Science.gov

Sample records for adaptive ray tracing

  1. Thin Lens Ray Tracing.

    ERIC Educational Resources Information Center

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  2. Anisotropic ray trace

    NASA Astrophysics Data System (ADS)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  3. Ray Tracing with Virtual Objects.

    ERIC Educational Resources Information Center

    Leinoff, Stuart

    1991-01-01

    Introduces the method of ray tracing to analyze the refraction or reflection of real or virtual images from multiple optical devices. Discusses ray-tracing techniques for locating images using convex and concave lenses or mirrors. (MDH)

  4. Ocean Acoustical Ray-Tracing Software RAY

    DTIC Science & Technology

    1992-10-01

    I AD-A262 155 - III 111111 IJI iWHOI-93-1 0 Woods Hole 2 Oceanographic Institution I I Ocean Acoustical Ray-Tracing * Software RAY by James B...distribution unlimited. ::193-06496 i~~ ~~~ 0 o 1i ail•ii~lll~iliii 5 WHOI-98-10 Ocean Acoustical Ray-Tracing Software RAY by James B. Bowlin John L. Spiesberger...Oceanographic Institution j Permission to use, copy, modify, and distribute this software and its documentation for any purpose without fee is hereby granted

  5. Ray tracing on the MPP

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    1987-01-01

    Generating graphics to faithfully represent information can be a computationally intensive task. A way of using the Massively Parallel Processor to generate images by ray tracing is presented. This technique uses sort computation, a method of performing generalized routing interspersed with computation on a single-instruction-multiple-data (SIMD) computer.

  6. Ray tracing planetary radio emissions

    NASA Technical Reports Server (NTRS)

    Green, James L.

    1988-01-01

    Planetary ray tracing calculations of free escaping electromagnetic waves are presented, with special attention given to calculations of the earth's auroral kilometric and continuum radiations and of the Jovian decametric and kilometric radiation. The technique is used to study the composition and propagation effects causing multiion resonances and shadow zones. Although results obtained for Jovian broadband kilometric radiation have been used to estimate the location of the source region, no unique solutions are obtained.

  7. Reverse ray tracing for transformation optics.

    PubMed

    Hu, Chia-Yu; Lin, Chun-Hung

    2015-06-29

    Ray tracing is an important technique for predicting optical system performance. In the field of transformation optics, the Hamiltonian equations of motion for ray tracing are well known. The numerical solutions to the Hamiltonian equations of motion are affected by the complexities of the inhomogeneous and anisotropic indices of the optical device. Based on our knowledge, no previous work has been conducted on ray tracing for transformation optics with extreme inhomogeneity and anisotropicity. In this study, we present the use of 3D reverse ray tracing in transformation optics. The reverse ray tracing is derived from Fermat's principle based on a sweeping method instead of finding the full solution to ordinary differential equations. The sweeping method is employed to obtain the eikonal function. The wave vectors are then obtained from the gradient of that eikonal function map in the transformed space to acquire the illuminance. Because only the rays in the points of interest have to be traced, the reverse ray tracing provides an efficient approach to investigate the illuminance of a system. This approach is useful in any form of transformation optics where the material property tensor is a symmetric positive definite matrix. The performance and analysis of three transformation optics with inhomogeneous and anisotropic indices are explored. The ray trajectories and illuminances in these demonstration cases are successfully solved by the proposed reverse ray tracing method.

  8. Ray tracing on distributed memory parallel systems

    NASA Technical Reports Server (NTRS)

    Jensen, David W.; Reed, Daniel A.

    1990-01-01

    Among the many techniques in computer graphics, ray tracing is prized because it can render realistic images, albeit at great computational expense. In this note, the performance of several approaches to ray tracing on a distributed memory parallel system is evaluated. A set of performance instrumentation tools and their associated visualization software are used to identify the underlying causes of performance differences.

  9. Validation of Ray Tracing Code Refraction Effects

    NASA Technical Reports Server (NTRS)

    Heath, Stephanie L.; McAninch, Gerry L.; Smith, Charles D.; Conner, David A.

    2008-01-01

    NASA's current predictive capabilities using the ray tracing program (RTP) are validated using helicopter noise data taken at Eglin Air Force Base in 2007. By including refractive propagation effects due to wind and temperature, the ray tracing code is able to explain large variations in the data observed during the flight test.

  10. A fast and efficient adaptive parallel ray tracing based model for thermally coupled surface radiation in casting and heat treatment processes

    NASA Astrophysics Data System (ADS)

    Fainberg, J.; Schaefer, W.

    2015-06-01

    A new algorithm for heat exchange between thermally coupled diffusely radiating interfaces is presented, which can be applied for closed and half open transparent radiating cavities. Interfaces between opaque and transparent materials are automatically detected and subdivided into elementary radiation surfaces named tiles. Contrary to the classical view factor method, the fixed unit sphere area subdivision oriented along the normal tile direction is projected onto the surrounding radiation mesh and not vice versa. Then, the total incident radiating flux of the receiver is approximated as a direct sum of radiation intensities of representative “senders” with the same weight factor. A hierarchical scheme for the space angle subdivision is selected in order to minimize the total memory and the computational demands during thermal calculations. Direct visibility is tested by means of a voxel-based ray tracing method accelerated by means of the anisotropic Chebyshev distance method, which reuses the computational grid as a Chebyshev one. The ray tracing algorithm is fully parallelized using MPI and takes advantage of the balanced distribution of all available tiles among all CPU's. This approach allows tracing of each particular ray without any communication. The algorithm has been implemented in a commercial casting process simulation software. The accuracy and computational performance of the new radiation model for heat treatment, investment and ingot casting applications is illustrated using industrial examples.

  11. The Alba ray tracing code: ART

    NASA Astrophysics Data System (ADS)

    Nicolas, Josep; Barla, Alessandro; Juanhuix, Jordi

    2013-09-01

    The Alba ray tracing code (ART) is a suite of Matlab functions and tools for the ray tracing simulation of x-ray beamlines. The code is structured in different layers, which allow its usage as part of optimization routines as well as an easy control from a graphical user interface. Additional tools for slope error handling and for grating efficiency calculations are also included. Generic characteristics of ART include the accumulation of rays to improve statistics without memory limitations, and still providing normalized values of flux and resolution in physically meaningful units.

  12. AXAF FITS standard for ray trace interchange

    NASA Technical Reports Server (NTRS)

    Hsieh, Paul F.

    1993-01-01

    A standard data format for the archival and transport of x-ray events generated by ray trace models is described. Upon review and acceptance by the Advanced X-ray Astrophysics Facility (AXAF) Software Systems Working Group (SSWG), this standard shall become the official AXAF data format for ray trace events. The Flexible Image Transport System (FITS) is well suited for the purposes of the standard and was selected to be the basis of the standard. FITS is both flexible and efficient and is also widely used within the astronomical community for storage and transfer of data. In addition, software to read and write FITS format files are widely available. In selecting quantities to be included within the ray trace standard, the AXAF Mission Support team, Science Instruments team, and the other contractor teams were surveyed. From the results of this survey, the following requirements were established: (1) for the scientific needs, each photon should have associated with it: position, direction, energy, and statistical weight; the standard must also accommodate path length (relative phase), and polarization. (2) a unique photon identifier is necessary for bookkeeping purposes; (3) a log of individuals, organizations, and software packages that have modified the data must be maintained in order to create an audit trail; (4) a mechanism for extensions to the basic kernel should be provided; and (5) the ray trace standard should integrate with future AXAF data product standards.

  13. AXAF FITS standard for ray trace interchange

    NASA Astrophysics Data System (ADS)

    Hsieh, Paul F.

    1993-07-01

    A standard data format for the archival and transport of x-ray events generated by ray trace models is described. Upon review and acceptance by the Advanced X-ray Astrophysics Facility (AXAF) Software Systems Working Group (SSWG), this standard shall become the official AXAF data format for ray trace events. The Flexible Image Transport System (FITS) is well suited for the purposes of the standard and was selected to be the basis of the standard. FITS is both flexible and efficient and is also widely used within the astronomical community for storage and transfer of data. In addition, software to read and write FITS format files are widely available. In selecting quantities to be included within the ray trace standard, the AXAF Mission Support team, Science Instruments team, and the other contractor teams were surveyed. From the results of this survey, the following requirements were established: (1) for the scientific needs, each photon should have associated with it: position, direction, energy, and statistical weight; the standard must also accommodate path length (relative phase), and polarization. (2) a unique photon identifier is necessary for bookkeeping purposes; (3) a log of individuals, organizations, and software packages that have modified the data must be maintained in order to create an audit trail; (4) a mechanism for extensions to the basic kernel should be provided; and (5) the ray trace standard should integrate with future AXAF data product standards.

  14. Ray Traces Through Unsteady Jet Turbulence

    NASA Technical Reports Server (NTRS)

    Freund, J. B.; Fleischman, T. G.

    2002-01-01

    Results of an ongoing effort to quantify the role turbulence in scattering sound in jets are reported. Using a direct numerical simulation database to provide the flow data, ray paths traced through the mean flow are compared with those traced through the actual time evolving turbulent flow. Significant scattering by the turbulence is observed. The most notable effect is that upstream traveling waves that are trapped in the potential core by the mean flow, which acts as a wave guide, easily escape in the turbulent flow. A crude statistical estimate based on ray number density suggests that directivity is modified by the turbulence, but no rigorous treatment of non-uniformities in the high-frequency approximation is attempted.

  15. Tracing Rays In A Solar Power System

    NASA Technical Reports Server (NTRS)

    Jefferies, Kent; Gallo, Chris

    1989-01-01

    OFFSET is ray-tracing computer code for analysis of optics of solar collector. Code models distributions of solar flux within receiver cavity, produced by reflections from collector. Developed to model mathematically offset solar collector of solar dynamic electric power system being developed for Space Station Freedom. Used to develop revised collector-facet concept of four groups of toroidally contoured facets. Also used to develop methods for tailoring distribution of flux incident on receiver. Written in FORTRAN 77 (100 percent).

  16. Special relativistic visualization by local ray tracing.

    PubMed

    Müller, Thomas; Grottel, Sebastian; Weiskopf, Daniel

    2010-01-01

    Special relativistic visualization offers the possibility of experiencing the optical effects of traveling near the speed of light, including apparent geometric distortions as well as Doppler and searchlight effects. Early high-quality computer graphics images of relativistic scenes were created using offline, computationally expensive CPU-side 4D ray tracing. Alternate approaches such as image-based rendering and polygon-distortion methods are able to achieve interactivity, but exhibit inferior visual quality due to sampling artifacts. In this paper, we introduce a hybrid rendering technique based on polygon distortion and local ray tracing that facilitates interactive high-quality visualization of multiple objects moving at relativistic speeds in arbitrary directions. The method starts by calculating tight image-space footprints for the apparent triangles of the 3D scene objects. The final image is generated using a single image-space ray tracing step incorporating Doppler and searchlight effects. Our implementation uses GPU shader programming and hardware texture filtering to achieve high rendering speed.

  17. Improved algorithm of ray tracing in ICF cryogenic targets

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Yang, Yongying; Ling, Tong; Jiang, Jiabin

    2016-10-01

    The high precision ray tracing inside inertial confinement fusion (ICF) cryogenic targets plays an important role in the reconstruction of the three-dimensional density distribution by algebraic reconstruction technique (ART) algorithm. The traditional Runge-Kutta methods, which is restricted by the precision of the grid division and the step size of ray tracing, cannot make an accurate calculation in the case of refractive index saltation. In this paper, we propose an improved algorithm of ray tracing based on the Runge-Kutta methods and Snell's law of refraction to achieve high tracing precision. On the boundary of refractive index, we apply Snell's law of refraction and contact point search algorithm to ensure accuracy of the simulation. Inside the cryogenic target, the combination of the Runge-Kutta methods and self-adaptive step algorithm are employed for computation. The original refractive index data, which is used to mesh the target, can be obtained by experimental measurement or priori refractive index distribution function. A finite differential method is performed to calculate the refractive index gradient of mesh nodes, and the distance weighted average interpolation methods is utilized to obtain refractive index and gradient of each point in space. In the simulation, we take ideal ICF target, Luneberg lens and Graded index rod as simulation model to calculate the spot diagram and wavefront map. Compared the simulation results to Zemax, it manifests that the improved algorithm of ray tracing based on the fourth-order Runge-Kutta methods and Snell's law of refraction exhibits high accuracy. The relative error of the spot diagram is 0.2%, and the peak-to-valley (PV) error and the root-mean-square (RMS) error of the wavefront map is less than λ/35 and λ/100, correspondingly.

  18. Infrasound ray tracing models for real events

    NASA Astrophysics Data System (ADS)

    Averbuch, Gil; Applbaum, David; Price, Colin; Ben Horin, Yochai

    2015-04-01

    Infrasound ray tracing models for real events C. Price1, G. Averbuch1, D. Applbaum1, Y. Ben Horin2 (1) Department of Geosciences, Tel Aviv University, Israel (2) Soreq Nuclear Research Center, Yavne, Israel Ray tracing models for infrasound propagation require two atmospheric parameters: the speed of sound profile and the wind profile. The usage of global atmospheric models for the speed of sound and wind profiles raises a fundamental question: can these models provide accurate results for modeling real events that have been detected by the infrasound arrays? Moreover, can these models provide accurate results for events that occurred during extreme weather conditions? We use 2D and 3D ray tracing models based on a modified Hamiltonian for a moving medium. Radiosonde measurements enable us to update the first 20 km of both speed of sound and wind profiles. The 2009 and 2011 Sayarim calibration experiments in Israel served us as a test for the models. In order to answer the question regarding the accuracy of the model during extreme weather conditions, we simulate infrasound sprite signals that were detected by the infrasound array in Mt. Meron, Israel. The results from modeling the Sayarim experiment provided us sufficient insight to conclude that ray tracing modeling can provide accurate results for real events that occurred during fair weather conditions. We conclude that the time delay in the model of the 2009 experiment is due to lack of accuracy in the wind and speed of sound profiles. Perturbed profiles provide accurate results. Earlier arrivals in 2011 are a result of the assumption that the earth is flat (no topography) and the use of local radiosonde measurements for the entire model. Using local radiosonde measurements only for part of the model and neglecting them on other parts prevents the early arrivals. We were able to determine which sprite is the one that got detected in the infrasound array as well as providing a height range for the sprite

  19. Lenses axial space ray tracing measurement.

    PubMed

    Zhao, Weiqian; Sun, Ruoduan; Qiu, Lirong; Shi, Libo; Sha, Dingguo

    2010-02-15

    In order to achieve the precise measurement of the lenses axial space, a new lenses axial space ray tracing measurement (ASRTM) is proposed based on the geometrical theory of optical image. For an assembled lenses with the given radius of curvature r(n) and refractive index nn of every lens, ASRTM uses the annular laser differential confocal chromatography focusing technique (ADCFT) to achieve the precise focusing at the vertex position P(n) of its inner-and-outer spherical surface Sn and obtain the coordinate z(n) corresponding to the axial movement position of ASRTM objective, and then, uses the ray tracing facet iterative algorithm to precisely determine the vertex position P(n) of every spherical surface by these coordinates z(n), refractive index n(n) and spherical radius r(n), and thereby obtaining the lenses inner axial space d(n). The preliminary experimental results indicate that ASRTM has a relative measurement error of less than 0.02%.

  20. Application of ray tracing in radiation heat transfer

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1993-01-01

    This collection of presentation figures displays the capabilities of ray tracing for radiation propagation calculations as compared to an analytical approach. The goal is to introduce the terminology and solution process used in ray tracing, and provide insight into radiation heat transfer principles and analysis tools. A thermal analysis working environment is introduced that solves demanding radiation heat transfer problems based on ray tracing. This information may serve as a reference for designing and building ones own analysis environment.

  1. Powerful scriptable ray tracing package xrt

    NASA Astrophysics Data System (ADS)

    Klementiev, Konstantin; Chernikov, Roman

    2014-09-01

    We present an open source python based ray tracing tool that offers several useful features in graphical presentation, material properties, advanced calculations of synchrotron sources, implementation of diffractive and refractive elements, complex (also closed) surfaces and multiprocessing. The package has many usage examples which are supplied together with the code and visualized on its web page. We exemplify the present version by modeling (i) a curved crystal analyzer, (ii) a quarter wave plate, (iii) Bragg-Fresnel optics and (iv) multiple reflective and non-sequential optics (polycapillary). The present version implements the use of OpenCL framework that executes calculations on both CPUs and GPUs. Currently, the calculations of an undulator source on a GPU show a gain of about two orders of magnitude in computing time. The development version is successful in modelling the wavefront propagation. Two examples of diffraction on a plane mirror and a plane blazed grating are given for a beam with a finite energy band.

  2. Ray tracing through a hexahedral mesh in HADES

    SciTech Connect

    Henderson, G L; Aufderheide, M B

    2004-11-30

    In this paper we describe a new ray tracing method targeted for inclusion in HADES. The algorithm tracks rays through three-dimensional tetrakis hexahedral mesh objects, like those used by the ARES code to model inertial confinement experiments.

  3. Ray tracing in nuclear-pumped flowing gas lasers

    SciTech Connect

    Mat'ev, V Yu

    2003-06-30

    The ray tracing in the resonators of a nuclear-pumped flowing gas lasers is considered. The refractive index profile of the medium in a direction perpendicular to the optical axis in such lasers can be considered parabolic, but the steepness of the parabola is quite nonuniform along the ray trace, and the resonator stability condition (the absolute value of the ray matrix trace for a single trip of the ray in the resonator is smaller than two) is not sufficient to confine the ray within the resonator after a large number of trips. (lasers)

  4. A survey of underwater-acoustic ray tracing techniques

    NASA Astrophysics Data System (ADS)

    Jones, R. M.

    1983-06-01

    A survey of techniques and features available in underwater acoustic ray tracing computer programs is presented. The survey includes methods for constructing raypath trajectories, construction eigenrays, ray-intensity calculations, and ray theory corrections. The survey also includes models for sound speed (including interpolation methods), ocean bottom (including both bathymetry and reflection coefficient), ocean surface reflection coefficient, dissipation, temperature, salinity, and ocean current. In addition, methods for displaying models and methods for presenting ray tracing results are surveyed.

  5. Tracing Analytic Ray Curves for Light and Sound Propagation in Non-Linear Media.

    PubMed

    Mo, Qi; Yeh, Hengchin; Manocha, Dinesh

    2016-11-01

    The physical world consists of spatially varying media, such as the atmosphere and the ocean, in which light and sound propagates along non-linear trajectories. This presents a challenge to existing ray-tracing based methods, which are widely adopted to simulate propagation due to their efficiency and flexibility, but assume linear rays. We present a novel algorithm that traces analytic ray curves computed from local media gradients, and utilizes the closed-form solutions of both the intersections of the ray curves with planar surfaces, and the travel distance. By constructing an adaptive unstructured mesh, our algorithm is able to model general media profiles that vary in three dimensions with complex boundaries consisting of terrains and other scene objects such as buildings. Our analytic ray curve tracer with the adaptive mesh improves the efficiency considerably over prior methods. We highlight the algorithm's application on simulation of visual and sound propagation in outdoor scenes.

  6. The vectorization of a ray tracing program for image generation

    NASA Technical Reports Server (NTRS)

    Plunkett, D. J.; Cychosz, J. M.; Bailey, M. J.

    1984-01-01

    Ray tracing is a widely used method for producing realistic computer generated images. Ray tracing involves firing an imaginary ray from a view point, through a point on an image plane, into a three dimensional scene. The intersections of the ray with the objects in the scene determines what is visible at the point on the image plane. This process must be repeated many times, once for each point (commonly called a pixel) in the image plane. A typical image contains more than a million pixels making this process computationally expensive. A traditional ray tracing program processes one ray at a time. In such a serial approach, as much as ninety percent of the execution time is spent computing the intersection of a ray with the surface in the scene. With the CYBER 205, many rays can be intersected with all the bodies im the scene with a single series of vector operations. Vectorization of this intersection process results in large decreases in computation time. The CADLAB's interest in ray tracing stems from the need to produce realistic images of mechanical parts. A high quality image of a part during the design process can increase the productivity of the designer by helping him visualize the results of his work. To be useful in the design process, these images must be produced in a reasonable amount of time. This discussion will explain how the ray tracing process was vectorized and gives examples of the images obtained.

  7. Combining ray-trace and diffraction analysis: A design example

    NASA Technical Reports Server (NTRS)

    Milster, Tom D.; Treptau, Jeffrey P.

    1992-01-01

    An example is presented of using a combined ray trace and diffraction modeling code to simulate effects of objective-lens tilt in an optical data storage device. In some cases, neither ray-trace analysis nor diffraction analysis can give an adequate description of an optical system. The designer that is faced with the problem of analyzing such a system is forced to use a ray-trace program to determine aberrations in the exit pupil and then introduce aberration coefficients into a diffraction model that simulate the propagation. This approach was found rather awkward, especially if complicated aberrations are present. Our approach is to integrate a diffraction analysis and a ray-trace description of an optical path into one program. Our design is taken from a data storage application, where we must analyze the effects of objective-lens tilt.

  8. Simplification of vector ray tracing by the groove function.

    PubMed

    Hu, Zhongwen; Liu, Zuping; Wang, Qiuping

    2005-01-01

    Tracing rays through arbitrary diffraction gratings (including holographic gratings of the second generation fabricated on a curved substrate) by the vector form is somewhat complicated. Vector ray tracing utilizes the local groove density, the calculation of which highly depends on how the grooves are generated. Characterizing a grating by its groove function, available for almost arbitrary gratings, is much simpler than doing so by its groove density, essentially being a vector. Applying the concept of Riemann geometry, we give an expression of the groove density by the groove function. The groove function description of a grating can thus be incorporated into vector ray tracing, which is beneficial especially at the design stage. A unified explicit grating ray-tracing formalism is given as well.

  9. Light ray tracing through a leaf cross section

    NASA Technical Reports Server (NTRS)

    Kumar, R.; Silva, L. F.

    1973-01-01

    A light ray, incident at about 5 deg to the normal, is geometrically plotted through the drawing of the cross section of a soybean leaf using Fresnel's equations and Snell's law. The optical mediums of the leaf considered for ray tracing are: air, cell sap, chloroplast, and cell wall. The ray is also drawn through the same leaf cross section with cell wall and air as the only optical mediums. The values of the reflection and transmission found from the ray tracing tests agree closely with the experimental results obtained using a Beckman Dk-2A Spectroreflector.

  10. Interactive isosurface ray tracing of time-varying tetrahedral volumes.

    PubMed

    Wald, Ingo; Friedrich, Heiko; Knoll, Aaron; Hansen, Charles D

    2007-01-01

    We describe a system for interactively rendering isosurfaces of tetrahedral finite-element scalar fields using coherent ray tracing techniques on the CPU. By employing state-of-the art methods in polygonal ray tracing, namely aggressive packet/frustum traversal of a bounding volume hierarchy, we can accomodate large and time-varying unstructured data. In conjunction with this efficiency structure, we introduce a novel technique for intersecting ray packets with tetrahedral primitives. Ray tracing is flexible, allowing for dynamic changes in isovalue and time step, visualization of multiple isosurfaces, shadows, and depth-peeling transparency effects. The resulting system offers the intuitive simplicity of isosurfacing, guaranteed-correct visual results, and ultimately a scalable, dynamic and consistently interactive solution for visualizing unstructured volumes.

  11. Fast kinematic ray tracing of first- and later-arriving global seismic phases

    NASA Astrophysics Data System (ADS)

    Bijwaard, Harmen; Spakman, Wim

    1999-11-01

    We have developed a ray tracing algorithm that traces first- and later-arriving global seismic phases precisely (traveltime errors of the order of 0.1 s), and with great computational efficiency (15 rays s- 1). To achieve this, we have extended and adapted two existing ray tracing techniques: a graph method and a perturbation method. The two resulting algorithms are able to trace (critically) refracted, (multiply) reflected, some diffracted (Pdiff), and (multiply) converted seismic phases in a 3-D spherical geometry, thus including the largest part of seismic phases that are commonly observed on seismograms. We have tested and compared the two methods in 2-D and 3-D Cartesian and spherical models, for which both algorithms have yielded precise paths and traveltimes. These tests indicate that only the perturbation method is computationally efficient enough to perform 3-D ray tracing on global data sets of several million phases. To demonstrate its potential for non-linear tomography, we have applied the ray perturbation algorithm to a data set of 7.6 million P and pP phases used by Bijwaard et al. (1998) for linearized tomography. This showed that the expected heterogeneity within the Earth's mantle leads to significant non-linear effects on traveltimes for 10 per cent of the applied phases.

  12. Faster isosurface ray tracing using implicit KD-trees.

    PubMed

    Wald, Ingo; Friedrich, Heiko; Marmitt, Gerd; Slusallek, Philipp; Seidel, Hans-Peter

    2005-01-01

    The visualization of high-quality isosurfaces at interactive rates is an important tool in many simulation and visualization applications. Today, isosurfaces are most often visualized by extracting a polygonal approximation that is then rendered via graphics hardware or by using a special variant of preintegrated volume rendering. However, these approaches have a number of limitations in terms of the quality of the isosurface, lack of performance for complex data sets, or supported shading models. An alternative isosurface rendering method that does not suffer from these limitations is to directly ray trace the isosurface. However, this approach has been much too slow for interactive applications unless massively parallel shared-memory supercomputers have been used. In this paper, we implement interactive isosurface ray tracing on commodity desktop PCs by building on recent advances in real-time ray tracing of polygonal scenes and using those to improve isosurface ray tracing performance as well. The high performance and scalability of our approach will be demonstrated with several practical examples, including the visualization of highly complex isosurface data sets, the interactive rendering of hybrid polygonal/isosurface scenes, including high-quality ray traced shading effects, and even interactive global illumination on isosurfaces.

  13. Continuous formulation of atmospheric state parameters for ray-traced GNSS signals

    NASA Astrophysics Data System (ADS)

    Desjardins, Camille; Gegout, Pascal; Soudarin, Laurent; Biancale, Richard

    2013-04-01

    In order to improve the modeling of the propagation of GNSS electromagnetic signals through the neutral atmosphere and achieve millimetric accuracy at low elevation, the GRGS (Groupe de Recherche de Géodésie Spatiale) in collaboration with CLS (Collecte Localisation Satellite) has developed a new set of mapping functions called AMF (Adaptive Mapping Functions) for applications in geodesy. The idea is to fit tropospheric ray-traced delays using a few numbers of coefficients for a given site at a given time. The ray tracing algorithm is based on the integration of the eikonal system which governs the ray propagation in the refractive atmosphere. During ray tracing, the current point refractivity and its gradient are computed using model level data assimilations produced by the ECMWF (European Center for Medium-range Weather Forecast). With the aim to improve our transformation between model level data and the atmospheric refractivity, we describe a new scheme which permits to interpolate separately each thermodynamical parameter necessary to precisely rebuild the refractivity along the ray path. To allow for the atmospheric part between the lowest model level and the Earth's surface during the ray tracing, we propose in addition an extrapolation of physical parameters below the lowest model level. These continuous formulations are implemented in the IFS (Integrated Forecasting System) at ECMWF. It assures the coherence between model level data and our precise formulation of the geometrical shape of the atmosphere.

  14. Ray Tracing for Ocean Acoustic Tomography

    DTIC Science & Technology

    1998-12-01

    for rapidly integrating those equations to obtain time front and eigenray information for long-range, deep-water acoustic transmissions. These meth...detailed aspects of the computer code, as well as the methods used for deriving eigenray informa- tion and for parallelizing the ray calculations. The...34 Appendix A. A Technical Summary and a Flow Chart of the Computer Code 12 Appendix B. Calculation of Eigenrays 14 Appendix C. Modifying the Code for

  15. Generalized formulas for ray-tracing and longitudinal spherical aberration.

    PubMed

    Elagha, Hassan A

    2017-03-01

    In this work, we generalize the paraxial ray-tracing formulas to include nonparaxial rays. For a refracting (reflecting) spherical surface, a new single meridional formula is derived. This formula can be easily reduced to a paraxial formula. It can also be applied to any aspheric (or general) surface with a known equation. Also, a new exact ray-tracing procedure for a centered system of spherical surfaces is derived. In this procedure, we apply just two simple equations for each surface of the system, which, to the best of our knowledge, makes it the shortest analytical ray-tracing technique ever. This procedure can be applied in some other applications. For example, it can be reduced to a new single paraxial formula that can be easily used to trace a paraxial ray propagating through a system of spherical surfaces. Also, it is applied to derive an exact meridional formula for both thick and thin lenses that can also be reduced to a new paraxial formula different from the Gaussian one. These results led us to easily derive an exact formula for the longitudinal spherical aberration for both thick and thin lenses and also for a single refracting (reflecting) spherical surface. Numerical examples are provided and discussed.

  16. Ray tracing a three dimensional scene using a grid

    DOEpatents

    Wald, Ingo; Ize, Santiago; Parker, Steven G; Knoll, Aaron

    2013-02-26

    Ray tracing a three-dimensional scene using a grid. One example embodiment is a method for ray tracing a three-dimensional scene using a grid. In this example method, the three-dimensional scene is made up of objects that are spatially partitioned into a plurality of cells that make up the grid. The method includes a first act of computing a bounding frustum of a packet of rays, and a second act of traversing the grid slice by slice along a major traversal axis. Each slice traversal includes a first act of determining one or more cells in the slice that are overlapped by the frustum and a second act of testing the rays in the packet for intersection with any objects at least partially bounded by the one or more cells overlapped by the frustum.

  17. Toward Adaptive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  18. Focal length evaluation by inverse ray-tracing Ronchi test

    NASA Astrophysics Data System (ADS)

    Juarez-Salazar, Rigoberto; Diaz-Gonzalez, Gerardo; Robledo-Sánchez, Carlos

    2016-09-01

    A simple method to evaluate the focal length of concave mirrors is proposed. The inverse ray-tracing approach of the Ronchi test is used in the measurement stage. The theoretical principles are given and a numerical method for ronchigram processing is proposed. The results verify the feasibility of the proposal.

  19. Simplifying numerical ray tracing for characterization of optical systems.

    PubMed

    Gagnon, Yakir Luc; Speiser, Daniel I; Johnsen, Sönke

    2014-07-20

    Ray tracing, a computational method for tracing the trajectories of rays of light through matter, is often used to characterize mechanical or biological visual systems with aberrations that are larger than the effect of diffraction inherent in the system. For example, ray tracing may be used to calculate geometric point spread functions (PSFs), which describe the image of a point source after it passes through an optical system. Calculating a geometric PSF is useful because it gives an estimate of the detail and quality of the image formed by a given optical system. However, when using ray tracing to calculate a PSF, the accuracy of the estimated PSF directly depends on the number of discrete rays used in the calculation; higher accuracies may require more computational power. Furthermore, adding optical components to a modeled system will increase its complexity and require critical modifications so that the model will describe the system correctly, sometimes necessitating a completely new model. Here, we address these challenges by developing a method that represents rays of light as a continuous function that depends on the light's initial direction. By utilizing Chebyshev approximations (via the chebfun toolbox in MATLAB) for the implementation of this method, we greatly simplified the calculations for the location and direction of the rays. This method provides high precision and fast calculation speeds that allow the characterization of any symmetrical optical system (with a centered point source) in an analytical-like manner. Next, we demonstrate our methods by showing how they can easily calculate PSFs for complicated optical systems that contain multiple refractive and/or reflective interfaces.

  20. Fresnel-Gaussian shape invariant for optical ray tracing.

    PubMed

    Cywiak, Moisés; Morales, A; Flores, J Mauricio; Servín, Manuel

    2009-06-22

    We propose a technique for ray tracing, based in the propagation of a Gaussian shape invariant under the Fresnel diffraction integral. The technique uses two driving independent terms to direct the ray and is based on the fact that at any arbitrary distance, the center of the propagated Gaussian beam corresponds to the geometrical projection of the center of the incident beam. We present computer simulations as examples of the use of the technique consisting in the calculation of rays through lenses and optical media where the index of refraction varies as a function of position.

  1. Ray tracing in discontinuous velocity model with implicit Interface

    NASA Astrophysics Data System (ADS)

    Zhang, Jianxing; Yang, Qin; Meng, Xianhai; Li, Jigang

    2016-07-01

    Ray tracing in the velocity model containing complex discontinuities is still facing many challenges. The main difficulty arises from the detection of the spatial relationship between the rays and the interfaces that are usually described in non-linear parametric forms. We propose a novel model representation method that can facilitate the implementation of classical shooting-ray methods. In the representation scheme, each interface is expressed as the zero contour of a signed distance field. A multi-copy strategy is adopted to describe the volumetric properties within blocks. The implicit description of the interface makes it easier to detect the ray-interface intersection. The direct calculation of the intersection point is converted into the problem of judging the signs of a ray segment's endpoints. More importantly, the normal to the interface at the intersection point can be easily acquired according to the signed distance field of the interface. The multiple storage of the velocity property in the proximity of the interface can provide accurate and unambiguous velocity information of the intersection point. Thus, the departing ray path can be determined easily and robustly. In addition, the new representation method can describe velocity models containing very complex geological structures, such as faults, salt domes, intrusions, and pinches, without any simplification. The examples on synthetic and real models validate the robustness and accuracy of the ray tracing based on the proposed model representation scheme.

  2. Ultrasonic field profile evaluation in acoustically inhomogeneous anisotropic materials using 2D ray tracing model: Numerical and experimental comparison.

    PubMed

    Kolkoori, S R; Rahman, M-U; Chinta, P K; Ktreutzbruck, M; Rethmeier, M; Prager, J

    2013-02-01

    Ultrasound propagation in inhomogeneous anisotropic materials is difficult to examine because of the directional dependency of elastic properties. Simulation tools play an important role in developing advanced reliable ultrasonic non destructive testing techniques for the inspection of anisotropic materials particularly austenitic cladded materials, austenitic welds and dissimilar welds. In this contribution we present an adapted 2D ray tracing model for evaluating ultrasonic wave fields quantitatively in inhomogeneous anisotropic materials. Inhomogeneity in the anisotropic material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The presented algorithm evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase relations as well as transmission coefficients. The ray tracing model is able to calculate the ultrasonic wave fields generated by a point source as well as a finite dimension transducer. The ray tracing model results are validated quantitatively with the results obtained from 2D Elastodynamic Finite Integration Technique (EFIT) on several configurations generally occurring in the ultrasonic non destructive testing of anisotropic materials. Finally, the quantitative comparison of ray tracing model results with experiments on 32mm thick austenitic weld material and 62mm thick austenitic cladded material is discussed.

  3. Modeling pyramidal sensors in ray-tracing software by a suitable user-defined surface

    NASA Astrophysics Data System (ADS)

    Antichi, Jacopo; Munari, Matteo; Magrin, Demetrio; Riccardi, Armando

    2016-04-01

    Following the unprecedented results in terms of performances delivered by the first light adaptive optics system at the Large Binocular Telescope, there has been a wide-spread and increasing interest on the pyramid wavefront sensor (PWFS), which is the key component, together with the adaptive secondary mirror, of the adaptive optics (AO) module. Currently, there is no straightforward way to model a PWFS in standard sequential ray-tracing software. Common modeling strategies tend to be user-specific and, in general, are unsatisfactory for general applications. To address this problem, we have developed an approach to PWFS modeling based on user-defined surface (UDS), whose properties reside in a specific code written in C language, for the ray-tracing software ZEMAX™. With our approach, the pyramid optical component is implemented as a standard surface in ZEMAX™, exploiting its dynamic link library (DLL) conversion then greatly simplifying ray tracing and analysis. We have utilized the pyramid UDS DLL surface-referred to as pyramidal acronyms may be too risky (PAM2R)-in order to design the current PWFS-based AO system for the Giant Magellan Telescope, evaluating tolerances, with particular attention to the angular sensitivities, by means of sequential ray-tracing tools only, thus verifying PAM2R reliability and robustness. This work indicates that PAM2R makes the design of PWFS as simple as that of other optical standard components. This is particularly suitable with the advent of the extremely large telescopes era for which complexity is definitely one of the main challenges.

  4. Simplifying numerical ray tracing for two-dimensional non circularly symmetric models of the human eye.

    PubMed

    Jesus, Danilo A; Iskander, D Robert

    2015-12-01

    Ray tracing is a powerful technique to understand the light behavior through an intricate optical system such as that of a human eye. The prediction of visual acuity can be achieved through characteristics of an optical system such as the geometrical point spread function. In general, its precision depends on the number of discrete rays and the accurate surface representation of each eye's components. Recently, a method that simplifies calculation of the geometrical point spread function has been proposed for circularly symmetric systems [Appl. Opt.53, 4784 (2014)]. An extension of this method to 2D noncircularly symmetric systems is proposed. In this method, a two-dimensional ray tracing procedure for an arbitrary number of surfaces and arbitrary surface shapes has been developed where surfaces, rays, and refractive indices are all represented in functional forms being approximated by Chebyshev polynomials. The Liou and Brennan anatomically accurate eye model has been adapted and used for evaluating the method. Further, real measurements of the anterior corneal surface of normal, astigmatic, and keratoconic eyes were substituted for the first surface in the model. The results have shown that performing ray tracing, utilizing the two-dimensional Chebyshev function approximation, is possible for noncircularly symmetric models, and that such calculation can be performed with a newly created Chebfun toolbox.

  5. An improved MIMO-SAR simulator strategy with ray tracing

    NASA Astrophysics Data System (ADS)

    Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2016-05-01

    High resolution and wide-swath imaging can be obtained by Multiple-Input Multiple-Output (MIMO) synthetic aperture radar (SAR) with the state of the art technologies. The time division multiple access (TDMA) MIMO SAR mimics the motion of the antenna of SAR systems by switching the array channels to transmit the radar signals at different time slots. In this paper, we develop a simulation tool with ray tracing techniques to retrieve high resolution and accurate SAR images for development of MIMO SAR imaging methods. Without loss of generality, in the proposed simulator, we apply a TDMA MIMO SAR system with 13 transmitting antennas and 8 receiving antennas, where all transmitting antennas share a single transmitter and the receiving antennas share a single receiver. By comparing with the normal simulation MIMO SAR strategies, the simulation image using ray tracing results validate that the proposed method provides more accurate and higher resolution SAR images.

  6. Analytic-domain lens design with proximate ray tracing.

    PubMed

    Zheng, Nan; Hagen, Nathan; Brady, David J

    2010-08-01

    We have developed an alternative approach to optical design which operates in the analytical domain so that an optical designer works directly with rays as analytical functions of system parameters rather than as discretely sampled polylines. This is made possible by a generalization of the proximate ray tracing technique which obtains the analytical dependence of the rays at the image surface (and ray path lengths at the exit pupil) on each system parameter. The resulting method provides an alternative direction from which to approach system optimization and supplies information which is not typically available to the system designer. In addition, we have further expanded the procedure to allow asymmetric systems and arbitrary order of approximation, and have illustrated the performance of the method through three lens design examples.

  7. Ray tracing for point distribution in unstructured grid generation

    SciTech Connect

    Khamayseh, A.; Ortega, F.; Trease, H.

    1995-12-31

    We present a procedure by which grid points are generated on surfaces or within three-dimensional volumes to produce high quality unstructed grids for complex geometries. The virtue of this method is based on ray-tracing approach for curved polyhedra whose faces may lie on natural quadrics (planes, cylinders, cones, or spheres) or triangular faceted surfaces. We also present an efficient point location algorithm for identifying points relative to various regions with classification of inside/on/outside.

  8. 3D ultrasonic ray tracing in AutoCAD®

    NASA Astrophysics Data System (ADS)

    Reilly, D.; Leggat, P.; McNab, A.

    2001-04-01

    To assist with the design and validation of testing procedures for NDT, add-on modules have been developed for AutoCAD® 2000. One of the modules computes and displays ultrasonic 3D ray tracing. Another determines paths between two points, for instance a probe and a target or two probes. The third module displays phased array operational modes and calculates element delays for phased array operation. The modules can be applied to simple or complex solid model components.

  9. A ray-tracing backprojection algorithm for cone beam CT

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Pan, Tinsu

    2007-03-01

    We have developed a ray-tracing backprojection (RTB) to back-project all the detector pixels into the image domain of cone beam CT (CBCT). The underlying mathematic framework is the FDK reconstruction. In this method, every ray recorded by the flat panel detector is traced back into the image space. In each voxel of the imaging domain, all the rays contributing to the formation of the CT image are summed together weighted by each rays' intersection length with the voxel. The RTB is similar to a reverse process of x-ray transmission imaging, as opposed to the conventional voxel-driven backprojection (VDB). In the RTB, we avoided interpolation and pixel binning approximations, achieved better spatial resolution and eliminated some image artifacts. We have successfully applied the RTB in phantom studies on the Varian On Board Imager CBCT. The images of the Catphan CTP404 module show more accurate representation of the oblique ramps in the measurement of slice thickness, and more accurate determination of slice thickness with the RTB than with VDB. The RTB also shows higher spatial resolution than the VDB in the studies of a high contrast resolution phantom.

  10. Nonnull interferometer simulation for aspheric testing based on ray tracing.

    PubMed

    Tian, Chao; Yang, Yongying; Wei, Tao; Zhuo, Yongmo

    2011-07-10

    The nonnull interferometric method that employs a partial compensation system to compensate for the longitude aberration of the aspheric under test and a reverse optimization procedure to correct retrace errors is a useful technique for general aspheric testing. However, accurate system modeling and simulation are required to correct retrace errors and reconstruct fabrication error of the aspheric. Here, we propose a ray-tracing-based method to simulate the nonnull interferometer, which calculates the optical path difference by tracing rays through the reference path and the test path. To model a nonrotationally symmetric fabrication error, we mathematically represent it with a set of Zernike polynomials (i.e., Zernike deformation) and derive ray-tracing formulas for the deformed surface, which can also deal with misalignment situations (i.e., a surface with tilts and/or decenters) and thus facilitates system modeling extremely. Simulation results of systems with (relatively) large and small Zernike deformations and their comparisons with the lens design program Zemax have demonstrated the correctness and effectiveness of the method.

  11. Virtual Ray Tracing as a Conceptual Tool for Image Formation in Mirrors and Lenses

    ERIC Educational Resources Information Center

    Heikkinen, Lasse; Savinainen, Antti; Saarelainen, Markku

    2016-01-01

    The ray tracing method is widely used in teaching geometrical optics at the upper secondary and university levels. However, using simple and straightforward examples may lead to a situation in which students use the model of ray tracing too narrowly. Previous studies show that students seem to use the ray tracing method too concretely instead of…

  12. Three dimensional ray tracing of the Jovian magnetosphere in the low frequency range

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    1984-01-01

    Ray tracing studies of Jovian low frequency emissions were studied. A comprehensive three-dimensional ray tracing computer code for examination of model Jovian decametric (DAM) emission was developed. The improvements to the computer code are outlined and described. The results of the ray tracings of Jovian emissions will be presented in summary form.

  13. On a combined adaptive tetrahedral tracing and edge diffraction model

    NASA Astrophysics Data System (ADS)

    Hart, Carl R.

    A major challenge in architectural acoustics is the unification of diffraction models and geometric acoustics. For example, geometric acoustics is insufficient to quantify the scattering characteristics of acoustic diffusors. Typically the time-independent boundary element method (BEM) is the method of choice. In contrast, time-domain computations are of interest for characterizing both the spatial and temporal scattering characteristics of acoustic diffusors. Hence, a method is sought that predicts acoustic scattering in the time-domain. A prediction method, which combines an advanced image source method and an edge diffraction model, is investigated for the prediction of time-domain scattering. Adaptive tetrahedral tracing is an advanced image source method that generates image sources through an adaptive process. Propagating tetrahedral beams adapt to ensonified geometry mapping the geometric sound field in space and along boundaries. The edge diffraction model interfaces with the adaptive tetrahedral tracing process by the transfer of edge geometry and visibility information. Scattering is quantified as the contribution of secondary sources along a single or multiple interacting edges. Accounting for a finite number of diffraction permutations approximates the scattered sound field. Superposition of the geometric and scattered sound fields results in a synthesized impulse response between a source and a receiver. Evaluation of the prediction technique involves numerical verification and numerical validation. Numerical verification is based upon a comparison with analytic and numerical (BEM) solutions for scattering geometries. Good agreement is shown for the selected scattering geometries. Numerical validation is based upon experimentally determined scattered impulse responses of acoustic diffusors. Experimental data suggests that the predictive model is appropriate for high-frequency predictions. For the experimental determination of the scattered impulse

  14. Ray-tracing polymorphic multidomain spectral/hp elements for isosurface rendering.

    PubMed

    Nelson, Blake; Kirby, Robert M

    2006-01-01

    The purpose of this paper is to present a ray-tracing isosurface rendering algorithm for spectral/hp (high-order finite) element methods in which the visualization error is both quantified and minimized. Determination of the ray-isosurface intersection is accomplished by classic polynomial root-finding applied to a polynomial approximation obtained by projecting the finite element solution over element-partitioned segments along the ray. Combining the smoothness properties of spectral/hp elements with classic orthogonal polynomial approximation theory, we devise an adaptive scheme which allows the polynomial approximation along a ray-segment to be arbitrarily close to the true solution. The resulting images converge toward a pixel-exact image at a rate far faster than sampling the spectral/hp element solution and applying classic low-order visualization techniques such as marching cubes.

  15. Distance measurement based on light field geometry and ray tracing.

    PubMed

    Chen, Yanqin; Jin, Xin; Dai, Qionghai

    2017-01-09

    In this paper, we propose a geometric optical model to measure the distances of object planes in a light field image. The proposed geometric optical model is composed of two sub-models based on ray tracing: object space model and image space model. The two theoretic sub-models are derived on account of on-axis point light sources. In object space model, light rays propagate into the main lens and refract inside it following the refraction theorem. In image space model, light rays exit from emission positions on the main lens and subsequently impinge on the image sensor with different imaging diameters. The relationships between imaging diameters of objects and their corresponding emission positions on the main lens are investigated through utilizing refocusing and similar triangle principle. By combining the two sub-models together and tracing light rays back to the object space, the relationships between objects' imaging diameters and corresponding distances of object planes are figured out. The performance of the proposed geometric optical model is compared with existing approaches using different configurations of hand-held plenoptic 1.0 cameras and real experiments are conducted using a preliminary imaging system. Results demonstrate that the proposed model can outperform existing approaches in terms of accuracy and exhibits good performance at general imaging range.

  16. Ray-tracing simulation of parabolic compound refractive lenses

    NASA Astrophysics Data System (ADS)

    Alianelli, L.; Sánchez del Río, M.; Sawhney, K. J. S.

    2007-07-01

    X-ray compound refractive lenses (CRL) are becoming a widespread tool for the generation of microfocus spot sizes at synchrotron beamlines. The calculation of their performance by means of ray-tracing is useful for a rapid estimation of flux, resolution and focusing properties achievable in a beamline, when other optics are present, or simply to study the lens acceptance and focusing in the presence of a particular bending magnet, wiggler or undulator X-ray source. The ray-tracing method presented in this paper has been used to calculate the efficiency of beryllium CRL's using, for the instrument layout, realistic source size and divergence, and usual optics like perfect crystal monochromators. It is shown that the intensity transmitted by the lens, the effective aperture and the gain are in good agreement with analytical formulas. Additional information provided when running the program are the precise shape of beam at the focus, and at any position along the optical axis. For instance the intensity distribution at the CRL entrance and exit planes allows a comparison between the effective and the geometrical apertures. Finally, the method provides a precise value for the lens focal distance, which depends on the CRL length.

  17. Dynamic ray tracing for modeling optical cell manipulation.

    PubMed

    Sraj, Ihab; Szatmary, Alex C; Marr, David W M; Eggleton, Charles D

    2010-08-02

    Current methods for predicting stress distribution on a cell surface due to optical trapping forces are based on a traditional ray optics scheme for fixed geometries. Cells are typically modeled as solid spheres as this facilitates optical force calculation. Under such applied forces however, real and non-rigid cells can deform, so assumptions inherent in traditional ray optics methods begin to break down. In this work, we implement a dynamic ray tracing technique to calculate the stress distribution on a deformable cell induced by optical trapping. Here, cells are modeled as three-dimensional elastic capsules with a discretized surface with associated hydrodynamic forces calculated using the Immersed Boundary Method. We use this approach to simulate the transient deformation of spherical, ellipsoidal and biconcave capsules due to external optical forces induced by a single diode bar optical trap for a range of optical powers.

  18. Dynamic ray tracing and its application in triangulated media

    SciTech Connect

    Rueger, A.

    1993-07-01

    Hale and Cohen (1991) developed software to generate two-dimensional computer models of complex geology. Their method uses a triangulation technique designed to support efficient and accurate computation of seismic wavefields for models of the earth`s interior. Subsequently, Hale (1991) used this triangulation approach to perform dynamic ray tracing and create synthetic seismograms based on the method of Gaussian beams. Here, I extend this methodology to allow an increased variety of ray-theoretical experiments. Specifically, the developed program GBmod (Gaussian Beam MODeling) can produce arbitrary multiple sequences and incorporate attenuation and density variations. In addition, I have added an option to perform Fresnel-volume ray tracing (Cerveny and Soares, 1992). Corrections for reflection and transmission losses at interfaces, and for two-and-one-half-dimensional (2.5-D) spreading are included. However, despite these enhancements, difficulties remain in attempts to compute accurate synthetic seismograms if strong lateral velocity inhomogeneities are present. Here, these problems are discussed and, to a certain extent, reduced. I provide example computations of high-frequency seismograms based on the method of Gaussian beams to exhibit the advantages and disadvantages of the proposed modeling method and illustrate new features for both surface and vertical seismic profiling (VSP) acquisition geometries.

