Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter
Zhang, Zhen; Ma, Yaopeng
2016-01-01
A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively. PMID:26861349
Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter.
Zhang, Zhen; Ma, Yaopeng
2016-02-06
A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively.
On rate-dependent mechanical model for adaptive magnetorheological elastomer base isolator
NASA Astrophysics Data System (ADS)
Li, Yancheng; Li, Jianchun
2017-04-01
This paper presents research on the phenomenological model of an adaptive base isolator. The adaptive base isolator is made of field-dependent magnetorheological elastomer (MRE) which can alter its physical property under application of magnetic field. Experimental testing demonstrated that the developed MRE base isolator possesses an amazing ability to vary its stiffness under applied magnetic field. However, several challenges have been encountered when it comes modeling such novel device. For example, under a large deformation, the MRE base isolator exhibits a clear strain stiffening effect and this behavior escalates with the increasing of applied current. In addition, the MRE base isolator has also shown typical rate-dependent behavior. Following a review on mechanical models for viscos-elastic rubber devices, a novel rate-dependent model is proposed in this paper to capture the behavior of the new MRE base isolator. To develop a generalized model, the proposed model was evaluated using its performance under random displacement input and a seismic input. It shows that the proposed rate-dependent model can successfully describe the complex behavior of the device.
Kim, Chan; Yoon, Min-Ah; Jang, Bongkyun; Kim, Jae-Hyun; Lee, Hak-Joo; Kim, Kwang-Seop
2017-03-30
Adhesion between a stamp with an elastomeric layer and various devices or substrates is crucial to successfully fabricate flexible electronics using a transfer process. Although various transfer processes using stamps with different adhesion strengths have been suggested, the controllable range of adhesion is still limited to a narrow range. To precisely transfer devices onto selected substrates, however, the difference in adhesion between the picking and placing processes should be large enough to achieve a high yield. Herein, we report a simple way to extend the controllable adhesion range of stamps, which can be achieved by adjusting the thickness of the elastomeric layer and the separation velocity. The adhesion strength increased with decreasing layer thickness on the stamp due to a magnification of the confinement and rate-dependent effects on the adhesion. This enabled the controllable range of the adhesion strength for a 15 μm-thick elastomeric layer to be extended up to 12 times that of the bulk under the same separation conditions. The strategy of designing stamps using simple adhesion tests is also introduced, and the reversible transfer of thin Si chips was successfully demonstrated. Tuning and optimizing the adhesion strength of a stamp according to the design process suggested here can be applied to various materials for the selective transfer and replacement of individual devices.
NASA Astrophysics Data System (ADS)
Winner, Hermann; Danner, Bernd; Steinle, Joachim
Mit Adaptive Cruise Control, abgekürzt ACC, wird eine Fahrgeschwindigkeitsregelung bezeichnet, die sich an die Verkehrssituation anpasst. Synonyme Bezeichnungen sind Aktive Geschwindigkeitsregelung, Automatische Distanzregelung oder Abstandsregeltempomat. Im englischen Sprachraum fnden sich die weiteren Bezeichnungen Active Cruise Control, Automatic Cruise Control oder Autonomous Intelligent Cruise Control. Als markengeschützte Bezeichnungen sind Distronic und Automatische Distanz-Regelung (ADR) eingetragen.
NASA Technical Reports Server (NTRS)
Narendra, K. S.; Annaswamy, A. M.
1985-01-01
Several concepts and results in robust adaptive control are are discussed and is organized in three parts. The first part surveys existing algorithms. Different formulations of the problem and theoretical solutions that have been suggested are reviewed here. The second part contains new results related to the role of persistent excitation in robust adaptive systems and the use of hybrid control to improve robustness. In the third part promising new areas for future research are suggested which combine different approaches currently known.
Adaptive Decentralized Control
1985-04-01
computational requirements and response time provide strong incentives for the use of distributed control architectures. The basic focus of our research is on...ADCON (for Adaptive Decentralized CONtrol) comes from the following observations about the current status of control theory . An important aspect of...decentralized control of completely known systems still has many unresolved issues and some basic problems are yet to be answered. Under these conditions
Adaptive hierarchical fuzzy controller
Raju, G.V.S.; Jun Zhou
1993-07-01
A methodology for designing adaptive hierarchical fuzzy controllers is presented. In order to evaluate this concept, several suitable performance indices were developed and converted to linguistic fuzzy variables. Based on those variables, a supervisory fuzzy rule set was constructed and used to change the parameters of a hierarchical fuzzy controller to accommodate the variations of system parameters. The proposed algorithm was used in feedwater flow control to a steam generator. Simulation studies are presented that illustrate the effectiveness of the approach
Advances in Adaptive Control Methods
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2009-01-01
This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.
Adaptive sequential controller
El-Sharkawi, M.A.; Xing, J.; Butler, N.G.; Rodriguez, A.
1994-11-01
An adaptive sequential controller for controlling a circuit breaker or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer. 15 figs.
Adaptive sequential controller
El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso
1994-01-01
An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.
NASA Astrophysics Data System (ADS)
Reif, Konrad
Die adaptive Fahrgeschwindigkeitsregelung (ACC, Adaptive Cruise Control) ist eine Weiterentwicklung der konventionellen Fahrgeschwindigkeitsregelung, die eine konstante Fahrgeschwindigkeit einstellt. ACC überwacht mittels eines Radarsensors den Bereich vor dem Fahrzeug und passt die Geschwindigkeit den Gegebenheiten an. ACC reagiert auf langsamer vorausfahrende oder einscherende Fahrzeuge mit einer Reduzierung der Geschwindigkeit, sodass der vorgeschriebene Mindestabstand zum vorausfahrenden Fahrzeug nicht unterschritten wird. Hierzu greift ACC in Antrieb und Bremse ein. Sobald das vorausfahrende Fahrzeug beschleunigt oder die Spur verlässt, regelt ACC die Geschwindigkeit wieder auf die vorgegebene Sollgeschwindigkeit ein (Bild 1). ACC steht somit für eine Geschwindigkeitsregelung, die sich dem vorausfahrenden Verkehr anpasst.
Adaptive control for accelerators
Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.
1991-01-01
An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.
Adaptive nonlinear flight control
NASA Astrophysics Data System (ADS)
Rysdyk, Rolf Theoduor
1998-08-01
Research under supervision of Dr. Calise and Dr. Prasad at the Georgia Institute of Technology, School of Aerospace Engineering. has demonstrated the applicability of an adaptive controller architecture. The architecture successfully combines model inversion control with adaptive neural network (NN) compensation to cancel the inversion error. The tiltrotor aircraft provides a specifically interesting control design challenge. The tiltrotor aircraft is capable of converting from stable responsive fixed wing flight to unstable sluggish hover in helicopter configuration. It is desirable to provide the pilot with consistency in handling qualities through a conversion from fixed wing flight to hover. The linear model inversion architecture was adapted by providing frequency separation in the command filter and the error-dynamics, while not exiting the actuator modes. This design of the architecture provides for a model following setup with guaranteed performance. This in turn allowed for convenient implementation of guaranteed handling qualities. A rigorous proof of boundedness is presented making use of compact sets and the LaSalle-Yoshizawa theorem. The analysis allows for the addition of the e-modification which guarantees boundedness of the NN weights in the absence of persistent excitation. The controller is demonstrated on the Generic Tiltrotor Simulator of Bell-Textron and NASA Ames R.C. The model inversion implementation is robustified with respect to unmodeled input dynamics, by adding dynamic nonlinear damping. A proof of boundedness of signals in the system is included. The effectiveness of the robustification is also demonstrated on the XV-15 tiltrotor. The SHL Perceptron NN provides a more powerful application, based on the universal approximation property of this type of NN. The SHL NN based architecture is also robustified with the dynamic nonlinear damping. A proof of boundedness extends the SHL NN augmentation with robustness to unmodeled actuator
Advanced Adaptive Optics Control Techniques
1979-01-01
Optimal estimation and control methods for high energy laser adaptive optics systems are described. Three system types are examined: Active...the adaptive optics approaches and potential system implementations are recommended.
Adaptive hybrid control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.
Adaptive Control of Innate Immunity
Shanker, Anil
2010-01-01
1. Summary The mechanisms by which the immune system responds to an infection or disease depend on a complex interplay between the elements of innate and adaptive immunity. While most of the focus so far has been on the innate instruction of the adaptive immune responses, considerable evidence now suggests an equally important adaptive control of the innate immunity. Several studies yield new insights into how the adaptive immunity by initiating an antigen–specific response can compensate, suppress and activate innate responses at the site of tissue antigen. Here we discuss recent advances in our understanding of the adaptive control of immune effector functions in various pathological and physiological conditions. PMID:20394777
Adaptive control of linearizable systems
NASA Technical Reports Server (NTRS)
Sastry, S. Shankar; Isidori, Alberto
1989-01-01
Initial results are reported regarding the adaptive control of minimum-phase nonlinear systems which are exactly input-output linearizable by state feedback. Parameter adaptation is used as a technique to make robust the exact cancellation of nonlinear terms, which is called for in the linearization technique. The application of the adaptive technique to control of robot manipulators is discussed. Only the continuous-time case is considered; extensions to the discrete-time and sampled-data cases are not obvious.
Aircraft adaptive learning control
NASA Technical Reports Server (NTRS)
Lee, P. S. T.; Vanlandingham, H. F.
1979-01-01
The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.
Adaptive Control Of Remote Manipulator
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.
Nonlinear and adaptive control
NASA Technical Reports Server (NTRS)
Athans, Michael
1989-01-01
The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies.
Hybrid Adaptive Flight Control with Model Inversion Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2011-01-01
This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.
Adaptive and Nonlinear Control
1992-02-29
in [22], we also applied the concept of zero dynamics to the problem of exact linearization of a nonlinear control system by dynamic feedback. Exact ...nonlinear systems, although it was well-known that the conditions for exact linearization are very stringent and consequently do not apply to a broad...29th IEEE Conference n Decision and Control, Invited Paper delivered by Dr. Gilliam. Exact Linearization of Zero Dynamics, 29th IEEE Conference on
Robust Optimal Adaptive Control Method with Large Adaptive Gain
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
Adaptable state based control system
NASA Technical Reports Server (NTRS)
Rasmussen, Robert D. (Inventor); Dvorak, Daniel L. (Inventor); Gostelow, Kim P. (Inventor); Starbird, Thomas W. (Inventor); Gat, Erann (Inventor); Chien, Steve Ankuo (Inventor); Keller, Robert M. (Inventor)
2004-01-01
An autonomous controller, comprised of a state knowledge manager, a control executor, hardware proxies and a statistical estimator collaborates with a goal elaborator, with which it shares common models of the behavior of the system and the controller. The elaborator uses the common models to generate from temporally indeterminate sets of goals, executable goals to be executed by the controller. The controller may be updated to operate in a different system or environment than that for which it was originally designed by the replacement of shared statistical models and by the instantiation of a new set of state variable objects derived from a state variable class. The adaptation of the controller does not require substantial modification of the goal elaborator for its application to the new system or environment.
Direct Adaptive Control Of An Industrial Robot
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Lee, Thomas; Delpech, Michel
1992-01-01
Decentralized direct adaptive control scheme for six-jointed industrial robot eliminates part of overall computational burden imposed by centralized controller and degrades performance of robot by reducing sampling rate. Control and controller-adaptation laws based on observed performance of manipulator: no need to model dynamics of robot. Adaptive controllers cope with uncertainties and variations in robot and payload.
Adaptive controller for hyperthermia robot
Kress, R.L.
1997-03-01
This paper describes the development of an adaptive computer control routine for a robotically, deployed focused, ultrasonic hyperthermia cancer treatment system. The control algorithm developed herein uses physiological models of a tumor and the surrounding healthy tissue regions and transient temperature data to estimate the treatment region`s blood perfusion. This estimate is used to vary the specific power profile of a scanned, focused ultrasonic transducer to achieve a temperature distribution as close as possible to an optimal temperature distribution. The controller is evaluated using simulations of diseased tissue and using limited experiments on a scanned, focused ultrasonic treatment system that employs a 5-Degree-of-Freedom (D.O.F.) robot to scan the treatment transducers over a simulated patient. Results of the simulations and experiments indicate that the adaptive control routine improves the temperature distribution over standard classical control algorithms if good (although not exact) knowledge of the treated region is available. Although developed with a scanned, focused ultrasonic robotic treatment system in mind, the control algorithm is applicable to any system with the capability to vary specific power as a function of volume and having an unknown distributed energy sink proportional to temperature elevation (e.g., other robotically deployed hyperthermia treatment methods using different heating modalities).
Digital adaptive flight controller development
NASA Technical Reports Server (NTRS)
Kaufman, H.; Alag, G.; Berry, P.; Kotob, S.
1974-01-01
A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Two designs are described for an example aircraft. Each of these designs uses a weighted least squares procedure to identify parameters defining the dynamics of the aircraft. The two designs differ in the way in which control law parameters are determined. One uses the solution of an optimal linear regulator problem to determine these parameters while the other uses a procedure called single stage optimization. Extensive simulation results and analysis leading to the designs are presented.
TWO PAPERS ON ADAPTIVE INVENTORY CONTROL.
INVENTORY CONTROL , ADAPTIVE SYSTEMS), (*DYNAMIC PROGRAMMING, INVENTORY CONTROL ), OPTIMIZATION, COSTS, RANDOM VARIABLES, SAMPLING, MATHEMATICAL PREDICTION, INVENTORY CONTROL , STOCHASTIC PROCESSES, DECISION THEORY
Adaptive Force Control in Compliant Motion
NASA Technical Reports Server (NTRS)
Seraji, H.
1994-01-01
This paper addresses the problem of controlling a manipulator in compliant motion while in contact with an environment having an unknown stiffness. Two classes of solutions are discussed: adaptive admittance control and adaptive compliance control. In both admittance and compliance control schemes, compensator adaptation is used to ensure a stable and uniform system performance.
Keck adaptive optics: control subsystem
Brase, J.M.; An, J.; Avicola, K.
1996-03-08
Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval for the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.
Adaptive Controller Effects on Pilot Behavior
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.
2014-01-01
Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.
Rate-dependent extensional "dynamic ligaments" using shear thickening fluids
NASA Astrophysics Data System (ADS)
Nenno, Paul T.; Wetzel, Eric D.
2014-04-01
A novel "dynamic ligament" smart material that exhibits a strongly rate-dependent response in extension is developed and characterized. The devices, based on elastomeric polymers and shear thickening fluids, exhibit low resistance to extension at rates below 10 mm/s, but when stretched at 100 mm/s or higher resist with up to 7 × higher force. A link between the shear thickening fluid's rheology and the dynamic ligament's tensile performance is presented to explain the rate-dependent response. Future recommendations for improving device performance are presented, along with a host of different potential application areas including safety equipment, adaptive braces, sporting goods, and military equipment.
Adaptive-feedback control algorithm.
Huang, Debin
2006-06-01
This paper is motivated by giving the detailed proofs and some interesting remarks on the results the author obtained in a series of papers [Phys. Rev. Lett. 93, 214101 (2004); Phys. Rev. E 71, 037203 (2005); 69, 067201 (2004)], where an adaptive-feedback algorithm was proposed to effectively stabilize and synchronize chaotic systems. This note proves in detail the strictness of this algorithm from the viewpoint of mathematics, and gives some interesting remarks for its potential applications to chaos control & synchronization. In addition, a significant comment on synchronization-based parameter estimation is given, which shows some techniques proposed in literature less strict and ineffective in some cases.
Adaptive Flight Control for Aircraft Safety Enhancements
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Gregory, Irene M.; Joshi, Suresh M.
2008-01-01
This poster presents the current adaptive control research being conducted at NASA ARC and LaRC in support of the Integrated Resilient Aircraft Control (IRAC) project. The technique "Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control" has been developed at NASA ARC to address the needs for stability margin metrics for adaptive control that potentially enables future V&V of adaptive systems. The technique "Direct Adaptive Control With Unknown Actuator Failures" is developed at NASA LaRC to deal with unknown actuator failures. The technique "Adaptive Control with Adaptive Pilot Element" is being researched at NASA LaRC to investigate the effects of pilot interactions with adaptive flight control that can have implications of stability and performance.
Predictor-Based Model Reference Adaptive Control
NASA Technical Reports Server (NTRS)
Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.
2010-01-01
This paper is devoted to the design and analysis of a predictor-based model reference adaptive control. Stable adaptive laws are derived using Lyapunov framework. The proposed architecture is compared with the now classical model reference adaptive control. A simulation example is presented in which numerical evidence indicates that the proposed controller yields improved transient characteristics.
Dual-arm manipulators with adaptive control
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1991-01-01
The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws.
Flexible beam control using an adaptive truss
NASA Technical Reports Server (NTRS)
Warrington, Thomas J.; Horner, C. Garnett
1990-01-01
To demonstrate the feasibility of adaptive trusses for vibration suppression, a 12-ft-long beam is attached to a single cell of an adaptive truss which has three active battens. With the base of the adaptive truss attached to the laboratory frame, the measured strain of the vibrating beam shows the adaptive truss to be very effective in suppressing vibration when subjected to initial conditions. Control is accomplished by a PC/XT computer that implements an LQR-designed control law.
Statistical Physics for Adaptive Distributed Control
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2005-01-01
A viewgraph presentation on statistical physics for distributed adaptive control is shown. The topics include: 1) The Golden Rule; 2) Advantages; 3) Roadmap; 4) What is Distributed Control? 5) Review of Information Theory; 6) Iterative Distributed Control; 7) Minimizing L(q) Via Gradient Descent; and 8) Adaptive Distributed Control.
Flight Test Approach to Adaptive Control Research
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
Adaptive, predictive controller for optimal process control
Brown, S.K.; Baum, C.C.; Bowling, P.S.; Buescher, K.L.; Hanagandi, V.M.; Hinde, R.F. Jr.; Jones, R.D.; Parkinson, W.J.
1995-12-01
One can derive a model for use in a Model Predictive Controller (MPC) from first principles or from experimental data. Until recently, both methods failed for all but the simplest processes. First principles are almost always incomplete and fitting to experimental data fails for dimensions greater than one as well as for non-linear cases. Several authors have suggested the use of a neural network to fit the experimental data to a multi-dimensional and/or non-linear model. Most networks, however, use simple sigmoid functions and backpropagation for fitting. Training of these networks generally requires large amounts of data and, consequently, very long training times. In 1993 we reported on the tuning and optimization of a negative ion source using a special neural network[2]. One of the properties of this network (CNLSnet), a modified radial basis function network, is that it is able to fit data with few basis functions. Another is that its training is linear resulting in guaranteed convergence and rapid training. We found the training to be rapid enough to support real-time control. This work has been extended to incorporate this network into an MPC using the model built by the network for predictive control. This controller has shown some remarkable capabilities in such non-linear applications as continuous stirred exothermic tank reactors and high-purity fractional distillation columns[3]. The controller is able not only to build an appropriate model from operating data but also to thin the network continuously so that the model adapts to changing plant conditions. The controller is discussed as well as its possible use in various of the difficult control problems that face this community.
Adaptive Control: Actual Status and Trends
NASA Technical Reports Server (NTRS)
Landau, I. D.
1985-01-01
Important progress in research and application of Adaptive Control Systems has been achieved in the last ten years. The techniques which are currently used in applications will be reviewed. Theoretical aspects currently under investigation and which are related to the application of adaptive control techniques in various fields will be briefly discussed. Applications in various areas will be briefly reviewed. The use of adaptive techniques for vibrations monitoring and active vibration control will be emphasized.
Research in digital adaptive flight controllers
NASA Technical Reports Server (NTRS)
Kaufman, H.
1976-01-01
A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.
Adaptive Control Techniques for Large Space Structures
1987-12-23
mission objectives. In particular, uncertainties in both system dynamics and disturbance spectra characterizations (both time varying and stochastic... uncertainty ) significantly limit the performance attainable with fixed gain, fixed architecture controls. Therefore, the use of an adaptive system , where...Theoretical Development: The initial emphasis has been on slow adaptation, since this covers may LSS situations. Later on we will examine fast adaptation. The
Adaptive Controller Adaptation Time and Available Control Authority Effects on Piloting
NASA Technical Reports Server (NTRS)
Trujillo, Anna; Gregory, Irene
2013-01-01
Adaptive control is considered for highly uncertain, and potentially unpredictable, flight dynamics characteristic of adverse conditions. This experiment looked at how adaptive controller adaptation time to recover nominal aircraft dynamics affects pilots and how pilots want information about available control authority transmitted. Results indicate that an adaptive controller that takes three seconds to adapt helped pilots when looking at lateral and longitudinal errors. The controllability ratings improved with the adaptive controller, again the most for the three seconds adaptation time while workload decreased with the adaptive controller. The effects of the displays showing the percentage amount of available safe flight envelope used in the maneuver were dominated by the adaptation time. With the displays, the altitude error increased, controllability slightly decreased, and mental demand increased. Therefore, the displays did require some of the subjects resources but these negatives may be outweighed by pilots having more situation awareness of their aircraft.
Principles And Applications Of Dual Adaptive Control
NASA Technical Reports Server (NTRS)
Mookerjee, Purusottam
1990-01-01
Simulations indicate superiority of dual controller over "cautious" controller. Report discusses principles of design of actively adaptive dual controllers. Focus is upon derivation of control laws for dual controller enhancing identification of parameters of mathematical model of multiple-input/multiple-output system, while controlling it at same time. Tasks of identification and control impose competing requirements.
Adaptive control: Myths and realities
NASA Technical Reports Server (NTRS)
Athans, M.; Valavani, L.
1984-01-01
It was found that all currently existing globally stable adaptive algorithms have three basic properties in common: positive realness of the error equation, square-integrability of the parameter adjustment law and, need for sufficient excitation for asymptotic parameter convergence. Of the three, the first property is of primary importance since it satisfies a sufficient condition for stabillity of the overall system, which is a baseline design objective. The second property has been instrumental in the proof of asymptotic error convergence to zero, while the third addresses the issue of parameter convergence. Positive-real error dynamics can be generated only if the relative degree (excess of poles over zeroes) of the process to be controlled is known exactly; this, in turn, implies perfect modeling. This and other assumptions, such as absence of nonminimum phase plant zeros on which the mathematical arguments are based, do not necessarily reflect properties of real systems. As a result, it is natural to inquire what happens to the designs under less than ideal assumptions. The issues arising from violation of the exact modeling assumption which is extremely restrictive in practice and impacts the most important system property, stability, are discussed.
Adaptive control based on retrospective cost optimization
NASA Astrophysics Data System (ADS)
Santillo, Mario A.
This dissertation studies adaptive control of multi-input, multi-output, linear, time-invariant, discrete-time systems that are possibly unstable and nonminimum phase. We consider both gradient-based adaptive control as well as retrospective-cost-based adaptive control. Retrospective cost optimization is a measure of performance at the current time based on a past window of data and without assumptions about the command or disturbance signals. In particular, retrospective cost optimization acts as an inner loop to the adaptive control algorithm by modifying the performance variables based on the difference between the actual past control inputs and the recomputed past control inputs based on the current control law. We develop adaptive control algorithms that are effective for systems that are nonminimum phase. We consider discrete-time adaptive control since these control laws can be implemented directly in embedded code without requiring an intermediate discretization step. Furthermore, the adaptive controllers in this dissertation are developed under minimal modeling assumptions. In particular, the adaptive controllers require knowledge of the sign of the high-frequency gain and a sufficient number of Markov parameters to approximate the nonminimum-phase zeros (if any). No additional modeling information is necessary. The adaptive controllers presented in this dissertation are developed for full-state-feedback stabilization, static-output-feedback stabilization, as well as dynamic compensation for stabilization, command following, disturbance rejection, and model reference adaptive control. Lyapunov-based stability and convergence proofs are provided for special cases. We present numerical examples to illustrate the algorithms' effectiveness in handling systems that are unstable and/or nonminimum phase and to provide insight into the modeling information required for controller implementation.
Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Heart rate dependency of JT interval sections.
Hnatkova, Katerina; Johannesen, Lars; Vicente, Jose; Malik, Marek
2017-08-09
Little experience exists with the heart rate correction of J-Tpeak and Tpeak-Tend intervals. In a population of 176 female and 176 male healthy subjects aged 32.3±9.8 and 33.1±8.4years, respectively, curve-linear and linear relationship to heart rate was investigated for different sections of the JT interval defined by the proportions of the area under the vector magnitude of the reconstructed 3D vectorcardiographic loop. The duration of the JT sub-section between approximately just before the T peak and almost the T end was found heart rate independent. Most of the JT heart rate dependency relates to the beginning of the interval. The duration of the terminal T wave tail is only weakly heart rate dependent. The Tpeak-Tend is only minimally heart rate dependent and in studies not showing substantial heart rate changes does not need to be heart rate corrected. For any correction formula that has linear additive properties, heart rate correction of JT and JTpeak intervals is practically the same as of the QT interval. However, this does not apply to the formulas in the form of Int/RR(a) since they do not have linear additive properties. Copyright © 2017 Elsevier Inc. All rights reserved.
Rate-dependent spallation properties of tantalum
Johnson, J.N.; Hixson, R.S.; Tonks, D.L.; Zurek, A.K.
1995-09-01
Spallation experiments are conducted on high-purity tantalum using VISAR instrumentation for impact stresses of 9.5 GPa and 6.0 GPa. The high-amplitude experiment exhibits very rapid initial spall separation, while the low-amplitude shot is only slightly above the threshold for void growth and thus exhibits distinct rate-dependent spallation behavior. These experiments are analyzed in terms of simple tensile fracture criteria, a standard rate-dependent void-growth model, and a rate-dependent void growth model in which the expected plastic volume strain makes no contribution to the relaxation of the mean stress. Recovery tests and VISAR measurements suggest an additional resistance to spallation that follows the rapid coalescence of voids; this effect is termed the secondary spall resistance and is due to the convoluted nature of the spall plane and the resulting interlocking fracture pattern that is developed and for which the stress remains unrelieved until the spall planes have separated several hundred microns.
NASA Astrophysics Data System (ADS)
Wang, Wan-ting; Guo, Jin; Fang, Chu; Jiang, Zhen-hua; Wang, Ting-feng
2016-11-01
To solve the rate-dependent hysteresis compensation problem in fast steering mirror (FSM) systems, an improved Prandtl-Ishlinskii (P-I) model is proposed in this paper. The proposed model is formulated by employing a linear density function into the STOP operator. By this way, the proposed model has a relatively simple mathematic format, which can be applied to compensate the rate-dependent hysteresis directly. Adaptive differential evolution algorithm is utilized to obtain the accurate parameters of the proposed model. A fast steering mirror control system is established to demonstrate the validity and feasibility of the improved P-I model. Comparative experiments with different input signals are performed and analyzed, and the results show that the proposed model not only suppresses the rate-dependent hysteresis effectively, but also obtains high tracking precision.
Predictor-Based Model Reference Adaptive Control
NASA Technical Reports Server (NTRS)
Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.
2009-01-01
This paper is devoted to robust, Predictor-based Model Reference Adaptive Control (PMRAC) design. The proposed adaptive system is compared with the now-classical Model Reference Adaptive Control (MRAC) architecture. Simulation examples are presented. Numerical evidence indicates that the proposed PMRAC tracking architecture has better than MRAC transient characteristics. In this paper, we presented a state-predictor based direct adaptive tracking design methodology for multi-input dynamical systems, with partially known dynamics. Efficiency of the design was demonstrated using short period dynamics of an aircraft. Formal proof of the reported PMRAC benefits constitute future research and will be reported elsewhere.
Rate dependent constitutive behavior of dielectric elastomers and applications in legged robotics
NASA Astrophysics Data System (ADS)
Oates, William; Miles, Paul; Gao, Wei; Clark, Jonathan; Mashayekhi, Somayeh; Hussaini, M. Yousuff
2017-04-01
Dielectric elastomers exhibit novel electromechanical coupling that has been exploited in many adaptive structure applications. Whereas the quasi-static, one-dimensional constitutive behavior can often be accurately quantified by hyperelastic functions and linear dielectric relations, accurate predictions of electromechanical, rate-dependent deformation during multiaxial loading is non-trivial. In this paper, an overview of multiaxial electromechanical membrane finite element modeling is formulated. Viscoelastic constitutive relations are extended to include fractional order. It is shown that fractional order viscoelastic constitutive relations are superior to conventional integer order models. This knowledge is critical for transition to control of legged robotic structures that exhibit advanced mobility.
Flight Approach to Adaptive Control Research
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
Flight Approach to Adaptive Control Research
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
Li, Wei; Yu, Ying; Hou, Jian-Wen; Zhou, Zhi-Wen; Guo, Kai; Zhang, Peng-Pai; Wang, Zhi-Quan; Yan, Jian-Hua; Sun, Jian; Zhou, Qing; Wang, Yue-Peng; Li, Yi-Gang
2017-03-01
Purkinje cells (PCs) have a steeper rate dependence of repolarization and are more susceptible to arrhythmic activity than do ventricular myocytes (VMs). Late sodium current (INaL) is rate dependent and contributes to rate dependence of repolarization. This study sought to test our hypothesis that PCs have a larger rate dependence of INaL, contributing to their steeper rate dependence of repolarization and higher susceptibility to arrhythmic activity, than do VMs. INaL was recorded in isolated rabbit PCs and VMs with the whole-cell patch clamp technique. Action potential was examined using the microelectrode technique. Compared with VMs, PCs exhibited a significantly larger rate dependence of INaL with a larger INaL to basic cycle length (BCL) slope. Moreover, PCs had a larger rate dependence of INaL decay and slower recovery kinetics. Interestingly, the larger rate dependence of INaL matched to a steeper rate dependence of action potential duration (APD) in PCs. The INaL blocker tetrodotoxin significantly blunted, while the INaL enhancer anemone toxin (ATX-II) significantly increased, the rate dependence of INaL and APD in PCs and VMs. In the presence of ATX-II, the rate dependence of INaL in PCs was markedly larger than that in VMs, causing a much steeper rate dependence of APD in PCs. Accordingly, PCs exhibited greater rate-dependent electrical instability and were more prone to ATX-II-induced early afterdepolarizations, which were completely inhibited by the INaL inhibitor ranolazine. PCs have a significantly larger rate dependence of INaL than do VMs because of distinctive INaL decay and recovery kinetics, which contributes to their larger rate adaptation, and simultaneously predisposes them to a higher risk of arrhythmogenesis. Copyright Â© 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
The adaptive control system of acetylene generator
NASA Astrophysics Data System (ADS)
Kovaliuk, D. O.; Kovaliuk, Oleg; Burlibay, Aron; Gromaszek, Konrad
2015-12-01
The method of acetylene production in acetylene generator was analyzed. It was found that impossible to provide the desired process characteristics by the PID-controller. The adaptive control system of acetylene generator was developed. The proposed system combines the classic controller and fuzzy subsystem for controller parameters tuning.
Wireless Control of an LC Adaptive Lens
NASA Astrophysics Data System (ADS)
Vdovin, G.; Loktev, M.; Zhang, X.
We consider using liquid crystal adaptive lenses to correct the accommodation loss and higher-order aberrations of the human eye. In this configuration, the adaptive lens is embedded into the eye lens implant and can be controlled through a wireless inductive link. In this work we experimentally demonstrate a wireless control of a liquid crystal adaptive lens in a wide range of its focusing power by using two coupled coils with the primary coil driven from a low-voltage source through a switching control circuit and the secondary coil used to drive the lens.
Chaotic satellite attitude control by adaptive approach
NASA Astrophysics Data System (ADS)
Wei, Wei; Wang, Jing; Zuo, Min; Liu, Zaiwen; Du, Junping
2014-06-01
In this article, chaos control of satellite attitude motion is considered. Adaptive control based on dynamic compensation is utilised to suppress the chaotic behaviour. Control approaches with three control inputs and with only one control input are proposed. Since the adaptive control employed is based on dynamic compensation, faithful model of the system is of no necessity. Sinusoidal disturbance and parameter uncertainties are considered to evaluate the robustness of the closed-loop system. Both of the approaches are confirmed by theoretical and numerical results.
Adaptive nonlinear control for autonomous ground vehicles
NASA Astrophysics Data System (ADS)
Black, William S.
We present the background and motivation for ground vehicle autonomy, and focus on uses for space-exploration. Using a simple design example of an autonomous ground vehicle we derive the equations of motion. After providing the mathematical background for nonlinear systems and control we present two common methods for exactly linearizing nonlinear systems, feedback linearization and backstepping. We use these in combination with three adaptive control methods: model reference adaptive control, adaptive sliding mode control, and extremum-seeking model reference adaptive control. We show the performances of each combination through several simulation results. We then consider disturbances in the system, and design nonlinear disturbance observers for both single-input-single-output and multi-input-multi-output systems. Finally, we show the performance of these observers with simulation results.
Adaptive Flight Control Research at NASA
NASA Technical Reports Server (NTRS)
Motter, Mark A.
2008-01-01
A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.
Adaptive control for payload launch vibration isolation
NASA Astrophysics Data System (ADS)
Jarosh, Julian R.; Agnes, Gregory S.; Karahalis, Gregory G.
2001-07-01
The Department of Defense has identified launch vibration isolation as a major research interest. Reducing the loads a satellite experiences during launch will greatly enhance the reliability and lifetime and decrease the payload structural mass. DoD space programs stand to benefit significantly from advances in vibration isolation technology. This study explores potential hybrid vibration isolation using adaptive control with a passive isolator. Lyapunov analysis is used to develop the structural adaptive control scheme. Simulink and Matlab simulations investigate these control methodologies on a lumped mass dynamic model of a satellite and its representative launch vehicle. The results are compared to Proportional-Integral-Derivative (PID) control and skyhook damper active control methods. The results of the modeling indicate adaptive control achieves up to a 90 percent reduction in loads on the payload when compared to the conventional active control methods. The adaptive controller compensated for the loads being transmitted to the payload from the rest of the launch vehicle. The current adaptive controller was not able to effectively control the motion of a vibrating subcomponent within the payload or the subcomponent's effect on the overall payload itself.
Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent
2016-05-17
Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Decentralized digital adaptive control of robot motion
NASA Technical Reports Server (NTRS)
Tarokh, M.
1990-01-01
A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.
On Fractional Model Reference Adaptive Control
Shi, Bao; Dong, Chao
2014-01-01
This paper extends the conventional Model Reference Adaptive Control systems to fractional ones based on the theory of fractional calculus. A control law and an incommensurate fractional adaptation law are designed for the fractional plant and the fractional reference model. The stability and tracking convergence are analyzed using the frequency distributed fractional integrator model and Lyapunov theory. Moreover, numerical simulations of both linear and nonlinear systems are performed to exhibit the viability and effectiveness of the proposed methodology. PMID:24574897
Adaptive control of closed-circuit anesthesia.
Vishnoi, R; Roy, R J
1991-01-01
Closed-circuit anesthesia (CCA) is more economical and ecologically safer than open circuit anesthesia. However, gas concentrations are more difficult to control. Computer control of CCA has been proposed to facilitate its use. Past efforts have either been limited to the control of anesthetic gas concentrations or apply only to a small group of patients. This paper describes a comprehensive control system applicable to a large class of patients. This system controls the end-tidal oxygen and anesthetic gas concentrations, and the circuit volume. The CCA process was modeled by writing mass balance equations. Simplifying assumptions yielded a bilinear single-input-single-output model for the anesthetic gas concentration and a bilinear multiple-input-multiple-output model for the circuit volume and oxygen concentration. One-step-ahead controllers were used to control these two subsystems. Simulations showed that the control performance was most sensitive to the gas uptakes. Three independent, least-mean-squares estimation schemes were implemented to estimate the uptakes of oxygen, nitrous oxide, and anesthetic gas. These estimates were used in the control law and resulted in explicit adaptive control. The performance of the adaptive controller was compared to that of a fixed controller (with precalculated gas uptakes) in five animal experiments. The adaptive controller performed better than the fixed controller in all cases. The most significant difference was in the anesthetic gas response time 3.6 +/- 0.70 min for adaptive control and 7.04 +/- 5.62 min for fixed control. The adaptive controller was also robust with respect to variations in the system parameters such as the functional residual capacity, leak, deadspace and gas uptakes.(ABSTRACT TRUNCATED AT 250 WORDS)
Adaptive Control for Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.
2005-01-01
Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.
An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan
2008-01-01
This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.
Intelligent Engine Systems: Adaptive Control
NASA Technical Reports Server (NTRS)
Gibson, Nathan
2008-01-01
We have studied the application of the baseline Model Predictive Control (MPC) algorithm to the control of main fuel flow rate (WF36), variable bleed valve (AE24) and variable stator vane (STP25) control of a simulated high-bypass turbofan engine. Using reference trajectories for thrust and turbine inlet temperature (T41) generated by a simulated new engine, we have examined MPC for tracking these two reference outputs while controlling a deteriorated engine. We have examined the results of MPC control for six different transients: two idle-to-takeoff transients at sea level static (SLS) conditions, one takeoff-to-idle transient at SLS, a Bode power command and reverse Bode power command at 20,000 ft/Mach 0.5, and a reverse Bode transient at 35,000 ft/Mach 0.84. For all cases, our primary focus was on the computational effort required by MPC for varying MPC update rates, control horizons, and prediction horizons. We have also considered the effects of these MPC parameters on the performance of the control, with special emphasis on the thrust tracking error, the peak T41, and the sizes of violations of the constraints on the problem, primarily the booster stall margin limit, which for most cases is the lone constraint that is violated with any frequency.
Adaptive Inner-Loop Rover Control
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh; Ippolito, Corey; Krishnakumar, Kalmanje; Al-Ali, Khalid M.
