ADS)

    Dad, Nisrine; En-Nahnahi, Noureddine; Ouatik, Said El Alaoui; Oumsis, Mohammed

    2016-09-01

    A set of invariant quaternion moments based on an adaptation of the three-dimensional (3-D) spherical harmonic transform (SHT) for describing two-dimensional color shapes is proposed. The use of quaternions to deal with the color part is beneficial in the way the three color components are integrated in a single feature. An adequate mapping from the 3-D SHT to the unit disc allows a fast and accurate computation of the proposed moments. Experiments are conducted to evaluate the performance of the obtained moments in terms of color image reconstruction, robustness to geometric and photometric transformations, content-based color shape retrieval, and computation time. For this purpose, two image databases (COIL-100 and ALOI) are used. Results illustrate the effectiveness of the proposed moments in dealing with the color information.

  4. Enhancing two-color absorption, self-phase modulation, and Raman microscopy signatures in tissue with femtosecond laser pulse shaping

    NASA Astrophysics Data System (ADS)

    Fischer, Martin C.; Piletic, Ivan; Fu, Dan; Matthews, Thomas E.; Liu, Henry; Samineni, Prathyush; Li, Baolei; Warren, Warren S.

    2009-02-01

    Nonlinear microscopies (most commonly, two-photon fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering (CARS)) have had notable successes in imaging a variety of endogenous and exogenous targets in recent years. These methods generate light at a color different from any of the exciting laser pulses, which makes the signal relatively easy to detect. Our work has focused on developing microscopy techniques using a wider range of nonlinear signatures (two-photon absorption of nonfluorescent species, self phase modulation) which have some specific advantages - for example, in recent papers we have shown that we can differentiate between different types of melanin in pigmented lesions, image hemoglobin and its oxygenation, and measure neuronal activity. In general, these signatures do not generate light at a different color and we rely on the advantages of femtosecond laser pulse shaping methods to amplify the signals and make them visible (for example, using heterodyne detection of the induced signal with one of the co-propagating laser pulses). Here we extend this work to stimulated Raman and CARS geometries. In the simplest experiments, both colors arise from filtering a single fs laser pulse, then modulating afterwards; in other cases, we demonstrate that spectral reshaping can retain high frequency resolution in Raman and CARS geometries with femtosecond laser pulses.

  5. The simulation of adaptive optical image even and pulse noise and research of image quality evaluation

    NASA Astrophysics Data System (ADS)

    Wen, Changli; Xu, Yuannan; Xu, Rong; Liu, Changhai; Men, Tao; Niu, Wei

    2013-09-01

    As optical image becomes more and more important in adaptive optics area, and adaptive optical telescopes play a more and more important role in the detection system on the ground, and the images we get are so many that we need find a suitable method to choose good quality images automatically in order to save human power, people pay more and more attention in image's evaluation methods and their characteristics. According to different image degradation model, the applicability of different image's quality evaluation method will be different. Researchers have paid most attention in how to improve or build new method to evaluate degraded images. Now we should change our way to take some research in the models of degradation of images, the reasons of image degradation, and the relations among different degraded images and different image quality evaluation methods. In this paper, we build models of even noise and pulse noise based on their definition and get degraded images using these models, and we take research in six kinds of usual image quality evaluation methods such as square error method, sum of multi-power of grey scale method, entropy method, Fisher function method, Sobel method, and sum of grads method, and we make computer software for these methods to use easily to evaluate all kinds of images input. Then we evaluate the images' qualities with different evaluation methods and analyze the results of six kinds of methods, and finally we get many important results. Such as the characteristics of every method for evaluating qualities of degraded images of even noise, the characteristics of every method for evaluating qualities of degraded images of pulse noise, and the best method to evaluate images which affected by tow kinds of noise both and the characteristics of this method. These results are important to image's choosing automatically, and this will help we to manage the images we get through adaptive optical telescopes base on the ground.

  6. Pulse Shape and Timing Dependence on the Spike-Timing Dependent Plasticity Response of Ion-Conducting Memristors as Synapses

    PubMed Central

    Campbell, Kristy A.; Drake, Kolton T.; Barney Smith, Elisa H.

    2016-01-01

    Ion-conducting memristors comprised of the layered materials Ge2Se3/SnSe/Ag are promising candidates for neuromorphic computing applications. Here, the spike-timing dependent plasticity (STDP) application is demonstrated for the first time with a single memristor type operating as a synapse over a timescale of 10 orders of magnitude, from nanoseconds through seconds. This large dynamic range allows the memristors to be useful in applications that require slow biological times, as well as fast times such as needed in neuromorphic computing, thus allowing multiple functions in one design for one memristor type—a “one size fits all” approach. This work also investigated the effects of varying the spike pulse shapes on the STDP response of the memristors. These results showed that small changes in the pre- and postsynaptic pulse shape can have a significant impact on the STDP. These results may provide circuit designers with insights into how pulse shape affects the actual memristor STDP response and aid them in the design of neuromorphic circuits and systems that can take advantage of certain features in the memristor STDP response that are programmable via the pre- and postsynaptic pulse shapes. In addition, the energy requirement per memristor is approximated based on the pulse shape and timing responses. The energy requirement estimated per memristor operating on slower biological timescales (milliseconds to seconds) is larger (nanojoules range), as expected, than the faster (nanoseconds) operating times (~0.1 pJ in some cases). Lastly, the memristors responded in a similar manner under normal STDP conditions (pre- and post-spikes applied to opposite memristor terminals) as they did to the case where a waveform corresponding to the difference between pre- and post-spikes was applied to only one electrode, with the other electrode held at ground potential. By applying the difference signal to only one terminal, testing of the memristor in various

  7. Optical pulse shaping for selective excitation of coherent molecular vibrations by stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Geddes, Joseph B., III; Marks, Daniel L.; Boppart, Stephen A.

    2009-02-01

    Coherent anti-Stokes Raman scattering (CARS) can be used to identify biological molecules from their vibrational spectra in tissue. A single double-chirped broadband optical pulse can excite a broad spectrum of resonant molecular vibrations in the fingerprint spectral region. Such a pulse also excites nonresonant CARS, particularly from water. We describe a theoretical technique to design an optical pulse to selectively excite coherent vibrations in a target molecular species so that the CARS signal generated is increased. The signal from other molecules is reduced, since the incident pulse does not excite them to have coherent vibrations. As an example, we apply the technique to design pulses to elicit increased CARS signal from a mixture of one or more of the alcohols methanol, ethanol, and isopropanol. We also show how such pulse designs can be used to selectively excite one member of closely related complex biological species. As measured interferometrically, the CARS signal from three phosphodiester stretch modes of DNA can be increased to more than ten times that of the analogous signal from RNA when the pulse design technique is used.

  8. Time correlated measurements using plastic scintillators with neutron-photon pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Richardson, Norman E., IV

    nuclear and radiological material. Moreover, the production of 3He isotope as a byproduct of security programs was drastically decreased. This isotope shortage coupled with the disadvantages of relying on a detector that requires neutron moderation before the detection of fission neutrons, poses a significant challenge in supporting the existing detection systems and the development of future technologies. To address this problem, a reliable and accurate alternative technology to detect neutrons emitted in fissions must be developed. One such alternative technology that shows promise in this application is the use of scintillators based on solid state materials (plastics) which are sensitive to fast neutrons. However, plastic scintillators are also sensitive to photons. Hence, it is necessary to separate the neutron signals from the photon signals, using the pulse shape discrimination (PSD) analysis. The PSD is based on the comparison of the pulse shapes of digitized signal waveforms. This approach allows for the measurement of fast neutrons without the necessity of their moderation. Because the fission spectrum neutrons are mainly fast, methods employing fast neutron detection are applicable for the assay of fissile materials. In addition, the average time of scintillation of the plastic medium is much shorter than those of the gaseous counters, thus allowing scintillation detectors to be used in high count rate environments. Furthermore, the temporal information of the fast neutron detection using multiple sensors enables the time correlation analysis of the fission neutron multiplicity. The study of time correlation measurements of fast neutrons using the array of plastic scintillators is the basis of this work. The array of four plastic scintillator detectors equipped with the digital data acquisition and analysis system was developed. The digital PSD analysis of detector signals "on-the-fly" was implemented for the array. The time coincidence measurement technique

  9. Automatic Iceball Segmentation With Adapted Shape Priors for MRI-Guided Cryoablation

    PubMed Central

    Liu, Xinyang; Tuncali, Kemal; Wells, William M.; Zientara, Gary P.

    2014-01-01

    Purpose To develop and evaluate an automatic segmentation method that extracts the 3D configuration of the ablation zone, the iceball, from images acquired during the freezing phase of MRI-guided cryoablation. Materials and Methods Intraprocedural images at 63 timepoints from 13 kidney tumor cryoablation procedures were examined retrospectively. The images were obtained using a 3 Tesla wide-bore MRI scanner and axial HASTE sequence. Initialized with semiautomatically localized cryoprobes, the iceball was segmented automatically at each timepoint using the graph cut (GC) technique with adapted shape priors. Results The average Dice Similarity Coefficients (DSC), compared with manual segmentations, were 0.88, 0.92, 0.92, 0.93, and 0.93 at 3, 6, 9, 12, and 15 min time-points, respectively, and the average DSC of the total 63 segmentations was 0.92 ± 0.03. The proposed method improved the accuracy significantly compared with the approach without shape prior adaptation (P = 0.026). The number of probes involved in the procedure had no apparent influence on the segmentation results using our technique. The average computation time was 20 s, which was compatible with an intraprocedural setting. Conclusion Our automatic iceball segmentation method demonstrated high accuracy and robustness for practical use in monitoring the progress of MRI-guided cryoablation. PMID:24338961

  10. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics.

    PubMed

    Guo, Hengyu; Yeh, Min-Hsin; Lai, Ying-Chih; Zi, Yunlong; Wu, Changsheng; Wen, Zhen; Hu, Chenguo; Wang, Zhong Lin

    2016-11-22

    Recently, a self-charging power unit consisting of an energy harvesting device and an energy storage device set the foundation for building a self-powered wearable system. However, the flexibility of the power unit working under extremely complex deformations (e.g., stretching, twisting, and bending) becomes a key issue. Here, we present a prototype of an all-in-one shape-adaptive self-charging power unit that can be used for scavenging random body motion energy under complex mechanical deformations and then directly storing it in a supercapacitor unit to build up a self-powered system for wearable electronics. A kirigami paper based supercapacitor (KP-SC) was designed to work as the flexible energy storage device (stretchability up to 215%). An ultrastretchable and shape-adaptive silicone rubber triboelectric nanogenerator (SR-TENG) was utilized as the flexible energy harvesting device. By combining them with a rectifier, a stretchable, twistable, and bendable, self-charging power package was achieved for sustainably driving wearable electronics. This work provides a potential platform for the flexible self-powered systems.

  11. Wide-field FTIR microscopy using mid-IR pulse shaping

    PubMed Central

    Serrano, Arnaldo L.; Ghosh, Ayanjeet; Ostrander, Joshua S.; Zanni, Martin T.

    2015-01-01

    We have developed a new table-top technique for collecting wide-field Fourier transform infrared (FTIR) microscopic images by combining a femtosecond pulse shaper with a mid-IR focal plane array. The pulse shaper scans the delay between a pulse pair extremely rapidly for high signal-to-noise, while also enabling phase control of the individual pulses to under-sample the interferograms and subtract background. Infrared absorption images were collected for a mixture of W(CO)6 or Mn2(CO)10 absorbed polystyrene beads, demonstrating that this technique can spatially resolve chemically distinct species. The images are sub-diffraction limited, as measured with a USAF test target patterned on CaF2 and verified with scalar wave simulations. We also find that refractive, rather than reflective, objectives are preferable for imaging with coherent radiation. We discuss this method with respect to conventional FTIR microscopes. PMID:26191843

  12. Control of the shape of laser pulses amplified in the strong saturation regime

    SciTech Connect

    Shaykin, A A

    2014-05-30

    A new criterion for estimating the distortions of quasirectangular pulses in high-power amplifiers is proposed together with a method that allows generation of quasi-rectangular pulses at the output of a high-efficiency amplifier, i. e., in the regime of strong saturation. The efficiency of the method is demonstrated by the example of calculating the neodymium glass amplifier, used for pumping the petawatt parametric amplifier. (lasers)

  13. Optimum conditions for correlation of the temporal shape of an object pulse with a stimulated photon echo response in inhomogeneous external electric fields

    NASA Astrophysics Data System (ADS)

    Nefediev, L. A.; Khakimzyanova, E. I.; Garnaeva, G. I.

    2013-12-01

    We have studied the information locking effect and the effect of correlation of the shape of an object laser pulse with the shape of a stimulated photon echo response in the presence of external spatially inhomogeneous electric fields. We have shown that, for the transition 3H4-3P0 in a LaF3:Pr3+ crystal, one can observe the effect of the correlation of the shape of an object laser pulse with the shape of a stimulated photon echo response and, depending on the scheme of the action of external spatially inhomogeneous electric fields, either the information locking effect or the information destroying effect.

  14. Generation of 0.5 mJ, few-cycle laser pulses by an adaptive phase modulator.

    PubMed

    Wang, He; Wu, Yi; Li, Chengquan; Mashiko, Hiroki; Gilbertson, Steve; Chang, Zenghu

    2008-09-15

    Previously, pulses shorter than 4 fs were generated by compressing white light from gas-filled hollow-core fibers with adaptive phase modulators; however, the energy of the few-cycle pulses was limited to 15 microJ. Here, we report the generation of 550 microJ, 5 fs pulses by using a liquid crystal spatial light modulator in a grating-based 4f system. The high pulse energy was obtained by improving the throughput of the phase modulator and by increasing the input laser energy. When the pulses were used in high harmonic generation, it was found that the harmonic spectra depend strongly on the high order spectral phases of the driving laser fields.

  15. Design and study of photomultiplier pulse-shaping amplifier powered by the current flowing through a voltage divider

    SciTech Connect

    Vladimir Popov

    2003-05-01

    A new version of Photomultiplier Tube (PMT) pulse amplifier, entirely powered by the current flowing through the base voltage divider, was designed and tested. This amplifier was designed for application in the JLAB G0 Experiment E00-006 as a part of high voltage base for XP2262 Photonis PMT. According to JLAB G0 experiment requirement, these PMT's operate with plastic scintillators at high counting rate (about MHz). Tests in JLAB experimental Hall C indicate that low energy gamma background cause up to 0.1 mA of PMT average anode current (without amplifier). At this radiation condition, PMT gain decreases by 50% within about 1 month of operation. The amplifier needs to reduce PMT anode current and to shape PMT anode pulse prior to sending it through a long cable line (more then 400 ft of RG-213 and RG-58 coax cables). Shaping of the PMT output pulse helps to reduce attenuation effect of the long cable line without significant reduction of timing accuracy. The results of this study of designed amplifier and PMT plus amplifier system are presented.

  16. Design and study of photomultiplier pulse-shaping amplifier powered by the current flowing through a voltage divider

    SciTech Connect

    Vladimir Popov

    2003-06-01

    A new version of Photomultiplier Tube (PMT) pulse amplifier, entirely powered by the current flowing through the base voltage divider, was designed and tested. This amplifier was designed for application in the JLAB G0 Experiment E00-006 as a part of high voltage base for XP2262 Photonis PMT. According to JLAB G0 experiment requirement, these PMT's operate with plastic scintillators at high counting rate (about MHz). Tests in JLAB experimental Hall C indicate that low energy gamma background cause up to 0.1mA of PMT average anode current (without amplifier). At this radiation condition, PMT gain decreases by 50% within about 1 month of operation. The amplifier needs to reduce PMT anode current and to shape PMT anode pulse prior to sending it through a long cable line (more then 400ft of RG-213 and RG-58 coax cables). Shaping of the PMT output pulse helps to reduce attenuation effect of the long cable line without significant reduction of timing accuracy. The results of this study of designed amplifier and PMT plus amplifier system are presented.

  17. Pulse

    MedlinePlus

    ... the underside of the opposite wrist, below the base of the thumb. Press with flat fingers until ... determine if the patient's heart is pumping. Pulse measurement has other uses as well. During or immediately ...

  18. Photoassociation and coherent transient dynamics in the interaction of ultracold rubidium atoms with shaped femtosecond pulses. I. Experiment

    SciTech Connect

    Mullins, Terry; Salzmann, Wenzel; Goetz, Simone; Albert, Magnus; Eng, Judith; Wester, Roland; Weidemueller, Matthias; Weise, Fabian; Merli, Andrea; Weber, Stefan M.; Sauer, Franziska; Woeste, Ludger; Lindinger, Albrecht

    2009-12-15

    We experimentally investigate various processes present in the photoassociative interaction of an ultracold atomic sample with shaped femtosecond laser pulses as an detailed extension of previous work [W. Salzmann et al., Phys. Rev. Lett. 100, 233003 (2008)]. We demonstrate the photoassociation of pairs of rubidium atoms into electronically excited, bound molecular states using spectrally cut femtosecond laser pulses tuned below the rubidium D{sub 1} or D{sub 2} asymptote. Time-resolved pump-probe spectra reveal oscillations of the molecular formation rate, which are due to coherent transient dynamics in the electronic excitation. The oscillation frequency corresponds to the detuning of the spectral cut position to the asymptotic transition frequency of the rubidium D{sub 1} or D{sub 2} lines, respectively. Measurements of the molecular photoassociation signal as a function of the pulse energy reveal a nonlinear dependence and indicate a nonperturbative excitation process. Chirping the association laser pulse allowed us to change the phase of the coherent transients. Furthermore, a signature for molecules in the electronic ground state is found, which is attributed to molecule formation by femtosecond photoassociation followed by spontaneous decay. In a subsequent article [A. Merli et al., Phys. Rev. A 80, 063417 (2009)] quantum mechanical calculations are presented, which compare well with the experimental data and reveal further details about the observed coherent transient dynamics.

  19. Digital Pulse-Shape Discrimination Applied to an Ultra-Low-Background Gas-Proportional Counting System: First Results

    SciTech Connect

    Aalseth, Craig E.; Day, Anthony R.; Fuller, Erin S.; Hoppe, Eric W.; Keillor, Martin E.; Mace, Emily K.; Myers, A. W.; Overman, Cory T.; Panisko, Mark E.; Seifert, Allen; Warren, Glen A.; Williams, Richard M.

    2013-05-01

    Abstract A new ultra-low-background proportional counter (ULBPC) design was recently developed at Pacific Northwest National Laboratory (PNNL). This design, along with an ultra-low-background counting system (ULBCS) which provides passive and active shielding with radon exclusion, has been developed to complement a new shallow underground laboratory (~30 meters water-equivalent) constructed at PNNL. After these steps to mitigate dominant backgrounds (cosmic rays, external gamma-rays, radioactivity in materials), remaining background events do not exclusively arise from ionization of the proportional counter gas. Digital pulse-shape discrimination (PSD) is thus employed to further improve measurement sensitivity. In this work, a template shape is generated for each individual sample measurement of interest, a "self-calibrating" template. Differences in event topology can also cause differences in pulse shape. In this work, the temporal region analyzed for each event is refined to maximize background discrimination while avoiding unwanted sensitivity to event topology. This digital PSD method is applied to sample and background data, and initial measurement results from a biofuel methane sample are presented in the context of low-background measurements currently being developed.

  20. Experimental demonstration of sub-picosecond optical pulse shaping in silicon based on discrete space-to-time mapping.

    PubMed

    Bazargani, Hamed Pishvai; Burla, Maurizio; Azaña, José

    2015-12-01

    We experimentally demonstrate on-chip optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers. The demonstrated shapers validate a recent design methodology that exploits the direct relationship between the discrete complex spatial apodization profile of a structure of cascaded couplers and the time-domain impulse response of the device. In this design, the amplitude and phase of the apodization profile can be controlled through the coupling strength of each coupler and the relative time delay between the waveguides connecting consecutive couplers, respectively. This design methodology has been successfully used to demonstrate direct synthesis of high-quality flat-top and phase-coded pulse trains with resolutions down to the sub-picosecond range using passive devices in a silicon-on-insulator platform.

  1. Light yield and n-γ pulse-shape discrimination of liquid scintillators based on linear alkyl benzene

    NASA Astrophysics Data System (ADS)

    Kögler, T.; Junghans, A. R.; Beyer, R.; Hannaske, R.; Massarczyk, R.; Schwengner, R.; Wagner, A.

    2012-03-01

    The relative light yields of NE-213 and LAB-based liquid scintillators to electrons were determined in the electron energy range 5-1600 keV using a combination of monoenergetic photon sources and a Compton spectrometer. The light yield was found to be proportional to energy for both types of scintillator and expected deviations below 100 keV were described successfully applying Birks' law. Digital pulse-shape discrimination in a mixed n-γ field of a 252Cf source was investigated for LAB+PPO and LAB+PPO+bis-MSB and compared to NE-213. In combination with these two solutes, LAB shows poorer abilities to separate neutron-induced pulses from photon-induced ones.

  2. Light yield and n-γ pulse-shape discrimination of liquid scintillators based on linear alkyl benzene

    NASA Astrophysics Data System (ADS)

    Kögler, T.; Beyer, R.; Birgersson, E.; Hannaske, R.; Junghans, A. R.; Massarczyk, R.; Matic, A.; Wagner, A.; Zuber, K.

    2013-02-01

    The relative light yields of NE-213 and linear alkyl benzene (LAB) based liquid scintillators from electrons were determined in the electron energy range 13-1600 keV using a combination of monoenergetic γ sources and a Compton spectrometer. The light yield was found to be proportional to energy for both types of scintillator and expected deviations below 100 keV were described successfully applying Birks’ law. A description of the Cherenkov light contribution to the total light yield was achieved for both detectors and is in agreement with the electromagnetic theory of fast particles in matter. Digital pulse-shape discrimination in a mixed n-γ field from a 252Cf source was investigated for LAB+PPO and LAB+PPO+bis-MSB and compared to NE-213. In combination with these two solutes, LAB shows poorer abilities to separate neutron-induced pulses from γ-induced ones.