  19. Microseismic network design assessment based on 3D ray tracing

    NASA Astrophysics Data System (ADS)

    Näsholm, Sven Peter; Wuestefeld, Andreas; Lubrano-Lavadera, Paul; Lang, Dominik; Kaschwich, Tina; Oye, Volker

    2016-04-01

    There is increasing demand on the versatility of microseismic monitoring networks. In early projects, being able to locate any triggers was considered a success. These early successes led to a better understanding of how to extract value from microseismic results. Today operators, regulators, and service providers work closely together in order to find the optimum network design to meet various requirements. In the current study we demonstrate an integrated and streamlined network capability assessment approach. It is intended for use during the microseismic network design process prior to installation. The assessments are derived from 3D ray tracing between a grid of event points and the sensors. Three aspects are discussed: 1) Magnitude of completeness or detection limit; 2) Event location accuracy; and 3) Ground-motion hazard. The network capability parameters 1) and 2) are estimated at all hypothetic event locations and are presented in the form of maps given a seismic sensor coordinate scenario. In addition, the ray tracing traveltimes permit to estimate the point-spread-functions (PSFs) at the event grid points. PSFs are useful in assessing the resolution and focusing capability of the network for stacking-based event location and imaging methods. We estimate the performance for a hypothetical network case with 11 sensors. We consider the well-documented region around the San Andreas Fault Observatory at Depth (SAFOD) located north of Parkfield, California. The ray tracing is done through a detailed velocity model which covers a 26.2 by 21.2 km wide area around the SAFOD drill site with a resolution of 200 m both for the P-and S-wave velocities. Systematic network capability assessment for different sensor site scenarios prior to installation facilitates finding a final design which meets the survey objectives.

  20. Ray tracing study for non-imaging daylight collectors

    SciTech Connect

    Wittkopf, Stephen; Oliver Grobe, Lars; Geisler-Moroder, David; Compagnon, Raphael; Kaempf, Jerome; Linhart, Friedrich; Scartezzini, Jean-Louis

    2010-06-15

    This paper presents a novel method to study how well non-imaging daylight collectors pipe diffuse daylight into long horizontal funnels for illuminating deep buildings. Forward ray tracing is used to derive luminous intensity distributions curves (LIDC) of such collectors centered in an arc-shaped light source representing daylight. New photometric characteristics such as 2D flux, angular spread and horizontal offset are introduced as a function of such LIDC. They are applied for quantifying and thus comparing different collector contours. (author)

  1. A complete ray-trace analysis of the Mirage toy

    NASA Astrophysics Data System (ADS)

    Adhya, Sriya; Noé, John W.

    2007-06-01

    The `Mirage' (Opti-Gone International) is a well-known optics demonstration (PIRA index number 6A20.35) that uses two opposed concave mirrors to project a real image of a small object into space. We studied image formation in the Mirage by standard 2x2 matrix methods and by exact ray tracing, with particular attention to additional real images that can be observed when the mirror separation is increased beyond one focal length. We find that the three readily observed secondary images correspond to 4, 6, or 8 reflections, respectively, contrary to previous reports.

  2. Photorealistic ray tracing to visualize automobile side mirror reflective scenes.

    PubMed

    Lee, Hocheol; Kim, Kyuman; Lee, Gang; Lee, Sungkoo; Kim, Jingu

    2014-10-20

    We describe an interactive visualization procedure for determining the optimal surface of a special automobile side mirror, thereby removing the blind spot, without the need for feedback from the error-prone manufacturing process. If the horizontally progressive curvature distributions are set to the semi-mathematical expression for a free-form surface, the surface point set can then be derived through numerical integration. This is then converted to a NURBS surface while retaining the surface curvature. Then, reflective scenes from the driving environment can be virtually realized using photorealistic ray tracing, in order to evaluate how these reflected images would appear to drivers.

  3. Ray-tracing optical modeling of negative dysphotopsia

    NASA Astrophysics Data System (ADS)

    Hong, Xin; Liu, Yueai; Karakelle, Mutlu; Masket, Samuel; Fram, Nicole R.

    2011-12-01

    Negative dysphotopsia is a relatively common photic phenomenon that may occur after implantation of an intraocular lens. The etiology of negative dysphotopsia is not fully understood. In this investigation, optical modeling was developed using nonsequential-component Zemax ray-tracing technology to simulate photic phenomena experienced by the human eye. The simulation investigated the effects of pupil size, capsulorrhexis size, and bag diffusiveness. Results demonstrated the optical basis of negative dysphotopsia. We found that photic structures were mainly influenced by critical factors such as the capsulorrhexis size and the optical diffusiveness of the capsular bag. The simulations suggested the hypothesis that the anterior capsulorrhexis interacting with intraocular lens could induce negative dysphotopsia.

  4. Vertex shading of the three-dimensional model based on ray-tracing algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Sang, Xinzhu; Xing, Shujun; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Ray Tracing Algorithm is one of the research hotspots in Photorealistic Graphics. It is an important light and shadow technology in many industries with the three-dimensional (3D) structure, such as aerospace, game, video and so on. Unlike the traditional method of pixel shading based on ray tracing, a novel ray tracing algorithm is presented to color and render vertices of the 3D model directly. Rendering results are related to the degree of subdivision of the 3D model. A good light and shade effect is achieved by realizing the quad-tree data structure to get adaptive subdivision of a triangle according to the brightness difference of its vertices. The uniform grid algorithm is adopted to improve the rendering efficiency. Besides, the rendering time is independent of the screen resolution. In theory, as long as the subdivision of a model is adequate, cool effects as the same as the way of pixel shading will be obtained. Our practical application can be compromised between the efficiency and the effectiveness.

  5. Ray tracing method in phase space for two-dimensional optical systems.

    PubMed

    Filosa, C; Ten Thije Boonkkamp, J H M; IJzerman, W L

    2016-05-01

    Ray tracing is a forward method to calculate the photometric variables at the target of a non-imaging optical system. In this paper, a new ray tracing technique is presented to improve the accuracy and to reduce the computational time of the classical ray tracing approach. The method is based on the phase space representation of the source and the target of the optical system, and it is applied to a two-dimensional TIR-collimator. The strength of the method lies in tracing fewer rays through the system. Only rays that lie in the meridional plane are considered. A procedure that disregards rays in smooth regions in phase space, where the luminance is continuous, is implemented and only the rays close to discontinuities are traced. The efficiency of the method is demonstrated by numerical simulations that compare the new method with Monte Carlo ray tracing. The results show that the phase space approach is faster and more accurate than the already existing ray tracing method; moreover the phase space method converges as one over the number of rays traced unlike Monte Carlo ray tracing in which the speed of convergence is proportional to one over the square root of the number of rays.

  6. Ray Tracing Modeling of Gravity Wave Propagation and Dissipation

    NASA Astrophysics Data System (ADS)

    Vadas, Sharon; Crowley, Geoff

    In this paper, we describe a ray trace model which calculates the wavevector, location and phase of a gravity wave (GW) as it propagates in the lower atmosphere and thermosphere. If used for a discreet transient source (such as a deep convective plume), we describe how this model can calculate the body forcing and the heat/cooling that are created when the GWs within a wave packet dissipate in the thermosphere from kinematic viscosity and thermal diffusivity. Although the body force calculation requires only the divergence of the momentum flux, the heat/cooling calculation requires the reconstructed GW field (e.g., density, velocity perturbations), which in turn requires the GW dissipative polarization relations. We describe these relations. We then describe the results of a recent study involving GWs identified from TIDDBIT HF Doppler sounder data taken at Wallops Island, VI, USA. Using this ray trace model, we determine if the unusual neutral wind profile measured by a rocket experiment at high altitudes (~290-370 km) could have been caused by the propagation and dissipation of several waves observed by TIDDBIT at lower altitudes.

  7. Ray-tracing software comparison for linear focusing solar collectors

    NASA Astrophysics Data System (ADS)

    Osório, Tiago; Horta, Pedro; Larcher, Marco; Pujol-Nadal, Ramón; Hertel, Julian; van Rooyen, De Wet; Heimsath, Anna; Schneider, Simon; Benitez, Daniel; Frein, Antoine; Denarie, Alice

    2016-05-01

    Ray-Tracing software tools have been widely used in the optical design of solar concentrating collectors. In spite of the ability of these tools to assess the geometrical and material aspects impacting the optical performance of concentrators, their use in combination with experimental measurements in the framework of collector testing procedures as not been implemented, to the date, in none of the current solar collector testing standards. In the latest revision of ISO9806 an effort was made to include linear focusing concentrating collectors but some practical and theoretical difficulties emerged. A Ray-Tracing analysis could provide important contributions to overcome these issues, complementing the experimental results obtained through thermal testing and allowing the achievement of more thorough testing outputs with lower experimental requirements. In order to evaluate different available software tools a comparison study was conducted. Taking as representative technologies for line-focus concentrators the Parabolic Trough Collector and the Linear Fresnel Reflector Collector, two exemplary cases with predefined conditions - geometry, sun model and material properties - were simulated with different software tools. This work was carried out within IEA/SHC Task 49 "Solar Heat Integration in Industrial Processes".

  8. Ray-tracing the convex curved crystal X-ray spectrograph. [instrument design and data interpretation technique

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.

    1979-01-01

    The convex curved crystal X-ray spectrograph has recently seen increasing use for the spectral analysis of transient plasmas. The present paper describes the calculation of ray paths through the spectrograph for both localized and extended sources. The method traces a ray from any given source point to its point of diffraction by the curved crystal and then to the imaging circle, where the image point is obtained. Application of the ray tracing method is made to some actual experimental configurations to obtain resolution values and source sizes. Wavelength calibrations are obtainable with the ray tracing method in advance of instrument construction.

  9. Polarization Ray Trace Model of the MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Xiong, Jack; Esaias, Wayne E.; Voss, Kenneth; Souaidia, Nordine; Pellicori, Samuel; Moyer, David; Guenther, Bruce; Barnes, William

    2004-01-01

    Sunlight reflected from the earth is, to a certain extent, polarized. Radiometers, such as the MODIS instrument on board the TERRA and AQUA spacecraft, are to a certain extent polarizers. Accurate radiometric measurements must take into account both the polarization state of the scene and the polarization sensitivity of the measuring instrument. The measured polarization characteristics of the MODIS instruments are contained in various radiometric models. Continued use of these radiometric math models, over a number of years, have shown where these models can be improved. Currently a MODIS polarization ray trace model has been created which models the thin film structure on the optical elements. This approach is described and modeled and measured instrument polarization sensitivity results presented.

  10. OSPRay - A CPU Ray Tracing Framework for Scientific Visualization.

    PubMed

    Wald, I; Johnson, G P; Amstutz, J; Brownlee, C; Knoll, A; Jeffers, J; Gunther, J; Navratil, P

    2017-01-01

    Scientific data is continually increasing in complexity, variety and size, making efficient visualization and specifically rendering an ongoing challenge. Traditional rasterization-based visualization approaches encounter performance and quality limitations, particularly in HPC environments without dedicated rendering hardware. In this paper, we present OSPRay, a turn-key CPU ray tracing framework oriented towards production-use scientific visualization which can utilize varying SIMD widths and multiple device backends found across diverse HPC resources. This framework provides a high-quality, efficient CPU-based solution for typical visualization workloads, which has already been integrated into several prevalent visualization packages. We show that this system delivers the performance, high-level API simplicity, and modular device support needed to provide a compelling new rendering framework for implementing efficient scientific visualization workflows.

  11. Ray tracing in FLRW flat space-times

    NASA Astrophysics Data System (ADS)

    Acquaviva, Giovanni; Bonetti, Luca; Cognola, Guido; Zerbini, Sergio

    2013-12-01

    In this work we take moves from the debate triggered by Melia et al. in [J. Cosmol. Astropart. Phys. 09 (2012) 029; Mon. Not. R. Astron. Soc. 421, 3356 (2012)] and followed by opposite comments by Lewis and Oirschot in [Mon. Not. R. Astron. Soc. Lett. 423, 26 (2012); 431, 25 (2013)]. The point in question regards the role of the Hubble horizon as a limit for observability in a cosmological setting. We propose to tackle the issue in a broader way by relating it to the causal character of the Hubble surface and to the tracing of null trajectories, focusing on both three-fluids and generalized Chaplygin gas models. The results should make clear that for quite reasonable and physically motivated models, light rays reaching a comoving observer at R(t0)=0 have never traveled a distance greater than the proper radius of the horizon until t0.

  12. Ionospheric Plasma Drift Analysis Technique Based On Ray Tracing

    NASA Astrophysics Data System (ADS)

    Ari, Gizem; Toker, Cenk

    2016-07-01

    Ionospheric drift measurements provide important information about the variability in the ionosphere, which can be used to quantify ionospheric disturbances caused by natural phenomena such as solar, geomagnetic, gravitational and seismic activities. One of the prominent ways for drift measurement depends on instrumentation based measurements, e.g. using an ionosonde. The drift estimation of an ionosonde depends on measuring the Doppler shift on the received signal, where the main cause of Doppler shift is the change in the length of the propagation path of the signal between the transmitter and the receiver. Unfortunately, ionosondes are expensive devices and their installation and maintenance require special care. Furthermore, the ionosonde network over the world or even Europe is not dense enough to obtain a global or continental drift map. In order to overcome the difficulties related to an ionosonde, we propose a technique to perform ionospheric drift estimation based on ray tracing. First, a two dimensional TEC map is constructed by using the IONOLAB-MAP tool which spatially interpolates the VTEC estimates obtained from the EUREF CORS network. Next, a three dimensional electron density profile is generated by inputting the TEC estimates to the IRI-2015 model. Eventually, a close-to-real situation electron density profile is obtained in which ray tracing can be performed. These profiles can be constructed periodically with a period of as low as 30 seconds. By processing two consequent snapshots together and calculating the propagation paths, we estimate the drift measurements over any coordinate of concern. We test our technique by comparing the results to the drift measurements taken at the DPS ionosonde at Pruhonice, Czech Republic. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  13. Large thin adaptive x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady

    2007-09-01

    This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.

  14. RAY-RAMSES: a code for ray tracing on the fly in N-body simulations

    NASA Astrophysics Data System (ADS)

    Barreira, Alexandre; Llinares, Claudio; Bose, Sownak; Li, Baojiu

    2016-05-01

    We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can produce maps of the desired observables without storing large (or any) amounts of data for post-processing. We implemented our routines in the RAMSES N-body code and tested the implementation using an example of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological analysis such as Sunyaev-Zel'dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our code can also be used in cross-checks of the more conventional methods, which can be important in tests of theory systematics in preparation for upcoming large scale structure surveys.

  15. Polarization opposition effect and second-order ray tracing.

    PubMed

    Videen, Gorden

    2002-08-20

    I develop a second-order ray-tracing model of the light scattered by a cloud of randomly oriented facets having sizes much larger than the incident wavelength. My results suggest that both symmetric and asymmetric branches of the polarization opposition effect can be produced by the same mechanism responsible for the photometric opposition effect, i.e., constructive interference of light rays traversing reciprocal paths that is associated with coherent backscattering enhancement. The model provides a greatly simplified representation of the physical phenomena to isolate the two mechanisms that may be responsible for the effect. The shapes and positions of the two branches of the polarization opposition effect calculated with the model are consistent with observation, so the model may provide a rapid technique to characterize the optical and physical properties of a scattering system. I note, however, that the model is a gross simplification containing only two physical mechanisms, Fresnel reflections and coherent interference, and it is possible that it represents a nonphysical description of particles smaller than the wavelength or that other mechanisms contributing to the polarization opposition effect are not included.

  16. Image transfer through cirrus clouds. I. Ray trace analysis and wave-front reconstruction.

    PubMed

    Landesman, B T; Kindilien, P J; Matson, C L; Caudill, T R

    2000-10-20

    A new technique for modeling image transfer through cirrus clouds is presented. The technique uses a ray trace to model beam propagation through a three-dimensional volume of polydisperse, hexagonal ice crystals. Beyond the cloud, the technique makes use of standard Huygens-Fresnel propagation methods. At the air-cloud interface, each wave front is resolved into a ray distribution for input to the ray trace software. Similarly, a wave front is reconstructed from the output ray distribution at the cloud-air interface. Simulation output from the ray trace program is presented and the modulation transfer function for stars imaged through cirrus clouds of varying depths is discussed.

  17. Ray-tracing of shape metrology data of grazing incidence x-ray astronomy mirrors

    NASA Astrophysics Data System (ADS)

    Zocchi, Fabio E.; Vernani, Dervis

    2008-07-01

    A number of future X-ray astronomy missions (e.g. Simbol-X, eROSITA) plan to utilize high throughput grazing incidence optics with very lightweight mirrors. The severe mass specifications require a further optimization of the existing technology with the consequent need of proper optical numerical modeling capabilities for both the masters and the mirrors. A ray tracing code has been developed for the simulation of the optical performance of type I Wolter masters and mirrors starting from 2D and 3D metrology data. In particular, in the case of 2D measurements, a 3D data set is reconstructed on the basis of dimensional references and used for the optical analysis by ray tracing. In this approach, the actual 3D shape is used for the optical analysis, thus avoiding the need of combining the separate contributions of different 2D measurements that require the knowledge of their interactions which is not normally available. The paper describes the proposed approach and presents examples of application on a prototype engineering master in the frame of ongoing activities carried out for present and future X-ray missions.

  18. Hybrid ray trace and diffraction propagation code for analysis of optical systems

    NASA Astrophysics Data System (ADS)

    Redding, David C.; Levine, Bruce M.; Yu, Jeffrey W.; Wallace, J. Kent

    1992-06-01

    The Control Optics Modelling Package (COMP), is an optical modelling computer program capable of performing ray trace, differential ray trace and diffraction analyses for any optical design. COMP is particularly useful for optical systems that move, whether through interaction with dynamically or thermally varying structures, or optics that are actively controlled to perform particular tasks, such as steering mirrors or segmented mirrors.

  19. Exploring a Boeing 777: ray tracing large-scale CAD data.

    PubMed

    Dietrich, Andreas; Stephens, Abe; Wald, Ingo

    2007-01-01

    Unlike rasterization, which draws and shades triangles individually, ray tracing simulates propagation of light between surfaces in a scene and enables advanced effects such as transparency, shadows, and ambient occlusion--effects not easily accomplished in other massive-model rendering approaches. This article describes the application of ray tracing to several aircraft manufacturing scenarios.

  20. Three-dimensional ray tracing in spherical and elliptical generalized Luneburg lenses for application in the human eye lens.

    PubMed

    Gómez-Correa, J E; Coello, V; Garza-Rivera, A; Puente, N P; Chávez-Cerda, S

    2016-03-10

    Ray tracing in spherical Luneburg lenses has always been represented in 2D. All propagation planes in a 3D spherical Luneburg lens generate the same ray tracing, due to its radial symmetry. A geometry without radial symmetry generates a different ray tracing. For this reason, a new ray tracing method in 3D through spherical and elliptical Luneburg lenses using 2D methods is proposed. The physics of the propagation is shown here, which allows us to make a ray tracing associated with a vortex beam. A 3D ray tracing in a composite modified Luneburg lens that represents the human eye lens is also presented.

  1. Generalized ray tracing method for the calculation of the peripheral refraction induced by an ophthalmic lens

    NASA Astrophysics Data System (ADS)

    Rojo, Pilar; Royo, Santiago; Caum, Jesus; Ramírez, Jorge; Madariaga, Ines

    2015-02-01

    Peripheral refraction, the refractive error present outside the main direction of gaze, has lately attracted interest due to its alleged relationship with the progression of myopia. The ray tracing procedures involved in its calculation need to follow an approach different from those used in conventional ophthalmic lens design, where refractive errors are compensated only in the main direction of gaze. We present a methodology for the evaluation of the peripheral refractive error in ophthalmic lenses, adapting the conventional generalized ray tracing approach to the requirements of the evaluation of peripheral refraction. The nodal point of the eye and a retinal conjugate surface will be used to evaluate the three-dimensional distribution of refractive error around the fovea. The proposed approach enables us to calculate the three-dimensional peripheral refraction induced by any ophthalmic lens at any direction of gaze and to personalize the lens design to the requirements of the user. The complete evaluation process for a given user prescribed with a -5.76D ophthalmic lens for foveal vision is detailed, and comparative results obtained when the geometry of the lens is modified and when the central refractive error is over- or undercorrected. The methodology is also applied for an emmetropic eye to show its application for refractive errors other than myopia.

  2. Ray Tracing Study of 170GHZ Electron Cyclotron Waves in Kstar Plasmas

    NASA Astrophysics Data System (ADS)

    Bae, Young-Soon; Joung, M.; Yang, H. L.; Namkung, W.; Cho, M. H.; Park, H.; Prater, R.; Ellis, R. A.; Hosea, J.

    2011-02-01

    The electron cyclotron heating/current drive (ECH/ECCD) system has become an essential tool for the fusion plasma research in toroidal devices. In Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak, development of high power and multi-frequency ECH/ECCD system is in progress. The frequencies employed in KSTAR are 84 GHz, 110 GHz, and 170 GHz. Multiple frequency sources can easily support the wide range of operating regimes from 1.5 T to 3.5 T in KSTAR tokamak. In particular, the 170 GHz source, that will be adapted to the ITER, corresponds to the second harmonic frequency of the KSTAR operating range from 2.6 T to 3.5 T. This frequency will be mainly used for the control of the local plasma current profile to manipulate the internal MHD instabilities such as the neoclassical tearing mode (NTM) critical in high-beta plasma operation. This paper presents simulated ray tracings of the 170 GHz EC waves for a various plasma conditions in KSTAR. The TORAY-GA ray tracing code is used, along with Interactive Data Language (IDL) procedures that create the input files, to study the effect of ECH/ECCD on the plasma equilibrium profiles as a function of the initial density and temperature profiles and of toroidal field.

  3. Fast Ray Tracing of Lunar Digital Elevation Models

    NASA Technical Reports Server (NTRS)

    McClanahan, Timothy P.; Evans, L. G.; Starr, R. D.; Mitrofanov, I.

    2009-01-01

    Ray-tracing (RT) of Lunar Digital Elevation Models (DEM)'s is performed to virtually derive the degree of radiation incident to terrain as a function of time, orbital and ephemeris constraints [I- 4]. This process is an integral modeling process in lunar polar research and exploration due to the present paucity of terrain information at the poles and mission planning activities for the anticipated spring 2009 launch of the Lunar Reconnaissance Orbiter (LRO). As part of the Lunar Exploration Neutron Detector (LEND) and Lunar Crater Observation and Sensing Satellite (LCROSS) preparations RI methods are used to estimate the critical conditions presented by the combined effects of high latitude, terrain and the moons low obliquity [5-7]. These factors yield low incident solar illumination and subsequently extreme thermal, and radiation conditions. The presented research uses RT methods both for radiation transport modeling in space and regolith related research as well as to derive permanently shadowed regions (PSR)'s in high latitude topographic minima, e.g craters. These regions are of scientific and human exploration interest due to the near constant low temperatures in PSRs, inferred to be < 100 K. Hydrogen is thought to have accumulated in PSR's through the combined effects of periodic cometary bombardment and/or solar wind processes, and the extreme cold which minimizes hydrogen sublimation [8-9]. RT methods are also of use in surface position optimization for future illumination dependent on surface resources e.g. power and communications equipment.

  4. Virtual Ray Tracing as a Conceptual Tool for Image Formation in Mirrors and Lenses

    NASA Astrophysics Data System (ADS)

    Heikkinen, Lasse; Savinainen, Antti; Saarelainen, Markku

    2016-12-01

    The ray tracing method is widely used in teaching geometrical optics at the upper secondary and university levels. However, using simple and straightforward examples may lead to a situation in which students use the model of ray tracing too narrowly. Previous studies show that students seem to use the ray tracing method too concretely instead of as a conceptual model. This suggests that introductory physics students need to understand the nature of the ray model more profoundly. In this paper, we show how a virtual ray tracing model can be used as a tool for image formation in more complex and unconventional cases. We believe that this tool has potential in helping students to better appreciate the nature of the ray model.

  5. Intraocular Lens Calculation for Cataract Treated with Photorefractive Keratectomy Using Ray Tracing Method.

    PubMed

    Ishikawa; Hirano; Murai; Kumagai; Nakayasu; Kanai

    2000-09-01

    Purpose: Conventional methods (such as the SRK-II formula) do not accurately calculate the power of the intraocular lens (IOL) after refractive surgery. Therefore, we compared a new formula including a ray tracing method to the conventional method for foldable IOL lens implantation.Method: Foldable IOLs (MA 60 BM) were implanted in 26 patients (32 eyes) using the phakoemulsification technique. The power of the IOL was measured preoperatively using the SRK-II formula in all cases. From the results of postoperative refractive errors of these cases, the power of IOL calculated by the ray tracing method was compared to the SRK-II formula. Cataract patients first treated with photorefractive keratectomy (PRK) received IOL implants using our ray tracing method and their postoperative refraction was measured.Results: The average postoperative refractive error was 1.32 D in SRK-II formula, 0.95 D in the ray tracing method with Ray 1 used and 0.89 D with Ray 2 used. Postoperative refraction of both eyes first treated with PRK was -1.00 D.Conclusion: The average postoperative refractive error was reduced in the ray tracing method using Olsen's predicted ACD (Ray 2) compared to SRK-II formula. This new tracing method appears to be useful for determination of IOL power and it may be applied for IOL calculation for cataract surgery after refractive surgery.

  6. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis

    NASA Astrophysics Data System (ADS)

    Hofmeister, Armin; Böhm, Johannes

    2017-02-01

    The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the

  7. Trace metals and their relation to bacterial infections studied by X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Maser, J.; Wagner, D.; Lai, B.; Cai, Z.; Legnini, D.; Moric, I.; Bermudez, L.

    2003-03-01

    Bacterial pathogens survive in different environments in the human host by responding with expression of virulence factors that enable them to adapt to changing conditions. Trace elements regulate the expression of many virulence genes in bacteria and are thus important for their survival in the host. Mycobacteria are intracellular pathogens that can cause diseases such as tuberculosis or secondary infections in immunocompromised patients. We have used a hard x-ray microprobe to study the trace element distribution in the mycobacterial phagosome after infection of macrophages. We have studied phagosomes with virulent (M. avium) and nonvirulent (M. smegmatis) mycobacteria. In this article, we will show that the iron concentration in phagosomes with macrophages infected with nonvirulent M. smegmatis is reduced 24 hours after infection but increased in phagosomes in cells infected with virulent M. avium. In addition, we will show the effect activation of macrophages with tumor necrosis factor (TNF-α) or interferon (IFN-γ) has on the iron concentration in M. avium.

  8. GPU-based ray tracing algorithm for high-speed propagation prediction in multiroom indoor environments

    NASA Astrophysics Data System (ADS)

    Guan, Xiaowei; Guo, Lixin; Liu, Zhongyu

    2015-10-01

    A novel ray tracing algorithm for high-speed propagation prediction in multi-room indoor environments is proposed in this paper, whose theoretical foundations are geometrical optics (GO) and the uniform theory of diffraction(UTD). Taking the geometrical and electromagnetic information of the complex indoor scene into account, some acceleration techniques are adopted to raise the efficiency of the ray tracing algorithm. The simulation results indicate that the runtime of the ray tracing algorithm will sharply increase when the number of the objects in multi-room buildings is large enough. Therefore, GPU acceleration technology is used to solve that problem. Finally, a typical multi-room indoor environment with several objects in each room is simulated by using the serial ray tracing algorithm and the parallel one respectively. It can be found easily from the results that compared with the serial algorithm, the GPU-based one can achieve greater efficiency.

  9. Ray tracing method in arbitrarily shaped radial graded-index waveguide.

    PubMed

    Tsukada, Kenji; Nihei, Eisuke

    2015-10-10

    A ray tracing algorithm for an arbitrarily shaped axially symmetric graded index waveguide was proposed. This was achieved by considering the center of the waveguide (optical axis) as a set of discrete points. The refractive index depends on the distance of the ray position from the optical axis. This distance was approximated as the shortest distance between the ray position and a point in the set. Using this algorithm, ray tracing could be performed, regardless of the waveguide configuration. In this study, a precise explanation of the algorithm is given and the errors are evaluated. A technique to reduce computing time is also included.

  10. Reconstruction of optical characteristics of waveguide lenses by the use of ray tracing.

    PubMed

    Beliakov, G

    1994-06-01

    A method that uses the data of ray tracing for optical waveguide lens diagnostics is described. This method permits a direct reconstruction of the optical characteristics of a waveguide without the optical or the physical thickness being measured. Conditions are determined for the mathematical problem of diagnostics by ray tracing to have a unique solution, and a technique to obtain a numerical solution from noisy experimental data is described.

  11. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning.

    PubMed

    Fox, Christopher; Romeijn, H Edwin; Dempsey, James F

    2006-05-01

    We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique.

  12. Paraxial ray-tracing approach for the simulation of ultrasonic inspection of welds

    SciTech Connect

    Gardahaut, Audrey; Jezzine, Karim; Cassereau, Didier

    2014-02-18

    On-site inspection of bimetallic or austenitic welds can be very difficult to interpret owing to their internal structures. Skewing and splitting of the ultrasonic beam may occur due to the anisotropic and inhomogeneous properties of the welding material. In this paper, we present a ray-based method to simulate the propagation of ultrasonic waves in such structures. The formalism is based on dynamic ray tracing system in Cartesian coordinates along a reference ray. Standard ray tracing consists in the solution of a system of linear ordinary differential equations of the first order and is used to determine the trajectory of the ray. Likewise, dynamic ray tracing (DRT) also called paraxial ray tracing consists in the solution of an additional system of linear ordinary differential equations along the ray allowing paraxial quantities to be computed. It is used to evaluate the geometrical spreading and amplitude along the ray and in its vicinity. DRT is applied on a smooth representation of the elastic properties of the weld obtained thanks to an image processing technique applied on a macrograph of the weld. Simulation results are presented and compared to finite elements and experimental results.

  13. A successive three-point scheme for fast ray tracing in complex 3D geological models

    NASA Astrophysics Data System (ADS)

    Li, F.; Xu, T.; Zhang, M.; Zhang, Z.

    2013-12-01

    We present a new 3D ray-tracing method that can be applied to computations of traveltime and ray-paths of seismic transmitted, reflected and turning waves in complex geologic models, which consist of arbitrarily shaped blocks whose boundaries are matched by triangulated interfaces for computational efficiency. The new ray-tracing scheme combines the segmentally iterative ray tracing (SIRT) method and the pseudo-bending scheme so as to become a robust and fast ray-tracing method for seismic waves. The new method is extension of our previous constant block models and constant gradient block models to generally heterogeneous block models, and incorporates triangulated interfaces defining boundaries of complex geological bodies, so that it becomes applicable for practical problems. A successive three-point perturbation scheme is formulated that iteratively updates the midpoints of a segment based on an initial ray-path. The corrections of the midpoints are accomplished by first-order analytic formulae according to locations of the midpoint inside the block or on the boundaries of the blocks, to which the updating formulae of the pseudo-bending method and SIRT algorithm are applied instead of the traditional iterative methods. Numerical experiments, including an example in the Bohemian Massif, demonstrate that successive three-point scheme is effective and capable for kinematic ray tracing in complex 3D heterogeneous media.

  14. Ray-tracing simulation method using piecewise quadratic interpolant for aspheric optical systems.

    PubMed

    Morita, Shin-Ya; Nishidate, Yohei; Nagata, Takashi; Yamagata, Yutaka; Teodosiu, Cristian

    2010-06-20

    We present a new method for precise ray-tracing simulation considering form errors in the fabrication process of aspheric lenses. The Nagata patch, a quadratic interpolant for surface meshes using normal vectors, is adopted for representing the lens geometry with mid-spectral frequencies of surface profile errors. Several improvements in the ray-patch intersection calculation and its acceleration technique are also proposed. The developed algorithm is applied to ray-tracing simulation of optical disk pick-up aspheric objectives, and this technique requires 10(5) to 10(9) times fewer patches than a polygonal approximation. The simulation takes only several seconds on a standard PC.

  15. Ray tracing a three-dimensional scene using a hierarchical data structure

    DOEpatents

    Wald, Ingo; Boulos, Solomon; Shirley, Peter

    2012-09-04

    Ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. One example embodiment is a method for ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. In this example embodiment, the hierarchical data structure includes at least a parent node and a corresponding plurality of child nodes. The method includes a first act of determining that a first active ray in the packet hits the parent node and a second act of descending to each of the plurality of child nodes.

  16. Ray Tracing for Doppler Backscattering System in the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Zhou, Chu; Liu, Adi; Hu, Jianqiang; Wang, Mingyuan; Zhang, Xiaohui; Li, Hong; Yu, Changxuan; Liu, Wandong; Lan, Tao; Xie, Jinlin

    2015-09-01

    The Doppler backscattering system has been widely used for turbulence measurements, and the microwave beam will be backscattered near the cut-off layer when the Brag condition is fulfilled. In tokamak, the ray-tracing code is used to obtain the radial position and perpendicular wave number of the scattering layer for turbulence velocity measurement and the WKB (Wentzel-Kramers-Brillouin) approximation should be satisfied for optical propagation. To calculate the backscattering location and wave number at the cut-off layer only, a single ray tracing in the cross section is enough, while for spatial and wave number resolution calculation, multiple rays reflecting the microwave beam size should be used. Considering the angle between the wave vector and the magnetic field, a three-dimension quasi-optical Gaussian ray tracing is sometimes needed. supported by National Natural Science Foundation of China (Nos. 10990211 and 11105146) and the ITER-CN Project, 973 Program of China (No. 2013GB106002)

  17. TRACING THE SOURCES OF COSMIC RAYS WITH MOLECULAR IONS

    SciTech Connect

    Becker, Julia K.; Schuppan, Florian; Black, John H.; Mohammadtaher Safarzadeh

    2011-10-01

    The rate of ionization by cosmic rays (CRs) in interstellar gas directly associated with {gamma}-ray-emitting supernova remnants (SNRs) is for the first time calculated to be several orders of magnitude larger than the Galactic average. Analysis of ionization-induced chemistry yields the first quantitative prediction of the astrophysical H{sup +} {sub 2} emission line spectrum, which should be detectable together with H{sup +} {sub 3} lines. The predicted coincident observation of those emission lines and {gamma}-rays will help prove that SNRs are sources of CRs.

  18. Can We Trace "Arbitrary" Rays to Locate an Image Formed by a Thin Lens?

    ERIC Educational Resources Information Center

    Suppapittayaporn, Decha; Panijpan, Bhinyo; Emarat, Narumon

    2010-01-01

    After learning how to trace the principal rays [Fig. 1(i)] through a thin lens in order to form the image in the conventional way, students sometimes ask whether it is possible to use other rays emanating from the object to form exactly the same image--for example, the two arbitrary rays shown in Fig. 1(ii). The answer is a definite yes, and this…

  19. A ray tracing model for leaf bidirectional scattering studies

    NASA Technical Reports Server (NTRS)

    Brakke, T. W.; Smith, J. A.

    1987-01-01

    A leaf is modeled as a deterministic two-dimensional structure consisting of a network of circular arcs designed to represent the internal morphology of major species. The path of an individual ray through the leaf is computed using geometric optics. At each intersection of the ray with an arc, the specular reflected and transmitted rays are calculated according to the Snell and Fresnel equations. Diffuse scattering is treated according to Lambert's law. Absorption is also permitted but requires a detailed knowledge of the spectral attenuation coefficients. An ensemble of initial rays are chosen for each incident direction with the initial intersection points on the leaf surface selected randomly. The final equilibrium state after all interactions then yields the leaf bidirectional reflectance and transmittance distributions. The model also yields the internal two dimensional light gradient profile of the leaf.

  20. Integrated Simulation of an Aspheric Lens Combining Injection Moulding Analysis with Ray Tracing

    NASA Astrophysics Data System (ADS)

    Park, Keun; Joo, Wonjong

    2007-05-01

    The present study covers an integrated simulation method for injection-moulded plastic lenses by combining a ray tracing simulation with a finite element (FE) analysis of injection moulding. Traditional ray tracing methods have based on the assumption that the optical properties of a lens are homogeneous throughout the entire volume. This assumption is to a certain extent unrealistic for injection-moulded plastic lenses because material properties vary at every point due to the injection moulding effects. To take into account the effects of the inhomogeneous optical properties of the moulded lens, a new ray tracing scheme is proposed in conjunction with an FE analysis of the injection moulding. A numerical scheme is developed to estimate the distribution of refractive indices from injection moulding analysis, and to calculate ray paths on every element layer with more realistic information of the refractive indices. A fully three-dimensional FE analysis is then performed for the aspheric lens moulding process. Through the FE analysis, the distribution of the refractive indices of the lens can be obtained on every mesh point. This information is then used to calculate the ray paths based on the FE mesh of which nodal points have unique index values. The proposed tracing scheme is implemented on the tracing of an aspheric lens, and its validity is ascertained through experimental verification.

  1. SolTrace: A Ray-Tracing Code for Complex Solar Optical Systems

    SciTech Connect

    Wendelin, Tim; Dobos, Aron; Lewandowski, Allan

    2013-10-01

    SolTrace is an optical simulation tool designed to model optical systems used in concentrating solar power (CSP) applications. The code was first written in early 2003, but has seen significant modifications and changes since its inception, including conversion from a Pascal-based software development platform to C++. SolTrace is unique in that it can model virtually any optical system utilizingthe sun as the source. It has been made available for free and as such is in use worldwide by industry, universities, and research laboratories. The fundamental design of the code is discussed, including enhancements and improvements over the earlier version. Comparisons are made with other optical modeling tools, both non-commercial and commercial in nature. Finally, modeled results are shownfor some typical CSP systems and, in one case, compared to measured optical data.

  2. Total reflection X-ray spectrometry (TXRF) for trace elements assessment in edible clams.

    PubMed

    Marguí, Eva; de Fátima Marques, Alexandra; de Lurdes Prisal, Maria; Hidalgo, Manuela; Queralt, Ignasi; Carvalho, Maria Luisa

    2014-01-01

    The present contribution presents a preliminary investigation of the chemical composition with respect to major, minor, trace, and ultratrace elements in several clam species that are frequently used for human consumption in Portuguese markets and worldwide. In order to use a simple and rapid analytical methodology for clam analysis, energy dispersive X-ray fluorescence (EDXRF) spectrometry and total reflection X-ray fluorescence (TXRF) spectrometry were selected as analytical techniques. The analytical capabilities of TXRF spectrometry were evaluated for the determination of minor and trace elements in commercial edible clams. We compared the direct analysis of powdered suspensions (using different sample amounts and dispersant agents) with the analysis of the digested samples for trace element determination. Inductively coupled plasma mass spectrometry analysis of clam digests was also performed to evaluate the analytical possibilities of TXRF spectrometry for trace and ultratrace analysis.

  3. Long gamma-ray bursts trace the star formation history

    SciTech Connect

    Dado, Shlomo; Dar, Arnon

    2014-04-10

    We show that if the broad-line supernova explosions of Type Ic (SNeIc) produce the bulk of the observed long duration gamma-ray bursts (LGRBs), including high- and low-luminosity LGRBs and X-ray flashes, and if the LGRBs have the geometry assumed in the cannonball model of LGRBs, then their rate, measured by Swift, and their redshift distribution are consistent with the star formation rate (SFR) over the entire range of redshifts where the SFR has been measured with sufficient accuracy.

  4. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    SciTech Connect

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2015-01-01

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.

  5. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    PubMed Central

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2016-01-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. PMID:25600825

  6. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE PAGES

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; ...

    2015-01-01

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  7. Optimizing detector geometry for trace element mapping by X-ray fluorescence.

    PubMed

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2015-05-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.

  8. Determination of equivalent sound speed profiles for ray tracing in near-ground sound propagation.

    PubMed

    Prospathopoulos, John M; Voutsinas, Spyros G

    2007-09-01

    The determination of appropriate sound speed profiles in the modeling of near-ground propagation using a ray tracing method is investigated using a ray tracing model which is capable of performing axisymmetric calculations of the sound field around an isolated source. Eigenrays are traced using an iterative procedure which integrates the trajectory equations for each ray launched from the source at a specific direction. The calculation of sound energy losses is made by introducing appropriate coefficients to the equations representing the effect of ground and atmospheric absorption and the interaction with the atmospheric turbulence. The model is validated against analytical and numerical predictions of other methodologies for simple cases, as well as against measurements for nonrefractive atmospheric environments. A systematic investigation for near-ground propagation in downward and upward refractive atmosphere is made using experimental data. Guidelines for the suitable simulation of the wind velocity profile are derived by correlating predictions with measurements.

  9. A data distributed parallel algorithm for ray-traced volume rendering

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Painter, James S.; Hansen, Charles D.; Krogh, Michael F.

    1993-01-01

    This paper presents a divide-and-conquer ray-traced volume rendering algorithm and a parallel image compositing method, along with their implementation and performance on the Connection Machine CM-5, and networked workstations. This algorithm distributes both the data and the computations to individual processing units to achieve fast, high-quality rendering of high-resolution data. The volume data, once distributed, is left intact. The processing nodes perform local ray tracing of their subvolume concurrently. No communication between processing units is needed during this locally ray-tracing process. A subimage is generated by each processing unit and the final image is obtained by compositing subimages in the proper order, which can be determined a priori. Test results on both the CM-5 and a group of networked workstations demonstrate the practicality of our rendering algorithm and compositing method.

  10. Parallel Ray Tracing Using the Message Passing Interface

    DTIC Science & Technology

    2007-09-01

    Optica , which is a book on astronomy that contained the important principle that light rays travel from an object to an eye and not the other way around...this application. This interest is driven by commercial demands from the entertainment industry and a widespread in- terest in visualizing complex

  11. Real-time simulation of ultrasound refraction phenomena using ray-trace based wavefront construction method.

    PubMed

    Szostek, Kamil; Piórkowski, Adam

    2016-10-01

    Ultrasound (US) imaging is one of the most popular techniques used in clinical diagnosis, mainly due to lack of adverse effects on patients and the simplicity of US equipment. However, the characteristics of the medium cause US imaging to imprecisely reconstruct examined tissues. The artifacts are the results of wave phenomena, i.e. diffraction or refraction, and should be recognized during examination to avoid misinterpretation of an US image. Currently, US training is based on teaching materials and simulators and ultrasound simulation has become an active research area in medical computer science. Many US simulators are limited by the complexity of the wave phenomena, leading to intensive sophisticated computation that makes it difficult for systems to operate in real time. To achieve the required frame rate, the vast majority of simulators reduce the problem of wave diffraction and refraction. The following paper proposes a solution for an ultrasound simulator based on methods known in geophysics. To improve simulation quality, a wavefront construction method was adapted which takes into account the refraction phenomena. This technique uses ray tracing and velocity averaging to construct wavefronts in the simulation. Instead of a geological medium, real CT scans are applied. This approach can produce more realistic projections of pathological findings and is also capable of providing real-time simulation.

  12. Reflection formulae for ray tracing in uniaxial anisotropic media using Huygens's principle.

    PubMed

    Alemán-Castañeda, Luis A; Rosete-Aguilar, Martha

    2016-11-01

    Ray tracing in uniaxial anisotropic materials is important because they are widely used for instrumentation, liquid-crystal displays, laser cavities, and quantum experiments. There are previous works regarding ray tracing refraction and reflection formulae using the common electromagnetic theory approach, but only the refraction formulae have been deduced using Huygens's principle. In this paper we obtain the reflection expressions using this unconventional approach with a specific coordinate system in which both refraction and reflection formulae are simplified as well as their deduction. We compute some numerical examples to compare them with the common expressions obtained using electromagnetic theory.

  13. Plasma wave signatures in the magnetotail reconnection region - MHD simulation and ray tracing

    NASA Technical Reports Server (NTRS)

    Omura, Yoshiharu; Green, James L.

    1993-01-01

    An MHD simulation was performed to obtain a self-consistent model of magnetic field and plasma density near the X point reconnection region. The MHD model was used to perform extensive ray tracing calculations in order to clarify the propagation characteristics of the plasma waves near the X point reconnection region. The dynamic wave spectra possibly observed by the Geotail spacecraft during a typical cross-tail trajectory are reconstructed. By comparing the extensive ray tracing calculations with the plasma wave data from Geotail, it is possible to perform a kind of 'remote sensing' to identify the location and structure of potential X point reconnection regions.

  14. Ray Tracing Techniques - Derivation and Application to Atmospheric Sound Propagation.

    DTIC Science & Technology

    1980-01-01

    Appendix B. I -44- 1. Eigenray routine improvements Since the present model is for a horizontally homogeneous medium it can be surmized that after ground...UliafnnaricEl Di-ntribution AVai lavilitY cod5es Avail and/or Dist i Spcial ABSTRACT It is comnonly known that in non- homogeneous anedia (phase velocity I...equation, readily adapts itself to non- homogeneous media and describes the propagation of wavefronts. It has been used extensively in underwater acoustics

  15. Automatic creation of object hierarchies for ray tracing

    NASA Technical Reports Server (NTRS)

    Goldsmith, Jeffrey; Salmon, John

    1987-01-01

    Various methods for evaluating generated trees are proposed. The use of the hierarchical extent method of Rubin and Whitted (1980) to find the objects that will be hit by a ray is examined. This method employs tree searching; the construction of a tree of bounding volumes in order to determine the number of objects that will be hit by a ray is discussed. A tree generation algorithm, which uses a heuristic tree search strategy, is described. The effects of shuffling and sorting on the input data are investigated. The cost of inserting an object into the hierarchy during the construction of a tree algorithm is estimated. The steps involved in estimating the number of intersection calculations are presented.

  16. A boundary integral formalism for stochastic ray tracing in billiards

    SciTech Connect

    Chappell, David J.; Tanner, Gregor

    2014-12-15

    Determining the flow of rays or non-interacting particles driven by a force or velocity field is fundamental to modelling many physical processes. These include particle flows arising in fluid mechanics and ray flows arising in the geometrical optics limit of linear wave equations. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain.

  17. Efficient three-dimensional ray-tracing model for electromagnetic propagation prediction in complex indoor environments.

    PubMed

    Liu, Z-Y; Guo, L-X; Meng, X

    2013-08-01

    A three-dimensional ray-tracing model for the use of the uniform theory of diffraction and geometrical optics in radio channel characterizations of indoor environments is presented in this paper. Based on the environment information chosen by the proposed modeling approach, the model is effectively applied by utilizing a technique in which multiple reflections, transmissions, and diffractions are considered via the ray-path classification into four different categories. Ray paths belonging to each ray category are determined by using different methods. Our theoretical results are compared with narrowband and wideband measurements. The good agreement with these measurements indicates that our prediction model works well for such indoor communication applications.

  18. Flow tracing microparticle sensors designed for enhanced X-ray contrast.

    PubMed

    Lee, Sang Joon; Jung, Sung Yong; Ahn, Sungsook

    2010-03-15

    In applying the X-ray particle image velocimetry (PIV) technique to biofluid flows, the most pivotal prerequisite is suitable flow tracing sensors which should be detected effectively by the X-ray imaging system. In this study, to design those flow tracing sensors, X-ray contrast agent Iopamidol was encapsulated into the poly(vinyl alcohol) (PVA) microparticles crosslinked by glutaraldehyde (GA). The characteristics of the fabricated particle sensors were determined by optical microscopy, scanning electron microscopy, dynamic light scattering, laser Doppler electrophoresis and nuclear magnetic resonance spectroscopy ((1)H NMR). The amount of Iopamidol in the microparticles was measured using the energy dispersive X-ray spectroscopy (EDS) and (1)H NMR. The physical properties of the PVA microparticles are effectively controlled in terms of the average particle size, degree of crosslinking, degree of swelling and encapsulation efficiency of Iopamidol. By changing the amount of crosslinker, the degree of crosslinking and the efficiency of the Iopamidol encapsulation reached to the optimal. To some extent, the zeta-potential of the PVA microparticles is increased in less ionic media where the particles can effectively repel each other prohibiting aggregation. The X-ray absorption ability of the designed tracing sensors was examined by a synchrotron X-ray imaging technique. The X-ray absorption coefficients of the particle sensors were expressed by an exponential law assuming the spherical shape of the microparticles. The X-ray contrast agent, Iopamidol, was successfully encapsulated into the bio-compatible and bio-degradable PVA. With the controlled physical properties of the flow tracing sensors designed in this study, the particle sensors exhibit excellent X-ray absorption contrast fairly applicable in biological systems.

  19. Variational Symplectic Algorithm for Whistler Wave Ray Tracing in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Gurudas; Mithaiwala, Manish

    2012-10-01

    Whistler wave ray tracing in the inner magnetosphere using the full cold plasma dispersion relation is prone to producing drifts in frequencies that lead to inaccurate ray dynamics especially in the presence of both field aligned density structures (such as ducts and plasmapause boundaries) and sharp radial gradients in multi-species plasmas (such as ionospheric layers). The computation of accurate and quick ray trajectories are especially important for developing solutions to the wave kinetic equation including nonlinear (NL) effects such as induced scattering [1] where a large number of rays need to be time advanced and energy redistributed among rays. To facilitate such a calculation we have transformed the usual canonical ray tracing equations to an extended phase space Lagrangian framework and extended the variational symplectic integrator (VSI) [2] used for guiding-center dynamics to the ray tracing equations. The VSI conserves exactly a discrete Lagrangian structure and most importantly leads to bounds in the frequency drift that can develop.[4pt] [1] C. Crabtree, L. Rudakov, G. Ganguli, M. Mithaiwala, V. Galinsky, V. Shevchenko, Phys. Plasmas 19, 032903, (2012).[0pt] [2] H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008).