2006-01-01
Adaptive control technology is developed for the inner-loop speed and steering control of the MAX Rover. MAX, a CMU developed rover, is a compact low-cost 4-wheel drive, 4-wheel steer (double Ackerman), high-clearance agile durable chassis, outfitted with sensors and electronics that make it ideally suited for supporting research relevant to intelligent teleoperation and as a low-cost autonomous robotic test bed and appliance. The design consists of a feedback linearization based controller with a proportional - integral (PI) feedback that is augmented by an online adaptive neural network. The adaptation law has guaranteed stability properties for safe operation. The control design is retrofit in nature so that it fits inside the outer-loop path planning algorithms. Successful hardware implementation of the controller is illustrated for several scenarios consisting of actuator failures and modeling errors in the nominal design.
Full Gradient Solution to Adaptive Hybrid Control
NASA Technical Reports Server (NTRS)
Bean, Jacob; Schiller, Noah H.; Fuller, Chris
2016-01-01
This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered-reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.
Full Gradient Solution to Adaptive Hybrid Control
NASA Technical Reports Server (NTRS)
Bean, Jacob; Schiller, Noah H.; Fuller, Chris
2017-01-01
This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.
Adaptive Control Strategies for Flexible Robotic Arm
NASA Technical Reports Server (NTRS)
Bialasiewicz, Jan T.
1996-01-01
The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.
Direct adaptive impedance control of manipulators
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Seraji, H.; Glass, K.
1991-01-01
An adaptive scheme for controlling the end-effector impedance of robot manipulators is presented. The proposed control system consists of three subsystems: a simple filter which characterizes the desired dynamic relationship between the end-effector position error and the end-effector/environment contact force, an adaptive controller which produces the Cartesian-space control input required to provide this desired dynamic relationship, and an algorithm for mapping the Cartesian-space control input to a physically realizable joint-space control torque. The controller does not require knowledge of either the structure or the parameter values of the robot dynamics, and it is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme represents a very general and computationally efficient approach to controlling the impedance of both nonredundant and redundant manipulators. Furthermore, the method can be applied directly to trajectory tracking in free-space motion by removing the impedance filter.
Maritime Adaptive Optics Beam Control
2010-09-01
mantis shrimp for getting me through the home stretch. To all my advisors, mentors, friends, and family—you have my eternal gratitude for helping...the RLS algorithm does in fact converge faster than the LMS algorithm, yet at the same time the LMS algorithm can control significantly better during
Language control in bilinguals: The adaptive control hypothesis.
Green, David W; Abutalebi, Jubin
2013-08-01
Speech comprehension and production are governed by control processes. We explore their nature and dynamics in bilingual speakers with a focus on speech production. Prior research indicates that individuals increase cognitive control in order to achieve a desired goal. In the adaptive control hypothesis we propose a stronger hypothesis: Language control processes themselves adapt to the recurrent demands placed on them by the interactional context. Adapting a control process means changing a parameter or parameters about the way it works (its neural capacity or efficiency) or the way it works in concert, or in cascade, with other control processes (e.g., its connectedness). We distinguish eight control processes (goal maintenance, conflict monitoring, interference suppression, salient cue detection, selective response inhibition, task disengagement, task engagement, opportunistic planning). We consider the demands on these processes imposed by three interactional contexts (single language, dual language, and dense code-switching). We predict adaptive changes in the neural regions and circuits associated with specific control processes. A dual-language context, for example, is predicted to lead to the adaptation of a circuit mediating a cascade of control processes that circumvents a control dilemma. Effective test of the adaptive control hypothesis requires behavioural and neuroimaging work that assesses language control in a range of tasks within the same individual.
Language control in bilinguals: The adaptive control hypothesis
Abutalebi, Jubin
2013-01-01
Speech comprehension and production are governed by control processes. We explore their nature and dynamics in bilingual speakers with a focus on speech production. Prior research indicates that individuals increase cognitive control in order to achieve a desired goal. In the adaptive control hypothesis we propose a stronger hypothesis: Language control processes themselves adapt to the recurrent demands placed on them by the interactional context. Adapting a control process means changing a parameter or parameters about the way it works (its neural capacity or efficiency) or the way it works in concert, or in cascade, with other control processes (e.g., its connectedness). We distinguish eight control processes (goal maintenance, conflict monitoring, interference suppression, salient cue detection, selective response inhibition, task disengagement, task engagement, opportunistic planning). We consider the demands on these processes imposed by three interactional contexts (single language, dual language, and dense code-switching). We predict adaptive changes in the neural regions and circuits associated with specific control processes. A dual-language context, for example, is predicted to lead to the adaptation of a circuit mediating a cascade of control processes that circumvents a control dilemma. Effective test of the adaptive control hypothesis requires behavioural and neuroimaging work that assesses language control in a range of tasks within the same individual. PMID:25077013
An adaptive pattern based nonlinear PID controller.
Segovia, Juan Pablo; Sbarbaro, Daniel; Ceballos, Eric
2004-04-01
This paper presents a nonlinear proportional-integral-derivative (PID) controller, combining a pattern based adaptive algorithm to cope with the problem of tuning the controller, and an associative memory to store the parameters, according to different operating conditions. The simplicity of the algorithm enables its implementation in current programmable logic controller technology. Several real-time experiments, carried out in a pressurized tank, illustrate the performance of the proposed controller.
Adaptive Modal Identification for Flutter Suppression Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.
2016-01-01
In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.
Adaptive Control Of Large Vibrating, Rotating Structures
NASA Technical Reports Server (NTRS)
Bayard, David S.
1991-01-01
Globally convergent theoretical method provides for adaptive set-point control of orientation of, along with suppression of the vibrations of, large structure. Method utilizes inherent passivity properties of structure to attain mathematical condition essential to adaptive convergence on commanded set point. Maintains stability and convergence in presence of errors in mathematical model of dynamics of structure and actuators. Developed for controlling attitudes of large, somewhat flexible spacecraft, also useful in such terrestrial applications as controlling movable bridges or suppressing earthquake vibrations in bridges, buildings, and other large structures.
Dual adaptive control: Design principles and applications
NASA Technical Reports Server (NTRS)
Mookerjee, Purusottam
1988-01-01
The design of an actively adaptive dual controller based on an approximation of the stochastic dynamic programming equation for a multi-step horizon is presented. A dual controller that can enhance identification of the system while controlling it at the same time is derived for multi-dimensional problems. This dual controller uses sensitivity functions of the expected future cost with respect to the parameter uncertainties. A passively adaptive cautious controller and the actively adaptive dual controller are examined. In many instances, the cautious controller is seen to turn off while the latter avoids the turn-off of the control and the slow convergence of the parameter estimates, characteristic of the cautious controller. The algorithms have been applied to a multi-variable static model which represents a simplified linear version of the relationship between the vibration output and the higher harmonic control input for a helicopter. Monte Carlo comparisons based on parametric and nonparametric statistical analysis indicate the superiority of the dual controller over the baseline controller.
Adaptive Process Control in Rubber Industry.
Brause, Rüdiger W; Pietruschka, Ulf
1998-01-01
This paper describes the problems and an adaptive solution for process control in rubber industry. We show that the human and economical benefits of an adaptive solution for the approximation of process parameters are very attractive. The modeling of the industrial problem is done by the means of artificial neural networks. For the example of the extrusion of a rubber profile in tire production our method shows good resuits even using only a few training samples.
Robust Adaptive Control of Multivariable Nonlinear Systems
2008-11-01
of time-delay margins for unmanned unstable tailless aircraft and aerial refueling autopilot design3, development of vision-based guidance laws...An Adaptive Approach to Nonaffine Control Design for Aircraft Applications, AIAA Journal of Guidance, Control and Dynamics, vol. 18, No. 6, pp. 1770
Adaptive Neural Network Controller for ATM Traffic
1996-12-01
IEEE Communications Magazine (October 1995). 2. Baum, Eric B...Adaptive Control in ATM Networks," IEEE Communications Magazine (October 1995). 9. Evanowsky, John B. "Information for the Warrior," IEEE Communications Magazine (October...Network Applications in ATM," IEEE Communications Magazine (October 1995). 78 16. Imrich, et al. "A counter based congestion control for ATM
Multiprocessor Adaptive Control Of A Dynamic System
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Hyland, David C.
1995-01-01
Architecture for fully autonomous digital electronic control system developed for use in identification and adaptive control of dynamic system. Architecture modular and hierarchical. Combines relatively simple, standardized processing units into complex parallel-processing subsystems. Although architecture based on neural-network concept, processing units themselves not neural networks; processing units implemented by programming of currently available microprocessors.
Simulation analysis of adaptive cruise prediction control
NASA Astrophysics Data System (ADS)
Zhang, Li; Cui, Sheng Min
2017-09-01
Predictive control is suitable for multi-variable and multi-constraint system control.In order to discuss the effect of predictive control on the vehicle longitudinal motion, this paper establishes the expected spacing model by combining variable pitch spacing and the of safety distance strategy. The model predictive control theory and the optimization method based on secondary planning are designed to obtain and track the best expected acceleration trajectory quickly. Simulation models are established including predictive and adaptive fuzzy control. Simulation results show that predictive control can realize the basic function of the system while ensuring the safety. The application of predictive and fuzzy adaptive algorithm in cruise condition indicates that the predictive control effect is better.
Adaptive control design for hysteretic smart systems
NASA Astrophysics Data System (ADS)
Fan, Xiang; Smith, Ralph C.
2009-03-01
Ferroelectric and ferromagnetic actuators are being considered for a range of industrial, aerospace, aeronautic and biomedical applications due to their unique transduction capabilities. However, they also exhibit hysteretic and nonlinear behavior that must be accommodated in models and control designs. If uncompensated, these effects can yield reduced system performance and, in the worst case, can produce unpredictable behavior of the control system. One technique for control design is to approximately linearize the actuator dynamics using an adaptive inverse compensator that is also able to accommodate model uncertainties and error introduced by the inverse algorithm. This paper describes the design of an adaptive inverse control technique based on the homogenized energy model for hysteresis. The resulting inverse filter is incorporated in an L1 control theory to provide a robust control algorithm capable of providing high speed, high accuracy tracking in the presence of actuator hysteresis and nonlinearities. Properties of the control design are illustrated through numerical examples.
Adaptive neural control of aeroelastic response
NASA Astrophysics Data System (ADS)
Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.
1996-05-01
The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.
Adaptive neural control of spacecraft using control moment gyros
NASA Astrophysics Data System (ADS)
Leeghim, Henzeh; Kim, Donghoon
2015-03-01
An adaptive control technique is applied to reorient spacecraft with uncertainty using control moment gyros. A nonlinear quaternion feedback law is chosen as a baseline controller. An additional adaptive control input supported by neural networks can estimate and eliminate unknown terms adaptively. The normalized input neural networks are considered for reliable computation of the adaptive input. To prove the stability of the closed-loop dynamics with the control law, the Lyapunov stability theory is considered. Accordingly, the proposed approach results in the uniform ultimate boundedness in tracking error. For reorientation maneuvers, control moment gyros are utilized with a well-known singularity problem described in this work investigated by predicting one-step ahead singularity index. A momentum vector recovery approach using magnetic torquers is also introduced to evaluate the avoidance strategies indirectly. Finally, the suggested methods are demonstrated by numerical simulation studies.
Hybrid adaptive control of a dragonfly model
NASA Astrophysics Data System (ADS)
Couceiro, Micael S.; Ferreira, Nuno M. F.; Machado, J. A. Tenreiro
2012-02-01
Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive ( HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive ( DA) method in terms of faster and improved tracking and parameter convergence.
Robust Adaptive Control of Hypnosis During Anesthesia
2007-11-02
1 of 4 ROBUST ADAPTIVE CONTROL OF HYPNOSIS DURING ANESTHESIA Pascal Grieder1, Andrea Gentilini1, Manfred Morari1, Thomas W. Schnider2 1ETH Zentrum...A closed-loop controller for hypnosis was designed and validated on humans at our laboratory. The controller aims at regulat- ing the Bispectral Index...BIS) - a surro- gate measure of hypnosis derived from the electroencephalogram of the patient - with the volatile anesthetic isoflurane administered
Robust, Practical Adaptive Control for Launch Vehicles
NASA Technical Reports Server (NTRS)
Orr, Jeb. S.; VanZwieten, Tannen S.
2012-01-01
A modern mechanization of a classical adaptive control concept is presented with an application to launch vehicle attitude control systems. Due to a rigorous flight certification environment, many adaptive control concepts are infeasible when applied to high-risk aerospace systems; methods of stability analysis are either intractable for high complexity models or cannot be reconciled in light of classical requirements. Furthermore, many adaptive techniques appearing in the literature are not suitable for application to conditionally stable systems with complex flexible-body dynamics, as is often the case with launch vehicles. The present technique is a multiplicative forward loop gain adaptive law similar to that used for the NASA X-15 flight research vehicle. In digital implementation with several novel features, it is well-suited to application on aerodynamically unstable launch vehicles with thrust vector control via augmentation of the baseline attitude/attitude-rate feedback control scheme. The approach is compatible with standard design features of autopilots for launch vehicles, including phase stabilization of lateral bending and slosh via linear filters. In addition, the method of assessing flight control stability via classical gain and phase margins is not affected under reasonable assumptions. The algorithm s ability to recover from certain unstable operating regimes can in fact be understood in terms of frequency-domain criteria. Finally, simulation results are presented that confirm the ability of the algorithm to improve performance and robustness in realistic failure scenarios.
Adaptive control of an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Nguen, V. F.; Putov, A. V.; Nguen, T. T.
2017-01-01
The paper deals with design and comparison of adaptive control systems based on plant state vector and output for unmanned aerial vehicle (UAV) with nonlinearity and uncertainty of parameters of the aircraft incomplete measurability of its state and presence of wind disturbances. The results of computer simulations of flight stabilization processes on the example of the experimental model UAV-70V (Aerospace Academy, Hanoi) with presence of periodic and non-periodic vertical wind disturbances with designed adaptive control systems based on plant state vector with state observer and plant output.
Hardware verification of distributed/adaptive control
NASA Technical Reports Server (NTRS)
Eldred, D. B.; Schaechter, D. B.
1983-01-01
Adaptive control techniques are studied for their future application to the control of large space structures, where uncertain or changing parameters may destabilize standard control system designs. The approach used is to examine an extended Kalman filter estimator, in which the state vector is augmented with the unknown parameters. The associated Riccatti equation is linearized about the case of exact knowledge of the parameters. By assuming that parameter variations occur slowly, the filter complexity is reduced further yet. Simulations on a two degree-of-freedom oscillator demonstrate the parameter-tracking capability of the filter, and an implementation on the JPL Flexible Beam Facility using an incorrect model shows the adaptive filter/optimal control to be stable where a standard Kalman filter/optimal control design is unstable.
Real Time & Power Efficient Adaptive - Robust Control
NASA Astrophysics Data System (ADS)
Ioan Gliga, Lavinius; Constantin Mihai, Cosmin; Lupu, Ciprian; Popescu, Dumitru
2017-01-01
A design procedure for a control system suited for dynamic variable processes is presented in this paper. The proposed adaptive - robust control strategy considers both adaptive control advantages and robust control benefits. It estimates the degradation of the system’s performances due to the dynamic variation in the process and it then utilizes it to determine when the system must be adapted with a redesign of the robust controller. A single integral criterion is used for the identification of the process, and for the design of the control algorithm, which is expressed in direct form, through a cost function defined in the space of the parameters of both the process and the controller. For the minimization of this nonlinear function, an adequate mathematical programming minimization method is used. The theoretical approach presented in this paper was validated for a closed loop control system, simulated in an application developed in C. Because of the reduced number of operations, this method is suitable for implementation on fast processes. Due to its effectiveness, it increases the idle time of the CPU, thereby saving electrical energy.
Adaptive Critic Nonlinear Robust Control: A Survey.
Wang, Ding; He, Haibo; Liu, Derong
2017-10-01
Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.
Evolving Systems and Adaptive Key Component Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2009-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.
Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Boskovic, Jovan D.
2008-01-01
This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.
Adaptive self-correcting control system
Ellis, S.H.
1984-01-03
A control system for regulating a controlled device or process, such as a turbofan engine, produces independent multiple estimates of one or more controlled variables of the device or process by combining the signals from a plurality of feedback sensors, which provide information related to the controlled variables, in weighted nonordered pairs. The independent multiple estimates of each controlled variable are combined into a weighted average, and individual estimates which differ by more than a specified amount from the weighted average are edited and temporarily removed from consideration. A revised weighted average value of each controlled variable is then produced, and this value is used to limit or control operation of the device or process. Adaptive trim is provided to compensate for changes in the device or process being controlled, such as engine deterioration, by slowly trimming each individual estimate toward the mean, and includes error compensation which constrains the weighted sum of the adaptive trims to equal zero, thereby preventing the adaptive trim from changing the operating level of the device or process. A secondary editing circuit based on a majority rule principle identifies a failed feedback sensor and permanently excludes all individual estimates of the controlled variable based on the failed sensor. Editing boundaries are increased and adaptive trim rate is varied when a transient occurs in the operation of the device or process. Further transient compensation may be required for a system with more severe transient requirements, and this invention includes compensation to selected feedback parameters such as turbine temperature to account for differences between steady state and transient values.
Adaptive Control of Nonlinear and Stochastic Systems
1991-01-14
Hernmndez-Lerma and S.I. Marcus, Nonparametric adaptive control of dis- crete time partially observable stochastic systems, Journal of Mathematical Analysis and Applications 137... Journal of Mathematical Analysis and Applications 137 (1989), 485-514. [19] A. Arapostathis and S.I. Marcus, Analysis of an identification algorithm
Adaptive control system for gas producing wells
Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko
2015-03-10
Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.
Predictive Control of Speededness in Adaptive Testing
ERIC Educational Resources Information Center
van der Linden, Wim J.
2009-01-01
An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…
Predictive Control of Speededness in Adaptive Testing
ERIC Educational Resources Information Center
van der Linden, Wim J.
2009-01-01
An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…
Forward Stochastic Nonlinear Adaptive Control Method
NASA Technical Reports Server (NTRS)
Bayard, David S.
1990-01-01
New method of computation for optimal stochastic nonlinear and adaptive control undergoing development. Solves systematically stochastic dynamic programming equations forward in time, using nested-stochastic-approximation technique. Main advantage, simplicity of programming and reduced complexity with clear performance/computation trade-offs.
Robust adaptive control of HVDC systems
Reeve, J.; Sultan, M. )
1994-07-01
The transient performance of an HVDC power system is highly dependent on the parameters of the current/voltage regulators of the converter controls. In order to better accommodate changes in system structure or dc operating conditions, this paper introduces a new adaptive control strategy. The advantages of automatic tuning for continuous fine tuning are combined with predetermined gain scheduling in order to achieve robustness for large disturbances. Examples are provided for a digitally simulated back-to-back dc system.
Adaptive Control of Nonlinear Flexible Systems
1993-01-18
disturbances. The following example illustrates the need for a robust state-feedback law and the sensi- tivity of the exact - linearization based control law... exact linearization , one can bring an input-output approach to a particular case of certainty- equivalence based adaptive control design. We now...are available for this model, exact linearization can be performed. Let C(s) be the compensator that is being used so far in the previous three
Adaptive Variable Bias Magnetic Bearing Control
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.
1998-01-01
Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. With the existence of the bias current, even in no load conditions, there is always some power consumption. In aerospace applications, power consumption becomes an important concern. In response to this concern, an alternative magnetic bearing control method, called Adaptive Variable Bias Control (AVBC), has been developed and its performance examined. The AVBC operates primarily as a proportional-derivative controller with a relatively slow, bias current dependent, time-varying gain. The AVBC is shown to reduce electrical power loss, be nominally stable, and provide control performance similar to conventional bias control. Analytical, computer simulation, and experimental results are presented in this paper.
Geometry control in prestressed adaptive space trusses
NASA Astrophysics Data System (ADS)
Sener, Murat; Utku, Senol; Wada, Ben K.
1993-04-01
In this work the actuator placement problem for the precision control in prestressed adaptive space trusses is studied. These structures cannot be statically determinate, implying that the length-adjusting actuators have to work against the existing prestressing forces, and also against the stresses caused by the actuation. This type of difficulties does not exist in statically determinate adaptive trusses where, except for overcoming the friction, the actuators operate under zero axial force, and require almost no energy. The actuator placement problem in statically inderterminate trusses is, therefore, governed seriously by the energy and the strength requirements. The paper provides various methodologies for the actuator placement problem in prestressed space trusses.
EVALUATION REINFORCER MAGNITUDE AND RATE DEPENDENCY OF RESISTANCE TO CHANGE MECHANIMS
Pinkston, Jonathan W.; Ginsburg, Brett C.; Lamb, R. J.
2015-01-01
In many circumstances, reinforcer magnitude appears to modulate the rate-dependent effects of drugs, such that when schedules arrange for relatively larger reinforcer magnitude, rate dependency is attenuated compared to behavior maintained by smaller magnitudes. The current literature on resistance to change suggests that increased reinforcer density strengthens operant behavior, and such strengthening effects appear to extend to the temporal control of behavior. As rate dependency may be understood as a loss of temporal control, the effects of reinforcer magnitude on rate dependency may be due to increased resistance to disruption of temporally controlled behavior. In the present experiments, pigeons earned different magnitudes of grain during signaled components of a multiple fixed-interval schedule. Three drugs, clonidine, haloperidol, and morphine, were examined: all three decreased overall rates of key pecking; however, only the effects of clonidine were attenuated as reinforcer magnitude increased. An analysis of within-interval performance found rate-dependent effects for clonidine and morphine, but those effects were not modulated by reinforcer magnitude. Additionally, we included prefeeding and extinction conditions, standard tests used to measure resistance to change. In general, rate-decreasing effects of prefeeding and extinction were attenuated by increasing reinforcer magnitudes. Rate-dependent analyses of prefeeding showed rate-dependency following those tests, but in no case were these effects modulated by reinforcer magnitude. The results suggest a resistance-to-change interpretation of the effects of reinforcer magnitude on rate dependency is not viable. PMID:25115595
Reinforcer magnitude and rate dependency: evaluation of resistance-to-change mechanisms.
Pinkston, Jonathan W; Ginsburg, Brett C; Lamb, Richard J
2014-10-01
Under many circumstances, reinforcer magnitude appears to modulate the rate-dependent effects of drugs such that when schedules arrange for relatively larger reinforcer magnitudes rate dependency is attenuated compared with behavior maintained by smaller magnitudes. The current literature on resistance to change suggests that increased reinforcer density strengthens operant behavior, and such strengthening effects appear to extend to the temporal control of behavior. As rate dependency may be understood as a loss of temporal control, the effects of reinforcer magnitude on rate dependency may be due to increased resistance to disruption of temporally controlled behavior. In the present experiments, pigeons earned different magnitudes of grain during signaled components of a multiple FI schedule. Three drugs, clonidine, haloperidol, and morphine, were examined. All three decreased overall rates of key pecking; however, only the effects of clonidine were attenuated as reinforcer magnitude increased. An analysis of within-interval performance found rate-dependent effects for clonidine and morphine; however, these effects were not modulated by reinforcer magnitude. In addition, we included prefeeding and extinction conditions, standard tests used to measure resistance to change. In general, rate-decreasing effects of prefeeding and extinction were attenuated by increasing reinforcer magnitudes. Rate-dependent analyses of prefeeding showed rate-dependency following those tests, but in no case were these effects modulated by reinforcer magnitude. The results suggest that a resistance-to-change interpretation of the effects of reinforcer magnitude on rate dependency is not viable.
Adaptive control of Space Station with control moment gyros
NASA Technical Reports Server (NTRS)
Bishop, Robert H.; Paynter, Scott J.; Sunkel, John W.
1992-01-01
An adaptive approach to Space Station attitude control is investigated. The main components of the controller are the parameter identification scheme, the control gain calculation, and the control law. The control law is a full-state feedback space station baseline control law. The control gain calculation is based on linear-quadratic regulator theory with eigenvalues placement in a vertical strip. The parameter identification scheme is a recursive extended Kalman filter that estimates the inertias and also provides an estimate of the unmodeled disturbances due to the aerodynamic torques and to the nonlinear effects. An analysis of the inertia estimation problem suggests that it is possible to estimate Space Station inertias accurately during nominal control moment gyro operations. The closed-loop adaptive control law is shown to be capable of stabilizing the Space Station after large inertia changes. Results are presented for the pitch axis.
Active vibration isolation by adaptive proportional control
NASA Astrophysics Data System (ADS)
Liu, Yun-Hui; Wu, Wei-Hao; Chu, Chih-Liang
2013-01-01
An active vibration isolation system that applies proportional controller incorporated with an adaptive filter to reduce the transmission of base excitations to a precision instrument is proposed in this work. The absolute vibration velocity signal acquired from an accelerator and being processed through an integrator is input to the controller as a feedback signal, and the controller output signal drives the voice coil actuator to produce a sky-hook damper force. In practice, the phase response of integrator at low frequency such as 2~5 Hz deviate from the 90 degree which is the exact phase difference between the vibration velocity and acceleration. Therefore, an adaptive filter is used to compensate the phase error in this paper. An analysis of this active vibration isolation system is presented, and model predictions are compared to experimental results. The results show that the proposed method significantly reduces transmissibility at resonance without the penalty of increased transmissibility at higher frequencies.
Adaptive electric field control of epileptic seizures.
Gluckman, B J; Nguyen, H; Weinstein, S L; Schiff, S J
2001-01-15
We describe a novel method of adaptively controlling epileptic seizure-like events in hippocampal brain slices using electric fields. Extracellular neuronal activity is continuously recorded during field application through differential extracellular recording techniques, and the applied electric field strength is continuously updated using a computer-controlled proportional feedback algorithm. This approach appears capable of sustained amelioration of seizure events in this preparation when used with negative feedback. Seizures can be induced or enhanced by using fields of opposite polarity through positive feedback. In negative feedback mode, such findings may offer a novel technology for seizure control. In positive feedback mode, adaptively applied electric fields may offer a more physiological means of neural modulation for prosthetic purposes than previously possible.
Adaptive control strategies for flexible robotic arm
NASA Technical Reports Server (NTRS)
Bialasiewicz, Jan T.
1993-01-01
The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.
An adaptive learning control system for aircraft
NASA Technical Reports Server (NTRS)
Mekel, R.; Nachmias, S.
1976-01-01
A learning control system is developed which blends the gain scheduling and adaptive control into a single learning system that has the advantages of both. An important feature of the developed learning control system is its capability to adjust the gain schedule in a prescribed manner to account for changing aircraft operating characteristics. Furthermore, if tests performed by the criteria of the learning system preclude any possible change in the gain schedule, then the overall system becomes an ordinary gain scheduling system. Examples are discussed.
Parallel computations and control of adaptive structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, Kenneth F.; Belvin, W. Keith; Chong, K. P. (Editor); Liu, S. C. (Editor); Li, J. C. (Editor)
1991-01-01
The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed.
An adaptive strategy for controlling chaotic system.
Cao, Yi-Jia; Hang, Hong-Xian
2003-01-01
This paper presents an adaptive strategy for controlling chaotic systems. By employing the phase space reconstruction technique in nonlinear dynamical systems theory, the proposed strategy transforms the nonlinear system into canonical form, and employs a nonlinear observer to estimate the uncertainties and disturbances of the nonlinear system, and then establishes a state-error-like feedback law. The developed control scheme allows chaos control in spite of modeling errors and parametric variations. The effectiveness of the proposed approach has been demonstrated through its applications to two well-known chaotic systems: Duffing oscillator and Rössler chaos.
Improvement of Adaptive Cruise Control Performance
NASA Astrophysics Data System (ADS)
Miyata, Shigeharu; Nakagami, Takashi; Kobayashi, Sei; Izumi, Tomoji; Naito, Hisayoshi; Yanou, Akira; Nakamura, Hitomi; Takehara, Shin
2010-12-01
This paper describes the Adaptive Cruise Control system (ACC), a system which reduces the driving burden on the driver. The ACC system primarily supports four driving modes on the road and controls the acceleration and deceleration of the vehicle in order to maintain a set speed or to avoid a crash. This paper proposes more accurate methods of detecting the preceding vehicle by radar while cornering, with consideration for the vehicle sideslip angle, and also of controlling the distance between vehicles. By making full use of the proposed identification logic for preceding vehicles and path estimation logic, an improvement in driving stability was achieved.
F-8C adaptive flight control laws
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Harvey, C. A.; Stein, G.; Carlson, D. N.; Hendrick, R. C.
1977-01-01
Three candidate digital adaptive control laws were designed for NASA's F-8C digital flyby wire aircraft. Each design used the same control laws but adjusted the gains with a different adaptative algorithm. The three adaptive concepts were: high-gain limit cycle, Liapunov-stable model tracking, and maximum likelihood estimation. Sensors were restricted to conventional inertial instruments (rate gyros and accelerometers) without use of air-data measurements. Performance, growth potential, and computer requirements were used as criteria for selecting the most promising of these candidates for further refinement. The maximum likelihood concept was selected primarily because it offers the greatest potential for identifying several aircraft parameters and hence for improved control performance in future aircraft application. In terms of identification and gain adjustment accuracy, the MLE design is slightly superior to the other two, but this has no significant effects on the control performance achievable with the F-8C aircraft. The maximum likelihood design is recommended for flight test, and several refinements to that design are proposed.
Adaptive wing and flow control technology
NASA Astrophysics Data System (ADS)
Stanewsky, E.
2001-10-01
The development of the boundary layer and the interaction of the boundary layer with the outer “inviscid” flow field, exacerbated at high speed by the occurrence of shock waves, essentially determine the performance boundaries of high-speed flight. Furthermore, flight and freestream conditions may change considerably during an aircraft mission while the aircraft itself is only designed for multiple but fixed design points thus impairing overall performance. Consequently, flow and boundary layer control and adaptive wing technology may have revolutionary new benefits for take-off, landing and cruise operating conditions for many aircraft by enabling real-time effective geometry optimization relative to the flight conditions. In this paper we will consider various conventional and novel means of boundary layer and flow control applied to moderate-to-large aspect ratio wings, delta wings and bodies with the specific objectives of drag reduction, lift enhancement, separation suppression and the improvement of air-vehicle control effectiveness. In addition, adaptive wing concepts of varying complexity and corresponding aerodynamic performance gains will be discussed, also giving some examples of possible structural realizations. Furthermore, penalties associated with the implementation of control and adaptation mechanisms into actual aircraft will be addressed. Note that the present contribution is rather application oriented.
Geometric view of adaptive optics control
NASA Astrophysics Data System (ADS)
Wiberg, Donald M.; Max, Claire E.; Gavel, Donald T.
2005-05-01
The objective of an astronomical adaptive optics control system is to minimize the residual wave-front error remaining on the science-object wave fronts after being compensated for atmospheric turbulence and telescope aberrations. Minimizing the mean square wave-front residual maximizes the Strehl ratio and the encircled energy in pointlike images and maximizes the contrast and resolution of extended images. We prove the separation principle of optimal control for application to adaptive optics so as to minimize the mean square wave-front residual. This shows that the residual wave-front error attributable to the control system can be decomposed into three independent terms that can be treated separately in design. The first term depends on the geometry of the wave-front sensor(s), the second term depends on the geometry of the deformable mirror(s), and the third term is a stochastic term that depends on the signal-to-noise ratio. The geometric view comes from understanding that the underlying quantity of interest, the wave-front phase surface, is really an infinite-dimensional vector within a Hilbert space and that this vector space is projected into subspaces we can control and measure by the deformable mirrors and wave-front sensors, respectively. When the control and estimation algorithms are optimal, the residual wave front is in a subspace that is the union of subspaces orthogonal to both of these projections. The method is general in that it applies both to conventional (on-axis, ground-layer conjugate) adaptive optics architectures and to more complicated multi-guide-star- and multiconjugate-layer architectures envisaged for future giant telescopes. We illustrate the approach by using a simple example that has been worked out previously [J. Opt. Soc. Am. A73, 1171 (1983)] for a single-conjugate, static atmosphere case and follow up with a discussion of how it is extendable to general adaptive optics architectures.
Adaptive control of a rotating system
NASA Astrophysics Data System (ADS)
Dyniewicz, Bartłomiej; Pręgowska, Agnieszka; Bajer, Czesław I.
2014-02-01
In the present paper, an adaptive control of structural vibrations is presented. Based on earlier research, we claim that the periodical switching on of magneto-rheological controlled dampers results in the reduction of the amplitudes of vibrations more than does their permanent actuation. This statement, when applied to a moving load problem, was mathematically proved in earlier papers. In the present paper we determine the efficiency of such a control applied to a rotating shaft. The earlier mathematical analysis allows us to propose a control strategy. A finite element simulation together with the solution of the control problem shows that the dampers should act only during a short period of the highest displacements of the structure. The same conclusion is found in experimental tests. Although high frequency control with MR dampers is less efficient than in the theoretical investigations, we have found an amplitude reduction in the range of 10-20%.
Adaptive impedance control of redundant manipulators
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.; Seraji, H.
1990-01-01
A scheme for controlling the mechanical impedance of the end-effector of a kinematically redundant manipulator is presented. The proposed control system consists of two subsystems: an adaptive impedance controller which generates the Cartesian-space control input F (is a member of Rm) required to provide the desired end-effector impedance characteristics, and an algorithm that maps this control input to the joint torque T (is a member of Rn). The F to T map is constructed so that the robot redundancy is utilized to improve either the kinematic or dynamic performance of the robot. The impedance controller does not require knowledge of the complex robot dynamic model or parameter values for the robot, the payload, or the environment, and is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme is very general and is computationally efficient for on-line implementation.
Model reference adaptive control of robots
NASA Technical Reports Server (NTRS)
Steinvorth, Rodrigo
1991-01-01
This project presents the results of controlling two types of robots using new Command Generator Tracker (CGT) based Direct Model Reference Adaptive Control (MRAC) algorithms. Two mathematical models were used to represent a single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were then controlled in simulation using different MRAC algorithms. Special attention was given to the performance of the algorithms in the presence of sudden changes in the robot load. Previously used CGT based MRAC algorithms had several problems. The original algorithm that was developed guaranteed asymptotic stability only for almost strictly positive real (ASPR) plants. This condition is very restrictive, since most systems do not satisfy this assumption. Further developments to the algorithm led to an expansion of the number of plants that could be controlled, however, a steady state error was introduced in the response. These problems led to the introduction of some modifications to the algorithms so that they would be able to control a wider class of plants and at the same time would asymptotically track the reference model. This project presents the development of two algorithms that achieve the desired results and simulates the control of the two robots mentioned before. The results of the simulations are satisfactory and show that the problems stated above have been corrected in the new algorithms. In addition, the responses obtained show that the adaptively controlled processes are resistant to sudden changes in the load.
Adaptive control based on retrospective cost optimization
NASA Technical Reports Server (NTRS)
Santillo, Mario A. (Inventor); Bernstein, Dennis S. (Inventor)
2012-01-01
A discrete-time adaptive control law for stabilization, command following, and disturbance rejection that is effective for systems that are unstable, MIMO, and/or nonminimum phase. The adaptive control algorithm includes guidelines concerning the modeling information needed for implementation. This information includes the relative degree, the first nonzero Markov parameter, and the nonminimum-phase zeros. Except when the plant has nonminimum-phase zeros whose absolute value is less than the plant's spectral radius, the required zero information can be approximated by a sufficient number of Markov parameters. No additional information about the poles or zeros need be known. Numerical examples are presented to illustrate the algorithm's effectiveness in handling systems with errors in the required modeling data, unknown latency, sensor noise, and saturation.
Adaptive Control with Reference Model Modification
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation example
Block adaptive rate controlled image data compression
NASA Technical Reports Server (NTRS)
Rice, R. F.; Hilbert, E.; Lee, J.-J.; Schlutsmeyer, A.
1979-01-01
A block adaptive rate controlled (BARC) image data compression algorithm is described. It is noted that in the algorithm's principal rate controlled mode, image lines can be coded at selected rates by combining practical universal noiseless coding techniques with block adaptive adjustments in linear quantization. Compression of any source data at chosen rates of 3.0 bits/sample and above can be expected to yield visual image quality with imperceptible degradation. Exact reconstruction will be obtained if the one-dimensional difference entropy is below the selected compression rate. It is noted that the compressor can also be operated as a floating rate noiseless coder by simply not altering the input data quantization. Here, the universal noiseless coder ensures that the code rate is always close to the entropy. Application of BARC image data compression to the Galileo orbiter mission of Jupiter is considered.
Materials for Adaptive Structural Acoustic Controls
1994-01-31
stannate -11M I f-I ic cmoiin MATERIALS FOR ADAPTIVE STRUCTURAL ACOUSTIC CONTROLS Period February 1, 1993 to January 31, 1994 Annual Report VOLUME I OFFICE... ics 139, 25- 49(1993). 14. Jiang, Q., W. Cao, and L. E. Cross. Electrical Fatigue in Lead Zirconate Titanate Ceramics. J. Am. Ceram. Soc. 77(1), 211...Ceramic Composte Transducer-The Moonie. Ferroelecuics: IM , Gaithersburg, Maryland (August 1993). 21. Tressler, J. F., Q. C. Xu, S. Yoshikawa, K. Uchino
Applications of Neural Networks to Adaptive Control
1989-12-01
DTIC ;- E py 00 NAVAL POSTGRADUATE SCHOOL Monterey, California I.$ RDTIC IELECTE fl THESIS BEG7V°U APPLICATIONS OF NEURAL NETWORKS TO ADAPTIVE CONTROL...Second keader E . Robert Wood, Chairman, Department of Aeronautics and Astronautics Gordoii E . Schacher, Dean of Faculty and Graduate Education ii ABSTRACT...23: Network Dynamic Stability for q(t) . ............................. 55 ix Figure 24: Network Dynamic Stability for e (t
Neural Control Adaptation to Motor Noise Manipulation
Hasson, Christopher J.; Gelina, Olga; Woo, Garrett
2016-01-01
Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487
Adaptive limiter control of unimodal population maps.