  3. Improving the performance of ultrafast microchannel-plate photomultipliers in time-correlated photon counting by pulse pre-shaping

    SciTech Connect

    Cova, S.; Ripamonti, G. )

    1990-03-01

    With ultrafast microchannel-plate (MCP) photomultipliers that produce subnanosecond pulses, the commercially available circuit modules do not provide a correct constant-fraction trigger (CFT) operation. This has a detrimental effect on the resolution obtained in time-correlated photon counting experiments. In order to circumvent this CFT limitation and better exploit the ultrafast MCP performance, a simple pulse-shaping filter has been devised and experimented with. The filter can be interposed between the MCP output and the input of any commercial CFT module, without modifying the latter. The benefit of the filter is confirmed by the experimental results. With MCP samples that produced awkward resolution curves with satellite peaks and other irregular features, the introduction of the filter regularized and narrowed the curve. Also with a setup having fairly good performance, the introduction of the filter was advantageous: the full width at half maximum (FWHM) resolution improved from 75 to 55 ps.

  4. Pulse-shape discrimination of the new plastic scintillators in neutron-gamma mixed field using fast digitizer card

    NASA Astrophysics Data System (ADS)

    Jančář, A.; Kopecký, Z.; Dressler, J.; Veškrna, M.; Matěj, Z.; Granja, C.; Solar, M.

    2015-11-01

    Recently invented plastic scintillator EJ-299-33 enables pulse-shape discrimination (PSD) and thus measurement of neutron and photon spectra in mixed fields. In this work we compare the PSD properties of EJ-299-33 plastic and the well-known NE-213 liquid scintillator in monoenergetic neutron fields generated by the Van de Graaff accelerator using the 3H(d, n)4He reaction. Pulses from the scintillators are processed by a newly developed digital measuring system employing the fast digitizer card. This card contains two AD converters connected to the measuring computer via 10 Gbps optical ethernet. The converters operate with a resolution of 12 bits and have two differential inputs with a sampling frequency 1 GHz. The resulting digital channels with different gains are merged into one composite channel with a higher digital resolution in a wide dynamic range of energies. Neutron signals are fully discriminated from gamma signals. Results are presented.

  5. Study of an indirect-drive ignition capsule with the main pulse shape of decompression and recompression

    NASA Astrophysics Data System (ADS)

    Ye, Wenhua; Wang, Lifeng; Wu, Junfeng; Huo, Wenyi; Lan, Ke; Liu, Jie; He, Xian Tu

    2015-11-01

    Hydrodynamics in the low-foot (LF) implosion during the National Ignition Campaign is highly nonlinearity, which results in significant amount of CH(Si) ablator material mixing into the hot spot and low-mode non-uniformity of the shell areal density. The high-foot (HF) implosion after the NIC largely suppresses mediate- and high- mode hydrodynamic instabilities, in which neutron yields go up an order of magnitude compared to the LF implosion, but the hot spot pressure is still low and the hot spot shape goes bad when the peak power is increased for larger implosion velocity. In our new ignition capsule design, first, the HF prepulse similar to the HF implosion on NIF is adopted for resisting the CH(Si) ablator mix problem; second, the new main pulse shape of decompression and recompression (DR) is proposed to improve performance of the HF implosion on NIF. In this scheme of the DR, the secondary auxiliary shock (SAS) is produced during the late of the main pulse by the recompression pulse to raise the shell density for improving the hot spot pressure. The decompression pulse is used for reducing ablative pressure in order to relax the limit of the peak drive power for SAS production. The SAS colliding with the rebound shock from the center also improves the hot spot pressure and temperature, which is very useful to stabilize the hydrodynamic instabilities during the deceleration stage of implosion for the hot spot ignition. Decompressing the outer part of the ablator thickens the shell to lessen feed-through of perturbations from the ablative to inner interfaces. In this presentation, good 1D and 2D performance of implosion of the DR scheme is reported, especially reduced growth of perturbations at the interface between the hot spot and the main DT fuel.

  6. Standoff detection of trace compounds enabled by continuum pulse shaping and coherent Raman scattering

    NASA Astrophysics Data System (ADS)

    Bremer, Marshall T.; Yue, Orin; Lozovoy, Vadim V.; Dantus, Marcos

    2012-02-01

    Raman spectroscopy has long been pursued as means to detect hazards from a safe distance. This approach promises high chemical specificity, but is limited in sensitivity because of the very small Raman cross-section. We recently demonstrated detection of trace quantities using a non-linear counterpart, coherent anti-Stokes Raman scattering (CARS), which offers large signal enhancement over spontaneous Raman due to coherent signal addition. Utilizing a pulse shaper and the bandwidth inherent in a 5fs laser pulse, CARS spectra were acquired from an explosive simulant dissolved within thin polymer films. Further, the pulse shaper offers total control of the non-linear process, including selective excitation of particular vibrational modes, enabling single channel detection and associated opportunities for rapid chemical imaging. We will present standoff chemical images and associated CARS spectra acquired in a standoff configuration, demonstrating the applicability of the new spectroscopy in a realistic environment.

  7. Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature

    PubMed Central

    Kolarczik, Mirco; Owschimikow, Nina; Korn, Julian; Lingnau, Benjamin; Kaptan, Yücel; Bimberg, Dieter; Schöll, Eckehard; Lüdge, Kathy; Woggon, Ulrike

    2013-01-01

    Coherence in light–matter interaction is a necessary ingredient if light is used to control the quantum state of a material system. Coherent effects are firmly associated with isolated systems kept at low temperature. The exceedingly fast dephasing in condensed matter environments, in particular at elevated temperatures, may well erase all coherent information in the material at timescales shorter than a laser excitation pulse. Here we show for an ensemble of semiconductor quantum dots that even in the presence of ultrafast dephasing, for suitably designed condensed matter systems quantum-coherent effects are robust enough to be observable at room temperature. Our conclusions are based on an analysis of the reshaping an ultrafast laser pulse undergoes on propagation through a semiconductor quantum dot amplifier. We show that this pulse modification contains the signature of coherent light–matter interaction and can be controlled by adjusting the population of the quantum dots via electrical injection. PMID:24336000

  8. Methods for the shaping high-power picosecond laser pulses with a high-contrast ratio

    SciTech Connect

    Malinov, V. A.; Charukchev, A. V.; Chernov, V. N.; Nikitin, N. V.; Potapov, S. L.; Efanov, V. M.; Yarin, P. M.

    1998-02-20

    We present the performance of the electrooptical system based on four Pockels cells with 10 and 20 mm diameters, each of them is driving by its own drift step recovery diode pulse generator. We are developing electro-optic deflector system for CPA laser using two identical deflectors (diverging and converging) and three spatial filters. The results of numerical modeling of the time-dependent distributions of the intensity in the beam are presented. A peak-to-background intensity ratio more than five orders is achieved by this technique. We have developed a new pulse generator based on single drift step recovery diode producing two identical electrical pulses with output voltage up to 15 kV, FWHM of 1.5 ns, rise time of 0.7 ns and jitter of 100 ps at a 100 Hz repetition rate to electro-optic deflectors.

  9. Single-beam coherent anti-Stokes Raman scattering spectroscopy of N 2 using a shaped 7 fs laser pulse

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Wrzesinski, Paul; Pestov, Dmitry; Gunaratne, Tissa; Dantus, Marcos; Gord, James R.

    2009-08-01

    The feasibility is explored by single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase diatomic molecules related to combusting flows, with implications for gas-phase thermometry. We demonstrate CARS of gas-phase N 2 using a shaped ˜ 7 fs laser pulse, investigate the dependence of the CARS signal on the total pressure of the probed environment, both in pure N 2 and in mixtures with Ar, discuss the observed signal-to-noise ratio, and suggest improvements to be considered for reliable single-shot measurements at flame temperatures.

  10. Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET detector

    NASA Astrophysics Data System (ADS)

    Chang, Chen-Ming; Cates, Joshua W.; Levin, Craig S.

    2017-01-01

    It is well known that a PET detector capable of measuring both photon time-of-flight (TOF) and depth-of-interaction (DOI) improves the image quality and accuracy. Phoswich designs have been realized in PET detectors to measure DOI for more than a decade. However, PET detectors based on phoswich designs put great demand on the readout circuits, which have to differentiate the pulse shape produced by different crystal layers. A simple pulse shape discrimination approach is required to realize the phoswich designs in a clinical PET scanner, which consists of thousands of scintillation crystal elements. In this work, we studied time-over-threshold (ToT) as a pulse shape parameter for DOI. The energy, timing and DOI performance were evaluated for a phoswich detector design comprising 3~\\text{mm}× 3~\\text{mm}× 10 mm LYSO:Ce crystal optically coupled to 3~\\text{mm}× 3~\\text{mm}× 10 mm calcium co-doped LSO:Ce,Ca(0.4%) crystal read out by a silicon photomultiplier (SiPM). A DOI accuracy of 97.2% has been achieved for photopeak events using the proposed time-over-threshold (ToT) processing. The energy resolution without correction for SiPM non-linearity was 9.7+/- 0.2 % and 11.3+/- 0.2 % FWHM at 511 keV for LYSO and LSO crystal layers, respectively. The coincidence time resolution for photopeak events ranges from 164.6 ps to 183.1 ps FWHM, depending on the layer combinations. The coincidence time resolution for inter-crystal scatter events ranges from 214.6 ps to 418.3 ps FWHM, depending on the energy windows applied. These results show great promises of using ToT for pulse shape discrimination in a TOF phoswich detector since a ToT measurement can be easily implemented in readout electronics.

  11. Light collection and pulse-shape discrimination in elongated scintillator cells for the PROSPECT reactor antineutrino experiment

    SciTech Connect

    Ashenfelter, J.; Jaffe, D.; Diwan, M. V.; Dolph, J.; Qian, X.; Sharma, R.; Viren, B.; Zhang, C.

    2015-11-06

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. As a result, key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  12. Profiling Cesium Iodide Detectors and Using Pulse Shape Discrimination to Identify Alpha Particles, Neutrons, and Gamma Rays

    NASA Astrophysics Data System (ADS)

    Hudson, Emily; Rogachev, Grigory; Hooker, Joshua; Salyer, Kaitlin

    2016-09-01

    The purpose of this research was to investigate the properties of detectors that are to be used in future experiments. First, we investigated the properties of a cesium iodide detector. We placed a mask over the detector's face and used an alpha source to measure the detector's resolution on different areas of the detector. In the second part, we investigated the pulse shape discrimination capabilities of a plastic scintillator. We used the scintillator to detect alpha particles, neutrons, and gamma rays and applied various analysis techniques to identify the waveforms of each type. Texas A&M, NSF.

  13. Light collection and pulse-shape discrimination in elongated scintillator cells for the PROSPECT reactor antineutrino experiment

    NASA Astrophysics Data System (ADS)

    Ashenfelter, J.; Balantekin, B.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bowes, A.; Brodsky, J. P.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Commeford, K.; Davee, D.; Dean, D.; Deichert, G.; Diwan, M. V.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Goddard, B. W.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Langford, T. J.; Littlejohn, B. R.; Martinez Caicedo, D. A.; McKeown, R. D.; Mendenhall, M. P.; Mueller, P.; Mumm, H. P.; Napolitano, J.; Neilson, R.; Norcini, D.; Pushin, D.; Qian, X.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Sheets, S.; Stemen, N. T.; Surukuchi, P. T.; Varner, R. L.; Viren, B.; Wang, W.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y. R.; Zangakis, G.; Zhang, C.; Zhang, X.

    2015-11-01

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  14. Front end for ELI-Beamlines' 100J cryogenically cooled Yb:YAG multi-slab amplifier with temporal pulse shaping capability

    NASA Astrophysics Data System (ADS)

    Green, Jonathan T.; Naylon, Jack A.; Mazanec, Tomáś; Horáček, Martin; Bakule, Pavel; Rus, Bedřich

    2014-02-01

    We report on the progress of the front end development for a 100 J, 1030 nm amplifier at ELI-Beamlines and discuss requirements for and features of the front end. A particular emphasis is placed on the use of a fiber-based nanosecond pulse generator to produce arbitrarily shaped, stable pulses. Disadvantages of using such a fiber-based seed, such as a wandering baseline, are discussed and solutions are presented. A home-built RF harmonic synthesizer is shown to be capable of controlled sub-nanosecond shaping of optical pulses.

  15. Toward a fractal spectrum approach for neutron and gamma pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Zhe; Liu, Bing-Qi; Zuo, Zhuo; Wang, Lei; Zan, Gui-Bin; Tuo, Xian-Guo

    2016-06-01

    Accurately selecting neutron signals and discriminating γ signals from a mixed radiation field is a key research issue in neutron detection. This paper proposes a fractal spectrum discrimination approach by means of different spectral characteristics of neutrons and γ rays. Figure of merit and average discriminant error ratio are used together to evaluate the discrimination effects. Different neutron and γ signals with various noise and pulse pile-up are simulated according to real data in the literature. The proposed approach is compared with the digital charge integration and pulse gradient methods. It is found that the fractal approach exhibits the best discrimination performance, followed by the digital charge integration method and the pulse gradient method, respectively. The fractal spectrum approach is not sensitive to high frequency noise and pulse pile-up. This means that the proposed approach has superior performance for effective and efficient anti-noise and high discrimination in neutron detection. Supported by the National Natural Science Foundation of China (41274109), Sichuan Youth Science and Technology Innovation Research Team (2015TD0020), Scientific and Technological Support Program of Sichuan Province (2013FZ0022), and the Creative Team Program of Chengdu University of Technology.

  16. Adapted RF Pulse Design for SAR Reduction in Parallel Excitation with Experimental Verification at 9.4 Tesla

    PubMed Central

    Wu, Xiaoping; Akgün, Can; Vaughan, J. Thomas; Andersen, Peter; Strupp, John; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2010-01-01

    Parallel excitation holds strong promises to mitigate the impact of large transmit B1 (B1+) distortion at very high magnetic field. Accelerated RF pulses, however, inherently tend to require larger values in RF peak power which may result in substantial increase in Specific Absorption Rate in tissues, which is a constant concern for patient safety at very high field. In this study, we demonstrate adapted rate RF pulse design allowing for SAR reduction while preserving excitation target accuracy. Compared with other proposed implementations of adapted rate RF pulses, our approach is compatible with any k-space trajectories, does not require an analytical expression of the gradient waveform and can be used for large flip angle excitation. We demonstrate our method with numerical simulations based on electromagnetic modeling and we include an experimental verification of transmit pattern accuracy on an 8 transmit channel 9.4 T system. PMID:20556882

  17. Adaptive and accurate color edge extraction method for one-shot shape acquisition

    NASA Astrophysics Data System (ADS)

    Yin, Wei; Cheng, Xiaosheng; Cui, Haihua; Li, Dawei; Zhou, Lei

    2016-09-01

    This paper presents an approach to extract accurate color edge information using encoded patterns in hue, saturation, and intensity (HSI) color space. This method is applied to one-shot shape acquisition. Theoretical analysis shows that the hue transition between primary and secondary colors in a color edge is based on light interference and diffraction. We set up a color transition model to illustrate the hue transition on an edge and then define the segmenting position of two stripes. By setting up an adaptive HSI color space, the colors of the stripes and subpixel edges are obtained precisely without a dark laboratory environment, in a low-cost processing algorithm. Since this method does not have any constraints for colors of neighboring stripes, the encoding is an easy procedure. The experimental results show that the edges of dense modulation patterns can be obtained under a complicated environment illumination, and the precision can ensure that the three-dimensional shape of the object is obtained reliably with only one image.

  18. Light field compression using disparity-compensated lifting and shape adaptation.

    PubMed

    Chang, Chuo-Ling; Zhu, Xiaoqing; Ramanathan, Prashant; Girod, Bernd

    2006-04-01

    We propose disparity-compensated lifting for wavelet compression of light fields. With this approach, we obtain the benefits of wavelet coding, such as scalability in all dimensions, as well as superior compression performance. Additionally, the proposed approach solves the irreversibility limitations of previous light field wavelet coding approaches, using the lifting structure. Our scheme incorporates disparity compensation into the lifting structure for the transform across the views in the light field data set. Another transform is performed to exploit the coherence among neighboring pixels, followed by a modified SPIHT coder and rate-distortion optimized bitstream assembly. A view-sequencing algorithm is developed to organize the views for encoding. For light fields of an object, we propose to use shape adaptation to improve the compression efficiency and visual quality of the images. The necessary shape information is efficiently coded based on prediction from the existing geometry model. Experimental results show that the proposed scheme exhibits superior compression performance over existing light field compression techniques.

  19. Controlled Aeroelastic Response and Airfoil Shaping Using Adaptive Materials and Integrated Systems

    NASA Technical Reports Server (NTRS)

    Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer

    1996-01-01

    This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the Adaptive Neural Control of Aeroelastic Response (ANCAR) program; the Actively Controlled Response of Buffet Affected Tails (ACROBAT) program; and the Airfoil THUNDER Testing to Ascertain Characteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant rcductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. Th,e ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using Thin-Layer Composite-Uimorph Piezoelectric Driver and Sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.

  20. Development and implementation of a coupled computational muscle force optimization bone shape adaptation modeling method.

    PubMed

    Florio, C S

    2015-04-01

    Improved methods to analyze and compare the muscle-based influences that drive bone strength adaptation can aid in the understanding of the wide array of experimental observations about the effectiveness of various mechanical countermeasures to losses in bone strength that result from age, disuse, and reduced gravity environments. The coupling of gradient-based and gradientless numerical optimization routines with finite element methods in this work results in a modeling technique that determines the individual magnitudes of the muscle forces acting in a multisegment musculoskeletal system and predicts the improvement in the stress state uniformity and, therefore, strength, of a targeted bone through simulated local cortical material accretion and resorption. With a performance-based stopping criteria, no experimentally based or system-based parameters, and designed to include the direct and indirect effects of muscles attached to the targeted bone as well as to its neighbors, shape and strength alterations resulting from a wide range of boundary conditions can be consistently quantified. As demonstrated in a representative parametric study, the developed technique effectively provides a clearer foundation for the study of the relationships between muscle forces and the induced changes in bone strength. Its use can lead to the better control of such adaptive phenomena.

  1. Shape-persistent and adaptive multivalency: rigid transgeden (TGD) and flexible PAMAM dendrimers for heparin binding.

    PubMed

    Bromfield, Stephen M; Posocco, Paola; Fermeglia, Maurizio; Tolosa, Juan; Herreros-López, Ana; Pricl, Sabrina; Rodríguez-López, Julián; Smith, David K

    2014-07-28

    This study investigates transgeden (TGD) dendrimers (polyamidoamine (PAMAM)-type dendrimers modified with rigid polyphenylenevinylene (PPV) cores) and compares their heparin-binding ability with commercially available PAMAM dendrimers. Although the peripheral ligands are near-identical between the two dendrimer families, their heparin binding is very different. At low generation (G1), TGD outperforms PAMAM, but at higher generation (G2 and G3), the PAMAMs are better. Heparin binding also depends strongly on the dendrimer/heparin ratio. We explain these effects using multiscale modelling. TGD dendrimers exhibit "shape-persistent multivalency"; the rigidity means that small clusters of surface amines are locally well optimised for target binding, but it prevents the overall nanoscale structure from rearranging to maximise its contacts with a single heparin chain. Conversely, PAMAM dendrimers exhibit "adaptive multivalency"; the flexibility means individual surface ligands are not so well optimised locally to bind heparin chains, but the nanostructure can adapt more easily and maximise its binding contacts. As such, this study exemplifies important new paradigms in multivalent biomolecular recognition.

  2. Regulatory gene networks that shape the development of adaptive phenotypic plasticity in a cichlid fish.

    PubMed

    Schneider, Ralf F; Li, Yuanhao; Meyer, Axel; Gunter, Helen M

    2014-09-01

    Phenotypic plasticity is the ability of organisms with a given genotype to develop different phenotypes according to environmental stimuli, resulting in individuals that are better adapted to local conditions. In spite of their ecological importance, the developmental regulatory networks underlying plastic phenotypes often remain uncharacterized. We examined the regulatory basis of diet-induced plasticity in the lower pharyngeal jaw (LPJ) of the cichlid fish Astatoreochromis alluaudi, a model species in the study of adaptive plasticity. Through raising juvenile A. alluaudi on either a hard or soft diet (hard-shelled or pulverized snails) for between 1 and 8 months, we gained insight into the temporal regulation of 19 previously identified candidate genes during the early stages of plasticity development. Plasticity in LPJ morphology was first detected between 3 and 5 months of diet treatment. The candidate genes, belonging to various functional categories, displayed dynamic expression patterns that consistently preceded the onset of morphological divergence and putatively contribute to the initiation of the plastic phenotypes. Within functional categories, we observed striking co-expression, and transcription factor binding site analysis was used to examine the prospective basis of their coregulation. We propose a regulatory network of LPJ plasticity in cichlids, presenting evidence for regulatory crosstalk between bone and muscle tissues, which putatively facilitates the development of this highly integrated trait. Through incorporating a developmental time-course into a phenotypic plasticity study, we have identified an interconnected, environmentally responsive regulatory network that shapes the development of plasticity in a key innovation of East African cichlids.

  3. Pulse-shape discrimination and energy quenching of alpha particles in Cs2LiLaBr6:Ce3+

    NASA Astrophysics Data System (ADS)

    Mesick, K. E.; Coupland, D. D. S.; Stonehill, L. C.