  20. Magnetospheric Whistler Mode Ray Tracing with the Inclusion of Finite Electron and Ion Temperature

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.

    2015-12-01

    Ray tracing is an important technique for the study of whistler mode wave propagation in the Earth's magnetosphere. In numerical ray tracing the trajectory of a wave packet is calculated at each point in space by solving the Haselgrove equations, assuming a smooth, loss-less medium with no mode coupling. Previous work on ray tracing has assumed a cold plasma environment with negligible electron and ion temperatures. In this work we present magnetospheric whistler mode wave ray tracing results with the inclusion of finite ion and electron temperature. The inclusion of finite temperature effects makes the fourth order dispersion relation become sixth order. We compare our results with the work done by previous researchers for cold plasma environments, using two near earth space models (NGO and GCPM). Inclusion of finite temperature closes the otherwise open refractive index surface near the lower hybrid resonance frequency and affects the magnetospheric reflection of whistler waves. We also asses the main changes in the ray trajectory and implications for cyclotron resonance wave particle interactions including energetic particle precipitation.

  1. GPU-accelerated ray-tracing for real-time treatment planning

    NASA Astrophysics Data System (ADS)

    Heinrich, H.; Ziegenhein, P.; Kamerling, C. P.; Froening, H.; Oelfke, U.

    2014-03-01

    Dose calculation methods in radiotherapy treatment planning require the radiological depth information of the voxels that represent the patient volume to correct for tissue inhomogeneities. This information is acquired by time consuming ray-tracing-based calculations. For treatment planning scenarios with changing geometries and real-time constraints this is a severe bottleneck. We implemented an algorithm for the graphics processing unit (GPU) which implements a ray-matrix approach to reduce the number of rays to trace. Furthermore, we investigated the impact of different strategies of accessing memory in kernel implementations as well as strategies for rapid data transfers between main memory and memory of the graphics device. Our study included the overlapping of computations and memory transfers to reduce the overall runtime using Hyper-Q. We tested our approach on a prostate case (9 beams, coplanar). The measured execution times for a complete ray-tracing range from 28 msec for the computations on the GPU to 99 msec when considering data transfers to and from the graphics device. Our GPU-based algorithm performed the ray-tracing in real-time. The strategies efficiently reduce the time consumption of memory accesses and data transfer overhead. The achieved runtimes demonstrate the viability of this approach and allow improved real-time performance for dose calculation methods in clinical routine.

  2. Iterative nonlinear beam propagation using Hamiltonian ray tracing and Wigner distribution function.

    PubMed

    Gao, Hanhong; Tian, Lei; Zhang, Baile; Barbastathis, George

    2010-12-15

    We present an iterative method for simulating beam propagation in nonlinear media using Hamiltonian ray tracing. The Wigner distribution function of the input beam is computed at the entrance plane and is used as the initial condition for solving the Hamiltonian equations. Examples are given for the study of periodic self-focusing, spatial solitons, and Gaussian-Schell model in Kerr-effect media. Simulation results show good agreement with the split-step beam propagation method. The main advantage of ray tracing, even in the nonlinear case, is that ray diagrams are intuitive and easy to interpret in terms of traditional optical engineering terms, such as aberrations, ray-intercept plots, etc.

  3. Odyssey: Ray tracing and radiative transfer in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Pu, Hung-Yi; Yun, Kiyun; Younsi, Ziri; Yoon, Suk-Jin

    2016-01-01

    Odyssey is a GPU-based General Relativistic Radiative Transfer (GRRT) code for computing images and/or spectra in Kerr metric describing the spacetime around a rotating black hole. Odyssey is implemented in CUDA C/C++. For flexibility, the namespace structure in C++ is used for different tasks; the two default tasks presented in the source code are the redshift of a Keplerian disk and the image of a Keplerian rotating shell at 340GHz. Odyssey_Edu, an educational software package for visualizing the ray trajectories in the Kerr spacetime that uses Odyssey, is also available.

  4. A comparison of three different ray trace programs for x-ray and infrared synchrotron beamline designs

    SciTech Connect

    Irick, S.C.; Jung, C.R.

    1997-07-01

    There are a number of ray trace programs currently used for the design of synchrotron beamlines. While several of these programs have been written and used mostly within the programmer`s institution, many have also been available to the general public. This paper discusses three such programs. One is a commercial product oriented for the general optical designer (not specifically for synchrotron beamlines). One is designed for synchrotron beamlines and is free with restricted availability. Finally, one is designed for synchrotron beamlines and is used primarily in one institution. The wealth of information from general optical materials and components catalogs is readily available in the commercial program for general optical designs. This makes the design of an infrared beamline easier from the standpoint of component selection. However, this program is not easily configured for synchrotron beamline designs, particularly for a bending magnet source. The synchrotron ray trace programs offer a variety of sources, but generally are not as easy to use from the standpoint of the user interface. This paper shows ray traces of the same beamline Optikwerks, SHADOW, and RAY, and compares the results.

  5. Tracing Chromospheric Evaporation in Radio and Soft X-rays

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.

    1997-01-01

    There are three publications in refereed journals and several presentations at scientific conferences resulted from this work, over a period of 6 months during 1995/1996. In the first paper, the discovery of the chromospheric evaporation process at radio wavelengths is described. In the second paper, the radio detection is used to quantify electron densities in the upflowing heated plasma in flare loops, which is then compared with independent other density measurements from soft X-rays, or the plasma frequency of electron beams originating in the acceleration region. In the third paper, the diagnostic results of the chromospheric evaporation process are embedded into a broader picture of a standard flare scenario. Abstracts of these three papers are attached.

  6. An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field

    SciTech Connect

    Yao, Jin

    2015-02-10

    A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.

  7. GPU-based ray tracing algorithm for high-speed propagation prediction in typical indoor environments

    NASA Astrophysics Data System (ADS)

    Guo, Lixin; Guan, Xiaowei; Liu, Zhongyu

    2015-10-01

    A fast 3-D ray tracing propagation prediction model based on virtual source tree is presented in this paper, whose theoretical foundations are geometrical optics(GO) and the uniform theory of diffraction(UTD). In terms of typical single room indoor scene, taking the geometrical and electromagnetic information into account, some acceleration techniques are adopted to raise the efficiency of the ray tracing algorithm. The simulation results indicate that the runtime of the ray tracing algorithm will sharply increase when the number of the objects in the single room is large enough. Therefore, GPU acceleration technology is used to solve that problem. As is known to all, GPU is good at calculation operation rather than logical judgment, so that tens of thousands of threads in CUDA programs are able to calculate at the same time, in order to achieve massively parallel acceleration. Finally, a typical single room with several objects is simulated by using the serial ray tracing algorithm and the parallel one respectively. It can be found easily from the results that compared with the serial algorithm, the GPU-based one can achieve greater efficiency.

  8. Comparing TID simulations using 3-D ray tracing and mirror reflection

    NASA Astrophysics Data System (ADS)

    Huang, X.; Reinisch, B. W.; Sales, G. S.; Paznukhov, V. V.; Galkin, I. A.

    2016-04-01

    Measuring the time variations of Doppler frequencies and angles of arrival (AoA) of ionospherically reflected HF waves has been proposed as a means of detecting the occurrence of traveling ionospheric disturbances (TIDs). Simulations are made using ray tracing through the International Reference Ionosphere (IRI) electron density model in an effort to reproduce measured signatures. The TID is represented by a wavelike perturbation of the 3-D electron density traveling horizontally in the ionosphere with an amplitude that varies sinusoidally with time. By judiciously selecting the TID parameters the ray tracing simulation reproduces the observed Doppler frequencies and AoAs. Ray tracing in a 3-D realistic ionosphere is, however, excessively time consuming considering the involved homing procedures. It is shown that a carefully selected reflecting corrugated mirror can reproduce the time variations of the AoA and Doppler frequency. The results from the ray tracing through the IRI model ionosphere and the mirror model reflections are compared to assess the applicability of the mirror-reflection model.

  9. Effective algorithm for ray-tracing simulations of lobster eye and similar reflective optical systems

    NASA Astrophysics Data System (ADS)

    Tichý, Vladimír; Hudec, René; Němcová, Šárka

    2016-06-01

    The algorithm presented is intended mainly for lobster eye optics. This type of optics (and some similar types) allows for a simplification of the classical ray-tracing procedure that requires great many rays to simulate. The method presented performs the simulation of a only few rays; therefore it is extremely effective. Moreover, to simplify the equations, a specific mathematical formalism is used. Only a few simple equations are used, therefore the program code can be simple as well. The paper also outlines how to apply the method to some other reflective optical systems.

  10. Statistical Inverse Ray Tracing for Image-Based 3D Modeling.

    PubMed

    Liu, Shubao; Cooper, David B

    2014-10-01

    This paper proposes a new formulation and solution to image-based 3D modeling (aka "multi-view stereo") based on generative statistical modeling and inference. The proposed new approach, named statistical inverse ray tracing, models and estimates the occlusion relationship accurately through optimizing a physically sound image generation model based on volumetric ray tracing. Together with geometric priors, they are put together into a Bayesian formulation known as Markov random field (MRF) model. This MRF model is different from typical MRFs used in image analysis in the sense that the ray clique, which models the ray-tracing process, consists of thousands of random variables instead of two to dozens. To handle the computational challenges associated with large clique size, an algorithm with linear computational complexity is developed by exploiting, using dynamic programming, the recursive chain structure of the ray clique. We further demonstrate the benefit of exact modeling and accurate estimation of the occlusion relationship by evaluating the proposed algorithm on several challenging data sets.

  11. Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z is less than or equal to 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.

  12. Paraxial ray-tracing equations for optical systems containing triangular prisms.

    PubMed

    Lin, Psang Dain; Tsai, Chung-Yu

    2017-03-01

    Conventional paraxial ray-tracing procedures are widely used for optical systems design and analysis. However, they are not applicable to multiple-dispersion-prism systems. Accordingly, the present study simplifies the equations given by the present group in a previous paper [Optik117, 329 (2006)OTIKAJ0030-402610.1016/j.ijleo.2005.10.004] to the form of 3×3 matrix equations for tracing paraxial rays in optical systems containing triangular prisms. The accuracy and validity of the proposed approach are demonstrated by means of four numerical examples. The results confirm that the proposed equations provide a convenient and practical tool for analyzing paraxial rays traveling through non-axially symmetrical optical systems containing triangular and rectangular prisms.

  13. Comparison of Monte Carlo ray-tracing and photon-tracing methods for calculation of the impulse response on indoor wireless optical channels.

    PubMed

    González, Oswaldo; Rodríguez, Silvestre; Pérez-Jiménez, Rafael; Mendoza, Beatriz R; Ayala, Alejandro

    2011-01-31

    We present a comparison between the modified Monte Carlo algorithm (MMCA) and a recently proposed ray-tracing algorithm named as photon-tracing algorithm. Both methods are compared exhaustively according to error analysis and computational costs. We show that the new photon-tracing method offers a solution with a slightly greater error but requiring from considerable less computing time. Moreover, from a practical point of view, the solutions obtained with both algorithms are approximately equivalent, demonstrating the goodness of the new photon-tracing method.

  14. Comparison of dose distributions calculated by the cyberknife Monte Carlo and ray tracing algorithms for lung tumors: a phantom study

    NASA Astrophysics Data System (ADS)

    Koksal, Canan; Akbas, Ugur; Okutan, Murat; Demir, Bayram; Hakki Sarpun, Ismail

    2015-07-01

    Commercial treatment planning systems with have different dose calculation algorithms have been developed for radiotherapy plans. The Ray Tracing and the Monte Carlo dose calculation algorithms are available for MultiPlan treatment planning system. Many studies indicated that the Monte Carlo algorithm enables the more accurate dose distributions in heterogeneous regions such a lung than the Ray Tracing algorithm. The purpose of this study was to compare the Ray Tracing algorithm with the Monte Carlo algorithm for lung tumors in CyberKnife System. An Alderson Rando anthropomorphic phantom was used for creating CyberKnife treatment plans. The treatment plan was developed using the Ray Tracing algorithm. Then, this plan was recalculated with the Monte Carlo algorithm. EBT3 radiochromic films were put in the phantom to obtain measured dose distributions. The calculated doses were compared with the measured doses. The Monte Carlo algorithm is the more accurate dose calculation method than the Ray Tracing algorithm in nonhomogeneous structures.

  15. Runge-Kutta ray tracing technique for solving radiative heat transfer in a two-dimensional graded-index medium

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Shi, Guo-Dong; Zhu, Ke-Yong

    2016-06-01

    This paper adopts the Runge-Kutta ray tracing method to obtain the ray-trajectory numerical solution in a two-dimensional gradient index medium. The emitting, absorbing and scattering processes are simulated by the Monte Carlo method. The temperature field and ray trajectory in the medium are obtained by the three methods, the Runge-Kutta ray tracing method, the ray tracing method with the cell model and the discrete curved ray tracing method with the linear refractive index cell model. Comparing the results of the three methods, it is found that the results by the Monte Carlo Runge-Kutta ray tracing method are of the highest accuracy. To improve the computational speed, the variable step-size Runge-Kutta ray tracing method is proposed, and the maximum relative error between the temperature field in the nonscattering medium by this method and the benchmark solution is less than 0.5%. The results also suggest that the Runge-Kutta ray tracing method would make the radiative transfer solution in the three-dimensional graded index media much easier.

  16. Realistic expression for full-parallax computer-generated holograms with the ray-tracing method.

    PubMed

    Ichikawa, Tsubasa; Yamaguchi, Kazuhiro; Sakamoto, Yuji

    2013-01-01

    This paper presents a calculation method of computer-generated holograms that involves removing the hidden surface and provides realistic rendering. The method was based on the ray-tracing method that simulates rays traveling paths. Rays are cast from every elementary hologram into virtual objects and then the traveling paths of the rays are determined. Since the method is considering intersection with objects, absorption, reflection, and refraction, the method is capable of rendering realistic images. Multiple reflections and refraction are expressed by casting additional rays into the reflection direction and the transmission direction and calculating the length of the light path. To express the quality of materials, the Phong reflection model and Cook-Torrance reflection model were used. Results of optical reconstructions show that the hidden surface removal was conducted. Moreover, the texture of material appeared as well as other effects by the proposed method.

  17. Trace metal content in aspirin and women's cosmetics via proton induced x-ray emission (PIXE)

    SciTech Connect

    Hichwa, B.P.; Pun, D.D.; Wang, D.

    1981-04-01

    A multielemental analysis to determine the trace metal content of generic and name-brand aspirins and name-brand lipsticks was done via proton induced x-ray (PIXE) measurements. The Hope College PIXE system is described as well as the target preparation methods. The trace metal content of twelve brands of aspirin and aspirin substitutes and fourteen brands of lipstick are reported. Detection limits for most elements are in the range of 100 parts per billion (ppb) to 10 parts per million (ppm).

  18. Signatures of Evolutionary Adaptation in Quantitative Trait Loci Influencing Trace Element Homeostasis in Liver

    PubMed Central

    Sabidó, Eduard; Bosch, Elena

    2016-01-01

    Essential trace elements possess vital functions at molecular, cellular, and physiological levels in health and disease, and they are tightly regulated in the human body. In order to assess variability and potential adaptive evolution of trace element homeostasis, we quantified 18 trace elements in 150 liver samples, together with the expression levels of 90 genes and abundances of 40 proteins involved in their homeostasis. Additionally, we genotyped 169 single nucleotide polymorphism (SNPs) in the same sample set. We detected significant associations for 8 protein quantitative trait loci (pQTL), 10 expression quantitative trait loci (eQTLs), and 15 micronutrient quantitative trait loci (nutriQTL). Six of these exceeded the false discovery rate cutoff and were related to essential trace elements: 1) one pQTL for GPX2 (rs10133290); 2) two previously described eQTLs for HFE (rs12346) and SELO (rs4838862) expression; and 3) three nutriQTLs: The pathogenic C282Y mutation at HFE affecting iron (rs1800562), and two SNPs within several clustered metallothionein genes determining selenium concentration (rs1811322 and rs904773). Within the complete set of significant QTLs (which involved 30 SNPs and 20 gene regions), we identified 12 SNPs with extreme patterns of population differentiation (FST values in the top 5% percentile in at least one HapMap population pair) and significant evidence for selective sweeps involving QTLs at GPX1, SELENBP1, GPX3, SLC30A9, and SLC39A8. Overall, this detailed study of various molecular phenotypes illustrates the role of regulatory variants in explaining differences in trace element homeostasis among populations and in the human adaptive response to environmental pressures related to micronutrients. PMID:26582562

  19. Nonlinear teleseismic tomography at Long Valley caldera, using three-dimensional minimum travel time ray tracing

    SciTech Connect

    Weiland, C.M.; Steck, L.K.; Dawson, P.B.

    1995-10-10

    The authors explore the impact of three-dimensional minimum travel time ray tracing on nonlinear teleseismic inversion. This problem has particular significance when trying to image strongly contrasting low-velocity bodies, such as magma chambers, because strongly refracted/and/or diffracted rays may precede the direct P wave arrival traditionally used in straight-ray seismic tomography. They use a simplex-based ray tracer to compute the three-dimensional, minimum travel time ray paths and employ an interative technique to cope with nonlinearity. Results from synthetic data show that their algorithm results in better model reconstructions compared with traditional straight-ray inversions. The authors reexamine the teleseismic data collected at Long Valley caldera by the U.S. Geological Survey. The most prominent feature of their result is a 25-30% low-velocity zone centered at 11.5 km depth beneath the northwestern quandrant of the caldera. Beneath this at a depth of 24.5 km is a more diffuse 15% low-velocity zone. In general, the low velocities tend to deepen to the south and east. The authors interpret the shallow feature to be the residual Long Valley caldera magma chamber, while the deeper feature may represent basaltic magmas ponded in the midcrust. The deeper position of the prominent low-velocity region in comparison to earlier tomographic images is a result of using three-dimensional rays rather than straight rays in the ray tracing. The magnitude of the low-velocity anomaly is a factor of {approximately}3 times larger than earlier models from linear arrival time inversions and is consistent with models based on observations of ray bending at sites within the caldera. These results imply the presence of anywhere from 7 to 100% partial melt beneath the caldera. 40 refs., 1 fig., 1 tab.

  20. Modeling of micro cat's eye retroreflectors using a matrix-based three-dimensional ray tracing technique.

    PubMed

    Yang, Bing-jun; Chao, Keng-hsing; Tsai, Jui-che

    2012-09-01

    In this paper we develop a three-dimensional (3D) ray tracing tool based on the ABCD ray transfer matrices. With symmetric optical components and under paraxial approximation, two sets of 2×2 ABCD matrices, each for a two-dimensional subspace, can be used to describe the 3D ray propagation completely. Compared to commercial ray-tracing software packages, our tool requires no tedious drawing, and the results for various conditions, such as different device dimensions and incident angles, can be easily obtained by simply changing the parameter values used for the calculation. We have employed this matrix-based 3D ray tracing tool to model cat's eye retroreflectors. The cat's eye performance, including the retroreflection efficiency, acceptance angle (i.e., field of view), and beam divergence and deviation, is fully studied. The application of this 3D ray tracing technique can be further extended to other optical components.

  1. Non-singular acoustic cloak derived by the ray tracing method with rotationally symmetric transformations

    PubMed Central

    Wu, Linzhi

    2016-01-01

    Recently, the ray tracing method has been used to derive the non-singular cylindrical invisibility cloaks for out-of-plane shear waves, which is impossible via the transformation method directly owing to the singular push-forward mapping. In this paper, the method is adopted to design a kind of non-singular acoustic cloak. Based on Hamilton's equations of motion, eikonal equation and pre-designed ray equations, we derive several constraint equations for bulk modulus and density tensor. On the premise that the perfect matching conditions are satisfied, a series of non-singular physical profiles can be obtained by arranging the singular terms reasonably. The physical profiles derived by the ray tracing method will degenerate to the transformation-based solutions when taking the transport equation into consideration. This illuminates the essence of the newly designed cloaks that they are actually the so-called eikonal cloaks that can accurately control the paths of energy flux but with small disturbance in energy distribution along the paths. The near-perfect invisible performance has been demonstrated by the numerical ray tracing results and the pressure distribution snapshots. Finally, a kind of reduced cloak is conceived, and the good invisible performance has been measured quantitatively by the normalized scattering width. PMID:27118884

  2. Non-singular acoustic cloak derived by the ray tracing method with rotationally symmetric transformations.

    PubMed

    Gao, Penglin; Wu, Linzhi

    2016-02-01

    Recently, the ray tracing method has been used to derive the non-singular cylindrical invisibility cloaks for out-of-plane shear waves, which is impossible via the transformation method directly owing to the singular push-forward mapping. In this paper, the method is adopted to design a kind of non-singular acoustic cloak. Based on Hamilton's equations of motion, eikonal equation and pre-designed ray equations, we derive several constraint equations for bulk modulus and density tensor. On the premise that the perfect matching conditions are satisfied, a series of non-singular physical profiles can be obtained by arranging the singular terms reasonably. The physical profiles derived by the ray tracing method will degenerate to the transformation-based solutions when taking the transport equation into consideration. This illuminates the essence of the newly designed cloaks that they are actually the so-called eikonal cloaks that can accurately control the paths of energy flux but with small disturbance in energy distribution along the paths. The near-perfect invisible performance has been demonstrated by the numerical ray tracing results and the pressure distribution snapshots. Finally, a kind of reduced cloak is conceived, and the good invisible performance has been measured quantitatively by the normalized scattering width.

  3. Ray-tracing studies of fast waves in the lower hybrid range of frequencies

    NASA Astrophysics Data System (ADS)

    Dittman, A.; Pinsker, R. I.

    2016-10-01

    Fast waves in the lower-hybrid range of frequencies, also referred to as `whistlers' or `helicons', will be used in the DIII-D tokamak for off-axis non-inductive current drive. Ray-tracing studies have shown that the required off-axis deposition can be achieved in target plasmas that have been recently studied in DIII-D. We wish to characterize the sensitivity of the rf power deposition profile to details of the equilibrium, and are thereby motivated to re-examine the fundamentals of ray-tracing in this regime. We have studied ray-tracing in the vicinity of regular turning points (cut-offs) and mode-coupling points in simple geometries (slab, cylinder). Later phases of the work will use the GENRAY code to study the effect of strong magnetic shear in the outer region of the plasma on the shape of the ray trajectory in that region, and on wave accessibility to the core. The usual estimate of the accessibility limit on the parallel index of refraction of the wave (n∥), based on a slab model, is inaccurate under these conditions, which could lead to improved antenna/wave coupling by utilizing a lower n∥. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  4. TIM, a ray-tracing program for METATOY research and its dissemination

    NASA Astrophysics Data System (ADS)

    Lambert, Dean; Hamilton, Alasdair C.; Constable, George; Snehanshu, Harsh; Talati, Sharvil; Courtial, Johannes

    2012-03-01

    TIM (The Interactive METATOY) is a ray-tracing program specifically tailored towards our research in METATOYs, which are optical components that appear to be able to create wave-optically forbidden light-ray fields. For this reason, TIM possesses features not found in other ray-tracing programs. TIM can either be used interactively or by modifying the openly available source code; in both cases, it can easily be run as an applet embedded in a web page. Here we describe the basic structure of TIM's source code and how to extend it, and we give examples of how we have used TIM in our own research. Program summaryProgram title: TIM Catalogue identifier: AEKY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 124 478 No. of bytes in distributed program, including test data, etc.: 4 120 052 Distribution format: tar.gz Programming language: Java Computer: Any computer capable of running the Java Virtual Machine (JVM) 1.6 Operating system: Any; developed under Mac OS X Version 10.6 RAM: Typically 145 MB (interactive version running under Mac OS X Version 10.6) Classification: 14, 18 External routines: JAMA [1] (source code included) Nature of problem: Visualisation of scenes that include scene objects that create wave-optically forbidden light-ray fields. Solution method: Ray tracing. Unusual features: Specifically designed to visualise wave-optically forbidden light-ray fields; can visualise ray trajectories; can visualise geometric optic transformations; can create anaglyphs (for viewing with coloured "3D glasses") and random-dot autostereograms of the scene; integrable into web pages. Running time: Problem-dependent; typically seconds for a simple scene.

  5. Thermal radiation characteristics of nonisothermal cylindrical enclosures using a numerical ray tracing technique

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1990-01-01

    Analysis of energy emitted from simple or complex cavity designs can lead to intricate solutions due to nonuniform radiosity and irradiation within a cavity. A numerical ray tracing technique was applied to simulate radiation propagating within and from various cavity designs. To obtain the energy balance relationships between isothermal and nonisothermal cavity surfaces and space, the computer code NEVADA was utilized for its statistical technique applied to numerical ray tracing. The analysis method was validated by comparing results with known theoretical and limiting solutions, and the electrical resistance network method. In general, for nonisothermal cavities the performance (apparent emissivity) is a function of cylinder length-to-diameter ratio, surface emissivity, and cylinder surface temperatures. The extent of nonisothermal conditions in a cylindrical cavity significantly affects the overall cavity performance. Results are presented over a wide range of parametric variables for use as a possible design reference.

  6. GeoViS-Relativistic ray tracing in four-dimensional spacetimes

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2014-08-01

    The optical appearance of objects moving close to the speed of light or orbiting a black hole is of interest for educational purposes as well as for scientific modeling in special and general relativity. The standard approach to visualize such settings is ray tracing in four-dimensional spacetimes where the direction of the physical propagation of light is reversed. GeoViS implements this ray tracing principle making use of the Motion4D library that handles the spacetime metrics, the integration of geodesics, and the description of objects defined with respect to local reference frames. In combination with the GeodesicViewer, GeoViS might be a valuable tool for graduate students to get a deeper understanding in the visual effects of special and general relativity.

  7. Three-dimensional ray tracing of the Jovian magnetosphere in the low-frequency range

    NASA Astrophysics Data System (ADS)

    Menietti, J. D.; Green, J. L.; Gulkis, S.; Six, F.

    1984-03-01

    Three-dimensional ray tracing of the Jovian DAM emission has been performed utilizing the O-4 magnetic field model (Acuna and Ness, 1979) and a realistic plasma model. Minimal assumptions about the emission mechanism have been made that include radiation in the right-hand extraordinary mode, propagating nearly perpendicular to the field line at source points located just above the RX cutoff frequency along Io flux tubes. Ray tracing has been performed in the frequency range from 2-35 MHz from successive Io flux tubes separated by ten degrees of central meridian longitude for a full circumference of northern hemisphere sources. The results show unusual complexity in model arc spectra that is displayed in a constant Io phase format with many similarities to the Voyager PRA data. The results suggest much of the variation in observed DAM spectral features is a result of propagation effects rather than emission process differences.

  8. Three-dimensional ray tracing of the Jovian magnetosphere in the low-frequency range

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Green, J. L.; Gulkis, S.; Six, F.

    1984-01-01

    Three-dimensional ray tracing of the Jovian DAM emission has been performed utilizing the O-4 magnetic field model (Acuna and Ness, 1979) and a realistic plasma model. Minimal assumptions about the emission mechanism have been made that include radiation in the right-hand extraordinary mode, propagating nearly perpendicular to the field line at source points located just above the RX cutoff frequency along Io flux tubes. Ray tracing has been performed in the frequency range from 2-35 MHz from successive Io flux tubes separated by ten degrees of central meridian longitude for a full circumference of northern hemisphere sources. The results show unusual complexity in model arc spectra that is displayed in a constant Io phase format with many similarities to the Voyager PRA data. The results suggest much of the variation in observed DAM spectral features is a result of propagation effects rather than emission process differences.

  9. Ray-trace modeling of acoustic Green's function based on the semiclassical (eikonal) approximation.

    PubMed

    Prislan, Rok; Veble, Gregor; Svenšek, Daniel

    2016-10-01

    The Green's function (GF) for the scalar wave equation is numerically constructed by an advanced geometric ray-tracing method based on the eikonal approximation related to the semiclassical propagator. The underlying theory is first briefly introduced, and then it is applied to acoustics and implemented in a ray-tracing-type numerical simulation. The so constructed numerical method is systematically used to calculate the sound field in a rectangular (cuboid) room, yielding also the acoustic modes of the room. The simulated GF is rigorously compared to its analytic approximation. Good agreement is found, which proves the devised numerical approach potentially useful also for low frequency acoustic modeling, which is in practice not covered by geometrical methods.

  10. Stress optical path difference analysis of off-axis lens ray trace footprint

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Ying; Chan, Chia-Yen; Lin, Wei-Cheng; Wu, Kun-Huan; Chen, Chih-Wen; Chan, Shenq-Tsong; Huang, Ting-Ming

    2013-06-01

    The mechanical and thermal stress on lens will cause the glass refractive index different, the refractive index of light parallel and light perpendicular to the direction of stress. The refraction index changes will introduce Optical Path Difference (OPD). This study is applying Finite Element Method (FEM) and optical ray tracing; calculate off axis ray stress OPD. The optical system stress distribution result is calculated from finite element simulation, and the stress coordinate need to rotate to optical path direction. Meanwhile, weighting stress to each optical ray path and sum the ray path OPD. The Z-direction stress OPD can be fitted by Zernike polynomial, the separated to sag difference, and rigid body motion. The fitting results can be used to evaluate the stress effect on optical component.

  11. Multiscale optical simulation settings: challenging applications handled with an iterative ray-tracing FDTD interface method.

    PubMed

    Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Kuna, Ladislav; Wenzl, Franz P; Hartmann, Paul; Satzinger, Valentin; Sommer, Christian

    2016-03-20

    We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure.

  12. Mathematic models for a ray tracing method and its applications in wireless optical communications.

    PubMed

    Zhang, Minglun; Zhang, Yangan; Yuan, Xueguang; Zhang, Jinnan

    2010-08-16

    This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems.

  13. Detection and quantification of trace elements in rice and rice products using x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Foran, Kelly A.; Fleming, David E. B.

    2015-12-01

    We used X-ray fluorescence (XRF) to examine the presence of arsenic (As) and other trace elements (manganese, iron, nickel, copper, and zinc) in rice and rice products. A portable XRF analyzer was used to test samples, and amplitudes for the analyzed elements were identified in the resulting data. The detection limit of the system was sufficiently low to detect As in some rice and rice product samples.

  14. Source location determination of Uranian kilometric radiation from ray tracing and emission lobe modelling

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    1991-01-01

    We use an analytical fit to an emission lobe profile together with three-dimensional ray tracing to model the broad-banded smooth Uranian kilometric radiation (UKR). We assume the radiation is gyroemission from sources along magnetic field lines. Using an iterative technique that modifies the lobe function and source region, the results are compared to observations at a frequency of 481 kHz. The best-fit calculations are compared to previously published models and to recent ultraviolet (UV) observations.

  15. Photorealistic image generation of molecular structure on PC screen using the ray-tracing technique.

    PubMed

    Kim, S; Yoon, C W; Mhin, B J; Kim, H S; Kim, K S

    1992-12-01

    A PC version of three-dimensional molecular graphics package has been developed to run under MS-DOS environment on IBM PC-compatible computers equipped with a VGA graphics board. The program consists of two parts: a menu-driven interactive system module in EGA mode, and a ray-tracing module in VGA mode. In the 256-color VGA mode, ray-tracing images are represented with a 4-color map, with 64 levels for each color: 32 levels of illuminance and 32 levels of saturation. Molecular structure can be analyzed along various directions with various light sources. Ray-tracing images are also represented in a 16-color EGA mode with the half-toning method, which can display 76 gray levels for each color. To obtain good photo-realistic images in an efficient way, we have used two light sources, with an intensity ratio of 7:3, which are located in front of the top right and bottom left corners of the screen.

  16. A data distributed, parallel algorithm for ray-traced volume rendering

    SciTech Connect

    Ma, Kwan-Liu; Painter, J.S.; Hansen, C.D.; Krogh, M.F.

    1993-03-30

    This paper presents a divide-and-conquer ray-traced volume rendering algorithm and its implementation on networked workstations and a massively parallel computer, the Connection Machine CM-5. This algorithm distributes the data and the computational load to individual processing units to achieve fast, high-quality rendering of high-resolution data, even when only a modest amount of memory is available on each machine. The volume data, once distributed, is left intact. The processing nodes perform local ray-tracing of their subvolume concurrently. No communication between processing units is needed during this locally ray-tracing process. A subimage is generated by each processing unit and the final image is obtained by compositing subimages in the proper order, which can be determined a priori. Implementations and tests on a group of networked workstations and on the Thinking Machines CM-5 demonstrate the practicality of our algorithm and expose different performance tuning issues for each platform. We use data sets from medical imaging and computational fluid dynamics simulations in the study of this algorithm.

  17. Evaluation of Symmetric Neutral-Atmosphere Mapping Functions Using Ray-Tracing Through Radiosonde Observations

    NASA Astrophysics Data System (ADS)

    Souri, A. H.; Sharifi, M. A.

    2013-12-01

    The aim of this paper is to compare the validity of six recent symmetric mapping functions. The mapping function models the elevation angle dependence of the tropospheric delay. Niell Mapping Function (NMF), Vienna Mapping Function (VMF1), University of New Brunswick- VMF1 (UNB-VMF1) mapping functions, Global Mapping Function (GMF) and Global Pressure and Temperature (GPT2)/GMF are evaluated by using ray tracing through 25 radiosonde stations covering different climatic regions in one year. The ray-traced measurements are regarded as "ground truth". The ray-tracing approach is performed for diverse elevation angle starting at 5° to 15°. The results for both hydrostatic and non-hydrostatic components of mapping functions support the efficiency of online-mapping functions. The latitudinal dependence of standard deviation for 5° is also demonstrated. Although all the tested mapping functions can provide satisfactory results when used for elevation angles above 15°, for high precision geodetic measurements, it is highly recommended that the online-mapping functions (UNBs and VMF1) be used.The results suggest that UNB models, like VMF have strengths and weaknesses and do not stand out as being consistently better or worse than the VMF1. The GPT2/GMF provided better accuracy than GMF and NMF. Since all of them do not require site specific data; therefore GPT2/GMF can be useful as regards its ease of use.

  18. Ray tracing in the human eye: measurement and modeling of optical aberrations

    NASA Astrophysics Data System (ADS)

    Navarro, Rafael M.; Rodriguez, P.; Gonzalez, L.; Aporta, J.; Hdez-Matamoros, J. L.

    2004-10-01

    The rapid development of cataract and refractive surgery requires new methods to assess the optical quality of the eye. The optimized optical design of custom treatments to improve the optical performance of individual eyes requires, at least, to have the technology to (1) measure the geometry (anatomy) of the optics of the eye; (2) measure the optical performance (refractive state, aberrations, etc); (3) Build a custom optical and anatomical model of the individual eye to treat; (4) Optimal design of custom treatments. In this communication we will present the work carried out by our group to develop methods for measuring and modeling the optical performance of the eye. In particular, we will focus, first, on the Laser Ray Tracing method that we have developed to measure the optical aberrations of the eye, as a physical in vivo implementation of the classical numerical ray tracing used by optical designers; and second, on the development of custom optical models of the eye to perform that numerical ray tracing which predicts with a high fidelity experimental measurements. The methods developed have been applied to design both custom surgery and optical aids to improve optical performance.

  19. Ray-tracing and physical-optics analysis of the aperture efficiency in a radio telescope.

    PubMed

    Olmi, Luca; Bolli, Pietro

    2007-07-01

    The performance of telescope systems working at microwave or visible-IR wavelengths is typically described in terms of different parameters according to the wavelength range. Most commercial ray-tracing packages have been specifically designed for use with visible-IR systems and thus, though very flexible and sophisticated, do not provide the appropriate parameters to fully describe microwave antennas and to compare with specifications. We demonstrate that the Strehl ratio is equal to the phase efficiency when the apodization factor is taken into account. The phase efficiency is the most critical contribution to the aperture efficiency of an antenna and the most difficult parameter to optimize during the telescope design. The equivalence between the Strehl ratio and the phase efficiency gives the designer/user of the telescope the opportunity to use the faster commercial ray-tracing software to optimize the design. We also discuss the results of several tests performed to check the validity of this relationship that we carried out using a ray-tracing software, ZEMAX, and a full Physical Optics software, GRASP9.3, applied to three different telescope designs that span a factor of approximately 10 in terms of D/lambda. The maximum measured discrepancy between phase efficiency and Strehl ratio varies between approximately 0.4% and 1.9% up to an offset angle of >40 beams, depending on the optical configuration, but it is always less than 0.5% where the Strehl ratio is >0.95.

  20. Validity of ray trace based performance predictions of optical systems with diffractive optical elements (DOE)

    NASA Astrophysics Data System (ADS)

    Seesselberg, Markus; Kleemann, Bernd H.; Ruoff, Johannes

    2016-09-01

    Color aberrations in broadband imaging optics can be effectively corrected for by use of diffractive optical elements (DOE) such as kinoforms. Typically, the DOE groove width increases with wavelength range and is in the range of several ten to several hundreds of micrometers. Since the footprint diameter of a light bundle originating from a single object point at the diffractive surface is often in the range of millimeters, the number of grooves crossed by this light bundle can be small. In addition, the groove width varies and the grooves are curved. For DOE optimization and prediction of optical performance, optical design software is widely used being based on the ray trace formula, i. e. the law of refraction including DOEs. This ray trace formula relies on two assumptions. First, the footprint diameter of a light beam at the diffractive surface is assumed to be large compared to the groove width. Second, the local grating approximation is used saying that at the footprint area the groove width is constant and the grooves are straight lines. In realistic optical systems, these assumptions are often violated. Thus, the reliability of optical performance predictions such as MTF is in question. In the present paper, the authors re-examine the limits of the ray trace equation. The effect of a finite footprint diameter at the diffractive surface is investigated as well as variations of the groove width. Also, the Fraunhofer diffraction pattern of a light bundle after crossing a grating with a finite number of grooves is calculated.

  1. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  2. Ray-tracing and physical-optics analysis of the aperture efficiency in a radio telescope

    NASA Astrophysics Data System (ADS)

    Olmi, Luca; Bolli, Pietro

    2007-07-01

    The performance of telescope systems working at microwave or visible-IR wavelengths is typically described in terms of different parameters according to the wavelength range. Most commercial ray-tracing packages have been specifically designed for use with visible-IR systems and thus, though very flexible and sophisticated, do not provide the appropriate parameters to fully describe microwave antennas and to compare with specifications. We demonstrate that the Strehl ratio is equal to the phase efficiency when the apodization factor is taken into account. The phase efficiency is the most critical contribution to the aperture efficiency of an antenna and the most difficult parameter to optimize during the telescope design. The equivalence between the Strehl ratio and the phase efficiency gives the designer/user of the telescope the opportunity to use the faster commercial ray-tracing software to optimize the design. We also discuss the results of several tests performed to check the validity of this relationship that we carried out using a ray-tracing software, ZEMAX, and a full Physical Optics software, GRASP9.3, applied to three different telescope designs that span a factor of ≃10 in terms of D/λ. The maximum measured discrepancy between phase efficiency and Strehl ratio varies between ≃0.4% and 1.9% up to an offset angle of >40 beams, depending on the optical configuration, but it is always less than 0.5% where the Strehl ratio is >0.95.

  3. Ray-tracing critical-angle transmission gratings for the X-ray Surveyor and Explorer-size missions

    NASA Astrophysics Data System (ADS)

    Günther, Hans M.; Bautz, Marshall W.; Heilmann, Ralf K.; Huenemoerder, David P.; Marshall, Herman L.; Nowak, Michael A.; Schulz, Norbert S.

    2016-07-01

    We study a critical angle transmission (CAT) grating spectrograph that delivers a spectral resolution significantly above any X-ray spectrograph ever own. This new technology will allow us to resolve kinematic components in absorption and emission lines of galactic and extragalactic matter down to unprecedented dispersion levels. We perform ray-trace simulations to characterize the performance of the spectrograph in the context of an X-ray Surveyor or Arcus like layout (two mission concepts currently under study). Our newly developed ray-trace code is a tool suite to simulate the performance of X-ray observatories. The simulator code is written in Python, because the use of a high-level scripting language allows modifications of the simulated instrument design in very few lines of code. This is especially important in the early phase of mission development, when the performances of different configurations are contrasted. To reduce the run-time and allow for simulations of a few million photons in a few minutes on a desktop computer, the simulator code uses tabulated input (from theoretical models or laboratory measurements of samples) for grating efficiencies and mirror reflectivities. We find that the grating facet alignment tolerances to maintain at least 90% of resolving power that the spectrometer has with perfect alignment are (i) translation parallel to the optical axis below 0.5 mm, (ii) rotation around the optical axis or the groove direction below a few arcminutes, and (iii) constancy of the grating period to 1:105. Translations along and rotations around the remaining axes can be significantly larger than this without impacting the performance.

  4. Wolter X-Ray Microscope Computed Tomography Ray-Trace Model with Preliminary Simulation Results

    SciTech Connect

    Jackson, J A

    2006-02-27

    It is proposed to build a Wolter X-ray Microscope Computed Tomography System in order to characterize objects to sub-micrometer resolution. Wolter Optics Systems use hyperbolic, elliptical, and/or parabolic mirrors to reflect x-rays in order to focus or magnify an image. Wolter Optics have been used as telescopes and as microscopes. As microscopes they have been used for a number of purposes such as measuring emission x-rays and x-ray fluoresce of thin biological samples. Standard Computed Tomography (CT) Systems use 2D radiographic images, from a series of rotational angles, acquired by passing x-rays through an object to reconstruct a 3D image of the object. The x-ray paths in a Wolter X-ray Microscope will be considerably different than those of a standard CT system. There is little information about the 2D radiographic images that can be expected from such a system. There are questions about the quality, resolution and focusing range of an image created with such a system. It is not known whether characterization information can be obtained from these images and whether these 2D images can be reconstructed to 3D images of the object. A code has been developed to model the 2D radiographic image created by an object in a Wolter X-ray Microscope. This code simply follows the x-ray through the object and optics. There is no modeling at this point of other effects, such as scattering, reflection losses etc. Any object, of appropriate size, can be used in the model code. A series of simulations using a number of different objects was run to study the effects of the optics. The next step will be to use this model to reconstruct an object from the simulated data. Funding for the project ended before this goal could be accomplished. The following documentation includes: (1) background information on current X-ray imaging systems, (2) background on Wolter Optics, (3) description of the Wolter System being used, (4) purpose, limitations and development of the modeling

  5. Fast robust non-sequential optical ray-tracing with implicit algebraic surfaces

    NASA Astrophysics Data System (ADS)

    Greynolds, Alan W.

    2015-09-01

    The fastest, most robust, general technique for non-sequentially ray-tracing a large class of imaging and non-imaging optical systems is by geometric modeling with algebraic (i.e. polynomial) implicit surfaces. The basic theory of these surfaces with special attention to optimizing their precise intersection with a ray (even at grazing incidence) is outlined for an admittedly limited software implementation. On a couple of "tame" examples, a 64-bit Windows 7 version is significantly faster than the fastest commercial design software (all multi-threaded). Non-sequential ray-surface interactions approaching 30M/sec are achieved on a 12-core 2.67 GHz Mac Pro desktop computer. For a more exotic example of a 6th degree Wood's horn beam dump (light trap), a 32-bit Windows single thread version traces rays nearly 4 times faster than the commercial ASAP software's implicit algebraic surface and over 13 times faster than its equivalent NURBS surface. However, implicit surfaces are foreign to most CAD systems and thus unfortunately, don't easily fit into a modern workflow.

  6. Ray tracing simulation of aero-optical effect using multiple gradient index layer

    NASA Astrophysics Data System (ADS)

    Yang, Seul Ki; Seong, Sehyun; Ryu, Dongok; Kim, Sug-Whan; Kwon, Hyeuknam; Jin, Sang-Hun; Jeong, Ho; Kong, Hyun Bae; Lim, Jae Wan; Choi, Jong Hwa

    2016-10-01

    We present a new ray tracing simulation of aero-optical effect through anisotropic inhomogeneous media as supersonic flow field surrounds a projectile. The new method uses multiple gradient-index (GRIN) layers for construction of the anisotropic inhomogeneous media and ray tracing simulation. The cone-shaped projectile studied has 19° semi-vertical angle; a sapphire window is parallel to the cone angle; and an optical system of the projectile was assumed via paraxial optics and infrared image detector. The condition for the steady-state solver conducted through computational fluid dynamics (CFD) included Mach numbers 4 and 6 in speed, 25 km altitude, and 0° angle of attack (AoA). The grid refractive index of the flow field via CFD analysis and Gladstone-Dale relation was discretized into equally spaced layers which are parallel with the projectile's window. Each layer was modeled as a form of 2D polynomial by fitting the refractive index distribution. The light source of ray set generated 3,228 rays for varying line of sight (LOS) from 10° to 40°. Ray tracing simulation adopted the Snell's law in 3D to compute the paths of skew rays in the GRIN layers. The results show that optical path difference (OPD) and boresight error (BSE) decreases exponentially as LOS increases. The variation of refractive index decreases, as the speed of flow field increases the OPD and its rate of decay at Mach number 6 in speed has somewhat larger value than at Mach number 4 in speed. Compared with the ray equation method, at Mach number 4 and 10° LOS, the new method shows good agreement, generated 0.33% of relative root-mean-square (RMS) OPD difference and 0.22% of relative BSE difference. Moreover, the simulation time of the new method was more than 20,000 times faster than the conventional ray equation method. The technical detail of the new method and simulation is presented with results and implication.

  7. Comparing FDTD and Ray-Tracing Models in Numerical Simulation of HgCdTe LWIR Photodetectors

    NASA Astrophysics Data System (ADS)

    Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich

    2016-09-01

    We present a simulation study of HgCdTe-based long-wavelength infrared detectors, focusing on methodological comparisons between the finite-difference time-domain (FDTD) and ray-tracing optical models. We performed three-dimensional simulations to determine the absorbed photon density distributions and the corresponding photocurrent and quantum efficiency spectra of isolated n-on- p uniform-composition pixels, systematically comparing the results obtained with FDTD and ray tracing. Since ray tracing is a classical optics approach, unable to describe interference effects, its applicability has been found to be strongly wavelength dependent, especially when reflections from metallic layers are relevant. Interesting cavity effects around the material cutoff wavelength are described, and the cases where ray tracing can be considered a viable approximation are discussed.

  8. A computer program to trace seismic ray distribution in complex two-dimensional geological models

    USGS Publications Warehouse

    Yacoub, Nazieh K.; Scott, James H.

    1970-01-01

    A computer program has been developed to trace seismic rays and their amplitudes and energies through complex two-dimensional geological models, for which boundaries between elastic units are defined by a series of digitized X-, Y-coordinate values. Input data for the program includes problem identification, control parameters, model coordinates and elastic parameter for the elastic units. The program evaluates the partitioning of ray amplitude and energy at elastic boundaries, computes the total travel time, total travel distance and other parameters for rays arising at the earth's surface. Instructions are given for punching program control cards and data cards, and for arranging input card decks. An example of printer output for a simple problem is presented. The program is written in FORTRAN IV language. The listing of the program is shown in the Appendix, with an example output from a CDC-6600 computer.

  9. Ray trace algorithm description for the study of pump power absorption in double clad fibers

    NASA Astrophysics Data System (ADS)

    Narro, R.; Rodriguez, E.; Ponce, L.; de Posada, E.; Flores, T.; Arronte, M.

    2011-09-01

    An algorithm for the analysis of the double clad fiber design is presented. The algorithm developed in the MATLAB computing language, is based on ray tracing method applied to three-dimensional graphics figures which are composed of a set of plans. The algorithm can evaluate thousands of ray paths in sequence and its corresponding pump absorption in each of the elements of the fiber according to the Lambert-Beer law. The beam path is evaluated in 3 dimensions considering the losses by reflexion and refraction in the faces and within the fiber. Due to its flexibility, the algorithm can be used to study the ray propagation in single mode or multimode fibers, bending effects in fibers, variable geometries of the inner clad and the core, and could also be used to study tappers.

  10. Subhalo Tracing in Simulations and Subhalo Observation in Gamma-rays

    NASA Astrophysics Data System (ADS)

    Han, J. X.