Franco, Daniel; Hilker, Frank M
2013-11-21
We analyse the adaptive limiter control (ALC) method, which was recently proposed for stabilizing population oscillations and experimentally tested in laboratory populations and metapopulations of Drosophila melanogaster. We thoroughly explain the mechanisms that allow ALC to reduce the magnitude of population fluctuations under certain conditions. In general, ALC is a control strategy with a number of useful properties (e.g. being globally asymptotically stable), but there may be some caveats. The control can be ineffective or even counterproductive at small intensities, and the interventions can be extremely costly at very large intensities. Based on our analytical results, we describe recipes how to choose the control intensity, depending on the range of population sizes we wish to target. In our analysis, we highlight the possible importance of initial transients and classify them into different categories.
Genetic Adaptive Control for PZT Actuators
NASA Technical Reports Server (NTRS)
Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.
1995-01-01
A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.
Spacecraft attitude control using direct model reference adaptive control
NASA Astrophysics Data System (ADS)
Harvey, Seth A.
This research began in the summer of 2006. During that summer a method was developed to estimate the gravity gradient as well as the nadir vector of a Plug-and-Play [PNP] satellite. This was done based on the assumptions that there were perturbations in the satellite model that kept the satellite from knowing this information a priori. An indirect adaptive estimation scheme was used to accomplish this goal. However it is impractical to do this for each perturbation in the plant. By the very nature of PNP Satellites, there could be errors in among other things, reaction wheel mounting/orientation, star tracker location/orientation, satellite center of mass (COM), and payload location/orientation. An adaptive scheme to estimate each error is not efficient and ultimately is not the goal. The goal is to accurately control the satellite despite the numerous and possibly large errors inherent in PNP Satellite models. Instead of using indirect adaptive methods to gain precise knowledge of the plant, direct adaptive control methods will be used to overcome the errors of the plant and gain precise control of the satellite. One way of overcoming the inaccuracies of the model is to assume the spacecraft dynamics are largely unknown. A shift in philosophy was then taken from indirect adaptive methods to direct methods. Direct Reference and Model Reference Adaptive Controller [DRAC & DMRAC] are then developed that will precisely and robustly control the attitude of a PNP satellite. The benefits demonstrated by the DMRAC methodologies extend well past plug and play satellites and could be utilized in any space application.
Robust adaptive control for Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Kahveci, Nazli E.
The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with
Adaptive control of force microscope cantilever dynamics
NASA Astrophysics Data System (ADS)
Jensen, S. E.; Dougherty, W. M.; Garbini, J. L.; Sidles, J. A.
2007-09-01
Magnetic resonance force microscopy (MRFM) and other emerging scanning probe microscopies entail the detection of attonewton-scale forces. Requisite force sensitivities are achieved through the use of soft force microscope cantilevers as high resonant-Q micromechanical oscillators. In practice, the dynamics of these oscillators are greatly improved by the application of force feedback control computed in real time by a digital signal processor (DSP). Improvements include increased sensitive bandwidth, reduced oscillator ring up/down time, and reduced cantilever thermal vibration amplitude. However, when the cantilever tip and the sample are in close proximity, electrostatic and Casimir tip-sample force gradients can significantly alter the cantilever resonance frequency, foiling fixed-gain narrow-band control schemes. We report an improved, adaptive control algorithm that uses a Hilbert transform technique to continuously measure the vibration frequency of the thermally-excited cantilever and seamlessly adjust the DSP program coefficients. The closed-loop vibration amplitude is typically 0.05 nm. This adaptive algorithm enables narrow-band formally-optimal control over a wide range of resonance frequencies, and preserves the thermally-limited signal to noise ratio (SNR).
A Methodology for Investigating Adaptive Postural Control
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Riccio, G. E.
1999-01-01
Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of
A Methodology for Investigating Adaptive Postural Control
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Riccio, G. E.
1999-01-01
Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of
Adaptive control of a Stewart platform-based manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.; Zhou, Zhen-Lei; Campbell, Charles E., Jr.
1993-01-01
A joint-space adaptive control scheme for controlling noncompliant motion of a Stewart platform-based manipulator (SPBM) was implemented in the Hardware Real-Time Emulator at Goddard Space Flight Center. The six-degrees of freedom SPBM uses two platforms and six linear actuators driven by dc motors. The adaptive control scheme is based on proportional-derivative controllers whose gains are adjusted by an adaptation law based on model reference adaptive control and Liapunov direct method. It is concluded that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.
Adaptive control of a Stewart platform-based manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.; Zhou, Zhen-Lei; Campbell, Charles E., Jr.
1993-01-01
A joint-space adaptive control scheme for controlling noncompliant motion of a Stewart platform-based manipulator (SPBM) was implemented in the Hardware Real-Time Emulator at Goddard Space Flight Center. The six-degrees of freedom SPBM uses two platforms and six linear actuators driven by dc motors. The adaptive control scheme is based on proportional-derivative controllers whose gains are adjusted by an adaptation law based on model reference adaptive control and Liapunov direct method. It is concluded that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.
Adaptive control of space based robot manipulators
NASA Technical Reports Server (NTRS)
Walker, Michael W.; Wee, Liang-Boon
1991-01-01
For space based robots in which the base is free to move, motion planning and control is complicated by uncertainties in the inertial properties of the manipulator and its load. A new adaptive control method is presented for space based robots which achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. A partition is made of the fifteen degree of freedom system dynamics into two parts: a nine degree of freedom invertible portion and a six degree of freedom noninvertible portion. The controller is then designed to achieve trajectory tracking of the invertible portion of the system. This portion consist of the manipulator joint positions and the orientation of the base. The motion of the noninvertible portion is bounded, but unpredictable. This portion consist of the position of the robot's base and the position of the reaction wheel.
Adaptive Accommodation Control Method for Complex Assembly
NASA Astrophysics Data System (ADS)
Kang, Sungchul; Kim, Munsang; Park, Shinsuk
Robotic systems have been used to automate assembly tasks in manufacturing and in teleoperation. Conventional robotic systems, however, have been ineffective in controlling contact force in multiple contact states of complex assemblythat involves interactions between complex-shaped parts. Unlike robots, humans excel at complex assembly tasks by utilizing their intrinsic impedance, forces and torque sensation, and tactile contact clues. By examining the human behavior in assembling complex parts, this study proposes a novel geometry-independent control method for robotic assembly using adaptive accommodation (or damping) algorithm. Two important conditions for complex assembly, target approachability and bounded contact force, can be met by the proposed control scheme. It generates target approachable motion that leads the object to move closer to a desired target position, while contact force is kept under a predetermined value. Experimental results from complex assembly tests have confirmed the feasibility and applicability of the proposed method.
Kalman filter based control for Adaptive Optics
NASA Astrophysics Data System (ADS)
Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry
2004-12-01
Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.
Adaptive control: Stability, convergence, and robustness
NASA Technical Reports Server (NTRS)
Sastry, Shankar; Bodson, Marc
1989-01-01
The deterministic theory of adaptive control (AC) is presented in an introduction for graduate students and practicing engineers. Chapters are devoted to basic AC approaches, notation and fundamental theorems, the identification problem, model-reference AC, parameter convergence using averaging techniques, and AC robustness. Consideration is given to the use of prior information, the global stability of indirect AC schemes, multivariable AC, linearizing AC for a class of nonlinear systems, AC of linearizable minimum-phase systems, and MIMO systems decouplable by static state feedback.
Adaptive neural networks for mobile robotic control
NASA Astrophysics Data System (ADS)
Burnett, Jeff R.; Dagli, Cihan H.
2001-03-01
Movement of a differential drive robot has non-linear dependence on the current position and orientation. A controller must be able to deal with the non-linearity of the plant. The controller must either linearize the plant and deal with special cases, or be non-linear itself. Once the controller is designed, implementation on a real robotic platform presents challenges due to the varying parameters of the plant. Robots of the same model may have different motor frictions. The surface the robot maneuvers on may change e.g. carpet to tile. Batteries will drain, providing less power over time. A feed-forward neural network controller could overcome these challenges. The network could learn the non- linearities of the plant and monitor the error for parameter changes and adapt to them. In this manner, a single controller can be designed for an ideal robot, and then used to populate a multi-robot colony without manually fine tuning the controller for each robot. This paper shall demonstrate such a controller, outlining design in simulation and implementation on Khepera robotic platforms.
Adaptive method with intercessory feedback control for an intelligent agent
Goldsmith, Steven Y.
2004-06-22
An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.
Adaptive Control Using Residual Mode Filters Applied to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.; Lawrence, D. A.
1981-01-01
The reduced order model problem in distributed parameter systems adaptive identification and control is investigated. A comprehensive examination of real-time centralized adaptive control options for flexible spacecraft is provided.
Adaptive Control of Flexible Structures Using Residual Mode Filters
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Frost, Susan
2010-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.
Adaptive collaborative control of highly redundant robots
NASA Astrophysics Data System (ADS)
Handelman, David A.
2008-04-01
The agility and adaptability of biological systems are worthwhile goals for next-generation unmanned ground vehicles. Management of the requisite number of degrees of freedom, however, remains a challenge, as does the ability of an operator to transfer behavioral intent from human to robot. This paper reviews American Android research funded by NASA, DARPA, and the U.S. Army that attempts to address these issues. Limb coordination technology, an iterative form of inverse kinematics, provides a fundamental ability to control balance and posture independently in highly redundant systems. Goal positions and orientations of distal points of the robot skeleton, such as the hands and feet of a humanoid robot, become variable constraints, as does center-of-gravity position. Behaviors utilize these goals to synthesize full-body motion. Biped walking, crawling and grasping are illustrated, and behavior parameterization, layering and portability are discussed. Robotic skill acquisition enables a show-and-tell approach to behavior modification. Declarative rules built verbally by an operator in the field define nominal task plans, and neural networks trained with verbal, manual and visual signals provide additional behavior shaping. Anticipated benefits of the resultant adaptive collaborative controller for unmanned ground vehicles include increased robot autonomy, reduced operator workload and reduced operator training and skill requirements.
Adaptive vibration control using a virtual-vibration-absorber controller
NASA Astrophysics Data System (ADS)
Wu, Shang-Teh; Shao, Ying-Jhe
2007-09-01
A control algorithm emulating a dynamic vibration absorber (DVA) is developed for a flexible structure subject to harmonic disturbances of uncertain frequency. The virtual vibration absorber is mathematically equivalent to a passive DVA, but its stiffness, inertia and damping coefficient are adjustable by software. Stiffness of the virtual spring is tuned according to the phase difference between the acceleration of the primary body and the displacement of the virtual mass. The adaptation algorithm consists of a phase detector with a low-pass filter, similar to that found in a phase-locked loop. Both undamped and damped vibration absorbers are developed; the former has the advantage of cleaner vibration neutralization while the latter has a smoother stiffness adaptation. Adaptation rate of the virtual stiffness is analyzed in detail. The effectiveness of the proposed method is confirmed by simulations and real-time experiments.
Wavefront Control for Extreme Adaptive Optics
Poyneer, L A
2003-07-16
Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.
Wavefront control for extreme adaptive optics
NASA Astrophysics Data System (ADS)
Poyneer, Lisa A.; Macintosh, Bruce A.
2003-12-01
Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.
Mechanism of reverse rate-dependent action of cardioactive agents.
Bányász, T; Bárándi, L; Harmati, G; Virág, L; Szentandrássy, N; Márton, I; Zaza, A; Varró, A; Nánási, P P
2011-01-01
Class 3 antiarrhythmic agents exhibit reverse rate-dependent lengthening of the action potential duration (APD), i.e. changes in APD are greater at longer than at shorter cycle lengths. In spite of the several theories developed to explain this reverse rate-dependency, its mechanism has been clarified only recently. The aim of the present study is to elucidate the mechanisms responsible for reverse rate-dependency in mammalian ventricular myocardium. Action potentials were recorded using conventional sharp microelectrodes from human, canine, rabbit, guinea pig, and rat ventricular myocardium in a rate-dependent manner. Rate-dependent drug-effects of various origin were studied using agents known to lengthen or shorten action potentials allowing thus to determine the drug-induced changes in APD as a function of the cycle length. Both drug-induced lengthening and shortening of action potentials displayed reverse rate-dependency in human, canine, and guinea pig preparations, but not in rabbit and rat myocardium. Similar results were obtained when repolarization was modified by injection of inward or outward current pulses in isolated canine cardiomyocytes. In contrast to reverse rate-dependence, drug-induced changes in APD well correlated with baseline APD values (i.e. that measured before the superfusion of drug or injection of current) in all of the preparations studied. Since the net membrane current (I(net)), determined from the action potential waveform at the middle of the plateau, was inversely proportional to APD, and consequently to cycle length, it is concluded that that reverse rate-dependency may simply reflect the inverse relationship linking I(net) to APD. In summary, reverse rate-dependency is an intrinsic property of drug action in the hearts of species showing positive APD - cycle length relationship, including humans. This implies that development of a pure K(+) channel blocking agent without reverse rate-dependent effects is not likely to be
Real-time Adaptive Control Using Neural Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Haley, Pam; Soloway, Don; Gold, Brian
1999-01-01
The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.
Adaptive Torque Control of Variable Speed Wind Turbines
Johnson, K. E.
2004-08-01
The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry for variable speed wind turbines below rated power. This adaptive controller uses a simple, highly intuitive gain adaptation law designed to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds.
FPGA-accelerated adaptive optics wavefront control
NASA Astrophysics Data System (ADS)
Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.
2014-03-01
The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.
Adaptive powertrain control for plugin hybrid electric vehicles
Kedar-Dongarkar, Gurunath; Weslati, Feisel
2013-10-15
A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.
Driver behaviour with adaptive cruise control.
Stanton, Neville A; Young, Mark S
2005-08-15
This paper reports on the evaluation of adaptive cruise control (ACC) from a psychological perspective. It was anticipated that ACC would have an effect upon the psychology of driving, i.e. make the driver feel like they have less control, reduce the level of trust in the vehicle, make drivers less situationally aware, but workload might be reduced and driving might be less stressful. Drivers were asked to drive in a driving simulator under manual and ACC conditions. Analysis of variance techniques were used to determine the effects of workload (i.e. amount of traffic) and feedback (i.e. degree of information from the ACC system) on the psychological variables measured (i.e. locus of control, trust, workload, stress, mental models and situation awareness). The results showed that: locus of control and trust were unaffected by ACC, whereas situation awareness, workload and stress were reduced by ACC. Ways of improving situation awareness could include cues to help the driver predict vehicle trajectory and identify conflicts.
Robust adaptive vibration control of a flexible structure.
Khoshnood, A M; Moradi, H M
2014-07-01
Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator.
Fei, Juntao; Zhou, Jian
2012-12-01
In this paper, a robust adaptive control strategy using a fuzzy compensator for MEMS triaxial gyroscope, which has system nonlinearities, including model uncertainties and external disturbances, is proposed. A fuzzy logic controller that could compensate for the model uncertainties and external disturbances is incorporated into the adaptive control scheme in the Lyapunov framework. The proposed adaptive fuzzy controller can guarantee the convergence and asymptotical stability of the closed-loop system. The proposed adaptive fuzzy control strategy does not depend on accurate mathematical models, which simplifies the design procedure. The innovative development of intelligent control methods incorporated with conventional control for the MEMS gyroscope is derived with the strict theoretical proof of the Lyapunov stability. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control scheme and demonstrate the satisfactory tracking performance and robustness against model uncertainties and external disturbances compared with conventional adaptive control method.
Stochastic Adaptive Control and Estimation Enhancement
1989-09-01
total Zu(N-J)’Gj’Q(N)FxIN-1)ou (N-I)I’[ R (N- 1) ’(N I Gil probability theorem to (4.3) yields J*(k.k 3 - min ( Ejx(kl 0(k)x(k) - u(k)’R(klu(k) trQ(N)VI m...Is Independent of Mil), I-k*2 .... N If Dec. 1988. [ Gil N.H. Gholson and R.L. Moose, "ManeuveringM(k.1J Is known, thus Target Tracking Using Adaptive...Control and A(t) =_ J1N X(i,t) is uniformly bounded. Quasi-Variational Inequalities, Gauthier- Villars , . (t9. tER4 , exits 0’ at most a countable
Stable adaptive control using new critic designs
NASA Astrophysics Data System (ADS)
Werbos, Paul J.
1999-03-01
Classical adaptive control proves total-system stability for control of linear plants, but only for plants meeting very restrictive assumptions. Approximate Dynamic Programming (ADP) has the potential, in principle, to ensure stability without such tight restrictions. It also offers nonlinear and neural extensions for optimal control, with empirically supported links to what is seen in the brain. However, the relevant ADP methods in use today--TD, HDP, DHP, GDHP--and the Galerkin-based versions of these all have serious limitations when used here as parallel distributed real-time learning systems; either they do not possess quadratic unconditional stability (to be defined) or they lead to incorrect results in the stochastic case. (ADAC or Q- learning designs do not help.) After explaining these conclusions, this paper describes new ADP designs which overcome these limitations. It also addresses the Generalized Moving Target problem, a common family of static optimization problems, and describes a way to stabilize large-scale economic equilibrium models, such as the old long-term energy mode of DOE.
Robust adaptive kinematic control of redundant robots
NASA Technical Reports Server (NTRS)
Tarokh, M.; Zuck, D. D.
1992-01-01
The paper presents a general method for the resolution of redundancy that combines the Jacobian pseudoinverse and augmentation approaches. A direct adaptive control scheme is developed to generate joint angle trajectories for achieving desired end-effector motion as well as additional user defined tasks. The scheme ensures arbitrarily small errors between the desired and the actual motion of the manipulator. Explicit bounds on the errors are established that are directly related to the mismatch between actual and estimated pseudoinverse Jacobian matrix, motion velocity and the controller gain. It is shown that the scheme is tolerant of the mismatch and consequently only infrequent pseudoinverse computations are needed during a typical robot motion. As a result, the scheme is computationally fast, and can be implemented for real-time control of redundant robots. A method is incorporated to cope with the robot singularities allowing the manipulator to get very close or even pass through a singularity while maintaining a good tracking performance and acceptable joint velocities. Computer simulations and experimental results are provided in support of the theoretical developments.
Full-Scale Flight Research Testbeds: Adaptive and Intelligent Control
NASA Technical Reports Server (NTRS)
Pahle, Joe W.
2008-01-01
This viewgraph presentation describes the adaptive and intelligent control methods used for aircraft survival. The contents include: 1) Motivation for Adaptive Control; 2) Integrated Resilient Aircraft Control Project; 3) Full-scale Flight Assets in Use for IRAC; 4) NASA NF-15B Tail Number 837; 5) Gen II Direct Adaptive Control Architecture; 6) Limited Authority System; and 7) 837 Flight Experiments. A simulated destabilization failure analysis along with experience and lessons learned are also presented.
A survey of adaptive control technology in robotics
NASA Technical Reports Server (NTRS)
Tosunoglu, S.; Tesar, D.
1987-01-01
Previous work on the adaptive control of robotic systems is reviewed. Although the field is relatively new and does not yet represent a mature discipline, considerable attention has been given to the design of sophisticated robot controllers. Here, adaptive control methods are divided into model reference adaptive systems and self-tuning regulators with further definition of various approaches given in each class. The similarity and distinct features of the designed controllers are delineated and tabulated to enhance comparative review.
A rate-dependent constitutive model for molybdenum
NASA Astrophysics Data System (ADS)
Steinberg, Daniel J.
1994-07-01
The Steinberg-Guinan-Lund rate-dependent constitutive model has been successfully applied to molybdenum. The model reproduces yield strength vs strain-rate and temperature data and also successfully simulates rate-dependent phenomena, such as shock-smearing, precursor decay, and precursor on reshock, as observed in one-dimensional gas-gun experiments. The spall strength of molybdenum was determined to be 1.5 GPa.
Rate dependent constitutive models for fiber reinforced polymer composites
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1990-01-01
A literature survey was conducted to assess the state-of-the-art in rate dependent constitutive models for continuous fiber reinforced polymer matrix composite (PMC) materials. Several recent models which include formulations for describing plasticity, viscoelasticity, viscoplasticity, and rate-dependent phenomenon such as creep and stress relaxation are outlined and compared. When appropriate, these comparisons include brief descriptions of the mathematical formulations, the test procedures required for generating material constants, and details of available data comparing test results to analytical predictions.
Adaptive Control Allocation in the Presence of Actuator Failures
NASA Technical Reports Server (NTRS)
Liu, Yu; Crespo, Luis G.
2010-01-01
In this paper, a novel adaptive control allocation framework is proposed. In the adaptive control allocation structure, cooperative actuators are grouped and treated as an equivalent control effector. A state feedback adaptive control signal is designed for the equivalent effector and allocated to the member actuators adaptively. Two adaptive control allocation algorithms are proposed, which guarantee closed-loop stability and asymptotic state tracking in the presence of uncertain loss of effectiveness and constant-magnitude actuator failures. The proposed algorithms can be shown to reduce the controller complexity with proper grouping of the actuators. The proposed adaptive control allocation schemes are applied to two linearized aircraft models, and the simulation results demonstrate the performance of the proposed algorithms.
Progress in adaptive control of flexible spacecraft using lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Montgomery, R. C.
1985-01-01
This paper reviews the use of the least square lattice filter in adaptive control systems. Lattice filters have been used primarily in speech and signal processing, but they have utility in adaptive control because of their order-recursive nature. They are especially useful in dealing with structural dynamics systems wherein the order of a controller required to damp a vibration is variable depending on the number of modes significantly excited. Applications are presented for adaptive control of a flexible beam. Also, difficulties in the practical implementation of the lattice filter in adaptive control are discussed.
Modular and Adaptive Control of Sound Processing
NASA Astrophysics Data System (ADS)
van Nort, Douglas
parameters. In this view, desired gestural dynamics and sonic response are achieved through modular construction of mapping layers that are themselves subject to parametric control. Complementing this view of the design process, the work concludes with an approach in which the creation of gestural control/sound dynamics are considered in the low-level of the underlying sound model. The result is an adaptive system that is specialized to noise-based transformations that are particularly relevant in an electroacoustic music context. Taken together, these different approaches to design and evaluation result in a unified framework for creation of an instrumental system. The key point is that this framework addresses the influence that mapping structure and control dynamics have on the perceived feel of the instrument. Each of the results illustrate this using either top-down or bottom-up approaches that consider musical control context, thereby pointing to the greater potential for refined sonic articulation that can be had by combining them in the design process.
NASA Astrophysics Data System (ADS)
Zhang, Yangming; Yan, Peng
2016-12-01
This paper investigates a systematic modeling and control methodology for a multi-axis PZT (piezoelectric transducer) actuated servo stage supporting nano-manipulations. A sliding mode disturbance observer-based adaptive integral backstepping control method with an estimated inverse model compensation scheme is proposed to achieve ultra high precision tracking in the presence of the hysteresis nonlinearities, model uncertainties, and external disturbances. By introducing a time rate of the input signal, an enhanced rate-dependent Prandtl-Ishlinskii model is developed to describe the hysteresis behaviors, and its inverse is also constructed to mitigate their adverse effects. In particular, the corresponding inverse compensation error is analyzed and its boundedness is proven. Subsequently, the sliding mode disturbance observer-based adaptive integral backstepping controller is designed to guarantee the convergence of the tracking error, where the sliding mode disturbance observer can track the total disturbances in a finite time, while the integral action is incorporated into the adaptive backstepping design to improve the steady-state control accuracy. Finally, real time implementations of the proposed algorithm are applied on the PZT actuated servo system, where excellent tracking performance with tracking precision error around 6‰ for circular contour tracking is achieved in the experimental results.
Adaptive Control of Visually Guided Grasping in Neural Networks
1990-03-12
U01ITU S.WM NONnumsen Adaptive Control of Visually Guided Grasping in Neural Networks AFOSR-89-&CO030 88-NL-209 L AUTHOrSF 2313/A8 00 61102F (V) Dr...FINAL REPORT ADAPTIVE CONTROL OF VISUALLY GUIDED GRASPING IN NEURAL NETWORKS Neurogen Laboratories Inc. Project Summary Research performed for AFOSR...arm’s length in position and 6 degrees in orientation. Keywords: Neural Networks , Adaptive Motor Control, Sensory-Motor sensation Introduction The human
Smart Rehabilitation Devices: Part II - Adaptive Motion Control.
Dong, Shufang; Lu, Ke-Qian; Sun, J Q; Rudolph, Katherine
2006-01-01
This article presents a study of adaptive motion control of smart versatile rehabilitation devices using MR fluids. The device provides both isometric and isokinetic strength training and is reconfigurable for several human joints. Adaptive controls are developed to regulate resistance force based on the prescription of the therapist. Special consideration has been given to the human-machine interaction in the adaptive control that can modify the behavior of the device to account for strength gains or muscle fatigue of the human subject.
Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified
2011-06-01
Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified Sarah M. Loos André Platzer Ligia Nistor JUNE 2011 CMU-CS-11-107 School of...pages 273–288. Springer, 1998. [LPN11a] Sarah M. Loos, André Platzer , and Ligia Nistor. Adaptive cruise control: Hybrid, distributed, and now... Platzer , and Ligia Nistor. Adaptive cruise control: Hybrid, distributed, and now formally verified, 2011. Electronic proof and demo: http
Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Burken, John; Ishihara, Abraham
2011-01-01
This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.
Computation of Parametric Adaptive Fuzzy Controller for Wood Drying System
NASA Astrophysics Data System (ADS)
Situmorang, Zakarias; Wardoyo, Retantyo; Hartati, Sri; Istiyanto, Jazi Eko
2009-08-01
The paper reports the computation of parametric adaptive fuzzy controller for used to wood drying system. Parametric of adaptive fuzzy controller is control period system. Control period system is how long time need to hoist of temperature drying or humidity drying if the actuator in on-conditions. The parametric is implemented for control system of wood drying process at prototype chamber with solar is source of energy. The actuator of system is heater, damper and sprayer. From result of measurement, that data were doing to analysis statistic to have the parametric. Whenever the parametric want to implemented with mechanism adaptive. Membership Functions of variable control of system to became something is difficult to have effect to temperature and humidity drying. The result of implemented of adaptive fuzzy control is described in graphic typical. The control system is able to adapt change of humidity drying in system schedule of wood drying system.
Adaptive robust controller based on integral sliding mode concept
NASA Astrophysics Data System (ADS)
Taleb, M.; Plestan, F.
2016-09-01
This paper proposes, for a class of uncertain nonlinear systems, an adaptive controller based on adaptive second-order sliding mode control and integral sliding mode control concepts. The adaptation strategy solves the problem of gain tuning and has the advantage of chattering reduction. Moreover, limited information about perturbation and uncertainties has to be known. The control is composed of two parts: an adaptive one whose objective is to reject the perturbation and system uncertainties, whereas the second one is chosen such as the nominal part of the system is stabilised in zero. To illustrate the effectiveness of the proposed approach, an application on an academic example is shown with simulation results.
On the adaptive control of a phased array telescope
NASA Astrophysics Data System (ADS)
Jamshidi, M.; Meinhardt, J. A.; Carreras, R. A.; Baciak, M. G.
1989-09-01
An adaptive control philosophy known as model-reference adaptive control based on an 'ideal' behavior of the system called 'reference' system is considered. Software and hardware implementation of a model-reference adaptive control (MRAC) for a phased array telescope is discussed. The overall system configuration is presented and a model description of the system from both mathematical formulations and the MATRIXx SYSTEM-BUILD points of view is analyzed. A unified approach to to adaptive control design algorithm using MATRIXx is introduced. It is noted that a digital position monitor plays a focal point in the hardware realization of the MRAC algorithm.
Control of Flow Separation Using Adaptive Airfoils
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)
1996-01-01
A novel way of controlling flow separation is reported. The approach involves using an adaptive airfoil geometry that changes its leading edge shape to adjust to the instantaneous flow at high angles of attack such that the flow over it remains attached. In particular, a baseline NACA 0012 airfoil, whose leading edge curvature could be changed dynamically by 400% was tested under quasi-steady compressible flow conditions. A mechanical drive system was used to produce a rounded leading edge to reduce the strong local flow acceleration around its nose and thus reduce the strong adverse pressure gradient that follows such a rapid acceleration. Tests in steady flow showed that at M = 0.3, the flow separated at about 14 deg. angle of attack for the NACA 0012 profile but could be kept attached up to an angle of about 18 deg by changing the nose curvature. No significant hysteresis effects were observed; the flow could be made to reattach from its separated state at high angles by changing the leading edge curvature.
Adaptive servo control for umbilical mating
NASA Technical Reports Server (NTRS)
Zia, Omar
1988-01-01
Robotic applications at Kennedy Space Center are unique and in many cases require the fime positioning of heavy loads in dynamic environments. Performing such operations is beyond the capabilities of an off-the-shelf industrial robot. Therefore Robotics Applications Development Laboratory at Kennedy Space Center has put together an integrated system that coordinates state of the art robotic system providing an excellent easy to use testbed for NASA sensor integration experiments. This paper reviews the ways of improving the dynamic response of the robot operating under force feedback with varying dynamic internal perturbations in order to provide continuous stable operations under variable load conditions. The goal is to improve the stability of the system with force feedback using the adaptive control feature of existing system over a wide range of random motions. The effect of load variations on the dynamics and the transfer function (order or values of the parameters) of the system has been investigated, more accurate models of the system have been determined and analyzed.
Neural control of chronic stress adaptation
Herman, James P.
2013-01-01
Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced stress reactivity and eventually become maladaptive. The long-term impact of stress is kept in check by the process of habituation, which reduces HPA axis responses upon repeated exposure to homotypic stressors and likely limits deleterious actions of prolonged glucocorticoid secretion. Habituation is regulated by limbic stress-regulatory sites, and is at least in part glucocorticoid feedback-dependent. Chronic stress also sensitizes reactivity to new stimuli. While sensitization may be important in maintaining response flexibility in response to new threats, it may also add to the cumulative impact of glucocorticoids on the brain and body. Finally, unpredictable or severe stress exposure may cause long-term and lasting dysregulation of the HPA axis, likely due to altered limbic control of stress effector pathways. Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process. PMID:23964212
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
Williams, Rube B.
2004-02-04
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
NASA Astrophysics Data System (ADS)
Williams, Rube B.
2004-02-01
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
Synthetic consciousness: the distributed adaptive control perspective
2016-01-01
Understanding the nature of consciousness is one of the grand outstanding scientific challenges. The fundamental methodological problem is how phenomenal first person experience can be accounted for in a third person verifiable form, while the conceptual challenge is to both define its function and physical realization. The distributed adaptive control theory of consciousness (DACtoc) proposes answers to these three challenges. The methodological challenge is answered relative to the hard problem and DACtoc proposes that it can be addressed using a convergent synthetic methodology using the analysis of synthetic biologically grounded agents, or quale parsing. DACtoc hypothesizes that consciousness in both its primary and secondary forms serves the ability to deal with the hidden states of the world and emerged during the Cambrian period, affording stable multi-agent environments to emerge. The process of consciousness is an autonomous virtualization memory, which serializes and unifies the parallel and subconscious simulations of the hidden states of the world that are largely due to other agents and the self with the objective to extract norms. These norms are in turn projected as value onto the parallel simulation and control systems that are driving action. This functional hypothesis is mapped onto the brainstem, midbrain and the thalamo-cortical and cortico-cortical systems and analysed with respect to our understanding of deficits of consciousness. Subsequently, some of the implications and predictions of DACtoc are outlined, in particular, the prediction that normative bootstrapping of conscious agents is predicated on an intentionality prior. In the view advanced here, human consciousness constitutes the ultimate evolutionary transition by allowing agents to become autonomous with respect to their evolutionary priors leading to a post-biological Anthropocene. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID
Synthetic consciousness: the distributed adaptive control perspective.
Verschure, Paul F M J
2016-08-19
Understanding the nature of consciousness is one of the grand outstanding scientific challenges. The fundamental methodological problem is how phenomenal first person experience can be accounted for in a third person verifiable form, while the conceptual challenge is to both define its function and physical realization. The distributed adaptive control theory of consciousness (DACtoc) proposes answers to these three challenges. The methodological challenge is answered relative to the hard problem and DACtoc proposes that it can be addressed using a convergent synthetic methodology using the analysis of synthetic biologically grounded agents, or quale parsing. DACtoc hypothesizes that consciousness in both its primary and secondary forms serves the ability to deal with the hidden states of the world and emerged during the Cambrian period, affording stable multi-agent environments to emerge. The process of consciousness is an autonomous virtualization memory, which serializes and unifies the parallel and subconscious simulations of the hidden states of the world that are largely due to other agents and the self with the objective to extract norms. These norms are in turn projected as value onto the parallel simulation and control systems that are driving action. This functional hypothesis is mapped onto the brainstem, midbrain and the thalamo-cortical and cortico-cortical systems and analysed with respect to our understanding of deficits of consciousness. Subsequently, some of the implications and predictions of DACtoc are outlined, in particular, the prediction that normative bootstrapping of conscious agents is predicated on an intentionality prior. In the view advanced here, human consciousness constitutes the ultimate evolutionary transition by allowing agents to become autonomous with respect to their evolutionary priors leading to a post-biological Anthropocene.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The
Adaptive neuro-control for large flexible structures
NASA Astrophysics Data System (ADS)
Krishna Kumar, K.; Montgomery, L.
1992-12-01
Special problems related to control system design for large flexible structures include the inherent low damping, wide range of modal frequencies, unmodeled dynamics, and possibility of system failures. Neuro-control, which combines concepts from artificial neural networks and adaptive control is investigated as a solution to some of these problems. Specifically, the roles of neutro-controllers in learning unmodeled dynamics and adaptive control for system failures are investigated. The neuro-controller synthesis procedure and its capabilities in adaptively controlling the structure are demonstrated using a mathematical model of an existing structure, the advanced control evaluation for systems test article located at NASA/Marshall Space Flight Center. Also, the real-time adaptive capability of neuro-controllers is demonstrated via an experiment utilizing a flexible clamped-free beam equipped with an actuator that uses a bang-bang controller.
Experimental investigation of adaptive control of a parallel manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.
1992-01-01
The implementation of a joint-space adaptive control scheme used to control non-compliant motion of a Stewart Platform-based Manipulator (SPBM) is presented. The SPBM is used in a facility called the Hardware Real-Time Emulator (HRTE) developed at Goddard Space Flight Center to emulate space operations. The SPBM is comprised of two platforms and six linear actuators driven by DC motors, and possesses six degrees of freedom. The report briefly reviews the development of the adaptive control scheme which is composed of proportional-derivative (PD) controllers whose gains are adjusted by an adaptation law driven by the errors between the desired and actual trajectories of the SPBM actuator lengths. The derivation of the adaptation law is based on the concept of model reference adaptive control (MRAC) and Lyapunov direct method under the assumption that SPBM motion is slow as compared to the controller adaptation rate. An experimental study is conducted to evaluate the performance of the adaptive control scheme implemented to control the SPBM to track a vertical and circular paths under step changes in payload. Experimental results show that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.
Adaptive Force Control For Compliant Motion Of A Robot
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1995-01-01
Two adaptive control schemes offer robust solutions to problem of stable control of forces of contact between robotic manipulator and objects in its environment. They are called "adaptive admittance control" and "adaptive compliance control." Both schemes involve use of force-and torque sensors that indicate contact forces. These schemes performed well when tested in computational simulations in which they were used to control seven-degree-of-freedom robot arm in executing contact tasks. Choice between admittance or compliance control is dictated by requirements of the application at hand.
Pulse front control with adaptive optics
NASA Astrophysics Data System (ADS)
Sun, B.; Salter, P. S.; Booth, M. J.
2016-03-01
The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.
Adaptive Control Techniques for Large Space Structures
1989-01-06
Point Analy- sis", submitted, IEEE Trans. on Circuits and Systems; Special Issue on Adaptive Systems, Sept. 1987. I.M.Y. Mareels, R.R. Bitmead, M. Gevers...adaptive system with unmodelled dynamics," Proc. IFAC Workshop on Adaptive Systems, San Francisco, CA. C.A. Desoer , R.W. Liu, J. Murray and R. Sacks...June 1980. C.A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic Press, * 1975. J.C. Doyle and G. Stein (1981
Enhanced vaccine control of epidemics in adaptive networks.
Shaw, Leah B; Schwartz, Ira B
2010-04-01
We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.
Adaptive and Optimal Control of Stochastic Dynamical Systems
2015-09-14
control and stochastic differential games . Stochastic linear-quadratic, continuous time, stochastic control problems are solved for systems with noise...control problems for systems with arbitrary correlated n 15. SUBJECT TERMS Adaptive control, optimal control, stochastic differential games 16. SECURITY...explicit results have been obtained for problems of stochastic control and stochastic differential games . Stochastic linear- quadratic, continuous time
Fractional adaptive control for an automatic voltage regulator.
Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A
2013-11-01
This paper presents the application of a direct Fractional Order Model Reference Adaptive Controller (FOMRAC) to an Automatic Voltage Regulator (AVR). A direct FOMRAC is a direct Model Reference Adaptive Control (MRAC), whose controller parameters are adjusted using fractional order differential equations. Four realizations of the FOMRAC were designed in this work, each one considering different orders for the plant model. The design procedure consisted of determining the optimal values of the fractional order and the adaptive gains for each adaptive law, using Genetic algorithm optimization. Comparisons were made among the four FOMRAC designs, a fractional order PID (FOPID), a classical PID, and four Integer Order Model Reference Adaptive Controllers (IOMRAC), showing that the FOMRAC can improve the controlled system behavior and its robustness with respect to model uncertainties. Finally, some performance indices are presented here for the controlled schemes, in order to show the advantages and disadvantages of the FOMRAC.
Adaptive control of bivalirudin in the cardiac intensive care unit.
Zhao, Qi; Edrich, Thomas; Paschalidis, Ioannis Ch
2015-02-01
Bivalirudin is a direct thrombin inhibitor used in the cardiac intensive care unit when heparin is contraindicated due to heparin-induced thrombocytopenia. Since it is not a commonly used drug, clinical experience with its dosing is sparse. In earlier work [1], we developed a dynamic system model that accurately predicts the effect of bivalirudin given dosage over time and patient physiological characteristics. This paper develops adaptive dosage controllers that regulate its effect to desired levels. To that end, and in the case that bivalirudin model parameters are available, we develop a Model Reference Control law. In the case that model parameters are unknown, an indirect Model Reference Adaptive Control scheme is applied to estimate model parameters first and then adapt the controller. Alternatively, direct Model Reference Adaptive Control is applied to adapt the controller directly without estimating model parameters first. Our algorithms are validated using actual patient data from a large hospital in the Boston area.
Continuum modeling of rate-dependent granular flows in SPH
NASA Astrophysics Data System (ADS)
Hurley, Ryan C.; Andrade, José E.
2017-01-01
We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.
Monitoring the Performance of a Neuro-Adaptive Controller
NASA Technical Reports Server (NTRS)
Schumann, Johann; Gupta, Pramod
2004-01-01
Traditional control has proven to be ineffective to deal with catastrophic changes or slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, robotics, or flexible manufacturing systems. Control systems which can adapt toward changes in the plant have been proposed as they offer many advantages (e.g., better performance, controllability of aircraft despite of a damaged wing). In the last few years, use of neural networks in adaptive controllers (neuro-adaptive control) has been studied actively. Neural networks of various architectures have been used successfully for online learning adaptive controllers. In such a typical control architecture, the neural network receives as an input the current deviation between desired and actual plant behavior and, by on-line training, tries to minimize this discrepancy (e.g.; by producing a control augmentation signal). Even though neuro-adaptive controllers offer many advantages, they have not been used in mission- or safety-critical applications, because performance and safety guarantees cannot b e provided at development time-a major prerequisite for safety certification (e.g., by the FAA or NASA). Verification and Validation (V&V) of an adaptive controller requires the development of new analysis techniques which can demonstrate that the control system behaves safely under all operating conditions. Because of the requirement to adapt toward unforeseen changes during operation, i.e., in real time, design-time V&V is not sufficient.
Monitoring the Performance of a Neuro-Adaptive Controller
NASA Technical Reports Server (NTRS)
Schumann, Johann; Gupta, Pramod
2004-01-01
Traditional control has proven to be ineffective to deal with catastrophic changes or slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, robotics, or flexible manufacturing systems. Control systems which can adapt toward changes in the plant have been proposed as they offer many advantages (e.g., better performance, controllability of aircraft despite of a damaged wing). In the last few years, use of neural networks in adaptive controllers (neuro-adaptive control) has been studied actively. Neural networks of various architectures have been used successfully for online learning adaptive controllers. In such a typical control architecture, the neural network receives as an input the current deviation between desired and actual plant behavior and, by on-line training, tries to minimize this discrepancy (e.g.; by producing a control augmentation signal). Even though neuro-adaptive controllers offer many advantages, they have not been used in mission- or safety-critical applications, because performance and safety guarantees cannot b e provided at development time-a major prerequisite for safety certification (e.g., by the FAA or NASA). Verification and Validation (V&V) of an adaptive controller requires the development of new analysis techniques which can demonstrate that the control system behaves safely under all operating conditions. Because of the requirement to adapt toward unforeseen changes during operation, i.e., in real time, design-time V&V is not sufficient.
Sense of Control and Career Adaptability among Undergraduate Students
ERIC Educational Resources Information Center
Duffy, Ryan D.
2010-01-01
The current study examined the direct relation of sense of control to career adaptability, as well as its ability to function as a mediator for other established predictors, with a sample of 1,991 undergraduate students. Students endorsing a greater sense of personal control were more likely to view themselves as adaptable to the world of work.…
Sense of Control and Career Adaptability among Undergraduate Students
ERIC Educational Resources Information Center
Duffy, Ryan D.
2010-01-01
The current study examined the direct relation of sense of control to career adaptability, as well as its ability to function as a mediator for other established predictors, with a sample of 1,991 undergraduate students. Students endorsing a greater sense of personal control were more likely to view themselves as adaptable to the world of work.…
Adaptive controller for a needle free jet-injector system.
Modak, Ashin; Hogan, N Catherine; Hunter, Ian W
2015-01-01
A nonlinear, sliding mode adaptive controller was created for a needle-free jet injection system. The controller was based on a simplified lumped-sum parameter model of the jet-injection mechanics. The adaptive control scheme was compared to a currently-used Feed-forward+PID controller in both ejection of water into air, and injection of dye into ex-vivo porcine tissue. The adaptive controller was more successful in trajectory tracking and was more robust to the biological variations caused by a tissue load.
Closing the Certification Gaps in Adaptive Flight Control Software
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.
2008-01-01
Over the last five decades, extensive research has been performed to design and develop adaptive control systems for aerospace systems and other applications where the capability to change controller behavior at different operating conditions is highly desirable. Although adaptive flight control has been partially implemented through the use of gain-scheduled control, truly adaptive control systems using learning algorithms and on-line system identification methods have not seen commercial deployment. The reason is that the certification process for adaptive flight control software for use in national air space has not yet been decided. The purpose of this paper is to examine the gaps between the state-of-the-art methodologies used to certify conventional (i.e., non-adaptive) flight control system software and what will likely to be needed to satisfy FAA airworthiness requirements. These gaps include the lack of a certification plan or process guide, the need to develop verification and validation tools and methodologies to analyze adaptive controller stability and convergence, as well as the development of metrics to evaluate adaptive controller performance at off-nominal flight conditions. This paper presents the major certification gap areas, a description of the current state of the verification methodologies, and what further research efforts will likely be needed to close the gaps remaining in current certification practices. It is envisioned that closing the gap will require certain advances in simulation methods, comprehensive methods to determine learning algorithm stability and convergence rates, the development of performance metrics for adaptive controllers, the application of formal software assurance methods, the application of on-line software monitoring tools for adaptive controller health assessment, and the development of a certification case for adaptive system safety of flight.
Adaptive jitter control for tracker line of sight stabilization
NASA Astrophysics Data System (ADS)
Gibson, Steve; Tsao, Tsu-Chin; Herrick, Dan; Beairsto, Christopher; Grimes, Ronnie; Harper, Todd; Radtke, Jeff; Roybal, Benito; Spray, Jay; Squires, Stephen; Tellez, Dave; Thurston, Michael
2010-08-01
A field test experiment on a range tracking telescope at the U. S. Army's White Sands Missile Range is exploring the use of recently developed adaptive control methods to minimize track loop jitter. Gimbal and platform vibration are the main sources of jitter in the experiments, although atmospheric turbulence also is a factor. In initial experiments, the adaptive controller reduced the track loop jitter significantly in frequency ranges beyond the bandwidth of the existing track loop. This paper presents some of the initial experimental results along with analysis of the performance of the adaptive control loop. The paper also describes the adaptive control scheme, its implementation on the WSMR telescope and the system identification required for adaptive control.
Dynamics modeling and adaptive control of flexible manipulators
NASA Technical Reports Server (NTRS)
Sasiadek, J. Z.
1991-01-01
An application of Model Reference Adaptive Control (MRAC) to the position and force control of flexible manipulators and robots is presented. A single-link flexible manipulator is analyzed. The problem was to develop a mathematical model of a flexible robot that is accurate. The objective is to show that the adaptive control works better than 'conventional' systems and is suitable for flexible structure control.
Adaptive sliding mode control for a class of chaotic systems
NASA Astrophysics Data System (ADS)
Farid, R.; Ibrahim, A.; Zalam, B.
2015-03-01
Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.
Adaptive sliding mode control for a class of chaotic systems
Farid, R.; Ibrahim, A.; Zalam, B.
2015-03-30
Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.
Systems and Methods for Derivative-Free Adaptive Control
NASA Technical Reports Server (NTRS)
Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.
Internal Models in Sensorimotor Integration: Perspectives from Adaptive Control Theory
Tin, Chung; Poon, Chi-Sang
2007-01-01
Internal model and adaptive control are empirical and mathematical paradigms that have evolved separately to describe learning control processes in brain systems and engineering systems, respectively. This paper presents a comprehensive appraisal of the correlation between these paradigms with a view to forging a unified theoretical framework that may benefit both disciplines. It is suggested that the classic equilibrium-point theory of impedance control of arm movement is analogous to continuous gain-scheduling or high-gain adaptive control within or across movement trials, respectively, and that the recently proposed inverse internal model is akin to adaptive sliding control originally for robotic manipulator applications. Modular internal models architecture for multiple motor tasks is a form of multi-model adaptive control. Stochastic methods such as generalized predictive control, reinforcement learning, Bayesian learning and Hebbian feedback covariance learning are reviewed and their possible relevance to motor control is discussed. Possible applicability of Luenberger observer and extended Kalman filter to state estimation problems such as sensorimotor prediction or the resolution of vestibular sensory ambiguity is also discussed. The important role played by vestibular system identification in postural control suggests an indirect adaptive control scheme whereby system states or parameters are explicitly estimated prior to the implementation of control. This interdisciplinary framework should facilitate the experimental elucidation of the mechanisms of internal model in sensorimotor systems and the reverse engineering of such neural mechanisms into novel brain-inspired adaptive control paradigms in future. PMID:16135881
Multiple Model Parameter Adaptive Control for In-Flight Simulation.
1988-03-01
dynamics of an aircraft. The plant is control- lable by a proportional-plus-integral ( PI ) control law. This section describes two methods of calculating...adaptive model-following PI control law [20-24]. The control law bases its control gains upon the parameters of a linear difference equation model which
Synthesis of nonlinear adaptive controller for a batch distillation.
Jana, Amiya K
2007-02-01
A nonlinear adaptive control strategy is proposed for a binary batch distillation column. The hybrid control algorithm comprises a generic model controller (GMC) and a nonlinear adaptive state estimator (ASE). The adaptive observation scheme mainly estimates the imprecisely known parameters based on the available tray temperature measurements. The sensitivity of the proposed estimator is investigated with respect to the effect of initialization error, unmeasured disturbance and uncertainty. Then, a comparative study is carried out between the derived nonlinear GMC-ASE controller and a traditional proportional integral law in terms of set point tracking and disturbance rejection performance. The study also includes the effect of measurement noise and parametric uncertainty on the closed-loop performance. The proposed adaptive control algorithm is shown to be quite promising due to the exponential error convergence capability of the ASE estimator in addition to the high-quality control action provided by the GMC controller.
Parameter testing for lattice filter based adaptive modal control systems
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Williams, J. P.; Montgomery, R. C.
1983-01-01
For Large Space Structures (LSS), an adaptive control system is highly desirable. The present investigation is concerned with an 'indirect' adaptive control scheme wherein the system order, mode shapes, and modal amplitudes are estimated on-line using an identification scheme based on recursive, least-squares, lattice filters. Using the identified model parameters, a modal control law based on a pole-placement scheme with the objective of vibration suppression is employed. A method is presented for closed loop adaptive control of a flexible free-free beam. The adaptive control scheme consists of a two stage identification scheme working in series and a modal pole placement control scheme. The main conclusion from the current study is that the identified parameters cannot be directly used for controller design purposes.
Parameter testing for lattice filter based adaptive modal control systems
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Williams, J. P.; Montgomery, R. C.
1983-01-01
For Large Space Structures (LSS), an adaptive control system is highly desirable. The present investigation is concerned with an 'indirect' adaptive control scheme wherein the system order, mode shapes, and modal amplitudes are estimated on-line using an identification scheme based on recursive, least-squares, lattice filters. Using the identified model parameters, a modal control law based on a pole-placement scheme with the objective of vibration suppression is employed. A method is presented for closed loop adaptive control of a flexible free-free beam. The adaptive control scheme consists of a two stage identification scheme working in series and a modal pole placement control scheme. The main conclusion from the current study is that the identified parameters cannot be directly used for controller design purposes.
An averaging analysis of discrete-time indirect adaptive control
NASA Technical Reports Server (NTRS)
Phillips, Stephen M.; Kosut, Robert L.; Franklin, Gene F.
1988-01-01
An averaging analysis of indirect, discrete-time, adaptive control systems is presented. The analysis results in a signal-dependent stability condition and accounts for unmodeled plant dynamics as well as exogenous disturbances. This analysis is applied to two discrete-time adaptive algorithms: an unnormalized gradient algorithm and a recursive least-squares (RLS) algorithm with resetting. Since linearization and averaging are used for the gradient analysis, a local stability result valid for small adaptation gains is found. For RLS with resetting, the assumption is that there is a long time between resets. The results for the two algorithms are virtually identical, emphasizing their similarities in adaptive control.
Adaptive control with variable dead-zone nonlinearities
NASA Technical Reports Server (NTRS)
Orlicki, D.; Valavani, L.; Athans, M.; Stein, G.
1984-01-01
It has been found that fixed error dead-zones as defined in the existing literature result in serious degradation of performance, due to the conservativeness which characterizes the determination of their width. In the present paper, variable width dead-zones are derived for the adaptive control of plants with unmodeled dynamics. The derivation makes use of information available about the unmodeled dynamics both a priori as well as during the adaptation process, so as to stabilize the adaptive loop and at the same time overcome the conservativeness and performance limitations of fixed-dead zone adaptive or fixed gain controllers.
A hybrid adaptive control strategy for a smart prosthetic hand.
Chen, Cheng-Hung; Naidu, D Subbaram; Perez-Gracia, Alba; Schoen, Marco P
2009-01-01
This paper presents a hybrid of a soft computing technique of adaptive neuro-fuzzy inference system (ANFIS) and a hard computing technique of adaptive control for a two-dimensional movement of a prosthetic hand with a thumb and index finger. In particular, ANFIS is used for inverse kinematics, and the adaptive control is used for linearized dynamics to minimize tracking error. The simulations of this hybrid controller, when compared with the proportional-integral-derivative (PID) controller showed enhanced performance. Work is in progress to extend this methodology to a five-fingered, three-dimensional prosthetic hand.
State of the art in adaptive control of robotic systems
NASA Technical Reports Server (NTRS)
Tosunoglu, Sabri; Tesar, Delbert
1988-01-01
An up-to-date assessment of adaptive control technology as applied to robotics is presented. Although the field is relatively new and does not yet represent a mature discipline, considerable attention for the design of sophisticated robot controllers has occured. In this presentation, adaptive control methods are divided into model reference adaptive systems and self-tuning regulators, with further definition of various approaches given in each class. The similarity and distinct features of the designed controllers are delineated and tabulated to enhance comparative review.
Global adaptive control for uncertain nonaffine nonlinear hysteretic systems.
Liu, Yong-Hua; Huang, Liangpei; Xiao, Dongming; Guo, Yong
2015-09-01
In this paper, the global output tracking is investigated for a class of uncertain nonlinear hysteretic systems with nonaffine structures. By combining the solution properties of the hysteresis model with the novel backstepping approach, a robust adaptive control algorithm is developed without constructing a hysteresis inverse. The proposed control scheme is further modified to tackle the bounded disturbances by adaptively estimating their bounds. It is rigorously proven that the designed adaptive controllers can guarantee global stability of the closed-loop system. Two numerical examples are provided to show the effectiveness of the proposed control schemes.
Growth-rate dependent global effects on gene expression in bacteria
Klumpp, Stefan; Zhang, Zhongge; Hwa, Terence
2010-01-01
Summary Bacterial gene expression depends not only on specific regulations but also directly on bacterial growth, because important global parameters such as the abundance of RNA polymerases and ribosomes are all growth-rate dependent. Understanding these global effects is necessary for a quantitative understanding of gene regulation and for the robust design of synthetic genetic circuits. The observed growth-rate dependence of constitutive gene expression can be explained by a simple model using the measured growth-rate dependence of the relevant cellular parameters. More complex growth dependences for genetic circuits involving activators, repressors and feedback control were analyzed, and salient features were verified experimentally using synthetic circuits. The results suggest a novel feedback mechanism mediated by general growth-dependent effects and not requiring explicit gene regulation, if the expressed protein affects cell growth. This mechanism can lead to growth bistability and promote the acquisition of important physiological functions such as antibiotic resistance and tolerance (persistence). PMID:20064380
Hormesis and adaptive cellular control systems
Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...
Adaptive P300 based control system
Jin, Jing; Allison, Brendan Z.; Sellers, Eric W.; Brunner, Clemens; Horki, Petar; Wang, Xingyu; Neuper, Christa
2015-01-01
An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e., 12 columns and 7 rows). The 9- and 14-flash A & B paradigms present all items of the 12 × 7 matrix three times using either nine or 14 flashes (instead of 19), decreasing the amount of time to present stimuli. Compared to 9-flash A, 9-flash B decreased the likelihood that neighboring items would flash when the target was not flashing, thereby reducing interference from items adjacent to targets. 14-flash A also reduced adjacent item interference and 14-flash B additionally eliminated successive (double) flashes of the same item. Results showed that accuracy and bit rate of the adaptive system were higher than the non-adaptive system. In addition, 9- and 14-flash B produced significantly higher performance than their respective A conditions. The results also show the trend that the 14-flash B paradigm was better than the 19-flash pattern for naïve users. PMID:21474877
Hormesis and adaptive cellular control systems
Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...
Projection Operator: A Step Towards Certification of Adaptive Controllers
NASA Technical Reports Server (NTRS)
Larchev, Gregory V.; Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
One of the major barriers to wider use of adaptive controllers in commercial aviation is the lack of appropriate certification procedures. In order to be certified by the Federal Aviation Administration (FAA), an aircraft controller is expected to meet a set of guidelines on functionality and reliability while not negatively impacting other systems or safety of aircraft operations. Due to their inherent time-variant and non-linear behavior, adaptive controllers cannot be certified via the metrics used for linear conventional controllers, such as gain and phase margin. Projection Operator is a robustness augmentation technique that bounds the output of a non-linear adaptive controller while conforming to the Lyapunov stability rules. It can also be used to limit the control authority of the adaptive component so that the said control authority can be arbitrarily close to that of a linear controller. In this paper we will present the results of applying the Projection Operator to a Model-Reference Adaptive Controller (MRAC), varying the amount of control authority, and comparing controller s performance and stability characteristics with those of a linear controller. We will also show how adjusting Projection Operator parameters can make it easier for the controller to satisfy the certification guidelines by enabling a tradeoff between controller s performance and robustness.
Adaptive Fuzzy Control of a Direct Drive Motor
NASA Technical Reports Server (NTRS)
Medina, E.; Kim, Y. T.; Akbaradeh-T., M. -R.
1997-01-01
This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is verified by simulation results.
Adaptive Fuzzy Control of a Direct Drive Motor: Experimental Aspects
NASA Technical Reports Server (NTRS)
Medina, E.; Akbarzadeh-T, M.-R.; Kim, Y. T.
1998-01-01
This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is experimentally verified. The real-time performance is compared with simulation results.
An adaptive control scheme for a flexible manipulator
NASA Technical Reports Server (NTRS)
Yang, T. C.; Yang, J. C. S.; Kudva, P.
1987-01-01
The problem of controlling a single link flexible manipulator is considered. A self-tuning adaptive control scheme is proposed which consists of a least squares on-line parameter identification of an equivalent linear model followed by a tuning of the gains of a pole placement controller using the parameter estimates. Since the initial parameter values for this model are assumed unknown, the use of arbitrarily chosen initial parameter estimates in the adaptive controller would result in undesirable transient effects. Hence, the initial stage control is carried out with a PID controller. Once the identified parameters have converged, control is transferred to the adaptive controller. Naturally, the relevant issues in this scheme are tests for parameter convergence and minimization of overshoots during control switch-over. To demonstrate the effectiveness of the proposed scheme, simulation results are presented with an analytical nonlinear dynamic model of a single link flexible manipulator.
Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model
NASA Technical Reports Server (NTRS)
Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.
2010-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.
Design of Low Complexity Model Reference Adaptive Controllers
NASA Technical Reports Server (NTRS)
Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan
2012-01-01
Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.
Discrete-time adaptive control of robot manipulators
NASA Technical Reports Server (NTRS)
Tarokh, M.
1989-01-01
A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that asymptotic trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation.
Adaptive Force And Position Control For Robots
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
Control system causes end effector of robot manipulator to follow prescribed trajectory and applies desired force or torque to object manipulating or in contact. Characterized by hybrid control architecture, where positions and orientations along unconstrained coordinate axes controlled by position-control subsystem, while forces and torques along constrained coordinate axes controlled by force-control subsystem. Compensates for dynamic cross-coupling between force-and position-control loops and does not require knowledge of complicated model of dynamics of manipulator and environment.
Strain Rate Dependent Modeling of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Stouffer, Donald C.
1999-01-01
A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Strain rate dependent inelastic constitutive equations have been developed to model the polymer matrix, and have been incorporated into a micromechanics approach to analyze polymer matrix composites. The Hashin failure criterion has been implemented within the micromechanics results to predict ply failure strengths. The deformation model has been implemented within LS-DYNA, a commercially available transient dynamic finite element code. The deformation response and ply failure stresses for the representative polymer matrix composite AS4/PEEK have been predicted for a variety of fiber orientations and strain rates. The predicted results compare favorably to experimentally obtained values.
Strain rate dependence in plasticized and un-plasticized PVC
NASA Astrophysics Data System (ADS)
Kendall, M. J.; Siviour, C. R.
2012-08-01
An experimental and analytical investigation has been made into the mechanical behaviour of two poly (vinyl chloride) (PVC) polymers - an un-plasticized PVC and a diisononyl phthalate (DINP)-plasticized PVC. Measurements of the compressive stress-strain behaviour of the PVCs at strain rates ranging from 10-3 to 103s-1 and temperatures from - 60 to 100∘C are presented. Dynamic Mechanical Analysis was also performed in order to understand the material transitions observed in compression testing as the strain rate is increased. This investigation develops a better understanding of the interplay between the temperature dependence and rate dependence of polymers, with a focus on locating the temperature and rate-dependent material transitions that occur during high rate testing.
Micromechanical modeling of rate-dependent behavior of Connective tissues.
Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M
2017-03-07
In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of the presented model at different strain rates for rat tail tendon (RTT) and human patellar tendon (HPT) are in good agreement with experimental data. Results of incremental stress-relaxation test are also presented to investigate both instantaneous and viscoelastic behavior of connective tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rate Dependent Deformation and Strength Analysis of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Stouffer, Donald C.
1999-01-01
A research program is being undertaken to develop rate dependent deformation and failure models for the analysis of polymer matrix composite materials. In previous work in this program, strain-rate dependent inelastic constitutive equations used to analyze polymers have been implemented into a mechanics of materials based composite micromechanics method. In the current work, modifications to the micromechanics model have been implemented to improve the calculation of the effective inelastic strain. Additionally, modifications to the polymer constitutive model are discussed in which pressure dependence is incorporated into the equations in order to improve the calculation of constituent and composite shear stresses. The Hashin failure criterion is implemented into the analysis method to allow for the calculation of ply level failure stresses. The deformation response and failure stresses for two representative uniaxial polymer matrix composites, IM7/977-2 and AS4-PEEK, are predicted for varying strain rates and fiber orientations. The predicted results compare favorably to experimentally obtained values.
Identification and dual adaptive control of a turbojet engine
NASA Technical Reports Server (NTRS)
Merrill, W.; Leininger, G.
1979-01-01
The objective of this paper is to utilize the design methods of modern control theory to realize a dual-adaptive feedback control unit for a highly nonlinear single spool airbreathing turbojet engine. Using a very detailed and accurate simulation of the nonlinear engine as the data source, linear operating point models of unspecified dimension are identified. Feedback control laws are designed at each operating point for a prespecified set of sampling rates using sampled-data output regulator theory. The control system sampling rate is determined by an adaptive sampling algorithm in correspondence with turbojet engine performance. The result is a dual-adaptive control law that is functionally dependent upon the sampling rate selected and environmental operating conditions. Simulation transients demonstrate the utility of the dual-adaptive design to improve on-board computer utilization while maintaining acceptable levels of engine performance.
Parameter Estimation for a Hybrid Adaptive Flight Controller
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Nguyen, Nhan T.; Kaneshige, John; Krishnakumar, Kalmanje
2009-01-01
This paper expands on the hybrid control architecture developed at the NASA Ames Research Center by addressing issues related to indirect adaptation using the recursive least squares (RLS) algorithm. Specifically, the hybrid control architecture is an adaptive flight controller that features both direct and indirect adaptation techniques. This paper will focus almost exclusively on the modifications necessary to achieve quality indirect adaptive control. Additionally this paper will present results that, using a full non -linear aircraft model, demonstrate the effectiveness of the hybrid control architecture given drastic changes in an aircraft s dynamics. Throughout the development of this topic, a thorough discussion of the RLS algorithm as a system identification technique will be provided along with results from seven well-known modifications to the popular RLS algorithm.
Disturbance Accommodating Adaptive Control with Application to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan
2012-01-01
Adaptive control techniques are well suited to applications that have unknown modeling parameters and poorly known operating conditions. Many physical systems experience external disturbances that are persistent or continually recurring. Flexible structures and systems with compliance between components often form a class of systems that fail to meet standard requirements for adaptive control. For these classes of systems, a residual mode filter can restore the ability of the adaptive controller to perform in a stable manner. New theory will be presented that enables adaptive control with accommodation of persistent disturbances using residual mode filters. After a short introduction to some of the control challenges of large utility-scale wind turbines, this theory will be applied to a high-fidelity simulation of a wind turbine.
Adaptive integral robust control and application to electromechanical servo systems.
Deng, Wenxiang; Yao, Jianyong
2017-03-01
This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers.
Adaptive optimization and control using neural networks
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal
2006-01-01
This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.
Adaptive tracking control for a class of uncertain chaotic systems
NASA Astrophysics Data System (ADS)
Chen, Feng-Xiang; Wang, Wei; Zhang, Wei-Dong
2007-09-01
The paper is concerned with adaptive tracking problem for a class of chaotic system with time-varying uncertainty, but bounded by norm polynomial. Based on adaptive technique, it proposes a novel controller to asymptotically track the arbitrary desired bounded trajectory. Simulation on the Rossler chaotic system is performed and the result verifies the effectiveness of the proposed method.
Growth-rate-dependent dynamics of a bacterial genetic oscillator
NASA Astrophysics Data System (ADS)
Osella, Matteo; Lagomarsino, Marco Cosentino
2013-01-01
Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular “chassis” in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.
Stability and Performance Metrics for Adaptive Flight Control
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan; VanEykeren, Luarens
2009-01-01
This paper addresses the problem of verifying adaptive control techniques for enabling safe flight in the presence of adverse conditions. Since the adaptive systems are non-linear by design, the existing control verification metrics are not applicable to adaptive controllers. Moreover, these systems are in general highly uncertain. Hence, the system's characteristics cannot be evaluated by relying on the available dynamical models. This necessitates the development of control verification metrics based on the system's input-output information. For this point of view, a set of metrics is introduced that compares the uncertain aircraft's input-output behavior under the action of an adaptive controller to that of a closed-loop linear reference model to be followed by the aircraft. This reference model is constructed for each specific maneuver using the exact aerodynamic and mass properties of the aircraft to meet the stability and performance requirements commonly accepted in flight control. The proposed metrics are unified in the sense that they are model independent and not restricted to any specific adaptive control methods. As an example, we present simulation results for a wing damaged generic transport aircraft with several existing adaptive controllers.
L1 adaptive output-feedback control architectures
NASA Astrophysics Data System (ADS)
Kharisov, Evgeny
This research focuses on development of L 1 adaptive output-feedback control. The objective is to extend the L1 adaptive control framework to a wider class of systems, as well as obtain architectures that afford more straightforward tuning. We start by considering an existing L1 adaptive output-feedback controller for non-strictly positive real systems based on piecewise constant adaptation law. It is shown that L 1 adaptive control architectures achieve decoupling of adaptation from control, which leads to bounded away from zero time-delay and gain margins in the presence of arbitrarily fast adaptation. Computed performance bounds provide quantifiable performance guarantees both for system output and control signal in transient and steady state. A noticeable feature of the L1 adaptive controller is that its output behavior can be made close to the behavior of a linear time-invariant system. In particular, proper design of the lowpass filter can achieve output response, which almost scales for different step reference commands. This property is relevant to applications with human operator in the loop (for example: control augmentation systems of piloted aircraft), since predictability of the system response is necessary for adequate performance of the operator. Next we present applications of the L1 adaptive output-feedback controller in two different fields of engineering: feedback control of human anesthesia, and ascent control of a NASA crew launch vehicle (CLV). The purpose of the feedback controller for anesthesia is to ensure that the patient's level of sedation during surgery follows a prespecified profile. The L1 controller is enabled by anesthesiologist after he/she achieves sufficient patient sedation level by introducing sedatives manually. This problem formulation requires safe switching mechanism, which avoids controller initialization transients. For this purpose, we used an L1 adaptive controller with special output predictor initialization routine
Dual-thread parallel control strategy for ophthalmic adaptive optics.
Yu, Yongxin; Zhang, Yuhua
To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope.
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
Adaptive Importance Sampling for Control and Inference
NASA Astrophysics Data System (ADS)
Kappen, H. J.; Ruiz, H. C.
2016-03-01
Path integral (PI) control problems are a restricted class of non-linear control problems that can be solved formally as a Feynman-Kac PI and can be estimated using Monte Carlo sampling. In this contribution we review PI control theory in the finite horizon case. We subsequently focus on the problem how to compute and represent control solutions. We review the most commonly used methods in robotics and control. Within the PI theory, the question of how to compute becomes the question of importance sampling. Efficient importance samplers are state feedback controllers and the use of these requires an efficient representation. Learning and representing effective state-feedback controllers for non-linear stochastic control problems is a very challenging, and largely unsolved, problem. We show how to learn and represent such controllers using ideas from the cross entropy method. We derive a gradient descent method that allows to learn feed-back controllers using an arbitrary parametrisation. We refer to this method as the path integral cross entropy method or PICE. We illustrate this method for some simple examples. The PI control methods can be used to estimate the posterior distribution in latent state models. In neuroscience these problems arise when estimating connectivity from neural recording data using EM. We demonstrate the PI control method as an accurate alternative to particle filtering.
Basic Research on Adaptive Model Algorithmic Control
1985-12-01
Control Conference. Richalet, J., A. Rault, J.L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial...pp.977-982. Richalet, J., A. Rault, J. L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial processes
Adaptive filter design using recurrent cerebellar model articulation controller.
Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S
2010-07-01
A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.
Novel hybrid adaptive controller for manipulation in complex perturbation environments.
Smith, Alex M C; Yang, Chenguang; Ma, Hongbin; Culverhouse, Phil; Cangelosi, Angelo; Burdet, Etienne
2015-01-01
In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing.
Novel Hybrid Adaptive Controller for Manipulation in Complex Perturbation Environments
Smith, Alex M. C.; Yang, Chenguang; Ma, Hongbin; Culverhouse, Phil; Cangelosi, Angelo; Burdet, Etienne
2015-01-01
In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing. PMID:26029916
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.
1992-01-01
A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).
Actuator placement in prestressed adaptive trusses for vibration control
NASA Technical Reports Server (NTRS)
Jalihal, P.; Utku, Senol; Wada, Ben K.
1993-01-01
This paper describes the optimal location selection of actuators for vibration control in prestressed adaptive trusses. Since prestressed adaptive trusses are statically indeterminate, the actuators to be used for vibration control purposes must work against (1) existing static axial prestressing forces, (2) static axial forces caused by the actuation, and (3) dynamic axial forces caused by the motion of the mass. In statically determinate adaptive trusses (1) and (2) are non - existing. The actuator placement problem in statically indeterminate trusses is therefore governed by the actuation energy and the actuator strength requirements. Assuming output feedback type control of selected vibration modes in autonomous systems, a procedure is given for the placement of vibration controlling actuators in prestressed adaptive trusses.
Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.
Peng, Jinzhu; Yu, Jie; Wang, Jie
2014-07-01
In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive Wavefront Calibration and Control for the Gemini Planet Imager
Poyneer, L A; Veran, J
2007-02-02
Quasi-static errors in the science leg and internal AO flexure will be corrected. Wavefront control will adapt to current atmospheric conditions through Fourier modal gain optimization, or the prediction of atmospheric layers with Kalman filtering.
Digital adaptive controllers for VTOL vehicles. Volume 1: Concept evaluation
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.; Pratt, S. G.
1979-01-01
A digital self-adaptive flight control system was developed for flight test in the VTOL approach and landing technology (VALT) research aircraft (a modified CH-47 helicopter). The control laws accept commands from an automatic on-board guidance system. The primary objective of the control laws is to provide good command-following with a minimum cross-axis response. Three attitudes and vertical velocity are separately commanded. Adaptation of the control laws is based on information from rate and attitude gyros and a vertical velocity measurement. The final design resulted from a comparison of two different adaptive concepts--one based on explicit parameter estimates from a real-time maximum-likelihood estimation algorithm, the other based on an implicit model reference adaptive system. The two designs were compared on the basis of performance and complexity.
Adaptive hybrid position/force control of robotic manipulators
NASA Technical Reports Server (NTRS)
Pourboghrat, F.
1987-01-01
The problem of position and force control for the compliant motion of the manipulators is considered. The external force and the position of the end-effector are related by a second order impedance function. The force control problem is then translated into a position control problem. For that, an adaptive controller is designed to achieve the compliant motion. The design uses the Liapunov's direct method to derive the adaptation law. The stability of the process is guaranteed from the Liapunov's stability theory. The controller does not require the knowledge of the system parameters for the implementation, and hence is easy for applications.
A geometric view of adaptive optics control: boiling atmosphere model
NASA Astrophysics Data System (ADS)
Wiberg, Donald M.; Max, Claire E.; Gavel, Donald T.
2004-10-01
The separation principle of optimal adaptive optics control is derived, and definitions of controllability and observability are introduced. An exact finite dimensional state space representation of the control system dynamics is obtained without the need for truncation in modes such as Zernikes. The uncertainty of sensing uncontrollable modes confuses present adaptive optics controllers. This uncertainty can be modeled by a Kalman filter. Reducing this uncertainty permits increased gain, increasing the Strehl, which is done by an optimal control law derived here. A general model of the atmosphere is considered, including boiling.
Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2012-01-01
This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.
Force reflecting teleoperation with adaptive impedance control.
Love, Lonnie J; Book, Wayne J
2004-02-01
Experimentation and a survey of the literature clearly show that contact stability in a force reflecting teleoperation system requires high levels of damping on the master robot. However, excessive damping increases the energy required by an operator for commanding motion. The objective of this paper is to describe a new force reflecting teleoperation methodology that reduces operator energy requirements without sacrificing stability. We begin by describing a new approach to modeling and identifying the remote environment of the teleoperation system. We combine a conventional multi-input, multi-output recursive least squares (MIMO-RLS) system identification, identifying in real-time the remote environment impedance, with a discretized representation of the remote environment. This methodology generates a time-varying, position-dependent representation of the remote environment dynamics. Next, we adapt the target impedance of the master robot with respect to the dynamic model of the remote environment. The environment estimation and impedance adaptation are executed simultaneously and in real time. We demonstrate, through experimentation, that this approach significantly reduces the energy required by an operator to execute remote tasks while simultaneously providing sufficient damping to ensure contact stability.
L1 adaptive control of flexible spacecraft despite disturbances
NASA Astrophysics Data System (ADS)
Lee, Keum W.; Singh, Sahjendra N.
2012-11-01
The development of an L1 adaptive control system for the control of an orbiting spacecraft with flexible appendages is the subject of this paper. It is assumed that the system parameters are unknown and that disturbance input is acting on the spacecraft. The spacecraft is controlled by a moment producing device located on the central rigid body. Based on the L1 adaptive control theory, a new control law for large angle rotational maneuver of the spacecraft is derived. The control system includes a state predictor for generating the estimates of the unknown parameters for feedback. The control moment is obtained by passing an estimated control signal through a lowpass filter. The controller is synthesized using only the pitch angle and its derivative. In the closed-loop system, the pitch angle is controlled to the target angle and flexible modes are stabilized. The designed control law achieves quantifiable performance bounds by the choice of large adaptation gain. Interestingly, the controller structure is independent of the number of elastic modes retained in the model. Simulation results show that precise rotational maneuver of the spacecraft and vibration suppression in the presence of large parameter uncertainties and disturbance moment are accomplished using the L1 adaptive control law.
Adaptive control of waveguide modes using a directional coupler.
Lu, Peng; Shipton, Matthew; Wang, Anbo; Xu, Yong
2014-08-25
Using adaptive optics (AO) and a directional coupler, we demonstrate adaptive control of linearly polarized (LP) modes in a two mode fiber. The AO feedback is provided by the coupling ratio of the directional coupler, and does not depend on the spatial profiles of optical field distributions. As a proof of concept demonstration, this work confirms the feasibility of using AO and all fiber devices to control the waveguide modes in a multimode network in a quasi-distributed manner.