    2017-01-01

    Cs2LiLaBr6:Ce3+(CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. We also measured the electron-equivalent-energy of the alpha particles in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas. A linear quenching relationship Lα =Eα × q +L0 was found at alpha particle energies above 5 MeV, with a quenching factor q = 0.71 MeVee / MeV and an offset L0 = - 1.19 MeVee .

  4. Multi-function Mach-Zehnder modulator for pulse shaping and generation.

    PubMed

    Gao, Jing; Wu, Hui

    2016-09-19

    We present a multi-function electronic-photonic integrated circuit (EPIC) design which exploits a new operation mode of a Mach-Zehnder modulator (MZM). Different from the conventional design, the two arms of the modulator are driven by time-shifted signals of tunable amplitude. We study its operation in the linear and quadratic regions where the MZM is biased at π/2 and π initial phase difference, respectively. In the linear region, the modulator sums the waveforms of the driving signals in the two arms, which can be used to add pre-emphasis function to the modulator, and hence it obviates an electrical pre-emphasis driver. Furthermore, when operating in the quadratic region, the modulator can produce optical pulses with tunable pulse width at double clock rate. Prototype circuits are designed first using a suit of device, electromagnetic simulators to build compact models, and then importing into a photonic circuit simulator for complete circuit performance evaluation.

  5. All-atomic source of squeezed vacuum with full pulse-shape control

    NASA Astrophysics Data System (ADS)

    Horrom, Travis; Novikova, Irina; Mikhailov, Eugeniy E.

    2012-06-01

    We report on the generation of pulses of a low-frequency squeezed vacuum with noise suppression >2 dB below the standard quantum limit in a hot resonant 87Rb vapour with polarization self-rotation. We demonstrate the possibility of precisely controlling the temporal profile of the squeezed noise quadrature by applying a calibrated longitudinal magnetic field, without degrading the maximum amount of squeezing.

  6. Shaped cathodes for the production of ultra-short multi-electron pulses

    PubMed Central

    Petruk, Ariel Alcides; Pichugin, Kostyantyn; Sciaini, Germán

    2017-01-01

    An electrostatic electron source design capable of producing sub-20 femtoseconds (rms) multi-electron pulses is presented. The photoelectron gun concept builds upon geometrical electric field enhancement at the cathode surface. Particle tracer simulations indicate the generation of extremely short bunches even beyond 40 cm of propagation. Comparisons with compact electron sources commonly used for femtosecond electron diffraction are made. PMID:28191483

  7. Bi-Annual Report 2010-2011: Shaping pulse flows to meet environmental and energy objectives

    SciTech Connect

    Jager, Yetta

    2010-10-01

    This report describes a bioenergetic model developed to allocate seasonal pulse flows to benefit salmon growth. The model links flow with floodplain inundation and production of invertebrate prey eaten by juvenile Chinook salmon. A unique quantile modeling approach is used to describe temporal variation among juvenile salmon spawned at different times. Preliminary model outputs are presented and future plans to optimize flows both to maximize salmon growth and hydropower production are outlined.

  8. Parametric polarization pulse shaping demonstrated for optimal control of NaK.

    PubMed

    Weber, Stefan M; Plewicki, Mateusz; Weise, Fabian; Lindinger, Albrecht

    2008-05-07

    We present a routine for calculating and producing customized/parametric femtosecond laser pulses for investigating molecular processes involving the polarization. It is applied on the ionization of NaK molecules by feedback-loop optimization using the recently introduced double-pass "serial setup" that is capable of phase, amplitude, and polarization modulation. The temporal subpulse encoding uses the parameters distance, intensity, zero order spectral phase, and polarization state.

  9. The variable Herbig Ae Star HR 5999. X - Its photometric 'pulse-shaped' variability

    NASA Technical Reports Server (NTRS)

    Perez, M. R.; Webb, J. R.; The, P. S.

    1992-01-01

    We present additional photometric observations (Stromgren y filter) of the Herbig Ae Star HR 5999. This new set of data, composed of 282 data points covering April 1983 to August 1989, was used in conjunction with the 362 data points compiled by Baade and Stahl (1989). Our aim was to detect single or multiple periods in the integrated set of data spanning nearly 20 yr. Through the use of series analysis techniques, and by removing any linear component present in the raw data, we were able to detect weak peaks in the power spectra (in the order of intensity the strongest peaks are at 301 and 113 d) which were not self-evident in the phase diagrams. The overall picture of the data shows a small linear component, which is more noticeable in the new set of data, indicating that the recent maxima appear brighter. By a detailed analysis of the full light curve we were able to detect the presence of well-defined 'pulses' or bursts. Further Gaussian fits of these bursts indicated that the pulses are relatively rapid, of the order of 10 d, with some of them being closely spaced. No periodicity was found for the pulses. A possible explanation of these aperiodic outbursts is that they detect a flow of matter accompanied by magnetic field disturbances originated from the interior of the star, unlike those originating externally such as binary perturbations, which tend to be periodic.

  10. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests

    NASA Astrophysics Data System (ADS)

    Forquin, Pascal; Zinszner, Jean-Luc

    2017-01-01

    Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the `wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, `wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  11. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests.

    PubMed

    Forquin, Pascal; Zinszner, Jean-Luc

    2017-01-28

    Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the 'wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, 'wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  12. Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images.

    PubMed

    Foi, Alessandro; Katkovnik, Vladimir; Egiazarian, Karen

    2007-05-01

    The shape-adaptive discrete cosine transform ISA-DCT) transform can be computed on a support of arbitrary shape, but retains a computational complexity comparable to that of the usual separable block-DCT (B-DCT). Despite the near-optimal decorrelation and energy compaction properties, application of the SA-DCT has been rather limited, targeted nearly exclusively to video compression. In this paper, we present a novel approach to image filtering based on the SA-DCT. We use the SA-DCT in conjunction with the Anisotropic Local Polynomial Approximation-Intersection of Confidence Intervals technique, which defines the shape of the transform's support in a pointwise adaptive manner. The thresholded or attenuated SA-DCT coefficients are used to reconstruct a local estimate of the signal within the adaptive-shape support. Since supports corresponding to different points are in general overlapping, the local estimates are averaged together using adaptive weights that depend on the region's statistics. This approach can be used for various image-processing tasks. In this paper, we consider, in particular, image denoising and image deblocking and deringing from block-DCT compression. A special structural constraint in luminance-chrominance space is also proposed to enable an accurate filtering of color images. Simulation experiments show a state-of-the-art quality of the final estimate, both in terms of objective criteria and visual appearance. Thanks to the adaptive support, reconstructed edges are clean, and no unpleasant ringing artifacts are introduced by the fitted transform.

  13. Characteristics of fixed-shape pulses emerging from pulsating, erupting, and creeping solitons

    NASA Astrophysics Data System (ADS)

    Latas, Sofia C. V.; Ferreira, Mário F. S.; Facão, Margarida V.

    2014-08-01

    It is known that one of the impacts of combined higher-order effects, namely the intrapulse Raman scattering, third-order dispersion, and self-steepening, on the plain-pulsating, erupting, and creeping soliton solutions of the complex Ginzburg-Landau equation is the change of its periodic behavior and its transformation into fixed-shape solutions. In this work, we numerically find the regions in the parameters space in which these solutions exist. We also characterize their velocities, shapes, and chirp.

  14. Mast Pulses Shape Trophic Interactions between Fluctuating Rodent Populations in a Primeval Forest

    PubMed Central

    Selva, Nuria; Hobson, Keith A.; Cortés-Avizanda, Ainara; Zalewski, Andrzej; Donázar, José Antonio

    2012-01-01

    How different functional responses of consumers exploiting pulsed resources affect community dynamics is an ongoing question in ecology. Tree masting is a common resource pulse in terrestrial ecosystems that can drive rodent population cycles. Using stable isotope (δ13C, δ15N) analyses, we investigated the dietary response of two fluctuating rodent species, the yellow-necked mouse Apodemus flavicollis and the bank vole Myodes glareolus, to mast events in Białowieża Forest (NE Poland). Rodent hair samples were obtained non-invasively from faeces of their predators for an 11-year period that encompassed two mast events. Spectacular seed crops of deciduous trees, namely oak Quercus robur and hornbeam Carpinus betulus, occur after several intermediate years of moderate seed production, with a post-mast year characterised by a nil crop. While a Bayesian isotopic (SIAR) mixing model showed a variety of potential vegetation inputs to rodent diets, the isotopic niche of the yellow-necked mouse was strongly associated with mast of deciduous trees (>80% of diet), showing no variation among years of different seed crop. However, bank voles showed a strong functional response; in mast years the vole shifted its diet from herbs in deciduous forest (∼66% of diet) to mast (∼74%). Only in mast years did the isotopic niche of both rodent species overlap. Previous research showed that bank voles, subordinate and more generalist than mice, showed higher fluctuations in numbers in response to masting. This study provides unique data on the functional response of key pulse consumers in forest food webs, and contributes to our understanding of rodent population fluctuations and the mechanisms governing pulse–consumer interactions. PMID:23251475

  15. Enhancing ablation efficiency in micro structuring using a deformable mirror for beam shaping of ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Smarra, M.; Dickmann, K.

    2016-03-01

    Using ultra-short laser pulses for the generation of microstructures results in a high flexible tool for free form geometries in the micro range. Increasing laser power and repetition rates increase as well the demand of high flexible and efficient process strategies. To increase the ablation efficiency the optimal fluency can be determined, which is a material specific value. By varying the beam shape, the ablation efficiency can be enhanced. In this study a deformable mirror was used to vary the beam shape. This mirror is built by combining a piezo-electric ceramic and a mirror substrate. The ceramic is divided into several segments, which can be controlled independently. This results in a high flexible deformable mirror which influences the beam shape and can be used to vary the spot size or generate line geometries. The ablation efficiency and roughness of small generated cavities were analyzed in this study as well as the dimensions of the cavity. This can be used to optimize process strategies to combine high volume ablation and fine detail generation.

  16. Shifting the boundaries: Pulse-shape effects in the atom-optics kicked rotor

    NASA Astrophysics Data System (ADS)

    Jones, P. H.; Goonasekera, M.; Saunders-Singer, H. E.; Meacher, D. R.

    2004-09-01

    We present the results of experiments performed on cold caesium in a pulsed sinusoidal optical potential created by counter-propagating laser beams having a small frequency difference in the laboratory frame. Since the atoms, which have average velocity close to zero in the laboratory frame, have non-zero average velocity in the co-moving frame of the optical potential, we are able to centre the initial velocity distribution of the cloud at an arbitrary point in phase space. In particular, we demonstrate the use of this technique to place the initial velocity distribution in a region of phase space not accessible to previous experiments, namely beyond the momentum boundaries arising from the finite pulse duration of the potential. We further use the technique to explore the kicked-rotor dynamics starting from a region of phase space where there is a strong velocity dependence of the diffusion constant and quantum break time and demonstrate that this results in a marked asymmetry in the chaotic evolution of the atomic momentum distribution.

  17. Shape, size and multiplicity of main-belt asteroids I. Keck Adaptive Optics survey.

    PubMed

    Marchis, F; Kaasalainen, M; Hom, E F Y; Berthier, J; Enriquez, J; Hestroffer, D; Le Mignant, D; de Pater, I

    2006-11-01

    This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100 × R(Hill) (1/4 × R(Hill)) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D < 200 km, it is underestimated on average by 6-8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450-464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to

  18. Shape, size and multiplicity of main-belt asteroids I. Keck Adaptive Optics survey

    PubMed Central

    Marchis, F.; Kaasalainen, M.; Hom, E.F.Y.; Berthier, J.; Enriquez, J.; Hestroffer, D.; Le Mignant, D.; de Pater, I.

    2008-01-01

    This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100 × RHill (1/4 × RHill) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D < 200 km, it is underestimated on average by 6–8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450–464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to

  19. Shape effect in FMR of Ni-Co-Mn-In layers obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Dubiel, Łukasz; Kuzma, Marian; Stefaniuk, Ireneusz; Wisz, Grzegorz; Wal, Andrzej

    2016-12-01

    We have studied thin layers of Ni50-xCoxMn50-yIny alloys on (001) Si substrate obtained by pulsed laser deposition method (PLD) using YAG Nd3+ laser operating at second harmonic. The target was bulk Ni50-xCoxMn50-yIny (x = 5, y = 14.5) alloy prepared by induction melting of pure elements under argon atmosphere. Magnetic properties were investigated on Bruker X band EPR spectrometer (9.36 GHz) at room temperature. The magnetic resonance spectrum consists of non-symmetric lines with resonance field within wide field range (2500-4800 Gs) depending on the orientation of the static field in the plane perpendicular to the layer. Calculated spectroscopic splitting factor g = 2.09.

  20. Satellite and Opacity Effects on Resonance Line Shapes Produced from Short-Pulse Laser Heated Foils

    SciTech Connect

    Shepherd, R; Audebert, P; Chen, H-K; Fournier, K B; Peyreusse, O; Moon, S; Lee, R W; Price, D; Klein, L; Gauthier, J C; Springer, P

    2002-12-03

    We measure the He-like, time-resolved emission from thin foils consisting of 250 {angstrom} of carbon-250 {angstrom} of aluminum and 500 {angstrom} aluminum illuminated with a 150 fs laser pulse at an intensity of 1 x 10{sup 19} W/cm{sup 2}. Dielectronic satellite contributions to the 1s{sup 2}-1s2p({sup 1}P), 1s{sup 2}-1s3p({sup 1}P), and 1s{sup 2}1s4p({sup 1}P) line intensities are modeled using the configuration averaged code AVERROES and is found to be significant for all three resonance lines. The contribution of opacity broadening is inferred from the data and found to be significant only in the 1s{sup 2}-1s2p({sup 1}P).

  1. Pulse shaping strategies for nonlinear interferometric vibrational imaging optimized for biomolecular imaging.

    PubMed

    Marks, Daniel L; Vinegoni, Claudio; Bredfeldt, Jeremy S; Boppart, Stephen A

    2004-01-01

    Nonlinear interferometric vibrational imaging (NIVI) measures the temporal cross-correlation of anti-Stokes radiation from coherent anti-Stokes Raman scattering (CARS) processes to achieve increased sensitivity, stray light rejection, and nonresonant background rejection. Because the intensity of CARS radiation is proportional to the square of the molecular density of a target resonance, it is critical to maximize the recoverable signal for a given illumination level. Especially if one desires to measure several resonances, there can be a sensitivity as well as a speed advantage to measuring them simultaneously rather than serially. We discuss the methods of sample excitation that NIVI allows and their potential sensitivity advantages, as well as present experimental results demonstrating Raman signal recovery using these pulse sequences.

  2. Object-adapted trapping and shape-tracking to probe a bacterial protein chain motor

    NASA Astrophysics Data System (ADS)

    Roth, Julian; Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The helical bacterium Spiroplasma is a motile plant and anthropod pathogen which swims by propagating pairs of kinks along its cell body. As a well suited model system for bacterial locomotion, understanding the cell's molecular motor is of vital interest also regarding the combat of bacterial diseases. The extensive deformations related to these kinks are caused by a contractile cytoskeletal protein ribbon representing a linear motor in contrast to common rotary motors as, e.g., flagella. We present new insights into the working of this motor through experiments with object-adapted optical traps and shape-tracking techniques. We use the given laser irradiation from the optical trap to hinder bacterial energy (ATP) production through the production of O2 radicals. The results are compared with experiments performed under the influence of an O2-Scavenger and ATP inhibitors, respectively. Our results show clear dependences of the kinking properties on the ATP concentration inside the bacterium. The experiments are supported by a theoretical model which we developed to describe the switching of the ribbon's protein subunits.

  3. Adaptive optical beam shaping for compensating projection-induced focus deformation

    NASA Astrophysics Data System (ADS)

    Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2016-02-01

    Scanner-based applications are already widely used for the processing of surfaces, as they allow for highly dynamic deflection of the laser beam. Particularly, the processing of three-dimensional surfaces with laser radiation initiates the development of highly innovative manufacturing techniques. Unfortunately, the focused laser beam suffers from deformation caused by the involved projection mechanisms. The degree of deformation is field variant and depends on both the surface geometry and the working position of the laser beam. Depending on the process sensitivity, the deformation affects the process quality, which motivates a method of compensation. Current approaches are based on a local adaption of the laser power to maintain constant intensity within the interaction zone. For advanced manufacturing, this approach is insufficient, as the residual deformation of the initial circular laser spot is not taken into account. In this paper, an alternative approach is discussed. Additional beam-shaping devices are integrated between the laser source and the scanner, and allow for an in situ compensation to ensure a field-invariant circular focus spot within the interaction zone. Beyond the optical design, the approach is challenging with respect to the control theory's point of view, as both the beam deflection and the compensation have to be synchronized.

  4. Population diversity and adaptive evolution in keratinization genes: impact of environment in shaping skin phenotypes.

    PubMed

    Gautam, Pramod; Chaurasia, Amit; Bhattacharya, Aniket; Grover, Ritika; Mukerji, Mitali; Natarajan, Vivek T

    2015-03-01

    Several studies have demonstrated the role of climatic factors in shaping skin phenotypes, particularly pigmentation. Keratinization is another well-designed feature of human skin, which is involved in modulating transepidermal water loss (TEWL). Although this physiological process is closely linked to climate, presently it is not clear whether genetic diversity is observed in keratinization and whether this process also responds to the environmental pressure. To address this, we adopted a multipronged approach, which involved analysis of 1) copy number variations in diverse Indian and HapMap populations from varied geographical regions; 2) genetic association with geoclimatic parameters in 61 populations of dbCLINE database in a set of 549 genes from four processes namely keratinization, pigmentation, epidermal differentiation, and housekeeping functions; 3) sequence divergence in 4,316 orthologous promoters and corresponding exonic regions of human and chimpanzee with macaque as outgroup, and 4) protein sequence divergence (Ka/Ks) across nine vertebrate classes, which differ in their extent of TEWL. Our analyses demonstrate that keratinization and epidermal differentiation genes are under accelerated evolution in the human lineage, relative to pigmentation and housekeeping genes. We show that this entire pathway may have been driven by environmental selection pressure through concordant functional polymorphisms across several genes involved in skin keratinization. Remarkably, this underappreciated function of skin may be a crucial determinant of adaptation to diverse environmental pressures across world populations.

  5. A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo

    A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).

  6. The use of linear programming techniques to design optimal digital filters for pulse shaping and channel equalization

    NASA Technical Reports Server (NTRS)

    Houts, R. C.; Burlage, D. W.

    1972-01-01

    A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.

  7. Optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers.

    PubMed

    Bazargani, Hamed Pishvai; Azaña, José

    2015-09-07

    We propose and numerically validate a new design concept for on-chip optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers. We show that under weak-coupling conditions, the amplitude and phase of the discrete complex apodization profile of the device can be directly mapped into its temporal impulse response. In this scheme, the amplitude and phase of the apodization profile can be controlled by tuning the coupling strength and relative time delay between the couplers, respectively. The proposed concept enables direct synthesis of the target temporal waveforms over a very broad range of time-resolution, from the femtosecond to the sub-nanosecond regime, using readily feasible integrated waveguide technologies. Moreover, the device offers compactness and the potential for reconfigurability.

  8. Single and two-photon fluorescence control of Er{sup 3+} ions by phase-shaped femtosecond laser pulse

    SciTech Connect

    Zhang, Shian Ding, Jingxin; Lu, Chenhui; Jia, Tianqing; Sun, Zhenrong; Xu, Shuwu; Qiu, Jianrong

    2014-01-06

    We experimentally demonstrate the control of the single and two-photon fluorescence (SPF and TPF) in Er{sup 3+} ions by shaping the femtosecond laser pulse with a π or square phase modulation. With the low laser intensity (8.4 × 10{sup 10} W/cm{sup 2}), SPF keeps a constant while TPF is effectively suppressed by the two control schemes. With the high laser intensity (1.2 × 10{sup 13} W/cm{sup 2}), both SPF and TPF are simultaneously enhanced or suppressed by the π phase modulation, and SPF is enhanced while TPF is effectively suppressed by the square phase modulation. The up/down-conversion fluorescence enhancement, suppression, or tuning by the optical control method can greatly expand its applications in various related fields.

  9. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.

    PubMed

    Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi

    2013-01-01

    We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.

  10. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  11. Adaptive-feedback spectral-phase control for interactions with transform-limited ultrashort high-power laser pulses.

    PubMed

    Liu, Cheng; Zhang, Jun; Chen, Shouyuan; Golovin, Gregory; Banerjee, Sudeep; Zhao, Baozhen; Powers, Nathan; Ghebregziabher, Isaac; Umstadter, Donald

    2014-01-01

    Fourier-transform-limited light pulses were obtained at the laser-plasma interaction point of a 100-TW peak-power laser in vacuum. The spectral-phase distortion induced by the dispersion mismatching between the stretcher, compressor, and dispersive materials was fully compensated for by means of an adaptive closed-loop. The coherent temporal contrast on the sub-picosecond time scale was two orders of magnitude higher than that without adaptive control. This novel phase control capability enabled the experimental study of the dependence of laser wakefield acceleration on the spectral phase of intense laser light.

  12. Phase-only shaped laser pulses in optimal control theory: application to indirect photofragmentation dynamics in the weak-field limit.

    PubMed

    Shu, Chuan-Cun; Henriksen, Niels E

    2012-01-28

    We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency distribution can substantially modify transient dissociation probabilities as well as the momentum distribution associated with the relative motion of Na and I.

  13. Mid-Infrared Pulse Shaping and Two-Dimensional Spectroscopy of Open Quantum Systems in Liquid Solution

    NASA Astrophysics Data System (ADS)

    Ross, Matthew R.