    2014-05-01

    Current major observations of the Universe favor the concordant ΛCDM cosmology, in which the matter content is dominated by cold dark matter (CDM). In this CDM universe, small perturbations from the initial condition grow into clumps of virilized structure called dark matter haloes. Small haloes form early and later merge to form bigger haloes. As a result, dark matter haloes host plenty of substructures called subhaloes which are the self-bound remnants of their progenitor haloes. These subhaloes could be studied in detail with the help of numerical simulations, which then could provide input into theories of galaxy formation, and also influence the way dark matter could be detected. To find and trace dark matter subhaloes in simulations, we develop a new code, the Hierarchical Bound-Tracing (HBT for short) code, based on the merger hierarchy of dark matter haloes. Application of this code to a recent benchmark test of finding subhaloes demonstrates that HBT stands as one of the best codes to trace the evolutionary history of subhaloes. The success of this code lies in its careful treatment of the complex physical processes associated with the evolution of subhaloes, and in its robust unbinding algorithm with an adaptive source subhalo management. We keep a full record of the merger hierarchy of haloes and subhaloes, and allow growth of satellite subhaloes through accretion from its ``satellite-of-satellites'', hence allowing mergers among satellites. Local accretion of background mass is omitted, while rebinding of stripped mass is allowed. The justification of these treatments is provided by case studies of the lives of individual subhaloes, and by the success in finding the complete subhalo catalogue. We compare our result to other popular subhalo finders. It is shown that HBT is able to well resolve subhaloes in high density environment, and keep strict physical track of subhaloes' merger history. This code is fully parallelized, and freely available upon

  11. Ray-tracing simulation and SABER satellite observations of convective gravity waves

    NASA Astrophysics Data System (ADS)

    Kalisch, Silvio; Eckermann, Stephen; Ern, Manfred; Preusse, Peter; Riese, Martin; Trinh, Quang Thai; Kim, Young-Ha; Chun, Hye-Yeong

    Gravity waves (GWs) are known as a coupling mechanism between different atmospheric layers. They contribute to the wave-driving of the QBO and are also responsible for driving large scale circulations like the Brewer-Dobson circulation. One major and highly variable source of GWs is convection. Deep convection in the tropics excites GWs with prominent amplitudes and horizontal phase speeds of up to 90 m/s. These GWs propagate upward and, when breaking, release the wave's momentum, thus accelerate the background flow. Direction and magnitude of the acceleration strongly depends on wind filtering between the convective GW source and the considered altitude. Both, the generation mechanism of GWs close to the top of deep convective towers and the wind filtering process during GW propagation largely influence the GW spectrum found in the tropical middle atmosphere and therefore magnitude and direction of the acceleration. We present the results of GW ray-tracing calculations from tropospheric (convective) sources up to the mesosphere. The Gravity wave Regional Or Global RAy-Tracer (GROGRAT) was used to perform the GW trajectory calculations. The convective GW source scheme from Yonsei University (South Korea) served as the lower boundary condition to quantify the GW excitation from convection. Heating rates, cloud top data, and atmospheric background data were provided by the MERRA dataset for the calculation of convective forcing from deep convection and for the atmospheric background of the ray-tracing calculations afterwards. In order to validate our ray-tracing simulation results, we compare them to satellite measurements of temperature amplitudes and momentum fluxes from the SABER instrument. Therefore, observational constrains from limb-sounding instruments have been quantified. Influences of orbit geometry, the instrument's observational filter, and the wavelength shift in the observed GW spectrum are discussed. Geographic structures in the observed global

  12. An Efficient Ray-Tracing Method for Determining Terrain Intercepts in EDL Simulations

    NASA Technical Reports Server (NTRS)

    Shidner, Jeremy D.

    2016-01-01

    The calculation of a ray's intercept from an arbitrary point in space to a prescribed surface is a common task in computer simulations. The arbitrary point often represents an object that is moving according to the simulation, while the prescribed surface is fixed in a defined frame. For detailed simulations, this surface becomes complex, taking the form of real-world objects such as mountains, craters or valleys which require more advanced methods to accurately calculate a ray's intercept location. Incorporation of these complex surfaces has commonly been implemented in graphics systems that utilize highly optimized graphics processing units to analyze such features. This paper proposes a simplified method that does not require computationally intensive graphics solutions, but rather an optimized ray-tracing method for an assumed terrain dataset. This approach was developed for the Mars Science Laboratory mission which landed on the complex terrain of Gale Crater. First, this paper begins with a discussion of the simulation used to implement the model and the applicability of finding surface intercepts with respect to atmosphere modeling, altitude determination, radar modeling, and contact forces influencing vehicle dynamics. Next, the derivation and assumptions of the intercept finding method are presented. Key assumptions are noted making the routines specific to only certain types of surface data sets that are equidistantly spaced in longitude and latitude. The derivation of the method relies on ray-tracing, requiring discussion on the formulation of the ray with respect to the terrain datasets. Further discussion includes techniques for ray initialization in order to optimize the intercept search. Then, the model implementation for various new applications in the simulation are demonstrated. Finally, a validation of the accuracy is presented along with the corresponding data sets used in the validation. A performance summary of the method will be shown using

  13. GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES

    SciTech Connect

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal

    2013-11-01

    We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.

  14. Analytical approximations to the Hotelling trace for digital x-ray detectors

    NASA Astrophysics Data System (ADS)

    Clarkson, Eric; Pineda, Angel R.; Barrett, Harrison H.

    2001-06-01

    The Hotelling trace is the signal-to-noise ratio for the ideal linear observer in a detection task. We provide an analytical approximation for this figure of merit when the signal is known exactly and the background is generated by a stationary random process, and the imaging system is an ideal digital x-ray detector. This approximation is based on assuming that the detector is infinite in extent. We test this approximation for finite-size detectors by comparing it to exact calculations using matrix inversion of the data covariance matrix. After verifying the validity of the approximation under a variety of circumstances, we use it to generate plots of the Hotelling trace as a function of pairs of parameters of the system, the signal and the background.

  15. Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Held, Eric D.

    2015-09-01

    Neoclassical tearing modes are macroscopic (L ∼ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves (λ ∼ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale (Jenkins and Kruger, 2012 [21]); the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD (Sovinec et al., 2004 [22]) and GENRAY RF (Smirnov et al., 1994 [23]) codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.

  16. A comprehensive ray tracing study on the impact of solar reflections from glass curtain walls.

    PubMed

    Wong, Justin S J

    2016-01-01

    To facilitate the investigation of the impact of solar reflection from the façades of skyscrapers to surrounding environment, a comprehensive ray tracing model has been developed using the International Commerce Centre (ICC) in Hong Kong as an example. Taking into account the actual physical dimensions of buildings and meteorological data, the model simulates and traces the paths of solar reflections from ICC to the surrounding buildings, assessing the impact in terms of hit locations, light intensity and the hit time on each day throughout the year. Our analyses show that various design and architectural features of ICC have amplified the intensity of reflected solar rays and increased the hit rates of surrounding buildings. These factors include the high reflectivity of glass panels, their upward tilting angles, the concave profile of the 'Dragon Tail' (glass panels near the base), the particular location and orientation of ICC, as well as the immense height of ICC with its large reflective surfaces. The simulation results allow us to accurately map the date and time when the ray projections occur on each of the target buildings, rendering important information such as the number of converging (overlapping) projections, and the actual light intensity hitting each of the buildings at any given time. Comparisons with other skyscrapers such as Taipei 101 in Taiwan and 2-IFC (International Finance Centre) Hong Kong are made. Remedial actions for ICC and preventive measures are also discussed.

  17. A GENERAL RELATIVISTIC RAY-TRACING METHOD FOR ESTIMATING THE ENERGY AND MOMENTUM DEPOSITION BY NEUTRINO PAIR ANNIHILATION IN COLLAPSARS

    SciTech Connect

    Harikae, Seiji; Kotake, Kei; Sekiguchi, Yu-ichiro; Takiwaki, Tomoya

    2010-09-01

    Bearing in mind the application to the collapsar models of gamma-ray bursts (GRBs), we develop a numerical scheme and code for estimating the deposition of energy and momentum due to the neutrino pair annihilation ({nu}+{nu}-bar{yields}e{sup -}+e{sup +}) in the vicinity of an accretion tori around a Kerr black hole. Our code is designed to solve the general relativistic (GR) neutrino transfer by a ray-tracing method. To solve the collisional Boltzmann equation in curved spacetime, we numerically integrate the so-called rendering equation along the null geodesics. We employ the Fehlberg (4,5) adaptive integrator in the Runge-Kutta method to perform the numerical integration accurately. For the neutrino opacity, the charged-current {beta}-processes, which are dominant in the vicinity of the accretion tori, are taken into account. The numerical accuracy of the developed code is certified by several tests in which we show comparisons with the corresponding analytical solutions. In order to solve the energy-dependent ray-tracing transport, we propose that an adaptive-mesh-refinement approach, which we take for the two radiation angles ({theta}, {phi}) and the neutrino energy, is useful in reducing the computational cost significantly. Based on the hydrodynamical data in our collapsar simulation, we estimate the annihilation rates in a post-processing manner. Increasing the Kerr parameter from 0 to 1, it is found that the GR effect can increase the local energy deposition rate by about one order of magnitude, and the net energy deposition rate by several tens of percent. After the accretion disk settles into a stationary state (typically later than {approx}9 s from the onset of gravitational collapse), we point out that the neutrino-heating timescale in the vicinity of the polar funnel region can be shorter than the dynamical timescale. Our results suggest that the neutrino pair annihilation is potentially as important as the conventional magnetohydrodynamic mechanism

  18. Spin tracking simulations in AGS based on ray-tracing methods - bare lattice, no snakes -

    SciTech Connect

    Meot, F.; Ahrens, L.; Gleen, J.; Huang, H.; Luccio, A.; MacKay, W. W.; Roser, T.; Tsoupas, N.

    2009-09-01

    This Note reports on the first simulations of and spin dynamics in the AGS using the ray-tracing code Zgoubi. It includes lattice analysis, comparisons with MAD, DA tracking, numerical calculation of depolarizing resonance strengths and comparisons with analytical models, etc. It also includes details on the setting-up of Zgoubi input data files and on the various numerical methods of concern in and available from Zgoubi. Simulations of crossing and neighboring of spin resonances in AGS ring, bare lattice, without snake, have been performed, in order to assess the capabilities of Zgoubi in that matter, and are reported here. This yields a rather long document. The two main reasons for that are, on the one hand the desire of an extended investigation of the energy span, and on the other hand a thorough comparison of Zgoubi results with analytical models as the 'thin lens' approximation, the weak resonance approximation, and the static case. Section 2 details the working hypothesis : AGS lattice data, formulae used for deriving various resonance related quantities from the ray-tracing based 'numerical experiments', etc. Section 3 gives inventories of the intrinsic and imperfection resonances together with, in a number of cases, the strengths derived from the ray-tracing. Section 4 gives the details of the numerical simulations of resonance crossing, including behavior of various quantities (closed orbit, synchrotron motion, etc.) aimed at controlling that the conditions of particle and spin motions are correct. In a similar manner Section 5 gives the details of the numerical simulations of spin motion in the static case: fixed energy in the neighboring of the resonance. In Section 6, weak resonances are explored, Zgoubi results are compared with the Fresnel integrals model. Section 7 shows the computation of the {rvec n} vector in the AGS lattice and tuning considered. Many details on the numerical conditions as data files etc. are given in the Appendix Section

  19. Adaptive Image Enhancement for Tracing 3D Morphologies of Neurons and Brain Vasculatures.

    PubMed

    Zhou, Zhi; Sorensen, Staci; Zeng, Hongkui; Hawrylycz, Michael; Peng, Hanchuan

    2015-04-01

    It is important to digitally reconstruct the 3D morphology of neurons and brain vasculatures. A number of previous methods have been proposed to automate the reconstruction process. However, in many cases, noise and low signal contrast with respect to the image background still hamper our ability to use automation methods directly. Here, we propose an adaptive image enhancement method specifically designed to improve the signal-to-noise ratio of several types of individual neurons and brain vasculature images. Our method is based on detecting the salient features of fibrous structures, e.g. the axon and dendrites combined with adaptive estimation of the optimal context windows where such saliency would be detected. We tested this method for a range of brain image datasets and imaging modalities, including bright-field, confocal and multiphoton fluorescent images of neurons, and magnetic resonance angiograms. Applying our adaptive enhancement to these datasets led to improved accuracy and speed in automated tracing of complicated morphology of neurons and vasculatures.

  20. Comparison of an integral equation on energy and the ray-tracing technique in room acoustics.

    PubMed

    Le Bot, A; Bocquillet, A

    2000-10-01

    This paper deals with a comparison of two room acoustic models. The first one is an integral formulation stemming from power balance and the second is the ray-tracing technique with a perfectly diffuse reflection law. The common assumptions to both models are the uncorrelated wave hypothesis and the perfectly diffuse reflection law. The latter allows the use of these methods for nondiffuse fields beyond the validity domain of Sabine's formula. Comparisons of numerical simulations performed with the softwares RAYON and CeReS point out that these results are close to each other and finally, a formal proof is proposed showing that both methods are actually equivalent.

  1. Accessibility and occlusion of biopolymers, ray tracing of radiating tubes, and the temperature of a tangle.

    PubMed

    Buck, Gregory; Scharein, Robert G; Schnick, Jeffrey; Simon, Jonathan

    2008-01-01

    We introduce a measure of complexity, an energy, for any conformation of filaments. It is the occlusion, the portion hidden when viewed from an arbitrary exterior point. By inverting we get the exposure, a first approximation of the accessibility of the filaments. Assuming the filament is a source, we get the self-irradiation, which leads to both an interpretation as the temperature and a visualization technique: ray tracing as a virtual laboratory. There is a wide variety of applications, from enzyme action on and radiation damage of biopolymers, to the geometry of light bulb filaments. Energy minimization provides automatic detangling, resulting in symmetric and pleasing conformations.

  2. X-Ray fluorescence analysis of trace elements in fruit juice

    NASA Astrophysics Data System (ADS)

    Bao, Sheng-Xiang; Wang, Zhi-Hong; Liu, Jing-Song

    1999-12-01

    X-Ray fluorescence spectrometry is applied to the determination of trace elements in fruit juice characterized by a high content of sugar and other soluble solid substances. Samples are prepared by evaporation, carbonization and pressing into discs. The synthesis of standards is described in detail. All element concentrations are directly estimated from linear calibration curves obtained without any matrix correction. The results of the analysis are in good agreement with those given by inductively coupled plasma-atomic emission spectrometry and atomic absorption spectrometry techniques.

  3. Ray tracing analysis of the image quality of a high collection efficiency mirror system.

    PubMed

    Seitzinger, N K; Martin, J C; Keller, R A

    1990-10-01

    Recently, a high collection efficiency mirror system was developed by Watson [Cytometry 10, 681-688 (1989)] to increase the sensitivity of low level fluorescence detection. The mirror system consists of an ellipsoidal imaging mirror and spherical backreflecting mirror. The fluorescing sample is located at one focus of the ellipsoid, and its image is formed at the other focus. In this paper we evaluate the image quality of this geometry using a PC-based ray tracing program. The analysis demonstrates high collection efficiency but poor image quality. The effect of poor image quality on single molecule detection is discussed.

  4. Ray tracing analysis of the image quality of a high collection efficiency mirror system

    SciTech Connect

    Seitzinger, N.K.; Martin, J.C.; Keller, R.A. )

    1990-10-01

    Recently, a high collection efficiency mirror system was developed by Watson (Cytometry, {bold 10}, 681--688 (1989)) to increase the sensitivity of low level fluorescence detection. The mirror system consists of an ellipsoidal imaging mirror and spherical backreflecting mirror. The fluorescing sample is located at one focus of the ellipsoid, and its image is formed at the other focus. In this paper we evaluate the image quality of this geometry using a PC-based ray tracing program. The analysis demonstrates high collection efficiency but poor image quality. The effect of poor image quality on single molecule detection is discussed. Keywords: Fluorescence, ellipsoidal mirror, spherical mirror, single molecule detection, flow cytometry.

  5. Ray tracing evaluation of a technique for correcting the refraction errors in satellite tracking data

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Rowlett, J. R.; Hendrickson, B. E.

    1978-01-01

    Errors may be introduced in satellite laser ranging data by atmospheric refractivity. Ray tracing data have indicated that horizontal refractivity gradients may introduce nearly 3-cm rms error when satellites are near 10-degree elevation. A correction formula to compensate for the horizontal gradients has been developed. Its accuracy is evaluated by comparing it to refractivity profiles. It is found that if both spherical and gradient correction formulas are employed in conjunction with meteorological measurements, a range resolution of one cm or less is feasible for satellite elevation angles above 10 degrees.

  6. Modeling and analysis of novel laser weld joint designs using optical ray tracing.

    SciTech Connect

    Milewski, J. O.

    2002-01-01

    Reflection of laser energy presents challenges in material processing that can lead to process inefficiency or process instability. Understanding the fundamentals of non-imaging optics and the reflective propagation of laser energy can allow process and weld joint designs to take advantage of these reflections to enhance process efficiency or mitigate detrimental effects. Optical ray tracing may be used within a 3D computer model to evaluate novel joint and fixture designs for laser welding that take advantage of the reflective propagation of laser energy. This modeling work extends that of previous studies by the author and provides comparison with experimental studies performed on highly reflective metals. Practical examples are discussed.

  7. Optical performance analysis of a novel tracking-integrated concentrator through ray tracing

    NASA Astrophysics Data System (ADS)

    Voarino, Philippe; Domínguez, César; Bijl, Roy; Penning, Peter

    2014-09-01

    This paper presents an optical performance analysis of a novel concentrator with integrated tracking developed by Suncycle. This system uses 2 optical stages that rotate independently to track the sun with a geometrical concentration factor of 870X. A Fresnel prism and a concentrator mirror associated to a refractive secondary optics enable to define a 25% efficiency target. This analysis is carried out using ray tracing Monte-Carlo simulations, providing irradiance and angular distribution maps as well as optical efficiency estimations for each optical stage. This study allows evaluating and defining specifications for each of the optical components of this novel tracking-integrated concentrator.

  8. Numerical ray-tracing approach with laser intensity distribution for LIDAR signal power function computation

    NASA Astrophysics Data System (ADS)

    Shi, Guangyuan; Li, Song; Huang, Ke; Li, Zile; Zheng, Guoxing

    2016-10-01

    We have developed a new numerical ray-tracing approach for LIDAR signal power function computation, in which the light round-trip propagation is analyzed by geometrical optics and a simple experiment is employed to acquire the laser intensity distribution. It is relatively more accurate and flexible than previous methods. We emphatically discuss the relationship between the inclined angle and the dynamic range of detector output signal in biaxial LIDAR system. Results indicate that an appropriate negative angle can compress the signal dynamic range. This technique has been successfully proved by comparison with real measurements.

  9. Infrasonic ray tracing applied to mesoscale atmospheric structures: refraction by hurricanes.

    PubMed

    Bedard, Alfred J; Jones, R Michael

    2013-11-01

    A ray-tracing program is used to estimate the refraction of infrasound by the temperature structure of the atmosphere and by hurricanes represented by a Rankine-combined vortex wind plus a temperature perturbation. Refraction by the hurricane winds is significant, giving rise to regions of focusing, defocusing, and virtual sources. The refraction of infrasound by the temperature anomaly associated with a hurricane is small, probably no larger than that from uncertainties in the wind field. The results are pertinent to interpreting ocean wave generated infrasound in the vicinities of tropical cyclones.

  10. Propagation predictions and studies using a ray tracing program combined with a theoretical ionospheric model

    NASA Technical Reports Server (NTRS)

    Lee, M. K.; Nisbet, J. S.

    1975-01-01

    Radio wave propagation predictions are described in which modern comprehensive theoretical ionospheric models are coupled with ray-tracing programs. In the computer code described, a network of electron density and collision frequency parameters along a band about the great circle path is calculated by specifying the transmitter and receiver geographic coordinates, time, the day number, and the 2800-MHz solar flux. The ray paths are calculated on specifying the frequency, mode, range of elevation angles, and range of azimuth angles from the great circle direction. The current program uses a combination of the Penn State MKI E and F region models and the Mitra-Rowe D and E region model. Application of the technique to the prediction of satellite to ground propagation and calculation of oblique incidence propagation paths and absorption are described. The implications of the study to the development of the next generation of ionospheric models are discussed.

  11. Ray-tracing analysis of crosstalk in multi-core polymer optical fibers.

    PubMed

    Berganza, Amaia; Aldabaldetreku, Gotzon; Zubia, Joseba; Durana, Gaizka

    2010-10-11

    The aim of this paper is to present a new ray-tracing model which describes the propagation of light in multi-core polymer optical fibers (MCPOFs), taking into account the crosstalk among their cores. The new model overcomes many of the limitations of previous approaches allowing us to simulate MCPOFs of arbitrary designs. Additionally, it provides us with the output ray distribution at the end of the fiber, making it possible to calculate useful parameters related to the fiber performance such as the Near-Field Pattern, the Far-Field Pattern or the bandwidth. We also present experimental measurements in order to validate the computational model and we analyze the importance of crosstalk in different MCPOF configurations.

  12. Microcellular propagation prediction model based on an improved ray tracing algorithm.

    PubMed

    Liu, Z-Y; Guo, L-X; Fan, T-Q

    2013-11-01

    Two-dimensional (2D)/two-and-one-half-dimensional ray tracing (RT) algorithms for the use of the uniform theory of diffraction and geometrical optics are widely used for channel prediction in urban microcellular environments because of their high efficiency and reliable prediction accuracy. In this study, an improved RT algorithm based on the "orientation face set" concept and on the improved 2D polar sweep algorithm is proposed. The goal is to accelerate point-to-point prediction, thereby making RT prediction attractive and convenient. In addition, the use of threshold control of each ray path and the handling of visible grid points for reflection and diffraction sources are adopted, resulting in an improved efficiency of coverage prediction over large areas. Measured results and computed predictions are also compared for urban scenarios. The results indicate that the proposed prediction model works well and is a useful tool for microcellular communication applications.

  13. Tracing X-rays through an L-shaped laterally graded multilayer mirror: a synchrotron application.

    PubMed

    Honnicke, Marcelo Goncalves; Huang, Xianrong; Keister, Jeffrey W; Kodituwakku, Chaminda Nalaka; Cai, Yong Q

    2010-05-01

    A theoretical model to trace X-rays through an L-shaped (nested or Montel Kirkpatrick-Baez mirrors) laterally graded multilayer mirror to be used in a synchrotron application is presented. The model includes source parameters (size and divergence), mirror figure (parabolic and elliptic), multilayer parameters (reflectivity, which depends on layer material, thickness and number of layers) and figure errors (slope error, roughness, layer thickness fluctuation Deltad/d and imperfection in the corners). The model was implemented through MATLAB/OCTAVE scripts, and was employed to study the performance of a multilayer mirror designed for the analyzer system of an ultrahigh-resolution inelastic X-ray scattering spectrometer at National Synchrotron Light Source II. The results are presented and discussed.

  14. Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface

    NASA Astrophysics Data System (ADS)

    Choi, Ji Nyeong; Ryu, Dongok; Kim, Sug-Whan; Graves, Logan; Su, Peng; Huang, Run; Kim, Dae Wook

    2015-09-01

    The Software Configurable Optical Testing System (SCOTS) is one of the newest testing methods for large mirror surfaces. The Integrated Ray Tracing (IRT) technique can be applicable to the SCOTS simulation by performing non-sequential ray tracing from the screen to the camera detector in the real scale. Therefore, the radiometry of distorted pattern images are numerically estimated by the IRT simulation module. In this study, we construct an IRT SCOTS simulation model for the Fast Steering Mirror Prototype (FSMP) surface of the Giant Magellan Telescope (GMT). GMT FSMP is an off-axis ellipsoidal concave mirror that is 1064 mm in diameter and has PV 3.1 mm in aspheric departure. The surface error requirement is less than 20 nm rms. The screen is modeled as an array of 1366 by 768 screen pixels of 0.227 mm in pitch size. The screen is considered as a Lambertian scattering surface. The screen and the camera are positioned around 4390 mm away from the mirror and separated by around 132 mm from each other. The light source are scanning lines and sinusoidal patterns generated by 616,050 rays per one screen pixel. Of the initially generated rays, 0.22 % are received by the camera's detector and contribute to form distorted pattern images. These images are converted to the slope and height maps of the mirror surface. The final result for the height difference between input surface and reconstructed surface was 14.14 nm rms. Additionally, the simulated mirror pattern image was compared with the real SCOTS test for the GMT FSMP. This study shows applicability of using the IRT model to SCOTS simulation with nanometer level numerical accuracy.

  15. Accounting for partiality in serial crystallography using ray-tracing principles

    SciTech Connect

    Kroon-Batenburg, Loes M. J. Schreurs, Antoine M. M.; Ravelli, Raimond B. G.; Gros, Piet

    2015-08-25

    Serial crystallography generates partial reflections from still diffraction images. Partialities are estimated with EVAL ray-tracing simulations, thereby improving merged reflection data to a similar quality as conventional rotation data. Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R{sub int} factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R{sub int} of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.

  16. The Definition and Ray-Tracing of B-Spline Objects in a Combinatorial Solid Geometric Modeling System

    DTIC Science & Technology

    2013-04-01

    October 1983) . 2. R. F . Riesenfeld, E. Cohen, T . Lyche and C. deBoor, "A Practical Guide to Splines," Com- puter Graphics and Image Processing, New...8. M . A . J. Sweeny, R. H. Bartels, "Ray Tracing Free-Form B-spline Surfaces," IEEE Com- puter Graphics (February 1986). 9. John W. Peterson, "Ray...Geometric Desgin 1(1) (1984) . 13. J. M . Snyder, A H. Barr, "Ray Tracing Complex Models Containing Surface Tessellations," Computer Graphics (Proceedings

  17. [Research on the X-ray fluorescence spectrometry method to determine trace elements in kimberlite].

    PubMed

    Zhang, Lei; Yan, Chuan-wei; Lu, Yi

    2003-04-01

    It is very important to detect trace elements for kilmberlite. Through improving the working conditions of X-ray fluorescence spectrometer and optimizing the analytical conditions, the determination method of trace elements, such as Sc, Cr, Ni, Y, Nb, La, in kimberlite was worked out. The method has been successfully applied to the determination of trace elements in over 2 thousand samples of kimberlite from Liaoning province. The detection limits of the method were relatively low (the detection limit of Sc droped from 9.54 to 2.83 micrograms.g-1 and the detection limit of La droped from 21.68 micrograms.g-1 to 9.18 micrograms.g-1), i.e. 2.83, 2.15, 2.20, 1.17, 1.05 and 9.18 micrograms.g-1 for Sc, Cr, Ni, Y, Nb and La, respectively. The precision of the method was very high with 2.10%-7.09% of RSD (n = 20). Compared with ICP spectrometry this method is satisfactory. The method has proven to be simple and rapid with low cost and high efficiency.

  18. Refractive effects on optical measurement of alveolar volume: a 2-D ray-tracing approach.

    PubMed

    Golabchi, Fatemeh N; Brooks, Dana H; Gouldstone, Andrew; DiMarzio, Charles A

    2011-01-01

    Lung imaging and assessment of alveoli geometry in the lung tissue is of great importance. Optical coherence tomography (OCT) is a real-time imaging technique used for this purpose, based on near-infrared interferometry, that can image several layers of distal alveoli in the lung tissue. The OCT measurements use low coherence interferometry, where light reflections from surfaces in the tissue are used to construct 2D images of the tissue. OCT images provide better depth compared to other optical microscopy techniques such as confocal reflectance and two-photon microscopy. Therefore, it is important to detect and verify optical distortions that happens with OCT, including refractive effect at the tissue-air alveoli wall interface which is not taken into account in the OCT imaging model. In this paper, the refractive effect at the tissue-air interface of the alveoli wall is modeled using exact ray tracing and direct implementation of Snell's law, and differences between alveoli area computed from OCT imaging and those measured by exact ray tracing of the OCT signal are analyzed.

  19. Ray-tracing technique and imaging properties by a PC slab with neff=-1

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Chen, Jiabi; Qian, W.

    2008-12-01

    In recent years, negative refractive media as the representation of new electromagnetic medium has become the front and the very popular researching field, and the production of the flat lens is one of its major applications. In our study, the imaging behaviors by two-dimensional photonic crystal slabs have been investigated systematically. We suggest a ray-tracing technique to discuss the action of photonic crystal slab with negative refraction. The propagation of electromagnetic waves in two-dimensional hexagonal lattice photonic crystal slab is investigated through dispersion characteristics analysis and numerical simulation of field patterns. Imaging and focusing with effective negative refractive index of -1 have been observed in these systems for both polarized waves, that is TE- and TM-polarized point source be considered simultaneously. Based on the exact finite-difference time-domain method to perform numerical simulation and physical analysis, we have demonstrated that the two-dimensional photonic crystal we designed can realize nearly perfect imaging with TM-polarized point source in the near field and far field, and the results are consistent with the ray-tracing technique quite well, while to TE-polarized point source the imaging is not perfect although it have neff=-1 in the same direction.

  20. Fast ray-tracing of human eye optics on Graphics Processing Units.

    PubMed

    Wei, Qi; Patkar, Saket; Pai, Dinesh K

    2014-05-01

    We present a new technique for simulating retinal image formation by tracing a large number of rays from objects in three dimensions as they pass through the optic apparatus of the eye to objects. Simulating human optics is useful for understanding basic questions of vision science and for studying vision defects and their corrections. Because of the complexity of computing such simulations accurately, most previous efforts used simplified analytical models of the normal eye. This makes them less effective in modeling vision disorders associated with abnormal shapes of the ocular structures which are hard to be precisely represented by analytical surfaces. We have developed a computer simulator that can simulate ocular structures of arbitrary shapes, for instance represented by polygon meshes. Topographic and geometric measurements of the cornea, lens, and retina from keratometer or medical imaging data can be integrated for individualized examination. We utilize parallel processing using modern Graphics Processing Units (GPUs) to efficiently compute retinal images by tracing millions of rays. A stable retinal image can be generated within minutes. We simulated depth-of-field, accommodation, chromatic aberrations, as well as astigmatism and correction. We also show application of the technique in patient specific vision correction by incorporating geometric models of the orbit reconstructed from clinical medical images.

  1. MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package

    SciTech Connect

    Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry L.; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent

    2015-11-28

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.

  2. MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package

    DOE PAGES

    Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; ...

    2015-11-28

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less

  3. Immersive Molecular Visualization with Omnidirectional Stereoscopic Ray Tracing and Remote Rendering.

    PubMed

    Stone, John E; Sherman, William R; Schulten, Klaus

    2016-05-01

    Immersive molecular visualization provides the viewer with intuitive perception of complex structures and spatial relationships that are of critical interest to structural biologists. The recent availability of commodity head mounted displays (HMDs) provides a compelling opportunity for widespread adoption of immersive visualization by molecular scientists, but HMDs pose additional challenges due to the need for low-latency, high-frame-rate rendering. State-of-the-art molecular dynamics simulations produce terabytes of data that can be impractical to transfer from remote supercomputers, necessitating routine use of remote visualization. Hardware-accelerated video encoding has profoundly increased frame rates and image resolution for remote visualization, however round-trip network latencies would cause simulator sickness when using HMDs. We present a novel two-phase rendering approach that overcomes network latencies with the combination of omnidirectional stereoscopic progressive ray tracing and high performance rasterization, and its implementation within VMD, a widely used molecular visualization and analysis tool. The new rendering approach enables immersive molecular visualization with rendering techniques such as shadows, ambient occlusion lighting, depth-of-field, and high quality transparency, that are particularly helpful for the study of large biomolecular complexes. We describe ray tracing algorithms that are used to optimize interactivity and quality, and we report key performance metrics of the system. The new techniques can also benefit many other application domains.

  4. Three dimensional ray tracing Jovian magnetosphere in the low frequency range

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    1982-01-01

    Ray tracing of the Jovian magnetosphere in the low frequency range (1+40 MHz) has resulted in a new understanding of the source mechanism for Io dependent decametric radiation (DAM). Our three dimensional ray tracing computer code has provided model DAM arcs at 10 deg. intervals of Io longitude source positions for the full 360 deg of Jovian system III longitude. In addition, particularly interesting arcs were singled out for detailed study and modelling. Dependent decametric radiation arcs are categorized according to curvature--the higher curvature arcs are apparently due to wave stimulation at a nonconstant wave normal angle, psi. The psi(f) relationship has a signature that is common to most of the higher curvature arcs. The low curvature arcs, on the other hand, are adequately modelled with a constant wave normal angle of close to 90 deg. These results imply that for higher curvature arcs observed for from Jupiter (to diminish spacecraft motion effects) the electrons providing the gyroemission are relativistically beamed.

  5. MCViNE - An object oriented Monte Carlo neutron ray tracing simulation package

    NASA Astrophysics Data System (ADS)

    Lin, Jiao Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent

    2016-02-01

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.

  6. Monte Carlo tolerancing tool using nonsequential ray tracing on a computer cluster

    NASA Astrophysics Data System (ADS)

    Reimer, Christopher

    2010-08-01

    The development of a flexible tolerancing tool for illumination systems based on Matlab® and Zemax® is described in this paper. Two computationally intensive techniques are combined, Monte Carlo tolerancing and non-sequential ray tracing. Implementation of the tool on a computer cluster allows for relatively rapid tolerancing. This paper explores the tool structure, describing the splitting the task of tolerancing between Zemax and Matlab. An equation is derived that determines the number of simulated ray traces needed to accurately resolve illumination uniformity. Two examples of tolerancing illuminators are given. The first one is a projection system consisting of a pico-DLP, a light pipe, a TIR prism and the critical illumination relay optics. The second is a wide band, high performance Köhler illuminator, which includes a modified molded LED as the light source. As high performance illumination systems evolve, the practice of applying standard workshop tolerances to these systems may need to be re-examined.

  7. Reviewed approach to defining the Active Interlock Envelope for Front End ray tracing

    SciTech Connect

    Seletskiy, S.; Shaftan, T.

    2015-09-24

    To protect the NSLS-II Storage Ring (SR) components from damage from synchrotron radiation produced by insertion devices (IDs) the Active Interlock (AI) keeps electron beam within some safe envelope (a.k.a Active Interlock Envelope or AIE) in the transverse phase space. The beamline Front Ends (FEs) are designed under assumption that above certain beam current (typically 2 mA) the ID synchrotron radiation (IDSR) fan is produced by the interlocked e-beam. These assumptions also define how the ray tracing for FE is done. To simplify the FE ray tracing for typical uncanted ID it was decided to provide the Mechanical Engineering group with a single set of numbers (x,x’,y,y’) for the AIE at the center of the long (or short) ID straight section. Such unified approach to the design of the beamline Front Ends will accelerate the design process and save valuable human resources. In this paper we describe our new approach to defining the AI envelope and provide the resulting numbers required for design of the typical Front End.

  8. Immersive Molecular Visualization with Omnidirectional Stereoscopic Ray Tracing and Remote Rendering

    PubMed Central

    Stone, John E.; Sherman, William R.; Schulten, Klaus

    2016-01-01

    Immersive molecular visualization provides the viewer with intuitive perception of complex structures and spatial relationships that are of critical interest to structural biologists. The recent availability of commodity head mounted displays (HMDs) provides a compelling opportunity for widespread adoption of immersive visualization by molecular scientists, but HMDs pose additional challenges due to the need for low-latency, high-frame-rate rendering. State-of-the-art molecular dynamics simulations produce terabytes of data that can be impractical to transfer from remote supercomputers, necessitating routine use of remote visualization. Hardware-accelerated video encoding has profoundly increased frame rates and image resolution for remote visualization, however round-trip network latencies would cause simulator sickness when using HMDs. We present a novel two-phase rendering approach that overcomes network latencies with the combination of omnidirectional stereoscopic progressive ray tracing and high performance rasterization, and its implementation within VMD, a widely used molecular visualization and analysis tool. The new rendering approach enables immersive molecular visualization with rendering techniques such as shadows, ambient occlusion lighting, depth-of-field, and high quality transparency, that are particularly helpful for the study of large biomolecular complexes. We describe ray tracing algorithms that are used to optimize interactivity and quality, and we report key performance metrics of the system. The new techniques can also benefit many other application domains. PMID:27747138

  9. Towards adaptive, streaming analysis of x-ray tomography data

    SciTech Connect

    Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.; Kuprat, Andrew P.; Carson, James P.; Lansing, Carina S.; Guillen, Zoe C.; Miller, Erin A.; Lanekoff, Ingela; Laskin, Julia

    2015-03-04

    Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing a framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.

  10. Use of Synchrotron X-ray Fluorescence to Measure Trace Metal Distribution in the Brain

    NASA Astrophysics Data System (ADS)

    Linkous, D.; Flinn, J. M.; Lanzirotti, A.; Frederickson, C.; Jones, B. F.; Bertsch, P. M.

    2002-12-01

    X26A, National Synchrotron Light Source, was used to quantitatively evaluate the spatial distribution of trace metals, such as Zn and Cu, in brain tissue. X-ray microprobe techniques offer distinct advantages over other analytical methods by allowing analyses to be done in-situ with little or no chemical pretreatment and low detection limits (about 1 ppm). In the context of neuroscience, SXRF can provide non-destructive measurements of specific metal concentrations and distribution within nerve (brain) tissue. Neuronal tissue from organisms having undergone different normal or experimental conditions may be compared, with analytical capacities not limited by binding states of the metal (i.e., vesicular or enzymatic), as is the case with staining techniques.. Whole regions of tissue may be scanned for detectable trace metals at spatial resolutions of 10um or less using focused monochromatic x-ray beams. Here special attention has been given to zinc because it is the most common trace metal in the brain, and levels have been increasing in the environment. In this investigation, zinc concentrations present within the hilus of a rat hippocampus, and to a lesser extent in the cortex, have been shown to increase following long-term ingestion of zinc-enhanced drinking water that was associated with deficits in spatial memory. Concomitantly, copper concentrations in the internal capsule were comparatively lower. Other first order transition metals, Cr, V, Mn, and Co were not detected. In contrast, elevated levels of Zn, Cu, and Fe have been seen in amyloid plaques associated with Alzheimer's disease.

  11. Ray tracing based path-length calculations for polarized light tomographic imaging

    NASA Astrophysics Data System (ADS)

    Manjappa, Rakesh; Kanhirodan, Rajan

    2015-09-01

    A ray tracing based path length calculation is investigated for polarized light transport in a pixel space. Tomographic imaging using polarized light transport is promising for applications in optical projection tomography of small animal imaging and turbid media with low scattering. Polarized light transport through a medium can have complex effects due to interactions such as optical rotation of linearly polarized light, birefringence, di-attenuation and interior refraction. Here we investigate the effects of refraction of polarized light in a non-scattering medium. This step is used to obtain the initial absorption estimate. This estimate can be used as prior in Monte Carlo (MC) program that simulates the transport of polarized light through a scattering medium to assist in faster convergence of the final estimate. The reflectance for p-polarized (parallel) and s-polarized (perpendicular) are different and hence there is a difference in the intensities that reach the detector end. The algorithm computes the length of the ray in each pixel along the refracted path and this is used to build the weight matrix. This weight matrix with corrected ray path length and the resultant intensity reaching the detector for each ray is used in the algebraic reconstruction (ART) method. The proposed method is tested with numerical phantoms for various noise levels. The refraction errors due to regions of different refractive index are discussed, the difference in intensities with polarization is considered. The improvements in reconstruction using the correction so applied is presented. This is achieved by tracking the path of the ray as well as the intensity of the ray as it traverses through the medium.

  12. "Enhanced" Ray Tracing Study of the Attenuation Lanes in Jupiter's Hectometric Radio Emission By Using Cassini Jupiter Encounter Data

    NASA Astrophysics Data System (ADS)

    Imai, M.; Lecacheux, A.

    2014-12-01

    Cassini Jupiter encounter, in the late 2000 and the early 2001, revealed persistent properties of Jovian hectometric (HOM) radiation, which is produced along auroral magnetic field lines in the polar regions of Jupiter. One of the unique properties - known as attenuation lanes (or so-called attenuation bands) - appears as a recurrent, well defined intensity extinction/enhancement feature in the HOM dynamic spectrum. It is believed that this phenomenon is the consequence of ray refraction from high-density medium - either (1) the field-aligned enhanced density along Io plasma torus or (2) Io plasma torus itself or both - in the course of radio propagation from the radio source to the observer. Many studies, mainly on case (1), have used standard ray-tracing technique, which cannot provide reliable information on transmitted radiation intensity. In this study, we have investigated case (2) by using an "enhanced" ray-tracing technique, in which a family of neighboring rays is simultaneously traced, allowing the physical intensity to be estimated along the ray path. We show the results of our ray-tracing computations and then suggest the most plausible scenario for the attenuation lanes phenomenon. More generally and from this example, we conclude that existing refracting plasma structures, encountered by radiation along its ray path through the planetary magnetosphere, might strongly affect, while not taken into account, the overall properties of the radio emission measured by a distant observer.

  13. Adapting an Ant Colony Metaphor for Multi-Robot Chemical Plume Tracing

    PubMed Central

    Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Li, Fei; Zeng, Ming

    2012-01-01

    We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization problem in continuous domains. The traditional ant colony optimization (ACO) algorithm has been successfully used for combinatorial optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous search area is discretized into grids and the virtual pheromone is updated according to both the gas concentration and wind information. To prevent the adapted ACO algorithm from being prematurely trapped in a local optimum, the upwind surge behavior is adopted by the robots with relatively higher gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also examined for comparison. Experimental results using multiple real robots in two indoor natural ventilated airflow environments show that the proposed CPT method performs better than the SS algorithm. The simulation results for large-scale advection-diffusion plume environments show that the proposed method could also work in outdoor meandering plume environments. PMID:22666056

  14. Adapting an ant colony metaphor for multi-robot chemical plume tracing.

    PubMed

    Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Li, Fei; Zeng, Ming

    2012-01-01

    We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization problem in continuous domains. The traditional ant colony optimization (ACO) algorithm has been successfully used for combinatorial optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous search area is discretized into grids and the virtual pheromone is updated according to both the gas concentration and wind information. To prevent the adapted ACO algorithm from being prematurely trapped in a local optimum, the upwind surge behavior is adopted by the robots with relatively higher gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also examined for comparison. Experimental results using multiple real robots in two indoor natural ventilated airflow environments show that the proposed CPT method performs better than the SS algorithm. The simulation results for large-scale advection-diffusion plume environments show that the proposed method could also work in outdoor meandering plume environments.

  15. Thermal emissions of a two-dimensional graded-index medium solved using a high-precision numerical ray-tracing technique

    NASA Astrophysics Data System (ADS)

    Guo-Dong, Shi; Yong, Huang; Ke-Yong, Zhu

    2016-06-01

    A Runge-Kutta ray-tracing method for determining the thermal emissions of a two-dimensional semitransparent graded-index medium has been developed for this study. A backward ray-tracing method and a backward Monte Carlo method were employed in the calculations. The emission characteristics of a linear refractive index medium were investigated. The results of the Runge-Kutta ray-tracing method were shown to agree well with previously obtained exact solutions. The apparent emissivities of a radial refractive index medium obtained using the Runge-Kutta ray-tracing method fit the analytical solutions well. However, for a sinusoidally distributed nonlinear refractive index medium, the Runge-Kutta ray-tracing method revised emissivity results differed from the results of a linear refractive index bar model at certain angles. The results show that the Runge-Kutta ray-tracing method is effective in dealing with the radiative transfer problems of multidimensional graded index media.

  16. GPU-based four-dimensional general-relativistic ray tracing

    NASA Astrophysics Data System (ADS)

    Kuchelmeister, Daniel; Müller, Thomas; Ament, Marco; Wunner, Günter; Weiskopf, Daniel

    2012-10-01

    This paper presents a new general-relativistic ray tracer that enables image synthesis on an interactive basis by exploiting the performance of graphics processing units (GPUs). The application is capable of visualizing the distortion of the stellar background as well as trajectories of moving astronomical objects orbiting a compact mass. Its source code includes metric definitions for the Schwarzschild and Kerr spacetimes that can be easily extended to other metric definitions, relying on its object-oriented design. The basic functionality features a scene description interface based on the scripting language Lua, real-time image output, and the ability to edit almost every parameter at runtime. The ray tracing code itself is implemented for parallel execution on the GPU using NVidia's Compute Unified Device Architecture (CUDA), which leads to performance improvement of an order of magnitude compared to a single CPU and makes the application competitive with small CPU cluster architectures. Program summary Program title: GpuRay4D Catalog identifier: AEMV_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 73649 No. of bytes in distributed program, including test data, etc.: 1334251 Distribution format: tar.gz Programming language: C++, CUDA. Computer: Linux platforms with a NVidia CUDA enabled GPU (Compute Capability 1.3 or higher), C++ compiler, NVCC (The CUDA Compiler Driver). Operating system: Linux. RAM: 2 GB Classification: 1.5. External routines: OpenGL Utility Toolkit development files, NVidia CUDA Toolkit 3.2, Lua5.2 Nature of problem: Ray tracing in four-dimensional Lorentzian spacetimes. Solution method: Numerical integration of light rays, GPU-based parallel programming using CUDA, 3D

  17. A new 3-D ray tracing method based on LTI using successive partitioning of cell interfaces and traveltime gradients

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Zhang, Ting-Ting; Zhang, Xiao-Lei; Yang, Yan; Hu, Ying; Qin, Qian-Qing

    2013-05-01

    We present a new method of three-dimensional (3-D) seismic ray tracing, based on an improvement to the linear traveltime interpolation (LTI) ray tracing algorithm. This new technique involves two separate steps. The first involves a forward calculation based on the LTI method and the dynamic successive partitioning scheme, which is applied to calculate traveltimes on cell boundaries and assumes a wavefront that expands from the source to all grid nodes in the computational domain. We locate several dynamic successive partition points on a cell's surface, the traveltimes of which can be calculated by linear interpolation between the vertices of the cell's boundary. The second is a backward step that uses Fermat's principle and the fact that the ray path is always perpendicular to the wavefront and follows the negative traveltime gradient. In this process, the first-arriving ray path can be traced from the receiver to the source along the negative traveltime gradient, which can be calculated by reconstructing the continuous traveltime field with cubic B-spline interpolation. This new 3-D ray tracing method is compared with the LTI method and the shortest path method (SPM) through a number of numerical experiments. These comparisons show obvious improvements to computed traveltimes and ray paths, both in precision and computational efficiency.

  18. X-rays across the galaxy population - I. Tracing the main sequence of star formation

    NASA Astrophysics Data System (ADS)

    Aird, J.; Coil, A. L.; Georgakakis, A.

    2017-03-01

    We use deep Chandra imaging to measure the distribution of X-ray luminosities (LX) for samples of star-forming galaxies as a function of stellar mass and redshift, using a Bayesian method to push below the nominal X-ray detection limits. Our luminosity distributions all show narrow peaks at LX ≲ 1042 erg s-1 that we associate with star formation, as opposed to AGN that are traced by a broad tail to higher LX. Tracking the luminosity of these peaks as a function of stellar mass reveals an 'X-ray main sequence' with a constant slope ≈0.63 ± 0.03 over 8.5 ≲ log {M}_{ast }/M_{⊙} ≲ 11.5 and 0.1 ≲ z ≲ 4, with a normalization that increases with redshift as (1 + z)3.79 ± 0.12. We also compare the peak X-ray luminosities with UV-to-IR tracers of star formation rates (SFRs) to calibrate the scaling between LX and SFR. We find that LX ∝ SFR0.83 × (1 + z)1.3, where the redshift evolution and non-linearity likely reflect changes in high-mass X-ray binary populations of star-forming galaxies. Using galaxies with a broader range of SFR, we also constrain a stellar-mass-dependent contribution to LX, likely related to low-mass X-ray binaries. Using this calibration, we convert our X-ray main sequence to SFRs and measure a star-forming main sequence with a constant slope ≈0.76 ± 0.06 and a normalization that evolves with redshift as (1 + z)2.95 ± 0.33. Based on the X-ray emission, there is no evidence for a break in the main sequence at high stellar masses, although we cannot rule out a turnover given the uncertainties in the scaling of LX to SFR.

  19. An x-ray microprobe beam line for trace element analysis

    SciTech Connect

    Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kwiatek, W.M.; Long, G.J.; Pounds, J.G.; Schidlovsky, G.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1987-01-01

    The application of synchrotron radiation to an x-ray microprobe for trace element analysis is a complementary and natural extension of existing microprobe techniques using electrons, protons, and heavier ions as excitation sources for x-ray fluorescence. The ability to focus charged particles leads to electron microprobes with spatial resolutions in the sub-micrometer range and down to 100 ppM detection limits and proton microprobes with micrometer resolution and ppM detection limits. The characteristics of synchrotron radiation that prove useful for microprobe analysis include a broad and continuous energy spectrum, a relatively small amount of radiation damage compared to that deposited by charged particles, a highly polarized source which reduces background scattered radiation in an appropriate counting geometry, and a small vertical divergence angle of approx.0.2 mrad which allows for focussing of the light beam into a small spot with high flux. The features of a dedicated x-ray microprobe beam line developed at the National Synchrotron Light Source (NSLS) are described. 4 refs., 3 figs.

  20. Determination of minor and trace elements in kidney stones by x-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Srivastava, Anjali; Heisinger, Brianne J.; Sinha, Vaibhav; Lee, Hyong-Koo; Liu, Xin; Qu, Mingliang; Duan, Xinhui; Leng, Shuai; McCollough, Cynthia H.

    2014-03-01

    The determination of accurate material composition of a kidney stone is crucial for understanding the formation of the kidney stone as well as for preventive therapeutic strategies. Radiations probing instrumental activation analysis techniques are excellent tools for identification of involved materials present in the kidney stone. In particular, x-ray fluorescence (XRF) can be very useful for the determination of minor and trace materials in the kidney stone. The X-ray fluorescence measurements were performed at the Radiation Measurements and Spectroscopy Laboratory (RMSL) of department of nuclear engineering of Missouri University of Science and Technology and different kidney stones were acquired from the Mayo Clinic, Rochester, Minnesota. Presently, experimental studies in conjunction with analytical techniques were used to determine the exact composition of the kidney stone. A new type of experimental set-up was developed and utilized for XRF analysis of the kidney stone. The correlation of applied radiation source intensity, emission of X-ray spectrum from involving elements and absorption coefficient characteristics were analyzed. To verify the experimental results with analytical calculation, several sets of kidney stones were analyzed using XRF technique. The elements which were identified from this techniques are Silver (Ag), Arsenic (As), Bromine (Br), Chromium (Cr), Copper (Cu), Gallium (Ga), Germanium (Ge), Molybdenum (Mo), Niobium (Nb), Rubidium (Rb), Selenium (Se), Strontium (Sr), Yttrium (Y), Zirconium (Zr). This paper presents a new approach for exact detection of accurate material composition of kidney stone materials using XRF instrumental activation analysis technique.

  1. Mapping gray-scale image to 3D surface scanning data by ray tracing

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jones, Peter R. M.