An improved adaptive control for repetitive motion of robots
NASA Technical Reports Server (NTRS)
Pourboghrat, F.
1989-01-01
An adaptive control algorithm is proposed for a class of nonlinear systems, such as robotic manipulators, which is capable of improving its performance in repetitive motions. When the task is repeated, the error between the desired trajectory and that of the system is guaranteed to decrease. The design is based on the combination of a direct adaptive control and a learning process. This method does not require any knowledge of the dynamic parameters of the system.
Adaptive Control of Bivalirudin in the Cardiac Intensive Care Unit
2015-01-01
SECURITY CLASSIFICATION OF: Bivalirudin is a direct thrombin inhibitor used in the cardiac intensive care unit when heparin is contraindicated due to...UU Approved for public release; distribution is unlimited. Adaptive Control of Bivalirudin in the Cardiac Intensive Care Unit The views, opinions and...Suite 5.300 Austin, TX 78712 -1532 ABSTRACT Adaptive Control of Bivalirudin in the Cardiac Intensive Care Unit Report Title Bivalirudin is a direct
Current Trends in Vector Control: Adapting to Selective Pressure
2008-11-16
UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023975 TITLE: Current Trends in Vector Control: Adapting to Selective...ADP023967 thru ADP023976 UNCLASSIFIED Current Trends in Vector Control: Adapting to Selective Pressure Kendra Lawrence MAJ, Medical Service Corps...of Research, is to mitigate the products to the forefront that may fulfill risk posed by arthropods to DoD mission needs. The Department of personnel
Adaptive Attitude Control of the Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Muse, Jonathan
2010-01-01
An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.
Adaptive fuzzy sliding-mode controller of uncertain nonlinear systems.
Wu, Tai-Zu; Juang, Yau-Tarng
2008-07-01
This paper deals with the design of adaptive fuzzy sliding-mode controllers for the T-S fuzzy model based on the Lyapunov function. It is shown that the Lyapunov function can be used to establish fuzzy sliding surfaces by solving a set of linear matrix inequalities (LMIs). The design of the fuzzy sliding surfaces and the adaptive fuzzy sliding-mode controllers is proposed. The adaptive mechanism is also used to deal with unknown parameter perturbations and external disturbances. Two examples illustrate the feasibility of the proposed methods.
Model-reference adaptive control system design technique
NASA Technical Reports Server (NTRS)
Sutherlin, D. W.; Boland, J. S., III
1973-01-01
This paper considers the model-reference adaptive control problem which has received considerable attention in the literature in the last few years. An adaptive control scheme is proposed which has terms in the Liapunov function used in the design procedure which are not included in previously proposed schemes. The relationship of this new scheme to existing schemes is shown by considering the root-loci of the linearized error equations between plant and model. Finally, a second order example is given which illustrates the difference between the two previously proposed model-reference adaptive methods and the one proposed in this paper.
Adaptive control with an expert system based supervisory level. Thesis
NASA Technical Reports Server (NTRS)
Sullivan, Gerald A.
1991-01-01
Adaptive control is presently one of the methods available which may be used to control plants with poorly modelled dynamics or time varying dynamics. Although many variations of adaptive controllers exist, a common characteristic of all adaptive control schemes, is that input/output measurements from the plant are used to adjust a control law in an on-line fashion. Ideally the adjustment mechanism of the adaptive controller is able to learn enough about the dynamics of the plant from input/output measurements to effectively control the plant. In practice, problems such as measurement noise, controller saturation, and incorrect model order, to name a few, may prevent proper adjustment of the controller and poor performance or instability result. In this work we set out to avoid the inadequacies of procedurally implemented safety nets, by introducing a two level control scheme in which an expert system based 'supervisor' at the upper level provides all the safety net functions for an adaptive controller at the lower level. The expert system is based on a shell called IPEX, (Interactive Process EXpert), that we developed specifically for the diagnosis and treatment of dynamic systems. Some of the more important functions that the IPEX system provides are: (1) temporal reasoning; (2) planning of diagnostic activities; and (3) interactive diagnosis. Also, because knowledge and control logic are separate, the incorporation of new diagnostic and treatment knowledge is relatively simple. We note that the flexibility available in the system to express diagnostic and treatment knowledge, allows much greater functionality than could ever be reasonably expected from procedural implementations of safety nets. The remainder of this chapter is divided into three sections. In section 1.1 we give a detailed review of the literature in the area of supervisory systems for adaptive controllers. In particular, we describe the evolution of safety nets from simple ad hoc techniques, up
Simple adaptive control for quadcopters with saturated actuators
NASA Astrophysics Data System (ADS)
Borisov, Oleg I.; Bobtsov, Alexey A.; Pyrkin, Anton A.; Gromov, Vladislav S.
2017-01-01
The stabilization problem for quadcopters with saturated actuators is considered. A simple adaptive output control approach is proposed. The control law "consecutive compensator" is augmented with the auxiliary integral loop and anti-windup scheme. Efficiency of the obtained regulator was confirmed by simulation of the quadcopter control problem.
Adaptive neuro-control for large flexible structures
NASA Astrophysics Data System (ADS)
Krishankumar, K.; Montgomery, L.
Special problems related to control system design for large flexible structures include the inherent low structural damping, wide range of modal frequencies, unmodeled dynamics, and possibility of system failures. Neuro-control, which combines concepts from artificial neural networks and adaptive control is investigated as a solution to some of these problems. Specifically, the roles of neuro-controllers in learning unmodeled dynamics and adaptive control for system failures are investigated. Satisfying these objectives requires training a neural network model (neuro-model) to simulate the actual structure, and then training a neural network controller (neuro-controller) to minimize structural response resulting from an arbitrary disturbance. The neuro-controller synthesis procedure and its capabilities in adaptively controlling the structure are demonstrated using a mathematical model of an existing structure, the Advanced Control Evaluation for Systems test article located at NASA/Marshall Space Flight Center, Huntsville, Alabama. Also, the real-time adaptive capability of neuro-controllers is demonstrated via an experiment utilizing a flexible clamped-free beam equipped with an actuator that uses a bang-bang controller.
Spectrum management considerations of adaptive power control in satellite networks
NASA Technical Reports Server (NTRS)
Sawitz, P.; Sullivan, T.
1983-01-01
Adaptive power control concepts for the compensation of rain attenuation are considered for uplinks and downlinks. The performance of example power-controlled and fixed-EIRP uplinks is compared in terms of C/Ns and C/Is. Provisional conclusions are drawn with regard to the efficacy of uplink and downlink power control orbit/spectrum utilization efficiency.
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive pitch control for load mitigation of wind turbines
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Tang, J.
2015-04-01
In this research, model reference adaptive control is examined for the pitch control of wind turbines that may suffer from reduced life owing to extreme loads and fatigue when operated under a high wind speed. Specifically, we aim at making a trade-off between the maximum energy captured and the load induced. The adaptive controller is designed to track the optimal generator speed and at the same time to mitigate component loads under turbulent wind field and other uncertainties. The proposed algorithm is tested on the NREL offshore 5-MW baseline wind turbine, and its performance is compared with that those of the gain scheduled proportional integral (GSPI) control and the disturbance accommodating control (DAC). The results show that the blade root flapwise load can be reduced at a slight expense of optimal power output. The generator speed regulation under adaptive controller is better than DAC.
Strategy for adaptive process control for a column flotation unit
Karr, C.L.; Ferguson, C.R.
1994-12-31
Researchers at the U.S. Bureau of Mines (USBM) have developed adaptive process control systems in which genetic algorithms (GAs) are used to augment fuzzy logic controllers (FLCs). Together, GAs and FLCs possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. In this paper, the details of an ongoing research effort to develop and implement an adaptive process control system for a column flotation unit are discussed. Column flotation units are used extensively in the mineral processing industry to recover valuable minerals from their ores.
Linear adaptive control of a single-tether system
NASA Technical Reports Server (NTRS)
Greene, M. E.; Carter, J. T.; Walls, J. L.
1992-01-01
A control law for a single-tether orbiting satellite system based on a reduced order linear adaptive control technique is presented. The main advantages of this technique are its design simplicity and the facts that specific system parameters and model linearization are not required when designing the controller. Two controllers are developed: one which uses only tension in the tether as control actuation and one which uses both tension and in-plane thrusters as control actuation. Both a sixth-order nonlinear and an 11th-order bead model of a tethered satellite system are used for simulation purposes, demonstrating the ability of the controller to manage an uncertain system. Retrieval and stationkeeping results using these nonlinear models and the linear adaptive controller demonstrate the feasibility of the method. The robustness of the controller with respect to parameter uncertainties is also demonstrated by changing the nonlinear model and parameters within the model without redesigning the controller.
Robust Adaptive Control of Multivariable Nonlinear Systems
2011-03-28
Systems: Challenge Problem Integration and NASA s Integrated Resilient Aircraft Control . We also revealed some similarities with the disturbance ... observer (DOB) controllers and identified the main features in the difference between them. The key feature of this difference is that the estimation loop
Adaptive control of nonlinear systems with actuator failures and uncertainties
NASA Astrophysics Data System (ADS)
Tang, Xidong
2005-11-01
Actuator failures have damaging effect on the performance of control systems, leading to undesired system behavior or even instability. Actuator failures are unknown in terms of failure time instants, failure patterns, and failure parameters. For system safety and reliability, the compensation of actuator failures is of both theoretical and practical significance. This dissertation is to further the study of adaptive designs for actuator failure compensation to nonlinear systems. In this dissertation a theoretical framework for adaptive control of nonlinear systems with actuator failures and system uncertainties is established. The contributions are the development of new adaptive nonlinear control schemes to handle unknown actuator failures for convergent tracking performance, the specification of conditions as a guideline for applications and system designs, and the extension of the adaptive nonlinear control theory. In the dissertation, adaptive actuator failure compensation is studied for several classes of nonlinear systems. In particular, adaptive state feedback schemes are developed for feedback linearizable systems and parametric strict-feedback systems. Adaptive output feedback schemes are deigned for output-feedback systems and a class of systems with unknown state-dependent nonlinearities. Furthermore, adaptive designs are addressed for MIMO systems with actuator failures, based on two grouping techniques: fixed grouping and virtual grouping. Theoretical issues such as controller structures, actuation schemes, zero dynamics, observation, grouping conditions, closed-loop stability, and tracking performance are extensively investigated. For each scheme, design conditions are clarified, and detailed stability and performance analysis is presented. A variety of applications including a wing-rock model, twin otter aircraft, hypersonic aircraft, and cooperative multiple manipulators are addressed with simulation results showing the effectiveness of the
An adaptive learning control system for aircraft
NASA Technical Reports Server (NTRS)
Mekel, R.; Nachmias, S.
1978-01-01
A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.
When cognitive control is not adaptive.
Bocanegra, Bruno R; Hommel, Bernhard
2014-06-01
In order to engage in goal-directed behavior, cognitive agents have to control the processing of task-relevant features in their environments. Although cognitive control is critical for performance in unpredictable task environments, it is currently unknown how it affects performance in highly structured and predictable environments. In the present study, we showed that, counterintuitively, top-down control can impair and interfere with the otherwise automatic integration of statistical information in a predictable task environment, and it can render behavior less efficient than it would have been without the attempt to control the flow of information. In other words, less can sometimes be more (in terms of cognitive control), especially if the environment provides sufficient information for the cognitive system to behave on autopilot based on automatic processes alone.
Investigation of the Multiple Model Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
1975-01-01
The application was investigated of control theoretic ideas to the design of flight control systems for the F-8 aircraft. The design of an adaptive control system based upon the so-called multiple model adaptive control (MMAC) method is considered. Progress is reported.
Adaptive control of Hammerstein-Wiener nonlinear systems
NASA Astrophysics Data System (ADS)
Zhang, Bi; Hong, Hyokchan; Mao, Zhizhong
2016-07-01
The Hammerstein-Wiener model is a block-oriented model, having a linear dynamic block sandwiched by two static nonlinear blocks. This note develops an adaptive controller for a special form of Hammerstein-Wiener nonlinear systems which are parameterized by the key-term separation principle. The adaptive control law and recursive parameter estimation are updated by the use of internal variable estimations. By modeling the errors due to the estimation of internal variables, we establish convergence and stability properties. Theoretical results show that parameter estimation convergence and closed-loop system stability can be guaranteed under sufficient condition. From a qualitative analysis of the sufficient condition, we introduce an adaptive weighted factor to improve the performance of the adaptive controller. Numerical examples are given to confirm the results in this paper.
Cognitive control adjustments and conflict adaptation in major depressive disorder.
Clawson, Ann; Clayson, Peter E; Larson, Michael J
2013-08-01
Individuals with major depressive disorder (MDD) show alterations in the cognitive control function of conflict processing. We examined the influence of these deficits on behavioral and event-related potential (ERP) indices of conflict adaptation, a cognitive control process wherein previous-trial congruency modulates current-trial performance, in 55 individuals with MDD and 55 matched controls. ERPs were calculated while participants completed a modified flanker task. There were nonsignificant between-groups differences in response time, error rate, and N2 indices of conflict adaptation. Higher depressive symptom scores were associated with smaller mean N2 conflict adaptation scores for individuals with MDD and when collapsed across groups. Results were consistent when comorbidity and medications were analyzed. These findings suggest N2 conflict adaptation is associated with depressive symptoms rather than clinical diagnosis alone.
Common formalism for adaptive identification in signal processing and control
NASA Astrophysics Data System (ADS)
Macchi, O.
1991-08-01
The transversal and recursive approaches to adaptive identification are compared. ARMA modeling in signal processing, and identification in the indirect approach to control are developed in parallel. Adaptivity succeeds because the estimate is a linear function of the variable parameters for transversal identification. Control and signal processing can be imbedded in a unified well-established formalism that guarantees convergence of the adaptive parameters. For recursive identification, the estimate is a nonlinear function of the parameters, possibly resulting in nonuniqueness of the solution, in wandering and even instability of adaptive algorithms. The requirement for recursivity originates in the structure of the signal (MA-part) in signal processing. It is caused by the output measurement noise in control.
HIDEC F-15 adaptive engine control system flight test results
NASA Technical Reports Server (NTRS)
Smolka, James W.
1987-01-01
NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.
Velocity of chloroplast avoidance movement is fluence rate dependent.
Kagawa, Takatoshi; Wada, Masamitsu
2004-06-01
In Arabidopsis leaves, chloroplast movement is fluence rate dependent. At optimal, lower light fluences, chloroplasts accumulate at the cell surface to maximize photosynthetic potential. Under high fluence rates, chloroplasts avoid incident light to escape photodamage. In this paper, we examine the phenomenon of chloroplast avoidance movement in greater detail and demonstrate a proportional relationship between fluence rate and the velocity of chloroplast avoidance. In addition we show that the amount of light-activated phototropin2, the photoreceptor for the avoidance response, likely plays a role in this phenomenon, as heterozygous mutant plants show a reduced avoidance velocity compared to that of homozygous wild type plants.
Modeling-Error-Driven Performance-Seeking Direct Adaptive Control
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh V.; Kaneshige, John; Krishnakumar, Kalmanje; Burken, John
2008-01-01
This paper presents a stable discrete-time adaptive law that targets modeling errors in a direct adaptive control framework. The update law was developed in our previous work for the adaptive disturbance rejection application. The approach is based on the philosophy that without modeling errors, the original control design has been tuned to achieve the desired performance. The adaptive control should, therefore, work towards getting this performance even in the face of modeling uncertainties/errors. In this work, the baseline controller uses dynamic inversion with proportional-integral augmentation. Dynamic inversion is carried out using the assumed system model. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to the dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. Contrary to the typical Lyapunov-based adaptive approaches that guarantee only stability, the current approach investigates conditions for stability as well as performance. A high-fidelity F-15 model is used to illustrate the overall approach.
Self-tuning regulators. [adaptive control research
NASA Technical Reports Server (NTRS)
Astrom, K. J.
1975-01-01
The results of a research project are discussed for self-tuning regulators for active control. An algorithm for the self-tuning regulator is described as being stochastic, nonlinear, time variable, and not trivial.
Tip-over Prevention: Adaptive Control Development
2015-05-30
navy.mil Abstract—Skid- steered , tracked, teleoperated robots are used to perform high-risk critical missions such as bomb disposal under conditions... steering angle, adding controllable anti-roll torsion bars, controlled braking and velocity limiting. Path planning algo- rithms exclude tip-over states... steered vehicles with no ability to change their centers of mass were pursued. A heuristically developed tip-over detection behavior, using the FA
Stochastic Adaptive Control and Estimation Enhancement.
1985-03-19
minima behave as the terminal state weighting changes . This is illustrated in Fig. ,..ith terminal state weighting Q(2) and control %,eighting 5. For...been shown that the various cost components lea-rng changes the present behavior of the (’L controller, can vary drastically with changes in the...abrupt change in the damping and frequencies of wing structural modes. The structural and aerodynamic models used z(k) = hkx(k)J + w(k), k = ,.,-1 in
Decentralized adaptive control of manipulators - Theory, simulation, and experimentation
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
The author presents a simple decentralized adaptive-control scheme for multijoint robot manipulators based on the independent joint control concept. The control objective is to achieve accurate tracking of desired joint trajectories. The proposed control scheme does not use the complex manipulator dynamic model, and each joint is controlled simply by a PID (proportional-integral-derivative) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. Simulation results are given for a two-link direct-drive manipulator under adaptive independent joint control. The results illustrate trajectory tracking under coupled dynamics and varying payload. The proposed scheme is implemented on a MicroVAX II computer for motion control of the three major joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite coupled nonlinear joint dynamics.
Fan, Qinqin; Yan, Xuefeng
2016-01-01
The performance of the differential evolution (DE) algorithm is significantly affected by the choice of mutation strategies and control parameters. Maintaining the search capability of various control parameter combinations throughout the entire evolution process is also a key issue. A self-adaptive DE algorithm with zoning evolution of control parameters and adaptive mutation strategies is proposed in this paper. In the proposed algorithm, the mutation strategies are automatically adjusted with population evolution, and the control parameters evolve in their own zoning to self-adapt and discover near optimal values autonomously. The proposed algorithm is compared with five state-of-the-art DE algorithm variants according to a set of benchmark test functions. Furthermore, seven nonparametric statistical tests are implemented to analyze the experimental results. The results indicate that the overall performance of the proposed algorithm is better than those of the five existing improved algorithms.
Identification and dual adaptive control of a turbojet engine
NASA Technical Reports Server (NTRS)
Merrill, W.; Leininger, G.
1979-01-01
The objective of this paper is to utilize the design methods of modern control theory to realize a 'dual-adaptive' feedback control unit for a highly non-linear single spool airbreathing turbojet engine. Using a very detailed and accurate simulation of the non-linear engine as the data source, linear operating point models of unspecified dimension are identified. Feedback control laws are designed at each operating point for a prespecified set of sampling rates using sampled-data output regulator theory. The control system sampling rate is determined by an adaptive sampling algorithm in correspondence with turbojet engine performance. The result is a 'dual-adpative' control law that is functionally dependent upon the sampling rate selected and environmental operating conditions. Simulation transients demonstrate the utility of the dual-adaptive design to improve on-board computer utilization while maintaining acceptable levels of engine performance.
Control Reallocation Strategies for Damage Adaptation in Transport Class Aircraft
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen; Krishnakumar, K.; Limes, Greg; Bryant, Don
2003-01-01
This paper examines the feasibility, potential benefits and implementation issues associated with retrofitting a neural-adaptive flight control system (NFCS) to existing transport aircraft, including both cable/hydraulic and fly-by-wire configurations. NFCS uses a neural network based direct adaptive control approach for applying alternate sources of control authority in the presence of damage or failures in order to achieve desired flight control performance. Neural networks are used to provide consistent handling qualities across flight conditions, adapt to changes in aircraft dynamics and to make the controller easy to apply when implemented on different aircraft. Full-motion piloted simulation studies were performed on two different transport models: the Boeing 747-400 and the Boeing C-17. Subjects included NASA, Air Force and commercial airline pilots. Results demonstrate the potential for improving handing qualities and significantly increased survivability rates under various simulated failure conditions.
Design of Adaptive Output Feedback Variable Structure Tracking Controllers
NASA Astrophysics Data System (ADS)
Cheng, Chih-Chiang; Wen, Chih-Chin; Chen, Shih-Pin
Based on the Lyapunov stability theorem, an adaptive output feedback variable structure tracking controller is proposed in this paper for a class of multi-input multi-output (MIMO) dynamic systems with mismatched uncertainties and disturbances. With an adaptive mechanism embedded in the proposed control scheme, the controller will automatically adapt the unknown upper bound of perturbations, so that the information of upper bound of perturbations is not required. Once the controlled system reaches the switching hyperplane, the state tracking errors can be driven into a small bounded region whose size can be adjusted through the design parameter. An application of flight control is given for demonstrating the feasibility of the proposed methodology.
Control of sound radiation with active/adaptive structures
NASA Technical Reports Server (NTRS)
Fuller, C. R.; Rogers, C. A.; Robertshaw, H. H.
1992-01-01
Recent research is discussed in the area of active structural acoustic control with active/adaptive structures. Progress in the areas of structural acoustics, actuators, sensors, and control approaches is presented. Considerable effort has been given to the interaction of these areas with each other due to the coupled nature of the problem. A discussion is presented on actuators bonded to or embedded in the structure itself. The actuators discussed are piezoceramic actuators and shape memory alloy actuators. The sensors discussed are optical fiber sensors, Nitinol fiber sensors, piezoceramics, and polyvinylidene fluoride sensors. The active control techniques considered are state feedback control techniques and least mean square adaptive algorithms. Results presented show that significant progress has been made towards controlling structurally radiated noise by active/adaptive means applied directly to the structure.
Control of sound radiation with active/adaptive structures
NASA Technical Reports Server (NTRS)
Fuller, C. R.; Rogers, C. A.; Robertshaw, H. H.
1992-01-01
Recent research is discussed in the area of active structural acoustic control with active/adaptive structures. Progress in the areas of structural acoustics, actuators, sensors, and control approaches is presented. Considerable effort has been given to the interaction of these areas with each other due to the coupled nature of the problem. A discussion is presented on actuators bonded to or embedded in the structure itself. The actuators discussed are piezoceramic actuators and shape memory alloy actuators. The sensors discussed are optical fiber sensors, Nitinol fiber sensors, piezoceramics, and polyvinylidene fluoride sensors. The active control techniques considered are state feedback control techniques and least mean square adaptive algorithms. Results presented show that significant progress has been made towards controlling structurally radiated noise by active/adaptive means applied directly to the structure.
Hybrid adaptive ascent flight control for a flexible launch vehicle
NASA Astrophysics Data System (ADS)
Lefevre, Brian D.
For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the
Adaptable and Adaptive Automation for Supervisory Control of Multiple Autonomous Vehicles
2012-10-01
Adaptable and Adaptive Automation for Supervisory Control of Multiple Autonomous Vehicles Brian Kidwell , 1 Gloria L. Calhoun, 2 Heath A. Ruff...correlated with selection of the high LOA ( r = .789, p < .01), as well as the disuse of the medium LOA ( r = -.823, p < .01). There was not a...AFRL. Brian Kidwell and Raja Parasuraman were supported by Air Force Office of Scientific Research grant FA9550-10-1-0385 and the Center of
ADAPTIVE CLEARANCE CONTROL SYSTEMS FOR TURBINE ENGINES
NASA Technical Reports Server (NTRS)
Blackwell, Keith M.
2004-01-01
The Controls and Dynamics Technology Branch at NASA Glenn Research Center primarily deals in developing controls, dynamic models, and health management technologies for air and space propulsion systems. During the summer of 2004 I was granted the privilege of working alongside professionals who were developing an active clearance control system for commercial jet engines. Clearance, the gap between the turbine blade tip and the encompassing shroud, increases as a result of wear mechanisms and rubbing of the turbine blades on shroud. Increases in clearance cause larger specific fuel consumption (SFC) and loss of efficient air flow. This occurs because, as clearances increase, the engine must run hotter and bum more fuel to achieve the same thrust. In order to maintain efficiency, reduce fuel bum, and reduce exhaust gas temperature (EGT), the clearance must be accurately controlled to gap sizes no greater than a few hundredths of an inch. To address this problem, NASA Glenn researchers have developed a basic control system with actuators and sensors on each section of the shroud. Instead of having a large uniform metal casing, there would be sections of the shroud with individual sensors attached internally that would move slightly to reform and maintain clearance. The proposed method would ultimately save the airline industry millions of dollars.
Adaptive measurement control for calorimetric assay
Glosup, J.G.; Axelrod, M.C.
1994-10-01
The performance of a calorimeter is usually evaluated by constructing a Shewhart control chart of its measurement errors for a collection of reference standards. However, Shewhart control charts were developed in a manufacturing setting where observations occur in batches. Additionally, the Shewhart control chart expects the variance of the charted variable to be known or at least well estimated from previous experimentation. For calorimetric assay, observations are collected singly in a time sequence with a (possibly) changing mean, and extensive experimentation to calculate the variance of the measurement errors is seldom feasible. These facts pose problems in constructing a control chart. In this paper, the authors propose using the mean squared successive difference to estimate the variance of measurement errors based solely on prior observations. This procedure reduces or eliminates estimation bias due to a changing mean. However, the use of this estimator requires an adjustment to the definition of the alarm and warning limits for the Shewhart control chart. The authors propose adjusted limits based on an approximate Student`s t-distribution for the measurement errors and discuss the limitations of this approximation. Suggestions for the practical implementation of this method are provided also.
A decentralized adaptive robust method for chaos control.
Kobravi, Hamid-Reza; Erfanian, Abbas
2009-09-01
This paper presents a control strategy, which is based on sliding mode control, adaptive control, and fuzzy logic system for controlling the chaotic dynamics. We consider this control paradigm in chaotic systems where the equations of motion are not known. The proposed control strategy is robust against the external noise disturbance and system parameter variations and can be used to convert the chaotic orbits not only to the desired periodic ones but also to any desired chaotic motions. Simulation results of controlling some typical higher order chaotic systems demonstrate the effectiveness of the proposed control method.
Zhao, Guoliang; Sun, Kaibiao; Li, Hongxing
2013-01-01
This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.
Zhao, Guoliang; Li, Hongxing
2013-01-01
This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model. PMID:24453897
Adaptive control system for pulsed megawatt klystrons
Bolie, Victor W.
1992-01-01
The invention provides an arrangement for reducing waveform errors such as errors in phase or amplitude in output pulses produced by pulsed power output devices such as klystrons by generating an error voltage representing the extent of error still present in the trailing edge of the previous output pulse, using the error voltage to provide a stored control voltage, and applying the stored control voltage to the pulsed power output device to limit the extent of error in the leading edge of the next output pulse.
Adaptive Control of Nonlinear Flexible Systems
1994-05-26
nonlinear plants which admit a finite- dimensional state-space description of the form S= f(Z) + g(z)u for which the State-Space Exact Linearization Problem...robust state-feedback law and the sensi- i tivity of the exact - linearization based control law. 2.6.3 Example 2 I Consider the following one state...is also available for exact linearization , Now apply the certainty equivalence based control one can bring an input-output approach to a particu- law
Adaptive Control of Nonlinear Flexible Systems
1994-05-26
state-space description of the form S= f () + g(z)u I for which the State-Space Exact Linearization Problem [5] is solvable over WR’, i.e., control...feedback law and the sensi- tivity of the exact - linearization based control law.I 2.6.3 Example 2 I Consider the following one state plant model P : u ý- y...n. (dp - u . For the plant description in Section 2 , provided N that the state-z is also available for exact linearization , Now apply the certainty
Adaptive feedback control of wall modes in tokamaks
NASA Astrophysics Data System (ADS)
Sun, Zhipeng
The goal of this study is to stabilize the resistive wall modes (RWM) in tokamaks with adaptive stochastic feedback control. This is the first ever attempt at adaptive stochastic feedback optimal control of RWM in tokamaks. Both adaptive optimal state feedback and adaptive output feedback control have been studied. The adaptive optimal state feedback control design successfully stabilizes a slowly time-evolving RWM in a tokamak in a time scale of 4 times the inverse of the growth rate of the RWM. The stabilized system output for the time-invariant model is twice the system noise level. For the time-varying model, it is several times larger than the time-invariant case. The adaptive stochastic output feedback can also stabilize the slowly time-evolving RWM. It can do this in a time about 3 times that of the inverse of the growth rate of the RWM. The stabilized system output is twice as large as that of the state feedback case. In order to avoid the bottleneck encountered in the various sequential computations with big matrices in the feedback algorithms, neural network control has been proposed. It has been used to implement the adaptive stochastic output feedback control. It can stabilize the RWM instability in a time of 3 times the inverse of the growth rate of the RWM. The stabilized wall modes have the steady state output similar to the output feedback case. The developed algorithms, state feedback, output feedback, neural network control, can be readily applied to other plasma instabilities.
Adaptive Identification and Control of Flow-Induced Cavity Oscillations
NASA Technical Reports Server (NTRS)
Kegerise, M. A.; Cattafesta, L. N.; Ha, C.
2002-01-01
Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.
Design of an adaptive controller for a telerobot manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Zhou, Zhen-Lei
1989-01-01
The design of a joint-space adaptive control scheme is presented for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with 7 degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Lyapunov direct method, an adatation algorithm is derived which adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly-varying. The implementation of the derived control scheme does not need the computation of the manipulator dynamics, which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payloads while tracking various test trajectories such as ramp or sinusoids with negligible position errors.
Neural and Fuzzy Adaptive Control of Induction Motor Drives
Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.
2008-06-12
This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.
Direct adaptive control of a PUMA 560 industrial robot
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Lee, Thomas; Delpech, Michel
1989-01-01
The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.
Stochastic Adaptive Control and Estimation Enhancement
1990-02-01
12], (181, the control minimizes a one-step ahead criterion pole-assignment, LQ-optimai, etc. augmented by a second term which penalizes for poor...A). Q.E.D. With probability ono, the process (t ha, of corollary w. PiECEWSE DIFFUSION ARKOV PROCESoES reets 0 _ by ro wthsot exto(0, ont Iital
Guidance and Control for Mars Atmospheric Entry: Adaptivity and Robustness
NASA Technical Reports Server (NTRS)
Lu, Wei-Min; Bayard, David S.
1997-01-01
In this paper, we address the atmospheric entry guidance and control problem for Mars precision landing. The guidance and control design is based on the principle of tracking a reference drag versus velocity profile in the entry flight corridor, which is determined by physical constraints of the flight. An integrated adaptive/robust control approach to atmospheric entry guidance and control is introduced to deal with different uncertainties.
Adaptive neural network motion control of manipulators with experimental evaluations.
Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V
2014-01-01
A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.
Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations
Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.
2014-01-01
A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910
NASA Technical Reports Server (NTRS)
Balas, Mark; Kaufman, Howard; Wen, John
1984-01-01
The topics are presented in view graph form and include the following: an adaptive model following control; adaptive control of a distributed parameter system (DPS) with a finite-dimensional controller; a direct adaptive controller; a closed-loop adaptively controlled DPS; Lyapunov stability; the asymptotic stability of the closed loop; and model control of a simply supported beam.
An Adaptive Speed Control System for Micro Electro Discharge Machining
NASA Astrophysics Data System (ADS)
Yeo, S. H.; Aligiri, E.; Tan, P. C.; Zarepour, H.
2009-11-01
The integration of the state-of-the-art monitoring and adaptive control technologies can substantially improve the performance of EDM process. This paper reports the development of an adaptive speed control system for micro EDM which demands a higher level of accuracy. Monitoring of the machining state is conducted during the machining process so that the conditions are analysed continuously. Various schemes for the machining state are used for decision making. For instance, upon recognition of abnormal discharges, the developed adaptive speed control system would adjust the electrode feeding speed in an attempt to correct the machining state. Experimental verification shows that the proposed system can improve the machining time by more than 50%. In addition, a more accurate machined feature can be produced as compared to traditional EDM servo control systems.
On Using Exponential Parameter Estimators with an Adaptive Controller
NASA Technical Reports Server (NTRS)
Patre, Parag; Joshi, Suresh M.
2011-01-01
Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.
Inherent robustness of discrete-time adaptive control systems
NASA Technical Reports Server (NTRS)
Ma, C. C. H.
1986-01-01
Global stability robustness with respect to unmodeled dynamics, arbitrary bounded internal noise, as well as external disturbance is shown to exist for a class of discrete-time adaptive control systems when the regressor vectors of these systems are persistently exciting. Although fast adaptation is definitely undesirable, so far as attaining the greatest amount of global stability robustness is concerned, slow adaptation is shown to be not necessarily beneficial. The entire analysis in this paper holds for systems with slowly varying return difference matrices; the plants in these systems need not be slowly varying.
Adaptive Control of Truss Structures for Gossamer Spacecraft
NASA Technical Reports Server (NTRS)
Yang Bong-Jun; Calise, anthony J.; Craig, James I.; Whorton, Mark S.
2007-01-01
Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances.
Adaptive Transmission Control Method for Communication-Broadcasting Integrated Services
NASA Astrophysics Data System (ADS)
Koto, Hideyuki; Furuya, Hiroki; Nakamura, Hajime
This paper proposes an adaptive transmission control method for massive and intensive telecommunication traffic generated by communication-broadcasting integrated services. The proposed method adaptively controls data transmissions from viewers depending on the congestion states, so that severe congestion can be effectively avoided. Furthermore, it utilizes the broadcasting channel which is not only scalable, but also reliable for controlling the responses from vast numbers of viewers. The performance of the proposed method is evaluated through experiments on a test bed where approximately one million viewers are emulated. The obtained results quantitatively demonstrate the performance of the proposed method and its effectiveness under massive and intensive traffic conditions.
On adaptive modal control of large flexible spacecraft
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.
1979-01-01
A recently developed strategy for adaptive sampled-data control of distributed parameter systems based on a plant modal expansion description and modal simultaneous identification and regulation algorithms is presented with frequent reference to the annular momentum control device (AMCD) test example. The requirements of observation spillover reduction and modal eigenvector shape prespecification, which are especially crucial to the proposed adaptive control strategy, are addressed. Individual low pass time filtering of sensed AMCD particle displacements is proposed for observation spillover reduction. A layered scheme incorporating 'eigenvector' shape improvement is outlined to combat the expansion basis prespecification requirement.
A Decentralized Adaptive Approach to Fault Tolerant Flight Control
NASA Technical Reports Server (NTRS)
Wu, N. Eva; Nikulin, Vladimir; Heimes, Felix; Shormin, Victor
2000-01-01
This paper briefly reports some results of our study on the application of a decentralized adaptive control approach to a 6 DOF nonlinear aircraft model. The simulation results showed the potential of using this approach to achieve fault tolerant control. Based on this observation and some analysis, the paper proposes a multiple channel adaptive control scheme that makes use of the functionally redundant actuating and sensing capabilities in the model, and explains how to implement the scheme to tolerate actuator and sensor failures. The conditions, under which the scheme is applicable, are stated in the paper.
Real-time control system for adaptive resonator
Flath, L; An, J; Brase, J; Hurd, R; Kartz, M; Sawvel, R; Silva, D
2000-07-24
Sustained operation of high average power solid-state lasers currently requires an adaptive resonator to produce the optimal beam quality. We describe the architecture of a real-time adaptive control system for correcting intra-cavity aberrations in a heat capacity laser. Image data collected from a wavefront sensor are processed and used to control phase with a high-spatial-resolution deformable mirror. Our controller takes advantage of recent developments in low-cost, high-performance processor technology. A desktop-based computational engine and object-oriented software architecture replaces the high-cost rack-mount embedded computers of previous systems.
Adaptive Power Control for Space Communications
NASA Technical Reports Server (NTRS)
Thompson, Willie L., II; Israel, David J.
2008-01-01
This paper investigates the implementation of power control techniques for crosslinks communications during a rendezvous scenario of the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). During the rendezvous, NASA requires that the CEV supports two communication links: space-to-ground and crosslink simultaneously. The crosslink will generate excess interference to the space-to-ground link as the distances between the two vehicles decreases, if the output power is fixed and optimized for the worst-case link analysis at the maximum distance range. As a result, power control is required to maintain the optimal power level for the crosslink without interfering with the space-to-ground link. A proof-of-concept will be described and implemented with Goddard Space Flight Center (GSFC) Communications, Standard, and Technology Lab (CSTL).
Adaptive Control Techniques for Large Space Structures.
1986-09-15
A basic methodology for model reduction which has been used successfully in ACOSS/VCOSS and a number of other programs such as internal balancing ...is now described. Other ap- , proaches also exist which will be discussed in the sequel. 2.9 Internal Balancing N To determine the most important modes...highly controllable-but-unobservable .. modes, for example, are difficult to judge. Moore [5] has developed an "internal balancing " <." approach whereby
Discrimination Power Control for Adaptive Target Tracking Applications
2008-07-01
Discriminat ion power cont ro l fo r adaptive target tracking applications A. Benaskeur F. Rhéaume DRDC Valcartier Defence R&D Canada – Valcartier...Technical Report DRDC Valcartier TR 2008-016 July 2008 Discrimination power control for adaptive target tracking applications A. Benaskeur F...nationale, 2008 Abstract This report addresses the problem of discrimination power in target tracking applications . More specifically, a closed-loop
An adaptive precision gradient method for optimal control.
NASA Technical Reports Server (NTRS)
Klessig, R.; Polak, E.