    The primary focus of this work is the development of a mid-infrared pulse shaping system. The primary motivation for this system is for two-dimensional infrared (2DIR) spectroscopy, however, the mid-infrared pulse shaper also allows for more sophisticated spectroscopic experiments not previously attempted in the mid-infrared. Moreover, many can be implemented without changes or realignment of the optical setup. Example spectra are presented along with a discussion of capabilities and diagnostics. A second major project presented is 2DIR spectroscopy of iron pentacarbonyl, Fe(CO)5, a small metal carbonyl. This molecule undergoes Berry pseudorotation, a form of fluxtionality. This fast exchange of ligands mixes axial and equatorial modes and occurs on a timescale of picoseconds, too fast for NMR and other methods of measuring chemical structure and isomerization. Ultrafast chemical exchange spectroscopy, a measurement within 2DIR spectroscopy, is capable of resolving the time scales of this motion. We found that this process is affected by the solvent environment, specifically the solvent viscosity in alkanes and hydrogen bonding environments in alcohols. Lastly, a study is presented in which a series of synthetic metalloenzymes with a metal active site are studied by 2DIR spectroscopy. In this case a carbonyl is ligated to a copper-I atom in the active site, which then serves as our spectroscopic probe. We find, unexpectedly, that the shape of the carbonyl vibrational potential, as measured by the anharmonicity, is time-dependent. We attribute this to a geometrical rearrangement and are able to suggest that this effect is dependent on local site structure and dynamics and not significantly affected by electric potential near the peptide.

  14. Pulse shape analysis of a two fold clover detector with an EMD based new algorithm: A comparison

    NASA Astrophysics Data System (ADS)

    Siwal, Davinder; Mandal, S.; Palit, R.; Sethi, J.; Garg, R.; Saha, S.; Prasad, Awadhesh; Chavan, P. B.; Naidu, B. S.; Jadhav, S.; Donthi, R.; Schaffner, H.; Adamczewski-Musch, J.; Kurz, N.; Wollersheim, H. J.; Singh, R.

    2014-03-01

    An investigation of Empirical Mode Decomposition (EMD) based noise filtering algorithm has been carried out on a mirror signal from a two fold germanium clover detector. EMD technique can decompose linear as well as nonlinear and chaotic signals with a precise frequency resolution. It allows to decompose the preamplifier signal (charge pulse) on an event-by-event basis. The filtering algorithm provides the information about the Intrinsic Mode Functions (IMFs) mainly dominated by the noise. It preserves the signal information and separates the overriding noise oscillations from the signals. The identification of noise structure is based on the frequency distributions of different IMFs. The preamplifier noise components which distort the azimuthal co-ordinates information have been extracted on the basis of the correlation between the different IMFs and the mirror signal. The correlation studies have been carried out both in frequency and time domain. The extracted correlation coefficient provides an important information regarding the pulse shape of the γ-ray interaction in the detector. A comparison between the EMD based and state-of-the-art wavelet based denoising techniques has also been made and discussed. It has been observed that the fractional noise strength distribution varies with the position of the collimated gamma-ray source. Above trend has been reproduced by both the denoising techniques.

  15. Reducing Current Spread by Use of a Novel Pulse Shape for Electrical Stimulation of the Auditory Nerve

    PubMed Central

    Ballestero, Jimena; Recugnat, Matthieu; Laudanski, Jonathan; Smith, Katie E.; Jagger, Daniel J.; Gnansia, Daniel

    2015-01-01

    Improving the electrode-neuron interface to reduce current spread between individual electrodes has been identified as one of the main objectives in the search for future improvements in cochlear-implant performance. Here, we address this problem by presenting a novel stimulation strategy that takes account of the biophysical properties of the auditory neurons (spiral ganglion neurons, SGNs) stimulated in electrical hearing. This new strategy employs a ramped pulse shape, where the maximum amplitude is achieved through a linear slope in the injected current. We present the theoretical framework that supports this new strategy and that suggests it will improve the modulation of SGNs’ activity by exploiting their sensitivity to the rising slope of current pulses. The theoretical consequence of this sensitivity to the slope is a reduction in the spread of excitation within the cochlea and, consequently, an increase in the neural dynamic range. To explore the impact of the novel stimulation method on neural activity, we performed in vitro recordings of SGNs in culture. We show that the stimulus efficacy required to evoke action potentials in SGNs falls as the stimulus slope decreases. This work lays the foundation for a novel, and more biomimetic, stimulation strategy with considerable potential for implementation in cochlear-implant technology. PMID:26721928

  16. High-resolution line-shape spectroscopy during a laser pulse based on Dual-Broad-Band-CARS interferometry

    SciTech Connect

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M E-mail: Al_Vereshchagin@mail.r E-mail: stelmakh@kapella.gpi.r

    2006-07-31

    A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern, considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  17. Effects of shape and size of agar gels on heating uniformity during pulsed microwave treatment.

    PubMed

    Soto-Reyes, Nohemí; Temis-Pérez, Ana L; López-Malo, Aurelio; Rojas-Laguna, Roberto; Sosa-Morales, María Elena

    2015-05-01

    Model gel systems with different shape (sphere, cylinder, and slab) and size (180 and 290 g) were prepared with agar (5%) and sucrose (5%). Dielectric constant (ε'), loss factor (ε"), thermophysical properties, and temperature distribution of the model system were measured. Each agar model system was immersed and suspended in water, and then, heated in a microwave oven with intermittent heating until the core temperature reached 50 °C. The ε' and ε" of agar gels decreased when frequency increased. The density and thermal conductivity values of the agar gels were 1033 kg/m(3) and 0.55 W/m °C, respectively. The temperature distribution of sphere, cylinder, and slab was different when similar power doses were applied. The slab reached 50 °C in less time (10 min) and showed a more uniform heating than spheres and cylinders in both sizes. Agar model systems of 180 g heated faster than those of 290 g. The coldest point was the center of the model systems in all studied cases. Shape and size are critical food factors that affect the heating uniformity during microwave heating processes.

  18. Experimental demonstration of electron longitudinal-phase-space linearization by shaping the photoinjector laser pulse.

    PubMed

    Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M

    2014-01-31

    Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.

  19. Adaptation of the cortical somatosensory evoked potential following pulsed pneumatic stimulation of the lower face in adults.

    PubMed

    Custead, Rebecca; Oh, Hyuntaek; Rosner, Austin Oder; Barlow, Steven

    2015-10-05

    Cortical adaptation to sustained sensory input is a pervasive form of short-term plasticity in neurological systems. Its role in sensory perception in health and disease, or predicting long-term plastic changes resulting from sensory training offers insight into the mechanisms of somatosensory and sensorimotor processing. A 4-channel electroencephalography (EEG) recording montage was placed bilaterally (C3-P3, C4-P4, F7-P3, F8-P4) to characterize the short-term effects of pulsed pneumatic orofacial stimulation on the cortical somatosensory evoked potential (cSEP) in twenty neurotypical adults (mean age=21±2.88 years). A servo-controlled pneumatic amplifier was used to deliver a repetitive series of pneumatic pulse trains (six 50-ms pulses, 5-second intertrain interval) through a linked pair of custom acetal homopolymer probes (aka TAC-Cells) adhered to the nonglabrous skin of the lower face proximal to the right oral angle to synchronously activate mechanoreceptive afferents in the trigeminal nerve. Blocks of pulse trains were counterbalanced among participants and delivered at two rates, 2 and 4Hz. TAC-Cell stimulation of the lower face consistently evoked a series of cSEPs at P7, N20, P28, N38, P75, N85, and P115. The spatial organization and adaptation of the evoked cSEP was dependent on stimulus pulse index (1-6 within the pulse train, p=.012), frequency of stimulus presentation (2 vs 4Hz, p<.001), component (P7-P115, p<.001), and recording montage (channels 1-4, p<.001). Early component latencies (P7-N20) were highly stable in polarity (sign) and latency, and consistent with putative far-field generators (e.g., trigeminal brainstem, ventroposteromedial thalamus).

  20. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.

  1. Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily-shaped, Three-dimensional Dielectric Scatterers

    NASA Technical Reports Server (NTRS)

    MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.

    2007-01-01

    A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.

  2. Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model.

    PubMed

    Arts, Theo; Delhaas, Tammo; Bovendeerd, Peter; Verbeek, Xander; Prinzen, Frits W

    2005-04-01

    With circulatory pathology, patient-specific simulation of hemodynamics is required to minimize invasiveness for diagnosis, treatment planning, and followup. We investigated the advantages of a smart combination of often already known hemodynamic principles. The CircAdapt model was designed to simulate beat-to-beat dynamics of the four-chamber heart with systemic and pulmonary circulation while incorporating a realistic relation between pressure-volume load and tissue mechanics and adaptation of tissues to mechanical load. Adaptation was modeled by rules, where a locally sensed signal results in a local action of the tissue. The applied rules were as follows: For blood vessel walls, 1) flow shear stress dilates the wall and 2) tensile stress thickens the wall; for myocardial tissue, 3) strain dilates the wall material, 4) larger maximum sarcomere length increases contractility, and 5) contractility increases wall mass. The circulation was composed of active and passive compliances and inertias. A realistic circulation developed by self-structuring through adaptation provided mean levels of systemic pressure and flow. Ability to simulate a wide variety of patient-specific circumstances was demonstrated by application of the same adaptation rules to the conditions of fetal circulation followed by a switch to the newborn circulation around birth. It was concluded that a few adaptation rules, directed to normalize mechanical load of the tissue, were sufficient to develop and maintain a realistic circulation automatically. Adaptation rules appear to be the key to reduce dramatically the number of input parameters for simulating circulation dynamics. The model may be used to simulate circulation pathology and to predict effects of treatment.

  3. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGES

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  4. Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon

    NASA Astrophysics Data System (ADS)

    Cao, H.; Alexander, T.; Aprahamian, A.; Avetisyan, R.; Back, H. O.; Cocco, A. G.; Dejongh, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Guardincerri, Y.; Kendziora, C.; Lippincott, W. H.; Love, C.; Lyons, S.; Manenti, L.; Martoff, C. J.; Meng, Y.; Montanari, D.; Mosteiro, P.; Olvitt, D.; Pordes, S.; Qian, H.; Rossi, B.; Saldanha, R.; Sangiorgio, S.; Siegl, K.; Strauss, S. Y.; Tan, W.; Tatarowicz, J.; Walker, S.; Wang, H.; Watson, A. W.; Westerdale, S.; Yoo, J.; Scene Collaboration

    2015-05-01

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V /cm . For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V /cm . We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from Krm83 internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni ) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  5. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    SciTech Connect

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  6. Fast Shape Evolution of Laser Filaments in the Wake of Femtosecond Driving Pulse

    NASA Astrophysics Data System (ADS)

    Romanov, Dmitri; Levis, Robert

    2013-05-01

    A theoretical model is developed for subnanosecond evolution of highly nonequilibrium, inhomogeneous free-electron gas in a laser filament/microfilament wake channel. The evolution is driven by two interrelated mechanisms: (i) impact ionization of residual neutral atoms inside the channel and on its surface, and (ii) thermal conduction in the electron gas. The simulation results for the cases of weak and moderate initial ionization show crucial importance of incorporating the spread effects, especially as regards the electron temperature. The calculated evolution patterns determine the transient optical and electronic properties of filament wake channels. Accordingly, we propose tracing the wake channel evolution via linear and nonlinear light-scattering experiments. The evolving shape of the electron density distribution can be extracted from longitudinal and/or transverse Fraunhofer diffraction patterns. Complementarily, the evolving temperature distribution may be deduced either from angular-resolved four-wave-mixing experiments or from the spatial-spectral patterns of giant Rabi sidebands. Medium-specific estimates are made for atmospheric-pressure argon gas. In molecular-gas cases, the model can be straightforwardly augmented to incorporate the processes of dissociative recombination and vibrational excitations. Support from the Air Force Office of Scientific Research, Grant No. N00014-10-0293, is gratefully acknowledged.

  7. Adaptive, but not condition-dependent, body shape differences contribute to assortative mating preferences during ecological speciation.

    PubMed

    Greenway, Ryan; Drexler, Shannon; Arias-Rodriguez, Lenin; Tobler, Michael

    2016-12-01

    Assortative mating is critical for reproductive isolation during speciation; however, the mechanisms underlying mating preferences are often unknown. Assortative mating can be mediated through preferences for condition-dependent and adaptive ("magic") traits, but rigorously testing these hypotheses has been impeded by trait covariation in living organisms. We used computer-generated models to examine the role of body shape in producing association preferences between fish populations undergoing ecological speciation in different habitat types. We demonstrate that body shape can serve as an adaptive trait (variation in head size between populations) and a condition-dependent signal (variation in abdominal distention among individuals). Female preferences for stimuli varying in only one aspect of body shape uncovered evidence for body shape as a magic trait across population pairs, but no evidence for body shape serving as a condition-dependent signal. Evolution of preferences only in females from one habitat type as well as stronger preferences in sympatric nonsulfidic as opposed to allopatric nonsulfidic populations suggests that reinforcement may have played a role in producing the observed patterns.

  8. Adaptive non-collinear autocorrelation of few-cycle pulses with an angular tunable bi-mirror

    SciTech Connect

    Treffer, A. Bock, M.; König, S.; Grunwald, R.; Brunne, J.; Wallrabe, U.

    2016-02-01

    Adaptive autocorrelation with an angular tunable micro-electro-mechanical system is reported. A piezo-actuated Fresnel bi-mirror structure was applied to measure the second order autocorrelation of near-infrared few-cycle laser pulses in a non-collinear setup at tunable superposition angles. Because of enabling measurements with variable scaling and minimizing the influence of distortions by adaptive self-reconstruction, the approach extends the capability of autocorrelators. Flexible scaling and robustness against localized amplitude obscurations are demonstrated. The adaptive reconstruction of temporal frequency information by the Fourier analysis of autocorrelation data is shown. Experimental results and numerical simulations of the beam propagation and interference are compared for variable angles.

  9. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W. E.; Sun, X.

    2009-12-01

    We have developed a lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA’s planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the CO2 line and an O2 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, laser pulse energy is 25 uJ and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric CO2 column measurements using the 1571.4, 1572.02 and 1572.33 nm CO2 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The

  10. Adaptive energy selective active contour with shape priors for nuclear segmentation and gleason grading of prostate cancer.

    PubMed

    Ali, Sahirzeeshan; Veltri, Robert; Epstein, Jonathan I; Christudass, Christhunesa; Madabhushi, Anant

    2011-01-01

    Shape based active contours have emerged as a natural solution to overlap resolution. However, most of these shape-based methods are computationally expensive. There are instances in an image where no overlapping objects are present and applying these schemes results in significant computational overhead without any accompanying, additional benefit. In this paper we present a novel adaptive active contour scheme (AdACM) that combines boundary and region based energy terms with a shape prior in a multi level set formulation. To reduce the computational overhead, the shape prior term in the variational formulation is only invoked for those instances in the image where overlaps between objects are identified; these overlaps being identified via a contour concavity detection scheme. By not having to invoke all 3 terms (shape, boundary, region) for segmenting every object in the scene, the computational expense of the integrated active contour model is dramatically reduced, a particularly relevant consideration when multiple objects have to be segmented on very large histopathological images. The AdACM was employed for the task of segmenting nuclei on 80 prostate cancer tissue microarray images. Morphological features extracted from these segmentations were found to able to discriminate different Gleason grade patterns with a classification accuracy of 84% via a Support Vector Machine classifier. On average the AdACM model provided 100% savings in computational times compared to a non-optimized hybrid AC model involving a shape prior.

  11. Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease

    PubMed Central

    Coffey, Lark L; Forrester, Naomi; Tsetsarkin, Konstantin; Vasilakis, Nikos; Weaver, Scott C

    2013-01-01

    Many examples of the emergence or re-emergence of infectious diseases involve the adaptation of zoonotic viruses to new amplification hosts or to humans themselves. These include several instances of simple mutational adaptations, often to hosts closely related to the natural reservoirs. However, based on theoretical grounds, arthropod-borne viruses, or arboviruses, may face several challenges for adaptation to new hosts. Here, we review recent findings regarding adaptive evolution of arboviruses and its impact on disease emergence. We focus on the zoonotic alphaviruses Venezuelan equine encephalitis and chikungunya viruses, which have undergone adaptive evolution that mediated recent outbreaks of disease, as well as the flaviviruses dengue and West Nile viruses, which have emerged via less dramatic adaptive mechanisms. PMID:23374123

  12. Scaling single-wavelength optical interconnects to 180 Gb/s with PAM-M and pulse shaping

    NASA Astrophysics Data System (ADS)

    Dris, Stefanos; Bakopoulos, Paraskevas; Argyris, Nikolaos; Spatharakis, Christos; Avramopoulos, Hercules

    2016-03-01

    Faced with surging datacenter traffic demand, system designers are turning to multi-level optical modulation with direct detection as the means of reaching 100 Gb/s in a single optical lane; a further upgrade to 400 Gb/s is envisaged through wavelength-multiplexing of multiple 100 Gb/s strands. In terms of modulation formats, PAM-4 and PAM-8 are considered the front-runners, striking a good balance between bandwidth-efficiency and implementation complexity. In addition, the emergence of energy-efficient, high-speed CMOS digital-to-analog converters (DACs) opens up new possibilities: Spectral shaping through digital filtering will allow squeezing even more data through low-cost, low-bandwidth electro-optic components. In this work we demonstrate an optical interconnect based on an EAM that is driven directly with sub-volt electrical swing by a 65 GSa/s arbitrary waveform generator (AWG). Low-voltage drive is particularly attractive since it allows direct interfacing with the switch/server ASIC, eliminating the need for dedicated, power-hungry and expensive electrical drivers. Single-wavelength throughputs of 180 and 120 Gb/s are experimentally demonstrated with 60 Gbaud optical PAM-8 and PAM-4 respectively. Successful transmission over 1250 m SMF is achieved with direct-detection, using linear equalization via offline digital signal processing in order to overcome the strong bandwidth limitation of the overall link (~20 GHz). The suitability of Nyquist pulse shaping for optical interconnects is also investigated experimentally with PAM-4 and PAM-8, at a lower symbol rate of 40 Gbaud (limited by the sampling rate of the AWG). To the best of our knowledge, the rates achieved are the highest ever using optical PAM-M formats.

  13. Theoretical shaping of femtosecond laser pulses for ultrafast molecular photo-dissociation with control techniques based on time-dependent density functional theory.

    PubMed

    Castro, Alberto

    2013-05-10

    The combination of time-dependent density functional theory and quantum optimal control formalism is used to optimize the shape of ultra-short laser pulses in order to achieve the photodissociation of the hydrogen molecule. The very short pulse durations used in this work (a few femtoseconds) do not allow for significant nuclear movement during irradiation, and thus the dissociation mechanism is sequential. During pulse irradiation, a large sudden momentum is communicated which can be understood in terms of population of excited, bound or unbound, dissociative electronic states. The target is defined in terms of the average opposing force during the action of the pulse, or equivalently, in terms of the final dissociative velocity.

  14. Implementation of a neural network for digital pulse shape analysis on a FPGA for on-line identification of heavy ions

    NASA Astrophysics Data System (ADS)

    Jiménez, R.; Sánchez-Raya, M.; Gómez-Galán, J. A.; Flores, J. L.; Dueñas, J. A.; Martel, I.

    2012-05-01

    Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have been recently proposed as an alternative to energy loss and time of flight methods. However this technique requires a large amount of memory for storing the shapes of charge and current signals. We have implemented a hardware solution for fast on-line processing of the signals producing the relevant information needed for particle identification. Since the pulse shape analysis can be formulated in terms of a pattern recognition problem, a neural network has been implemented in a FPGA device. The design concept has been tested using 12,13C ions produced in heavy ion reactions. The actual latency of the system is about 20 μs when using a clock frequency of 50 MHz.

  15. Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Gao, Jian; Mei, Qing; Zhang, Guanjin; He, Yunbo; Chen, Xin

    2017-04-01

    Conventional methods based on analyses of the absolute gray levels of pixels in fringe pattern images are affected by the problems of image saturation, interreflection, and high sensitivity to noise when obtaining three-dimensional (3D) shape measurements of shiny surfaces. This study presents a robust, adaptive, and fast 3D shape measurement technique, which adaptively adjusts the pixel-wise intensity of the projected patterns, thus it avoids image saturation and has a high signal to noise ratio (SNR) during 3D shape measurement for shiny surfaces. Compared with previous time-consuming methods using multiple exposures and the projection of fringe patterns with multiple intensities, where a large number of fringe pattern images need to be captured, the proposed technique needs to capture far fewer pattern images for measurement. In addition, it can greatly reduce the time costs to obtain the optimal projection intensities by the fusion of uniform gray level patterns and coordinates mapping. Our experimental results demonstrate that the proposed technique can achieve highly accurate and efficient 3D shape measurement for shiny surfaces.

  16. Large field-induced irreversibility in Ni-Mn based Heusler shape-memory alloys: A pulsed magnetic field study

    NASA Astrophysics Data System (ADS)

    Nayak, A. K.; Mejia, C. Salazar; D'Souza, S. W.; Chadov, S.; Skourski, Y.; Felser, C.; Nicklas, M.

    2014-12-01

    We present a pulsed magnetic field study on the magnetic and magnetostriction properties of Ni-Mn-Z (Z =In , Sn, and Sb) based Heusler shape-memory alloys. These materials generally display a field-induced magnetostructural transition that could lead to an irreversible phase transition, when measured near the martensitic transition temperature. Here, we show that independently of the transition temperature, the critical field for the phase transition sensitively depends on the main-group element in the sample. Irrespective of their compositions, all samples display a magnetization of around 2 μB/f .u . in the martensite phase and about 6 μB/f .u . in the cubic austenite phase. Our magnetic and magnetostriction measurements at low temperatures exhibit a partial or complete arrest of the high-field austenite phase below the reverse martensitic transition. This results in a large irreversibility with a hysteresis width as high as 24 T. We introduce a theoretical model to discuss the experimental results.