    1997-03-01

    The extraction and location of feature points from range imaging is an important but difficult task in machine vision based measurement systems. There exist some feature points which are not able to be detected from pure geometric characteristics, particularly in those measurement tasks related to the human body. The Loughborough Anthropometric Shadow Scanner (LASS) is a whole body surface scanner based on structured light technique. Certain applications of LASS require accurate location of anthropometric landmarks from the scanned data. This is sometimes impossible from existing raw data because some landmarks do not appear in the scanned data. Identification of these landmarks has to resort to surface texture of the scanned object. Modifications to LASS were made to allow gray-scale images to be captured before or after the object was scanned. Two-dimensional gray-scale image must be mapped to the scanned data to acquire the 3D coordinates of a landmark. The method to map 2D images to the scanned data is based on the colinearity conditions and ray-tracing method. If the camera center and image coordinates are known, the corresponding object point must lie on a ray starting from the camera center and connecting to the image coordinate. By intersecting the ray with the scanned surface of the object, the 3D coordinates of a point can be solved. Experimentation has demonstrated the feasibility of the method.

  2. Ray-tracing based registration for HRCT images of the lungs.

    PubMed

    Busayara, Sata; Zrimec, Tatjana

    2006-01-01

    Image registration is a fundamental problem in medical imaging. It is especially challenging in lung images compared, for example, with the brain. The challenges include large anatomical variations of human lung and a lack of fixed landmarks inside the lung. This paper presents a new method for lung HRCT image registration. It employs a landmark-based global transformation and a novel ray-tracing-based lung surface registration. The proposed surface registration method has two desirable properties: 1) it is fully reversible, and 2) it ensures that the registered lung will be inside the target lung. We evaluated the registration performance by applying it to lung regions mapping. Tested on 46 scans, the registered regions were 89% accurate compared with the ground-truth.

  3. Modeling of thermoplastic composites laser welding - A ray tracing method associated to thermal simulation

    NASA Astrophysics Data System (ADS)

    Dauphin, Myriam; Cosson, Benoit

    2016-10-01

    The importance of the absorption phenomenon occurring into the semi-transparent substrate of reinforced fiber thermoplastic, during the Laser Transmission Welding process (LTW), was examined. A (3D) transient thermal model of LTW was developed. First, the energy distribution coming from the laser irradiation was assessed. Ray tracing techniques allowed us to deal with both absorption and a strong light-scattering caused by the heterogeneity of composite. Then, the energy balance equation was solved in order to study the heating stage. This paper proposes a comparison of the welding area obtained with a model for which absorption was neglected and a second model where absorption was considered. The interest to consider absorption was shown for process optimization purposes and for the use of reinforced composites colored or filled with additives.

  4. The Dubbelman eye model analysed by ray tracing through aspheric surfaces.

    PubMed

    Norrby, Sverker

    2005-03-01

    Dubbelman and co-workers have determined intraocular spacings and surface shapes in living eyes by means of corrected Scheimpflug images in a large number of subjects of different age at several levels of accommodation. They give relationships for key anterior segment parameters as a function of age and level of accommodation. These are used in this paper to build a schematic eye incorporating aspheric surfaces. This eye model is analysed by means of ray tracing with a technique developed for use with a common spreadsheet computer program. The Dubbelman eye model appears to be well corrected for spherical aberration. Compared with measurements on real eyes it agrees well in general, but spherical aberration is negative, while in real eyes it tends to be positive.

  5. Simulation of radiation damping in rings, using stepwise ray-tracing methods

    DOE PAGES

    Meot, F.

    2015-06-26

    The ray-tracing code Zgoubi computes particle trajectories in arbitrary magnetic and/or electric field maps or analytical field models. It includes a built-in fitting procedure, spin tracking many Monte Carlo processes. The accuracy of the integration method makes it an efficient tool for multi-turn tracking in periodic machines. Energy loss by synchrotron radiation, based on Monte Carlo techniques, had been introduced in Zgoubi in the early 2000s for studies regarding the linear collider beam delivery system. However, only recently has this Monte Carlo tool been used for systematic beam dynamics and spin diffusion studies in rings, including eRHIC electron-ion collider projectmore » at the Brookhaven National Laboratory. Some beam dynamics aspects of this recent use of Zgoubi capabilities, including considerations of accuracy as well as further benchmarking in the presence of synchrotron radiation in rings, are reported here.« less

  6. Simulation of radiation damping in rings, using stepwise ray-tracing methods

    SciTech Connect

    Meot, F.

    2015-06-26

    The ray-tracing code Zgoubi computes particle trajectories in arbitrary magnetic and/or electric field maps or analytical field models. It includes a built-in fitting procedure, spin tracking many Monte Carlo processes. The accuracy of the integration method makes it an efficient tool for multi-turn tracking in periodic machines. Energy loss by synchrotron radiation, based on Monte Carlo techniques, had been introduced in Zgoubi in the early 2000s for studies regarding the linear collider beam delivery system. However, only recently has this Monte Carlo tool been used for systematic beam dynamics and spin diffusion studies in rings, including eRHIC electron-ion collider project at the Brookhaven National Laboratory. Some beam dynamics aspects of this recent use of Zgoubi capabilities, including considerations of accuracy as well as further benchmarking in the presence of synchrotron radiation in rings, are reported here.

  7. Total reflection X-ray fluorescence analysis of trace-elements in candies marketed in Mexico

    NASA Astrophysics Data System (ADS)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2010-06-01

    Trace metals concentrations in food are significant for nutrition, due either to their nature or toxicity. Sweets, including chewing gum and candies, are not exactly a food, but they usually are unwearied consumed by children, the most vulnerable age-group to any kind of metal contamination in the food chain. The presence of relatively high concentrations of heavy metals such as Lead elicits concern since children are highly susceptible to heavy metals poisoning. Trace-metals concentrations were determined for six different flavors of a Mexican candy by means of Total X-ray Fluorescence Spectrometry. Triplicate samples of the various candy's flavours (strawberry, pineapple, lemon, blackberry, orange and chilli) were digested in 8 mL of a mix of supra-pure HNO 3 and H 2O 2 (6 mL: 2 mL) in a microwave oven MARS-X. Results show the presence of essential and toxic elements such as Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, and Pb. All metal concentrations were higher and significantly different ( α = 0.05) in chilli candy, compared to other candy flavours. Lead concentration fluctuated in the range of 0.102 to 0.342 μg g - 1 . A discussion about risk consumption and concentration allowed by Mexican and International Norms is made. As a part of the Quality Control Program, a NIST standard of "Citrus Leaves" and a blank were treated in the same way.

  8. P velocity within the Tonga Benioff zone determined from traced rays and observations

    SciTech Connect

    Huppert, L.N.; Frohlich, C.

    1981-05-10

    P waves with travel time residuals between 0 s and -12 s are observed at regional stations in Samoa (AFI) and Raoul Island (RAO) for 39 earthquakes in Tonga with focal depths between 70 km and 300 km. These anomalously large residuals apparently are produced because seismic phases travel along the strike of the Tonga Benioff zone within the high-velocity subducted lithosphere for up to 1200 km before arriving at AFI and RAO. To eliminate erroneous residuals caused by poor event locations, we selected 11 stations and reread the available P times at these stations for the 39 events. These arrivals and (pP-P) intervals were used to relocate the events using variant of the joint hypocenter determination method. Then the pattern of residuals at AFI and RAO (not used in the relocation) was compared to the pattern of residuals expected for various models of the subducted lithosphere, as determined by ray tracing. The observed pattern of residuals at AFI is consistent with the ray-traced models if some of the first arrivals are produced by rays traveling directly along the strike of the subducting lithosphere, and if others are produced by rays which reflected once off the upper surface of the subducting lithosphere before arriving at AFI. The observed residuals can be explained by a model where the P velocity in the subducted lithosphere is 8% higher than the velocity in the Herrin model. The residuals are fit even better by a layered slab model in which the seismic velocity is about 6% higher than the Herrin velocity at the upper surface of the subducted lithosphere and about 9% higher at the bottom of the slab. These velocity contrasts could be produced if the temperature in the slab was 700 /sup 0/C cooler than the surrounding mantle, and if there were no partially melted material within the slab. These large residuals suggest that the high velocity region in the upper 300 km of the mantle beneath Tonga must be fairly continuous over distances of 1000 km and more.

  9. A test of Hapke’s model by means of Monte Carlo ray-tracing

    NASA Astrophysics Data System (ADS)

    Ciarniello, Mauro; Capaccioni, Fabrizio; Filacchione, Gianrico

    2014-07-01

    One of the most applied solution of the radiative transfer equation for a particulate medium is the so called Hapke’s model. It is widely used to describe the photometric output of the surfaces of atmosphereless bodies of the Solar System and to interpret remote sensing data. In this paper we use a Monte Carlo routine which simulates ray-tracing in particulate media to test three formulations of the Hapke’s model: IMSA (Isotropic Multiple Scattering Approximation), AMSA (Anisotropic Multiple Scattering Approximation) and an updated version of the model described in Hapke (Hapke, B. [2008]. Icarus 195, 918-926) (from now on H2008). While IMSA and AMSA assume a continuos medium, H2008 accounts for the discreteness of a particulate medium (regolith) and introduces a dependence of the photometric output on the filling factor. Using Monte Carlo ray-tracing we have simulated photometric output of media with different porosities and scattering behaviors (isotropic, back-scattering and forward-scattering). The Shadow Hiding Opposition Effect (SHOE) has been investigated as well. What emerges from this analysis is that H2008 is the most appropriate model to describe the photometric output of particulate media with arbitrary porosities, far from the opposition effect regime, and it is also able to characterize anisotropic scattering, unless the medium exhibits a strongly forward-scattering behavior. On the contrary, IMSA and AMSA models are effective only for sparse materials with a filling factor of the order of 0.01. Surprisingly the former provides a better description also in the anisotropic scattering case.

  10. Parry Arc: A Polarization Lidar, Ray-Tracing, and Aircraft Case Study

    NASA Astrophysics Data System (ADS)

    Sassen, Kenneth; Takano, Yoshihide

    2000-12-01

    Using simple ray-tracing simulations, the cause of the rare Parry arc has been linked historically to horizontally oriented columns that display the peculiar ability to fall with a pair of prism faces closely parallel to the ground. Although we understand the aerodynamic forces that orient the long-column axis in the horizontal plane, which gives rise to the relatively common tangent arcs of the 22 halo, the mechanism leading to the Parry crystal orientation has never been resolved adequately. On 16 November 1998, at the University of Utah Facility for Atmospheric Remote Sensing, we studied a cirrus cloud producing a classic upper Parry arc using polarization lidar and an aircraft with a new high-resolution ice crystal imaging probe. Scanning lidar data, which reveal extremely high linear depolarization ratios a few degrees off the zenith direction, are simulated with ray-tracing theory to determine the ice crystal properties that reproduce this previously unknown behavior. It is found that a limited range of thick-plate crystal axis (length-to-diameter) ratios from 0.75 to 0.93 generates a maximum 2.0 5.0 for vertically polarized 0.532- m light when the lidar is tilted 1 2 off the zenith. Halo simulations based on these crystal properties also generate a Parry arc. However, although such particles are abundant in the in situ data in the height interval indicated by the lidar, one still has to invoke an aerodynamic stabilization force to produce properly oriented particles. Although we speculate on a possible mechanism, further research is needed into this new explanation for the Parry arc.

  11. Parry arc: a polarization lidar, ray-tracing, and aircraft case study.

    PubMed

    Sassen, K; Takano, Y

    2000-12-20

    Using simple ray-tracing simulations, the cause of the rare Parry arc has been linked historically to horizontally oriented columns that display the peculiar ability to fall with a pair of prism faces closely parallel to the ground. Although we understand the aerodynamic forces that orient the long-column axis in the horizontal plane, which gives rise to the relatively common tangent arcs of the 22 degrees halo, the mechanism leading to the Parry crystal orientation has never been resolved adequately. On 16 November 1998, at the University of Utah Facility for Atmospheric Remote Sensing, we studied a cirrus cloud producing a classic upper Parry arc using polarization lidar and an aircraft with a new high-resolution ice crystal imaging probe. Scanning lidar data, which reveal extremely high linear depolarization ratios delta a few degrees off the zenith direction, are simulated with ray-tracing theory to determine the ice crystal properties that reproduce this previously unknown behavior. It is found that a limited range of thick-plate crystal axis (length-to-diameter) ratios from approximately 0.75 to 0.93 generates a maximum delta approximately 2.0-5.0 for vertically polarized 0.532-microm light when the lidar is tilted 1 degrees -2 degrees off the zenith. Halo simulations based on these crystal properties also generate a Parry arc. However, although such particles are abundant in the in situ data in the height interval indicated by the lidar, one still has to invoke an aerodynamic stabilization force to produce properly oriented particles. Although we speculate on a possible mechanism, further research is needed into this new explanation for the Parry arc.

  12. Tracing the Lowest Propeller Line in Magellanic High-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Christodoulou, Dimitris M.; Laycock, Silas G. T.; Yang, Jun; Fingerman, Samuel

    2016-09-01

    We have combined the published observations of high-mass X-ray binary (HMXB) pulsars in the Magellanic Clouds with a new processing of the complete archival data sets from the XMM-Newton and Chandra observatories in an attempt to trace the lowest propeller line below which accretion to polar caps is inhibited by the centrifugal force and the pulsations from the most weakly magnetized pulsars cease. Previously published data reveal that some of the faster-spinning pulsars with spin periods of P S < 12 s, detected at relatively low X-ray luminosities L X , appear to define such a line in the P S -L X diagram, characterized by a magnetic moment of μ = 3 × 1029 G cm3. This value implies the presence of surface magnetic fields of B ≥ 3 × 1011 G in the compact objects of this class. Only a few quiescent HMXBs are found below the propeller line: LXP4.40 and SXP4.78, for which XMM-Newton and Chandra null detections respectively placed firm upper limits on their X-ray fluxes in deep quiescence; and A0538-66, for which many sub-Eddington detections have never measured any pulsations. On the other hand, the data from the XMM-Newton and Chandra archives show clearly that, during routine observation cycles, several sources have been detected below the propeller line in extremely faint, nonpulsating states that can be understood as the result of weak magnetospheric emission when accretion to the poles is centrifugally stalled or severely diminished. We also pay attention to the anomalous X-ray pulsar CXOU J010043.1-721134 that was reported in HMXB surveys. Its pulsations and locations near and above the propeller line indicate that this pulsar could be accreting from a fossil disk.

  13. Adaptive Gene Loss? Tracing Back the Pseudogenization of the Rabbit CCL8 Chemokine.

    PubMed

    van der Loo, Wessel; Magalhaes, Maria João; de Matos, Ana Lemos; Abrantes, Joana; Yamada, Fumio; Esteves, Pedro J

    2016-08-01

    Studies of the process of pseudogenization have widened our understanding of adaptive evolutionary change. In Rabbit, an alteration at the second extra-cellular loop of the CCR5 chemokine receptor was found to be associated with the pseudogenization of one of its prime ligands, the chemokine CCL8. This relationship has raised questions about the existence of a causal link between both events, which would imply adaptive gene loss. This hypothesis is evaluated here by tracing back the history of the genetic modifications underlying the chemokine pseudogenization. The obtained data indicate that mutations at receptor and ligand genes occurred after the lineage split of New World Leporids versus Old World Leporids and prior to the generic split of the of Old World species studied, which occurred an estimated 8-9 million years ago. More important, they revealed the emergence, before this zoographical split, of a "slippery" nucleotide motif (CCCCGGG) at the 3' region of CCL8-exon2. Such motives are liable of generating +1G or -1G frameshifts, which could, however, be overcome by "translesion" synthesis or somatic reversion. The CCL8 pseudogenization in the Old World lineage was apparently initiated by three synapomorphic point mutations at the exon2-intron2 boundary which provide at short range premature terminating codons, independently of the reading frame imposed by the slippery motif. The presence of this motif in New World Leporids might allow verifying this scenario. The importance of CCL8-CCR5 signaling in parasite-host interaction would suggest that the CCL8 knock-out in Old World populations might be related to changes in pathogenic environment.

  14. High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction.

    PubMed

    Xing, Shujun; Sang, Xinzhu; Yu, Xunbo; Duo, Chen; Pang, Bo; Gao, Xin; Yang, Shenwu; Guan, YanXin; Yan, Binbin; Yuan, Jinhui; Wang, Kuiru

    2017-01-09

    A high-efficient computer-generated integral imaging (CGII) method is presented based on the backward ray-tracing technique. In traditional CGII methods, the total rendering time is long, because a large number of cameras are established in the virtual world. The ray origin and the ray direction for every pixel in elemental image array are calculated with the backward ray-tracing technique, and the total rendering time can be noticeably reduced. The method is suitable to create high quality integral image without the pseudoscopic problem. Real time and non-real time CGII rendering images and optical reconstruction are demonstrated, and the effectiveness is verified with different types of 3D object models. Real time optical reconstruction with 90 × 90 viewpoints and the frame rate above 40 fps for the CGII 3D display are realized without the pseudoscopic problem.

  15. EIGEN: A program to compute eigenrays from HARPA (Hamiltonian Acoustic Ray-Tracing Program for the Atmosphere)/HARPO (Hamiltonian Acoustic Ray-Tracing Program for the Ocean) raysets

    NASA Astrophysics Data System (ADS)

    Weickmann, A. M.; Riley, J. P.; Georges, T. M.; Jones, R. M.

    1989-02-01

    EIGEN is a FORTRAN computer program that processes the rayset (machine-readable) output of the HARPA and HARPO acoustic ray-tracing programs. It interpolates in elevation angle to find the eigenrays that connect the source and a specified receiver. It also creates plots of range vs. elevation angle and range vs. travel time.

  16. Fast and accurate 3-D ray tracing using bilinear traveltime interpolation and the wave front group marching

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Huang, Yueqin; Song, Lin-Ping; Liu, Qing-Huo

    2011-03-01

    We propose a new ray tracing technique in a 3-D heterogeneous isotropic media based on bilinear traveltime interpolation and the wave front group marching. In this technique, the media is discretized into a series of rectangular cells. There are two steps to be carried out: one is a forward step where wave front expansion is evolved from sources to whole computational domain and the subsequent one is a backward step where ray paths are calculated for any source-receiver configuration as desired. In the forward step, we derive a closed-form expression to calculate traveltime at an arbitrary point in a cell using a bilinear interpolation of the known traveltimes on the cell's surface. Then the group marching method (GMM), a fast wave front advancing method, is applied to expand the wave front from the source to all girds. In the backward step, ray paths starting from receivers are traced by finding the intersection points of potential ray propagation vectors with the surfaces of relevant cells. In this step, the same TI scheme is used to compute the candidate intersection points on all surfaces of each relevant cell. In this process, the point with the minimum traveltime is selected as a ray point from which the similar step is continued until sources. A number of numerical experiments demonstrate that our 3-D ray tracing technique is able to achieve very accurate computation of traveltimes and ray paths and meanwhile take much less computer time in comparison with the existing popular ones like the finite-difference-based GMM method, which is combined with the maximum gradient ray tracing, and the shortest path method.

  17. Three-dimensional ray tracing for refractive correction of human eye ametropies

    NASA Astrophysics Data System (ADS)

    Jimenez-Hernandez, J. A.; Diaz-Gonzalez, G.; Trujillo-Romero, F.; Iturbe-Castillo, M. D.; Juarez-Salazar, R.; Santiago-Alvarado, A.

    2016-09-01

    Ametropies of the human eye, are refractive defects hampering the correct imaging on the retina. The most common ways to correct them is by means of spectacles, contact lenses, and modern methods as laser surgery. However, in any case it is very important to identify the ametropia grade for designing the optimum correction action. In the case of laser surgery, it is necessary to define a new shape of the cornea in order to obtain the wanted refractive correction. Therefore, a computational tool to calculate the focal length of the optical system of the eye versus variations on its geometrical parameters is required. Additionally, a clear and understandable visualization of the evaluation process is desirable. In this work, a model of the human eye based on geometrical optics principles is presented. Simulations of light rays coming from a punctual source at six meter from the cornea are shown. We perform a ray-tracing in three dimensions in order to visualize the focusing regions and estimate the power of the optical system. The common parameters of ametropies can be easily modified and analyzed in the simulation by an intuitive graphic user interface.

  18. Determining the optical quality of focusing collectors without laser ray tracing

    SciTech Connect

    Bendt, P.; Gaul, H.; Rabl, A.

    1980-02-01

    This paper describes a novel alternative to the laser ray trace technique for evaluating the optical quality of focusing solar collectors. The new method does not require any equipment beyond what is used for measuring collector efficiency; it could therefore become part of routine collector testing. The total optical errors resulting from imperfect specularity and from inaccuracies in reflector position or slope are characterized by an angular standard deviation sigma/sub optical/, the rms deviation of the reflected rays from the design direction. The method is based on the fact that the off-axis performance of a concentrator depends on sigma/sub optical/. An angular scan is performed, i.e., the collector output is measured as a function of misalignment angle over the entire range of angles for which there is measurable output (typically a few degrees). This test should be carried out on a very clear day, with receiver close to ambient temperature (if the latter conditions cannot be satisfied, appropriate corrections are necessary). The parameter sigma/sub optical/ is then determined by a least-squares fit between the measured and the calculated angular scan. We tested the method on a parabolic trough collector manufactured by Hexcel, but it is suitable for parabolic dishes as well. The method appears to be accurate enough to determine sigma/sub optical/ within about 10%.

  19. ROBAST: Development of a ROOT-based ray-tracing library for cosmic-ray telescopes and its applications in the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Okumura, Akira; Noda, Koji; Rulten, Cameron

    2016-03-01

    We have developed a non-sequential ray-tracing simulation library, ROOT-basedsimulatorforraytracing (ROBAST), which is aimed to be widely used in optical simulations of cosmic-ray (CR) and gamma-ray telescopes. The library is written in C++, and fully utilizes the geometry library of the ROOT framework. Despite the importance of optics simulations in CR experiments, no open-source software for ray-tracing simulations that can be widely used in the community has existed. To reduce the dispensable effort needed to develop multiple ray-tracing simulators by different research groups, we have successfully used ROBAST for many years to perform optics simulations for the Cherenkov Telescope Array (CTA). Among the six proposed telescope designs for CTA, ROBAST is currently used for three telescopes: a Schwarzschild-Couder (SC) medium-sized telescope, one of SC small-sized telescopes, and a large-sized telescope (LST). ROBAST is also used for the simulation and development of hexagonal light concentrators proposed for the LST focal plane. Making full use of the ROOT geometry library with additional ROBAST classes, we are able to build the complex optics geometries typically used in CR experiments and ground-based gamma-ray telescopes. We introduce ROBAST and its features developed for CR experiments, and show several successful applications for CTA.

  20. Kashima RAy-Tracing Service (KARATS) for high accurate GNSS positioning

    NASA Astrophysics Data System (ADS)

    Ichikawa, R.; Hobiger, T.; Hasegawa, S.; Tsutsumi, M.; Koyama, Y.; Kondo, T.

    2010-12-01

    Radio signal delays associated with the neutral atmosphere are one of the major error sources of space geodesy such as GPS, GLONASS, GALILEO, VLBI, In-SAR measurements. We have developed a state-of-art tool to estimate the atmospheric path delays by ray-tracing through JMA meso-scale analysis (MANAL data) data. The tools, which we have named 'KAshima RAytracing Tools (KARAT)', are capable of calculating total slant delays and ray-bending angles considering real atmospheric phenomena. Numerical weather models such as MANAL data have undergone a significant improvement of accuracy and spatial resolution, which makes it feasible to utilize them for the correction of atmosphere excess path delays. In the previous studies for evaluating KARAT performance, the KARAT solutions are slightly better than the solutions using VMF1 and GMF with linear gradient model for horizontal and height positions. Based on these results we have started the web-based online service, 'KAshima RAytracing Service (KARATS)' for providing the atmospheric delay correction of RINEX files on Jan 27th, 2010. The KARATS receives user's RINEX data via a proper web site (http://vps.nict.go.jp/karats/index.html) and processes user's data files using KARAT for reducing atmospheric slant delays. The reduced RINEX files are archived in the specific directory for each user on the KARATS server. Once the processing is finished the information of data archive is sent privately via email to each user. If user want to process a large amount of data files, user can prepare own server which archives them. The KARATS can get these files from the user's server using GNU ¥emph{wget} and performs ray-traced corrections. We will present a brief status of the KARATS and summarize first experiences gained after this service went operational in December 2009. In addition, we will also demonstrate the newest KARAT performance based on the 5km MANAL data which has been operational from April 7th, 2009 and an outlook on

  1. Quantification and localization of trace metals in natural plancton using a synchrotron x-ray fluorescence microprobe.

    SciTech Connect

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-03-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 {micro}m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence.

  2. Accounting for partiality in serial crystallography using ray-tracing principles.

    PubMed

    Kroon-Batenburg, Loes M J; Schreurs, Antoine M M; Ravelli, Raimond B G; Gros, Piet

    2015-09-01

    Serial crystallography generates `still' diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a `still' Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R(int) factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R(int) of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.

  3. The Use of Pro/Engineer CAD Software and Fishbowl Tool Kit in Ray-tracing Analysis

    NASA Technical Reports Server (NTRS)

    Nounu, Hatem N.; Kim, Myung-Hee Y.; Ponomarev, Artem L.; Cucinotta, Francis A.

    2009-01-01

    This document is designed as a manual for a user who wants to operate the Pro/ENGINEER (ProE) Wildfire 3.0 with the NASA Space Radiation Program's (SRP) custom-designed Toolkit, called 'Fishbowl', for the ray tracing of complex spacecraft geometries given by a ProE CAD model. The analysis of spacecraft geometry through ray tracing is a vital part in the calculation of health risks from space radiation. Space radiation poses severe risks of cancer, degenerative diseases and acute radiation sickness during long-term exploration missions, and shielding optimization is an important component in the application of radiation risk models. Ray tracing is a technique in which 3-dimensional (3D) vehicle geometry can be represented as the input for the space radiation transport code and subsequent risk calculations. In ray tracing a certain number of rays (on the order of 1000) are used to calculate the equivalent thickness, say of aluminum, of the spacecraft geometry seen at a point of interest called the dose point. The rays originate at the dose point and terminate at a homogenously distributed set of points lying on a sphere that circumscribes the spacecraft and that has its center at the dose point. The distance a ray traverses in each material is converted to aluminum or other user-selected equivalent thickness. Then all equivalent thicknesses are summed up for each ray. Since each ray points to a direction, the aluminum equivalent of each ray represents the shielding that the geometry provides to the dose point from that particular direction. This manual will first list for the user the contact information for help in installing ProE and Fishbowl in addition to notes on the platform support and system requirements information. Second, the document will show the user how to use the software to ray trace a Pro/E-designed 3-D assembly and will serve later as a reference for troubleshooting. The user is assumed to have previous knowledge of ProE and CAD modeling.

  4. A comparison on initial-value ray tracing and fast marching eikonal solver for VTI traveltime computing

    NASA Astrophysics Data System (ADS)

    Moussavi Alashloo, S. Y.; Ghosh, D. P.; Bashir, Y.; Yusoff, W. I. Wan

    2016-02-01

    The Earth's subsurface is an anisotropic medium where the velocity of seismic waves alters in different propagation angles. Omitting anisotropy in seismic imaging not only brings mis-positioning of migrated dipping events but also fails to retain dipping energy during dip-moveout. To account for the efficacy of seismic anisotropy in imaging, an anisotropic wave equation must be engaged. Seismic traveltime computing is fundamental of both Kirchhoff migration and tomography algorithms. Two main categories of traveltime computing involve traditional ray tracing methods and finite difference eikonal solvers. In this study, we present two techniques of initial-value ray tracing and fast marching eikonal solver in isotropic and vertical transverse isotropy (VTI) media, and a comparison between results is demonstrated for more evaluation. Although the ray tracing approach is able to compute multiple arrivals with great precision, the eikonal solver is faster and more robust for traveltime computation. Since the ray tracing result is not a deterministic solution and it depends on the initial circumstance, employing the eikonal solver method are more preferred and suggested.

  5. The forms of trace metals in an Illinois basin coal by x-ray absorption fine structure spectroscopy

    USGS Publications Warehouse

    Chou, I.-Ming; Bruinius, J.A.; Lytle, J.M.; Ruch, R.R.; Huggins, Frank E.; Huffman, G.P.; Ho, K.K.

    1997-01-01

    Utilities burning Illinois coals currently do not consider trace elements in their flue gas emissions. After the US EPA completes an investigation on trace elements, however, this may change and flue gas emission standards may be established. The mode of occurrence of a trace element may determine its cleanability and Hue gas emission potential. X-ray Absorption Fine Structure (XAFS) is a spectroscopic technique that can differentiate the mode of occurrence of an element, even at the low concentrations that trace elements are found in coal. This is principally accomplished by comparing the XAFS spectra of a coal to a database of reference sample spectra. This study evaluated the technique as a potential tool to examine six trace elements in an Illinois #6 coal. For the elements As and Zn, the present database provides a definitive interpretation on their mode of occurrence. For the elements Ti, V, Cr, and Mn the database of XAFS spectra of trace elements in coal was still too limited to allow a definitive interpretation. The data obtained on these elements, however, was sufficient to rule out several of the mineralogical possibilities that have been suggested previously. The results indicate that XAFS is a promising technique for the study of trace elements in coal.

  6. Quantifying trace elements in individual aquatic protist cells with a synchrotron x-ray fluorescence microprobe.

    SciTech Connect

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Maser, J.; Vogt, S.; Jacobsen, C.; Tovar-Sanchez, A.; Sanudo-Wihelmy, S. A.; Experimental Facilities Division; Stony Brook Univ.

    2003-01-01

    The study of trace metal cycling by aquatic protists is limited by current analytical techniques. Standard 'bulk' element analysis techniques that rely on physical separations to concentrate cells for analysis cannot separate cells from co-occurring detrital material or other cells of differing taxonomy or trophic function. Here we demonstrate the ability of a synchrotron-based X-ray fluorescence (SXRF) microprobe to quantify the elements Si, Mn, Fe, Ni, and Zn in individual aquatic protist cells. This technique distinguishes between different types of cells in an assemblage and between cells and other particulate matter. Under typical operating conditions, the minimum detection limits are 7.0 x 10{sup -16} mol {mu}m{sup -2} for Si and between 5.0 x 10{sup -20} and 3.9 x 10{sup -19} mol {mu}m{sup -2} for Mn, Fe, Ni, and Zn; this sensitivity is sufficient to detect these elements in cells from even the most pristine waters as demonstrated in phytoplankton cells collected from remote areas of the Southern Ocean. Replicate analyses of single cells produced variations of <5% for Si, Mn, Fe, and Zn and <10% for Ni. Comparative analyses of cultured phytoplankton cells generally show no significant differences in cellular metal concentrations measured with SXRF and standard bulk techniques (spectrophotometry and graphite furnace atomic absorption spectrometry). SXRF also produces two-dimensional maps of element distributions in cells, thereby providing information not available with other analytical approaches. This technique enables the accurate and precise measurement of trace metals in individual aquatic protists collected from natural environments.

  7. Identification of Gravity wave Sources over Tropical Latitudes Using Reverse Ray Tracing technique

    NASA Astrophysics Data System (ADS)

    Venkat Ratnam, Madineni; Pramitha, M.

    2016-07-01

    Sources and propagation characteristics of high-frequency gravity waves (GWs) observed in the mesosphere using airglow emissions from Gadanki (13.5oN, 79.2oE) and Hyderabad (17.5oN, 78.5oE) are investigated using reverse ray tracing. Wave amplitudes are also traced back, including both radiative and diffusive damping. For this a climatological model of the background atmosphere for the Gadanki region has been developed using nearly 30 years of observations available from a variety of ground based (MST radar, radiosondes, MF radar) and rocket- and satellite-borne measurements. With the reverse ray-tracing method, the source locations for wave events could be identified to be in the upper troposphere. Uncertainty in locating the terminal points of wave events in the horizontal direction is estimated to be within 50-100 km and 150-300 km for Gadanki and Hyderabad wave events, respectively. This uncertainty arises mainly due to non-consideration of the day-to-day variability in the tidal amplitudes. Interestingly, large (~9ms-1 km-1) vertical shears in the horizontal wind are noticed near the ray terminal points (at 10-12 km altitude) and are thus identified to be the source for generating the observed high phase- speed, high-frequency GWs. We also tried to identify the sources for the GWs which are observed during Indo-French campaign conducted during May 2014. Uniqueness of the present study lies in using near-real time background atmosphere data from simultaneous radiosonde and meteor radar covering both source and propagation/dissipation regions of GWs. When we searched for the sources near the terminal points, deep convection is found to be a source for these events. We also tried to identify the sources of inertia-gravity waves (IGWs) that are observed in the troposphere and lower stratosphere during different seasons using long-term (2006-2014) high resolution radiosonde observations. In general, 50% of the waves observed over this location have convection as

  8. Big ray-tracing and eikonal solver on unstructured grids: Application to the computation of a multivalued traveltime field in the Marmousi model

    SciTech Connect

    Abgrall, R.; Benamou, J.D.

    1999-01-01

    This paper presents a numerical computation of the multivalued traveltime field generated by a point-source experiment in the Marmousi model. Two methods are combined to achieve this goal: a method called big ray tracing, used to compute multivalued traveltime fields, and an eikonal solver, designed to work on unstructured meshes. Big ray tracing is based on a combination of ray tracing and local solutions of the eikonal equation. Classical ray tracing first discretizes the phase space and defines local zones that possibly overlap where the traveltime field is multivalued. Then an eikonal solver computes traveltimes in these zones called big rays. It acts as an exact interpolation process between rays associated with different branches of the traveltime field. The geometry of big rays may be complicated and is better discretized using unstructured meshes. An eikonal solver designed to work on unstructured meshes is used.

  9. Characterization of Threading Dislocations in PVT-Grown AlN Substrates via x-Ray Topography and Ray Tracing Simulation

    NASA Astrophysics Data System (ADS)

    Zhou, Tianyi; Raghothamachar, Balaji; Wu, Fangzhen; Dalmau, Rafael; Moody, Baxter; Craft, Spalding; Schlesser, Raoul; Dudley, Michael; Sitar, Zlatko

    2014-04-01

    Threading dislocations in aluminum nitride boules grown by physical vapor transport method were systematically studied via synchrotron x-ray topography (white beam and monochromatic) in conjunction with ray tracing simulations. Two major types of threading dislocations were observed in the c-axis-grown boules: threading screw dislocations (TSDs) and threading edge dislocations (TEDs) with Burgers vectors along the [0001] and directions, respectively. TSDs were typically observed in the middle of the boule while TEDs were commonly observed to aggregate into arrays along the and directions in various parts of the boule on basal plane oriented wafers. By comparison with ray tracing simulations, the absolute Burgers vectors of both TSDs and TEDs in the arrays could be unambiguously determined. TEDs comprise over 90 % of all threading dislocations observed. The relationships between TED arrays and low angle grain boundaries and their possible formation mechanisms are discussed.

  10. SU-E-T-355: Efficient Scatter Correction for Direct Ray-Tracing Based Dose Calculation

    SciTech Connect

    Chen, M; Jiang, S; Lu, W

    2015-06-15

    Purpose: To propose a scatter correction method with linear computational complexity for direct-ray-tracing (DRT) based dose calculation. Due to its speed and simplicity, DRT is widely used as a dose engine in the treatment planning system (TPS) and monitor unit (MU) verification software, where heterogeneity correction is applied by radiological distance scaling. However, such correction only accounts for attenuation but not scatter difference, causing the DRT algorithm less accurate than the model-based algorithms for small field size in heterogeneous media. Methods: Inspired by the convolution formula derived from an exponential kernel as is typically done in the collapsed-cone-convolution-superposition (CCCS) method, we redesigned the ray tracing component as the sum of TERMA scaled by a local deposition factor, which is linear with respect to density, and dose of the previous voxel scaled by a remote deposition factor, D(i)=aρ(i)T(i)+(b+c(ρ(i)-1))D(i-1),where T(i)=e(-αr(i)+β(r(i))2) and r(i)=Σ-(j=1,..,i)ρ(j).The two factors together with TERMA can be expressed in terms of 5 parameters, which are subsequently optimized by curve fitting using digital phantoms for each field size and each beam energy. Results: The proposed algorithm was implemented for the Fluence-Convolution-Broad-Beam (FCBB) dose engine and evaluated using digital slab phantoms and clinical CT data. Compared with the gold standard calculation, dose deviations were improved from 20% to 2% in the low density regions of the slab phantoms for the 1-cm field size, and within 2% for over 95% of the volume with the largest discrepancy at the interface for the clinical lung case. Conclusion: We developed a simple recursive formula for scatter correction for the DRT-based dose calculation with much improved accuracy, especially for small field size, while still keeping calculation to linear complexity. The proposed calculator is fast, yet accurate, which is crucial for dose updating in IMRT

  11. Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2016-06-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.

  12. Dynamic vacuum analysis for APS high heat flux beamline front ends using optical ray-tracing simulation methods

    SciTech Connect

    Xu, S.; Nielsen, R.W.

    1992-01-01

    The high-power and high-flux x-ray beams produced by third generation synchrotron radiation sources such as the Advanced Photon Source (APS) can cause significantly high gas desorption rates on beamline front-end components if beam missteering occurs. The effect of this gas desorption needs to be understood for dynamic vacuum analysis. To simulate beam missteering conditions, optical ray-tracing methods have been employed. The results of the ray-tracing analysis have been entered into a system-oriented vacuum program to provide dynamic vacuum calculations for determination of pumping requirements for the beamline front-ends. The APS will provide several types of synchrotron radiation sources, for example, undulators, wigglers, and bending magnets. For the purpose of this study, the wiggler source was chosen as a worst case'' scenario due to its high photon flux, high beam power, and relatively large beam cross section.

  13. Dynamic vacuum analysis for APS high heat flux beamline front ends using optical ray-tracing simulation methods

    SciTech Connect

    Xu, S.; Nielsen, R.W.

    1992-09-01

    The high-power and high-flux x-ray beams produced by third generation synchrotron radiation sources such as the Advanced Photon Source (APS) can cause significantly high gas desorption rates on beamline front-end components if beam missteering occurs. The effect of this gas desorption needs to be understood for dynamic vacuum analysis. To simulate beam missteering conditions, optical ray-tracing methods have been employed. The results of the ray-tracing analysis have been entered into a system-oriented vacuum program to provide dynamic vacuum calculations for determination of pumping requirements for the beamline front-ends. The APS will provide several types of synchrotron radiation sources, for example, undulators, wigglers, and bending magnets. For the purpose of this study, the wiggler source was chosen as a ``worst case`` scenario due to its high photon flux, high beam power, and relatively large beam cross section.

  14. Cone directionality from laser ray tracing in normal and LASIK patients.

    PubMed

    Marcos, Susana; Burns, Stephen A

    2009-01-01

    Laser ray tracing, a technique originally developed to measure ocular aberrations from the deviations of the local ray aberrations as a function of entry pupil, was used to assess cone directionality in 29 normal eyes (seven of which underwent LASIK surgery) and seven eyes after LASIK corneal refractive surgery for myopia. The total intensity of the retinal aerial images was computed as a function of the entry location of the illuminated beam. The measured intensity distribution was fit to a two-dimensional Gaussian function plus a constant background. The maximum of the distribution represents the pupillary location toward which the cone photoreceptors are oriented (peak of the optical Stiles-Crawford, SCE, function). We found the average SCE peak location was located 0.43 ± 0.96mm nasally and 0.60 ± 0.87mm inferiorly to the center of the pupil. In general, there was not a relation between the pupillary area of best quality and SCE peak location, either pre-operatively or post-operatively. The cone directionality shape factor was also unchanged by surgery. However, in two eyes, pre- and post-operative SCE peak location changed significantly. LASIK refractive surgery decreased the MTF in all eyes, even when the actual SCE directionality of the subject is considered. In the two eyes that showed significantly different SCE peak location, the apodized post-operative MTF with the post-operative SCE peak exceeded the simulated post-operative MTF assuming no shift in the SCE peak. However, the statistical power of these two cases is low, and the general findings are consistent with the hypothesis that differences in optical quality are not a major driving mechanism for cone orientation.

  15. Novel ray tracing method for stray light suppression from ocean remote sensing measurements.

    PubMed

    Oh, Eunsong; Hong, Jinsuk; Kim, Sug-Whan; Park, Young-Je; Cho, Seong-Ick

    2016-05-16

    We developed a new integrated ray tracing (IRT) technique to analyze the stray light effect in remotely sensed images. Images acquired with the Geostationary Ocean Color Imager show a radiance level discrepancy at the slot boundary, which is suspected to be a stray light effect. To determine its cause, we developed and adjusted a novel in-orbit stray light analysis method, which consists of three simulated phases (source, target, and instrument). Each phase simulation was performed in a way that used ray information generated from the Sun and reaching the instrument detector plane efficiently. This simulation scheme enabled the construction of the real environment from the remote sensing data, with a focus on realistic phenomena. In the results, even in a cloud-free environment, a background stray light pattern was identified at the bottom of each slot. Variations in the stray light effect and its pattern according to bright target movement were simulated, with a maximum stray light ratio of 8.5841% in band 2 images. To verify the proposed method and simulation results, we compared the results with the real acquired remotely sensed image. In addition, after correcting for abnormal phenomena in specific cases, we confirmed that the stray light ratio decreased from 2.38% to 1.02% in a band 6 case, and from 1.09% to 0.35% in a band 8 case. IRT-based stray light analysis enabled clear determination of the stray light path and candidates in in-orbit circumstances, and the correction process aided recovery of the radiometric discrepancy.

  16. Improving LED CCT uniformity using micropatterned films optimized by combining ray tracing and FDTD methods.

    PubMed

    Ding, Xinrui; Li, Jiasheng; Chen, Qiu; Tang, Yong; Li, Zongtao; Yu, Binhai

    2015-02-09

    Although the light-emitting diode (LED) has revolutionized lighting, the non-uniformity of its correlated color temperature (CCT) still remains a major concern. In this context, to improve the light distribution performance of remote phosphor LED lamps, we employ a micropatterned array (MPA) optical film fabricated using a low-cost molding process. The parameters of the MPA, including different installation configurations, positioning, and diameters, are optimized by combining the finite-difference time-domain and ray-tracing methods. Results show that the sample with the upward-facing convex-cone MPA film that has a diameter of half of that of the remote phosphor glass, and is tightly affixed to the inward surface of the remote phosphor glass renders a superior light distribution performance. When compared with the case in which no MPA film is used, the deviation of the CCT distribution decreases from 1033 K to 223 K, and the corresponding output power of the sample is an acceptable level of 85.6%. We perform experiments to verify our simulation results, and the two sets of results exhibit a close agreement. We believe that our approach can be used to optimize MPA films for various lighting applications.

  17. A model of polarized-beam AGS in the ray-tracing code Zgoubi

    SciTech Connect

    Meot, F.; Ahrens, L.; Brown, K.; Dutheil, Y.; Glenn, J.; Huang, H.; Roser, T.; Shoefer, V.; Tsoupas, N.

    2016-07-12

    A model of the Alternating Gradient Synchrotron, based on the AGS snapramps, has been developed in the stepwise ray-tracing code Zgoubi. It has been used over the past 5 years in a number of accelerator studies aimed at enhancing RHIC proton beam polarization. It is also used to study and optimize proton and Helion beam polarization in view of future RHIC and eRHIC programs. The AGS model in Zgoubi is operational on-line via three different applications, ’ZgoubiFromSnaprampCmd’, ’AgsZgoubiModel’ and ’AgsModelViewer’, with the latter two essentially interfaces to the former which is the actual model ’engine’. All three commands are available from the controls system application launcher in the AGS ’StartUp’ menu, or from eponymous commands on shell terminals. Main aspects of the model and of its operation are presented in this technical note, brief excerpts from various studies performed so far are given for illustration, means and methods entering in ZgoubiFromSnaprampCmd are developed further in appendix.

  18. Ray tracing of gravity waves as a possible warning system for tornadic storms and hurricanes

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1978-01-01

    Gravity waves with wave periods of 13 to 15 min and horizontal phase velocities of 90 to 220 m/sec were present in ground-based observations of the upper atmosphere during time periods when tornadoes were occurring and gravity waves with wave periods of 20 to 25 min and horizontal phase velocities of 100 to 200 m/sec were detected when a hurricane was present. Combinations of available neutral atmosphere data and model parameter values were used with a group ray tracing technique in an attempt to locate the sources of these waves. Computed sources of the waves with periods of 13 to 15 min were located within 50 km of the locations where tornadoes touched down from 2 to 4 h later. In the case of the waves with periods of 20 to 25 min it was found that the computed location of the source was roughly where the hurricane would be located 3 h after the waves were excited. The applicability of the present study to a tornado and hurricane warning system is noted.

  19. Intraocular lens power estimation by accurate ray tracing for eyes underwent previous refractive surgeries

    NASA Astrophysics Data System (ADS)

    Yang, Que; Wang, Shanshan; Wang, Kai; Zhang, Chunyu; Zhang, Lu; Meng, Qingyu; Zhu, Qiudong

    2015-08-01

    For normal eyes without history of any ocular surgery, traditional equations for calculating intraocular lens (IOL) power, such as SRK-T, Holladay, Higis, SRK-II, et al., all were relativley accurate. However, for eyes underwent refractive surgeries, such as LASIK, or eyes diagnosed as keratoconus, these equations may cause significant postoperative refractive error, which may cause poor satisfaction after cataract surgery. Although some methods have been carried out to solve this problem, such as Hagis-L equation[1], or using preoperative data (data before LASIK) to estimate K value[2], no precise equations were available for these eyes. Here, we introduced a novel intraocular lens power estimation method by accurate ray tracing with optical design software ZEMAX. Instead of using traditional regression formula, we adopted the exact measured corneal elevation distribution, central corneal thickness, anterior chamber depth, axial length, and estimated effective lens plane as the input parameters. The calculation of intraocular lens power for a patient with keratoconus and another LASIK postoperative patient met very well with their visual capacity after cataract surgery.

  20. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction.

    PubMed

    Liang, Yicheng; Peng, Hao

    2015-02-07

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  1. Forward ray-tracing for medium-scale gravity waves observed during the COPEX campaign

    NASA Astrophysics Data System (ADS)

    Paulino, I.; Takahashi, H.; Vadas, S. L.; Wrasse, C. M.; Sobral, J. H. A.; Medeiros, A. F.; Buriti, R. A.; Gobbi, D.

    2012-12-01

    Medium-scale gravity waves (MSGWs) observed during the Conjugate Point Experiment (COPEX) at Boa Vista (2.8°N; 60.7°S, dip angle 21.7°) have been ray-traced and studied based on zero wind and model wind conditions. Wind profiles have been used from the TIE-GCM and HWM-07 models. Temperature profiles were used from the NRLMSISE-00 and TIE-GCM models, and TIMED/SABER satellite data. Doppler up-shifted MSGWs, at ˜87km of altitude, propagated to higher altitudes into the thermosphere-ionosphere domain than waves that were un-shifted. Most MSGWs propagated upwards up to ˜140km of altitude and were seen to be unlikely candidates to trigger equatorial plasma bubbles (EPBs) at the F layer bottom side. However, three of them propagated up to heights close to the F layer bottom side, where it could act in the EPB seeding directly. Moreover, three MSGWs, which propagated equatorward, could act on EPB seeding by field-line-integrated effects.

  2. Visualization of thermal lensing induced image distortion using Zemax ray tracing and BTEC thermal modeling

    NASA Astrophysics Data System (ADS)

    Towle, Erica L.; Clark, Clifton D.; Aaron, Michelle T.; Dunn, Andrew K.; Welch, Ashley J.; Thomas, Robert J.

    2013-02-01

    In recent years, several studies have been investigating the impact of thermal lensing in ocular media on the visual function. These studies have shown that when near-infrared (NIR) laser energy (1319 nm) is introduced to a human eye, the heating of the eye can be sufficient to alter the index of refraction of the media leading to transient changes in the visible wavefront through an effect known as thermal lensing, while remaining at a safe level. One of the main limitations of experimentation with human subjects, however, is the reliance on a subject's description of the effect, which can vary greatly between individuals. Therefore, a computational model was needed that could accurately represent the changes of an image as a function of changes in the index of refraction. First, to model changes in the index of refraction throughout the eye, a computational thermal propagation model was used. These data were used to generate a comprehensive ray tracing model of the human eye using Zemax ( Radiant Zemax Inc, Redmond WA) via a gradient lens surface. Using this model, several different targets have been analyzed which made it possible to calculate real-world visual acuity so that the effect of changes in the index of refraction could be related back to changes in the image of a visual scene.

  3. Ray-tracing as a tool for efficient specification of beamline optical components

    NASA Astrophysics Data System (ADS)

    Pedreira, P.; Sics, I.; Llonch, M.; Ladrera, J.; Ribó, Ll.; Colldelram, C.; Nicolas, J.

    2016-09-01

    We propose a method to determine the required performances of the positioning mechanics of the optical elements of a beamline. Generally, when designing and specifying a beamline, one assumes that the position and orientations of the optical elements should be aligned to its ideal position. For this, one would generally require six degrees of freedom per optical element. However, this number is reduced due to symmetries (e.g. a flat mirror does not care about yaw). Generally, one ends up by motorizing many axes, with high resolution and a large motion range. On the other hand, the diagnostics available at a beamline provide much less variables than the available motions. Moreover, the actual parameters that one wants to optimize are reduced to a very few. These are basically, spot size and size at the sample, flux, and spectral resolution. The result is that many configurations of the beamline are actually equivalent, and therefore indistinguishable from the ideal alignment in terms of performance.We propose a method in which the effect of misalignment of each one of the degrees of freedom of the beamline is scanned by ray tracing. This allows building a linear system in which one can identify and select the best set of motions to control the relevant parameters of the beam. Once the model is built it provides the required optical pseudomotors as well as the requirements in alignment and manufacturing, for all the motions, as well as the range, resolution and repeatability of the motorized axes.