1973-01-01
This paper presents a gradient algorithm for unconstrained optimal control problems. The algorithm is stated in terms of numerical integration formulas, the precision of which is controlled adaptively by a test that ensures convergence. Empirical results show that this algorithm is considerably faster than its fixed precision counterpart.-
Adaptive control of a manipulator with a flexible link
NASA Technical Reports Server (NTRS)
Yang, Y. P.; Gibson, J. S.
1988-01-01
An adaptive controller for a manipulator with one rigid link and one flexible link is presented. The performance and robustness of the controller are demonstrated by numerical simulation results. In the simulations, the manipulator moves in a gravitational field and a finite element model represents the flexible link.
Digital adaptive control laws for the F-8
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Harvey, C. A.
1976-01-01
NASA is conducting a flight control research program in digital fly-by-wire technology using a modified F-8C aircraft. The first phase of this program used Apollo hardware to demonstrate the practicality of digital fly-by-wire in an actual test vehicle. For the second phase, conventional aircraft sensors and a large floating point digital computer are being utilized to test advanced control laws and redundancy concepts. As part of NASA's research in digital fly-by-wire technology, Honeywell developed digital adaptive flight control laws for flight test in the F-8C. Adaptation of the control laws was to be based on information sensed from conventional aircraft sensors excluding air data. The control laws were constrained to use only existing elevator, rudder, and ailerons as control effectors, each powered by existing actuators. Three adaptive control laws were successfully designed using maximum likelihood estimation, a Liapunov stable model tracker and a self-excited limit cycle concept. The maximum likelihood estimation design was selected as the most promising because of its capability to identify more than surface effectiveness parameters. The adaptive concepts, the control laws and comparisons of predicted performance are described.
Development of adaptive control applied to chaotic systems
NASA Astrophysics Data System (ADS)
Rhode, Martin Andreas
1997-12-01
Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.
Algebraic and adaptive learning in neural control systems
NASA Astrophysics Data System (ADS)
Ferrari, Silvia
A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.
Adaptive impedance control of a robotic orthosis for gait rehabilitation.
Hussain, Shahid; Xie, Sheng Q; Jamwal, Prashant K
2013-06-01
Intervention of robotic devices in the field of physical gait therapy can help in providing repetitive, systematic, and economically viable training sessions. Interactive or assist-as-needed (AAN) gait training encourages patient voluntary participation in the robotic gait training process which may aid in rapid motor function recovery. In this paper, a lightweight robotic gait training orthosis with two actuated and four passive degrees of freedom (DOFs) is proposed. The actuated DOFs were powered by pneumatic muscle actuators. An AAN gait training paradigm based on adaptive impedance control was developed to provide interactive robotic gait training. The proposed adaptive impedance control scheme adapts the robotic assistance according to the disability level and voluntary participation of human subjects. The robotic orthosis was operated in two gait training modes, namely, inactive mode and active mode, to evaluate the performance of the proposed control scheme. The adaptive impedance control scheme was evaluated on ten neurologically intact subjects. The experimental results demonstrate that an increase in voluntary participation of human subjects resulted in a decrease of the robotic assistance and vice versa. Further clinical evaluations with neurologically impaired subjects are required to establish the therapeutic efficacy of the adaptive-impedance-control-based AAN gait training strategy.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.
The Basal Ganglia and Adaptive Motor Control
NASA Astrophysics Data System (ADS)
Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru
1994-09-01
The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.
Adaptive supervisory control of remote manipulation
NASA Technical Reports Server (NTRS)
Ferrell, W. R.
1977-01-01
The command language by which an operator exerts supervisory control over a general purpose remote manipulator should be designed to accommodate certain characteristics of human performance if there is to be effective communication between the operator and the machine. Some of the ways in which people formulate tasks, use language, learn and make errors are discussed and design implications are drawn. A general approach to command language design is suggested, based on the notion matching the operator's current task schema or context by appropriate program structures or 'frames' in the machine.
NASA Technical Reports Server (NTRS)
Baer-Riedhart, Jennifer L.; Landy, Robert J.
1987-01-01
The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.
Experimental evaluation of adaptive three-tank level control.
Cartes, David; Wu, Lei
2005-04-01
Liquid level control through regulation of mass flow rates is an important application in various areas of the power industry. Very often a PID controller is used for these applications. This paper compares a nonconventional PID controller and three different types of adaptive controller, a direct model reference adaptive controller (MRAC), an indirect MRAC with Lyapunov estimation, and an indirect MRAC with recursive least-squares (RLS) updating estimation, for liquid level control. By implementing all four controllers on a three-tank system, the performances of each are compared. All controllers track a sinusoidal input very well and overall exhibit somewhat varying performance. The direct MRAC and the indirect MRAC with RLS estimation give the best performance. With Lyapunov estimation and RLS estimation, all the system parameter estimates converge to the reference model values. However, RLS estimation has a much faster convergence. It is concluded that adaptive liquid level control is an improvement over traditional liquid level control when precise level control in three coupled tanks is desired.
Adaptive mass expulsion attitude control system
NASA Technical Reports Server (NTRS)
Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Carrou, Stephane (Inventor)
2001-01-01
An attitude control system and method operative with a thruster controls the attitude of a vehicle carrying the thruster, wherein the thruster has a valve enabling the formation of pulses of expelled gas from a source of compressed gas. Data of the attitude of the vehicle is gathered, wherein the vehicle is located within a force field tending to orient the vehicle in a first attitude different from a desired attitude. The attitude data is evaluated to determine a pattern of values of attitude of the vehicle in response to the gas pulses of the thruster and in response to the force field. The system and the method maintain the attitude within a predetermined band of values of attitude which includes the desired attitude. Computation circuitry establishes an optimal duration of each of the gas pulses based on the pattern of values of attitude, the optimal duration providing for a minimal number of opening and closure operations of the valve. The thruster is operated to provide gas pulses having the optimal duration.
Adapting End Host Congestion Control for Mobility
NASA Technical Reports Server (NTRS)
Eddy, Wesley M.; Swami, Yogesh P.
2005-01-01
Network layer mobility allows transport protocols to maintain connection state, despite changes in a node's physical location and point of network connectivity. However, some congestion-controlled transport protocols are not designed to deal with these rapid and potentially significant path changes. In this paper we demonstrate several distinct problems that mobility-induced path changes can create for TCP performance. Our premise is that mobility events indicate path changes that require re-initialization of congestion control state at both connection end points. We present the application of this idea to TCP in the form of a simple solution (the Lightweight Mobility Detection and Response algorithm, that has been proposed in the IETF), and examine its effectiveness. In general, we find that the deficiencies presented are both relatively easily and painlessly fixed using this solution. We also find that this solution has the counter-intuitive property of being both more friendly to competing traffic, and simultaneously more aggressive in utilizing newly available capacity than unmodified TCP.
Development of fault tolerant adaptive control laws for aerospace systems
NASA Astrophysics Data System (ADS)
Perez Rocha, Andres E.
The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.
Self-Tuning Adaptive-Controller Using Online Frequency Identification
NASA Technical Reports Server (NTRS)
Chiang, W. W.; Cannon, R. H., Jr.
1985-01-01
A real time adaptive controller was designed and tested successfully on a fourth order laboratory dynamic system which features very low structural damping and a noncolocated actuator sensor pair. The controller, implemented in a digital minicomputer, consists of a state estimator, a set of state feedback gains, and a frequency locked loop (FLL) for real time parameter identification. The FLL can detect the closed loop natural frequency of the system being controlled, calculate the mismatch between a plant parameter and its counterpart in the state estimator, and correct the estimator parameter in real time. The adaptation algorithm can correct the controller error and stabilize the system for more than 50% variation in the plant natural frequency, compared with a 10% stability margin in frequency variation for a fixed gain controller having the same performance at the nominal plant condition. After it has locked to the correct plant frequency, the adaptive controller works as well as the fixed gain controller does when there is no parameter mismatch. The very rapid convergence of this adaptive system is demonstrated experimentally, and can also be proven with simple root locus methods.
Residual mode filters and adaptive control in large space structures
NASA Technical Reports Server (NTRS)
Davidson, Roger A.; Balas, Mark J.
1989-01-01
One of the most difficult problems in controlling large systems and structures is compensating for the destructive interaction which can occur between the reduced-order model (ROM) of the plant, which is used by the controller, and the unmodeled dynamics of the plant, often called the residual modes. The problem is more significant in the case of large space structures because their naturally light damping and high performance requirements lead to more frequent, destructive residual mode interaction (RMI). Using the design/compensation technique of residual mode filters (RMF's), effective compensation of RMI can be accomplished in a straightforward manner when using linear controllers. The use of RMF's has been shown to be effective for a variety of large structures, including a space-based laser and infinite dimensional systems. However, the dynamics of space structures is often uncertain and may even change over time due to on-orbit erosion from space debris and corrosive chemicals in the upper atmosphere. In this case, adaptive control can be extremely beneficial in meeting the performance requirements of the structure. Adaptive control for large structures is also based on ROM's and so destructive RMI may occur. Unfortunately, adaptive control is inherently nonlinear, and therefore the known results of RMF's cannot be applied. The purpose is to present the results of new research showing the effects of RMI when using adaptive control and the work which will hopefully lead to RMF compensation of this problem.
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.
Zhang, Yanjun; Tao, Gang; Chen, Mou
2016-09-01
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
Strain rate dependency of laser sintered polyamide 12
NASA Astrophysics Data System (ADS)
Cook, J. E. T.; Goodridge, R. D.; Siviour, C. R.
2015-09-01
Parts processed by Additive Manufacturing can now be found across a wide range of applications, such as those in the aerospace and automotive industry in which the mechanical response must be optimised. Many of these applications are subjected to high rate or impact loading, yet it is believed that there is no prior research on the strain rate dependence in these materials. This research investigates the effect of strain rate and laser energy density on laser sintered polyamide 12. In the study presented here, parts produced using four different laser sintered energy densities were exposed to uniaxial compression tests at strain rates ranging from 10-3 to 10+3 s-1 at room temperature, and the dependence on these parameters is presented.
Digital adaptive control of a VTOL aircraft
NASA Technical Reports Server (NTRS)
Reid, G. F.
1976-01-01
A technique has been developed for calculating feedback and feedforward gain matrices that stabilize a VTOL aircraft while enabling it to track input commands of forward and vertical velocity. Leverrier's algorithm is used in a procedure for determining a set of state variable, feedback gains that force the closed loop poles and zeroes of one pilot input transfer function to be at preselected positions in the s plane. This set of feedback gains is then used to calculate the feedback and feedforward gains for the velocity command controller. The method is computationally attractive since the gains are determined by solving systems of linear, simultaneous equations. Responses obtained using a digital simulation of the longitudinal dynamics of the CH-47 helicopter are presented.
Rate-dependent deformation of rocks in the brittle regime
NASA Astrophysics Data System (ADS)
Baud, P.; Brantut, N.; Heap, M. J.; Meredith, P. G.
2013-12-01
Rate-dependent brittle deformation of rocks, a phenomenon relevant for long-term interseismic phases of deformation, is poorly understood quantitatively. Rate-dependence can arise from chemically-activated, subcritical crack growth, which is known to occur in the presence of aqueous fluids. Here we attempt to establish quantitative links between this small scale process and its macroscopic manifestations. We performed a series of brittle deformation experiments in porous sandstones, in creep (constant stress) and constant strain rate conditions, in order to investigate the relationship between their short- and long-term mechanical behaviors. Elastic wave velocities measurements indicate that the amount of microcracking follows the amount of inelastic strain in a trend which does not depend upon the timescale involved. The comparison of stress-strain curves between constant strain rate and creep tests allows us to define a stress difference between the two, which can be viewed as a difference in energy release rate. We empirically show that the creep strain rates are proportional to an exponential function of this stress difference. We then establish a general method to estimate empirical micromechanical functions relating the applied stresses to mode I stress intensity factors at microcrack tips, and we determine the relationship between creep strain rates and stress intensity factors in our sandstone creep experiments. We finally provide an estimate of the sub-critical crack growth law parameters, and find that they match -within the experimental errors and approximations of the method- the typical values observed in independent single crack tests. Our approach provides a comprehensive and unifying explanation for the origin and the macroscopic manifestation of time-dependent brittle deformation in brittle rocks.
Adaptive neural network consensus based control of robot formations
NASA Astrophysics Data System (ADS)
Guzey, H. M.; Sarangapani, Jagannathan
2013-05-01
In this paper, adaptive consensus based formation control scheme is derived for mobile robots in a pre-defined formation when full dynamics of the robots which include inertia, Corolis, and friction vector are considered. It is shown that dynamic uncertainties of robots can make overall formation unstable when traditional consensus scheme is utilized. In order to estimate the affine nonlinear robot dynamics, a NN based adaptive scheme is utilized. In addition to this adaptive feedback control input, an additional control input is introduced based on the consensus approach to make the robots keep their desired formation. Subsequently, the outer consensus loop is redesigned for reduced communication. Lyapunov theory is used to show the stability of overall system. Simulation results are included at the end.
Adaptive independent joint control of manipulators - Theory and experiment
NASA Technical Reports Server (NTRS)
Seraji, H.
1988-01-01
The author presents a simple decentralized adaptive control scheme for multijoint robot manipulators based on the independent joint control concept. The proposed control scheme for each joint consists of a PID (proportional integral and differential) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. The static and dynamic couplings that exist between the joint motions are compensated by the adaptive independent joint controllers while ensuring trajectory tracking. The proposed scheme is implemented on a MicroVAX II computer for motion control of the first three joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite strongly coupled, highly nonlinear joint dynamics. The results confirm that the proposed decentralized adaptive control of manipulators is feasible, in spite of strong interactions between joint motions. The control scheme presented is computationally very fast and is amenable to parallel processing implementation within a distributed computing architecture, where each joint is controlled independently by a simple algorithm on a dedicated microprocessor.
Model-adaptive hybrid dynamic control for robotic assembly tasks
Austin, D.J.; McCarragher, B.J.
1999-10-01
A new task-level adaptive controller is presented for the hybrid dynamic control of robotic assembly tasks. Using a hybrid dynamic model of the assembly task, velocity constraints are derived from which satisfactory velocity commands are obtained. Due to modeling errors and parametric uncertainties, the velocity commands may be erroneous and may result in suboptimal performance. Task-level adaptive control schemes, based on the occurrence of discrete events, are used to change the model parameters from which the velocity commands are determined. Two adaptive schemes are presented: the first is based on intuitive reasoning about the vector spaces involved whereas the second uses a search region that is reduced with each iteration. For the first adaptation law, asymptotic convergence to the correct model parameters is proven except for one case. This weakness motivated the development of the second adaptation law, for which asymptotic convergence is proven in all cases. Automated control of a peg-in-hole assembly task is given as an example, and simulations and experiments for this task are presented. These results demonstrate the success of the method and also indicate properties for rapid convergence.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.
NASA Technical Reports Server (NTRS)
Kopasakis, George
1997-01-01
Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.
Robot-Control Station Would Adapt To Operator
NASA Technical Reports Server (NTRS)
Diner, Daniel B.
1993-01-01
Proposed control station for remote robot adapts control system to personal characteristics and preferences of operator. Automatically adjusts positions and angles of video cameras and monitors, adjusts characteristics of hand controller, process images, and provides graphical displays serving operator best. System of one or more video cameras, controlled by computer, views workspace of robot, as shown in article, "Movable Cameras and Monitors For Viewing Telemanipulator" (NPO-17837). Control station includes several video monitors, hand controller, image-processing system providing graphical displays, voice-input command system, keyboards, and mouse.
Adaptive control system having hedge unit and related apparatus and methods
NASA Technical Reports Server (NTRS)
Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)
2003-01-01
The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.
Adaptive control system having hedge unit and related apparatus and methods
NASA Technical Reports Server (NTRS)
Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)
2007-01-01
The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.
An adaptive sliding mode control technology for weld seam tracking
NASA Astrophysics Data System (ADS)
Liu, Jie; Hu, Youmin; Wu, Bo; Zhou, Kaibo; Ge, Mingfeng
2015-03-01
A novel adaptive sliding mode control algorithm is derived to deal with seam tracking control problem of welding robotic manipulator, during the process of large-scale structure component welding. The proposed algorithm does not require the precise dynamic model, and is more practical. Its robustness is verified by the Lyapunov stability theory. The analytical results show that the proposed algorithm enables better high-precision tracking performance with chattering-free than traditional sliding mode control algorithm under various disturbances.
Adaptive Control Law Design for Model Uncertainty Compensation
1989-06-14
AD-A211 712 WRDC-TR-89-3061 ADAPTIVE CONTROL LAW DESIGN FOR MODEL UNCERTAINTY COMPENSATION J. E. SORRELLS DYNETICS , INC. U 1000 EXPLORER BLVD. L Ell...MONITORING ORGANIZATION Dynetics , Inc. (If applicable) Wright Research and Development Center netics,_ _ I _nc.Flight Dynamics Laboratory, AFSC 6c. ADDRESS...controllers designed using Dynetics innovative aporoach were able to equal or surpass the STR and MRAC controllers in terms of performance robustness
Adaptive mechanism-based congestion control for networked systems
NASA Astrophysics Data System (ADS)
Liu, Zhi; Zhang, Yun; Chen, C. L. Philip
2013-03-01
In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.
A flicker reduction control strategy using an adaptive var compensator
Jatskevich, J.; Wasynczuk, O.; Conrad, L.
1999-11-01
A detailed computer model of a power network with loads, resistance welders and an Adaptive Var Compensator (AVC) has been developed and used to determine the effectiveness of the AVC on the reduction of observable flicker at neighboring loads. Flicker severity is determined using the UIE/IEC flickermeter methodology. Different control strategies for the AVC are considered and compared with respect to flicker reduction. A new flicker adaptive control (FAC) strategy is proposed that can be used for both power factor correction and flicker reduction. The measurement technique used in the FAC is shown to be accurate even in presence of significant harmonic distortion.
Adaptive adjustment of the randomization ratio using historical control data
Hobbs, Brian P.; Carlin, Bradley P.; Sargent, Daniel J.
2013-01-01
Background Prospective trial design often occurs in the presence of “acceptable” [1] historical control data. Typically this data is only utilized for treatment comparison in a posteriori retrospective analysis to estimate population-averaged effects in a random-effects meta-analysis. Purpose We propose and investigate an adaptive trial design in the context of an actual randomized controlled colorectal cancer trial. This trial, originally reported by Goldberg et al. [2], succeeded a similar trial reported by Saltz et al. [3], and used a control therapy identical to that tested (and found beneficial) in the Saltz trial. Methods The proposed trial implements an adaptive randomization procedure for allocating patients aimed at balancing total information (concurrent and historical) among the study arms. This is accomplished by assigning more patients to receive the novel therapy in the absence of strong evidence for heterogeneity among the concurrent and historical controls. Allocation probabilities adapt as a function of the effective historical sample size (EHSS) characterizing relative informativeness defined in the context of a piecewise exponential model for evaluating time to disease progression. Commensurate priors [4] are utilized to assess historical and concurrent heterogeneity at interim analyses and to borrow strength from the historical data in the final analysis. The adaptive trial’s frequentist properties are simulated using the actual patient-level historical control data from the Saltz trial and the actual enrollment dates for patients enrolled into the Goldberg trial. Results Assessing concurrent and historical heterogeneity at interim analyses and balancing total information with the adaptive randomization procedure leads to trials that on average assign more new patients to the novel treatment when the historical controls are unbiased or slightly biased compared to the concurrent controls. Large magnitudes of bias lead to approximately equal
Adaptive control of surface finish in automated turning processes
NASA Astrophysics Data System (ADS)
García-Plaza, E.; Núñez, P. J.; Martín, A. R.; Sanz, A.
2012-04-01
The primary aim of this study was to design and develop an on-line control system of finished surfaces in automated machining process by CNC turning. The control system consisted of two basic phases: during the first phase, surface roughness was monitored through cutting force signals; the second phase involved a closed-loop adaptive control system based on data obtained during the monitoring of the cutting process. The system ensures that surfaces roughness is maintained at optimum values by adjusting the feed rate through communication with the PLC of the CNC machine. A monitoring and adaptive control system has been developed that enables the real-time monitoring of surface roughness during CNC turning operations. The system detects and prevents faults in automated turning processes, and applies corrective measures during the cutting process that raise quality and reliability reducing the need for quality control.
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
Applications of active adaptive noise control to jet engines
NASA Technical Reports Server (NTRS)
Shoureshi, Rahmat; Brackney, Larry
1993-01-01
During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.
Adaptive control of artificial pancreas systems - a review.
Turksoy, Kamuran; Cinar, Ali
2014-01-01
Artificial pancreas (AP) systems offer an important improvement in regulating blood glucose concentration for patients with type 1 diabetes, compared to current approaches. AP consists of sensors, control algorithms and an insulin pump. Different AP control algorithms such as proportional-integral-derivative, model-predictive control, adaptive control, and fuzzy logic control have been investigated in simulation and clinical studies in the past three decades. The variability over time and complexity of the dynamics of blood glucose concentration, unsteady disturbances such as meals, time-varying delays on measurements and insulin infusion, and noisy data from sensors create a challenging system to AP. Adaptive control is a powerful control technique that can deal with such challenges. In this paper, a review of adaptive control techniques for blood glucose regulation with an AP system is presented. The investigations and advances in technology produced impressive results, but there is still a need for a reliable AP system that is both commercially viable and appealing to patients with type 1 diabetes.
The design of digital-adaptive controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.
Model-free adaptive control of advanced power plants
Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang
2015-08-18
A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
Adaptive support vector regression for UAV flight control.
Shin, Jongho; Jin Kim, H; Kim, Youdan
2011-01-01
This paper explores an application of support vector regression for adaptive control of an unmanned aerial vehicle (UAV). Unlike neural networks, support vector regression (SVR) generates global solutions, because SVR basically solves quadratic programming (QP) problems. With this advantage, the input-output feedback-linearized inverse dynamic model and the compensation term for the inversion error are identified off-line, which we call I-SVR (inversion SVR) and C-SVR (compensation SVR), respectively. In order to compensate for the inversion error and the unexpected uncertainty, an online adaptation algorithm for the C-SVR is proposed. Then, the stability of the overall error dynamics is analyzed by the uniformly ultimately bounded property in the nonlinear system theory. In order to validate the effectiveness of the proposed adaptive controller, numerical simulations are performed on the UAV model. Copyright © 2010 Elsevier Ltd. All rights reserved.
Dissociable Effects of Valence and Arousal in Adaptive Executive Control
2011-01-01
Background Based on introspectionist, semantic, and psychophysiological experimental frameworks, it has long been assumed that all affective states derive from two independent basic dimensions, valence and arousal. However, until now, no study has investigated whether valence and arousal are also dissociable at the level of affect-related changes in cognitive processing. Methodology/Principal Findings We examined how changes in both valence (negative vs. positive) and arousal (low vs. high) influence performance in tasks requiring executive control because recent research indicates that two dissociable cognitive components are involved in the regulation of task performance: amount of current control (i.e., strength of filtering goal-irrelevant signals) and control adaptation (i.e., strength of maintaining current goals over time). Using a visual pop-out distractor task, we found that control is exclusively modulated by arousal because interference by goal-irrelevant signals was largest in high arousal states, independently of valence. By contrast, control adaptation is exclusively modulated by valence because the increase in control after trials in which goal-irrelevant signals were present was largest in negative states, independent of arousal. A Monte Carlo simulation revealed that differential effects of two experimental factors on control and control adaptation can be dissociated if there is no correlation between empirical interference and conflict-driven modulation of interference, which was the case in the present data. Consequently, the observed effects of valence and arousal on adaptive executive control are indeed dissociable. Conclusions/Significance These findings indicate that affective influences on cognitive processes can be driven by independent effects of variations in valence and arousal, which may resolve several heterogeneous findings observed in previous studies on affect-cognition interactions. PMID:22216233
Adaptive backstepping slide mode control of pneumatic position servo system
NASA Astrophysics Data System (ADS)
Ren, Haipeng; Fan, Juntao
2016-09-01
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.
Control of broadband radiated sound with adaptive structures
NASA Astrophysics Data System (ADS)
Smith, J. P.; Fuller, Chris R.; Burdisso, Ricardo A.
1993-09-01
Active structural acoustic control using adaptive structures has been demonstrated for harmonic disturbances. This paper presents an extension of this work to the attenuation of acoustic radiation from structures subject to broadband disturbances. An adaptive, multi-input multi-output (MIMO), feedforward broadband acoustic control system has been developed based on the least mean squares (LMS) algorithm. The compensators are adaptive finite impulse response (FIR) filters. The control inputs are implemented with piezoelectric ceramic actuators. Both far-field microphones and polyvinylidene fluoride (PVDF) structural sensors designed to observe the efficient acoustic radiating modes are used as error sensors. The disturbance is band-limited zero mean white noise and is implemented with a point force shaker. In the control of harmonically excited systems, satisfactory attenuation is possible with a single-input single-output (SISO) controller. In contrast, for systems excited with broadband disturbances, a MIMO controller is necessary for significant acoustic attenuation. Experimental results for the control of a simply supported plate are presented.
Adaptive Current Control Method for Hybrid Active Power Filter
NASA Astrophysics Data System (ADS)
Chau, Minh Thuyen
2016-09-01
This paper proposes an adaptive current control method for Hybrid Active Power Filter (HAPF). It consists of a fuzzy-neural controller, identification and prediction model and cost function. The fuzzy-neural controller parameters are adjusted according to the cost function minimum criteria. For this reason, the proposed control method has a capability on-line control clings to variation of the load harmonic currents. Compared to the single fuzzy logic control method, the proposed control method shows the advantages of better dynamic response, compensation error in steady-state is smaller, able to online control is better and harmonics cancelling is more effective. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.
A Conditional Exposure Control Method for Multidimensional Adaptive Testing
ERIC Educational Resources Information Center
Finkelman, Matthew; Nering, Michael L.; Roussos, Louis A.
2009-01-01
In computerized adaptive testing (CAT), ensuring the security of test items is a crucial practical consideration. A common approach to reducing item theft is to define maximum item exposure rates, i.e., to limit the proportion of examinees to whom a given item can be administered. Numerous methods for controlling exposure rates have been proposed…
Adaptive Insecure Attachment and Resource Control Strategies during Middle Childhood
ERIC Educational Resources Information Center
Chen, Bin-Bin; Chang, Lei
2012-01-01
By integrating the life history theory of attachment with resource control theory, the current study examines the hypothesis that insecure attachment styles reorganized in middle childhood are alternative adaptive strategies used to prepare for upcoming competition with the peer group. A sample of 654 children in the second through seventh grades…
Wavefront Control for Space Telescope Applications Using Adaptive Optics
2007-12-01
SPACE TELESCOPE APPLICATIONS USING ADAPTIVE OPTICS by Matthew R. Allen December 2007 Thesis Advisor: Brij Agrawal Second Reader...ASTRONAUTICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL December 2007 Author: Matthew R. Allen Approved by: Dr, Brij Agrawal...34 3. Direct Iterative Zonal Feedback Control ........................................ 35 4. Direct Iterative
Adaptive Insecure Attachment and Resource Control Strategies during Middle Childhood
ERIC Educational Resources Information Center
Chen, Bin-Bin; Chang, Lei
2012-01-01
By integrating the life history theory of attachment with resource control theory, the current study examines the hypothesis that insecure attachment styles reorganized in middle childhood are alternative adaptive strategies used to prepare for upcoming competition with the peer group. A sample of 654 children in the second through seventh grades…
Adaptive Power Control MAC in Wireless Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Choi, Hong-Seok; Byun, Hee-Jung; Lim, Jong-Tae
In this letter, we suggest APMAC (Adaptive Power Control MAC) for wireless ad hoc networks. APMAC is based on the single channel environment and improves the throughput and the energy efficiency simultaneously. Furthermore, the APMAC prevents the unfair channel starvation among the transmission pairs. We verify the performance of the APMAC through simulations.
Reinforcement Learning for the Adaptive Control of Perception and Action
1992-02-01
This dissertation applies reinforcement learning to the adaptive control of active sensory-motor systems. Active sensory-motor systems, in addition...distinct states in the external world. This phenomenon, called perceptual aliasing, is shown to destabilize existing reinforcement learning algorithms
Some applications of direct adaptive control to large structural systems
NASA Technical Reports Server (NTRS)
Bar-Kana, I.; Kaufman, H.
1983-01-01
Direct multivariable model reference adaptive control (DMMRAC) applications are considered with a representative example of a large structural system (LSS). Such applications have in the past been shown to be feasible for multivariable systems, provided that there exists a constant feedback gain matrix such that the resulting input-output transfer function is (simply) positive real.
A Conditional Exposure Control Method for Multidimensional Adaptive Testing
ERIC Educational Resources Information Center
Finkelman, Matthew; Nering, Michael L.; Roussos, Louis A.
2009-01-01
In computerized adaptive testing (CAT), ensuring the security of test items is a crucial practical consideration. A common approach to reducing item theft is to define maximum item exposure rates, i.e., to limit the proportion of examinees to whom a given item can be administered. Numerous methods for controlling exposure rates have been proposed…
Shear-rate-dependent transport coefficients in granular suspensions
NASA Astrophysics Data System (ADS)
Garzó, Vicente
2017-06-01
A recent model for monodisperse granular suspensions is used to analyze transport properties in spatially inhomogeneous states close to the simple (or uniform) shear flow. The kinetic equation is based on the inelastic Boltzmann (for low-density gases) with the presence of a viscous drag force that models the influence of the interstitial gas phase on the dynamics of grains. A normal solution is obtained via a Chapman-Enskog-like expansion around a (local) shear flow distribution which retains all the hydrodynamic orders in the shear rate. To first order in the expansion, the transport coefficients characterizing momentum and heat transport around shear flow are given in terms of the solutions of a set of coupled linear integral equations which are approximately solved by using a kinetic model of the Boltzmann equation. To simplify the analysis, the steady-state conditions when viscous heating is compensated by the cooling terms arising from viscous friction and collisional dissipation are considered to get the explicit forms of the set of generalized transport coefficients. The shear-rate dependence of some of the transport coefficients of the set is illustrated for several values of the coefficient of restitution.
Shear-rate-dependent transport coefficients in granular suspensions.
Garzó, Vicente
2017-06-01
A recent model for monodisperse granular suspensions is used to analyze transport properties in spatially inhomogeneous states close to the simple (or uniform) shear flow. The kinetic equation is based on the inelastic Boltzmann (for low-density gases) with the presence of a viscous drag force that models the influence of the interstitial gas phase on the dynamics of grains. A normal solution is obtained via a Chapman-Enskog-like expansion around a (local) shear flow distribution which retains all the hydrodynamic orders in the shear rate. To first order in the expansion, the transport coefficients characterizing momentum and heat transport around shear flow are given in terms of the solutions of a set of coupled linear integral equations which are approximately solved by using a kinetic model of the Boltzmann equation. To simplify the analysis, the steady-state conditions when viscous heating is compensated by the cooling terms arising from viscous friction and collisional dissipation are considered to get the explicit forms of the set of generalized transport coefficients. The shear-rate dependence of some of the transport coefficients of the set is illustrated for several values of the coefficient of restitution.
The Accretion Rate Dependence of Burst Oscillation Amplitude
NASA Astrophysics Data System (ADS)
Ootes, Laura S.; Watts, Anna L.; Galloway, Duncan K.; Wijnands, Rudy
2017-01-01
Neutron stars in low-mass X-ray binaries exhibit oscillations during thermonuclear bursts, attributed to asymmetric brightness patterns on the burning surfaces. All models that have been proposed to explain the origin of these asymmetries (spreading hotspots, surface waves, and cooling wakes) depend on the accretion rate. By analysis of archival RXTE data of six oscillation sources, we investigate the accretion rate dependence of the amplitude of burst oscillations. This more than doubles the size of the sample analyzed previously by Muno et al., who found indications for a relationship between accretion rate and oscillation amplitudes. We find that burst oscillation signals can be detected at all observed accretion rates. Moreover, oscillations at low accretion rates are found to have relatively small amplitudes ({A}{{rms}}≤slant 0.10) while oscillations detected in bursts observed at high accretion rates cover a broad spread in amplitudes (0.05≤slant {A}{{rms}}≤slant 0.20). In this paper we present the results of our analysis and discuss these in the light of current burst oscillation models. Additionally, we investigate the bursts of two sources without previously detected oscillations. Despite the fact that these sources have been observed at accretion rates where burst oscillations might be expected, we find their behavior not to be anomalous compared to oscillation sources.
Robust control of the Multiple Mirror Telescope adaptive secondary mirror
NASA Astrophysics Data System (ADS)
Miller, David W.; Grocott, Simon C.
1999-08-01
For force-actuated, thin facesheet mirrors, structural flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the entire surface of a deformable mirror. A linearized model of atmospheric distortion is combined with these dynamic influence functions to produce a dynamic reconstructor for providing actuator inputs in response to wavefront sensor measurements. This dynamic reconstructor is recognized as an optimal-control problem. A hierarchic control scheme that seeks to emulate the quasistatic control approach that is generally used in adaptive optics is compared with the dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive to errors than the hierarchic technique because it incorporates a dynamic model of the deformable mirror.
Variable Neural Adaptive Robust Control: A Switched System Approach
Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.
2015-05-01
Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.
Adaptive controllability of omnidirectional vehicle over unpredictable terrain
NASA Astrophysics Data System (ADS)
Cheok, Ka C.; Radovnikovich, Micho; Hudas, Gregory R.; Overholt, James L.; Fleck, Paul
2009-05-01
In this paper, the controllability of a Mecanum omnidirectional vehicle (ODV) is investigated. An adaptive drive controller is developed that guides the ODV over irregular and unpredictable driving surfaces. Using sensor fusion with appropriate filtering, the ODV gets an accurate perception of the conditions it encounters and then adapts to them to robustly control its motion. Current applications of Mecanum ODVs are designed for use on smooth, regular driving surfaces, and don't actively detect the characteristics of disturbances in the terrain. The intention of this work is to take advantage of the mobility of ODVs in environments where they weren't originally intended to be used. The methods proposed in this paper were implemented in hardware on an ODV. Experimental results did not perform as designed due to incorrect assumptions and over-simplification of the system model. Future work will concentrate on developing more robust control schemes to account for the unknown nonlinear dynamics inherent in the system.
Adaptive control of an active magnetic bearing with external disturbance.
Dong, Lili; You, Silu
2014-09-01
Adaptive back stepping control (ABC) is originally applied to a linearized model of an active magnetic bearing (AMB) system. Our control goal is to regulate the deviation of the magnetic bearing from its equilibrium position in the presence of an external disturbance and system uncertainties. Two types of ABC methods are developed on the AMB system. One is based on full state feedback, for which displacement, velocity, and current states are assumed available. The other one is adaptive observer based back stepping controller (AOBC) where only displacement output is measurable. An observer is designed for AOBC to estimate velocity and current states of AMB. Lyapunov approach proves the stabilities of both regular ABC and AOBC. Simulation results demonstrate the effectiveness and robustness of two controllers. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive resonator control techniques for high-power lasers
Freeman, R.H.; Spinhirne, J.M.; Anafi, D.
1981-01-01
Experimental results and interpretations for correcting tilt and astigmatism aberrations using intracavity adaptive optics versus extracavity adaptive optics are presented, along with control algorithm and resonator design considerations when utilizing a multidither COAT control system for astigmatism and tilt correction. It is shown that in a high-power device, PIB (Power-in-the-Bucket) optimization, with the possible added requirement of extracavity beam clean-up to achieve good beam quality, would be a more desirable control algorithm than BQ (beam quality) optimization. Zonal multidither hill-climbing servo COAT techniques applied to tilt correction fail to achieve good correction for large tilt amplitudes when the control loop is closed after tilt is introduced. Therefore, it is suggested that a separate tilt sensor be used to provide error signal for correction of tilt and let the multidither system COAT correct for higher order aberrations
Adaptive control system for vibration harmonics of cryocooler
NASA Astrophysics Data System (ADS)
Yang, Baoyu; Wu, Yinong
2013-06-01
Vibration disturbances generated by cryocooler, representing in a series of harmonics, are critical issue in practical application. A control system including electronic circuit and mechanical actuator has been developed to attenuate the vibration. The control algorithm executes as a series of adaptive narrowband notch filters to reduce corresponding harmonics. The algorithm does not require actuator transfer function, thus ensure its adaptiveness. Using this algorithm, all the vibration harmonics of cryocooler were attenuated by a factor of more than 45.9 dB, i.e., the residual vibration force was reduced from 20.1Nrms to 0.102Nrms over the 300 Hz control bandwidth, the converging time is only less than 20 seconds, and the power consumption of mechanical actuator is less than half a watt. The vibration control system has achieved the general requirement of Infrared application.
Model reference, sliding mode adaptive control for flexible structures
NASA Technical Reports Server (NTRS)
Yurkovich, S.; Ozguner, U.; Al-Abbass, F.
1988-01-01
A decentralized model reference adaptive approach using a variable-structure sliding model control has been developed for the vibration suppression of large flexible structures. Local models are derived based upon the desired damping and response time in a model-following scheme, and variable structure controllers are then designed which employ colocated angular rate and position feedback. Numerical simulations have been performed using NASA's flexible grid experimental apparatus.
Adaptive PID control based on orthogonal endocrine neural networks.
Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D
2016-12-01
A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances.