  17. Construction and testing of a neutron and gamma spectrometry system using pulse shape discrimination with an organic scintillator

    NASA Astrophysics Data System (ADS)

    Pope, Robert S.

    1993-03-01

    The goal of this thesis was to construct and test a neutron detector to measure the energy spectrum of 1 to 14-MeV neutrons in the presence of gammas. A spectrometer based on the process of pulse shape discrimination (PSD) was constructed, in which the scintillator NE-213 was used. The primary neutron/gamma sources used were 78-mCi and 4.7-Ci Pu-239Be sources, while 4.7-micro-Ci and 97.6-micro-Ci Na-22 gamma sources were used for energy calibration and additional testing of the detector. Proton recoil spectra and Compton electron spectra were unfolded with the neutron and gamma unfolding code FORIST to generate the incident neutron and gamma spectra, respectively. FORIST, which was written for a CDC computer, was modified to run on a VAX 6420. The experimental spectra were compared to those in the literature. The locations of the peaks in the Pu-239Be spectrum agreed with the literature to within 8.3%, the Pu-239Be gamma spectrum agreed to within 0.7%, while the Na-22 gamma spectrum agreed exactly. Uncertainties in the detection system and unfolding procedure are on the order of 5-10%. This thesis is intended to be a summary of the relevant literature and a user's guide to the PSD spectrometer.

  18. Long-range energy transfer and ionization in extended quantum systems driven by ultrashort spatially shaped laser pulses.

    PubMed

    Paramonov, Guennaddi K; Bandrauk, André D; Kühn, Oliver

    2011-05-21

    The processes of ionization and energy transfer in a quantum system composed of two distant H atoms with an initial internuclear separation of 100 atomic units (5.29 nm) have been studied by the numerical solution of the time-dependent Schrödinger equation beyond the Born-Oppenheimer approximation. Thereby it has been assumed that only one of the two H atoms was excited by temporally and spatially shaped laser pulses at various laser carrier frequencies. The quantum dynamics of the extended H-H system, which was taken to be initially either in an unentangled or an entangled ground state, has been explored within a linear three-dimensional model, including the two z coordinates of the electrons and the internuclear distance R. An efficient energy transfer from the laser-excited H atom (atom A) to the other H atom (atom B) and the ionization of the latter have been found. It has been shown that the physical mechanisms of the energy transfer as well as of the ionization of atom B are the Coulomb attraction of the laser driven electron of atom A by the proton of atom B and a short-range Coulomb repulsion of the two electrons when their wave functions strongly overlap in the domain of atom B.

  19. Digital pulse shape discrimination methods for n-γ separation in an EJ-301 liquid scintillation detector

    NASA Astrophysics Data System (ADS)

    Wan, Bo; Zhang, Xue-Ying; Chen, Liang; Ge, Hong-Lin; Ma, Fei; Zhang, Hong-Bin; Ju, Yong-Qin; Zhang, Yan-Bin; Li, Yan-Yan; Xu, Xiao-Wei

    2015-11-01

    A digital pulse shape discrimination system based on a programmable module NI-5772 has been established and tested with an EJ-301 liquid scintillation detector. The module was operated by running programs developed in LabVIEW, with a sampling frequency up to 1.6 GS/s. Standard gamma sources 22Na, 137Cs and 60Co were used to calibrate the EJ-301 liquid scintillation detector, and the gamma response function was obtained. Digital algorithms for the charge comparison method and zero-crossing method have been developed. The experimental results show that both digital signal processing (DSP) algorithms can discriminate neutrons from γ-rays. Moreover, the zero-crossing method shows better n-γ discrimination at 80 keVee and lower, whereas the charge comparison method gives better results at higher thresholds. In addition, the figure-of-merit (FOM) for detectors of two different dimensions were extracted at 9 energy thresholds, and it was found that the smaller detector presented better n-γ separation for fission neutrons. Supported by National Natural Science Foundation of China (91226107, 11305229) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03030300)

  20. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with

  1. Evolution of opercle shape in cichlid fishes from Lake Tanganyika - adaptive trait interactions in extant and extinct species flocks

    PubMed Central

    Wilson, Laura A. B.; Colombo, Marco; Sánchez-Villagra, Marcelo R.; Salzburger, Walter

    2015-01-01

    Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time. PMID:26584885

  2. Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains

    NASA Astrophysics Data System (ADS)

    Leng, Ni; Jiang, Lan; Li, Xin; Xu, Chuancai; Liu, Pengjun; Lu, Yongfeng

    2012-11-01

    The pulse train effects on femtosecond laser material processing are investigated from the viewpoint of electron dynamics on dielectrics with fused silica as a case study and metals with Al as a case study in air and water. During femtosecond laser (800 nm, 35 fs) pulse train (double pulses per train) processing of fused silica, a non-monotonic relationship between ablation size and pulse separation is observed with an abrupt rise in the range of 150-275 fs. It is assumed that this is due to the enhancement of photon-electron coupling efficiency and transition of the phase-change mechanism by adjusting the free electron density during pulse train ablation. Surface quality in Al is improved with less recast by designing the pulse energy distribution to adjust the electron/lattice temperature distribution. Furthermore, the positive effects on ablation quality by femtosecond pulse train technology are more significant in water than those in air.

  3. Statistical context shapes stimulus-specific adaptation in human auditory cortex

    PubMed Central

    Henry, Molly J.; Fromboluti, Elisa Kim; McAuley, J. Devin

    2015-01-01

    Stimulus-specific adaptation is the phenomenon whereby neural response magnitude decreases with repeated stimulation. Inconsistencies between recent nonhuman animal recordings and computational modeling suggest dynamic influences on stimulus-specific adaptation. The present human electroencephalography (EEG) study investigates the potential role of statistical context in dynamically modulating stimulus-specific adaptation by examining the auditory cortex-generated N1 and P2 components. As in previous studies of stimulus-specific adaptation, listeners were presented with oddball sequences in which the presentation of a repeated tone was infrequently interrupted by rare spectral changes taking on three different magnitudes. Critically, the statistical context varied with respect to the probability of small versus large spectral changes within oddball sequences (half of the time a small change was most probable; in the other half a large change was most probable). We observed larger N1 and P2 amplitudes (i.e., release from adaptation) for all spectral changes in the small-change compared with the large-change statistical context. The increase in response magnitude also held for responses to tones presented with high probability, indicating that statistical adaptation can overrule stimulus probability per se in its influence on neural responses. Computational modeling showed that the degree of coadaptation in auditory cortex changed depending on the statistical context, which in turn affected stimulus-specific adaptation. Thus the present data demonstrate that stimulus-specific adaptation in human auditory cortex critically depends on statistical context. Finally, the present results challenge the implicit assumption of stationarity of neural response magnitudes that governs the practice of isolating established deviant-detection responses such as the mismatch negativity. PMID:25652920

  4. Adaptation paths to novel motor tasks are shaped by prior structure learning.

    PubMed

    Kobak, Dmitry; Mehring, Carsten

    2012-07-18

    After extensive practice with motor tasks sharing structural similarities (e.g., different dancing movements, or different sword techniques), new tasks of the same type can be learned faster. According to the recent "structure learning" hypothesis (Braun et al., 2009a), such rapid generalization of related motor skills relies on learning the dynamic and kinematic relationships shared by this set of skills. As a consequence, motor adaptation becomes constrained, effectively leading to a dimensionality reduction of the learning problem; at the same time, adaptation to tasks lying outside the structure becomes biased toward the structure. We tested these predictions by investigating how previously learned structures influence subsequent motor adaptation. Human subjects were making reaching movements in 3D virtual reality, experiencing perturbations either in the vertical or in the horizontal plane. Perturbations were either visuomotor rotations of varying angle or velocity-dependent forces of varying strength. We found that, after extensive training with both kinematic or dynamic perturbations, adaptation to unpracticed, diagonal, perturbations happened along the previously learned structure (vertical or horizontal), and resulting adaptation trajectories were curved. This effect is robust, can be observed on the single-subject level, and occurs during adaptation both within and across trials. Additionally, we demonstrate that structure learning changes involuntary visuomotor reflexes and therefore is not exclusively a high-level cognitive phenomenon.

  5. Morphological integration and pleiotropy in the adaptive body shape of the snail-feeding carabid beetle Damaster blaptoides.

    PubMed

    Konuma, Junji; Yamamoto, Satoshi; Sota, Teiji

    2014-12-01

    The snail-feeding carabid beetle Damaster blaptoides exhibits diverse head and thorax morphologies, and these morphotypes are linked with two alternative feeding behaviours. Stout-shaped beetles feed on snails by crushing the shells, whereas slender-shaped beetles consume snails by inserting their heads into the shells. A trade-off exists between these feeding strategies. Because intermediate-shaped beetles are less proficient in these two behaviours, stout-slender morphological divergence occurs between related species feeding on land snails. To examine the genetic basis of these morphotypes, we conducted morphological analyses and quantitative trait locus (QTL) mapping using backcross offspring between the stout and slender subspecies. The morphological analyses showed that the width and length of the beetle body parts were correlated with each other; in particular, the head width (HW) and thorax length (TL) were strongly negatively correlated. QTL mapping showed that QTLs for HW and TL are located in close proximity to one another on the longest linkage group and that they have positive and negative additive genetic effects. Our results suggest that the adaptive phenotypic sets of a wide head and short thorax and a narrow head and long thorax are based on the closeness of these QTLs. Morphological integration between the head and thorax may play an important role in the adaptive divergence of these beetles.

  6. Paired-Pulse Parietal-Motor Stimulation Differentially Modulates Corticospinal Excitability across Hemispheres When Combined with Prism Adaptation

    PubMed Central

    Martín-Arévalo, Elisa; Salemme, Romeo; Pisella, Laure; Farnè, Alessandro

    2016-01-01

    Rightward prism adaptation ameliorates neglect symptoms while leftward prism adaptation (LPA) induces neglect-like biases in healthy individuals. Similarly, inhibitory repetitive transcranial magnetic stimulation (rTMS) on the right posterior parietal cortex (PPC) induces neglect-like behavior, whereas on the left PPC it ameliorates neglect symptoms and normalizes hyperexcitability of left hemisphere parietal-motor (PPC-M1) connectivity. Based on this analogy we hypothesized that LPA increases PPC-M1 excitability in the left hemisphere and decreases it in the right one. In an attempt to shed some light on the mechanisms underlying LPA's effects on cognition, we investigated this hypothesis in healthy individuals measuring PPC-M1 excitability with dual-site paired-pulse TMS (ppTMS). We found a left hemisphere increase and a right hemisphere decrease in the amplitude of motor evoked potentials elicited by paired as well as single pulses on M1. While this could indicate that LPA biases interhemispheric connectivity, it contradicts previous evidence that M1-only MEPs are unchanged after LPA. A control experiment showed that input-output curves were not affected by LPA per se. We conclude that LPA combined with ppTMS on PPC-M1 differentially alters the excitability of the left and right M1. PMID:27418979

  7. Novel image fusion method based on adaptive pulse coupled neural network and discrete multi-parameter fractional random transform

    NASA Astrophysics Data System (ADS)

    Lang, Jun; Hao, Zhengchao

    2014-01-01

    In this paper, we first propose the discrete multi-parameter fractional random transform (DMPFRNT), which can make the spectrum distributed randomly and uniformly. Then we introduce this new spectrum transform into the image fusion field and present a new approach for the remote sensing image fusion, which utilizes both adaptive pulse coupled neural network (PCNN) and the discrete multi-parameter fractional random transform in order to meet the requirements of both high spatial resolution and low spectral distortion. In the proposed scheme, the multi-spectral (MS) and panchromatic (Pan) images are converted into the discrete multi-parameter fractional random transform domains, respectively. In DMPFRNT spectrum domain, high amplitude spectrum (HAS) and low amplitude spectrum (LAS) components carry different informations of original images. We take full advantage of the synchronization pulse issuance characteristics of PCNN to extract the HAS and LAS components properly, and give us the PCNN ignition mapping images which can be used to determine the fusion parameters. In the fusion process, local standard deviation of the amplitude spectrum is chosen as the link strength of pulse coupled neural network. Numerical simulations are performed to demonstrate that the proposed method is more reliable and superior than several existing methods based on Hue Saturation Intensity representation, Principal Component Analysis, the discrete fractional random transform etc.

  8. Multiple One-Dimensional Search (MODS) algorithm for fast optimization of laser-matter interaction by phase-only fs-laser pulse shaping

    NASA Astrophysics Data System (ADS)

    Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Solis, J.

    2014-09-01

    In this work, we have developed and implemented a powerful search strategy for optimization of nonlinear optical effects by means of femtosecond pulse shaping, based on topological concepts derived from quantum control theory. Our algorithm [Multiple One-Dimensional Search (MODS)] is based on deterministic optimization of a single solution rather than pseudo-random optimization of entire populations as done by commonly used evolutionary algorithms. We have tested MODS against a genetic algorithm in a nontrivial problem consisting in optimizing the Kerr gating signal (self-interaction) of a shaped laser pulse in a detuned Michelson interferometer configuration. The obtained results show that our search method (MODS) strongly outperforms the genetic algorithm in terms of both convergence speed and quality of the solution. These findings demonstrate the applicability of concepts of quantum control theory to nonlinear laser-matter interaction problems, even in the presence of significant experimental noise.

  9. Pulse-shape discrimination and energy quenching of alpha particles in Cs2LiLaBr6:Ce3+

    SciTech Connect

    Mesick, Katherine Elizabeth; Coupland, Daniel David S.; Stonehill, Laura Catherine

    2016-10-19

    Cs2LiLaBr6:Ce3+ (CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. Here, we also measured the electron-equivalent-energy of the alpha particles in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas.

  10. A Computational Approach to Model Vascular Adaptation During Chronic Hemodialysis: Shape Optimization as a Substitute for Growth Modeling

    NASA Astrophysics Data System (ADS)

    Mahmoudzadeh Akherat, S. M. Javid; Boghosian, Michael; Cassel, Kevin; Hammes, Mary

    2015-11-01

    End-stage-renal disease patients depend on successful long-term hemodialysis via vascular access, commonly facilitated via a Brachiocephalic Fistula (BCF). The primary cause of BCF failure is Cephalic Arch Stenosis (CAS). It is believed that low Wall Shear Stress (WSS) regions, which occur because of the high flow rates through the natural bend in the cephalic vein, create hemodynamic circumstances that trigger the onset and development of Intimal Hyperplasia (IH) and subsequent CAS. IH is hypothesized to be a natural effort to reshape the vessel, aiming to bring the WSS values back to a physiologically acceptable range. We seek to explore the correlation between regions of low WSS and subsequent IH and CAS in patient-specific geometries. By utilizing a shape optimization framework, a method is proposed to predict cardiovascular adaptation that could potentially be an alternative to vascular growth and remodeling. Based on an objective functional that seeks to alter the vessel shape in such a way as to readjust the WSS to be within the normal physiological range, CFD and shape optimization are then coupled to investigate whether the optimal shape evolution is correlated with actual patient-specific geometries thereafter. Supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (R01 DK90769).

  11. Surface-enhanced Raman spectroscopy-active substrates: adapting the shape of plasmonic nanoparticles for different biological applications.

    PubMed

    Vitol, Elina A; Friedman, Gary; Gogotsi, Yury

    2014-04-01

    We discuss the relationship between the shape of plasmonic nanoparticles and the biological surface-enhanced Raman spectroscopy (SERS) applications which they can enable. As a step forward in developing SERS-active substrates adapted to a particular application, we demonstrate that a modification of the widely used protocol for the sodium citrate mediated reduction of chloroauric acid, which is typically employed only for obtaining spherical gold nanoparticles, can yield flat polygonal nanoparticles at room temperature and a decreased amount of the reducing agent. The significant advantage of the described approach is that it allows for synthesis of nanoparticles with different geometries using a well-established synthesis protocol without the need for any additional chemicals or special synthesis apparatus. By contrasting spherical and anisotropically shaped nanoparticles, we demonstrate that multifaceted nanoparticles with sharp edges are better suitable for SERS analysis of low concentration analytes requiring strong SERS enhancement. On the other hand, gold nanoparticles with isotropic shapes, while giving a smaller enhancement, can provide a more reproducible SERS signal. This is important for analytical applications of complex biological systems where large SERS enhancement may not always be required, whereas data reproducibility and minimal false positive rate are imperative. Using a SERS-active substrate comprising isotropically shaped gold nanoparticles, we demonstrate the differences between Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria, attributable to the outer membrane and peptidoglycan layer, with the level of detail which has not been previously reported with optical spectroscopic techniques.

  12. Particle System Based Adaptive Sampling on Spherical Parameter Space to Improve the MDL Method for Construction of Statistical Shape Models

    PubMed Central

    Zhou, Xiangrong; Hirano, Yasushi; Tachibana, Rie; Hara, Takeshi; Kido, Shoji; Fujita, Hiroshi

    2013-01-01

    Minimum description length (MDL) based group-wise registration was a state-of-the-art method to determine the corresponding points of 3D shapes for the construction of statistical shape models (SSMs). However, it suffered from the problem that determined corresponding points did not uniformly spread on original shapes, since corresponding points were obtained by uniformly sampling the aligned shape on the parameterized space of unit sphere. We proposed a particle-system based method to obtain adaptive sampling positions on the unit sphere to resolve this problem. Here, a set of particles was placed on the unit sphere to construct a particle system whose energy was related to the distortions of parameterized meshes. By minimizing this energy, each particle was moved on the unit sphere. When the system became steady, particles were treated as vertices to build a spherical mesh, which was then relaxed to slightly adjust vertices to obtain optimal sampling-positions. We used 47 cases of (left and right) lungs and 50 cases of livers, (left and right) kidneys, and spleens for evaluations. Experiments showed that the proposed method was able to resolve the problem of the original MDL method, and the proposed method performed better in the generalization and specificity tests. PMID:23861721

  13. Active vibration control of Flexible Joint Manipulator using Input Shaping and Adaptive Parameter Auto Disturbance Rejection Controller

    NASA Astrophysics Data System (ADS)

    Li, W. P.; Luo, B.; Huang, H.

    2016-02-01

    This paper presents a vibration control strategy for a two-link Flexible Joint Manipulator (FJM) with a Hexapod Active Manipulator (HAM). A dynamic model of the multi-body, rigid-flexible system composed of an FJM, a HAM and a spacecraft was built. A hybrid controller was proposed by combining the Input Shaping (IS) technique with an Adaptive-Parameter Auto Disturbance Rejection Controller (APADRC). The controller was used to suppress the vibration caused by external disturbances and input motions. Parameters of the APADRC were adaptively adjusted to ensure the characteristic of the closed loop system to be a given reference system, even if the configuration of the manipulator significantly changes during motion. Because precise parameters of the flexible manipulator are not required in the IS system, the operation of the controller was sufficiently robust to accommodate uncertainties in system parameters. Simulations results verified the effectiveness of the HAM scheme and controller in the vibration suppression of FJM during operation.

  14. Compact high power mid-infrared optical parametric oscillator pumped by a gain-switched fiber laser with "figure-of-h" pulse shape.

    PubMed

    Jiang, Peipei; Chen, Tao; Wu, Bo; Yang, Dingzhong; Hu, Chengzhi; Wu, Pinghui; Shen, Yonghang

    2015-02-09

    We demonstrate a compact high power mid-infrared (MIR) optical parametric oscillator (OPO) pumped by a gain-switched linearly polarized, pulsed fiber laser. The gain-switched fiber laser was constructed with a piece of Yb doped polarization maintaining (PM) fiber, a pair of fiber Bragg gratings written into the matched passive PM fiber and 6 pigtailed pump laser diodes working at 915 nm with 30 W output peak power each. By modulating the pulse width of the pump laser diode, simple pedestal-free pulse shape or pedestal-free trailing pulse shape ("figure-of-h" as we call it) could be achieved from the gain-switched fiber laser. The laser was employed as the pump of a two-channel, periodically poled magnesium oxide lithium niobate-based OPO system. High power MIR emission was generated with average output power of 5.15 W at 3.8 μm channel and 8.54 W at 3.3 μm channel under the highest pump power of 45 W. The corresponding pump-to-idler conversion efficiency was computed to be 11.7% and 19.1%, respectively. Experimental results verify a significant improvement to signal-to-idler conversion efficiency by using "figure-of-h" pulses over simple pedestal-free pulses. Compared to the master oscillator power amplifier (MOPA) fiber laser counterpart, the presented gain switched fiber laser is more attractive in OPO pumping due to its compactness and simplicity which are beneficial to construction of OPO systems for practical MIR applications.

  15. Forging tool shape optimization using pseudo inverse approach and adaptive incremental approach

    NASA Astrophysics Data System (ADS)

    Halouani, A.; Meng, F. J.; Li, Y. M.; Labergère, C.; Abbès, B.; Lafon, P.; Guo, Y. Q.

    2013-05-01

    This paper presents a simplified finite element method called "Pseudo Inverse Approach" (PIA) for tool shape design and optimization in multi-step cold forging processes. The approach is based on the knowledge of the final part shape. Some intermediate configurations are introduced and corrected by using a free surface method to consider the deformation paths without contact treatment. A robust direct algorithm of plasticity is implemented by using the equivalent stress notion and tensile curve. Numerical tests have shown that the PIA is very fast compared to the incremental approach. The PIA is used in an optimization procedure to automatically design the shapes of the preform tools. Our objective is to find the optimal preforms which minimize the equivalent plastic strain and punch force. The preform shapes are defined by B-Spline curves. A simulated annealing algorithm is adopted for the optimization procedure. The forging results obtained by the PIA are compared to those obtained by the incremental approach to show the efficiency and accuracy of the PIA.