  4. Exploring Light’s Interactions with Bubbles and Light Absorbers in Photoelectrochemical Devices using Ray Tracing

    SciTech Connect

    Stevens, John Colby

    2012-12-01

    Ray tracing was used to perform optical optimization of arrays of photovoltaic microrods and explore the interaction between light and bubbles of oxygen gas on the surface of the microrods. The incident angle of light was varied over a wide range. The percent of incident light absorbed by the microrods and reflected by the bubbles was computed over this range. It was found that, for the 10 μm diameter, 100 μm tall SrTiO3 microrods simulated in the model, the optimal center-­to-­center spacing was 14 μm for a square grid. This geometry produced 75% average and 90% maximum absorbance. For a triangular grid using the same microrods, the optimal center-­to-­center spacing was 14 μm. This geometry produced 67% average and 85% maximum absorbance. For a randomly laid out grid of 5 μm diameter, 100 μm tall SrTiO3 microrods with an average center-­to-­center spacing of 20 μm, the average absorption was 23% and the maximum absorption was 43%. For a 50% areal coverage fraction of bubbles on the absorber surface, between 2%-­20% of the incident light energy was reflected away from the rods by the bubbles, depending upon incident angle and bubble morphology.

  5. Geometric theory of wave kinetics and the ray-tracing controversy

    NASA Astrophysics Data System (ADS)

    Dodin, I. Y.; Fisch, N. J.

    2013-10-01

    An invariant, geometric formulation of linear wave kinetics is proposed that allows casting any wave equation (WE) in a quantumlike form. The wave amplitude is described by the Schrödinger equation, which, absent dissipation, has a Lagrangian form. Any approximations made to the Lagrangian preserve the conservative form of WE, automatically preventing standard errors (e.g., at guessing a WE from a dispersion relation or at approximating the dielectric tensor with its local value). The wave action is naturally introduced as a Hermitian operator (density matrix). The associated kinetic equation (KE) accounts for both diffraction and mode coupling and conserves wave quanta. Contrary to a popular misconception, taking the geometrical-optics limit does not necessarily lead to what is known as the ``wave kinetic equation.'' This undermines the applicability of ray tracing for common practical applications; e.g., the correct KE manifestly prohibits stochasticity at t --> ∞ . The work was supported by the U.S. DOE through Contract No. DE-AC02-09CH11466, by the NNSA SSAA Program through DOE Research Grant No. DE274-FG52-08NA28553, and by the U.S. DTRA through Research Grant No. HDTRA1-11-1-0037.

  6. Ray-tracing studies for a whole-viewing-angle retroreflector

    SciTech Connect

    Yang, B.; Friedsam, H.

    2000-02-02

    The APS Survey and Alignment team uses LEICA laser trackers for the majority of their alignment tasks. These instruments utilize several different retroreflectors for tracking the path of the laser interferometer. Currently in use are open-air corner cubes with an acceptance angle of {+-}20{degree}, corner cube prisms with an acceptance angle of {+-}50{degree}, and a Cat's eye with an acceptance angle of {+-}60{degree}. Best measurement results can be achieved by using an open-air corner cube that eliminates the need for the laser beam to travel through a different medium before it returns to the instrument detector. However, the trade off is a small acceptance angle. In order to overcome the limitations of the small acceptance angles, Takatsuji et al. has proposed the creation of a full-viewing-angle retroreflector. Based on the notion that the radius R{sub 1} of a common Cat's eye is proportional to R{sub 2}, one can write: R{sub 1} = (n {minus} 1)R{sub 2}. In the case that n, the refractive index of glass, equals 2, the radii R{sub 1} and R{sub 2} are identical, and one can create a solid sphere Cat's eye. This design has the advantages that no adhesives are used to bond the two hemispheres together, misalignments between the hemispheres are not an issue, and most importantly, larger acceptance angles are possible. This paper shows the results of their ray tracing calculations characterizing the geometrical optics.

  7. First results and planned experiments with the INFN-LNS ray-tracing magnetic spectrometer MAGNEX

    SciTech Connect

    Cunsolo, A.; Cappuzzello, F.; Cavallaro, M.; Orrigo, S. E. A.; Foti, A.; Rodrigues, M. R. D.; Borello-Lewin, T.; Petrascu, H.; Carbone, D.

    2010-05-21

    The MAGNEX large-acceptance ray-tracing magnetic spectrometer has recently been used with beams from the INFN-LNS Tandem accelerator. After an accurate commissioning, the instrument has started an ambitious experimental program. In the first experiment the {sup 19}F({sup 7}Li,{sup 7}Be){sup 19}O charge-exchange reaction was studied at 52 MeV incident energy. The {sup 19}O excitation energy spectrum was reconstructed and the angular distributions measured. The second experiment was aimed at the study of the {sup 15}C via the {sup 13}C({sup 18}O,{sup 16}O){sup 15}C reaction at 84 MeV incident energy. The ejectiles where detected at forward angles and mass identified by means of an innovative technique. The {sup 15}C excitation energy spectra up to about 20 MeV were obtained with a 250 keV FWHM energy resolution. In addition to several known states, the spectra show two unknown resonant-like structures at 11.4 and 14.0 MeV. The strong population of these structures, together with the measured widths, could indicate the collective nature of these states associated to a correlated neutron pair transfer. Besides the first results of physical interest from these two experiments, future experiments with MAGNEX are briefly outlined.

  8. Acoustic simulations with a ray-tracing program: Reporting an experience

    NASA Astrophysics Data System (ADS)

    Granado, Milton V., Jr.

    2002-11-01

    The possibility of exporting to ray-tracing type programs the geometry generated by Auto-Cad, is very appealing for the architect who wishes to simulate the acoustic behavior of a room. It was found that a good knowledge of room acoustic is necessary for the selection of the program parameters and the objective acoustical measures outputted by the program for the assessment of the required acoustical quality. There is scarce information on the absorption coefficients of lining materials, but it is on the choice of the diffusion coefficients where lie the greatest uncertainties. Because of the considerable impact that these data have on the computational results, the user may feel insecure about the results of his efforts. Therefore it is advisable that trained personnel participate in the efficient use of this computational tool. It was found however that one form of the output of the program, that in which the acoustical parameters are color mapped, have qualitatively corroborated speech intelligibility results objectively measured in the field. (To be presented in Portuguese.)

  9. Comparison of laser ray-tracing and skiascopic ocular wavefront-sensing devices

    PubMed Central

    Bartsch, D-UG; Bessho, K; Gomez, L; Freeman, WR

    2009-01-01

    Purpose To compare two wavefront-sensing devices based on different principles. Methods Thirty-eight healthy eyes of 19 patients were measured five times in the reproducibility study. Twenty eyes of 10 patients were measured in the comparison study. The Tracey Visual Function Analyzer (VFA), based on the ray-tracing principle and the Nidek optical pathway difference (OPD)-Scan, based on the dynamic skiascopy principle were compared. Standard deviation (SD) of root mean square (RMS) errors was compared to verify the reproducibility. We evaluated RMS errors, Zernike terms and conventional refractive indexes (Sph, Cyl, Ax, and spherical equivalent). Results In RMS errors reading, both devices showed similar ratios of SD to the mean measurement value (VFA: 57.5±11.7%, OPD-Scan: 53.9±10.9%). Comparison on the same eye showed that almost all terms were significantly greater using the VFA than using the OPD-Scan. However, certain high spatial frequency aberrations (tetrafoil, pentafoil, and hexafoil) were consistently measured near zero with the OPD-Scan. Conclusion Both devices showed similar level of reproducibility; however, there was considerable difference in the wavefront reading between machines when measuring the same eye. Differences in the number of sample points, centration, and measurement algorithms between the two instruments may explain our results. PMID:17571088

  10. Infrasonic ray tracing applied to small-scale atmospheric structures: thermal plumes and updrafts/downdrafts.

    PubMed

    Jones, R Michael; Bedard, Alfred J

    2015-02-01

    A ray-tracing program is used to estimate the refraction of infrasound by the vertical structure of the atmosphere in thermal plumes, showing only weak effects, as well as in updrafts and downdrafts, which can act as vertical wave guides. Thermal plumes are ubiquitous features of the daytime atmospheric boundary layer. The effects of thermal plumes on lower frequency sound propagation are minor with the exception of major events, such as volcanoes, forest fires, or industrial explosions where quite strong temperature gradients are involved. On the other hand, when strong, organized vertical flows occur (e.g., in mature thunderstorms and microbursts), there are significant effects. For example, a downdraft surrounded by an updraft focuses sound as it travels upward, and defocuses sound as it travels downward. Such propagation asymmetry may help explain observations that balloonists can hear people on the ground; but conversely, people on the ground cannot hear balloonists aloft. These results are pertinent for those making surface measurements from acoustic sources aloft, as well as for measurements of surface sound sources using elevated receivers.

  11. Image Comparisons of Black Hole vs. Neutron Dark Star by Ray Tracing

    NASA Astrophysics Data System (ADS)

    Froedge, D. T.

    2015-04-01

    In previous papers we have discussed the concept of a theory of gravitation with local energy conservation, and the properties of a large neutron star resulting when the energy of gravitation resides locally with the particle mass and not in the gravitational field. A large neutron star's surface radius grows closer to the gravitational radius as the mass increases. Since the localization of energy applies to the photon, they do not decrease energy rising in a gravitational field, and can escape. Photon trajectories in a strong gravitational field can be investigated by the use of ray tracing procedures. Only a fraction of the blackbody radiation emitted from the surface escapes into space (about 0.00004% for Sag A*). Because of the low % of escaping radiation, the heavy neutron stars considered in this paper will be referred to as a Neutron Dark Star (NDS). In contrast to the Black Hole (BH) which should be totally dark inside the photon shadow, the NDS will appear as a fuzzy low luminosity ball. For Sag A* a full width half maximum diameter is about 3.85 Schwarzschild radii inside the shadow. (http://www.arxdtf.org/css/Image%20Comparisons.pdf). The Event Horizon Telescope should be able to distinguish the difference between the theories.

  12. Analyzing luminescent solar concentrators with front-facing photovoltaic cells using weighted Monte Carlo ray tracing

    NASA Astrophysics Data System (ADS)

    Woei Leow, Shin; Corrado, Carley; Osborn, Melissa; Isaacson, Michael; Alers, Glenn; Carter, Sue A.

    2013-06-01

    Luminescent solar concentrators (LSC) collect ambient light from a broad range of angles and concentrate the captured light onto photovoltaic (PV) cells. LSCs with front-facing cells collect direct and indirect sunlight ensuring a gain factor greater than one. The flexible placement and percentage coverage of PV cells on the LSC panel allow for layout adjustments to be made in order to balance re-absorption losses and the level of light concentration desired. A weighted Monte Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption/emission spectra of an organic luminescent dye (LR305), the transmission coefficient, and refractive index of acrylic as parameters that describe the system. Simulations suggest that for LR305, 8-10 cm of luminescent material surrounding the PV cell yields the highest increase in power gain per unit area of LSC added, thereby determining the ideal spacing between PV cells in the panel. For rectangular PV cells, results indicate that for each centimeter of PV cell width, an additional increase of 0.15 mm to the waveguide thickness is required to efficiently transport photon collected by the LSC to the PV cell with minimal loss.

  13. Monte Carlo ray-tracing simulations of luminescent solar concentrators for building integrated photovoltaics

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei; Corrado, Carley; Osborn, Melissa; Carter, Sue A.

    2013-09-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles, concentrating the captured light onto small photo active areas. This enables greater incorporation of LSCs into building designs as windows, skylights and wall claddings in addition to rooftop installations of current solar panels. Using relatively cheap luminescent dyes and acrylic waveguides to effect light concentration onto lesser photovoltaic (PV) cells, there is potential for this technology to approach grid price parity. We employ a panel design in which the front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. This also allows for flexibility in determining the placement and percentage coverage of PV cells during the design process to balance reabsorption losses against the power output and level of light concentration desired. To aid in design optimization, a Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters with interactions of photons in the panel determined by comparing calculated probabilities with random number generators. LSC panels with multiple dyes or layers can also be simulated. Analysis of the results reveals optimal panel dimensions and PV cell layouts for maximum power output for a given dye concentration, absorbtion/emission spectrum and quantum efficiency.

  14. Internal and external stray radiation suppression for LWIR catadioptric telescope using non-sequential ray tracing

    NASA Astrophysics Data System (ADS)

    Zhu, Yang; Zhang, Xin; Liu, Tao; Wu, Yanxiong; Shi, Guangwei; Wang, Lingjie

    2015-07-01

    A long wave infrared imaging system operated for space exploration of faint target is highly sensitive to stray radiation. We present an integrative suppression process of internal and external stray radiation. A compact and re-imaging LWIR catadioptric telescope is designed as practical example and internal and external stray radiation is analyzed for this telescope. The detector is cryogenically cooled with 100% cold shield efficiency of Lyot stop. A non-sequential ray tracing technique is applied to investigate how the stray radiation propagates inside optical system. The simulation and optimization during initial design stage are proceeded to avoid subversive defect that the stray radiation disturbs the target single. The quantitative analysis of stray radiation irradiance emitted by lenses and structures inside is presented in detail. The optical elements, which operate at room-temperature due to the limitation of weight and size, turn to be the significant stray radiation sources. We propose a method combined infrared material selection and optical form optimization to reduce the internal stray radiation of lens. We design and optimize mechanical structures to achieve a further attenuation of internal stray radiation power. The point source transmittance (PST) is calculated to assess the external radiation which comes from the source out of view field. The ghost of bright target due to residual reflection of optical coatings is simulated. The results show that the performance of stray radiation suppression is dramatically improved by iterative optimization and modification of optomechanical configurations.

  15. Ray tracing simulations for the wide-field x-ray telescope of the Einstein Probe mission based on Geant4 and XRTG4

    NASA Astrophysics Data System (ADS)

    Zhao, Donghua; Zhang, Chen; Yuan, Weimin; Willingale, Richard; Ling, Zhixing; Feng, Hua; Li, Hong; Ji, Jianfeng; Wang, Wenxin; Zhang, Shuangnan

    2014-07-01

    Einstein Probe (EP) is a proposed small scientific satellite dedicated to time-domain astrophysics working in the soft X-ray band. It will discover transients and monitor variable objects in 0.5-4 keV, for which it will employ a very large instantaneous field-of-view (60° × 60°), along with moderate spatial resolution (FWHM ˜ 5 arcmin). Its wide-field imaging capability will be achieved by using established technology in novel lobster-eye optics. In this paper, we present Monte-Carlo simulations for the focusing capabilities of EP's Wide-field X-ray Telescope (WXT). The simulations are performed using Geant4 with an X-ray tracer which was developed by cosine (http://cosine.nl/) to trace X-rays. Our work is the first step toward building a comprehensive model with which the design of the X-ray optics and the ultimate sensitivity of the instrument can be optimized by simulating the X-ray tracing and radiation environment of the system, including the focal plane detector and the shielding at the same time.

  16. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    PubMed

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  17. Evaluation of simulation alternatives for the brute-force ray-tracing approach used in backlight design

    NASA Astrophysics Data System (ADS)

    Desnijder, Karel; Hanselaer, Peter; Meuret, Youri

    2016-04-01

    A key requirement to obtain a uniform luminance for a side-lit LED backlight is the optimised spatial pattern of structures on the light guide that extract the light. The generation of such a scatter pattern is usually performed by applying an iterative approach. In each iteration, the luminance distribution of the backlight with a particular scatter pattern is analysed. This is typically performed with a brute-force ray-tracing algorithm, although this approach results in a time-consuming optimisation process. In this study, the Adding-Doubling method is explored as an alternative way for evaluating the luminance of a backlight. Due to the similarities between light propagating in a backlight with extraction structures and light scattering in a cloud of light scatterers, the Adding-Doubling method which is used to model the latter could also be used to model the light distribution in a backlight. The backlight problem is translated to a form upon which the Adding-Doubling method is directly applicable. The calculated luminance for a simple uniform extraction pattern with the Adding-Doubling method matches the luminance generated by a commercial raytracer very well. Although successful, no clear computational advantage over ray tracers is realised. However, the dynamics of light propagation in a light guide as used the Adding-Doubling method, also allow to enhance the efficiency of brute-force ray-tracing algorithms. The performance of this enhanced ray-tracing approach for the simulation of backlights is also evaluated against a typical brute-force ray-tracing approach.

  18. Evaluation of particle-induced X-ray emission and particle-induced γ-ray emission of quartz grains for forensic trace sediment analysis.

    PubMed

    Bailey, M J; Morgan, R M; Comini, P; Calusi, S; Bull, P A

    2012-03-06

    The independent verification in a forensics context of quartz grain morphological typing by scanning electron microscopy was demonstrated using particle-induced X-ray emission (PIXE) and particle-induced γ-ray emission (PIGE). Surface texture analysis by electron microscopy and high-sensitivity trace element mapping by PIXE and PIGE are independent analytical techniques for identifying the provenance of quartz in sediment samples in forensic investigations. Trace element profiling of the quartz grain matrix separately from the quartz grain inclusions served to differentiate grains of different provenance and indeed went some way toward discriminating between different quartz grain types identified in a single sample of one known forensic provenance. These results confirm the feasibility of independently verifying the provenance of critical samples from forensic cases.

  19. Simulation and control of narcissus phenomenon using nonsequential ray tracing. I. Staring camera in 3-5 microm waveband.

    PubMed

    Akram, M Nadeem

    2010-02-20

    A nonsequential ray tracing technique is used to simulate the narcissus phenomenon in infrared (IR) imaging cameras having cooled detectors. Imaging cameras based on two-dimensional focal plane array detectors are simulated. In a companion article, line-scan imaging cameras based on one-dimensional linear detector arrays are simulated. Diffractive phase surfaces commonly used in modern IR cameras are modeled including multiple diffraction orders in the narcissus retroreflection path to correctly simulate the stray light return signal. Practical optical design examples along with their performance curves are given to elucidate the modeling technique. Optical methods to minimize the narcissus return signal are thoroughly explained, and modeling results are presented. It is shown that the nonsequential ray tracing technique is an effective method to accurately calculate the narcissus return signal in complex IR cameras having diffractive surfaces.

  20. Scattering by simple and nonsimple shapes by the combined method of ray tracing and diffraction: application to circular cylinders.

    PubMed

    Chen, B; Stamnes, J J

    1998-04-10

    The combined method of ray tracing and diffraction (CMRD) is an efficient and accurate technique for computing the scattered field in focal regions of optical systems. Here we extend the CMRD concept so it can be used to compute fields scattered by objects of simple as well as nonsimple shapes. To that end we replace the scattering object by an equivalent, planar phase object; use ray tracing to determine its location, aperture area, amplitude distribution, and phase distribution; and use standard Kirchhoff diffraction theory to compute the field scattered by the equivalent phase object. To illustrate the practical use of the CMRD we apply it to a two-dimensional problem in which a plane or cylindrical wave is normally incident upon a circular cylinder. For this application we determine the range of validity of the CMRD by comparing its results for the scattered field with those obtained by use of an exact eigenfunction expansion.

  1. An analysis of options available for developing a common laser ray tracing package for Ares and Kull code frameworks

    SciTech Connect

    Weeratunga, S K

    2008-11-06

    Ares and Kull are mature code frameworks that support ALE hydrodynamics for a variety of HEDP applications at LLNL, using two widely different meshing approaches. While Ares is based on a 2-D/3-D block-structured mesh data base, Kull is designed to support unstructured, arbitrary polygonal/polyhedral meshes. In addition, both frameworks are capable of running applications on large, distributed-memory parallel machines. Currently, both these frameworks separately support assorted collections of physics packages related to HEDP, including one for the energy deposition by laser/ion-beam ray tracing. This study analyzes the options available for developing a common laser/ion-beam ray tracing package that can be easily shared between these two code frameworks and concludes with a set of recommendations for its development.

  2. Fokker-Planck/Ray Tracing for Electron Bernstein and Fast Wave Modeling in Support of NSTX

    SciTech Connect

    Harvey, R. W.

    2009-11-12

    This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant, at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over the whole

  3. OFFSET - RAY TRACING OPTICAL ANALYSIS OF OFFSET SOLAR COLLECTOR FOR SPACE STATION SOLAR DYNAMIC POWER SYSTEM

    NASA Technical Reports Server (NTRS)

    Jefferies, K.

    1994-01-01

    OFFSET is a ray tracing computer code for optical analysis of a solar collector. The code models the flux distributions within the receiver cavity produced by reflections from the solar collector. It was developed to model the offset solar collector of the solar dynamic electric power system being developed for Space Station Freedom. OFFSET has been used to improve the understanding of the collector-receiver interface and to guide the efforts of NASA contractors also researching the optical components of the power system. The collector for Space Station Freedom consists of 19 hexagonal panels each containing 24 triangular, reflective facets. Current research is geared toward optimizing flux distribution inside the receiver via changes in collector design and receiver orientation. OFFSET offers many options for experimenting with the design of the system. The offset parabolic collector model configuration is determined by an input file of facet corner coordinates. The user may choose other configurations by changing this file, but to simulate collectors that have other than 19 groups of 24 triangular facets would require modification of the FORTRAN code. Each of the roughly 500 facets in the assembled collector may be independently aimed to smooth out, or tailor, the flux distribution on the receiver's wall. OFFSET simulates the effects of design changes such as in receiver aperture location, tilt angle, and collector facet contour. Unique features of OFFSET include: 1) equations developed to pseudo-randomly select ray originating sources on the Sun which appear evenly distributed and include solar limb darkening; 2) Cone-optics technique used to add surface specular error to the ray originating sources to determine the apparent ray sources of the reflected sun; 3) choice of facet reflective surface contour -- spherical, ideal parabolic, or toroidal; 4) Gaussian distributions of radial and tangential components of surface slope error added to the surface normals at

  4. Polarization properties of a corner-cube retroreflector with three-dimensional polarization ray-tracing calculus.

    PubMed

    He, Wenjun; Fu, Yuegang; Zheng, Yang; Zhang, Lei; Wang, Jiake; Liu, Zhiying; Zheng, Jianping

    2013-07-01

    The output polarization states of corner cubes (for both uncoated and metal-coated surfaces) with an input beam of arbitrary polarization state and of arbitrary tilt angle to the cube have been analyzed by using the three-dimensional polarization ray-tracing matrix method. The diattenuation and retardance of the corner-cube retroreflector (CCR) for all six different ray paths are calculated, and the relationships to the tilt angle and the tilt orientation angle are shown. When the tilt angle is large, hollow metal-coated CCR is more appropriate than solid metal-coated CCR for the case that the polarization states of output beam should be controlled.

  5. Laser Ray Tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye.

    PubMed

    Moreno-Barriuso, E; Navarro, R

    2000-06-01

    A comparison and validation study of Laser Ray Tracing (LRT) and Hartmann-Shack wave-front-sensor (to be referred to as H-S) methods was carried out on both artificial and human eyes. The aim of this work was double. First, we wanted to verify experimentally the equivalence of single- and double-pass measurements for both H-S and LRT. This interest is due to the impossibility of making single-pass measurements in human eyes. In addition, we wanted to validate the LRT technique by comparing it with the H-S wave-front sensor, currently used in many physiological optics laboratories. Comparison of the different methods and configurations carried out in the artificial eye yielded basically the same results in all cases, which means a reciprocal validation of both LRT and H-S, in either single- or double-pass configurations. Other aspects, such as robustness against speckle noise or the influence of the size of the entrance (H-S) or exit (LRT) pupil were studied as well. As a global reference, the point-spread function (PSF) of the artificial eye was recorded directly on a CCD camera and compared with simulated PSF's computed from the experimental aberration data. We also applied these two methods to real eyes (double pass), finding again a close match between the resulting aberration coefficients and also between the standard errors for two normal subjects. However, for one myopic eye with an especially low optical quality (RMS wave-front error >2 microm) and asymmetric aberrations, the array of spots recorded with the H-S sensor was highly distorted and too difficult to analyze.

  6. Characterisation and comparison of ophthalmic instrument quality using a model eye with reverse ray-tracing

    NASA Astrophysics Data System (ADS)

    Sheil, Conor; Goncharov, Alexander V.

    2013-05-01

    A physical model eye was constructed to test the quality of ophthalmic instruments. The accuracy and precision of two commercially available instruments were analysed. For these instruments, a particular model eye was obtained which mimicked the physical properties that would be usually measured e.g. corneal topography or optical path within the human eye. The model eye was designed using relatively simple optical components (e.g. plano-convex lenses) separated by appropriate intraocular distances taken from the literature. The dimensions of the model eye were known a priori: The lenses used in the construction of the model eye were characterised ac­ cording to values given in the manufacturers' data sheets and also through measurement using an interferometer. The distances between the lens surfaces were calculated using the interferometric data with reverse ray-tracing. Optical paths were calculated as the product of refractive index and axial distance. The errors inherent in mea­ suring these ocular parameters by different ophthalmic instruments can be considered as producing an erroneous value for the overall refractive power of the eye. The latter is a useful metric for comparing various ophthalmic devices where the direct comparison of quality is not possible or is not practical. For example, a 1% error in anterior corneal radius of curvature will have a more detrimental effect than the same error in posterior corneal radius, due to the relative differences in refractive indices at those surface boundaries. To quantify the error in ocular refractive power, a generic eye model was created in ZEMAX optical design software. The parametric errors were then used to compute the overall error in predicting ocular refractive power, thus highlighting the relative importance of individual errors. This work will help in future determination of acceptable levels of metrological errors in ocular instrumentation.

  7. 3-D TECATE/BREW: Thermal, stress, and birefringent ray-tracing codes for solid-state laser design

    NASA Astrophysics Data System (ADS)

    Gelinas, R. J.; Doss, S. K.; Nelson, R. G.

    1994-07-01

    This report describes the physics, code formulations, and numerics that are used in the TECATE (totally Eulerian code for anisotropic thermo-elasticity) and BREW (birefringent ray-tracing of electromagnetic waves) codes for laser design. These codes resolve thermal, stress, and birefringent optical effects in 3-D stationary solid-state systems. This suite of three constituent codes is a package referred to as LASRPAK.

  8. Measurements of slant and vertical TEC using data from FORTE and the TRACKER ray-tracing code

    SciTech Connect

    Massey, R.S.

    1997-12-12

    In a previous informal report, the author described the FORTE satellite and the analysis techniques used to extract a slant TEC from measurements of the dispersion of a signal transmitted from and EMP generator at Los Alamos. In this report he reports on the use of a ray-tracing/ionospheric model code to deduce the vertical TEC to 800 km from the FORTE measurements.

  9. Micro-trace fossils reveal pervasive reworking of Pliocene sapropels by low-oxygen-adapted benthic meiofauna.

    PubMed

    Löhr, S C; Kennedy, M J

    2015-03-12

    Animal burrowers leave an indelible signature on the sedimentary record in most marine environments, with the seeming exception of low-oxygen environments. In modern sedimentary settings, however, sub-millimetre-sized benthic animals (meiofauna) are adapted to low oxygen and even sulfidic conditions. Almost nothing is known about their impact on ancient marine sediments because they leave few recognizable traces. Here we show, in classic Pliocene-aged anoxic facies from the Mediterranean, the first reported trace fossil evidence of meiofaunal activity and its relation to changing oxygenation. A novel approach utilizing electron imaging of ion-polished samples shows that meiofauna pervasively reworked sediment under oxygen-depleted conditions that excluded macrofauna, fragmenting organic laminae and emplacing 15- to 70-μm-diameter faecal pellets without macroscopically influencing the fabric. The extent of reworking raises the question: how pervasively altered are other sediments presently assumed to lack animal influence and how far into the geological record does this influence extend?

  10. Hybrid Adaptive Ray-Moment Method (HARM2): A highly parallel method for radiation hydrodynamics on adaptive grids

    NASA Astrophysics Data System (ADS)

    Rosen, A. L.; Krumholz, M. R.; Oishi, J. S.; Lee, A. T.; Klein, R. I.

    2017-02-01

    We present a highly-parallel multi-frequency hybrid radiation hydrodynamics algorithm that combines a spatially-adaptive long characteristics method for the radiation field from point sources with a moment method that handles the diffuse radiation field produced by a volume-filling fluid. Our Hybrid Adaptive Ray-Moment Method (HARM2) operates on patch-based adaptive grids, is compatible with asynchronous time stepping, and works with any moment method. In comparison to previous long characteristics methods, we have greatly improved the parallel performance of the adaptive long-characteristics method by developing a new completely asynchronous and non-blocking communication algorithm. As a result of this improvement, our implementation achieves near-perfect scaling up to O (103) processors on distributed memory machines. We present a series of tests to demonstrate the accuracy and performance of the method.

  11. Determination by ray-tracing of the regions where mid-latitude whistlers exit from the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Strangeways, H. J.

    1981-03-01

    The size and position of the regions in the bottomside ionosphere through which downcoming whistlers emerge are estimated using ray-tracing calculations in both summer day and winter night models of the magnetospheric plasma. Consideration is given to the trapping of upgoing whistler-mode waves through both the base and the side of ducts. It is found that for downcoming rays which were trapped in the duct in the summer day model, the limited range of wave-normal angles which can be transmitted from the lower ionosphere to free space below causes the size of the exit point to be considerably smaller than the region of incidence. The exit point is found to be approximately 100 km in size, which agrees with ground-based observations of fairly narrow trace whistlers. For rays trapped in the duct in the winter night model, it is found that the size of the exit point is more nearly the same as the range of final latitudes of the downcoming rays in the lower ionosphere.

  12. New X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of long working distance

    NASA Astrophysics Data System (ADS)

    Terada, Yasuko; Yumoto, Hirokatsu; Takeuchi, Akihisa; Suzuki, Yoshio; Yamauchi, Kazuto; Uruga, Tomoya

    2010-05-01

    A new X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of 300 mm long working distance has been developed at beamline 37XU of SPring-8. A focusing test has been performed in the X-ray energy range 20-37.7 keV. A focused beam size of 1.3 μm ( V)×1.5 μm ( H) has been achieved at an X-ray energy of 30 keV, and a total photon flux of the focused beam was about 2.7×10 10 photons/s. Micro-X-ray fluorescence (μ-XRF) analysis of eggplant roots has been carried out using the developed microprobe. It is clearly observed in the XRF images that cadmium is highly accumulated in the endodermis, exodermis and epidermis of roots. This study demonstrates the potential of scanning microscopy for heavy elements analysis in the high-energy X-ray region.

  13. Non-destructive trace element microanalysis of as-received cometary nucleus samples using synchrotron x ray fluorescence

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.

    1989-01-01

    The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique.

  14. Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries--the influence of diffraction and interference.

    PubMed

    Qin, Yuan; Michalowski, Andreas; Weber, Rudolf; Yang, Sen; Graf, Thomas; Ni, Xiaowu

    2012-11-19

    Ray-tracing is the commonly used technique to calculate the absorption of light in laser deep-penetration welding or drilling. Since new lasers with high brilliance enable small capillaries with high aspect ratios, diffraction might become important. To examine the applicability of the ray-tracing method, we studied the total absorptance and the absorbed intensity of polarized beams in several capillary geometries. The ray-tracing results are compared with more sophisticated simulations based on physical optics. The comparison shows that the simple ray-tracing is applicable to calculate the total absorptance in triangular grooves and in conical capillaries but not in rectangular grooves. To calculate the distribution of the absorbed intensity ray-tracing fails due to the neglected interference, diffraction, and the effects of beam propagation in the capillaries with sub-wavelength diameter. If diffraction is avoided e.g. with beams smaller than the entrance pupil of the capillary or with very shallow capillaries, the distribution of the absorbed intensity calculated by ray-tracing corresponds to the local average of the interference pattern found by physical optics.

  15. One-time ray-tracing optimization method and its application to the design of an illuminator for a tube photo-bioreactor.

    PubMed

    Chu, Shu-Chun; Yang, Hai-Li; Liao, Yi-Hong; Wu, Hong-Yu; Wang, Chi

    2014-03-10

    This study details a one-time ray-tracing optimization method for the optimization of LED illumination systems [S.-C. Chu and H.-L. Yang, "One-time ray-tracing method for the optimization of illumination system," in Proceedings of International Conference on Optics in Precision Engineering and Nanotechnology (icOPEN, 2013), 87692M]. This method optimizes the performance of illumination systems by modifying the light source's radiant intensity distribution with a freeform lens, instead of modifying the illumination system structure. Because illumination system structures are unchanged in the design process, a designer can avoid the common problems faced when designing illumination systems, i.e., the repeated and time-consuming ray-tracing process when optimizing the illumination system parameters. The easy approaches of the proposed optimization method to sample the target illumination areas and to divide the light source radiant intensity distribution make the proposed method can be applied to both direct-lit and non-direct-lit illumination systems. To demonstrate the proposed method, this study designs an illuminator for a tube photo-bioreactor using the proposed one-time ray-tracing method. A comparison shows that in the designing of the photo-bioreactor, tracing all rays one time requires about 13 hours, while optimizing the light source's radiant intensity distribution requires only about twenty minutes. The considerable reduction in the ray-tracing time shows that the proposed method is a fast and effective way to design illumination systems.

  16. Fast ray-tracing algorithm for circumstellar structures (FRACS). I. Algorithm description and parameter-space study for mid-IR interferometry of B[e] stars

    NASA Astrophysics Data System (ADS)

    Niccolini, G.; Bendjoya, P.; Domiciano de Souza, A.

    2011-01-01

    B[e] central continuum emission (central star and inner gas emissions) can be obtained whenever its contribution to the total mid-IR flux is only as high as a few percents. Ray-tracing parameterised models such as FRACS are thus well adapted to prepare and/or interpret long wavelengths (from mid-IR to radio) observations at present (e.g. VLTI/MIDI) and near-future (e.g. VLTI/MATISSE, ALMA) interferometers.

  17. Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates.

    PubMed

    Fang, Qianqian

    2010-08-02

    We describe a fast mesh-based Monte Carlo (MC) photon migration algorithm for static and time-resolved imaging in 3D complex media. Compared with previous works using voxel-based media discretization, a mesh-based approach can be more accurate in modeling targets with curved boundaries or locally refined structures. We implement an efficient ray-tracing technique using Plücker Coordinates. The Barycentric coordinates computed from Plücker-formed ray-tracing enables us to use linear Lagrange basis functions to model both media properties and fluence distribution, leading to further improvement in accuracy. The Plücker-coordinate ray-polygon intersection test can be extended to hexahedral or high-order elements. Excellent agreement is found when comparing mesh-based MC with the analytical diffusion model and 3D voxel-based MC code in both homogeneous and heterogeneous cases. Realistic time-resolved imaging results are observed for a complex human brain anatomy using mesh-based MC. We also include multi-threading support in the software and will port it to a graphics processing unit platform in the near future.

  18. Transfer of memory trace of cerebellum-dependent motor learning in human prism adaptation: a model study.

    PubMed

    Nagao, Soichi; Honda, Takeru; Yamazaki, Tadashi

    2013-11-01

    Accumulating experimental evidence suggests that the memory trace of ocular reflex adaptation is initially encoded in the cerebellar cortex, and later transferred to the cerebellar nuclei for consolidation through repetitions of training. However, the memory transfer is not well characterized in the learning of voluntary movement. Here, we implement our model of memory transfer to interpret the data of prism adaptation (Martin, Keating, Goodkin, Bastian, & Thach, 1996a, 1996b), assuming that the cerebellar nuclear memory formed by memory transfer is used for normal throwing. When the subject was trained to throw darts wearing prisms in 30-40 trials, the short-term memory for recalibrating the throwing direction by gaze would be formed in the cerebellar cortex, which was extinguished by throwing with normal vision in a similar number of trials. After weeks of repetitions of short-term prism adaptation, the long-term memory would be formed in the cerebellar nuclei through memory transfer, which enabled one to throw darts to the center wearing prisms without any training. These two long-term memories, one for throwing with normal vision and the other for throwing wearing prisms, are assumed to be utilized automatically under volitional control. Moreover, when the prisms were changed to new prisms, a new memory for adapting to the new prisms would be formed in the cerebellar cortex, just to counterbalance the nuclear memory of long-term adaptation to the original prisms in a similar number of trials. These results suggest that memory transfer may occur in the learning of voluntary movements.

  19. Observation of the Z mode with DE 1 and its analysis by three-dimensional ray tracing

    NASA Technical Reports Server (NTRS)

    Hashimoto, Kozo; Calvert, Wynne

    1990-01-01

    Certain Z-mode wave emissions in the earth's magnetosphere have been identified using the wave spectra and polarization measurements of the DE 1 satellite. Although such emissions accompany the aurora, and thus presumably originate from the evening-sector auroral zone, they are found to occur over much wider ranges of latitude and longitude. Since the predicted cyclotron maser emission at the cyclotron frequency could not have produced waves which travel such great distances, as shown by three-dimensional ray tracing, it is proposed instead that these emissions must originate from lower altitudes within the auroral zone and probably from near the plasma frequency inside the auroral plasma cavity.

  20. Fast estimation of first-order scattering in a medical x-ray computed tomography scanner using a ray-tracing technique.

    PubMed

    Liu, Xin

    2014-01-01

    This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.

  1. Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility

    SciTech Connect

    Salah, Wa'el; Sanchez del Rio, M.; Hoorani, H.

    2009-09-15

    The calculation for the optics of the synchrotron radiation small and wide angle x-ray scattering beamline, currently under construction at SESAME is described. This beamline is based on a cylindrically bent germanium (111) single crystal with an asymmetric cut of 10.5 deg., followed by a 1.2 m long rhodium coated plane mirror bent into a cylindrical form. The focusing properties of bent asymmetrically cut crystals have not yet been studied in depth. The present paper is devoted to study of a particular application of a bent asymmetrically cut crystal using ray tracing simulations with the SHADOW code. These simulations show that photon fluxes of order of 1.09x10{sup 11} photons/s will be available at the experimental focus at 8.79 keV. The focused beam dimensions will be 2.2 mm horizontal full width at half maximum (FWHM) by 0.12 mm vertical (FWHM).

  2. Tracing Two Apprentices' Trajectories toward Adaptive Professional Expertise in Fingerprint Examination

    ERIC Educational Resources Information Center

    Mustonen, Virpi; Hakkarainen, Kai

    2015-01-01

    The purpose of this study is to analyse the development of two apprentices' adaptive expertise in fingerprint examination across a two-year training program. The apprentices were selected from a large number of candidates to be trained at the Forensic Laboratory of the Finnish National Bureau of Investigation. The problem addressed was how the…

  3. The adaptive function of melanin-based plumage coloration to trace metals

    PubMed Central

    Chatelain, M.; Gasparini, J.; Jacquin, L.; Frantz, A.

    2014-01-01

    Trace metals produced by anthropogenic activities are of major importance in urban areas and might constitute a new evolutionary force selecting for the ability to cope with their deleterious effects. Interestingly, melanin pigments are known to bind metal ions, thereby potentially sequestering them in inert body parts such as coat and feathers, and facilitating body detoxification. Thus, a more melanic plumage or coat coloration could bring a selective advantage for animals living in polluted areas. We tested this hypothesis by investigating the link between melanin-based coloration and zinc and lead concentrations in feathers of urban feral pigeons, both at capture time and after one year of captivity in standardized conditions. Results show that differently coloured pigeons had similar metal concentrations at capture time. Metal concentrations strongly decreased after one year in standardized conditions, and more melanic pigeons had higher concentrations of zinc (but not lead) in their feathers. This suggests that more melanic pigeons have a higher ability to store some metals in their feathers compared with their paler counterparts, which could explain their higher success in urbanized areas. Overall, this work suggests that trace metal pollution may exert new selective forces favouring more melanic phenotypes in polluted environments. PMID:24671830

  4. Testing the Hapke model by means of Montecarlo ray-tracing

    NASA Astrophysics Data System (ADS)

    Ciarniello, M.; Capaccioni, F.; Filacchione, G.

    2013-09-01

    The Hapke model is an analytical solution of the radiative transfer equation in a particulate medium. Over the years the model has gone through several modifications and updates which led to various versions. In this paper we test the output of the different formulations of the Hapke model with results from Montecarloray-tracing simulations, in the geometric optics limit.

  5. A RAY-TRACING ALGORITHM FOR SPINNING COMPACT OBJECT SPACETIMES WITH ARBITRARY QUADRUPOLE MOMENTS. I. QUASI-KERR BLACK HOLES

    SciTech Connect

    Psaltis, Dimitrios; Johannsen, Tim

    2012-01-20

    We describe a new numerical algorithm for ray tracing in the external spacetimes of spinning compact objects characterized by arbitrary quadrupole moments. Such spacetimes describe non-Kerr vacuum solutions that can be used to test the no-hair theorem in conjunction with observations of accreting black holes. They are also appropriate for neutron stars with spin frequencies in the {approx_equal} 300-600 Hz range, which are typical of the bursting sources in low-mass X-ray binaries. We use our algorithm to show that allowing for the quadrupole moment of the spacetime to take arbitrary values leads to observable effects in the profiles of relativistic broadened fluorescent iron lines from geometrically thin accretion disks.

  6. Ray-tracing formulas for refraction and internal reflection in uniaxial crystals.

    PubMed

    Beyerle, G; McDermid, I S

    1998-12-01

    Formulas for the calculation of the direction cosines of refracted and internally reflected rays in anisotropic uniaxial crystals are presented. The method is based on a transformation to a nonorthonormal coordinate system in which the normal surface associated with the extraordinary ray is of spherical shape. A numerical example for the case of refraction and internal reflection in calcite is given.

  7. Intelligent Simultaneous Quantitative Online Analysis of Environmental Trace Heavy Metals with Total-Reflection X-Ray Fluorescence

    PubMed Central

    Ma, Junjie; Wang, Yeyao; Yang, Qi; Liu, Yubing; Shi, Ping

    2015-01-01

    Total-reflection X-ray fluorescence (TXRF) has achieved remarkable success with the advantages of simultaneous multi-element analysis capability, decreased background noise, no matrix effects, wide dynamic range, ease of operation, and potential of trace analysis. Simultaneous quantitative online analysis of trace heavy metals is urgently required by dynamic environmental monitoring and management, and TXRF has potential in this application domain. However, it calls for an online analysis scheme based on TXRF as well as a robust and rapid quantification method, which have not been well explored yet. Besides, spectral overlapping and background effects may lead to loss of accuracy or even faulty results during practical quantitative TXRF analysis. This paper proposes an intelligent, multi-element quantification method according to the established online TXRF analysis platform. In the intelligent quantification method, collected characteristic curves of all existing elements and a pre-estimated background curve in the whole spectrum scope are used to approximate the measured spectrum. A novel hybrid algorithm, PSO-RBFN-SA, is designed to solve the curve-fitting problem, with offline global optimization and fast online computing. Experimental results verify that simultaneous quantification of trace heavy metals, including Cr, Mn, Fe, Co, Ni, Cu and Zn, is realized on the online TXRF analysis platform, and both high measurement precision and computational efficiency are obtained. PMID:25954949

  8. Short-Term Memory Trace in Rapidly Adapting Synapses of Inferior Temporal Cortex

    PubMed Central

    Sugase-Miyamoto, Yasuko; Liu, Zheng; Wiener, Matthew C.; Optican, Lance M.; Richmond, Barry J.

    2008-01-01

    Visual short-term memory tasks depend upon both the inferior temporal cortex (ITC) and the prefrontal cortex (PFC). Activity in some neurons persists after the first (sample) stimulus is shown. This delay-period activity has been proposed as an important mechanism for working memory. In ITC neurons, intervening (nonmatching) stimuli wipe out the delay-period activity; hence, the role of ITC in memory must depend upon a different mechanism. Here, we look for a possible mechanism by contrasting memory effects in two architectonically different parts of ITC: area TE and the perirhinal cortex. We found that a large proportion (80%) of stimulus-selective neurons in area TE of macaque ITCs exhibit a memory effect during the stimulus interval. During a sequential delayed matching-to-sample task (DMS), the noise in the neuronal response to the test image was correlated with the noise in the neuronal response to the sample image. Neurons in perirhinal cortex did not show this correlation. These results led us to hypothesize that area TE contributes to short-term memory by acting as a matched filter. When the sample image appears, each TE neuron captures a static copy of its inputs by rapidly adjusting its synaptic weights to match the strength of their individual inputs. Input signals from subsequent images are multiplied by those synaptic weights, thereby computing a measure of the correlation between the past and present inputs. The total activity in area TE is sufficient to quantify the similarity between the two images. This matched filter theory provides an explanation of what is remembered, where the trace is stored, and how comparison is done across time, all without requiring delay period activity. Simulations of a matched filter model match the experimental results, suggesting that area TE neurons store a synaptic memory trace during short-term visual memory. PMID:18464917

  9. Hiss induced radiation belt electron loss timescales in the plasmasphere based on ray tracings of wave propagation angle

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Ni, B.; Li, W.; Bortnik, J.; Gu, X.; Zhao, Z.

    2015-12-01

    Plasmaspheric hiss plays an important role in driving resonant scattering losses of radiation belt electrons and thereby largely controls the lifetimes of electrons in the plasmasphere. Besides the spectral information of waves, an accurate investigation of hiss induced radiation belt electron loss timescales requires the details of wave normal angle distribution during propagation along the field line, which however is difficult to obtain directly from in situ measurements but can be reasonably evaluated from ray tracing of hiss propagation on basis of reasonable setups of background field and plasma density. By assuming a nominal and suitable plasmapause location at L = 4.5, we report the ray tracing results of hiss wave propagation angles for various hiss wave frequencies at various L-shells in the plasmasphere. Subsequently, we construct the improved model of hiss wave normal angle distribution with dependence on both wave frequency, magnetic latitude and L-shell, which is used to compute the quasi-linear bounce-averaged rates of electron scattering due to plasmaspheric hiss and perform the pure pitch angle diffusion simulations. Hiss induced radiation belt electron loss timescales are then determined from the simulated temporal evolution of electron fluxes after reaching the equilibrium state, as a function of electron kinetic energy and L-shell, which is of importance for incorporation into future simulations of the radiation belt electron dynamics under various geomagnetic conditions to comprehend the exact contribution of plasmaspheric hiss.

  10. Elimination of 'ghost'-effect-related systematic error in metrology of X-ray optics with a long trace profiler

    SciTech Connect

    Yashchuk, Valeriy V.; Irick, Steve C.; MacDowell, Alastair A.

    2005-04-28

    A data acquisition technique and relevant program for suppression of one of the systematic effects, namely the ''ghost'' effect, of a second generation long trace profiler (LTP) is described. The ''ghost'' effect arises when there is an unavoidable cross-contamination of the LTP sample and reference signals into one another, leading to a systematic perturbation in the recorded interference patterns and, therefore, a systematic variation of the measured slope trace. Perturbations of about 1-2 {micro}rad have been observed with a cylindrically shaped X-ray mirror. Even stronger ''ghost'' effects show up in an LTP measurement with a mirror having a toroidal surface figure. The developed technique employs separate measurement of the ''ghost''-effect-related interference patterns in the sample and the reference arms and then subtraction of the ''ghost'' patterns from the sample and the reference interference patterns. The procedure preserves the advantage of simultaneously measuring the sample and reference signals. The effectiveness of the technique is illustrated with LTP metrology of a variety of X-ray mirrors.

  11. Comparison of a 3-D GPU-Assisted Maxwell Code and Ray Tracing for Reflectometry on ITER

    NASA Astrophysics Data System (ADS)

    Gady, Sarah; Kubota, Shigeyuki; Johnson, Irena

    2015-11-01

    Electromagnetic wave propagation and scattering in magnetized plasmas are important diagnostics for high temperature plasmas. 1-D and 2-D full-wave codes are standard tools for measurements of the electron density profile and fluctuations; however, ray tracing results have shown that beam propagation in tokamak plasmas is inherently a 3-D problem. The GPU-Assisted Maxwell Code utilizes the FDTD (Finite-Difference Time-Domain) method for solving the Maxwell equations with the cold plasma approximation in a 3-D geometry. Parallel processing with GPGPU (General-Purpose computing on Graphics Processing Units) is used to accelerate the computation. Previously, we reported on initial comparisons of the code results to 1-D numerical and analytical solutions, where the size of the computational grid was limited by the on-board memory of the GPU. In the current study, this limitation is overcome by using domain decomposition and an additional GPU. As a practical application, this code is used to study the current design of the ITER Low Field Side Reflectometer (LSFR) for the Equatorial Port Plug 11 (EPP11). A detailed examination of Gaussian beam propagation in the ITER edge plasma will be presented, as well as comparisons with ray tracing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-FG02-99-ER54527.

  12. Ray-tracing WKB analysis of Whistler waves in non-uniform magnetic fields applied to space thrusters

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Melazzi, D.; Manente, M.; Pavarin, D.

    2014-02-01

    Radiofrequency magnetized cylindrical plasma sources are proposed for the development of space thrusters, whose thrust efficiency and specific impulse depend on the power coupled into the plasma. At this stage of research, emphasis has been on the absorption of Whistler wave energy by non-uniform plasmas but not much on the role played by the magneto-static confinement field, considered uniform, constant and aligned with the axis of the source. We present RAYWh (RAY-tracing Whistler), a three-dimensional (3D) ray-tracing solver for electromagnetic propagation and power deposition in cylindrical plasma sources for space plasma thrusters, where actual magnetic confinement configurations along with plasma density profiles are included. The propagation and absorption of Whistler waves are investigated by solving the 3D Maxwell-Vlasov model equations by a Wentzel-Kramers-Brillouin (WKB) asymptotic expansion. The reduced set of equations for the wave phase and for the square amplitude of the electric field is solved numerically by means of a modified Runge-Kutta algorithm. Unexpected cut-offs, resonances, radial reflections, mode conversions and power deposition profile of the excited waves are found, when realistic confinement magnetic fields are considered. An analysis of the influence of axial wavenumbers and the axial length of the system on the power deposition is presented.