Adaptive piezoelectric sensoriactuators for active structural acoustic control
NASA Astrophysics Data System (ADS)
Vipperman, Jeffrey Stuart
1997-09-01
A new transducer technology with application to active control systems, modal analysis, and autonomous system health monitoring, is brought to fruition in this work. It has the advantages of being lightweight, potentially cost-effective, self-tuning, has negligible dynamics, and most importantly (from a robustness perspective), it provides a colocated sensor/actuator pair. The transducer consists of a piezoceramic element which serves as both an actuator and a sensor and will be referred to in this work as a sensoriactuator. Simple, adaptive signal processing in conjunction with a voltage controlled amplifier, reference capacitor, and a common-mode rejection circuit extract the mechanical response from the total response of the piezoelectric sensoriactuator for sensing. The digital portion of the adaptive piezoelectric sensoriactuator merely serves to tune the circuit, avoiding the potentially destabilizing effects of introducing a digital delay in the signal path, when used for feedback control applications. Adaptive compensation of the sensoriactuator is necessary since the signal to noise ratio is typically greater than 40 dB, making it prohibitive to tune the circuit manually. In addition, the constitutive properties of piezoceramics vary with time and environment, necessitating that the circuit be periodically re-tuned. The analog portion of the hardware is based upon op-amp circuits and an AD632 analog multiplier chip, which serves as both a voltage controlled amplifier (VCA) and a common mode rejection (CMR) circuit. A single coefficient least-mean square (LMS) adaptive filter continuously adjusts the gain of the VCA circuit as necessary. Nonideal behavior of piezoceramics is discussed along with methods to counter the consequential deterioration in circuit performance. A multiple input multiple output (MIMO) implementation of the adaptive piezoelectric sensoriactuator is developed using orthogonal white noise training signals for each sensoriactuator. Two
Adaptive second-order sliding mode control with uncertainty compensation
NASA Astrophysics Data System (ADS)
Bartolini, G.; Levant, A.; Pisano, A.; Usai, E.
2016-09-01
This paper endows the second-order sliding mode control (2-SMC) approach with additional capabilities of learning and control adaptation. We present a 2-SMC scheme that estimates and compensates for the uncertainties affecting the system dynamics. It also adjusts the discontinuous control effort online, so that it can be reduced to arbitrarily small values. The proposed scheme is particularly useful when the available information regarding the uncertainties is conservative, and the classical `fixed-gain' SMC would inevitably lead to largely oversized discontinuous control effort. Benefits from the viewpoint of chattering reduction are obtained, as confirmed by computer simulations.
A Comprehensive Robust Adaptive Controller for Gust Load Alleviation
Quagliotti, Fulvia
2014-01-01
The objective of this paper is the implementation and validation of an adaptive controller for aircraft gust load alleviation. The contribution of this paper is the design of a robust controller that guarantees the reduction of the gust loads, even when the nominal conditions change. Some preliminary results are presented, considering the symmetric aileron deflection as control device. The proposed approach is validated on subsonic transport aircraft for different mass and flight conditions. Moreover, if the controller parameters are tuned for a specific gust model, even if the gust frequency changes, no parameter retuning is required. PMID:24688411
Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems
NASA Technical Reports Server (NTRS)
Esogbue, Augustine O.
1998-01-01
The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of
Model reference adaptive attitude control of spacecraft using reaction wheels
NASA Technical Reports Server (NTRS)
Singh, Sahjendra N.
1986-01-01
A nonlinear model reference adaptive control law for large angle rotational maneuvers of spacecraft using reaction wheels in the presence of uncertainty is presented. The derivation of control law does not require any information on the values of the system parameters and the disturbance torques acting on the spacecraft. The controller includes a dynamic system in the feedback path. The control law is a nonlinear function of the attitude error, the rate of the attitude error, and the compensator state. Simulation results are prsented to show that large angle rotational maneuvers can be performed in spite of the uncertainty in the system.
Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems
NASA Astrophysics Data System (ADS)
Roopaei, Mehdi; Zolghadri, Mansoor; Meshksar, Sina
2009-09-01
In this article, a novel Adaptive Fuzzy Sliding Mode Control (AFSMC) methodology is proposed based on the integration of Sliding Mode Control (SMC) and Adaptive Fuzzy Control (AFC). Making use of the SMC design framework, we propose two fuzzy systems to be used as reaching and equivalent parts of the SMC. In this way, we make use of the fuzzy logic to handle uncertainty/disturbance in the design of the equivalent part and provide a chattering free control for the design of the reaching part. To construct the equivalent control law, an adaptive fuzzy inference engine is used to approximate the unknown parts of the system. To get rid of the chattering, a fuzzy logic model is assigned for reaching control law, which acting like the saturation function technique. The main advantage of our proposed methodology is that the structure of the system is unknown and no knowledge of the bounds of parameters, uncertainties and external disturbance are required in advance. Using Lyapunov stability theory and Barbalat's lemma, the closed-loop system is proved to be stable and convergence properties of the system is assured. Simulation examples are presented to verify the effectiveness of the method. Results are compared with some other methods proposed in the past research.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.
F-8C adaptive control law refinement and software development
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.
1981-01-01
An explicit adaptive control algorithm based on maximum likelihood estimation of parameters was designed. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm was implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer, surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software.
Optical and control modeling for adaptive beam-combining experiments
Gruetzner, J.K.; Tucker, S.D.; Neal, D.R.; Bentley, A.E.; Simmons-Potter, K.
1995-08-01
The development of modeling algorithms for adaptive optics systems is important for evaluating both performance and design parameters prior to system construction. Two of the most critical subsystems to be modeled are the binary optic design and the adaptive control system. Since these two are intimately related, it is beneficial to model them simultaneously. Optic modeling techniques have some significant limitations. Diffraction effects directly limit the utility of geometrical ray-tracing models, and transform techniques such as the fast fourier transform can be both cumbersome and memory intensive. The authors have developed a hybrid system incorporating elements of both ray-tracing and fourier transform techniques. In this paper they present an analytical model of wavefront propagation through a binary optic lens system developed and implemented at Sandia. This model is unique in that it solves the transfer function for each portion of a diffractive optic analytically. The overall performance is obtained by a linear superposition of each result. The model has been successfully used in the design of a wide range of binary optics, including an adaptive optic for a beam combining system consisting of an array of rectangular mirrors, each controllable in tip/tilt and piston. Wavefront sensing and the control models for a beam combining system have been integrated and used to predict overall systems performance. Applicability of the model for design purposes is demonstrated with several lens designs through a comparison of model predictions with actual adaptive optics results.
Adaptive configuration and control in an ATR system
NASA Astrophysics Data System (ADS)
Roberts, Barry A.; Au, Wing K.
1995-06-01
Today's ATR is constructed via inefficient and suboptimal system configuration and training. The process of configuring an ATR is currently very labor intensive, subjective, and inaccurate, as is the process of training an ATR for a particular mission. To cure this deficiency, what is desired is an automated method of configuration and training which is capable of searching the N-dimensional space of modules, algorithms, and parameter values to produce ATR algorithm suites which perform best in each trained scenario. Also, today's ATR is only capable of a limited amount of adaptation to sensed (or otherwise obtained) changes in the environment. To improve the adaptibility of ATR processing and thereby improve accuracy and robustness, what is desired is a high-level control structure which enables system adaptation via changes in parameter values and changes in algorithms (at the component and at the 'suite' level). The Honeywell effort is producing a system for Adaptive Configuration and Control (ACC) of an ATR system which addresses the above described problems. The software system is using the machine learning technique of Genetic Algorithms to autonomously and optimally perform configuration and training and it is using case-based reasoning to provide run-time configuration and control of the ATR system. This paper provides an overview of the ACC system, describes its operation, and describes the benefits it provides to ATR systems.
NASA Astrophysics Data System (ADS)
D'Amato, Anthony M.
Input reconstruction is the process of using the output of a system to estimate its input. In some cases, input reconstruction can be accomplished by determining the output of the inverse of a model of the system whose input is the output of the original system. Inversion, however, requires an exact and fully known analytical model, and is limited by instabilities arising from nonminimum-phase zeros. The main contribution of this work is a novel technique for input reconstruction that does not require model inversion. This technique is based on a retrospective cost, which requires a limited number of Markov parameters. Retrospective cost input reconstruction (RCIR) does not require knowledge of nonminimum-phase zero locations or an analytical model of the system. RCIR provides a technique that can be used for model refinement, state estimation, and adaptive control. In the model refinement application, data are used to refine or improve a model of a system. It is assumed that the difference between the model output and the data is due to an unmodeled subsystem whose interconnection with the modeled system is inaccessible, that is, the interconnection signals cannot be measured and thus standard system identification techniques cannot be used. Using input reconstruction, these inaccessible signals can be estimated, and the inaccessible subsystem can be fitted. We demonstrate input reconstruction in a model refinement framework by identifying unknown physics in a space weather model and by estimating an unknown film growth in a lithium ion battery. The same technique can be used to obtain estimates of states that cannot be directly measured. Adaptive control can be formulated as a model-refinement problem, where the unknown subsystem is the idealized controller that minimizes a measured performance variable. Minimal modeling input reconstruction for adaptive control is useful for applications where modeling information may be difficult to obtain. We demonstrate
Robust observer-based adaptive fuzzy sliding mode controller
NASA Astrophysics Data System (ADS)
Oveisi, Atta; Nestorović, Tamara
2016-08-01
In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.
A novel adaptive force control method for IPMC manipulation
NASA Astrophysics Data System (ADS)
Hao, Lina; Sun, Zhiyong; Li, Zhi; Su, Yunquan; Gao, Jianchao
2012-07-01
IPMC is a type of electro-active polymer material, also called artificial muscle, which can generate a relatively large deformation under a relatively low input voltage (generally speaking, less than 5 V), and can be implemented in a water environment. Due to these advantages, IPMC can be used in many fields such as biomimetics, service robots, bio-manipulation, etc. Until now, most existing methods for IPMC manipulation are displacement control not directly force control, however, under most conditions, the success rate of manipulations for tiny fragile objects is limited by the contact force, such as using an IPMC gripper to fix cells. Like most EAPs, a creep phenomenon exists in IPMC, of which the generated force will change with time and the creep model will be influenced by the change of the water content or other environmental factors, so a proper force control method is urgently needed. This paper presents a novel adaptive force control method (AIPOF control—adaptive integral periodic output feedback control), based on employing a creep model of which parameters are obtained by using the FRLS on-line identification method. The AIPOF control method can achieve an arbitrary pole configuration as long as the plant is controllable and observable. This paper also designs the POF and IPOF controller to compare their test results. Simulation and experiments of micro-force-tracking tests are carried out, with results confirming that the proposed control method is viable.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment
Adaptive state estimation for control of flexible structures
NASA Technical Reports Server (NTRS)
Chen, Chung-Wen; Huang, Jen-Kuang
1990-01-01
This paper proposes a new approach of obtaining adaptive state estimation of a system in the presence of unknown system disturbances and measurement noise. In the beginning, a non-optimal Kalman filter with arbitrary initial guess for the process and measurement noises is implemented. At the same time, an adaptive transversal predictor (ATP) based on the recursive least-squares (RLS) algorithm is used to yield optimal one- to p- step-ahead output predictions using the previous input/output data. Referring to these optimal predictions the Kalman filter gain is updated and the performance of the state estimation is thus improved. If forgetting factor is implemented in the recursive least-squares algorithm, this method is also capable of dealing with the situation when the noise statistics are slowly time-varying. This feature makes this new approach especially suitable for the control of flexible structures. A numerical example demonstrates the feasibility of this real time adaptive state estimation method.
Beaconless adaptive-optics technique for HEL beam control
NASA Astrophysics Data System (ADS)
Khizhnyak, Anatoliy; Markov, Vladimir
2016-05-01
Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.
Fixed gain and adaptive techniques for rotorcraft vibration control
NASA Technical Reports Server (NTRS)
Roy, R. H.; Saberi, H. A.; Walker, R. A.
1985-01-01
The results of an analysis effort performed to demonstrate the feasibility of employing approximate dynamical models and frequency shaped cost functional control law desgin techniques for helicopter vibration suppression are presented. Both fixed gain and adaptive control designs based on linear second order dynamical models were implemented in a detailed Rotor Systems Research Aircraft (RSRA) simulation to validate these active vibration suppression control laws. Approximate models of fuselage flexibility were included in the RSRA simulation in order to more accurately characterize the structural dynamics. The results for both the fixed gain and adaptive approaches are promising and provide a foundation for pursuing further validation in more extensive simulation studies and in wind tunnel and/or flight tests.
Decentralized adaptive control of robot manipulators with robust stabilization design
NASA Technical Reports Server (NTRS)
Yuan, Bau-San; Book, Wayne J.
1988-01-01
Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.
Nonlinear adaptive filter for closed-loop fire control
NASA Astrophysics Data System (ADS)
Marshall, William C.
1990-09-01
This paper presents an adaptive or self-learning filter design intended for use in real-time closed loop pointing control systems engaging multiple targets. The design approach is based upon use of a performance index (based upon the Mahalanobis generalized distance function) and multiple filters processed in parallel using the same nonlinear measurements as input. Application of performance index criteria to the statistics of individual filter residuals allows the selection of the optimum filter set without the time delays typically encountered and thereby allows the composite filter structure to adapt (or self-learn) to uncertainties in modeling target acceleration capabilities. An advantage of this approach is that it also provides to an operator (or a robotic controller) the confidence level of tracking system performance against a maneuvering target. This information is of interest for deployment of counter-measures (e.g., fire control eventing, alarms, engagement priority, etc) or simply for laboratory system tests of design adequacy.
Network Adaptive Deadband: NCS Data Flow Control for Shared Networks
Díaz-Cacho, Miguel; Delgado, Emma; Prieto, José A. G.; López, Joaquín
2012-01-01
This paper proposes a new middleware solution called Network Adaptive Deadband (NAD) for long time operation of Networked Control Systems (NCS) through the Internet or any shared network based on IP technology. The proposed middleware takes into account the network status and the NCS status, to improve the global system performance and to share more effectively the network by several NCS and sensor/actuator data flows. Relationship between network status and NCS status is solved with a TCP-friendly transport flow control protocol and the deadband concept, relating deadband value and transmission throughput. This creates a deadband-based flow control solution. Simulation and experiments in shared networks show that the implemented network adaptive deadband has better performance than an optimal constant deadband solution in the same circumstances. PMID:23208556
Adaptive guidance navigation and control for the Advanced Launch System
NASA Astrophysics Data System (ADS)
Shackelford, J. H., III
The paper presents an Advanced Launch development project called the adaptive guidance, navigation, and control (GNC) project aimed at assisting the Advanced Launch System (ALS) program in achieving its cost and operability goals by defining and demonstrating onboard adaptive algorithms that may reduce or eliminate recurring time-consuming preflight analysis tasks as well as the processes and technologies required for streamlining the preflight design process itself. Two different guidance, navigation, and control systems for the ALS are compared: one scheme would be routed in the classical approach to today's expendable-launch-vehicles autopilot design, while the second scheme would rely on algorithms and sensors that can identify those parameters that change as result of either the mission or payload and modify or update parameters in the controller. Four simple concepts making up the baseline GNC approach are outlined.
On fractional order composite model reference adaptive control
NASA Astrophysics Data System (ADS)
Wei, Yiheng; Sun, Zhenyuan; Hu, Yangsheng; Wang, Yong
2016-08-01
This paper presents a novel composite model reference adaptive control approach for a class of fractional order linear systems with unknown constant parameters. The method is extended from the model reference adaptive control. The parameter estimation error of our method depends on both the tracking error and the prediction error, whereas the existing method only depends on the tracking error, which makes our method has better transient performance in the sense of generating smooth system output. By the aid of the continuous frequency distributed model, stability of the proposed approach is established in the Lyapunov sense. Furthermore, the convergence property of the model parameters estimation is presented, on the premise that the closed-loop control system is stable. Finally, numerical simulation examples are given to demonstrate the effectiveness of the proposed schemes.
Adaptive Control of a Transport Aircraft Using Differential Thrust
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan
2009-01-01
The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.
A Robot Manipulator with Adaptive Fuzzy Controller in Obstacle Avoidance
NASA Astrophysics Data System (ADS)
Sreekumar, Muthuswamy
2016-07-01
Building robots and machines to act within a fuzzy environment is a problem featuring complexity and ambiguity. In order to avoid obstacles, or move away from it, the robot has to perform functions such as obstacle identification, finding the location of the obstacle, its velocity, direction of movement, size, shape, and so on. This paper presents about the design, and implementation of an adaptive fuzzy controller designed for a 3 degree of freedom spherical coordinate robotic manipulator interfaced with a microcontroller and an ultrasonic sensor. Distance between the obstacle and the sensor and its time rate are considered as inputs to the controller and how the manipulator to take diversion from its planned trajectory, in order to avoid collision with the obstacle, is treated as output from the controller. The obstacles are identified as stationary or moving objects and accordingly adaptive self tuning is accomplished with three set of linguistic rules. The prototype of the manipulator has been fabricated and tested for collision avoidance by placing stationary and moving obstacles in its planned trajectory. The performance of the adaptive control algorithm is analyzed in MATLAB by generating 3D fuzzy control surfaces.
Adaptation with disturbance attenuation in nonlinear control systems
Basar, T.
1997-12-31
We present an optimization-based adaptive controller design for nonlinear systems exhibiting parametric as well as functional uncertainty. The approach involves the formulation of an appropriate cost functional that places positive weight on deviations from the achievement of desired objectives (such as tracking of a reference trajectory while the system exhibits good transient performance) and negative weight on the energy of the uncertainty. This cost functional also translates into a disturbance attenuation inequality which quantifies the effect of the presence of uncertainty on the desired objective, which in turn yields an interpretation for the optimizing control as one that optimally attenuates the disturbance, viewed as the collection of unknown parameters and unknown signals entering the system dynamics. In addition to this disturbance attenuation property, the controllers obtained also feature adaptation in the sense that they help with identification of the unknown parameters, even though this has not been set as the primary goal of the design. In spite of this adaptation/identification role, the controllers obtained are not of certainty-equivalent type, which means that the identification and the control phases of the design are not decoupled.
Adaptive control of Space Station during nominal operations with CMGs. [Control Moment Gyroscopes
NASA Technical Reports Server (NTRS)
Bishop, R. H.; Paynter, S. J.; Sunkel, J. W.
1991-01-01
An adaptive control approach is investigated for the Space Station. The main components of the adaptive controller are the parameter identification scheme, the control gain calculation, and the control law. The control law is the Space Station baseline control law. The control gain calculation is based on linear quadratic regulator theory with eigenvalue placement in a vertical strip. The parameter identification scheme is a real-time recursive extended Kalman filter which estimates the inertias and also provides an estimate of the unmodeled disturbances due to the aerodynamic torques and to the nonlinear effects. An analysis of the inertia estimation problem suggests that it is possible to compute accurate estimates of the Space Station inertias during nominal CMG (control moment gyro) operations. The closed-loop adaptive control law is shown to be capable of stabilizing the Space Station after large inertia changes. Results are presented for the pitch axis.
Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.
1979-01-01
The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.
Adaptive Tracking Control for Robots With an Interneural Computing Scheme.
Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang
2017-01-24
Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.
An adaptive fuzzy controller for permanent-magnet AC servo drives
Le-Huy, H.
1995-12-31
This paper presents a theoretical study on a model-reference adaptive fuzzy logic controller for vector-controlled permanent-magnet ac servo drives. In the proposed system, fuzzy logic is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The results are compared with that provided by a non-adaptive fuzzy controller. The implementation of proposed adaptive fuzzy controller is discussed.
Parameter Estimation Analysis for Hybrid Adaptive Fault Tolerant Control
NASA Astrophysics Data System (ADS)
Eshak, Peter B.
Research efforts have increased in recent years toward the development of intelligent fault tolerant control laws, which are capable of helping the pilot to safely maintain aircraft control at post failure conditions. Researchers at West Virginia University (WVU) have been actively involved in the development of fault tolerant adaptive control laws in all three major categories: direct, indirect, and hybrid. The first implemented design to provide adaptation was a direct adaptive controller, which used artificial neural networks to generate augmentation commands in order to reduce the modeling error. Indirect adaptive laws were implemented in another controller, which utilized online PID to estimate and update the controller parameter. Finally, a new controller design was introduced, which integrated both direct and indirect control laws. This controller is known as hybrid adaptive controller. This last control design outperformed the two earlier designs in terms of less NNs effort and better tracking quality. The performance of online PID has an important role in the quality of the hybrid controller; therefore, the quality of the estimation will be of a great importance. Unfortunately, PID is not perfect and the online estimation process has some inherited issues; the online PID estimates are primarily affected by delays and biases. In order to ensure updating reliable estimates to the controller, the estimator consumes some time to converge. Moreover, the estimator will often converge to a biased value. This thesis conducts a sensitivity analysis for the estimation issues, delay and bias, and their effect on the tracking quality. In addition, the performance of the hybrid controller as compared to direct adaptive controller is explored. In order to serve this purpose, a simulation environment in MATLAB/SIMULINK has been created. The simulation environment is customized to provide the user with the flexibility to add different combinations of biases and delays to
Robust adaptive backstepping control for reentry reusable launch vehicles
NASA Astrophysics Data System (ADS)
Wang, Zhen; Wu, Zhong; Du, Yijiang
2016-09-01
During the reentry process of reusable launch vehicles (RLVs), the large range of flight envelope will not only result in high nonlinearities, strong coupling and fast time-varying characteristics of the attitude dynamics, but also result in great uncertainties in the atmospheric density, aerodynamic coefficients and environmental disturbances, etc. In order to attenuate the effects of these problems on the control performance of the reentry process, a robust adaptive backstepping control (RABC) strategy is proposed for RLV in this paper. This strategy consists of two-loop controllers designed via backstepping method. Both the outer and the inner loop adopt a robust adaptive controller, which can deal with the disturbances and uncertainties by the variable-structure term with the estimation of their bounds. The outer loop can track the desired attitude by the design of virtual control-the desired angular velocity, while the inner one can track the desired angular velocity by the design of control torque. Theoretical analysis indicates that the closed-loop system under the proposed control strategy is globally asymptotically stable. Even if the boundaries of the disturbances and uncertainties are unknown, the attitude can track the desired value accurately. Simulation results of a certain RLV demonstrate the effectiveness of the control strategy.
Adaptive suboptimal second-order sliding mode control for microgrids
NASA Astrophysics Data System (ADS)
Incremona, Gian Paolo; Cucuzzella, Michele; Ferrara, Antonella
2016-09-01
This paper deals with the design of adaptive suboptimal second-order sliding mode (ASSOSM) control laws for grid-connected microgrids. Due to the presence of the inverter, of unpredicted load changes, of switching among different renewable energy sources, and of electrical parameters variations, the microgrid model is usually affected by uncertain terms which are bounded, but with unknown upper bounds. To theoretically frame the control problem, the class of second-order systems in Brunovsky canonical form, characterised by the presence of matched uncertain terms with unknown bounds, is first considered. Four adaptive strategies are designed, analysed and compared to select the most effective ones to be applied to the microgrid case study. In the first two strategies, the control amplitude is continuously adjusted, so as to arrive at dominating the effect of the uncertainty on the controlled system. When a suitable control amplitude is attained, the origin of the state space of the auxiliary system becomes attractive. In the other two strategies, a suitable blend between two components, one mainly working during the reaching phase, the other being the predominant one in a vicinity of the sliding manifold, is generated, so as to reduce the control amplitude in steady state. The microgrid system in a grid-connected operation mode, controlled via the selected ASSOSM control strategies, exhibits appreciable stability properties, as proved theoretically and shown in simulation.
Adaptive backstepping sliding mode control for feedforward uncertain systems
NASA Astrophysics Data System (ADS)
Koshkouei, Ali J.; Burnham, Keith J.
2011-12-01
Output tracking backstepping sliding mode control for feedforward uncertain systems is considered in this article. Feedforward systems are not usually transformable to the parametric semi-strict feedback form, and they may include unmatched uncertainties consisting of disturbances and unmodelled dynamics terms. The backstepping method presented in this article, even without uncertainties differs from that of Ríos-Bolívar and Zinober [Ríos-Bolívar, M. and Zinober, A.S.I. (1999), 'Dynamical Adaptive Sliding Mode Control of Observable Minimum Phase Uncertain Nonlinear Systems', in Variable Structure Systems: Variable Structure Systems, Sliding Mode and Nonlinear Control, eds., K.D. Young and Ü. Özgüner. Ozguner, London, Springer-Verlag, pp. 211-236; Ríos-Bolívar, M., and Zinober, A.S.I. (1997a), 'Dynamical Adaptive Backstepping Control Design via Symbolic Computation', in Proceedings of the 3rd European Control Conference, Brussels]. In this article, the backstepping is not a dynamical method as in Ríos-Bolívar and Zinober (1997a, 1999), since at each step, the control and map input remain intact, and the differentiations of the control are not used. Therefore, the method can be introduced as static backstepping. Two different controllers are designed based upon the backstepping approach with and without sliding mode. The dynamic and static backstepping methods are applied to a gravity-flow/pipeline system to compare two methods.
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang
2008-01-01
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934
Direct model reference adaptive control of a flexible robotic manipulator
NASA Technical Reports Server (NTRS)
Meldrum, D. R.
1985-01-01
Quick, precise control of a flexible manipulator in a space environment is essential for future Space Station repair and satellite servicing. Numerous control algorithms have proven successful in controlling rigid manipulators wih colocated sensors and actuators; however, few have been tested on a flexible manipulator with noncolocated sensors and actuators. In this thesis, a model reference adaptive control (MRAC) scheme based on command generator tracker theory is designed for a flexible manipulator. Quicker, more precise tracking results are expected over nonadaptive control laws for this MRAC approach. Equations of motion in modal coordinates are derived for a single-link, flexible manipulator with an actuator at the pinned-end and a sensor at the free end. An MRAC is designed with the objective of controlling the torquing actuator so that the tip position follows a trajectory that is prescribed by the reference model. An appealing feature of this direct MRAC law is that it allows the reference model to have fewer states than the plant itself. Direct adaptive control also adjusts the controller parameters directly with knowledge of only the plant output and input signals.
Embedded intelligent adaptive PI controller for an electromechanical system.
El-Nagar, Ahmad M
2016-09-01
In this study, an intelligent adaptive controller approach using the interval type-2 fuzzy neural network (IT2FNN) is presented. The proposed controller consists of a lower level proportional - integral (PI) controller, which is the main controller and an upper level IT2FNN which tuning on-line the parameters of a PI controller. The proposed adaptive PI controller based on IT2FNN (API-IT2FNN) is implemented practically using the Arduino DUE kit for controlling the speed of a nonlinear DC motor-generator system. The parameters of the IT2FNN are tuned on-line using back-propagation algorithm. The Lyapunov theorem is used to derive the stability and convergence of the IT2FNN. The obtained experimental results, which are compared with other controllers, demonstrate that the proposed API-IT2FNN is able to improve the system response over a wide range of system uncertainties. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Direct Model Reference Adaptive Control for a Magnetic Bearing
Durling, Mike
1999-11-01
A Direct Model Reference Adaptive Controller (DMRAC) is applied to a magnetic bearing test stand. The bearing of interest is the MBC 500 Magnetic Bearing System manufactured by Magnetic Moments, LLC. The bearing model is presented in state space form and the system transfer function is measured directly using a closed-loop swept sine technique. Next, the bearing models are used to design a phase-lead controller, notch filter and then a DMRAC. The controllers are tuned in simulations and finally are implemented using a combination of MATLAB, SIMULINK and dSPACE. The results show a successful implementation of a DMRAC on the magnetic bearing hardware.
Towards feasible and effective predictive wavefront control for adaptive optics
Poyneer, L A; Veran, J
2008-06-04
We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.
ERIC Educational Resources Information Center
Ross, Steven M.; Rakow, Ernest A.
1981-01-01
Subjects completed a self-paced lesson on math rules in which the number of supporting examples was adapted to pretest scores through program control, selected through learner control, or kept constant (nonadaptive). Program control means were consistently highest while learner control means were lowest. (Author/BW)
Visuomotor Control of Human Adaptive Locomotion: Understanding the Anticipatory Nature
Higuchi, Takahiro
2013-01-01
To maintain balance during locomotion, the central nervous system (CNS) accommodates changes in the constraints of spatial environment (e.g., existence of an obstacle or changes in the surface properties). Locomotion while modifying the basic movement patterns in response to such constraints is referred to as adaptive locomotion. The most powerful means of ensuring balance during adaptive locomotion is to visually perceive the environmental properties at a distance and modify the movement patterns in an anticipatory manner to avoid perturbation altogether. For this reason, visuomotor control of adaptive locomotion is characterized, at least in part, by its anticipatory nature. The purpose of the present article is to review the relevant studies which revealed the anticipatory nature of the visuomotor control of adaptive locomotion. The anticipatory locomotor adjustments for stationary and changeable environment, as well as the spatio-temporal patterns of gaze behavior to support the anticipatory locomotor adjustments are described. Such description will clearly show that anticipatory locomotor adjustments are initiated when an object of interest (e.g., a goal or obstacle) still exists in far space. This review also show that, as a prerequisite of anticipatory locomotor adjustments, environmental properties are accurately perceived from a distance in relation to individual’s action capabilities. PMID:23720647
Visuomotor control of human adaptive locomotion: understanding the anticipatory nature.
Higuchi, Takahiro
2013-01-01
To maintain balance during locomotion, the central nervous system (CNS) accommodates changes in the constraints of spatial environment (e.g., existence of an obstacle or changes in the surface properties). Locomotion while modifying the basic movement patterns in response to such constraints is referred to as adaptive locomotion. The most powerful means of ensuring balance during adaptive locomotion is to visually perceive the environmental properties at a distance and modify the movement patterns in an anticipatory manner to avoid perturbation altogether. For this reason, visuomotor control of adaptive locomotion is characterized, at least in part, by its anticipatory nature. The purpose of the present article is to review the relevant studies which revealed the anticipatory nature of the visuomotor control of adaptive locomotion. The anticipatory locomotor adjustments for stationary and changeable environment, as well as the spatio-temporal patterns of gaze behavior to support the anticipatory locomotor adjustments are described. Such description will clearly show that anticipatory locomotor adjustments are initiated when an object of interest (e.g., a goal or obstacle) still exists in far space. This review also show that, as a prerequisite of anticipatory locomotor adjustments, environmental properties are accurately perceived from a distance in relation to individual's action capabilities.
Adaptive and predictive control of a simulated robot arm.
Tolu, Silvia; Vanegas, Mauricio; Garrido, Jesús A; Luque, Niceto R; Ros, Eduardo
2013-06-01
In this work, a basic cerebellar neural layer and a machine learning engine are embedded in a recurrent loop which avoids dealing with the motor error or distal error problem. The presented approach learns the motor control based on available sensor error estimates (position, velocity, and acceleration) without explicitly knowing the motor errors. The paper focuses on how to decompose the input into different components in order to facilitate the learning process using an automatic incremental learning model (locally weighted projection regression (LWPR) algorithm). LWPR incrementally learns the forward model of the robot arm and provides the cerebellar module with optimal pre-processed signals. We present a recurrent adaptive control architecture in which an adaptive feedback (AF) controller guarantees a precise, compliant, and stable control during the manipulation of objects. Therefore, this approach efficiently integrates a bio-inspired module (cerebellar circuitry) with a machine learning component (LWPR). The cerebellar-LWPR synergy makes the robot adaptable to changing conditions. We evaluate how this scheme scales for robot-arms of a high number of degrees of freedom (DOFs) using a simulated model of a robot arm of the new generation of light weight robots (LWRs).
Geometry adaptive control of a composite reflector using PZT actuator
NASA Astrophysics Data System (ADS)
Lan, Lan; Jiang, Shuidong; Zhou, Yang; Fang, Houfei; Tan, Shujun; Wu, Zhigang
2015-04-01
Maintaining geometrical high precision for a graphite fiber reinforced composite (GFRC) reflector is a challenging task. Although great efforts have been placed to improve the fabrication precision, geometry adaptive control for a reflector is becoming more and more necessary. This paper studied geometry adaptive control for a GFRC reflector with piezoelectric ceramic transducer (PZT) actuators assembled on the ribs. In order to model the piezoelectric effect in finite element analysis (FEA), a thermal analogy was used in which the temperature was applied to simulate the actuation voltage, and the piezoelectric constant was mimicked by a Coefficient of Thermal Expansion (CTE). PZT actuator's equivalent model was validated by an experiment. The deformations of a triangular GFRC specimen with three PZT actuators were also measured experimentally and compared with that of simulation. This study developed a multidisciplinary analytical model, which includes the composite structure, thermal, thermal deformation and control system, to perform an optimization analysis and design for the adaptive GFRC reflector by considering the free vibration, gravity deformation and geometry controllability.
An adaptive learning control system for large flexible structures
NASA Technical Reports Server (NTRS)
Thau, F. E.
1985-01-01
The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.
Adaptive subwavelength control of nano-optical fields.
Aeschlimann, Martin; Bauer, Michael; Bayer, Daniela; Brixner, Tobias; García de Abajo, F Javier; Pfeiffer, Walter; Rohmer, Martin; Spindler, Christian; Steeb, Felix
2007-03-15
Adaptive shaping of the phase and amplitude of femtosecond laser pulses has been developed into an efficient tool for the directed manipulation of interference phenomena, thus providing coherent control over various quantum-mechanical systems. Temporal resolution in the femtosecond or even attosecond range has been demonstrated, but spatial resolution is limited by diffraction to approximately half the wavelength of the light field (that is, several hundred nanometres). Theory has indicated that the spatial limitation to coherent control can be overcome with the illumination of nanostructures: the spatial near-field distribution was shown to depend on the linear chirp of an irradiating laser pulse. An extension of this idea to adaptive control, combining multiparameter pulse shaping with a learning algorithm, demonstrated the generation of user-specified optical near-field distributions in an optimal and flexible fashion. Shaping of the polarization of the laser pulse provides a particularly efficient and versatile nano-optical manipulation method. Here we demonstrate the feasibility of this concept experimentally, by tailoring the optical near field in the vicinity of silver nanostructures through adaptive polarization shaping of femtosecond laser pulses and then probing the lateral field distribution by two-photon photoemission electron microscopy. In this combination of adaptive control and nano-optics, we achieve subwavelength dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics. This experimental realization of theoretical suggestions opens a number of perspectives in coherent control, nano-optics, nonlinear spectroscopy, and other research fields in which optical investigations are carried out with spatial or temporal resolution.
Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Karandeev, D.
2015-10-01
The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.
Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems
NASA Astrophysics Data System (ADS)
Volyanskyy, Kostyantyn Y.
Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance
Adaptive model predictive process control using neural networks
Buescher, K.L.; Baum, C.C.; Jones, R.D.
1997-08-19
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.
Adaptive model predictive process control using neural networks
Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.
1997-01-01
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.
Adaptive weld control for high-integrity welding applications
NASA Astrophysics Data System (ADS)
Powell, Bradley W.
Adaptive, closed-loop weld control is necessary to maintain high-integrity, zero-defect welds. Conventional weld control techniques using weld parameter feedback control loops are sufficient to maintain set points, but fall short when confronted with unexpected variations in part/tooling temperature and mechanical structure, weldment material, arc skew angle, or calibration in weld parameter feedback measurement. Modern technology allows closed-loop control utilizing input from real-time weld monitoring sensors and inspection devices. Weld puddle parameters, bead profile parameters, and weld seam position are fed back into the weld control loop which adapts for the weld condition variations and drives them back to a desired state, thereby preventing weld defects or perturbations. Parameters such as arc position relative to the weld seam, puddle symmetry, arc length, weld width, and bead shape can be extracted from sensor imagery and used in closed-loop active weld control. All weld bead and puddle measurements are available for real-time display and statistical process control analysis, after which the data is archived to permanent storage or later retrieval and analysis.
High-speed train control based on multiple-model adaptive control with second-level adaptation
NASA Astrophysics Data System (ADS)
Zhou, Yonghua; Zhang, Zhenlin
2014-05-01
Speed uplift has become the leading trend for the development of current railway traffic. Ideally, under the high-speed transportation infrastructure, trains run at specified positions with designated speeds at appointed times. In view of the faster adaptation ability of multiple-model adaptive control with second-level adaptation (MMAC-SLA), we propose one type of MMAC-SLA for a class of nonlinear systems such as cascaded vehicles. By using an input decomposition technique, the corresponding stability proof is solved for the proposed MMAC-SLA, which synthesises the control signals from the weighted multiple models. The control strategy is utilised to challenge the position and speed tracking of high-speed trains with uncertain parameters. The simulation results demonstrate that the proposed MMAC-SLA can achieve small tracking errors with moderate in-train forces incurred under the control of flattening input signals with practical enforceability. This study also provides a new idea for the control of in-train forces by tracking the positions and speeds of cars while considering power constraints.
Adaptive pitch control for variable speed wind turbines
Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO
2012-05-08
An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.
Model reference adaptive control of large structural systems
NASA Technical Reports Server (NTRS)
Bar-Kana, I.; Kaufman, H.; Balas, M.
1983-01-01
Attention is given to model reference adaptive control procedures that do not require explicit parameter identification for large structural systems. Even though such applications have been shown to be feasible for multivariable systems, provided there exists a feedback gain matrix that makes the resulting input/output transfer function strictly positive real, it is shown here that this constraint is overly restrictive and that only positive realness is required. Subsequent consideration of a simply supported beam reveals that if actuators and sensors are collocated, then the positive realness constraint will be satisfied and the model reference adaptive control will then indeed be suitable for velocity following when only velocity sensors are available and for both position and velocity following when velocity plus scaled position outputs are measured. For both cases, all states are guaranteed to be stable, regardless of system dimension.