  16. Shaping the Library to the Life of the User: Adapting, Empowering, Partnering, Engaging

    ERIC Educational Resources Information Center

    Proffitt, Merrilee; Michalko, James; Renspie, Melissa

    2015-01-01

    What began with a few libraries' early application of ethnographic methods to learn more about user behaviors and needs has grown to become a significant body of work done across many institutions using a broad range of methods. User-centered investigations are increasingly influential in discussions about the shape and future of the research…

  17. Adaptive Aft Signature Shaping of a Low-Boom Supersonic Aircraft Using Off-Body Pressures

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2012-01-01

    The design and optimization of a low-boom supersonic aircraft using the state-of-the- art o -body aerodynamics and sonic boom analysis has long been a challenging problem. The focus of this paper is to demonstrate an e ective geometry parameterization scheme and a numerical optimization approach for the aft shaping of a low-boom supersonic aircraft using o -body pressure calculations. A gradient-based numerical optimization algorithm that models the objective and constraints as response surface equations is used to drive the aft ground signature toward a ramp shape. The design objective is the minimization of the variation between the ground signature and the target signature subject to several geometric and signature constraints. The target signature is computed by using a least-squares regression of the aft portion of the ground signature. The parameterization and the deformation of the geometry is performed with a NASA in- house shaping tool. The optimization algorithm uses the shaping tool to drive the geometric deformation of a horizontal tail with a parameterization scheme that consists of seven camber design variables and an additional design variable that describes the spanwise location of the midspan section. The demonstration cases show that numerical optimization using the state-of-the-art o -body aerodynamic calculations is not only feasible and repeatable but also allows the exploration of complex design spaces for which a knowledge-based design method becomes less effective.

  18. Shaping the Cities of Tomorrow: Integrating Local Urban Adaptation within an Environmental Framework

    NASA Astrophysics Data System (ADS)

    Georgescu, M.

    2014-12-01

    Contemporary methods focused on increasing urban sustainability are largely based on the reduction of greenhouse gas emissions. While these efforts are essential steps forward, continued characterization of urban sustainability solely within a biogeochemical framework, with neglect of the biophysical impact of the built environment, omits regional hydroclimatic forcing of the same order of magnitude as greenhouse gas emissions. Using a suite of continuous, multi-year and multi-member continental scale numerical simulations with the WRF model for the U.S., we examine hydroclimatic impacts for a variety of U.S. urban expansion scenarios (for the year 2100) and urban adaptation futures (cool roofs, green roofs, and a hypothetical hybrid approach integrating biophysical properties of both cool and green roofs), and compare those to experiments utilizing a contemporary urban extent. Widespread adoption of adaptation strategies exhibits regionally and seasonally dependent hydroclimatic impacts. For some regions and seasons, urban-induced warming in excess of 3°C can be completely offset by all adaptation approaches examined. For other regions, widespread adoption of some adaptation approaches leads to significant rainfall decline. Sustainable urban expansion therefore requires an integrated assessment that also incorporates biophysically induced urban impacts, and demands tradeoff assessment of various strategies aimed to ameliorate deleterious consequences of growth (e.g., urban heat island reduction).

  19. Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning

    NASA Astrophysics Data System (ADS)

    Li, Suyi; Wang, K. W.

    2015-10-01

    Inspired by the physics behind the rapid plant movements and the rich topologies in origami folding, this research creates a unique class of multi-functional adaptive structure through exploring the innovation of fluidic origami. The idea is to connect multiple Miura folded sheets along their crease lines into a space-filling structure, and fill the tubular cells in-between with working fluids. The pressure and fluid flow in these cells can be strategically controlled much like in plants for nastic movements. The relationship between the internal fluid volume and the overall structure deformation is primarily determined by the kinematics of folding. This relationship can be exploited so that fluidic origami can achieve actuation/morphing by actively changing the internal fluid volume, and stiffness tuning by constraining the fluid volume. In order to characterize the working principles and performance potentials of these two adaptive functions, this research develops an equivalent truss frame model on a fluidic origami unit cell to analyze its fundamental elastic characteristics. Eigen-stiffness analysis based on this model reveals the primary modes of deformation and their relationships with initial folding configurations. Performances of the adaptive functions are correlated to the crease pattern design. In parallel to analytical studies, the feasibility of the morphing and stiffness tuning is also examined experimentally via a 3D printed multi-material prototype demonstrator. The research reported in this paper could lead to the synthesis of adaptive fluidic origami cellular metastructures or metamaterial systems for various engineering applications.

  20. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient.

    PubMed

    Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; De Jonge, Maarten; Lambret, Philippe; Nilsson-Örtman, Viktor; Bervoets, Lieven; Stoks, Robby

    2013-09-01

    Global warming and contamination represent two major threats to biodiversity that have the potential to interact synergistically. There is the potential for gradual local thermal adaptation and dispersal to higher latitudes to mitigate the susceptibility of organisms to contaminants and global warming at high latitudes. Here, we applied a space-for-time substitution approach to study the thermal dependence of the susceptibility of Ischnura elegans damselfly larvae to zinc in a common garden warming experiment (20 and 24 °C) with replicated populations from three latitudes spanning >1500 km in Europe. We observed a striking latitude-specific effect of temperature on the zinc-induced mortality pattern; local thermal adaptation along the latitudinal gradient made Swedish, but not French, damselfly larvae more susceptible to zinc at 24 °C. Latitude- and temperature-specific differences in zinc susceptibility may be related to the amount of energy available to defend against and repair damage since Swedish larvae showed a much stronger zinc-induced reduction of food intake at 24 °C. The pattern of local thermal adaptation indicates that the predicted temperature increase of 4 °C by 2100 will strongly magnify the impact of a contaminant such as zinc at higher latitudes unless there is thermal evolution and/or migration of lower latitude genotypes. Our results underscore the critical importance of studying the susceptibility to contaminants under realistic warming scenarios taking into account local thermal adaptation across natural temperature gradients.

  1. Production rate enhancement of size-tunable silicon nanoparticles by temporally shaping femtosecond laser pulses in ethanol.

    PubMed

    Li, Xin; Zhang, Guangming; Jiang, Lan; Shi, Xuesong; Zhang, Kaihu; Rong, Wenlong; Duan, Ji'an; Lu, Yongfeng

    2015-02-23

    This paper proposes an efficient approach for production-rate enhancement and size reduction of silicon nanoparticles produced by femtosecond (fs) double-pulse ablation of silicon in ethanol. Compared with a single pulse, the production rate is ~2.6 times higher and the mean size of the NPs is reduced by ~1/5 with a delay of 2 ps. The abnormal enhancement in the production rate is obtained at pulse delays Δt > 200 fs. The production-rate enhancement is mainly attributed to high photon absorption efficiency. It is caused by an increase in localized transient electron density, which results from the first sub-pulse ionization of ethanol molecules before the second sub-pulse arrives. The phase-change mechanism at a critical point might reduce nanoparticle size.

  2. Manufacture and experimental and theoretical evaluation of adaptative glass/epoxy composites with embedded shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Choi, Young-Kuk; Salvia, Michelle

    2001-07-01

    Adaptable hybrid composites are materials into which actuators are embedded in polymer matrix composites. Shape memory alloys (SMA) are amongst the potential candidates for actuators embedded in such composite smart structures. In order to test the influence of the processing conditions on the actuation properties of adaptive hybrid composites, a model system based on a glass epoxy asymmetric laminate composite with prestrained shape memory nitinol-copper wires, was used. When the SMA wires were electrically heated and cooled, undergoing a reversible martensite to austenite transformation, reversible bending of the host composite was observed. The most important deflection of the host composite was obtained for the material, processed with embedded wires in TWSME conditions. Nevertheless, for samples just prestrained for the OWSME, a self-training effect occurred in relation to the reverse polarized austenite to martensite transformation, during cooling after actuation. The experimental results obtained in the conditions of the sample processed with embedded wires in TWSME conditions can be modeled in the frame of recent phenomenological modeling. In spite of some drastic simplifications, the quasi-linear variation of the bending effect with temperature is correctly described using the metallurgical parameters defined from the Clausius-Clapeyron diagrams of this alloy previously determined.

  3. Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori.

    PubMed

    Qiao, Liang; Xiong, Gao; Wang, Ri-xin; He, Song-zhen; Chen, Jie; Tong, Xiao-ling; Hu, Hai; Li, Chun-lin; Gai, Ting-ting; Xin, Ya-qun; Liu, Xiao-fan; Chen, Bin; Xiang, Zhong-huai; Lu, Cheng; Dai, Fang-yin

    2014-04-01

    Cuticular proteins (CPs) are crucial components of the insect cuticle. Although numerous genes encoding cuticular proteins have been identified in known insect genomes to date, their functions in maintaining insect body shape and adaptability remain largely unknown. In the current study, positional cloning led to the identification of a gene encoding an RR1-type cuticular protein, BmorCPR2, highly expressed in larval chitin-rich tissues and at the mulberry leaf-eating stages, which is responsible for the silkworm stony mutant. In the Dazao-stony strain, the BmorCPR2 allele is a deletion mutation with significantly lower expression, compared to the wild-type Dazao strain. Dysfunctional BmorCPR2 in the stony mutant lost chitin binding ability, leading to reduced chitin content in larval cuticle, limitation of cuticle extension, abatement of cuticle tensile properties, and aberrant ratio between internodes and intersegmental folds. These variations induce a significant decrease in cuticle capacity to hold the growing internal organs in the larval development process, resulting in whole-body stiffness, tightness, and hardness, bulging intersegmental folds, and serious defects in larval adaptability. To our knowledge, this is the first study to report the corresponding phenotype of stony in insects caused by mutation of RR1-type cuticular protein. Our findings collectively shed light on the specific role of cuticular proteins in maintaining normal larval body shape and will aid in the development of pest control strategies for the management of Lepidoptera.

  4. Population variability in biological adaptive responses to DNA damage and the shapes of carcinogen dose-response curves

    SciTech Connect

    Conolly, Rory B. . E-mail: Conolly.Rory@epa.gov; Gaylor, David W.; Lutz, Werner K.

    2005-09-01

    Carcinogen dose-response curves for both ionizing radiation and chemicals are typically assumed to be linear at environmentally relevant doses. This assumption is used to ensure protection of the public health in the absence of relevant dose-response data. A theoretical justification for the assumption has been provided by the argument that low dose linearity is expected when an exogenous agent adds to an ongoing endogenous process. Here, we use computational modeling to evaluate (1) how two biological adaptive processes, induction of DNA repair and cell cycle checkpoint control, may affect the shapes of dose-response curves for DNA-damaging carcinogens and (2) how the resulting dose-response behaviors may vary within a population. Each model incorporating an adaptive process was capable of generating not only monotonic dose-responses but also nonmonotonic (J-shaped) and threshold responses. Monte Carlo analysis suggested that all these dose-response behaviors could coexist within a population, as the spectrum of qualitative differences arose from quantitative changes in parameter values. While this analysis is largely theoretical, it suggests that (a) accurate prediction of the qualitative form of the dose-response requires a quantitative understanding of the mechanism (b) significant uncertainty is associated with human health risk prediction in the absence of such quantitative understanding and (c) a stronger experimental and regulatory focus on biological mechanisms and interindividual variability would allow flexibility in regulatory treatment of environmental carcinogens without compromising human health.

  5. A novel adaptive 3D medical image interpolation method based on shape

    NASA Astrophysics Data System (ADS)

    Chen, Jiaxin; Ma, Wei

    2013-03-01

    Image interpolation of cross-sections is one of the key steps of medical visualization. Aiming at the problem of fuzzy boundaries and large amount of calculation, which are brought by the traditional interpolation, a novel adaptive 3-D medical image interpolation method is proposed in this paper. Firstly, the contour is obtained by the edge interpolation, and the corresponding points are found according to the relation of the contour and points on the original images. Secondly, this algorithm utilizes volume relativity to get the best point-pair with the adaptive methods. Finally, the grey value of interpolation pixel is got by the matching point interpolation. The experimental results show that the method presented in the paper not only can meet the requirements of interpolation accuracy, but also can be used effectively in medical image 3D reconstruction.

  6. Selective Bottlenecks Shape Evolutionary Pathways Taken during Mammalian Adaptation of a 1918-like Avian Influenza Virus.

    PubMed

    Moncla, Louise H; Zhong, Gongxun; Nelson, Chase W; Dinis, Jorge M; Mutschler, James; Hughes, Austin L; Watanabe, Tokiko; Kawaoka, Yoshihiro; Friedrich, Thomas C

    2016-02-10

    Avian influenza virus reassortants resembling the 1918 human pandemic virus can become transmissible among mammals by acquiring mutations in hemagglutinin (HA) and polymerase. Using the ferret model, we trace the evolutionary pathway by which an avian-like virus evolves the capacity for mammalian replication and airborne transmission. During initial infection, within-host HA diversity increased drastically. Then, airborne transmission fixed two polymerase mutations that do not confer a detectable replication advantage. In later transmissions, selection fixed advantageous HA1 variants. Transmission initially involved a "loose" bottleneck, which became strongly selective after additional HA mutations emerged. The stringency and evolutionary forces governing between-host bottlenecks may therefore change throughout host adaptation. Mutations occurred in multiple combinations in transmitted viruses, suggesting that mammalian transmissibility can evolve through multiple genetic pathways despite phenotypic constraints. Our data provide a glimpse into avian influenza virus adaptation in mammals, with broad implications for surveillance on potentially zoonotic viruses.

  7. Design of an adaptive controller for dive-plane control of a torpedo-shaped AUV

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Su, Yumin; Zhao, Jinxin

    2011-09-01

    Underwater vehicles operating in complex ocean conditions present difficulties in determining accurate dynamic models. To guarantee robustness against parameter uncertainty, an adaptive controller for dive-plane control, based on Lyapunov theory and back-stepping techniques, was proposed. In the closed-loop system, asymptotic tracking of the reference depth and pitch angle trajectories was accomplished. Simulation results were presented which show effective dive-plane control in spite of the uncertainties in the system parameters.

  8. Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster

    PubMed Central

    Williams, CM; Watanabe, M; Guarracino, MR; Ferraro, MB; Edison, AS; Morgan, TJ; Boroujerdi, AFB; Hahn, DA

    2015-01-01

    When ectotherms are exposed to low temperatures, they enter a cold-induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill-coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using NMR spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold-induced perturbations. The metabolites of cold-hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations. PMID:25308124

  9. On-Sky Tests of a High-Power Pulsed Laser for Sodium Laser Guide Star Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Otarola, Angel; Hickson, Paul; Gagné, Ronald; Bo, Yong; Zuo, Junwei; Xie, Shiyong; Feng, Lu; Rochester, Simon; Budker, Dmitry; Shen, Shixia; Xue, Suijian; Min, Li; Wei, Kai; Boyer, Corinne; Ellerbroek, Brent; Hu, Jingyao; Peng, Qinjun; Xu, Zuyan

    2016-03-01

    We present results of on-sky tests performed in the summer of 2013 to characterize the performance of a prototype high-power pulsed laser for adaptive optics. The laser operates at a pulse repetition rate (PRR) of 600-800Hz, with a 6% duty cycle. Its coupling efficiency was found to be, in the best test case (using 18W of transmitted power), 231±14 photons s-1 sr-1 atom-1 W-1 m2 when circular polarization was employed and 167±17 photons s-1 sr-1 atom-1 W-1 m2 with linear polarization. No improvement was seen when D2b repumping was used, but this is likely due to the relatively large laser guide star (LGS) diameter, typically 10 arcsec or more, which resulted in low irradiance levels. Strong relaxation oscillations were present in the laser output, which have the effect of reducing the coupling efficiency. To better understand the results, a physical modeling was performed using the measured pulse profiles and parameters specific to these tests. The model results, for a 10 arcsec angular size LGS spot, agree well with the observations. When extrapolating the physical model for a sub-arcsecond angular size LGS (typical of what is needed for a successful astronomical guide star), the model predicts that this laser would have a coupling efficiency of 130 photons s-1 sr-1 atom-1 W-1 m2, using circular polarization and D2b repumping, for a LGS diameter of 0.6 arcsec Full Width at Half Maximum (FWHM), and free of relaxation oscillations in the 589 nm laser light.

  10. The asymmetry of avian egg-shape: an adaptation for reproduction on dry land.

    PubMed

    Mao, Kun-Ming; Murakami, Ayako; Iwasawa, Atsushi; Yoshizaki, Norio

    2007-06-01

    The present study describes the biological meaning of the asymmetrical shape in avian reproduction using quail. During the incubation of eggs, water was gradually lost and the air chamber which appeared in between the inner and outer shell membranes at the blunt end expanded, so that the angle made by the long egg-axis and the horizontal line increased, presumably because the centre of gravity of the egg contents moved toward the sharp end. The increase in angle occurred in both fertile and infertile eggs, suggesting that this phenomenon occurs irrespective of fertility and is due to the asymmetrical shape. The increase in the volume of the air chamber resulted in an increase in the area of the inner shell membrane at the chamber to satisfy the amount of gas exchange needed by the developing embryo for better hatching. We isolated a 300-kDa protein from the inner shell membrane. It was produced by cells in the luminal epithelium of the oviductal isthmus and was found in the cortex of the fibres of shell membranes and a lining surrounding the air chamber. The lining comprised a medial layer between the inner and outer shell membranes in uterine eggs. The asymmetrical ellipsoid produces the air chamber at the blunt end of the avian egg during its sojourn in the oviductal isthmus, to maintain the blunt end up after oviposition and to raise that end during incubation in a dry environment, leading to high hatchability.

  11. A Heuristic Fast Method to Solve the Nonlinear Schroedinger Equation in Fiber Bragg Gratings with Arbitrary Shape Input Pulse

    SciTech Connect

    Emami, F.; Hatami, M.; Keshavarz, A. R.; Jafari, A. H.

    2009-08-13

    Using a combination of Runge-Kutta and Jacobi iterative method, we could solve the nonlinear Schroedinger equation describing the pulse propagation in FBGs. By decomposing the electric field to forward and backward components in fiber Bragg grating and utilizing the Fourier series analysis technique, the boundary value problem of a set of coupled equations governing the pulse propagation in FBG changes to an initial condition coupled equations which can be solved by simple Runge-Kutta method.

  12. Eco-physiological adaptation shapes the response of calcifying algae to nutrient limitation.

    PubMed

    Šupraha, Luka; Gerecht, Andrea C; Probert, Ian; Henderiks, Jorijntje

    2015-11-12

    The steady increase in global ocean temperature will most likely lead to nutrient limitation in the photic zone. This will impact the physiology of marine algae, including the globally important calcifying coccolithophores. Understanding their adaptive patterns is essential for modelling carbon production in a low-nutrient ocean. We investigated the physiology of Helicosphaera carteri, a representative of the abundant but under-investigated flagellated functional group of coccolithophores. Two strains isolated from contrasting nutrient regimes (South Atlantic and Mediterranean Sea) were grown in phosphorus-replete and phosphorus-limited batch cultures. While growing exponentially in a phosphorus-replete medium, the Mediterranean strain exhibited on average 24% lower growth rate, 36% larger coccosphere volume and 21% lower particulate inorganic carbon (PIC) production than the Atlantic strain. Under phosphorus limitation, the same strain was capable of reaching a 2.6 times higher cell density than the Atlantic strain due to lower phosphorus requirements. These results suggest that local physiological adaptation can define the performance of this species under nutrient limitation.

  13. Eco-physiological adaptation shapes the response of calcifying algae to nutrient limitation

    NASA Astrophysics Data System (ADS)

    Šupraha, Luka; Gerecht, Andrea C.; Probert, Ian; Henderiks, Jorijntje

    2015-11-01

    The steady increase in global ocean temperature will most likely lead to nutrient limitation in the photic zone. This will impact the physiology of marine algae, including the globally important calcifying coccolithophores. Understanding their adaptive patterns is essential for modelling carbon production in a low-nutrient ocean. We investigated the physiology of Helicosphaera carteri, a representative of the abundant but under-investigated flagellated functional group of coccolithophores. Two strains isolated from contrasting nutrient regimes (South Atlantic and Mediterranean Sea) were grown in phosphorus-replete and phosphorus-limited batch cultures. While growing exponentially in a phosphorus-replete medium, the Mediterranean strain exhibited on average 24% lower growth rate, 36% larger coccosphere volume and 21% lower particulate inorganic carbon (PIC) production than the Atlantic strain. Under phosphorus limitation, the same strain was capable of reaching a 2.6 times higher cell density than the Atlantic strain due to lower phosphorus requirements. These results suggest that local physiological adaptation can define the performance of this species under nutrient limitation.

  14. Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants.

    PubMed

    Kaspari, Michael; Clay, Natalie A; Lucas, Jane; Revzen, Shai; Kay, Adam; Yanoviak, Stephen P

    2016-04-01

    We studied the Thermal Performance Curves (TPCs) of 87 species of rainforest ants and found support for both the Thermal Adaptation and Phosphorus-Tolerance hypotheses. TPCs relate a fitness proxy (here, worker speed) to environmental temperature. Thermal Adaptation posits that thermal generalists (ants with flatter, broader TPCs) are favored in the hotter, more variable tropical canopy compared to the cooler, less variable litter below. As predicted, species nesting in the forest canopy 1) had running speeds less sensitive to temperature; 2) ran over a greater range of temperatures; and 3) ran at lower maximum speeds. Tradeoffs between tolerance and maximum performance are often invoked for constraining the evolution of thermal generalists. There was no evidence that ant species traded off thermal tolerance for maximum speed, however. Phosphorus-Tolerance is a second mechanism for generating ectotherms able to tolerate thermal extremes. It posits that ants active at high temperatures invest in P-rich machinery to buffer their metabolism against thermal extremes. Phosphorus content in ant tissue varied three-fold, and as predicted, temperature sensitivity was lower and thermal range was higher in P-rich species. Combined, we show how the vertical distribution of hot and variable vs. cooler and stable microclimates in a single forest contribute to a diversity of TPCs and suggest that a widely varying P stoichiometry among these ants may drive some of these differences.