  13. Development and application of a ray-tracing code integrating with 3D equilibrium mapping in LHD ECH experiments

    NASA Astrophysics Data System (ADS)

    Tsujimura, T., Ii; Kubo, S.; Takahashi, H.; Makino, R.; Seki, R.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Ida, K.; Suzuki, C.; Emoto, M.; Yokoyama, M.; Kobayashi, T.; Moon, C.; Nagaoka, K.; Osakabe, M.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Okada, K.; Ejiri, A.; Mutoh, T.

    2015-11-01

    The central electron temperature has successfully reached up to 7.5 keV in large helical device (LHD) plasmas with a central high-ion temperature of 5 keV and a central electron density of 1.3× {{10}19} m-3. This result was obtained by heating with a newly-installed 154 GHz gyrotron and also the optimisation of injection geometry in electron cyclotron heating (ECH). The optimisation was carried out by using the ray-tracing code ‘LHDGauss’, which was upgraded to include the rapid post-processing three-dimensional (3D) equilibrium mapping obtained from experiments. For ray-tracing calculations, LHDGauss can automatically read the relevant data registered in the LHD database after a discharge, such as ECH injection settings (e.g. Gaussian beam parameters, target positions, polarisation and ECH power) and Thomson scattering diagnostic data along with the 3D equilibrium mapping data. The equilibrium map of the electron density and temperature profiles are then extrapolated into the region outside the last closed flux surface. Mode purity, or the ratio between the ordinary mode and the extraordinary mode, is obtained by calculating the 1D full-wave equation along the direction of the rays from the antenna to the absorption target point. Using the virtual magnetic flux surfaces, the effects of the modelled density profiles and the magnetic shear at the peripheral region with a given polarisation are taken into account. Power deposition profiles calculated for each Thomson scattering measurement timing are registered in the LHD database. The adjustment of the injection settings for the desired deposition profile from the feedback provided on a shot-by-shot basis resulted in an effective experimental procedure.

  14. Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR

    NASA Astrophysics Data System (ADS)

    Sroka, Adam; Chan, Susan; Warburton, Ryan; Gariepy, Genevieve; Henderson, Robert; Leach, Jonathan; Faccio, Daniele; Lee, Stephen T.

    2016-05-01

    The ability to detect motion and to track a moving object that is hidden around a corner or behind a wall provides a crucial advantage when physically going around the obstacle is impossible or dangerous. One recently demonstrated approach to achieving this goal makes use of non-line-of-sight picosecond pulse laser ranging. This approach has recently become interesting due to the availability of single-photon avalanche diode (SPAD) receivers with picosecond time resolution. We present a time-resolved non-sequential ray-tracing model and its application to indirect line-of-sight detection of moving targets. The model makes use of the Zemax optical design programme's capabilities in stray light analysis where it traces large numbers of rays through multiple random scattering events in a 3D non-sequential environment. Our model then reconstructs the generated multi-segment ray paths and adds temporal analysis. Validation of this model against experimental results is shown. We then exercise the model to explore the limits placed on system design by available laser sources and detectors. In particular we detail the requirements on the laser's pulse energy, duration and repetition rate, and on the receiver's temporal response and sensitivity. These are discussed in terms of the resulting implications for achievable range, resolution and measurement time while retaining eye-safety with this technique. Finally, the model is used to examine potential extensions to the experimental system that may allow for increased localisation of the position of the detected moving object, such as the inclusion of multiple detectors and/or multiple emitters.

  15. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    SciTech Connect

    De Marco, B.; Ponti, G.; Nandra, K.; Muñoz-Darias, T.

    2015-11-20

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation.

  16. Total reflection X-ray fluorescence trace mercury determination by trapping complexation: Application in advanced oxidation technologies

    NASA Astrophysics Data System (ADS)

    Custo, Graciela; Litter, Marta I.; Rodríguez, Diana; Vázquez, Cristina

    2006-11-01

    It is well known that Hg species cause high noxious effects on the health of living organisms even at very low levels (5 μg/L). Quantification of this element is an analytical challenge due to the peculiar physicochemical properties of all Hg species. The regulation of the maximal allowable Hg concentration led to search for sensitive methods for its determination. Total reflection X-ray fluorescence is a proved instrumental analytical tool for the determination of trace elements. In this work, the use of total reflection X-ray fluorescence for Hg quantification is investigated. However, experimental determination by total reflection X-ray fluorescence requires depositing a small volume of sample on the reflector and evaporation of the solvent until dryness to form a thin film. Because of volatilization of several Hg forms, a procedure to capture these volatile species in liquid samples by using complexing agents is proposed. Acetate, oxalic acid, ethylenediaminetetracetic acid and ammonium pyrrolidine-dithiocarbamate were assayed for trapping the analytes into the solution during the preparation of the sample and onto the reflector during total reflection X-ray fluorescence measurements. The proposed method was applied to evaluate Hg concentration during TiO 2-heterogeneous photocatalysis, one of the most known advanced oxidation technologies. Advanced oxidation technologies are processes for the treatment of effluents in waters and air that involve the generation of very active oxidative and reductive species. In heterogeneous photocatalysis, Hg is transformed to several species under ultraviolet illumination in the presence of titanium dioxide. Total reflection X-ray fluorescence was demonstrated to be applicable in following the extent of the heterogeneous photocatalysis reaction by determining non-transformed Hg in the remaining solution.

  17. Recent performance of the normal incident x-ray telescope with adaptive optics

    NASA Astrophysics Data System (ADS)

    Kitamoto, S.; Ishii, R.; Nukamori, S.; Imai, K.; Mochida, A.; Sato, S.; Ohgi, Y.; Yoshida, Y.; Hoshino, A.

    2016-09-01

    We report recent results of the performance measurement of our X-ray telescope with adaptive optics. The telescope is designed to use the 13.5nm EUV with the Mo/Si multilayers, making a normal incident optics. The primary mirror is 80mm in its diameter and the focal length of 2m. The deformable mirror is controlled by measuring a wave-front of an optical laser. Effects of a difference between the light paths from the reference and from an object are examined. The angular resolution is measured with optical light and we confirm almost diffraction limited resolution as well as its appropriate function as adaptive optics.

  18. Adaptation of an existing cosmic ray ionization spectrometer experiment to Spacelab

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R.; Stahle, C. V.; Ormes, J. F.

    1975-01-01

    This paper examines the technique of adapting an existing experiment to a Shuttle sortie mission. A sample cosmic-ray balloon experiment was studied to determine the feasibility of this cost-saving technique, which is applicable to a large spectrum of existing experiments, and to determine the programmatic impact and key problems. The main areas investigated include the determination of required modifications, steps in integration to the Spacelab/Shuttle, and the impact on orbital support and operations. One of the main problems in equipment adaptation is the acoustical loading during Shuttle boost; an environmental cover design presented herein shows a potential method to attain the required acoustic attenuation.

  19. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application

    NASA Astrophysics Data System (ADS)

    Fang, Hongjian; Yao, Huajian; Zhang, Haijiang; Huang, Yu-Chih; van der Hilst, Robert D.

    2015-06-01

    We propose a method to invert surface wave dispersion data directly for 3-D variations of shear wave speed, that is, without the intermediate step of phase or group velocity maps, using frequency-dependent ray tracing and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. To simplify the problem we consider quasi-stratified media with smoothly varying seismic properties. We represent the 3-D shear wave speed model by means of 1-D profiles beneath grid points, which are determined from all dispersion data simultaneously using a wavelet-based sparsity-constrained tomographic method. The wavelet coefficients of the wave speed model are estimated with an iteratively reweighted least squares algorithm, and upon iteration the surface wave ray paths and the data sensitivity matrix are updated using the newly obtained wave speed model. To demonstrate its feasibility, we apply the method to determine the 3-D shallow crustal shear wave speed variations in the Taipei basin of Taiwan using short period interstation Rayleigh wave phase velocity dispersion measurements extracted from the ambient noise cross-correlation method. The results are consistent with previous studies and reveal strong shallow crustal heterogeneity that correlates with surface geology.

  20. Cerebral Arteries Extraction using Level Set Segmentation and Adaptive Tracing for CT Angiography

    SciTech Connect

    Zhang Yong; Zhou Xiaobo; Srinivasan, Ranga; Wong, Stephen T. C.; Young, Geoff

    2007-11-02

    We propose an approach for extracting cerebral arteries from partial Computed Tomography Angiography (CTA). The challenges of extracting cerebral arteries from CTA come from the fact that arteries are usually surrounded by bones and veins in the lower portion of a CTA volume. There exists strong intensity-value overlap between vessels and surrounding objects. Besides, it is inappropriate to assume the 2D cross sections of arteries are circle or ellipse, especially for abnormal vessels. The navigation of the arteries could change suddenly in the 3D space. In this paper, a method based on level set segmentation is proposed to target this challenging problem. For the lower portion of a CTA volume, we use geodesic active contour method to detect cross section of arteries in the 2D space. The medial axis of the artery is obtained by adaptively tracking along its navigation path. This is done by finding the minimal cross section from cutting the arteries under different angles in the 3D spherical space. This method is highly automated, with minimum user input of providing only the starting point and initial navigation direction of the arteries of interests.

  1. Three-dimensional polarization aberration functions in optical system based on three-dimensional polarization ray-tracing calculus

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Fu, Yuegang; Liu, Zhiying; Zhang, Lei; Wang, Jiake; Zheng, Yang; Li, Yahong

    2017-03-01

    The polarization aberrations of a complex optical system with multi-element lens have been investigated using a 3D polarization aberration function. The 3D polarization ray-tracing matrix has been combined with the optical path difference to obtain a 3D polarization aberration function, which avoids the need for a complicated phase unwrapping process. The polarization aberrations of a microscope objective have been analyzed to include, the distributions of 3D polarization aberration functions, diattenuation aberration, retardance aberration, and polarization-dependent intensity on the exit pupil. Further, the aberrations created by the field of view and the coating on the distribution rules of 3D polarization aberration functions are discussed in detail. Finally a novel appropriate field of view and wavelength correction is proposed for a polarization aberration function which optimizes the image quality of a multi-element optical system.

  2. Three-dimensional ray tracing through curvilinear interfaces with application to laser Doppler anemometry in a blood analogue fluid.

    PubMed

    Nugent, Allen H; Bertram, Christopher D

    2010-02-01

    Prediction of the effects of refractive index (RI) mismatch on laser Doppler anemometer (LDA) measurements within a curvilinear cavity (an artificial ventricle) was achieved by developing a general technique for modelling the paths of the convergent beams of the LDA system using 3D vector geometry. Validated by ray tracing through CAD drawings, the predicted maximum tolerance in RI between the solid model and the working fluid was +/- 0.0005, equivalent to focusing errors commensurate with the geometric and alignment uncertainties associated with the flow model and the LDA arrangement. This technique supports predictions of the effects of refraction within a complex geometry. Where the RI mismatch is unavoidable but known, it is possible not only to calculate the true position of the measuring volume (using the probe location and model geometry), but also to estimate degradation in signal quality arising from differential displacement and refraction of the laser beams.

  3. Use of Rayleigh imaging and ray tracing to correct for beam-steering effects in turbulent flames.

    PubMed

    Kaiser, Sebastian A; Frank, Jonathan H; Long, Marshall B

    2005-11-01

    Laser Rayleigh imaging has been applied in a number of flow and flame studies to measure concentration or temperature distributions. Rayleigh cross sections are dependent on the index of refraction of the scattering medium. The same index of refraction changes that provide contrast in Rayleigh images can also deflect the illuminating laser sheet. By applying a ray-tracing algorithm to the detected image, it is possible to correct for some of these beam-steering effects and thereby improve the accuracy of the measured field. Additionally, the quantification of the degree of beam steering through the flow provides information on the degradation of spatial resolution in the measurement. Application of the technique in a well-studied laboratory flame is presented, along with analysis of the effects of image noise and spatial resolution on the effectiveness of the algorithm.

  4. An efficient ray tracing algorithm for the simulation of light trapping effects in Si solar cells with textured surfaces.

    PubMed

    Byun, Seok Yong; Byun, Seok-Joo; Lee, Jang Kyo; Kim, Jae Wan; Lee, Taek Sung; Sheen, Dongwoo; Cho, Kyuman; Tark, Sung Ju; Kim, Donghwan; Kim, Won Mok

    2012-04-01

    Optimizing the design of the surface texture is an essential aspect of Si solar cell technology as it can maximize the light trapping efficiency of the cells. The proper simulation tools can provide efficient means of designing and analyzing the effects of the texture patterns on light confinement in an active medium. In this work, a newly devised algorithm termed Slab-Outline, based on a ray tracing technique, is reported. The details of the intersection searching logic adopted in Slab-Outline algorithm are also discussed. The efficiency of the logic was tested by comparing the computing time between the current algorithm and the Constructive Solid Geometry algorithm, and its superiority in computing speed was proved. The validity of the new algorithm was verified by comparing the simulated reflectance spectra with the measured spectra from a textured Si surface.

  5. Modeling ionospheric disturbance features in quasi-vertically incident ionograms using 3-D magnetoionic ray tracing and atmospheric gravity waves

    NASA Astrophysics Data System (ADS)

    Cervera, M. A.; Harris, T. J.

    2014-01-01

    The Defence Science and Technology Organisation (DSTO) has initiated an experimental program, Spatial Ionospheric Correlation Experiment, utilizing state-of-the-art DSTO-designed high frequency digital receivers. This program seeks to understand ionospheric disturbances at scales < 150 km and temporal resolutions under 1 min through the simultaneous observation and recording of multiple quasi-vertical ionograms (QVI) with closely spaced ionospheric control points. A detailed description of and results from the first campaign conducted in February 2008 were presented by Harris et al. (2012). In this paper we employ a 3-D magnetoionic Hamiltonian ray tracing engine, developed by DSTO, to (1) model the various disturbance features observed on both the O and X polarization modes in our QVI data and (2) understand how they are produced. The ionospheric disturbances which produce the observed features were modeled by perturbing the ionosphere with atmospheric gravity waves.

  6. Front-end antenna system design for the ITER low-field-side reflectometer system using GENRAY ray tracing

    NASA Astrophysics Data System (ADS)

    Wang, G.; Doyle, E. J.; Peebles, W. A.

    2016-11-01

    A monostatic antenna array arrangement has been designed for the microwave front-end of the ITER low-field-side reflectometer (LFSR) system. This paper presents details of the antenna coupling coefficient analyses performed using GENRAY, a 3-D ray tracing code, to evaluate the plasma height accommodation capability of such an antenna array design. Utilizing modeled data for the plasma equilibrium and profiles for the ITER baseline and half-field scenarios, a design study was performed for measurement locations varying from the plasma edge to inside the top of the pedestal. A front-end antenna configuration is recommended for the ITER LFSR system based on the results of this coupling analysis.

  7. Distance corrections for single- and dual-color lasers by ray tracing. [for earth crustal deformation and strain measurement

    NASA Technical Reports Server (NTRS)

    Berg, E.; Carter, J. A.

    1980-01-01

    The physical arc length difference between the red and blue beam of a dual-color laser generates an error term in determining Delta-n as well as n (the refractive index) and D (the line length). Numerical ray trace examples and theoretical approximations show that the resulting relative error Delta-D/D increases as D-squared. Error reduction by a factor of nearly 10 is possible by using the pressure, temperature, and humidity of both endpoints to calculate n. The present study results from a desire to improve the precision of monitoring the local and regional position of the Lunar Laser Ranging Observatory atop Haleakala, Maui, Hawaii; the monitoring of the earth's crustal deformation and strain is a primary concern of the study.

  8. Erratum: Studying the precision of ray tracing techniques with Szekeres models [Phys. Rev. D 92, 023532 (2015)

    NASA Astrophysics Data System (ADS)

    Koksbang, S. M.; Hannestad, S.

    2015-09-01

    This erratum serves to give corrections of two errors made in Koksbang and Hannestad [Phys. Rev. D, 92, 023532 (2015)]. One error consists of having used the expression for the Doppler convergence for a flat background to study the convergence on curved backgrounds. The other error which was made, is a typo in the numerical code used to study the convergence in onion models with curved backgrounds. After correcting this typo, the results of Sec. VI A in Koksbang and Hannestad [Phys. Rev. D, 92, 023532 (2015)] were recomputed. Contrary to the original results, the new results show that the ray-tracing scheme studied in Koksbang and Hannestad [Phys. Rev. D, 92, 023532 (2015)] can reproduce the exact results in LTB onion models very well. The corrections and new results are described more elaborately below.

  9. Trace element analyses of spheres from the melt zone of the Greenland ice cap using synchrotron X ray fluorescence

    NASA Technical Reports Server (NTRS)

    Chevallier, P.; Wang, J.; Jehanno, C.; Maurette, M.; Sutton, S. R.

    1986-01-01

    Synchrotron X-ray fluorescence spectra of unpolished iron and chondritic spheres extracted from sediments collected on the melt zone of the Greenland ice cap allow the analysis of Ni, Cu, Zn, Ga, Ge, Pb, and Se with minimum detection limits on the order of several parts per million. All detected elements are depleted relative to chondritic abundance with the exception of Pb, which shows enrichments up to a factor of 500. An apparent anticorrelation between the Ni-content and trace element concentration was observed in both types of spherules. The fractionation patterns of the iron and chondritic spheres are not complementary and consequently the two iron spheres examined in this study are unlikely to result from ejection of globules of Fe/Ni from parent chondritic micrometeoroids.

  10. Incorporation of Trace Elements in Ancient and Modern Human Bone: An X-Ray Absorption Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E.; Cruz-Jimenez, G.; Price, T. D.

    2001-12-01

    X-ray absorption spectroscopy (XAS) affords the opportunity to probe the atomic environment of trace elements in human bone. We are using XAS to investigate the mode(s) of incorporation of Sr, Zn, Pb, and Ba in both modern and ancient (and thus possibly altered) human and animal bone. Because burial and diagenesis may add trace elements to bone, we performed XAS analysis on samples of pristine contemporary and ancient, buried human and animal bone. We assume that deposition of these elements during burial occurs by processes distinct from those in vivo, and this will be reflected in their atomic environments. Archaeologists measure strontium in human and animal bone as a guide to diet. Carnivores show lower Sr/Ca ratios than their herbivore prey due to discrimination against Sr relative to Ca up the food chain. In an initial sample suite no difference was observed between modern and buried bone. Analysis of additional buried samples, using a more sensitive detector, revealed significant differences in the distance to the second and third neighbors of the Sr in some of the buried samples. Distances to the first neighbor, oxygen, were similar in all samples. Zinc is also used in paleo-diet studies. Initial x-ray absorption spectroscopy of a limited suite of bones did not reveal any differences between modern and buried samples. This may reflect the limited number of samples examined or the low levels of Zn in typical aqueous solutions in soils. Signals from barium and lead were too low to record useful XAS spectra. Additional samples will be studied for Zn, Ba, and Pb. We conducted our XAS experiments on beam lines 4-1 and 4-3 at the Stanford Synchrotron Radiation Laboratory. Data were collected in the fluorescence mode, using a Lytle detector and appropriate filter, and a solid state, 13-element Ge-detector.

  11. Trace elements determination in red and white wines using total-reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Anjos, M. J.; Lopes, R. T.; de Jesus, E. F. O.; Moreira, S.; Barroso, R. C.; Castro, C. R. F.

    2003-12-01

    Several wines produced in different regions from south of Brazil and available in markets in Rio de Janeiro were analyzed for their contents of elements such as: P, S, Cl, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Rb and Sr. Multi-element analysis was possible with simple sample preparation and subsequent analysis by total-reflection X-ray fluorescence using synchrotron radiation. The measurement was carried at the X-ray fluorescence beamline in the Synchrotron Light Source Laboratory in Campinas, Brazil. The levels of the various elements obtained were lower in the Brazilian wines than the values generally found in the literature. The present study indicates the capability of multi-element analysis for determining the contents of various elements present in wines coming from Brazil vineyards by using a simple, sensitive and precise method.

  12. Application of the Total Reflection X-ray Fluorescence technique to trace elements determination in tobacco

    NASA Astrophysics Data System (ADS)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2008-12-01

    Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples.

  13. The Verification and Validation of the Ray-tracing of Bag of Triangles (BoTs)

    DTIC Science & Technology

    2015-02-01

    programs were created to accommodate each component of this project. The first program created all possible triangles (BoTs) given a bounding box and...possible triangles within bounding box (1, 1, 1) with step size of 0.5 ........................... 2 Fig. 2 Rays fired at triangle...6 Fig. 7 Data for the percentage of successes for the bounding box (2, 2, 2) with step size 1.5

  14. Alternative methods for ray tracing in uniaxial media. Application to negative refraction

    NASA Astrophysics Data System (ADS)

    Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo

    2007-03-01

    In previous papers [C. Bellver-Cebreros, M. Rodriguez-Danta, Eikonal equation, alternative expression of Fresnel's equation and Mohr's construction in optical anisotropic media, Opt. Commun. 189 (2001) 193; C. Bellver-Cebreros, M. Rodriguez-Danta, Internal conical refraction in biaxial media and graphical plane constructions deduced from Mohr's method, Opt. Commun. 212 (2002) 199; C. Bellver-Cebreros, M. Rodriguez-Danta, Refraccion conica externa en medios biaxicos a partir de la construccion de Mohr, Opt. Pura AppliE 36 (2003) 33], the authors have developed a method based on the local properties of dielectric permittivity tensor and on Mohr's plane graphical construction in order to study the behaviour of locally plane light waves in anisotropic media. In this paper, this alternative methodology is compared with the traditional one, by emphasizing the simplicity of the former when studying ray propagation through uniaxial media (comparison is possible since, in this case, traditional construction becomes also plane). An original and simple graphical method is proposed in order to determine the direction of propagation given by the wave vector from the knowledge of the extraordinary ray direction (given by Poynting vector). Some properties of light rays in these media not described in the literature are obtained. Finally, two applications are considered: a description of optical birefringence under normal incidence and the study of negative refraction in uniaxial media.

  15. Role of x-ray-induced transcripts in adaptive responses following x-rays

    SciTech Connect

    Boothman, D.A.

    1992-01-01

    Potentially lethal damage repair (PLDR) and sublethal damage repair, may be the same manifestations of a series of common enzymatic steps. PLDR, has two distinct phases based upon DNA lesion repair and survival recovery studies. The first phase of PLDR occurs very quickly (t{sub {1/2}}:2--20 mins) to increase the survival of X-irradiated cells by mending the vast array of DNA lesions created by ionizing radiation. The second slower phase of PLDR proceeds much later (i.e., >1--2 hrs) following X-irradiation, during which the remaining double-stranded DNA breaks are completely repaired. This second phase of repair closely corresponds to the restructuring of gross chromosomal damage, and can be partially blocked in some human cells by inhibiting protein synthesis. This slower phase of PLDR correlated with a rapid decline in X-ray-induced transformation of normal cells. The fast component of PLDR may be due to constitutively synthesized DNA ligases, topoisomerases, or polymerases, which act immediately to repair damaged, DNA. In contrast, the slow phase of PLDR in human cells may require the induction of specific genes and gene product's involved in the repair of potentially lethal or carcinogenic DNA lesions. Induced gene products (i.e., proteins) specifically synthesized in response to physiological doses of ionizing radiation in radioresistant human melanoma (U1-Mel) cells, and in a variety of other human normal and cancer-prone cells, were identified using two-dimensional gel electrophoresis. We identified and partially characterized ten proteins synthesized by U1-Mel cells. The synthesis of eight of these proteins were specifically induced by ionizing radiation and two proteins were repressed Neither heat shock, UV-irradiation, nor bifunctional alkylating agent treatments resulted in the induction of these proteins. The expression of one protein, XIP269, correlated very well with PLDR capacity.

  16. X-ray fluorescence study of the concentration of selected trace and minor elements in human brain tumours

    NASA Astrophysics Data System (ADS)

    Wandzilak, Aleksandra; Czyzycki, Mateusz; Radwanska, Edyta; Adamek, Dariusz; Geraki, Kalotina; Lankosz, Marek

    2015-12-01

    Neoplastic and healthy brain tissues were analysed to discern the changes in the spatial distribution and overall concentration of elements using micro X-ray fluorescence spectroscopy. High-resolution distribution maps of minor and trace elements such as P, S, Cl, K, Ca, Fe, Cu and Zn made it possible to distinguish between homogeneous cancerous tissue and areas where some structures could be identified, such as blood vessels and calcifications. Concentrations of the elements in the selected homogeneous areas of brain tissue were compared between tumours with various malignancy grades and with the controls. The study showed a decrease in the average concentration of Fe, P, S and Ca in tissues with high grades of malignancy as compared to the control group, whereas the concentration of Zn in these tissues was increased. The changes in the concentration were found to be correlated with the tumour malignancy grade. The efficacy of micro X-ray fluorescence spectroscopy to distinguish between various types of cancer based on the concentrations of studied elements was confirmed by multivariate discriminant analysis. Our analysis showed that the most important elements for tissue classification are Cu, K, Fe, Ca, and Zn. This method made it possible to correctly classify histopathological types in 99.93% of the cases used to build the model and in as much as 99.16% of new cases.

  17. Electroadsorption-assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy.

    PubMed

    Jiang, Tian-Jia; Guo, Zheng; Liu, Jin-Huai; Huang, Xing-Jiu

    2015-08-18

    An analytical technique based on electroadsorption and transmission X-ray fluorescence (XRF) for the quantitative determination of arsenic in aqueous solution with ppb-level limits of detection (LOD) is proposed. The approach uses electroadsorption to enhance the sensitivity and LOD of the arsenic XRF response. Amine-functionalized carbonaceous microspheres (NH2-CMSs) are found to be the ideal materials for both the quantitative adsorption of arsenic and XRF analysis due to the basic amine sites on the surface and their noninterference in the XRF spectrum. In electroadsorptive X-ray fluorescence (EA-XRF), arsenic is preconcentrated by a conventional three-electrode system with a positive electricity field around the adsorbents. Then, the quantification of arsenic on the adsorbents is achieved using XRF. The electroadsorption preconcentration can realize the fast transfer of arsenic from the solution to the adsorbents and improve the LOD of conventional XRF compared with directly determining arsenic solution by XRF alone. The sensitivity of 0.09 cnt ppb(-1) is obtained without the interferences from coexisted metal ions in the determination of arsenic, and the LOD is found to be 7 ppb, which is lower than the arsenic guideline value of 10 ppb given by the World Health Organization (WHO). These results demonstrated that XRF coupled with electroadsorption was able to determine trace arsenic in real water sample.

  18. Tracing X-ray Binary Population Evolution By Galaxy Dissection: First Results from M51

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret; Eufrasio, Rafael T.; Markwardt, Larissa; Zezas, Andreas; Basu-Zych, Antara; Fragos, Tassos; Hornschemeier, Ann E.; Kalogera, Vassiliki; Ptak, Andrew; Tzanavaris, Panayiotis; Yukita, Mihoko

    2017-01-01

    Recently, we have found, in the Chandra Deep Field-South, that the emission from X-ray binary (XRB) populations in galaxies evolves significantly with cosmic time, most likely due to changes in the physical properties of galaxies like star-formation rate, stellar mass, stellar age, and metallicity. However, it has been challenging to directly show that these same physical properties are connected to XRB populations using data from nearby galaxies. We present a new technique for empirically calibrating how X-ray binary (XRB) populations evolve following their formation in a variety of environments. We first utilize detailed stellar population synthesis modeling of far-UV to far-IR broadband data of nearby (< 10 Mpc) face-on spiral galaxies to construct maps of the star-formation histories on subgalactic scales. Using Chandra data, we then identify the locations of the XRBs within these galaxies and correlate their formation frequencies with local galaxy properties. In this talk, I will show promising first results for the Whirlpool galaxy (M51), and will discuss how expanding our sample to an archival sample of 20 face-on spirals will lead to a detailed empirical timeline for how XRBs form and evolve in various environments.

  19. Trace the polymerization induced by gamma-ray irradiated silica particles

    NASA Astrophysics Data System (ADS)

    Lee, Hoik; Ryu, Jungju; Kim, Myungwoong; Im, Seung Soon; Kim, Ick Soo; Sohn, Daewon

    2016-08-01

    A γ-ray irradiation to inorganic particles is a promising technique for preparation of organic/inorganic composites as it offers a number of advantages such as an additive-free polymerizations conducted under mild conditions, avoiding undesired damage to organic components in the composites. Herein, we demonstrated a step-wise formation mechanism of organic/inorganic nanocomposite hydrogel in detail. The γ-ray irradiation to silica particles dispersed in water generates peroxide groups on their surface, enabling surface-initiated polymerization of acrylic acid from the inorganic material. As a result, poly(acrylic acid) (PAA) covers the silica particles in the form of a core-shell at the initial stage. Then, PAA-coated silica particles associate with each other by combination of radicals at the end of chains on different particles, leading to micro-gel domains. Finally, the micro-gels are further associated with each other to form a 3D network structure. We investigated this mechanism using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Our result strongly suggests that controlling reaction time is critical to achieve specific and desirable organic/inorganic nanocomposite structure among core-shell particles, micro-gels and 3D network bulk hydrogel.

  20. New Developments in Hard X-ray Fluorescence Microscopy for In-situ Investigations of Trace Element Distributions in Aqueous Systems of Soil Colloids

    NASA Astrophysics Data System (ADS)

    Gleber, Sophie-Charlotte; Weinhausen, Britta; Köster, Sarah; Ward, Jesse; Vine, David; Finney, Lydia; Vogt, Stefan

    2013-10-01

    The distribution, binding and release of trace elements on soil colloids determine matter transport through the soil matrix, and necessitates an aqueous environment and short length and time scales for their study. However, not many microscopy techniques allow for that. We previously showed hard x-ray fluorescence microscopy capabilities to image aqueous colloidal soil samples [1]. As this technique provides attogram sensitivity for transition elements like Cu, Zn, and other geochemically relevant trace elements at sub micrometer spatial resolution (currently down to 150 nm at 2-ID-E [2]; below 50nm at Bionanoprobe, cf. G.Woloschak et al, this volume) combined with the capability to penetrate tens of micrometer of water, it is ideally suited for imaging the elemental content of soil colloids. To address the question of binding and release processes of trace elements on the surface of soil colloids, we developed a microfluidics based XRF flow cytometer, and expanded the applied methods of hard x-ray fluorescence microscopy towards three dimensional imaging. Here, we show (a) the 2-D imaged distributions of Si, K and Fe on soil colloids of Pseudogley samples; (b) how the trace element distribution is a dynamic, pH-dependent process; and (c) x-ray tomographic applications to render the trace elemental distributions in 3-D. We conclude that the approach presented here shows the remarkable potential to image and quantitate elemental distributions from samles within their natural aqueous microenvironment, particularly important in the environmental, medical, and biological sciences.

  1. DYNAMICS AND MAGNETIZATION IN GALAXY CLUSTER CORES TRACED BY X-RAY COLD FRONTS

    SciTech Connect

    Keshet, Uri; Markevitch, Maxim; Birnboim, Yuval; Loeb, Abraham

    2010-08-10

    Cold fronts (CFs)-density and temperature plasma discontinuities-are ubiquitous in cool cores of galaxy clusters, where they appear as X-ray brightness edges in the intracluster medium, nearly concentric with the cluster center. We analyze the thermodynamic profiles deprojected across core CFs found in the literature. While the pressure appears continuous across these CFs, we find that all of them require significant centripetal acceleration beneath the front. This is naturally explained by a tangential, nearly sonic bulk flow just below the CF, and a tangential shear flow involving a fair fraction of the plasma beneath the front. Such shear should generate near-equipartition magnetic fields on scales {approx}<50pc from the front and could magnetize the entire core. Such fields would explain the apparent stability of cool core CFs and the recently reported CF-radio minihalo association.

  2. Ray-tracing approach to model the refractive properties of interfaces due to the use of vitreous substitutes in vitreo-retinal surgery

    NASA Astrophysics Data System (ADS)

    Docchio, Franco; Azzolini, Claudio; Brancato, Rosario

    1995-05-01

    A ray-tracing method has been used to investigate the refractive properties of interfaces between different ocular media and vitreous substitutes, in relation to transpupillary laser beam delivery during photocoagulative procedures. The study outlines the role of these interfaces in focusing or defocusing the laser beam along the light path within the eye.

  3. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    SciTech Connect

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa; Matsuyama, Satoshi; Kimura, Takashi; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  4. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors.

    PubMed

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  5. Tracing the incidence of X-ray AGN and their distribution of accretion rates across the galaxy population

    NASA Astrophysics Data System (ADS)

    Aird, James; Coil, Alison; Georgakakis, Antonis; Nandra, Kirpal

    2016-08-01

    X-ray selection provides a powerful method of identifying AGN across a variety of host galaxies and with a wide range of accretion rates. However, careful consideration of the underlying selection biases are vital to reveal the true underlying distribution of accretion rates and determine how the incidence of AGN is related to the properties of the galaxies that host them. I will present new measurements of the distribution of specific accretion rates (scaled relative to the total host galaxy mass, roughly tracing the Eddington ratio) within both star-forming and quiescent galaxy populations. We combine near-infrared selected samples of galaxies from the CANDELS/3D-HST and UltraVISTA surveys with deep Chandra X-ray data and use an advanced Bayesian technique to constrain the underlying distribution of specific accretion rates as a function of stellar mass and redshift. Our results reveal a broad distribution of accretion rates (reflecting long-term variability in the level of AGN fuelling) in both galaxy types. The probability of a star-forming galaxy hosting an AGN (above a fixed specific accretion rate) has a strong stellar mass dependence - revealing an intrinsically higher incidence of AGN in massive star-forming galaxies - and undergoes a stellar-mass-dependent evolution with redshift. The probability of a quiescent galaxy hosting an AGN is generally lower but does not depend on stellar mass and evolves differently with redshift. These results provide vital insights into the relationship between the growth of black hole and the physical properties of their host galaxies.

  6. [Rapid determination of major and trace elements in the salt lake clay minerals by X-ray fluorescence spectrometry].

    PubMed

    Wang, Xiao-Huan; Meng, Qing-Fen; Dong, Ya-Ping; Chen, Mei-Da; Li, Wu

    2010-03-01

    A rapid multi-element analysis method for clay mineral samples was described. This method utilized a polarized wave-length dispersive X-ray fluorescence spectrometer--Axios PW4400, which had a maximum tube power of 4 000 watts. The method was developed for the determination of As, Mn, Co, Cu, Cr, Dy, Ga, Mo, P, Pb, Rb, S, Sr, Ni, ,Cs, Ta, Th, Ti, U, V, Y, Zn, Zr, MgO, K2O, Na2O, CaO, Fe2O3, Al2O3, SiO2 and so on. Thirty elements in clay mineral species were measured by X-ray fluorescence spectrometry with pressed powder pellets. Spectral interferences, in particular the indirect interferences of each element, were studied. A method to distinguish the interference between each other periodic elements in element periodic table was put forward. The measuring conditions and existence were mainly investigated, and the selected background position as well as corrected spectral overlap for the trace elements were also discussed. It was found that the indirect spectral overlap line was the same important as direct spectral overlap line. Due to inducing the effect of indirect spectral overlap, some elements jlike Bi, Sn, W which do not need analysis were also added to the elements channel. The relative standard deviation (RSD) was in the range of 0.01% to 5.45% except three elements Mo, Cs and Ta. The detection limits, precisions and accuracies for most elements using this method can meet the requirements of sample analysis in clay mineral species.

  7. Correction of ultrasonic array images to improve reflector sizing and location in inhomogeneous materials using a ray-tracing model.

    PubMed

    Connolly, G D; Lowe, M J S; Temple, J A G; Rokhlin, S I

    2010-05-01

    The use of ultrasonic arrays has increased dramatically within recent years due to their ability to perform multiple types of inspection and to produce images of the structure through post-processing of received signals. Phased arrays offer many advantages over conventional transducers in the inspection of materials that are inhomogeneous with spatially varying anisotropic properties. In this paper, the arrays are focused on austenitic steel welds as a representative inhomogeneous material. The method of ray-tracing through a previously developed model of an inhomogeneous weld is shown, with particular emphasis on the difficulties presented by material inhomogeneity. The delay laws for the structure are computed and are used to perform synthetic focusing at the post-processing stage of signal data acquired by the array. It is demonstrated for a simulated austenitic weld that by taking material inhomogeneity and anisotropy into account, superior reflector location (and hence, superior sizing) results when compared to cases where these are ignored. The image is thus said to have been corrected. Typical images are produced from both analytical data in the frequency domain and data from finite element simulations in the time domain in a variety of wave modes, including cases with mode conversion and reflections.

  8. Effects of Ice-Crystal Structure on Halo Formation: Cirrus Cloud Experimental and Ray-Tracing Modeling Studies

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Knight, Nancy C.; Takano, Yoshihide; Heymsfield, Andrew J.

    1994-01-01

    During the 1986 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) field campaign, four 22 deg halo-producing cirrus clouds were studied jointly from a ground-based polarization lidar and an instrumented aircraft. The lidar data show the vertical cloud structure and the relative position of the aircraft, which collected a total of 84 slides by impaction, preserving the ice crystals for later microscopic examination. Although many particles were too fragile to survive impaction intact, a large fraction of the identifiable crystals were columns and radial bullet rosettes, with both displaying internal cavitations and radial plate-column combinations. Particles that were solid or displayed only a slight amount of internal structure were relatively rare, which shows that the usual model postulated by halo theorists, i.e., the randomly oriented, solid hexagonal crystal, is inappropriate for typical cirrus clouds. With the aid of new ray-tracing simulations for hexagonal hollow-ended column and bullet-rosette models, we evaluate the effects of more realistic ice-crystal structures on halo formation and lidar depolarization and consider why the common halo is not more common in cirrus clouds.

  9. Determination of trace element distribution in cancerous and normal human tissues by total reflection X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    von Czarnowski, D.; Denkhaus, E.; Lemke, K.

    1997-07-01

    The intention of this study was to establish a method for cancer diagnosis. For this purpose, different trace element distributions in carcinomas of the digestive tract and in normal tissues of human stomach, colon and rectum in correlation to the type of cancer were determined by total reflection X-ray fluorescence analysis (TXRF). The tissue samples were frozen and cut by a microtome into 10 μm sections, and a modified sample excision technique was introduced according to the aim of this research. After drying and spiking of the tissue sections, more than 20 elements, especially biologically relevant ones, were determined. The repeatabilities of measurements of element concentrations in malignant and normal tissues were calculated to be 10-30% (RSD) depending on the specific element. The concentration of Ca was found to be virtually constant (0.250±0.025 μg per 0.1 mm 3) in normal tissue and in carcinoma of the digestive organs. A significant diminution of Cr, Fe and Ni in carcinoma of the stomach, of Cr and Co in carcinoma of the colon and a significant accumulation of K in cancerous tissue of the colon and of Fe and K in neoplastic tissue of the rectum were discovered for a very limited population of patients.

  10. Determination of trace metals in drinking water using solid-phase extraction disks and X-ray fluorescence spectrometry.

    PubMed

    Hou, Xiandeng; Peters, Heather L; Yang, Zheng; Wagner, Karl A; Batchelor, James D; Daniel, Meredith M; Jones, Bradley T

    2003-03-01

    A convenient method is described for monitoring Cd, Ni, Cu, and Pb at trace levels in drinking water samples. These metals are preconcentrated on a chelating solid-phase extraction disk and then determined by X-ray fluorescence spectrometry. The method tolerates a wide pH range (pH 6-14) and a large amount of alkaline and alkaline earth elements. The preconcentration factor is well over 1600, assuming a 1 L water sample volume. The limits of detection for Cd, Ni, Cu, and Pb are 3.8, 0.6, 0.4, and 0.3 ng/mL, respectively. These are well below the federal maximum contaminant level values, which are 5, 100, 1300, and 15 ng/mL, respectively. The proposed method has many advantages including ease of operation, multielement capability, nondestructiveness, high sensitivity, and relative cost efficiency. The solid-phase extraction step can be conducted in the field and then the disks can be mailed to a laboratory for the analysis, eliminating the cost of transporting large volumes of water samples. Furthermore, the color of the used extraction disk provides an initial estimate of the degree of contamination for some transition metals (for example, Ni and Cu). Thus, the overall cost for analysis of metals in drinking water can be minimized by implementing the method, and small water supply companies with limited budgets will be better able to comply with the Safe Drinking Water Act.

  11. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

    SciTech Connect

    Lin, J. Y. Y.; Aczel, Adam A; Abernathy, Douglas L; Nagler, Stephen E; Buyers, W. J. L.; Granroth, Garrett E

    2014-01-01

    Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of- flight chopper spectrometers [A.A. Aczel et al, Nature Communications 3, 1124 (2012)]. These modes are well described by 3D isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for the nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states (PDOS), and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T-dependence of the scattering from these modes is strongly influenced by the uranium lattice.

  12. Using Monte Carlo Ray tracing to Understand the Vibrational Response of UN as Measured by Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, J. Y. Y.; Aczel, A. A.; Abernathy, D. L.; Nagler, S. E.; Buyers, W. J. L.; Granroth, G. E.

    2014-03-01

    Recently neutron spectroscopy measurements, using the ARCS and SEQUOIA time-of-flight chopper spectrometers, observed an extended series of equally spaced modes in UN that are well described by quantum harmonic oscillator behavior of the N atoms. Additional contributions to the scattering are also observed. Monte Carlo ray tracing simulations with various sample kernels have allowed us to distinguish between the response from the N oscillator scattering, contributions that arise from the U partial phonon density of states (PDOS), and all forms of multiple scattering. These simulations confirm that multiple scattering contributes an ~ Q -independent background to the spectrum at the oscillator mode positions. All three of the aforementioned contributions are necessary to accurately model the experimental data. These simulations were also used to compare the T dependence of the oscillator modes in SEQUOIA data to that predicted by the binary solid model. This work was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  13. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

    NASA Astrophysics Data System (ADS)

    Lin, J. Y. Y.; Aczel, A. A.; Abernathy, D. L.; Nagler, S. E.; Buyers, W. J. L.; Granroth, G. E.

    2014-04-01

    Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of-flight chopper spectrometers [A. A. Aczel et al., Nat. Commun. 3, 1124 (2012), 10.1038/ncomms2117]. These modes are well described by three-dimensional isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states, and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature-dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T dependence of the scattering from these modes is strongly influenced by the uranium lattice.

  14. Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies.

    PubMed

    Sassen, K; Knight, N C; Takano, Y; Heymsfield, A J

    1994-07-20

    During the 1986 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) field campaign, four 22° halo-producing cirrus clouds were studied jointly from a groundbased polarization lidar and an instrumented aircraft. The lidar data show the vertical cloud structure and the relative position of the aircraft, which collected a total of 84 slides by impaction, preserving the ice crystals for later microscopic examination. Although many particles were too fragile to survive impaction intact, a large fraction of the identifiable crystals were columns and radial bullet rosettes, with both displaying internal cavitations, and radial plate-column combinations. Particles that were solid or displayed only a slight amount of internal structure were relatively rare, which shows that the usual model postulated by halo theorists, i.e., the randomly oriented, solid hexagonal crystal, is inappropriate for typical cirrus clouds. With the aid of new ray-tracing simulations for hexagonal hollow ended column and bullet-rosette models, we evaluate the effects of more realistic ice-crystal structures on halo formation and lidar depolarization and consider why the common halo is not more common in cirrus clouds.

  15. The effects of cosmic particle radiation on pocket mice aboard Apollo XVII: VII. Cosmic ray particle dosimetry and trajectory tracing.

    PubMed

    Cruty, M R; Benton, E V; Turnbill, C E; Philpott, D E

    1975-04-01

    Five pocket mice (Perognathus longimembris) were flown on Apollo XVII, each with a solid-state (plastic) nuclear track detector implanted beneath its scalp. The subscalp detectors were sensitive to HZE cosmic ray particles with a LET larger than or equal to 0.15 million electron volts per micrometer (MeV/mjm). A critical aspect of the dosimetry of the experiment involved tracing individual particle trajectories through each mouse head from particle tracks registered in the individual subscalp detectors, thereby establishing a one-to-one correspondence between a trajectory location in the tissue and the presence or absence of a lesion. The other major aspect was the identification of each registered particle. An average of 16 particles with Z larger than or equal to 6 and 2.2 particles with Z larger than or equal to 20 were found per detector. The track density, 29 tracks/cm2, when adjusted for detection volume, was in agreement with the photographic emulsion data from an area dosimeter located next to the flight package.

  16. Comparison of VTEC from ground-based space geodetic techniques based on ray-traced mapping factors

    NASA Astrophysics Data System (ADS)

    Heinkelmann, Robert; Alizadeh, M. Mahdi; Schuh, Harald; Deng, Zhiguo; Zus, Florian; Etemadfard, M. Hossein

    2016-07-01

    For the derivation of vertical total electron content (VTEC) from slant total electron content (STEC), usually a standard approach is used based on mapping functions that assume a single-layer model of the ionosphere (e.g. IERS Conventions 2010). In our study we test the standard approach against a recently developed alternative which is based on station specific ray-traced mapping factors. For the evaluation of this new mapping concept, we compute VTEC at selected Very Long Baseline Interferometry (VLBI) stations using the dispersive delays and the corresponding formal errors obtained by observing extra-galactic radio sources at two radio frequencies in S- and X-bands by the permanent geodetic/astrometric program organized by the IVS (International VLBI Service for Geodesy and Astrometry). Additionally, by applying synchronous sampling and a consistent analysis configuration, we determine VTEC at Global Navigation Satellite System (GNSS) antennas using GPS (Global Positioning System) and/or GLONASS (Globalnaja nawigazionnaja sputnikowaja Sistema) observations provided by the IGS (International GNSS Service) that are operated in the vicinity of the VLBI antennas. We compare the VTEC time series obtained by the individual techniques over a period of about twenty years and describe their characteristics qualitatively and statistically. The length of the time series allows us to assess the long-term climatology of ionospheric VTEC during the last twenty years.

  17. Radiative Transfer Modeling of a Large Pool Fire by Discrete Ordinates, Discrete Transfer, Ray Tracing, Monte Carlo and Moment Methods

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.; Ripoll, J.-F.; Wray, A. A.; Joseph, D.; ElHafi, M.

    2004-01-01

    Five computational methods for solution of the radiative transfer equation in an absorbing-emitting and non-scattering gray medium were compared on a 2 m JP-8 pool fire. The temperature and absorption coefficient fields were taken from a synthetic fire due to the lack of a complete set of experimental data for fires of this size. These quantities were generated by a code that has been shown to agree well with the limited quantity of relevant data in the literature. Reference solutions to the governing equation were determined using the Monte Carlo method and a ray tracing scheme with high angular resolution. Solutions using the discrete transfer method, the discrete ordinate method (DOM) with both S(sub 4) and LC(sub 11) quadratures, and moment model using the M(sub 1) closure were compared to the reference solutions in both isotropic and anisotropic regions of the computational domain. DOM LC(sub 11) is shown to be the more accurate than the commonly used S(sub 4) quadrature technique, especially in anisotropic regions of the fire domain. This represents the first study where the M(sub 1) method was applied to a combustion problem occurring in a complex three-dimensional geometry. The M(sub 1) results agree well with other solution techniques, which is encouraging for future applications to similar problems since it is computationally the least expensive solution technique. Moreover, M(sub 1) results are comparable to DOM S(sub 4).

  18. Ray-tracing method to analyze and quantify the light enhancement around subsurface defects in transparent materials

    NASA Astrophysics Data System (ADS)

    Wu, Rong; Zhao, Dongfeng; Zhang, Lei; Shao, Ping; Hua, Neng; Lin, Zunqi

    2014-11-01

    Laser-induced damage (LID) to optical glass has become a growing problem in high-power laser systems. It is well known that the main reason of glass being damaged is due to defects and impurities in the material. Damage caused by subsurface defects (SSDs) is especially common in actual system running. Accordingly, in the presence of SSDs, a simple and alternative calculation method is developed to evaluate the enhancement of light field around the incident and exit surface. This ray tracing approach, based on the classical optics theory, is very direct and clear to show the optical phenomena of light intensity enhancement. Some basic SSD shapes have been studied and investigated here, which reveals the importance and boundary condition of controlling the size and density of SSDs in grinding and polishing process. Finally, to achieve optimal breadth depth ratio, the least etching amounts by hydrofluoric (HF) acid is investigated. The theoretical analysis and simulation results provide an appropriate range of removal amounts, which is very important in the HF etching process.

  19. Adaptive grazing incidence optics for the next generation of x-ray observatories

    NASA Astrophysics Data System (ADS)

    Lillie, C.; Pearson, D.; Plinta, A.; Metro, B.; Lintz, E.; Shropshire, D.; Danner, R.