Lee, Young-Seon; Hwang, Minki; Song, Jun-Seop; Li, Changyong; Joung, Boyoung; Sobie, Eric A; Pak, Hui-Nam
2016-01-01
Persistent atrial fibrillation (PeAF) in humans is characterized by shortening of action potential duration (APD) and attenuation of APD rate-adaptation. However, the quantitative influences of particular ionic current alterations on rate-dependent APD changes, and effects on patterns of reentry in atrial tissue, have not been systematically investigated. Using mathematical models of human atrial cells and tissue and performing parameter sensitivity analysis, we evaluated the quantitative contributions to action potential (AP) shortening and APD rate-adaptation of ionic current remodeling seen with PeAF. Ionic remodeling in PeAF was simulated by reducing L-type Ca2+ channel current (ICaL), increasing inward rectifier K+ current (IK1) and modulating five other ionic currents. Parameter sensitivity analysis, which quantified how each ionic current influenced APD in control and PeAF conditions, identified interesting results, including a negative effect of Na+/Ca2+ exchange on APD only in the PeAF condition. At high pacing rate (2 Hz), electrical remodeling in IK1 alone accounts for the APD reduction of PeAF, but at slow pacing rate (0.5 Hz) both electrical remodeling in ICaL alone (-70%) and IK1 alone (+100%) contribute equally to the APD reduction. Furthermore, AP rate-adaptation was affected by IKur in control and by INaCa in the PeAF condition. In a 2D tissue model, a large reduction (-70%) of ICaL becomes a dominant factor leading to a stable spiral wave in PeAF. Our study provides a quantitative and unifying understanding of the roles of ionic current remodeling in determining rate-dependent APD changes at the cellular level and spatial reentry patterns in tissue.
Repolarization heterogeneity and rate dependency in a canine rapid pacing model of heart failure.
Lux, Robert L; Gettes, Leonard S
2011-01-01
Repolarization heterogeneity and rate dependency have long been established as factors contributing to arrhythmogenic risk. However, there are conflicting observations regarding the nature and extent of ventricular repolarization heterogeneity that complicate understanding of arrhythmogenic mechanisms. To explore these disparate findings, we studied ventricular repolarization heterogeneity and rate dependency in a canine, rapid pacing model of heart failure. We studied ventricular repolarization heterogeneity and rate dependency in 10 canine hearts (5 normal and 5 after 1 month of rapid pacing at 240 beats per minute) by analyzing 64 body surface electrocardiograms, 64 epicardial, and 190 intramural plunge electrograms. We estimated mean ventricular depolarization and repolarization times from R- and T-wave peaks of the root-mean-square electrocardiogram (body surface) and local depolarization and repolarization times using activation-recovery interval (ARI) methods from recordings obtained during a range of fixed rate pacing. In addition, we estimated local epicardial and transmural gradients of ARIs to assess cardiac locations of greatest spatial repolarization heterogeneity. We compared changes in repolarization at different rates between normal and heart failure hearts. Findings documented prolongation of repolarization, repolarization rate dependency, and increased repolarization gradients in the heart failure hearts compared with control as observed from body surface, epicardial, and transmural measurements. Maximum local epicardial and intramural ARI gradients were comparable both in heart failure and control hearts. Intramural ARI distributions tended to be more irregular in the heart failure hearts compared with the systematic epicardium to endocardium ARI increase observed in control animals. This study documented prolongation of repolarization, increase in both epicardial and transmural repolarization gradients, and irregularity of transmural
Shivananju, B. N.; Suri, Ashish; Asokan, S.; Misra, Abha
2014-01-06
In this Letter, we present a non-contact method of controlling and monitoring photomechanical actuation in carbon nanotubes (CNT) by exposing it to ultra-violet radiation at different pulse rates (10 to 200 Hz). This is accomplished by imparting a reversible photo induced strain (5–330 με) on CNT coated fibre Bragg gratings; CNT undergoes an internal reversible structural change due to cyclic photon absorption that leads to the development of mechanical strain, which in turn allows reversible switching of the Bragg wavelength. The results also reveal an interesting pulse rate dependent rise and fall times of photomechanical actuation in CNT.
Controller-structure interaction compensation using adaptive residual mode filters
NASA Technical Reports Server (NTRS)
Davidson, Roger A.; Balas, Mark J.
1990-01-01
It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.
Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles
2007-11-01
Alessandro Casavola and Emanuele Garone Dipartimento di Elettronica, Informatica e Sistemistica, Università della Calabria 87037 Arcavacata di Rende...Informatica e Sistemistica, Universit‘a della Calabria 87037 Arcavacata di Rende - (CS), Italy 8. PERFORMING ORGANIZATION REPORT NUMBER 9...7-07, Univrsity of Calabria , DEIS, 2007. Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles RTO-MP-AVT-145 3.2 - 15
Adaptive Material Actuators for Coanda Effect Circulation Control Slots
2006-03-13
DISTRIBUTION STATEMENT Approved for Public Release Distribution is unlimited Attorney Docket No. 79490 ADAPTIVE MATERIAL ACTUATORS FOR COANDA EFFECT...An increase in lift is realized from the Coanda effect. [0007] The use of the Coanda effect increases the circulation about an aerodynamic control...the circulation about (and therefore the lift produced by) the airfoil is increased dramatically. This effect was first observed by Henri Coanda in 1910
Biological Investigations of Adaptive Networks: Neuronal Control of Conditioned Responses
1989-07-01
NO Boiling AFB, DC 203-4861102F 2312 Al I TI TLE (include Secunty Clamtfiation) Biological Investigations of Adaptive Networks: Neuronal Control of...based on mathematical models and computer simulation. Recordings were done from single brain stem neurons in awake, behaving animals for the purpose...single-unit recordings from awake behaving animals were developed. The relationship between single neurons ’ dynamic behavior and the CR in terms of
Laser diodes for sensing applications: adaptive cruise control and more
NASA Astrophysics Data System (ADS)
Heerlein, Joerg; Morgott, Stefan; Ferstl, Christian
2005-02-01
Adaptive Cruise Controls (ACC) and pre-crash sensors require an intelligent eye which can recognize traffic situations and deliver a 3-dimensional view. Both microwave RADAR and "Light RADAR" (LIDAR) systems are well suited as sensors. In order to utilize the advantages of LIDARs -- such as lower cost, simpler assembly and high reliability -- the key component, the laser diode, is of primary importance. Here, we present laser diodes which meet the requirements of the automotive industry.
The adaptive cruise control vehicles in the cellular automata model
NASA Astrophysics Data System (ADS)
Jiang, Rui; Wu, Qing-Song
2006-11-01
This Letter presented a cellular automata model where the adaptive cruise control vehicles are modelled. In this model, the constant time headway policy is adopted. The fundamental diagram is presented. The simulation results are in good agreement with the analytical ones. The mixture of ACC vehicles with manually driven vehicles is investigated. It is shown that with the introduction of ACC vehicles, the jam can be suppressed.
Adaptive beam shaping by controlled thermal lensing in optical elements.
Arain, Muzammil A; Quetschke, Volker; Gleason, Joseph; Williams, Luke F; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J; Mueller, Guido; Tanner, D B; Reitze, David H
2007-04-20
We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO(2) laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.
Adaptive power-controllable orbital angular momentum (OAM) multicasting.
Li, Shuhui; Wang, Jian
2015-05-19
We report feedback-assisted adaptive multicasting from a single Gaussian mode to multiple orbital angular momentum (OAM) modes using a single phase-only spatial light modulator loaded with a complex phase pattern. By designing and optimizing the complex phase pattern through the adaptive correction of feedback coefficients, the power of each multicast OAM channel can be arbitrarily controlled. We experimentally demonstrate power-controllable multicasting from a single Gaussian mode to two and six OAM modes with different target power distributions. Equalized power multicasting, "up-down" power multicasting and "ladder" power multicasting are realized in the experiment. The difference between measured power distributions and target power distributions is assessed to be less than 1 dB. Moreover, we demonstrate data-carrying OAM multicasting by employing orthogonal frequency-division multiplexing 64-ary quadrature amplitude modulation (OFDM 64-QAM) signal. The measured bit-error rate curves and observed optical signal-to-noise ratio penalties show favorable operation performance of the proposed adaptive power-controllable OAM multicasting.
Adaptive control of laser beams propagating in the atmosphere
NASA Astrophysics Data System (ADS)
Kanev, Feodor; Atepaeva, Natalya; Lukin, Vladimir; Makenova, Nailya
2006-09-01
In the present paper efficiency of adaptive correction is analyzed in the turbulent atmosphere and under the conditions of thermal blooming. A numerical model of a typical adaptive optics system was developed to carry out the investigations. As it is known, phase conjugation and multidither, i.e., the algorithms commonly employed to correct for thermal and turbulent distortions of laser beams are unstable in nonlinear medium. We demonstrated that stability of phase control is possible to increase introducing the modifications of the algorithms. Also we demonstrated that phase compensation does not insure complete correction for thermal or turbulent aberrations induced by an atmospheric layer. To correct for aberrations under these conditions it is possible to employ amplitude-phase control over the beam, for example, to use the wavefront reversal algorithm. Realization of the algorithm is possible in a two-mirror adaptive system in which the control over beam phase is performed in two planes at the access to the medium. In numerical experiments it was shown that the two-mirror system insures the absolute compensation for a thin turbulent layer placed at arbitrary distance from the aperture of a laser source and high effectiveness of compensation for distributed lens comparing with phase-only algorithms.
Adaptive power-controllable orbital angular momentum (OAM) multicasting
Li, Shuhui; Wang, Jian
2015-01-01
We report feedback-assisted adaptive multicasting from a single Gaussian mode to multiple orbital angular momentum (OAM) modes using a single phase-only spatial light modulator loaded with a complex phase pattern. By designing and optimizing the complex phase pattern through the adaptive correction of feedback coefficients, the power of each multicast OAM channel can be arbitrarily controlled. We experimentally demonstrate power-controllable multicasting from a single Gaussian mode to two and six OAM modes with different target power distributions. Equalized power multicasting, “up-down” power multicasting and “ladder” power multicasting are realized in the experiment. The difference between measured power distributions and target power distributions is assessed to be less than 1 dB. Moreover, we demonstrate data-carrying OAM multicasting by employing orthogonal frequency-division multiplexing 64-ary quadrature amplitude modulation (OFDM 64-QAM) signal. The measured bit-error rate curves and observed optical signal-to-noise ratio penalties show favorable operation performance of the proposed adaptive power-controllable OAM multicasting. PMID:25989251
Position control of redundant manipulators using an adaptive error-based control scheme
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Zhou, Zhen-Lei
1990-01-01
A Cartesian-space control scheme is developed to control the motion of kinematically redundant manipulators with 7 degrees of freedom (DOF). The control scheme consists mainly of proportional derivative (PD) controllers whose gains are adjusted by an adaptation law driven by the errors between the desired and actual trajectories. The adaptation law is derived using the concept of model reference adaptive control (MRAC) and Lyapunov direct method under the assumption that the manipulator performs non-compliant and slowly-varying motions. The developed control scheme is computationally efficient because its implementation does not require the computation of the manipulator dynamics. Computer simulation performed to evaluate the control scheme performance is presented and discussed.
Adaptive control system for line-commutated inverters
NASA Technical Reports Server (NTRS)
Dolland, C. R.; Bailey, D. A. (Inventor)
1983-01-01
A control system for a permanent magnet motor driven by a multiphase line commutated inverter is provided with integration for integrating the back EMF of each phase of the motor. This is used in generating system control signals for an inverter gate logic using a sync and firing angle (alpha) control generator connected to the outputs of the integrators. A precision full wave rectifier provides a speed control feedback signal to a phase delay rectifier via a gain and loop compensation circuit and to the integrators for adaptive control of the attenuation of low frequencies by the integrators as a function of motor speed. As the motor speed increases, the attenuation of low frequency components by the integrators is increased to offset the gain of the integrators to spurious low frequencies.
Adaptive Proactive Inhibitory Control for Embedded Real-Time Applications
Yang, Shufan; McGinnity, T. Martin; Wong-Lin, KongFatt
2012-01-01
Psychologists have studied the inhibitory control of voluntary movement for many years. In particular, the countermanding of an impending action has been extensively studied. In this work, we propose a neural mechanism for adaptive inhibitory control in a firing-rate type model based on current findings in animal electrophysiological and human psychophysical experiments. We then implement this model on a field-programmable gate array (FPGA) prototyping system, using dedicated real-time hardware circuitry. Our results show that the FPGA-based implementation can run in real-time while achieving behavioral performance qualitatively suggestive of the animal experiments. Implementing such biological inhibitory control in an embedded device can lead to the development of control systems that may be used in more realistic cognitive robotics or in neural prosthetic systems aiding human movement control. PMID:22701420
Digital adaptive controllers using second order models with transport lag
NASA Technical Reports Server (NTRS)
Joshi, S.; Kaufman, H.
1975-01-01
Design of a discrete optimal regulator requires the a priori knowledge of a mathematical model for the system of interest. Because a second-order model with transport lag is very amenable to control computations and because this type of model has been used previously to represent certain high order single input-single output processes, an adaptive controller was designed based upon adjustment of controls computed for such a model. An extended Kalman filter was utilized for tracking the model parameters which were subsequently used to update a set of optimal control gains. Favorable results were obtained in applying this procedure to the control of several examples including a ninth order nonlinear process.
Piccinini, Giulio Francesco; Simões, Anabela; Rodrigues, Carlos Manuel; Leitão, Miguel
2012-01-01
The introduction of Adaptive Cruise Control (ACC) could be very helpful for making the longitudinal driving task more comfortable for the drivers and, as a consequence, it could have a global beneficial effect on road safety. However, before or during the usage of the device, due to several reasons, drivers might generate in their mind incomplete or flawed mental representations about the fundamental operation principles of ACC; hence, the resulting usage of the device might be improper, negatively affecting the human-machine interaction and cooperation and, in some cases, leading to negative behavioural adaptations to the system that might neutralise the desirable positive effects on road safety. Within this context, this paper will introduce the methodology which has been developed in order to analyse in detail the topic and foresee, in the future, adequate actions for the recovery of inaccurate mental representations of the system.
Rowley, D L; Pease, A J; Wolf, R E
1991-01-01
Growth rate-dependent regulation of the level of Escherichia coli glucose 6-phosphate dehydrogenase, encoded by zwf, and 6-phosphogluconate dehydrogenase, encoded by gnd, is similar during steady-state growth and after nutritional upshifts. To determine whether the mechanism regulating zwf expression is like that of gnd, which involves a site of posttranscriptional control located within the structural gene, we prepared and analyzed a set of zwf-lacZ protein fusions in which the fusion joints are distributed across the glucose 6-phosphate dehydrogenase coding sequence. Expression of beta-galactosidase from the protein fusions was as growth rate dependent as that of glucose 6-phosphate dehydrogenase itself, indicating that regulation does not involve an internal regulatory region. The level of beta-galactosidase in zwf-lac operon fusion strains and the level of zwf mRNA from a wild-type strain increased with increasing growth rate, which suggests that growth rate control is exerted on the mRNA level. The half-life of the zwf mRNA mass was 3.0 min during growth on glucose and 3.4 min during growth on acetate. Thus, zwf transcription appears to be the target for growth rate control of the glucose 6-phosphate dehydrogenase level. Images PMID:1906868
An Adaptive Buddy Check for Observational Quality Control
NASA Technical Reports Server (NTRS)
Dee, Dick P.; Rukhovets, Leonid; Todling, Ricardo; DaSilva, Arlindo M.; Larson, Jay W.; Einaudi, Franco (Technical Monitor)
2000-01-01
An adaptive buddy check algorithm is presented that adjusts tolerances for outlier observations based on the variability of surrounding data. The algorithm derives from a statistical hypothesis test combined with maximum-likelihood covariance estimation. Its stability is shown to depend on the initial identification of outliers by a simple background check. The adaptive feature ensures that the final quality control decisions are not very sensitive to prescribed statistics of first-guess and observation errors, nor on other approximations introduced into the algorithm. The implementation of the algorithm in a global atmospheric data assimilation is described. Its performance is contrasted with that of a non-adaptive buddy check, for the surface analysis of an extreme storm that took place in Europe on 27 December 1999. The adaptive algorithm allowed the inclusion of many important observations that differed greatly from the first guess and that would have been excluded on the basis of prescribed statistics. The analysis of the storm development was much improved as a result of these additional observations.
Driver's behavioral adaptation to adaptive cruise control (ACC): the case of speed and time headway.
Bianchi Piccinini, Giulio Francesco; Rodrigues, Carlos Manuel; Leitão, Miguel; Simões, Anabela
2014-06-01
The Adaptive Cruise Control is an Advanced Driver Assistance System (ADAS) that allows maintaining given headway and speed, according to settings pre-defined by the users. Despite the potential benefits associated to the utilization of ACC, previous studies warned against negative behavioral adaptations that might occur while driving with the system activated. Unfortunately, up to now, there are no unanimous results about the effects induced by the usage of ACC on speed and time headway to the vehicle in front. Also, few studies were performed including actual users of ACC among the subjects. This research aimed to investigate the effect of the experience gained with ACC on speed and time headway for a group of users of the system. In addition, it explored the impact of ACC usage on speed and time headway for ACC users and regular drivers. A matched sample driving simulator study was planned as a two-way (2×2) repeated measures mixed design, with the experience with ACC as between-subjects factor and the driving condition (with ACC and manually) as within-subjects factor. The results show that the usage of ACC brought a small but not significant reduction of speed and, especially, the maintenance of safer time headways, being the latter result greater for ACC users, probably as a consequence of their experience in using the system. The usage of ACC did not cause any negative behavioral adaptations to the system regarding speed and time headway. Based on this research work, the Adaptive Cruise Control showed the potential to improve road safety for what concerns the speed and the time headway maintained by the drivers. The speed of the surrounding traffic and the minimum time headway settable through the ACC seem to have an important effect on the road safety improvement achievable with the system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Experiments In Multivariable Adaptive Control Of A Flexible Structure
NASA Technical Reports Server (NTRS)
Ih, Che-Hang C.; Bayard, David S.; Ahmed, Asif; Wang, Shyh J.
1991-01-01
Report describes experiments in use of six-input/six-output multivariable adaptive control system to suppress vibrations in complicated flexible structure. Represents significant upgrade relative to two-input/two-output system, yielding significant improvement in spatial controllability and effective damping of largest set of modes. Structure exhibits low modal frequencies and complicated dynamics like those of large structures in outer space. Conclusions drawn from research relevant to such applications as active suppression of wind and earthquake vibrations in tall buildings and other large terrestrial structures.
Prediction and control of chaotic processes using nonlinear adaptive networks
Jones, R.D.; Barnes, C.W.; Flake, G.W.; Lee, K.; Lewis, P.S.; O'Rouke, M.K.; Qian, S.
1990-01-01
We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.
Discrete model reference adaptive control with an augmented error signal
NASA Technical Reports Server (NTRS)
Ionescu, T.; Monopoli, R.
1975-01-01
A method for designing discrete model reference adaptive control systems when one has access to only the plant's input and output signals is given. Controllers for single-input, single-output, nonlinear, nonautonomous plants are developed via Liapunov's second method. Anticipative values of the plant output are not required, but are replaced by signals easily obtained from a low-pass filter operating on the plant's output. The augmented error signal method is employed, ensuring finally that the normally used error signal also approaches zero asymptotically.
An experimental study of a hybrid adaptive control system
NASA Technical Reports Server (NTRS)
Lizewski, E. F.; Monopoli, R. V.
1974-01-01
A Liapunov type model reference adaptive control system with five adjustable gains is implemented using a PDP-11 digital computer and an EAI 380 analog computer. The plant controlled is a laboratory type dc servo system. It is made to follow closely a second order linear model. The experimental results demonstrate the feasibility of implementing this rather complex design using only a minicomputer and a reasonable number of operational amplifiers. Also, it points out that satisfactory performance can be achieved even when certain assumptions necessary for the theory are not satisfied.
Model reference adaptive control with an augmented error signal
NASA Technical Reports Server (NTRS)
Monopoli, R. V.
1974-01-01
It is shown how globally stable model reference adaptive control systems may be designed when one has access to only the plant's input and output signals. Controllers for single input-single output, nonlinear, nonautonomous plants are developed based on Lyapunov's direct method and the Meyer-Kalman-Yacubovich lemma. Derivatives of the plant output are not required, but are replaced by filtered derivative signals. An augmented error signal replaces the error normally used, which is defined as the difference between the model and plant outputs. However, global stability is assured in the sense that the normally used error signal approaches zero asymptotically.
Model reference adaptive control using only input and output signals
NASA Technical Reports Server (NTRS)
Monopoli, R. V.
1973-01-01
It is shown how globally stable model reference adaptive control systems may be designed using only the plant's input and output signals. Controllers for single input-single output, nonlinear, nonautonomous plants are developed based on Liapunov's direct method and the Meyer-Kalman-Yacubovich lemma. Filtered derivatives of the plant output replace pure derivatives which are normally required in these systems. An augmented error signal replaces the error previously used which is the difference between the model and plant outputs. However, global stability is assured in the sense that this difference approaches zero asymptotically.
Optimizing aircraft performance with adaptive, integrated flight/propulsion control
NASA Technical Reports Server (NTRS)
Smith, R. H.; Chisholm, J. D.; Stewart, J. F.
1991-01-01
The Performance-Seeking Control (PSC) integrated flight/propulsion adaptive control algorithm presented was developed in order to optimize total aircraft performance during steady-state engine operation. The PSC multimode algorithm minimizes fuel consumption at cruise conditions, while maximizing excess thrust during aircraft accelerations, climbs, and dashes, and simultaneously extending engine service life through reduction of fan-driving turbine inlet temperature upon engagement of the extended-life mode. The engine models incorporated by the PSC are continually upgraded, using a Kalman filter to detect anomalous operations. The PSC algorithm will be flight-demonstrated by an F-15 at NASA-Dryden.
Method and apparatus for adaptive force and position control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1989-01-01
The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.
On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2011-01-01
This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.
Adaptive fuzzy-neural-network control for maglev transportation system.
Wai, Rong-Jong; Lee, Jeng-Dao
2008-01-01
A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.
Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan
2015-09-01
A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme.
Adaptive significance of avian beak morphology for ectoparasite control
Clayton, Dale H; Moyer, Brett R; Bush, Sarah E; Jones, Tony G; Gardiner, David W; Rhodes, Barry B; Goller, Franz
2005-01-01
The beaks of Darwin's finches and other birds are among the best known examples of adaptive evolution. Beak morphology is usually interpreted in relation to its critical role in feeding. However, the beak also plays an important role in preening, which is the first line of defence against harmful ectoparasites such as feather lice, fleas, bugs, flies, ticks and feather mites. Here, we show a feature of the beak specifically adapted for ectoparasite control. Experimental trimming of the tiny (1–2 mm) maxillary overhang of rock pigeons (Columba livia) had no effect on feeding efficiency, yet triggered a dramatic increase in feather lice and the feather damage they cause. The overhang functions by generating a shearing force against the tip of the lower mandible, which moves forward remarkably quickly during preening, at up to 31 times per second. This force damages parasite exoskeletons, significantly enhancing the efficiency of preening for parasite control. Overhangs longer than the natural mean of 1.6 mm break significantly more often than short overhangs. Hence, stabilizing selection will favour overhangs of intermediate length. The adaptive radiation of beak morphology should be re-assessed with both feeding and preening in mind. PMID:15888414
The reduced order model problem in distributed parameter systems adaptive identification and control
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.
1980-01-01
The research concerning the reduced order model problem in distributed parameter systems is reported. The adaptive control strategy was chosen for investigation in the annular momentum control device. It is noted, that if there is no observation spill over, and no model errors, an indirect adaptive control strategy can be globally stable. Recent publications concerning adaptive control are included.
Vipperman, J S; Clark, R L
1999-01-01
An experimental implementation of a multivariable feedback active structural acoustic control system is demonstrated on a piezostructure plate with pinned boundary conditions. Four adaptive piezoelectric sensoriactuators provide an array of truly colocated actuator/sensor pairs to be used as control transducers. Radiation filters are developed based on the self- and mutual-radiation efficiencies of the structure and are included into the performance cost of an H2 control law which minimizes total radiated sound power. In the cost function, control effort is balanced with reductions in radiated sound power. A similarity transform which produces generalized velocity states that are required as inputs to the radiation filters is presented. Up to 15 dB of attenuation in radiated sound power was observed at the resonant frequencies of the piezostructure.
Decentralized adaptive control designs and microstrip antennas for smart structures
NASA Astrophysics Data System (ADS)
Khorrami, Farshad; Jain, Sandeep; Das, Nirod K.
1996-05-01
Smart structures lend themselves naturally to a decentralized control design framework, especially with adaptation mechanisms. The main reason being that it is highly undesirable to connect all the sensors and actuators in a large structure to a central processor. It is rather desirable to have local decision-making at each smart patch. Furthermore, this local controllers should be easily `expandable' to `contractible.' This corresponds to the fact that addition/deletion of several smart patches should not require a total redesign of the control system. The decentralized control strategies advocated in this paper are of expandable/contractible type. On another front, we are considering utilization of micro-strip antennas for power transfer to and from smart structures. We have made preliminary contributions in this direction and further developments are underway. These approaches are being pursued for active vibration damping and noise cancellation via piezoelectric ceramics although the methodology is general enough to be applicable to other type of active structures.
Nonlinear adaptive motion control for manipulators with compliant joints.
Yung, J H; Fu, L C
1998-01-01
How to perform control and achieve stability of robotic manipulators with joint flexibility forms a problem of profound practical and theoretical interest. This paper is to investigate and to solve this problem without strict assumption on the joint stiffness. Here, an adaptive control scheme of a flexible-joint manipulator, which takes into account its full nonlinear dynamics, is presented. Without the knowledge of the system model, the developed control lams, requiring only the position and velocity information of the actuators and links, is capable of driving the link tracking errors asymptotically to zero, while maintaining the uniform boundedness of all signals in the closed-loop system. To demonstrate the effectiveness of the proposed control law, an example of a two-link flexible-joint manipulator is constructed and a number of computer simulations are performed which show quite satisfactory results.
Direct adaptive control of partially known nonlinear systems.
McLain, R B; Henson, M A; Pottmann, M
1999-01-01
A direct adaptive control strategy for a class of single-input/single-output nonlinear systems is presented. The major advantage of the proposed method is that a detailed dynamic nonlinear model is not required for controller design. The only information required about the plant is measurements of the state variables, the relative degree, and the sign of a Lie derivative which appears in the associated input-output linearizing control law. Unknown controller functions are approximated using locally supported radial basis functions that are introduced only in regions of the state space where the closed-loop system actually evolves. Lyapunov stability analysis is used to derive parameter update laws which ensure (under certain assumptions) the state vector remains bounded and the plant output asymptotically tracks the output of a linear reference model. The technique is successfully applied to a nonlinear biochemical reactor model.
Adaptive control of a vibratory angle measuring gyroscope.
Park, Sungsu
2010-01-01
This paper presents an adaptive control algorithm for realizing a vibratory angle measuring gyroscope so that rotation angle can be directly measured without integration of angular rate, thus eliminating the accumulation of numerical integration errors. The proposed control algorithm uses a trajectory following approach and the reference trajectory is generated by an ideal angle measuring gyroscope driven by the estimate of angular rate and the auxiliary sinusoidal input so that the persistent excitation condition is satisfied. The developed control algorithm can compensate for all types of fabrication imperfections such as coupled damping and stiffness, and mismatched stiffness and un-equal damping term in an on-line fashion. The simulation results show the feasibility and effectiveness of the developed control algorithm that is capable of directly measuring rotation angle without the integration of angular rate.
A control strategy for adaptive absorber based on variable mass
NASA Astrophysics Data System (ADS)
Gao, Qiang; Han, Ning; Zhao, Yanqing; Duan, Chendong; Wang, Wanqin
2015-07-01
The tuned vibration absorber (TVA) has been an effective tool for vibration control. However, the application of TVA can cause resonance of the primary system and increase its vibration when the absorber is mistuned. In this paper, a novel control strategy based on adaptive tuned vibration absorber (ATVA) of variable mass is proposed to reduce the resonance of the primary system. Unlike most ATVAs suggested by other researchers which adjust the absorber natural frequency by changing the stiffness, the variable mass ATVA varies its natural frequency by changing absorber mass to match the excitation frequency. Some simulations and experiments were conducted to test the performance of the control strategy. The results show that the proposed control plan can widen the frequency bandwidth of the absorber, as well as suppress the resonance of the primary system significantly. This implies that the work is useful for practical applications of ATVA.
Probabilistic DHP adaptive critic for nonlinear stochastic control systems.
Herzallah, Randa
2013-06-01
Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained.
Direct model reference adaptive control of robotic arms
NASA Technical Reports Server (NTRS)
Kaufman, Howard; Swift, David C.; Cummings, Steven T.; Shankey, Jeffrey R.
1993-01-01
The results of controlling A PUMA 560 Robotic Manipulator and the NASA shuttle Remote Manipulator System (RMS) using a Command Generator Tracker (CGT) based Model Reference Adaptive Controller (DMRAC) are presented. Initially, the DMRAC algorithm was run in simulation using a detailed dynamic model of the PUMA 560. The algorithm was tuned on the simulation and then used to control the manipulator using minimum jerk trajectories as the desired reference inputs. The ability to track a trajectory in the presence of load changes was also investigated in the simulation. Satisfactory performance was achieved in both simulation and on the actual robot. The obtained responses showed that the algorithm was robust in the presence of sudden load changes. Because these results indicate that the DMRAC algorithm can indeed be successfully applied to the control of robotic manipulators, additional testing was performed to validate the applicability of DMRAC to simulated dynamics of the shuttle RMS.
Sensorless speed control of PMSM via adaptive interconnected observer
NASA Astrophysics Data System (ADS)
Ezzat, Marwa; de Leon, Jesus; Glumineau, Alain
2011-11-01
In this article, a robust sensorless speed observer-controller scheme for a surface permanent magnet synchronous motor (PMSM) is proposed. First-of-all, following preliminary results in the framework of the induction motor that is less sensible to the position estimation error, an adaptive high gain interconnected observer is designed. It is only supplied by the electrical measurement: the motor currents and voltages. This observer estimates the rotor speed and position, the stator resistance and the load torque. A nonlinear backstepping controller is developed. The above observer is associated with this controller and the complete scheme practical stability proof is given. The overall system is tested by simulation in the framework of an industrial benchmark with a trajectory that particularly checks the motor unobservability condition. Some robustness tests have been carried out. The controller-observer scheme shows good performances in spite of the uncertainties and the unknown load torque.
Stiffness control of magnetorheological gels for adaptive tunable vibration absorber
NASA Astrophysics Data System (ADS)
Kim, Hyun Kee; Kim, Hye Shin; Kim, Young-Keun
2017-01-01
In this study, a stiffness feedback control system for magnetorheological (MR) gel—a smart material of variable stiffness—is proposed, toward the design of a tunable vibration absorber that can adaptively tune to a time varying disturbance in real time. A PID controller was designed to track the required stiffness of the MR gel by controlling the magnitude of the target external magnetic field pervading the MR gel. This paper proposes a novel magnetic field generator that could produce a variable magnetic field with low energy consumption. The performance of the MR gel stiffness control was validated through experiments that showed the MR gel absorber system could be automatically tuned from 56 Hz to 67 Hz under a field of 100 mT to minimize the vibration of the primary system.
Driver usage and understanding of adaptive cruise control.
Larsson, Annika F L
2012-05-01
Automation, in terms of systems such as adaptive/active cruise control (ACC) or collision warning systems, is increasingly becoming a part of everyday driving. These systems are not perfect though, and the driver has to be prepared to reclaim control in situations very similar to those the system easily handles by itself. This paper uses a questionnaire answered by 130 ACC users to discuss future research needs in the area of driver assistance systems. Results show that the longer drivers use their systems, the more aware of its limitations they become. Moreover, the drivers report that ACC forces them to take control intermittently. According to theory, this might actually be better than a more perfect system, as it provides preparation for unexpected situations requiring the driver to reclaim control.
Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.
Controls on Extreme Droughts and Adaptation Strategies in Semiarid Regions
NASA Astrophysics Data System (ADS)
Scanlon, B. R.; Cook, C.; Fernando, D. N.; LeBlanc, M.
2012-12-01
Increasing vulnerability to droughts with reduced per capita water storage, particularly in semiarid regions, underscores the need for predictive understanding of drought controls and development of adaptation strategies for water resources management. In this study we evaluate causes of major droughts in southwest and southcentral US (California and Texas) and southeast Australia (Murray Darling Basin). Impacts of climate cycles (ENSO, PDO, AMO, NAO, IOD) and atmospheric circulation on drought initiation and persistence are examined. Effects of drought on surface water reservoir storage, groundwater storage, irrigation, and crop production are compared. Adaptation strategies being evaluated include water transfers among sectors, particularly from irrigated agriculture to other groups, increasing storage using managed aquifer recharge, water reuse, and development of new water sources (e.g. seawater desalination). It is critical to develop a broad portfolio of water sources to increase resilience to future droughts.
Adaptive precompensators for flexible-link manipulator control
NASA Technical Reports Server (NTRS)
Tzes, Anthony P.; Yurkovich, Stephen
1989-01-01
The application of input precompensators to flexible manipulators is considered. Frequency domain compensators color the input around the flexible mode locations, resulting in a bandstop or notch filter in cascade with the system. Time domain compensators apply a sequence of impulses at prespecified times related to the modal frequencies. The resulting control corresponds to a feedforward term that convolves in real-time the desired reference input with a sequence of impulses and produces a vibration-free output. An adaptive precompensator can be implemented by combining a frequency domain identification scheme which is used to estimate online the modal frequencies and subsequently update the bandstop interval or the spacing between the impulses. The combined adaptive input preshaping scheme provides the most rapid slew that results in a vibration-free output. Experimental results are presented to verify the results.
Control of adaptive immunity by the innate immune system.
Iwasaki, Akiko; Medzhitov, Ruslan
2015-04-01
Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.
Control of adaptive immunity by the innate immune system
Iwasaki, Akiko; Medzhitov, Ruslan
2015-01-01
Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity. PMID:25789684
Control Systems with Normalized and Covariance Adaptation by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T. (Inventor); Burken, John J. (Inventor); Hanson, Curtis E. (Inventor)
2016-01-01
Disclosed is a novel adaptive control method and system called optimal control modification with normalization and covariance adjustment. The invention addresses specifically to current challenges with adaptive control in these areas: 1) persistent excitation, 2) complex nonlinear input-output mapping, 3) large inputs and persistent learning, and 4) the lack of stability analysis tools for certification. The invention has been subject to many simulations and flight testing. The results substantiate the effectiveness of the invention and demonstrate the technical feasibility for use in modern aircraft flight control systems.
Adaptive control for solar energy based DC microgrid system development
NASA Astrophysics Data System (ADS)
Zhang, Qinhao
During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.
Adaptive control of systems in cascade with saturation
NASA Astrophysics Data System (ADS)
Kannan, Suresh K.
This thesis extends the use of neural-network-based model reference adaptive control to systems that occur as cascades. In general, these systems are not feedback linearizable. The approach taken is that of approximate feedback linearization of upper subsystems whilst treating the lower-subsystem states as virtual actuators. Similarly, lower-subsystems are also feedback linearized. Typically, approximate inverses are used for linearization purposes. Model error arising from the use of an approximate inverse is minimized using a neural-network as an adaptive element. Incorrect adaptation due to (virtual) actuator saturation and dynamics is avoided using the Pseudocontrol Hedging method. Using linear approximate inverses and linear reference models generally result in large desired pseudocontrol for large external commands. Even if the provided external command is feasible (null-controllable), there is no guarantee that the reference model trajectory is feasible. In order to mitigate this, nonlinear reference models based on nested-saturation methods are used to constrain the evolution of the reference model and thus the plant states. The method presented in this thesis lends itself to the inner-outer loop control of air vehicles, where the inner-loop controls attitude dynamics and the outer-loop controls the translational dynamics of the vehicle. The outer-loop treats the closed loop attitude dynamics as an actuator. Adaptation to uncertainty in the attitude, as well as the translational dynamics, is introduced, thus minimizing the effects of model error in all six degrees of freedom and leading to more accurate position tracking. A pole-placement approach is used to choose compensator gains for the tracking error dynamics. This alleviates timescale separation requirements, allowing the outer loop bandwidth to be closer to that of the inner loop, thus increasing position tracking performance. A poor model of the attitude dynamics and a basic kinematics model is
Robust adaptive backstepping control for piezoelectric nano-manipulating systems
NASA Astrophysics Data System (ADS)
Zhang, Yangming; Yan, Peng; Zhang, Zhen
2017-01-01
In this paper we present a systematic modeling and control approach for nano-manipulations of a two-dimensional PZT (piezoelectric transducer) actuated servo stage. The major control challenges associated with piezoelectric nano-manipulators typically include the nonlinear dynamics of hysteresis, model uncertainties, and various disturbances. The adverse effects of these complications will result in significant performance loss, unless effectively eliminated. The primary goal of the paper is on the ultra high precision control of such systems by handling various model uncertainties and disturbances simultaneously. To this end, a novel robust adaptive backstepping-like control approach is developed such that parametric uncertainties can be estimated adaptively while the nonlinear dynamics and external disturbances are treated as bounded disturbances for robust elimination. Meanwhile, the L2-gain of the closed-loop system is considered, and an H∞ optimization problem is formulated to improve the tracking accuracy. Numerical simulations and real time experiments are finally conducted, which significantly outperform conventional PID methods and achieve around 1% tracking error for circular contouring tasks.