  15. Social categories shape the neural representation of emotion: evidence from a visual face adaptation task.

    PubMed

    Otten, Marte; Banaji, Mahzarin R

    2012-01-01

    A number of recent behavioral studies have shown that emotional expressions are differently perceived depending on the race of a face, and that perception of race cues is influenced by emotional expressions. However, neural processes related to the perception of invariant cues that indicate the identity of a face (such as race) are often described to proceed independently of processes related to the perception of cues that can vary over time (such as emotion). Using a visual face adaptation paradigm, we tested whether these behavioral interactions between emotion and race also reflect interdependent neural representation of emotion and race. We compared visual emotion aftereffects when the adapting face and ambiguous test face differed in race or not. Emotion aftereffects were much smaller in different race (DR) trials than same race (SR) trials, indicating that the neural representation of a facial expression is significantly different depending on whether the emotional face is black or white. It thus seems that invariable cues such as race interact with variable face cues such as emotion not just at a response level, but also at the level of perception and neural representation.

  16. Real-time, digital pulse-shape discrimination in non-hazardous fast liquid scintillation detectors: Prospects for safety and security

    SciTech Connect

    Joyce, M. J.; Aspinall, M. D.; Cave, F. D.; Lavietes, A. D.

    2011-07-01

    Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and {gamma} rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/{gamma}-ray separation. Moreover, the scintillation media on which the technique relies usually have a low flash point and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/{gamma} separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 x 10{sup 6} events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous. (authors)

  17. Mandible shape and dwarfism in squirrels (Mammalia, Rodentia): interaction of allometry and adaptation

    NASA Astrophysics Data System (ADS)

    Hautier, Lionel; Fabre, Pierre-Henri; Michaux, Jacques

    2009-06-01

    Squirrels include several independent lineages of dwarf forms distributed into two ecological groups: the dwarf tree and flying squirrels. The mandible of dwarf tree squirrels share a highly reduced coronoid process and a condylar process drawn backwards. Dwarf flying squirrels on the other hand, have an elongated coronoid process and a well-differentiated condylar process. To interpret such a difference, Elliptic Fourier Transform was used to evaluate how mandible shape varies with dwarfism in sciurids. The results obtained show that this clear-cut difference cannot be explained by a simple allometric relationship in relation with size decrease. We concluded that the retention of anteriorly positioned eye sockets, in relation with distance estimation, allowed the conservation of a well-differentiated coronoid process in all flying species, despite the trend towards its reduction observed among sciurids as their size decreases.

  18. Pulse Compression Degradation Due to Open Loop Adaptive Cancellation. Part 2.

    DTIC Science & Technology

    1991-08-23

    compreosed sidelobe level after adaptive cancellation -of the Ith range sidelobe (sidelobes are numbered :h1, I = 1, 2, ... , these can be related...sidelobe level at a specific range sidelobe 1 is at most 3 1,1#0 dB above the maximum quiescent sidelobe level). It is straightforward to-show that K...SL, (K,N) T Ilsc(1)lI2 (43) ’Jmin, and 6 = max ((). 44) One normally desires 6 :5 1, otherwise the desired signal generates more range sidelobe power

  19. Recent Visual Experience Shapes Visual Processing in Rats through Stimulus-Specific Adaptation and Response Enhancement.

    PubMed

    Vinken, Kasper; Vogels, Rufin; Op de Beeck, Hans

    2017-03-20

    From an ecological point of view, it is generally suggested that the main goal of vision in rats and mice is navigation and (aerial) predator evasion [1-3]. The latter requires fast and accurate detection of a change in the visual environment. An outstanding question is whether there are mechanisms in the rodent visual system that would support and facilitate visual change detection. An experimental protocol frequently used to investigate change detection in humans is the oddball paradigm, in which a rare, unexpected stimulus is presented in a train of stimulus repetitions [4]. A popular "predictive coding" theory of cortical responses states that neural responses should decrease for expected sensory input and increase for unexpected input [5, 6]. Despite evidence for response suppression and enhancement in noninvasive scalp recordings in humans with this paradigm [7, 8], it has proven challenging to observe both phenomena in invasive action potential recordings in other animals [9-11]. During a visual oddball experiment, we recorded multi-unit spiking activity in rat primary visual cortex (V1) and latero-intermediate area (LI), which is a higher area of the rodent ventral visual stream. In rat V1, there was only evidence for response suppression related to stimulus-specific adaptation, and not for response enhancement. However, higher up in area LI, spiking activity showed clear surprise-based response enhancement in addition to stimulus-specific adaptation. These results show that neural responses along the rat ventral visual stream become increasingly sensitive to changes in the visual environment, suggesting a system specialized in the detection of unexpected events.

  20. Residue-Specific Structural Kinetics of Proteins through the Union of Isotope Labeling, Mid-IR Pulse Shaping, and Coherent 2D IR Spectroscopy

    PubMed Central

    Middleton, Chris T.; Woys, Ann Marie; Mukherjee, Sudipta S.; Zanni, Martin T.

    2010-01-01

    We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C=18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide form type 2 diabetes. PMID:20472067

  1. Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum.

    PubMed

    Schimpf, Damian N; Limpert, Jens; Tünnermann, Andreas

    2007-12-10

    We report on the experimental demonstration of the control of the influence of nonlinearity in fiber-based chirped-pulse amplification (CPA) using active spectral amplitude shaping. By applying a liquid crystal spatial light modulator, the influence of the spectral profile on the recompressed pulse quality is experimentally revealed. The parabolic spectrum is experimentally determined to be very suitable for CPA-systems in which nonlinearity is present. The corresponding nonlinear phase contribution can be efficiently compensated by a conventional grating compressor. In a proof-of-principle experiment using an Yb-doped fiber- CPA-system, control at a B-integral as high as 16 rad is demonstrated. The method allows significant performance improvement of fiber-based chirpedpulse amplification.

  2. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    SciTech Connect

    Eslami, E. Barjasteh, A.; Morshedian, N.

    2015-06-15

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.

  3. Lorentzian amplitude and phase pulse shaping for nonresonant background suppression and enhanced spectral resolution in coherent anti-Stokes Raman scattering spectroscopy and microscopy.

    PubMed

    Konorov, Stanislav O; Blades, Michael W; Turner, Robin F B

    2010-07-01

    Femtosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy offers several advantages over spontaneous Raman spectroscopy due to the inherently high sensitivity and low average power deposition in the sample. Femtosecond CARS can be implemented in a collinear pump/probe beam configuration for microspectroscopy applications and has emerged as a powerful technique for chemical imaging of biological specimens. However, one serious limitation of this approach is the presence of a high nonresonant background component that often obscures the resonant signals of interest. We report here an innovative pulse-shaping method based on Lorentzian amplitude and phase spectral modulation of a broadband femtosecond probe pulse that yields spectra with both high spectral resolution and no nonresonant background. No further mathematical analysis is needed to extract Raman spectra. The utility of the proposed method for CARS microscopy is demonstrated using a mixture of polystyrene and latex beads, as well as dry-fixed embryonic stem cells.

  4. A feasibility study of rain radar for the Tropical Rainfall Measuring Mission. IV - A discussion of pulse compression and adaptive scanning

    NASA Astrophysics Data System (ADS)

    Ihara, Toshio; Nakamura, Kenji

    1988-07-01

    The possible use of a pulse compression system on the Tropical Rainfall Measuring Mission to meet the requirement on the number of independent samples for the rain radar under the constraint on allowable power consumption. The applicability of a pulse compression system to the mission depends on the technological feasibility of reducing the range sidelobe levels of the strong surface echo down to at least -60 dB. It is found that applying the pulse compression technique to the mission is risky. The concept of adaptive scanning is examined, and its power saving efficiency is numerically evaluated for four kinds of rain searching schemes. It is shown that the power saving efficiency of adaptive scanning is considerably high for all the rain searching schemes evaluated.

  5. Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images.

    PubMed

    Bamber, J C; Daft, C

    1986-01-01

    Current medical ultrasonic scanning instrumentation permits the display of fine image detail (speckle) which does not transfer useful information but degrades the apparent low contrast resolution in the image. An adaptive two-dimensional filter has been developed which uses local features of image texture to recognize and maximally low-pass filter those parts of the image which correspond to fully developed speckle, while substantially preserving information associated with resolved-object structure. A first implementation of the filter is described which uses the ratio of the local variance and the local mean as the speckle recognition feature. Preliminary results of applying this form of display processing to medical ultrasound images are very encouraging; it appears that the visual perception of features such as small discrete structures, subtle fluctuations in mean echo level and changes in image texture may be enhanced relative to that for unprocessed images.

  6. In-fiber reconfigurable generation of arbitrary (asymmetric) picosecond temporal intensity waveforms by time-domain optical pulse shaping.

    PubMed

    Huh, Jeonghyun; Azaña, José

    2016-02-15

    A fiber-optic programmable optical pulse shaper is experimentally demonstrated using multi-level phase-only linear filtering, capable of synthesizing arbitrary (including asymmetric) temporal intensity waveforms. The reconfigurable filtering operation is implemented in the time domain with a single electro-optic phase modulator (EO-PM) driven by a high-speed electronic arbitrary waveform generator (AWG). The required multi-level modulation signal is calculated from a combination of optimization algorithms, namely the Gerchberg-Saxton algorithm (GSA) and a genetic algorithm (GA). We report the synthesis of high-quality, arbitrary temporal intensity profiles, including asymmetric triangular waveforms and ∼150  Gbaud random on-off keying (OOK) pulse and pulse amplitude-modulation (PAM) code sequences, with a temporal resolution of ∼2  ps over a maximum time window of ∼60  ps.

  7. Innate-Adaptive Crosstalk: How Dendritic Cells Shape Immune Responses in the CNS

    PubMed Central

    Héninger, Erika; Harris, Melissa G; Lee, JangEun; Sandor, Matyas; Fabry, Zsuzsanna

    2013-01-01

    Dendritic cells (DCs) are a heterogeneous group of professional antigen presenting cells that lie in a nexus between innate and adaptive immunity because they recognize and respond to danger signals and subsequently initiate and regulate effector T-cell responses. Initially thought to be absent from the CNS, both plasmacytoid and conventional DCs as well as DC precursors have recently been detected in several CNS compartments where they are seemingly poised for responding to injury and pathogens. Additionally, monocyte-derived DCs rapidly accumulate in the inflamed CNS where they, along with other DC subsets, may function to locally regulate effector T-cells and/or carry antigens to CNS-draining cervical lymph nodes. In this review we highlight recent research showing that (a) distinct inflammatory stimuli differentially recruit DC subsets to the CNS; (b) DC recruitment across the blood-brain barrier (BBB) is regulated by adhesion molecules, growth factors, and chemokines; and (c) DCs positively or negatively regulate immune responses in the CNS. PMID:21948376

  8. Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca).

    PubMed

    Huang, He; Yie, Shangmian; Liu, Yuliang; Wang, Chengdong; Cai, Zhigang; Zhang, Wenping; Lan, Jingchao; Huang, Xiangming; Luo, Li; Cai, Kailai; Hou, Rong; Zhang, Zhihe

    2016-10-05

    The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda's feces, levels of urinary thiocyanate and tissue rhodanese activity using color reactions with a spectrophotometer. Rhodanese expression in liver and kidney at transcription and translation levels were measured using real-time RT-PCR and immunohistochemistry, respectively. We compared differences of rhodanese activity and gene expressions among giant panda, rabbit (herbivore) and cat (carnivore), and between newborn and adult giant pandas. Bamboo shoots contained 3.2 mg/kg of cyanide and giant pandas absorbed more than 65% of cyanide. However, approximately 80% of absorbed cyanide was metabolized to less toxic thiocyanate that was discharged in urine. Rhodanese expression and activity in liver and kidney of giant panda were significantly higher than in cat, but lower than in rabbit (all P < 0.05). Levels in adult pandas were higher than that in newborn cub. Phylogenetic analysis of both nucleotide and amino acid sequences of the rhodanese gene supported a closer relationship of giant panda with carnivores than with herbivores.

  9. Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca)

    PubMed Central

    Huang, He; Yie, Shangmian; Liu, Yuliang; Wang, Chengdong; Cai, Zhigang; Zhang, Wenping; Lan, Jingchao; Huang, Xiangming; Luo, Li; Cai, Kailai; Hou, Rong; Zhang, Zhihe

    2016-01-01

    The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda’s feces, levels of urinary thiocyanate and tissue rhodanese activity using color reactions with a spectrophotometer. Rhodanese expression in liver and kidney at transcription and translation levels were measured using real-time RT-PCR and immunohistochemistry, respectively. We compared differences of rhodanese activity and gene expressions among giant panda, rabbit (herbivore) and cat (carnivore), and between newborn and adult giant pandas. Bamboo shoots contained 3.2 mg/kg of cyanide and giant pandas absorbed more than 65% of cyanide. However, approximately 80% of absorbed cyanide was metabolized to less toxic thiocyanate that was discharged in urine. Rhodanese expression and activity in liver and kidney of giant panda were significantly higher than in cat, but lower than in rabbit (all P < 0.05). Levels in adult pandas were higher than that in newborn cub. Phylogenetic analysis of both nucleotide and amino acid sequences of the rhodanese gene supported a closer relationship of giant panda with carnivores than with herbivores. PMID:27703267

  10. How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism.

    PubMed

    Berkhout, Jan; Bosdriesz, Evert; Nikerel, Emrah; Molenaar, Douwe; de Ridder, Dick; Teusink, Bas; Bruggeman, Frank J

    2013-06-01

    Evolutionary adaptations in metabolic networks are fundamental to evolution of microbial growth. Studies on unneeded-protein synthesis indicate reductions in fitness upon nonfunctional protein synthesis, showing that cell growth is limited by constraints acting on cellular protein content. Here, we present a theory for optimal metabolic enzyme activity when cells are selected for maximal growth rate given such growth-limiting biochemical constraints. We show how optimal enzyme levels can be understood to result from an enzyme benefit minus cost optimization. The constraints we consider originate from different biochemical aspects of microbial growth, such as competition for limiting amounts of ribosomes or RNA polymerases, or limitations in available energy. Enzyme benefit is related to its kinetics and its importance for fitness, while enzyme cost expresses to what extent resource consumption reduces fitness through constraint-induced reductions of other enzyme levels. A metabolic fitness landscape is introduced to define the fitness potential of an enzyme. This concept is related to the selection coefficient of the enzyme and can be expressed in terms of its fitness benefit and cost.

  11. Lineage divergence, local adaptation across a biogeographic break, and artificial transport, shape the genetic structure in the ascidian Pyura chilensis.

    PubMed

    Segovia, Nicolás I; Gallardo-Escárate, Cristian; Poulin, Elie; Haye, Pilar A

    2017-03-16

    Marine benthic organisms inhabit a heterogeneous environment in which connectivity between populations occurs mainly through dispersive larval stages, while local selective pressures acting on early life history stages lead to non-random mortality, shaping adaptive genetic structure. In order to test the influence of local adaptation and neutral processes in a marine benthic species with low dispersal, in this study we used Genotyping by Sequencing technology to compare the neutral and putatively selected signals (neutral and outlier loci, respectively) in SNPs scattered throughout the genome in six local populations of the commercially exploited ascidian Pyura chilensis along the southeast Pacific coast (24°-42°S). This species is sessile as an adult, has a short-lived larval stage, and may also be dispersed by artificial transport as biofouling. We found that the main signal in neutral loci was a highly divergent lineage present at 39°S, and a subjacent signal that indicated a separation at 30°S (north/south), widely reported in the area. North/south separation was the main signal in outlier loci, and the linage divergence at 39°S was subjacent. We conclude that the geographic structure of the genetic diversity of outlier and neutral loci was established by different strengths of environmental, historical and anthropogenic factors.

  12. Lineage divergence, local adaptation across a biogeographic break, and artificial transport, shape the genetic structure in the ascidian Pyura chilensis

    PubMed Central

    Segovia, Nicolás I.; Gallardo-Escárate, Cristian; Poulin, Elie; Haye, Pilar A.

    2017-01-01

    Marine benthic organisms inhabit a heterogeneous environment in which connectivity between populations occurs mainly through dispersive larval stages, while local selective pressures acting on early life history stages lead to non-random mortality, shaping adaptive genetic structure. In order to test the influence of local adaptation and neutral processes in a marine benthic species with low dispersal, in this study we used Genotyping by Sequencing technology to compare the neutral and putatively selected signals (neutral and outlier loci, respectively) in SNPs scattered throughout the genome in six local populations of the commercially exploited ascidian Pyura chilensis along the southeast Pacific coast (24°–42°S). This species is sessile as an adult, has a short-lived larval stage, and may also be dispersed by artificial transport as biofouling. We found that the main signal in neutral loci was a highly divergent lineage present at 39°S, and a subjacent signal that indicated a separation at 30°S (north/south), widely reported in the area. North/south separation was the main signal in outlier loci, and the linage divergence at 39°S was subjacent. We conclude that the geographic structure of the genetic diversity of outlier and neutral loci was established by different strengths of environmental, historical and anthropogenic factors. PMID:28300177

  13. Characterization, adaptive traffic shaping, and multiplexing of real-time MPEG II video

    NASA Astrophysics Data System (ADS)

    Agrawal, Sanjay; Barry, Charles F.; Binnai, Vinay; Kazovsky, Leonid G.

    1997-01-01

    We obtain network traffic model for real-time MPEG-II encoded digital video by analyzing video stream samples from real-time encoders from NUKO Information Systems. MPEG-II sample streams include a resolution intensive movie, City of Joy, an action intensive movie, Aliens, a luminance intensive (black and white) movie, Road To Utopia, and a chrominance intensive (color) movie, Dick Tracy. From our analysis we obtain a heuristic model for the encoded video traffic which uses a 15-stage Markov process to model the I,B,P frame sequences within a group of pictures (GOP). A jointly-correlated Gaussian process is used to model the individual frame sizes. Scene change arrivals are modeled according to a gamma process. Simulations show that our MPEG-II traffic model generates, I,B,P frame sequences and frame sizes that closely match the sample MPEG-II stream traffic characteristics as they relate to latency and buffer occupancy in network queues. To achieve high multiplexing efficiency we propose a traffic shaping scheme which sets preferred 1-frame generation times among a group of encoders so as to minimize the overall variation in total offered traffic while still allowing the individual encoders to react to scene changes. Simulations show that our scheme results in multiplexing gains of up to 10% enabling us to multiplex twenty 6 Mbps MPEG-II video streams instead of 18 streams over an ATM/SONET OC3 link without latency or cell loss penalty. This scheme is due for a patent.

  14. The adaptive nature of eye movements in linguistic tasks: how payoff and architecture shape speed-accuracy trade-offs.

    PubMed

    Lewis, Richard L; Shvartsman, Michael; Singh, Satinder

    2013-07-01

    We explore the idea that eye-movement strategies in reading are precisely adapted to the joint constraints of task structure, task payoff, and processing architecture. We present a model of saccadic control that separates a parametric control policy space from a parametric machine architecture, the latter based on a small set of assumptions derived from research on eye movements in reading (Engbert, Nuthmann, Richter, & Kliegl, 2005; Reichle, Warren, & McConnell, 2009). The eye-control model is embedded in a decision architecture (a machine and policy space) that is capable of performing a simple linguistic task integrating information across saccades. Model predictions are derived by jointly optimizing the control of eye movements and task decisions under payoffs that quantitatively express different desired speed-accuracy trade-offs. The model yields distinct eye-movement predictions for the same task under different payoffs, including single-fixation durations, frequency effects, accuracy effects, and list position effects, and their modulation by task payoff. The predictions are compared to-and found to accord with-eye-movement data obtained from human participants performing the same task under the same payoffs, but they are found not to accord as well when the assumptions concerning payoff optimization and processing architecture are varied. These results extend work on rational analysis of oculomotor control and adaptation of reading strategy (Bicknell & Levy, ; McConkie, Rayner, & Wilson, 1973; Norris, 2009; Wotschack, 2009) by providing evidence for adaptation at low levels of saccadic control that is shaped by quantitatively varying task demands and the dynamics of processing architecture.

  15. Performance verification and system integration tests of the pulse shape processor for the soft x-ray spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Takeda, Sawako; Tashiro, Makoto S.; Ishisaki, Yoshitaka; Tsujimoto, Masahiro; Seta, Hiromi; Shimoda, Yuya; Yamaguchi, Sunao; Uehara, Sho; Terada, Yukikatsu; Fujimoto, Ryuichi; Mitsuda, Kazuhisa

    2014-07-01

    The soft X-ray spectrometer (SXS) aboard ASTRO-H is equipped with dedicated digital signal processing units called pulse shape processors (PSPs). The X-ray microcalorimeter system SXS has 36 sensor pixels, which are operated at 50 mK to measure heat input of X-ray photons and realize an energy resolution of 7 eV FWHM in the range 0.3-12.0 keV. Front-end signal processing electronics are used to filter and amplify the electrical pulse output from the sensor and for analog-to-digital conversion. The digitized pulses from the 36 pixels are multiplexed and are sent to the PSP over low-voltage differential signaling lines. Each of two identical PSP units consists of an FPGA board, which assists the hardware logic, and two CPU boards, which assist the onboard software. The FPGA board triggers at every pixel event and stores the triggering information as a pulse waveform in the installed memory. The CPU boards read the event data to evaluate pulse heights by an optimal filtering algorithm. The evaluated X-ray photon data (including the pixel ID, energy, and arrival time information) are transferred to the satellite data recorder along with event quality information. The PSP units have been developed and tested with the engineering model (EM) and the flight model. Utilizing the EM PSP, we successfully verified the entire hardware system and the basic software design of the PSPs, including their communication capability and signal processing performance. In this paper, we show the key metrics of the EM test, such as accuracy and synchronicity of sampling clocks, event grading capability, and resultant energy resolution.

  16. Drop shaped zinc oxide quantum dots and their self-assembly into dendritic nanostructures: Liquid assisted pulsed laser ablation and characterizations

    NASA Astrophysics Data System (ADS)

    Singh, Subhash C.; Gopal, Ram

    2012-01-01

    Complex nanostructures and nano-assemblies have exhibited their potential application in the fabrication of future molecular machines and molecular devices. Liquid phase pulsed laser ablation is an easy, versatile, environmental friendly and rapidly growing method for the synthesis of nanostructured materials. Nanosecond pulsed laser ablation of zinc rod placed on the bottom of glass vessel containing methanol is used to produce colloidal solution of drop shaped zinc oxide quantum dots and their self-assembly into various dendritic nanostructures. UV-vis absorption, diffuse reflectance, transmission electron microscopy, and photoluminescence spectroscopy techniques are used for the optical, microscopic, structural and defect diagnosis of obtained colloidal quantum dots and their nano-assemblies. The average length, width and aspect ratio of drop shaped zinc oxide quantum dots are 6 ± 2.4 nm, 3.5 ± 1.4 nm and 1.69 ± 0.4 nm, respectively. Careful investigation of assemblies shows that most of them have linear growth, i.e. growth in longitudinal direction is higher as compared to the transverse direction with three types of classifications as (i) linear axis symmetrical branching, (ii) linear axis asymmetrical branching and (iii) curvilinear axis asymmetrical branching. Photoluminescence spectrum has emission peaks in UV, violet, blue and green spectral region corresponding to the excitonic and various defect related emissions.

  17. Energy-Dependent Scintillation Pulse Shape and Proportionality of Decay Components for CsI:Tl: Modeling with Transport and Rate Equations

    NASA Astrophysics Data System (ADS)

    Lu, X.; Gridin, S.; Williams, R. T.; Mayhugh, M. R.; Gektin, A.; Syntfeld-Kazuch, A.; Swiderski, L.; Moszynski, M.

    2017-01-01

    Relatively recent experiments on the scintillation response of CsI:Tl have found that there are three main decay times of about 730 ns, 3 μ s , and 16 μ s , i.e., one more principal decay component than had been previously reported; that the pulse shape depends on gamma-ray energy; and that the proportionality curves of each decay component are different, with the energy-dependent light yield of the 16 -μ s component appearing to be anticorrelated with that of the 0.73 -μ s component at room temperature. These observations can be explained by the described model of carrier transport and recombination in a particle track. This model takes into account processes of hot and thermalized carrier diffusion, electric-field transport, trapping, nonlinear quenching, and radiative recombination. With one parameter set, the model reproduces multiple observables of CsI:Tl scintillation response, including the pulse shape with rise and three decay components, its energy dependence, the approximate proportionality, and the main trends in proportionality of different decay components. The model offers insights on the spatial and temporal distributions of carriers and their reactions in the track.

  18. Applications of Optical Coherent Transient Technology to Pulse Shaping, Spectral Filtering, Arbitrary Waveform Generation and RF Beamforming

    DTIC Science & Technology

    2006-04-15

    optical pulses: (1) using acousto - optic modulators (AOMs) driven with a chirped RF source, ( 2 ) using EOPMs driven with a chirped RF source, (3) utilizing a...holograms (SSH) have the potential to duplicate the functional operation of acousto - optic (AO) deflectors , but with bandwidths (BW) in excess of 10 GHz... acousto - optic deflector to create a scanned optical signal that was recorded in an OCT crystal. The scanner functionality of the AOD was thus

  19. Applications of Optical Coherent Transient Technology to Pulse Shaping, Spectral Filtering Arbitrary Waveform Generation and RF Beamforming

    DTIC Science & Technology

    2006-04-14

    for creating fast (~MHz/µs) linear frequency chirped optical pulses: (1) using acousto - optic modulators (AOMs) driven with a chirped RF source, ( 2 ...the cavity. The frequencies allowed in a Fabry–Perot cavity are: where =1,2,... and optical path length of cavity 2 qcv q d d = = (29) The...the functional operation of acousto - optic (AO) deflectors , but with bandwidths (BW) in excess of 10 GHz and Time-Bandwidth Prod- ucts (TB) over 103 by

  20. Effect of femoral canal shape on mechanical stress distribution and adaptive bone remodelling around a cementless tapered-wedge stem

    PubMed Central

    Oba, M.; Kobayashi, N.; Ike, H.; Tezuka, T.; Saito, T.

    2016-01-01

    Objectives In total hip arthroplasty (THA), the cementless, tapered-wedge stem design contributes to achieving initial stability and providing optimal load transfer in the proximal femur. However, loading conditions on the femur following THA are also influenced by femoral structure. Therefore, we determined the effects of tapered-wedge stems on the load distribution of the femur using subject-specific finite element models of femurs with various canal shapes. Patients and Methods We studied 20 femurs, including seven champagne flute-type femurs, five stovepipe-type femurs, and eight intermediate-type femurs, in patients who had undergone cementless THA using the Accolade TMZF stem at our institution. Subject–specific finite element (FE) models of pre- and post-operative femurs with stems were constructed and used to perform FE analyses (FEAs) to simulate single-leg stance. FEA predictions were compared with changes in bone mineral density (BMD) measured for each patient during the first post-operative year. Results Stovepipe models implanted with large-size stems had significantly lower equivalent stress on the proximal-medial area of the femur compared with champagne-flute and intermediate models, with a significant loss of BMD in the corresponding area at one year post-operatively. Conclusions The stovepipe femurs required a large-size stem to obtain an optimal fit of the stem. The FEA result and post-operative BMD change of the femur suggest that the combination of a large-size Accolade TMZF stem and stovepipe femur may be associated with proximal stress shielding. Cite this article: M. Oba, Y. Inaba, N. Kobayashi, H. Ike, T. Tezuka, T. Saito. Effect of femoral canal shape on mechanical stress distribution and adaptive bone remodelling around a cementless tapered-wedge stem. Bone Joint Res 2016;5:362–369. DOI: 10.1302/2046-3758.59.2000525. PMID:27601435

  1. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  2. An analytical model for pulse shape and electrothermal stability in two-body transition-edge sensor microcalorimeters

    SciTech Connect

    Bennett, D. A.; Horansky, R. D.; Schmidt, D. R.; Swetz, D. S.; Vale, L. R.; Ullom, J. N.; Hoover, A. S.; Hoteling, N. J.; Rabin, M. W.

    2010-09-06

    High-resolution superconducting gamma-ray sensors show potential for the more accurate analysis of nuclear material. These devices are part of a larger class of microcalorimeters and bolometers based on transition edge sensors (TESs) that have two distinct thermal bodies. We derive the time domain behavior of the current and temperature for compound TES devices in the small signal limit and demonstrate the utility of these equations for device design and characterization. In particular, we use the model to fit pulses from our gamma-ray microcalorimeters and demonstrate how critical damping and electrothermal stability can be predicted.

  3. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  4. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring.

    PubMed

    Yi, Fang; Wang, Xiaofeng; Niu, Simiao; Li, Shengming; Yin, Yajiang; Dai, Keren; Zhang, Guangjie; Lin, Long; Wen, Zhen; Guo, Hengyu; Wang, Jie; Yeh, Min-Hsin; Zi, Yunlong; Liao, Qingliang; You, Zheng; Zhang, Yue; Wang, Zhong Lin

    2016-06-01

    The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.

  5. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring

    PubMed Central

    Yi, Fang; Wang, Xiaofeng; Niu, Simiao; Li, Shengming; Yin, Yajiang; Dai, Keren; Zhang, Guangjie; Lin, Long; Wen, Zhen; Guo, Hengyu; Wang, Jie; Yeh, Min-Hsin; Zi, Yunlong; Liao, Qingliang; You, Zheng; Zhang, Yue; Wang, Zhong Lin

    2016-01-01

    The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment. PMID:27386560

  6. Effects of Pulse Shape and Polarity on Sensitivity to Cochlear Implant Stimulation: A Chronic Study in Guinea Pigs.

    PubMed

    Macherey, Olivier; Cazals, Yves

    2016-01-01

    Most cochlear implants (CIs) stimulate the auditory nerve with trains of symmetric biphasic pulses consisting of two phases of opposite polarity. Animal and human studies have shown that both polarities can elicit neural responses. In human CI listeners, studies have shown that at suprathreshold levels, the anodic phase is more effective than the cathodic phase. In contrast, animal studies usually show the opposite trend. Although the reason for this discrepancy remains unclear, computational modelling results have proposed that the degeneration of the peripheral processes of the neurons could lead to a higher efficiency of anodic stimulation. We tested this hypothesis in ten guinea pigs who were deafened with an injection of sysomycin and implanted with a single ball electrode inserted in the first turn of the cochlea. Animals were tested at regular intervals between 1 week after deafening and up to 1 year for some of them. Our hypothesis was that if the effect of polarity is determined by the presence or absence of peripheral processes, the difference in polarity efficiency should change over time because of a progressive neural degeneration. Stimuli consisted of charge-balanced symmetric and asymmetric pulses allowing us to observe the response to each polarity individually. For all stimuli, the inferior colliculus evoked potential was measured. Results show that the cathodic phase was more effective than the anodic phase and that this remained so even several months after deafening. This suggests that neural degeneration cannot entirely account for the higher efficiency of anodic stimulation observed in human CI listeners.

  7. Numerical and analytical assessment of the influence of blood flow through arterial perforators on the pulse pressure shape

    NASA Astrophysics Data System (ADS)

    Pieniak, Marcin; Piechna, Adam; Cieślicki, Krzysztof

    2015-09-01

    Most of the existing models of cardiovascular system do not take into account the leakage of blood through a number of small vessels branching the main arterial trunks and called perforators. Therefore, the aim of this study is to investigate their influence on the pulse pressure waveform. Linearized, 1D computer model of a minute part of the cardiovascular system has been designed and series of simulations with and without leakage have been conducted. Blood flow in a single segment of the arterial system and pressure in vascular nodes were described by the two first order partial differential equations. A set of boundary conditions on both ends of a single vascular segment and at nodal point have been formulated. To solve the linear set of above equations, a numerical method of characteristic has been used. It was shown that the leakage reduces reflection from the peripheral resistance. The simulations have also shown a decrease of the average pressure value with increase of leakage and modification of the pulse pressure waveform. All these effects depended strongly on the assumed leakage value and practically died out when its value was reduced to about 10% of the main flow.

  8. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    NASA Astrophysics Data System (ADS)

    Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boudjemline, K.; Boulay, M. G.; Broerman, B.; Bueno, J. F.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Cranshaw, D.; Dering, K.; Duncan, F.; Fatemighomi, N.; Ford, R.; Gagnon, R.; Giampa, P.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Grace, E.; Graham, K.; Grant, D. R.; Hakobyan, R.; Hallin, A. L.; Hamstra, M.; Harvey, P.; Hearns, C.; Hofgartner, J.; Jillings, C. J.; Kuźniak, M.; Lawson, I.; La Zia, F.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Lippincott, W. H.; Mathew, R.; McDonald, A. B.; McElroy, T.; McFarlane, K.; McKinsey, D. N.; Mehdiyev, R.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J.; Noble, A. J.; O'Dwyer, E.; Olsen, K.; Ouellet, C.; Pasuthip, P.; Peeters, S. J. M.; Pollmann, T.; Rau, W.; Retière, F.; Ronquest, M.; Seeburn, N.; Skensved, P.; Smith, B.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Ward, M.

    2016-12-01

    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keVee. In the surface dataset using a triple-coincidence tag we found the fraction of β events that are misidentified as nuclear recoils to be < 1.4 ×10-7 (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement to be done with only a double-coincidence tag. The combined data set contains 1.23 × 108 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the level of electronic recoil contamination is < 2.7 ×10-8 (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe pulse-shape-discrimination parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approximately 10-10 for an electron-equivalent energy threshold of 15 keVee for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10-46 cm2, assuming negligible contribution from nuclear recoil backgrounds.

  9. Calibration of liquid crystal ultrafast pulse shaper with common-path spectral interferometry and application to coherent control with a covariance matrix adaptation evolutionary strategy

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Schlup, Philip; Lunacek, Monte; Whitley, Darrell; Bartels, Randy A.

    2008-03-01

    An ultrafast pulse shaper for coherent control applications is described, complete with a simple, reliable calibration technique and an advanced learning control algorithm. The calibration technique makes use of a common-path interferometer, producing less noisy measurements than a conventional Mach-Zehnder interferometer. A covariance matrix adaptation evolutionary strategy (ES) is demonstrated to perform better than a traditional ES for high-dimensional search landscapes.

  10. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses.

    PubMed

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2015-09-01

    All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals.

  11. A Study of the quality of CsI detectors and pulse-shape discrimination of scintillators for ?[U+0251]-particles, ?[U+0263]-particles, and neutrons

    NASA Astrophysics Data System (ADS)

    Salyer, Kaitlin; Rogachev, Grigory; Hooker, Joshua

    2016-09-01

    This project studied the capabilities of two different scintillators, Cesium Iodide (CsI) and p-Terphenyl. First, the resolution of a CsI detector was investigated by exposing only very small areas of its surface at a time to an alpha source. Second, the abilities of p-Terphenyl to detect alpha particles, gamma particles, and neutrons were analyzed through pulse shape discrimination. p-Terphenyl is of particular interest because it will be used in the Mitchell Institute Neutrino Experiment at Reactor (MINER) at Texas A&M University for measuring background data. The information learned from conducting these tests will be useful in understanding and expanding the limits of the experiments in which these detectors will ultimately be used.

  12. Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation.

    PubMed

    Li, Zhe; Erkılınç, M Sezer; Pachnicke, Stephan; Griesser, Helmut; Bouziane, Rachid; Thomsen, Benn C; Bayvel, Polina; Killey, Robert I

    2015-09-07

    An experimental demonstration of direct-detection single-sideband Nyquist-pulse-shaped 16-QAM subcarrier modulated (Nyquist-SCM) transmission implementing a receiver-based signal-signal beat interference (SSBI) cancellation technique is described. The performance improvement with SSBI mitigation, which compensates for the nonlinear distortion caused by square-law detection, was quantified by simulations and experiments for a 7 × 25 Gb/s WDM Nyquist-SCM signal with a net optical information spectral density (ISD) of 2.0 (b/s)/Hz. A reduction of 3.6 dB in the back-to-back required OSNR at the HD-FEC threshold was achieved. The resulting reductions in BER in single channel and WDM transmission over distances of up to 800 km of uncompensated standard single-mode fiber (SSMF) achieved are presented.

  13. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses

    PubMed Central

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2015-01-01

    All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals. PMID:26323238

  14. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2015-09-01

    All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals.

  15. Response function of NE213 scintillator for 0.5-6 MeV neutrons measured by an improved pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, C. S.

    1998-02-01

    Using the pulse shape discrimination method combined with the time of flight technique, we have obtained the response function of a 2″ diameter × 2″ thick NE213 scintillator by measuring directly the proton recoil energy spectrum of 0.5-6 MeV prompt neutrons from a 252Cf source. Three parameters, time of flight (TOF), pulse shape discrimination (PSD) and recoil energy (RE), were recorded in an event-by-event mode with a TOF gate. We attempted to improve the determination of maximum proton recoil energies equal to incident neutron energies by employing two analysis methods. First, we attempted to separate better neutrons from coexisting gamma rays in the PSD spectrum by projecting neutron channels of the PSD spectrum onto both TOF and RE spectra in a cubic matrix constructed by the three-parameter data. The resulting two-dimensional matrix composed of TOF and RE channels was free from gamma rays and corresponding Compton-recoiled electrons, and then projected with neutron energy bins of 0.05 MeV wide determined by TOF. Finally, to determine the maximum proton recoil energies from each RE spectrum with a realistic function, accounting for the nonlinear response of the NE213 scintillator due to the quenching effect, we performed a least-squares fit to the RE spectrum using the four-parameter function. The response function obtained in the present work agrees well with previous experimental results obtained by Gul et al. (Nucl. Instr. and Meth. A 278 (1989) 470) and a Monte Carlo study by Cecil et al. (Nucl. Instr. and Meth. 161 (1979) 439).

  16. Fiber-laser frequency combs for the generation of tunable single-frequency laser lines, mm- and THz-waves and sinc-shaped Nyquist pulses

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas

    2015-03-01

    High-quality frequency comb sources like femtosecond-lasers have revolutionized the metrology of fundamental physical constants. The generated comb consists of frequency lines with an equidistant separation over a bandwidth of several THz. This bandwidth can be broadened further to a super-continuum of more than an octave through propagation in nonlinear media. The frequency separation between the lines is defined by the repetition rate and the width of each comb line can be below 1 Hz, even without external stabilization. By extracting just one of these lines, an ultra-narrow linewidth, tunable laser line for applications in communications and spectroscopy can be generated. If two lines are extracted, the superposition of these lines in an appropriate photo-mixer produces high-quality millimeter- and THz-waves. The extraction of several lines can be used for the creation of almost-ideally sinc-shaped Nyquist pulses, which enable optical communications with the maximum-possible baud rate. Especially combs generated by low-cost, small-footprint fs-fiber lasers are very promising. However due to the resonator length, the comb frequencies have a typical separation of 80 - 100 MHz, far too narrow for the selection of single tones with standard optical filters. Here the extraction of single lines of an fs-fiber laser by polarization pulling assisted stimulated Brillouin scattering is presented. The application of these extracted lines as ultra-narrow, stable and tunable laser lines, for the generation of very high-quality mm and THz-waves with an ultra-narrow linewidth and phase noise and for the generation of sinc-shaped Nyquist pulses with arbitrary bandwidth and repetition rate is discussed.

  17. Fermi Study of Gamma-ray Millisecond Pulsars: the Spectral Shape and Pulsed Emission from J0614-3329 up to 60 GeV

    NASA Astrophysics Data System (ADS)

    Xing, Yi; Wang, Zhongxiang

    2016-11-01

    We report our analysis of the Fermi Large Area Telescope data for 39 millisecond pulsars (MSPs) listed in the second γ-ray pulsar catalog. Spectra of the pulsars are obtained. We fit the spectra with a function of a power law with exponential cutoff, and find the best-fit parameters of photon index {{Γ }}={1.54}-0.11+0.10 and cutoff energy {E}{{c}}={3.70}-0.70+0.95 GeV. This spectral shape, which includes the intrinsic differences in the spectra of the MSPs, can be used for finding candidate MSPs and unidentified types of sources detected by Fermi at high Galactic latitudes. In one of the MSPs, PSR J0614-3329, we find significant pulsed emission up to 60 GeV. The result has thus added this MSP to the group of pulsars that have been detected with pulsed emission at energies of tens of GeV. Comparing the γ-ray spectrum of PSR J0614-3329 with those of the Crab and Vela pulsars, we discuss possible emission mechanisms for the very high-energy component.

  18. How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping

    PubMed Central

    Shim, Sang-Hee; Zanni, Martin T.

    2010-01-01

    We have recently developed a new and simple way of collecting 2D infrared and visible spectra that utilizes a pulse shaper and a partly collinear beam geometry. 2D IR and Vis spectroscopies are powerful tools for studying molecular structures and their dynamics. They can be used to correlate vibrational or electronic eigenstates, measure energy transfer rates, and quantify the dynamics of lineshapes, for instance, all with femtosecond time-resolution. As a result, they are finding use in systems that exhibit fast dynamics, such as sub-millisecond chemical and biological dynamics, and in hard-to-study environments, such as in membranes. While powerful, these techniques have been difficult to implement because they require a series of femtosecond pulses to be spatially and temporally overlapped with precise time-resolution and interferometric phase stability. However, many of the difficulties associated with implementing 2D spectroscopies are eliminated by using a pulse shaper and a simple beam geometry, which substantially lowers the technical barriers required for researchers to enter this exciting field while simultaneously providing many new capabilities. The aim of this paper is to provide an overview of the methods for collecting 2D spectra so that an outsider considering using 2D spectroscopy in their own research can judge which approach would be most suitable for their research aims. This paper focuses primarily on 2D IR spectroscopy, but also includes our recent work on adapting this technology to collecting 2D Vis spectra. We review work that has already been published as well as cover several topics that we have not reported previously, including phase cycling methods to remove background signals, eliminate unwanted scatter, and shift data collection into the rotating frame. PMID:19290321

  19. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  20. Shaping ability of Reciproc and TF Adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas

    PubMed Central

    ORDINOLA-ZAPATA, Ronald; BRAMANTE, Clovis Monteiro; DUARTE, Marco Antonio Húngaro; CAVENAGO, Bruno Cavalini; JARAMILLO, David; VERSIANI, Marco Aurélio

    2014-01-01

    Objective: To evaluate the shaping ability of Reciproc and Twisted-File Adaptive systems in rapid prototyping replicas. Material and Methods: Two mandibular molars showing S-shaped and 62-degree curvatures in the mesial root were scanned by using a microcomputed tomography (μCT) system. The data were exported in the stereolitograhic format and 20 samples of each molar were printed at 16 µm resolution. The mesial canals of 10 replicas of each specimen were prepared with each system. Transportation was measured by overlapping radiographs taken before and after preparation and resin thickness after instrumentation was measured by μCT. Results: Both systems maintained the original shape of the apical third in both anatomies (P>0.05). Overall, considering the resin thickness in the 62-degree replicas, no statistical difference was found between the systems (P>0.05). In the S-shaped curvature replica, Reciproc significantly decreased the thickness of the resin walls in comparison with TF Adaptive. Conclusions: The evaluated systems were able to maintain the original shape at the apical third of severely curved mesial canals of molar replicas. PMID:24918662