    2010-09-01

    Advances in X-ray astronomy require high spatial resolution and large collecting area. Unfortunately, X-ray telescopes with grazing incidence mirrors require hundreds of concentric mirror pairs to obtain the necessary collecting area, and these mirrors must be thin shells packed tightly together... They must also be light enough to be placed in orbit with existing launch vehicles, and able to be fabricated by the thousands for an affordable cost. The current state of the art in X-ray observatories is represented by NASA's Chandra X-ray observatory with 0.5 arc-second resolution, but only 400 cm2 of collecting area, and by ESA's XMM-Newton observatory with 4,300 cm2 of collecting area but only 15 arc-second resolution. The joint NASA/ESA/JAXA International X-ray Observatory (IXO), with {15,000 cm2 of collecting area and 5 arc-second resolution which is currently in the early study phase, is pushing the limits of passive mirror technology. The Generation-X mission is one of the Advanced Strategic Mission Concepts that NASA is considering for development in the post-2020 period. As currently conceived, Gen-X would be a follow-on to IXO with a collecting area >= 50 m2, a 60-m focal length and 0.1 arc-second spatial resolution. Gen-X would be launched in {2030 with a heavy lift Launch Vehicle to an L2 orbit. Active figure control will be necessary to meet the challenging requirements of the Gen-X optics. In this paper we present our adaptive grazing incidence mirror design and the results from laboratory tests of a prototype mirror.

  20. Experimental validation of a multi-energy x-ray adapted scatter separation method

    NASA Astrophysics Data System (ADS)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-12-01

    Both in radiography and computed tomography (CT), recently emerged energy-resolved x-ray photon counting detectors enable the identification and quantification of individual materials comprising the inspected object. However, the approaches used for these operations require highly accurate x-ray images. The accuracy of the images is severely compromised by the presence of scattered radiation, which leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in CT. The aim of the present study was to experimentally evaluate a recently introduced partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. For this purpose, a prototype x-ray system was used. Several radiographic acquisitions of an anthropomorphic thorax phantom were performed. Reference primary images were obtained via the beam-stop (BS) approach. The attenuation images acquired from PASSSA-corrected data showed a substantial increase in local contrast and internal structure contour visibility when compared to uncorrected images. A substantial reduction of scatter induced bias was also achieved. Quantitatively, the developed method proved to be in relatively good agreement with the BS data. The application of the proposed scatter correction technique lowered the initial normalized root-mean-square error (NRMSE) of 45% between the uncorrected total and the reference primary spectral images by a factor of 9, thus reducing it to around 5%.

  1. Adaptive engineering of coherent soft-x-rays by temporal and spatial laser-pulse shaping

    NASA Astrophysics Data System (ADS)

    Pfeifer, Thomas

    2005-03-01

    We demonstrate qualitative amplitude shaping of the coherent soft x-ray spectrum produced in the process of high-harmonic generation. This is accomplished by applying adaptive femtosecond pulse shaping methods. We performed the basic operations of complete spectral control by 1) selective generation of extended parts of the high-harmonic spectra, 2) tunable single harmonic generation and 3) creation of spectral holes (suppression of harmonics) in the plateau region of the spectrum. Our ability to qualitatively ``engineer'' the coherent spectral properties by application of temporal and spatial laser-pulse-shaping methods has immediate consequences for the developing field of attosecond x-ray science. Control over the spectrum is directly related to the control over the attosecond pulse shape as we will show by comparing experiment with simulation. In addition, even more important is the prospect to extend the field of coherent control into the soft x-ray range. In the future, the proposed technique will allow us to directly manipulate electronic motion on its natural attosecond time scale.

  2. Electrochemical X-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X-ray fluorescence detection capabilities by four orders of magnitude.

    PubMed

    Hutton, Laura A; O'Neil, Glen D; Read, Tania L; Ayres, Zoë J; Newton, Mark E; Macpherson, Julie V

    2014-05-06

    The development of a novel analytical technique, electrochemical X-ray fluorescence (EC-XRF), is described and applied to the quantitative detection of heavy metals in solution, achieving sub-ppb limits of detection (LOD). In EC-XRF, electrochemical preconcentration of a species of interest onto the target electrode is achieved here by cathodic electrodeposition. Unambiguous elemental identification and quantification of metal concentration is then made using XRF. This simple electrochemical preconcentration step improves the LOD of energy dispersive XRF by over 4 orders of magnitude (for similar sample preparation time scales). Large area free-standing boron doped diamond grown using microwave plasma chemical vapor deposition techniques is found to be ideal as the electrode material for both electrodeposition and XRF due to its wide solvent window, transparency to the XRF beam, and ability to be produced in mechanically robust freestanding thin film form. During electrodeposition it is possible to vary both the deposition potential (Edep) and deposition time (tdep). For the metals Cu(2+) and Pb(2+) the highest detection sensitivities were found for Edep = -1.75 V and tdep (=) 4000 s with LODs of 0.05 and 0.04 ppb achieved, respectively. In mixed Cu(2+)/Pb(2+) solutions, EC-XRF shows that Cu(2+) deposition is unimpeded by Pb(2+), across a broad concentration range, but this is only true for Pb(2+) when both metals are present at low concentrations (10 nM), boding well for trace level measurements. In a dual mixed metal solution, EC-XRF can also be employed to either selectively deposit the metal which has the most positive formal reduction potential, E(0), or exhaustively deplete it from solution, enabling uninhibited detection of the metal with the more negative E(0).

  3. Simulation and control of narcissus phenomenon using nonsequential ray tracing. II. Line-scan camera in 7-11 microm waveband.

    PubMed

    Akram, M Nadeem

    2010-03-10

    A nonsequential ray tracing technique is used to calculate the narcissus signature in infrared (IR) imaging cameras having cooled detectors operating in the 7-11 microm waveband. Imaging cameras based on a one-dimensional linear detector array with a scan mirror are simulated. Circularly symmetric diffractive phase surfaces commonly used in modern IR cameras are modeled including multiple diffraction orders in the narcissus retroreflection path to correctly estimate the stray light return signal. An optical design example based on a step-zoom dual field of view optical system is discussed along with the performance curves to elaborate the modeling technique. Optical methods to minimize the narcissus return signal are explained, and modeling results presented. The nonsequential ray tracing technique is found to be an effective method to accurately calculate the narcissus return signal in complex IR cameras having diffractive surfaces.

  4. Trace elemental analysis of titanium dioxide pigments and automotive white paint fragments for forensic examination using high-energy synchrotron radiation x-ray fluorescence spectrometry.

    PubMed

    Nishiwaki, Yoshinori; Watanabe, Seiya; Shimoda, Osamu; Saito, Yasuhiro; Nakanishi, Toshio; Terada, Yasuko; Ninomiya, Toshio; Nakai, Izumi

    2009-05-01

    High-energy synchrotron radiation x-ray fluorescence spectrometry (SR-XRF) utilizing 116 keV x-rays was used to characterize titanium dioxide pigments (rutile) and automotive white paint fragments for forensic examination. The technique allowed analysis of K lines of 9 trace elements in 18 titanium dioxide pigments (rutile), and 10 trace elements in finish coat layers of seven automotive white paint fragments. High-field strength elements (HFSE) were found to strongly reflect the origin of the titanium dioxide (TiO(2)) pigments, and could be used as effective parameters for discrimination and classification of the pigments and paint fragments. A pairwise comparison of the finish coat layers of seven automotive white paint fragments was performed. The trace elements in the finish coat layers detected by the high-energy SR-XRF were especially effective for identification. By introducing the trace element information of primer and electrocoat layers, all the automotive white paint fragments could be discriminated by this technique.

  5. Chemical state analysis of trace-level alkali metals sorbed in micaceous oxide by total reflection X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Baba, Y.; Shimoyama, I.; Hirao, N.

    2016-10-01

    In order to determine the chemical states of radioactive cesium (137Cs or 134Cs) sorbed in clay minerals, chemical states of cesium as well as the other alkali metals (sodium and rubidium) sorbed in micaceous oxides have been investigated by X-ray photoelectron spectroscopy (XPS). Since the number of atoms in radioactive cesium is extremely small, we specially focused on chemical states of trace-level alkali metals. For this purpose, we have measured XPS under X-ray total reflection (TR) condition. For cesium, it was shown that ultra-trace amount of cesium down to about 100 pg cm-2 can be detected by TR-XPS. This amount corresponds to about 200 Bq of 137Cs (t1/2 = 30.2 y). It was demonstrated that ultra-trace amount of cesium corresponding to radioactive cesium level can be measured by TR-XPS. As to the chemical states, it was found that core-level binding energy in TR-XPS for trace-level cesium shifted to lower-energy side compared with that for thicker layer. A reverse tendency is observed in sodium. Based on charge transfer within a simple point-charge model, it is concluded that chemical bond between alkali metal and micaceous oxide for ultra-thin layer is more polarized that for thick layer.

  6. An adapted modulation transfer function for x-ray backscatter radiography by selective detection

    NASA Astrophysics Data System (ADS)

    Sabri, Nissia; Dugan, Edward T.; Jacobs, Alan M.; Shedlock, Daniel

    2007-09-01

    The Modulation Transfer Function (MTF) is a quantitative function based on frequency resolution that characterizes imaging system performance. In this study, a new MTF methodology is investigated for application to Radiography by Selective Detection (RSD), an enhanced single-side x-ray Compton backscatter imaging (CBI) technique which detects selected scatter components. The RSD imaging modality is a unique type of real-time radiography that uses a set of fin and sleeve collimators to preferentially select different components of the x-ray backscattered field. Radiography by selective detection has performed successfully in different non-destructive evaluation (NDE) applications. A customized RSD imaging system was built at the University of Florida for inspection of the space shuttle external tank spray-on foam insulation (SOFI). The x-ray backscatter RSD imaging system has been successfully used for crack and corrosion detection in a variety of materials. The conventional transmission x-ray image quality characterization tools do not apply for RSD because of the different physical process involved. Thus, the main objective of this project is to provide an adapted tool for dynamic evaluation of RSD system image quality. For this purpose, an analytical model of the RSD imaging system response is developed and supported. Two approaches are taken for the MTF calculations: one using the Fourier Transform of a line spread function and the other one using a sine function pattern. Calibration and test targets are then designed according to this proposed model. A customized Matlab code using image contrast and digital curve recognition is developed to support the experimental data and provide the Modulation Transfer Functions for RSD.

  7. Real scale ray-tracing simulation of space earthshine measurement with improved BRDF model of lunar surface

    NASA Astrophysics Data System (ADS)

    Yu, Jinhee; Ryu, Dong-Ok; Ahn, Sung-Ho; Kim, Sug-Whan

    2011-09-01

    The discrepancy in annual changes of Earth albedo anomaly among the Had3CM prediction, ground and low Earth orbit measurements attracts great academic attention world-wide. As a part of our on-going study for better understanding of such discrepancy, we report a new earthshine measurement simulation technique. It combines the light source (the Sun), targets (the Earth and the Moon) and a hypothetical detector in a real scale Integrated Monte-Carlo Ray Tracing (IRT) computation environment. The Sun is expressed as a Lambertian scattering sphere, emitting 1.626x1026W over 400nm- 750nm in wavelength range. Whilst we are in the process of developing a complex Earth model consisting of land, sea and atmosphere with appropriate BRDF models, a simplified Lambertian Earth surface with 0.3 in uniform albedo was used in this study. For the moon surface, Hapke's BRDF model is used with double Henry-Green phase function. These elements were then imported into the IRT computation of radiative transfer between their surfaces. First, the irradiance levels of earthshine and moonshine lights were computed and then confirmed that they agree well with the measurement data from Big Bear Solar Observatory. They were subsequently used in determination of the Earth bond albedo of about 0.3 that is almost identical to the input Earth albedo of 0.3. These computations prove that, for the first time, the real scale IRT model was successfully deployed for the Earthshine measurement simulation and, therefore, it can be applicable for other ground and space based measurement simulation of reflected lights from the Earth and the Moon.

  8. Thermal Modeling of the Main Rings of Saturn through random distribution particle arrays and ray-tracing simulations

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto; Spilker, Linda; Déau, Estelle

    2016-10-01

    Saturn's rings are a complex collection of icy particles with diameters from 1 m to few meters. Their natural window of study is the infrared because its temperatures are between 40K and 120K. The main driver of the temperature of these rings is the direct solar radiation as well as the solar radiation reflected off Saturn's atmosphere. The second most important energy source is the infrared radiation coming from Saturn itself. The study of the variations of temperatures of the rings, or, in general, their thermal behavior, may provide important information on their composition, their structure and their dynamics. Models that consider these and other energy sources are able to explain, to a first approximation, the observed temperature variations of the rings. The challenge for these models is to accurately describe the variation of illumination on the rings, i. e., how the illuminated and non-illuminated regions of the ring particles change at the different observation geometries. This shadowing mainly depends on the optical depth, as well as the general structure of the rings.In this work, We show a semi-analytical model that considers the main energy sources of the rings and their average properties (e.g., optical depth, particle size range and vertical distribution). In order to deal with the shadowing at specific geometries, the model uses the ray-tracing technique. The goal is to describe the ring temperatures observed by the Composite Infrared Spectrometer, CIRS, onboard the Cassini spacecraft, which is in orbit around Saturn since 2004. So far, the model is able to reproduce some of the general features of specific regions of the A, B and C rings.

  9. Sweet Pepper (Capsicum annuum L.) Canopy Photosynthesis Modeling Using 3D Plant Architecture and Light Ray-Tracing.

    PubMed

    Kim, Jee Hoon; Lee, Joon Woo; Ahn, Tae In; Shin, Jong Hwa; Park, Kyung Sub; Son, Jung Eek

    2016-01-01

    Canopy photosynthesis has typically been estimated using mathematical models that have the following assumptions: the light interception inside the canopy exponentially declines with the canopy depth, and the photosynthetic capacity is affected by light interception as a result of acclimation. However, in actual situations, light interception in the canopy is quite heterogenous depending on environmental factors such as the location, microclimate, leaf area index, and canopy architecture. It is important to apply these factors in an analysis. The objective of the current study is to estimate the canopy photosynthesis of paprika (Capsicum annuum L.) with an analysis of by simulating the intercepted irradiation of the canopy using a 3D ray-tracing and photosynthetic capacity in each layer. By inputting the structural data of an actual plant, the 3D architecture of paprika was reconstructed using graphic software (Houdini FX, FX, Canada). The light curves and A/C i curve of each layer were measured to parameterize the Farquhar, von Caemmerer, and Berry (FvCB) model. The difference in photosynthetic capacity within the canopy was observed. With the intercepted irradiation data and photosynthetic parameters of each layer, the values of an entire plant's photosynthesis rate were estimated by integrating the calculated photosynthesis rate at each layer. The estimated photosynthesis rate of an entire plant showed good agreement with the measured plant using a closed chamber for validation. From the results, this method was considered as a reliable tool to predict canopy photosynthesis using light interception, and can be extended to analyze the canopy photosynthesis in actual greenhouse conditions.

  10. Sweet Pepper (Capsicum annuum L.) Canopy Photosynthesis Modeling Using 3D Plant Architecture and Light Ray-Tracing

    PubMed Central

    Kim, Jee Hoon; Lee, Joon Woo; Ahn, Tae In; Shin, Jong Hwa; Park, Kyung Sub; Son, Jung Eek

    2016-01-01

    Canopy photosynthesis has typically been estimated using mathematical models that have the following assumptions: the light interception inside the canopy exponentially declines with the canopy depth, and the photosynthetic capacity is affected by light interception as a result of acclimation. However, in actual situations, light interception in the canopy is quite heterogenous depending on environmental factors such as the location, microclimate, leaf area index, and canopy architecture. It is important to apply these factors in an analysis. The objective of the current study is to estimate the canopy photosynthesis of paprika (Capsicum annuum L.) with an analysis of by simulating the intercepted irradiation of the canopy using a 3D ray-tracing and photosynthetic capacity in each layer. By inputting the structural data of an actual plant, the 3D architecture of paprika was reconstructed using graphic software (Houdini FX, FX, Canada). The light curves and A/Ci curve of each layer were measured to parameterize the Farquhar, von Caemmerer, and Berry (FvCB) model. The difference in photosynthetic capacity within the canopy was observed. With the intercepted irradiation data and photosynthetic parameters of each layer, the values of an entire plant's photosynthesis rate were estimated by integrating the calculated photosynthesis rate at each layer. The estimated photosynthesis rate of an entire plant showed good agreement with the measured plant using a closed chamber for validation. From the results, this method was considered as a reliable tool to predict canopy photosynthesis using light interception, and can be extended to analyze the canopy photosynthesis in actual greenhouse conditions. PMID:27667994

  11. Modeling Coniferous Canopy Structure over Extensive Areas for Ray Tracing Simulations: Scaling from the Leaf to the Stand Level

    NASA Astrophysics Data System (ADS)

    van Aardt, J. A.; van Leeuwen, M.; Kelbe, D.; Kampe, T.; Krause, K.

    2015-12-01

    Remote sensing is widely accepted as a useful technology for characterizing the Earth surface in an objective, reproducible, and economically feasible manner. To date, the calibration and validation of remote sensing data sets and biophysical parameter estimates remain challenging due to the requirements to sample large areas for ground-truth data collection, and restrictions to sample these data within narrow temporal windows centered around flight campaigns or satellite overpasses. The computer graphics community have taken significant steps to ameliorate some of these challenges by providing an ability to generate synthetic images based on geometrically and optically realistic representations of complex targets and imaging instruments. These synthetic data can be used for conceptual and diagnostic tests of instrumentation prior to sensor deployment or to examine linkages between biophysical characteristics of the Earth surface and at-sensor radiance. In the last two decades, the use of image generation techniques for remote sensing of the vegetated environment has evolved from the simulation of simple homogeneous, hypothetical vegetation canopies, to advanced scenes and renderings with a high degree of photo-realism. Reported virtual scenes comprise up to 100M surface facets; however, due to the tighter coupling between hardware and software development, the full potential of image generation techniques for forestry applications yet remains to be fully explored. In this presentation, we examine the potential computer graphics techniques have for the analysis of forest structure-function relationships and demonstrate techniques that provide for the modeling of extremely high-faceted virtual forest canopies, comprising billions of scene elements. We demonstrate the use of ray tracing simulations for the analysis of gap size distributions and characterization of foliage clumping within spatial footprints that allow for a tight matching between characteristics

  12. A quantitative differentiation method for plastic bags by wide angle X-ray diffraction for tracing the source of illegal drugs.

    PubMed

    Causin, Valerio; Marega, Carla; Carresi, Pietro; Schiavone, Sergio; Marigo, Antonio

    2007-05-03

    Thirty-three shopping bags, commonly encountered in the packaging of drug doses, were characterized by wide angle X-ray diffraction (WAXD). Using this single technique, without sample preparation, nearly all the considered samples could be differentiated, achieving a discriminating power of 0.992. The rather large degree of variability existing in grocery bags, even though they are mass produced, was shown, confirming that these items can be useful in tracing the source of illicit drug doses.

  13. Combined Application of QEM-SEM and Hard X-ray Microscopy to Determine Mineralogical Associations and Chemcial Speciation of Trace Metals

    SciTech Connect

    M Grafe; M Landers; R Tappero; P Austin; B Gan; A Grabsch; C Klauber

    2011-12-31

    We describe the application of quantitative evaluation of mineralogy by scanning electron microscopy in combination with techniques commonly available at hard X-ray microprobes to define the mineralogical environment of a bauxite residue core segment with the more specific aim of determining the speciation of trace metals (e.g., Ti, V, Cr, and Mn) within the mineral matrix. Successful trace metal speciation in heterogeneous matrices, such as those encountered in soils or mineral residues, relies on a combination of techniques including spectroscopy, microscopy, diffraction, and wet chemical and physical experiments. Of substantial interest is the ability to define the mineralogy of a sample to infer redox behavior, pH buffering, and mineral-water interfaces that are likely to interact with trace metals through adsorption, coprecipitation, dissolution, or electron transfer reactions. Quantitative evaluation of mineralogy by scanning electron microscopy coupled with micro-focused X-ray diffraction, micro-X-ray fluorescence, and micro-X-ray absorption near edge structure (mXANES) spectroscopy provided detailed insights into the composition of mineral assemblages and their effect on trace metal speciation during this investigation. In the sample investigated, titanium occurs as poorly ordered ilmenite, as rutile, and is substituted in iron oxides. Manganese's spatial correlation to Ti is closely linked to ilmenite, where it appears to substitute for Fe and Ti in the ilmenite structure based on its mXANES signature. Vanadium is associated with ilmenite and goethite but always assumes the +4 oxidation state, whereas chromium is predominantly in the +3 oxidation state and solely associated with iron oxides (goethite and hematite) and appears to substitute for Fe in the goethite structure.

  14. X-ray dose reduction by adaptive source equalization and electronic region-of-interest control

    NASA Astrophysics Data System (ADS)

    Burion, Steve; Sandman, Anne; Bechtel, Kate; Solomon, Edward; Funk, Tobias

    2011-03-01

    Radiation dose is particularly a concern in pediatric cardiac fluoroscopy procedures, which account for 7% of all cardiac procedures performed. The Scanning-Beam Digital X-ray (SBDX) fluoroscopy system has already demonstrated reduced dose in adult patients owing to its high-DQE photon-counting detector, reduced detected scatter, and the elimination of the anti-scatter grid. Here we show that the unique flexible illumination platform of the SBDX system will enable further dose area product reduction, which we are currently developing for pediatric patients, but which will ultimately benefit all patients. The SBDX system has a small-area detector array and a large-area X-ray source with up to 9,000 individually-controlled X-ray focal spots. Each focal spot illuminates a small fraction of the full field of view. To acquire a frame, each focal spot is activated for a fixed number of 1-microsecond periods. Dose reduction is made possible by reducing the number of activations of some of the X-ray focal spots during each frame time. This can be done dynamically to reduce the exposure in areas of low patient attenuation, such as the lung field. This spatially-adaptive illumination also reduces the dynamic range in the full image, which is visually pleasing. Dose can also be reduced by the user selecting a region of interest (ROI) where full image quality is to be maintained. Outside the ROI, the number of activations of each X-ray focal spot is reduced and the image gain is correspondingly increased to maintain consistent image brightness. Dose reduction is dependent on the size of the ROI and the desired image quality outside the ROI. We have developed simulation software that is based on real data and can simulate the performance of the equalization and ROI filtration. This software represents a first step toward real-time implementation of these dose-reduction methods. Our simulations have shown that dose area product reductions of 40% are possible using equalization

  15. Timing in Trace Conditioning of the Nictitating Membrane Response of the Rabbit ("Oryctolagus Cuniculus"): Scalar, Nonscalar, and Adaptive Features

    ERIC Educational Resources Information Center

    Kehoe, E. James; Ludvig, Elliot A.; Sutton, Richard S.

    2010-01-01

    Using interstimulus intervals (ISIs) of 125, 250, and 500 msec in trace conditioning of the rabbit nictitating membrane response, the offset times and durations of conditioned responses (CRs) were collected along with onset and peak latencies. All measures were proportional to the ISI, but only onset and peak latencies conformed to the criterion…

  16. Comparative study of trace element contents in human full-term placenta and fetal membranes by total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś, A.; Banaś, D.; Braziewicz, J.; Majewska, U.; Pajek, M.

    2003-04-01

    The total reflection X-ray fluorescence (TXRF) method was applied to study the influence of environmental pollution on the contents of trace elements in human full-term placenta and fetal membranes. The samples were collected from the donors living in two regions characterised by different levels of environmental pollution. In this comparative study, based on relatively large (˜100) populations, the concentrations of approximately 20 trace elements (P-Pb) were determined in the samples. In particular, the paper discusses the role of 'truncation' of measured concentration distribution by the detection limit of the TXRF method in context of comparative studies. First, the importance of the developed method of reconstruction of original concentration distribution, to derive the correct concentrations of trace elements, is described and demonstrated and, second, the statistical tests, which can be used to compare the truncated, or reconstructed, concentration distributions are discussed. Finally, the statistically significant differences of trace element concentrations found in both populations are presented and summarised.

  17. Educational X-Ray Experiments and XRF Measurements with a Portable Setup Adapted for the Characterization of Cultural Heritage Objects

    ERIC Educational Resources Information Center

    Sianoudis, I.; Drakaki, E.; Hein, A.

    2010-01-01

    It is common to modify valuable, sophisticated equipment, originally acquired for other purposes, to adapt it for the needs of educational experiments, with great didactic effectiveness. The present project concerns a setup developed from components of a portable system for energy dispersive x-ray fluorescence spectroscopy (EDXRF). Two educational…

  18. Size-changeable x-ray beam collimation using an adaptive x-ray optical system based on four deformable mirrors

    NASA Astrophysics Data System (ADS)

    Goto, T.; Matsuyama, S.; Nakamori, H.; Hayashi, H.; Sano, Y.; Kohmura, Y.; Yabashi, M.; Ishikawa, T.; Yamauchi, K.

    2016-09-01

    A two-stage adaptive optical system using four piezoelectric deformable mirrors was constructed at SPring-8 to form collimated X-ray beams. The deformable mirrors were finely deformed to target shapes (elliptical for the upstream mirrors and parabolic for the downstream mirrors) based on shape data measured with the X-ray pencil beam scanning method. Ultraprecise control of the mirror shapes enables us to obtain various collimated beams with different beam sizes of 314 μm (358 μm) and 127 μm (65 μm) in the horizontal (vertical) directions, respectively, with parallelism accuracy of 1 μrad rms.

  19. Locating radiation hazards and sources within contaminated areas by implementing a reverse ray tracing technique in the RadBall™ technology.

    PubMed

    Farfán, Eduardo B; Stanley, Steven; Holmes, Christopher; Lennox, Kathryn; Oldham, Mark; Clift, Corey; Thomas, Andrew; Adamovics, John

    2012-02-01

    RadBall™ is a novel technology that can locate unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semisphere. The collimator has a number of small holes; as a result, specific areas of the polymer are exposed to radiation, becoming increasingly more opaque in proportion to the absorbed dose. The polymer semisphere is imaged in an optical computed tomography scanner that produces a high resolution three-dimensional map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data, using a reverse ray tracing technique, provides information on the spatial distribution of gamma-ray sources in a given area, forming a three-dimensional characterization of the area of interest. The RadBall™ technology and its reverse ray tracing technique were investigated using known radiation sources at the Savannah River Site's Health Physics Instrument Calibration Laboratory and unknown sources at the Savannah River National Laboratory's Shielded Cells facility.

  20. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions.

    PubMed

    Parsons, Chris; Margui Grabulosa, Eva; Pili, Eric; Floor, Geerke H; Roman-Ross, Gabriela; Charlet, Laurent

    2013-11-15

    Recent technological improvements have led to the widespread adoption of field portable energy dispersive X-ray fluorescence (FP-XRF) by governmental agencies, environmental consultancies and research institutions. FP-XRF units often include analysis modes specifically designed for the quantification of trace elements in soils. Using these modes, X-ray tube based FP-XRF units can offer almost "point and shoot" ease of use and results comparable to those of laboratory based instruments. Nevertheless, FP-XRF analysis is sensitive to spectral interferences as well as physical and chemical matrix effects which can result in decreased precision and accuracy. In this study, an X-ray tube-based FP-XRF analyser was used to determine trace (low ppm) concentrations of As in a floodplain soil. The effect of different sample preparation and analysis conditions on precision and accuracy were systematically evaluated. We propose strategies to minimise sources of error and maximise data precision and accuracy, achieving in situ limits of detection and precision of 6.8 ppm and 14.4%RSD, respectively for arsenic. We demonstrate that soil moisture, even in relatively dry soils, dramatically affects analytical performance with a signal loss of 37% recorded for arsenic at 20 wt% soil moisture relative to dry soil. We also highlight the importance of the use of certified reference materials and independent measurement methods to ensure accurate correction of field values.

  1. No evidence for local adaptation in an invasive alien plant: field and greenhouse experiments tracing a colonization sequence

    PubMed Central

    Pahl, Anna T.; Kollmann, Johannes; Mayer, Andreas; Haider, Sylvia

    2013-01-01

    Background and Aims Local adaptation enables plant species to persist under different environmental conditions. Evolutionary change can occur rapidly in invasive annual species and has been shown to lead to local adaptation. However, the patterns and mechanisms of local adaptation in invasive species along colonization sequences are not yet understood. Thus, in this study the alien annual Impatiens glandulifera was used to investigate local adaptation to distinct habitats that have been consecutively invaded in central Europe. Methods A reciprocal transplant experiment was performed using 15 populations from alluvial deciduous forests, fallow meadows and coniferous upland forests, and a greenhouse experiment was performed in which plants from these habitats were grown under treatments reflecting the main habitat differentiators (shade, soil acidity, competition). Key Results Biomass production, specific leaf area, plant height and relative growth rate differed between habitats in the field experiment and between treatments in the greenhouse, but not between seed origins. Overall, there was no indication of local adaptation in either experiment. Conclusions Since I. glandulifera is a successful invader in many habitats without showing local adaptation, it is suggested that the species is coping with environmental variation by means of high phenotypic plasticity. The species seems to follow a ‘jack-and-master’ strategy, i.e. it is able to maintain high fitness under a wide range of environmental conditions, but performs particularly well in favourable habitats. Therefore, the proposed colonization sequence is likely to be based primarily on changes in propagule pressure. It is concluded that invasive alien plants can become dominant in distinct habitats without local adaptation. PMID:24214934

  2. Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, A comparative study

    PubMed Central

    McComb, Jacqueline Q.; Rogers, Christian; Han, Fengxiang X.; Tchounwou, Paul B.

    2014-01-01

    With industrialization, great amounts of trace elements and heavy metals have been excavated and released on the surface of the earth and dissipated into the environments. Rapid screening technology for detecting major and trace elements as well as heavy metals in variety of environmental samples is most desired. The objectives of this study were to determine the detection limits, accuracy, repeatability and efficiency of a X-ray fluorescence spectrometer (Niton XRF analyzer) in comparison with the traditional analytical methods, inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma optical emission spectrometer (ICP-MS) in screening of major and trace elements of environmental samples including estuary soils and sediments, contaminated soils, and biological samples. XRF is a fast and non-destructive method in measuring the total concentration of multi--elements simultaneously. Contrary to ICP-OES and ICP-MS, XRF analyzer is characterized by the limited preparation required for solid samples, non-destructive analysis, increased total speed and high throughout, the decreased production of hazardous waste and the low running costs as well as multi-elemental determination and portability in the fields. The current comparative study demonstrates that XRF is a good rapid non-destructive method for contaminated soils, sediments and biological samples containing higher concentrations of major and trace elements. Unfortunately, XRF does not have sensitive detection limits of most major and trace elements as ICP-OES or ICP-MS but it may serve as a rapid screening tool for locating hot spots of uncontaminated field soils and sediments. PMID:25861136

  3. Synchrotron-based x-ray fluorescence applied to invertebrates to investigate the role of essential trace elements in a biological process

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Swapna, M.; Cesareo, R.; Brunetti, A.; Akatsuka, T.; Yuasa, T.; Takeda, T.; Gigante, G. E.

    2012-03-01

    The fluorescence spectra have been detected by exciting invertebrate individual structures, such as external shell, embedded soft-tissue and operculum, with 8, 10 and 12 keV synchrotron x-rays, to find out about the accumulation of trace elements and biological processes in a small animal shell. A new hard x-ray micro-spectroscopy beamline facility, X27A, available at National Synchrotron Light Source, Brookhaven National Laboratory, USA, was utilized. It provided the primary beam in a small spot of the order of ~10 μm, for focusing. With this spatial resolution and high flux throughput, the synchrotron-induced x-ray fluorescent intensities were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector. The fluorescence spectrum arising from the sample as a whole was assessed. Calcium is predominant in these aquatic organisms and a normal constituent of all living matter. The percentage of calcium is lower in the soft tissue, as distinguished from other samples, and the contributions of Cu and Zn are considerable. The latter possibility is due to some ground-based minerals, which may enter the sample when it traverses the land, and get attached to the soft tissue. This way, the accumulation of biominerals will be enhanced in addition to the originally presented ones. The presence of other bioactive trace elements such as Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Rb and Sr was observed in low proportions. Some of these trace elements, for example, Mn, Fe, Cu, Rb and Sr, may induce toxic effects and the other potentially toxic elements, Ni and As, induce disorder in the organism if present in higher and lower proportions.

  4. Hamiltonian-based ray-tracing method with triangular-mesh representation for a large-scale cloaking device with an arbitrary shape.

    PubMed

    Tanaka, Tatsuo; Matoba, Osamu

    2016-05-01

    Hamiltonian-based ray-tracing technique with mesh representation is presented for designing large-scale cloaking devices with three-dimensional arbitrary shapes, which have inhomogeneity and anisotropy in their electric permittivity and magnetic permeability. In order to deal with arbitrary shapes, the surfaces of the cloaking devices are represented by triangular meshes. Comparison between the result of cloaking simulations with the mesh representation and those with the rigorous function representation is presented. The numerical results showed that fine-mesh resolution is required for accurate evaluation of cloaking performances.

  5. Development of a Laboratory Micron-Resolution X-ray Microprobe to Map Mineralogy and Trace Elements at PPM Sensitivity for Digital Rock, Magma, and Mining Applications

    NASA Astrophysics Data System (ADS)

    Yun, W.; Lewis, S.; Stripe, B.; Chen, S.; Reynolds, D.; Spink, I.; Lyon, A.

    2015-12-01

    We are developing a patent-pending x-ray microprobe with substantially unprecedented performance attributes: <5 μm spot on the sample (with 1 μm targeted), large working distances of >2 cm, narrow spectral bandwidth, and large x-ray flux. The outstanding performance is enabled by: (1) a revolutionary new type of high flux x-ray source designed to be >10X brighter than the brightest rotating anode x-ray source available; (2) an axially symmetric x-ray mirror lens with large solid angle collection and high focusing efficiency; and (3) a detector configuration that enables the collection of 10X more x-rays than current microXRF designs. The sensitivity will be ppm-scale, far surpassing charged particle analysis (e.g. EPMA and SEM-EDS), and >1000X throughput over the leading micro-XRFs. Despite the introduction of a number of laboratory microXRF systems in the past decade, the state-of-the-art has been limited primarily by low resolution (~30 μm) and low throughput. This is substantially attributable to a combination of low x-ray source brightness and poor performance x-ray optics. Here we present our initial results in removing the x-ray source bottleneck, in which we use a novel x-ray source using Fine Anode Array Source Technology (Sigray FAAST™). When coupled with our proprietary high efficiency x-ray mirror lens, the throughput achieved is comparable to that of many synchrotron microXRF beamlines. Potential applications of the x-ray microprobe include high throughput mapping of mineralogy at high resolution, including trace elements, such as rare earth metals, and deposits (e.g. siderite, clays), with ppm sensitivity, providing information for properties such as permeability and elastic/mechanical properties, and to provide compositional information for Digital Rock. Additional applications include those in which the limited penetration of electrons limits achieving adequate statistics, such as determining the concentration of precious minerals in mine

  6. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  7. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  8. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens.

    PubMed

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  9. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    SciTech Connect

    Nam, Daewoong; Park, Jaehyun; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong; Gallagher-Jones, Marcus

    2013-11-15

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10{sup −2} Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  10. Role of trace elements (Zn, Sr, Fe) in bone development: energy dispersive X-ray fluorescence study of rat bone and tooth tissue.

    PubMed

    Maciejewska, Karina; Drzazga, Zofia; Kaszuba, Michał

    2014-01-01

    Osteoporosis is one of the most common debilitating disease around the world and it is more and more established among young people. There are well known recommendations for nutrition of newborns and children concerning adequate calcium and vitamin D intake in order to maintain proper bone density. Nevertheless, important role in structure and function of a healthy bone tissue is played by an integration between all constituents including elements other than Ca, like trace elements, which control vital processes in bone tissue. It is important from scientific point of view as well as prevention of bone diseases, to monitor the mineralization process considering changes of the concentration of minerals during first stage of bone formation. This work presents studies of trace element (zinc, strontium, and iron) concentration in bones and teeth of Wistar rats at the age of 7, 14, and 28 days. Energy dispersive X-ray fluorescence (EDXRF) was used to examine mandibles, skulls, femurs, tibiae, and incisors. The quantitative analysis was performed using fundamental parameters method (FP). Zn and Sr concentrations were highest for the youngest individuals and decreased with age of rats, while Fe content was stable in bone matrix for most studied bones. Our results reveal the necessity of monitoring concentration of not only major, but also minor elements, because the trace elements play special role in the first period of bone development.

  11. Comparison of wave propagation studies in plasmas using three-dimensional finite-difference time-domain and ray-tracing methods

    SciTech Connect

    Chaudhury, Bhaskar; Chaturvedi, Shashank

    2006-12-15

    Power-flow trajectories of electromagnetic waves through a spatially nonuniform plasma have been computed using direct solutions of Maxwell's equations using the three-dimensional finite-difference time-domain (FDTD) method. This method yields accurate information on refraction as well as absorption effects. The method can be used to compute power-flow trajectories for plasmas with arbitrarily varying density profiles, including effects due to arbitrarily shaped conducting or dielectric surfaces bounding the plasma. Furthermore, since FDTD is computationally expensive, especially for parametric studies, it is desirable to use ray tracing to estimate refraction effects. A quantitative comparison is performed between two different methods of obtaining exact and approximate solutions of Maxwell's equations in order to assess their relative utility in different situations. In the present work, we limit ourselves to a cold, collisional, unmagnetized plasma, where the response to electromagnetic waves is fully specified by a dispersion relation based on magnetoionic theory. It is shown that ray tracing in such plasmas yields accurate results only when two conditions are satisfied. Firstly, the density scale length should be long as compared to the free-space wavelength of the incident wave. Secondly, the conduction current should be small as compared to the displacement current in the medium. The second condition is one which has been identified for the first time.

  12. Modeling the reflectance of the lunar regolith by a new method combining Monte Carlo Ray tracing and Hapke's model with application to Chang'E-1 IIM data.

    PubMed

    Wong, Un-Hong; Wu, Yunzhao; Wong, Hon-Cheng; Liang, Yanyan; Tang, Zesheng

    2014-01-01

    In this paper, we model the reflectance of the lunar regolith by a new method combining Monte Carlo ray tracing and Hapke's model. The existing modeling methods exploit either a radiative transfer model or a geometric optical model. However, the measured data from an Interference Imaging spectrometer (IIM) on an orbiter were affected not only by the composition of minerals but also by the environmental factors. These factors cannot be well addressed by a single model alone. Our method implemented Monte Carlo ray tracing for simulating the large-scale effects such as the reflection of topography of the lunar soil and Hapke's model for calculating the reflection intensity of the internal scattering effects of particles of the lunar soil. Therefore, both the large-scale and microscale effects are considered in our method, providing a more accurate modeling of the reflectance of the lunar regolith. Simulation results using the Lunar Soil Characterization Consortium (LSCC) data and Chang'E-1 elevation map show that our method is effective and useful. We have also applied our method to Chang'E-1 IIM data for removing the influence of lunar topography to the reflectance of the lunar soil and to generate more realistic visualizations of the lunar surface.

  13. Trace element determination in presolar SiC grains by synchrotron x-ray fluorescence: Commencement of a coordinated multimethod study

    SciTech Connect

    Knight, K.B.; Sutton, S.R.; Newville, M.; Davis, A.M.; Dauphas, N.; Lewis, R.S.; Amari, S.; Steele, I.M.; Savina, M.R.; Pellin, M.J.

    2008-04-29

    We determined trace element compositions of individual {approx}1-3 ?m presolar SiC grains from 6 KJG grains and 26 additionally cleaned KJG grains from the Murchison CM chondrite using nondestructive synchrotron X-ray fluorescence (SXRF). Presolar SiC grains are robust remnants of stellar matter ejected from stars. They survived processing in the early solar system and retain the nucleosynthetic fingerprints of their stellar progenitors. As such, they represent unique physical probes of the interiors of stars. Presolar SiC grains are commonly analyzed by mass spectrometric techniques that determine isotopic compositions and, to some degree, elemental concentrations. These techniques, however, are destructive, and can be subject to matrix effects. Elemental composition data on presolar grains remain scarce and affected by contamination and analytical artifacts. In addition, contamination has plagued isotopic characterization of some elements such as Mo and Ba. We determined trace element compositions of individual {approx}1-3 {micro}m presolar SiC grains from the Murchison CM chondrite using nondestructive synchrotron X-ray fluorescence (SXRF). Samples included the KJG fraction, and a second KJG fraction that underwent additional cleaning. As every cleaning step results in some grain loss, one goal of this study was to justify additional cleaning of grains. Six KJG grains and 26 additionally cleaned KJG grains were analyzed, with location and identities of individual grains noted for future correlated isotopic study.

  14. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    SciTech Connect

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; Lopez-Camara, Diego

    2012-02-20

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the

  15. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico

    2012-02-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  16. Tracing the Mass-Dependent Star Formation History of Late-Type Galaxies using X-ray Emission: Results from the CHANDRA Deep Fields

    NASA Technical Reports Server (NTRS)

    Lehmer, B.D; Brandt, W.N.; Schneider, D.P.; Steffen, A.T.; Alexander, D.M.; Bell, E.F.; Hornschemeier, A.E.; McIntosh, D.H.; Bauer, F.E.; Gilli, R.; Mainieri, V.; Silverman, J.D.; Tozzi, P.; Wolf, C.

    2008-01-01

    We report on the X-ray evolution over the last approx.9 Gyr of cosmic history (i.e., since z = 1.4) of late-type galaxy populations in the Chandra Deep Field-North and Extended Chandra Deep Field-South (CDF-N and E-CDF-S. respectively; jointly CDFs) survey fields. Our late-type galaxy sample consists of 2568 galaxies. which were identified using rest-frame optical colors and HST morphologies. We utilized X-ray stacking analyses to investigate the X-ray emission from these galaxies, emphasizing the contributions from normal galaxies that are not dominated by active galactic nuclei (AGNs). Over this redshift range, we find significant increases (factors of approx. 5-10) in the X-ray-to-optical mean luminosity ratio (L(sub x)/L(sub B)) and the X-ray-to-stellar-mass mean ratio (L(sub x)/M(sub *)) for galaxy populations selected by L(sub B) and M(sub *), respectively. When analyzing galaxy samples selected via SFR, we find that the mean X-ray-to-SFR ratio (L(sub x)/SFR) is consistent with being constant over the entire redshift range for galaxies with SFR = 1-100 Solar Mass/yr, thus demonstrating that X-ray emission can be used as a robust indicator of star-formation activity out to z approx. 1.4. We find that the star-formation activity (as traced by X-ray luminosity) per unit stellar mass in a given redshift bin increases with decreasing stellar mass over the redshift range z = 0.2-1, which is consistent with previous studies of how star-formation activity depends on stellar mass. Finally, we extend our X-ray analyses to Lyman break galaxies at z approx. 3 and estimate that L(sub x)/L(sub B) at z approx. 3 is similar to its value at z = 1.4.

  17. New ray tracing method to investigate the various effects on wave propagation in medical scenario: an application of wireless body area network.

    PubMed

    Islam, M J; Reza, A W; Kausar, A S M Z; Ramiah, H

    2014-01-01

    The advent of technology with the increasing use of wireless network has led to the development of Wireless Body Area Network (WBAN) to continuously monitor the change of physiological data in a cost efficient manner. As numerous researches on wave propagation characterization have been done in intrabody communication, this study has given emphasis on the wave propagation characterization between the control units (CUs) and wireless access point (AP) in a hospital scenario. Ray tracing is a tool to predict the rays to characterize the wave propagation. It takes huge simulation time, especially when multiple transmitters are involved to transmit physiological data in a realistic hospital environment. Therefore, this study has developed an accelerated ray tracing method based on the nearest neighbor cell and prior knowledge of intersection techniques. Beside this, Red-Black tree is used to store and provide a faster retrieval mechanism of objects in the hospital environment. To prove the superiority, detailed complexity analysis and calculations of reflection and transmission coefficients are also presented in this paper. The results show that the proposed method is about 1.51, 2.1, and 2.9 times faster than the Object Distribution Technique (ODT), Space Volumetric Partitioning (SVP), and Angular Z-Buffer (AZB) methods, respectively. To show the various effects on received power in 60 GHz frequency, few comparisons are made and it is found that on average -9.44 dBm, -8.23 dBm, and -9.27 dBm received power attenuations should be considered when human, AP, and CU move in a given hospital scenario.

  18. Advanced Observation Operators for GPS Radio Occultation. Part 1; Validation of the 2D Ray Tracing Approach with CHAMP and SAC-C bending angle and refractivity data

    NASA Technical Reports Server (NTRS)

    Poli, P.; Joiner, J.

    2003-01-01

    Global Positioning System (GPS) Radio Occultations (RO) bending angles and refractivity data characterize mostly the vertical structure of the Earth's atmosphere. We answer the question whether proper simulation of GPS RO data for data assimilation can be obtained with one-dimensional vertical operators, or if accounting also for horizontal atmospheric structures via ray-tracing makes a positive difference when compared with real data. We present a detailed implementation of a geometrical optics multi-plane two-dimensional (2D) ray-tracing as an observation operator to simulate GPS RO bending angles and refractivities within the Finite Volume Data Assimilation System (FVDAS). Comparisons of the outputs of that 2D observation operator with those of simpler ID observation operators are used to generate estimates of errors induced by neglecting tangent point drift (TPD) and horizontal gradients (HG). These error estimates are then confronted with errors estimates derived using 6335 real CHAMP and SAC-C occultations. The agreement for TPD-induced (HG-induced) errors is remarkably positive at altitudes 10-30 km (below 10 km). Comparisons in bending angles O - B STD of the outputs of the multi-plane 2D ray-tracer with those of a vertical Abel transform show reductions of about 8% of the usual O - B bending angle STD due to TPD in the stratosphere (3% due to HG, in the troposphere only). In terms of refractivity, the O - B STD reductions are about 1520% for TPD and 3-5% for HG in the same regions. These reductions are obtained using either 6-hour forecasts or analyses as backgrounds, and using Geometrical Optics (GO) or Canonical Transform (CT) data.

  19. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  20. A real-time regional adaptive exposure method for saving dose-area product in x-ray fluoroscopy

    SciTech Connect

    Burion, Steve; Funk, Tobias; Speidel, Michael A.

    2013-05-15

    Purpose: Reduction of radiation dose in x-ray imaging has been recognized as a high priority in the medical community. Here the authors show that a regional adaptive exposure method can reduce dose-area product (DAP) in x-ray fluoroscopy. The authors' method is particularly geared toward providing dose savings for the pediatric population. Methods: The scanning beam digital x-ray system uses a large-area x-ray source with 8000 focal spots in combination with a small photon-counting detector. An imaging frame is obtained by acquiring and reconstructing up to 8000 detector images, each viewing only a small portion of the patient. Regional adaptive exposure was implemented by varying the exposure of the detector images depending on the local opacity of the object. A family of phantoms ranging in size from infant to obese adult was imaged in anteroposterior view with and without adaptive exposure. The DAP delivered to each phantom was measured in each case, and noise performance was compared by generating noise arrays to represent regional noise in the images. These noise arrays were generated by dividing the image into regions of about 6 mm{sup 2}, calculating the relative noise in each region, and placing the relative noise value of each region in a one-dimensional array (noise array) sorted from highest to lowest. Dose-area product savings were calculated as the difference between the ratio of DAP with adaptive exposure to DAP without adaptive exposure. The authors modified this value by a correction factor that matches the noise arrays where relative noise is the highest to report a final dose-area product savings. Results: The average dose-area product saving across the phantom family was (42 {+-} 8)% with the highest dose-area product saving in the child-sized phantom (50%) and the lowest in the phantom mimicking an obese adult (23%). Conclusions: Phantom measurements indicate that a regional adaptive exposure method can produce large DAP savings without

  1. FERMI-LAT OBSERVATIONS OF HIGH- AND INTERMEDIATE-VELOCITY CLOUDS: TRACING COSMIC RAYS IN THE HALO OF THE MILKY WAY

    SciTech Connect

    Tibaldo, L.; Digel, S. W.; Franckowiak, A.; Moskalenko, I. V.; Negro, M.; Orlando, E.; Porter, T. A.; Reimer, O.; Casandjian, J. M.; Grenier, I. A.; Marshall, D. J.; Strong, A. W. E-mail: digel@stanford.edu

    2015-07-10

    It is widely accepted that cosmic rays (CRs) up to at least PeV energies are Galactic in origin. Accelerated particles are injected into the interstellar medium where they propagate to the farthest reaches of the Milky Way, including a surrounding halo. The composition of CRs coming to the solar system can be measured directly and has been used to infer the details of CR propagation that are extrapolated to the whole Galaxy. In contrast, indirect methods, such as observations of γ-ray emission from CR interactions with interstellar gas, have been employed to directly probe the CR densities in distant locations throughout the Galactic plane. In this article we use 73 months of data from the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV to search for γ-ray emission produced by CR interactions in several high- and intermediate-velocity clouds (IVCs) located at up to ∼7 kpc above the Galactic plane. We achieve the first detection of IVCs in γ rays and set upper limits on the emission from the remaining targets, thereby tracing the distribution of CR nuclei in the halo for the first time. We find that the γ-ray emissivity per H atom decreases with increasing distance from the plane at 97.5% confidence level. This corroborates the notion that CRs at the relevant energies originate in the Galactic disk. The emissivity of the upper intermediate-velocity Arch hints at a 50% decline of CR densities within 2 kpc from the plane. We compare our results to predictions of CR propagation models.

  2. Big Bangs in Galaxy Clusters: Using X-ray Temperature Maps to Trace Merger Histories in Clusters with Radio Halos/Relics

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Datta, Abhirup; Hallman, Eric J.

    2016-06-01

    Galaxy clusters are assembled through large and small mergers which are the most energetic events ("bangs") since the Big Bang. Cluster mergers "stir" the intracluster medium (ICM) creating shocks and turbulence which are illuminated by ~Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are also clear signposts of recent mergers. Our recent ENZO cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray emission and radio relics/halos are good candidates for very recent mergers. We are in the early stages of analyzing a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (>50 ksec) from Chandra and/or XMM. We have developed a new x-ray data analysis pipeline, implemented on parallel processor supercomputers, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. The temperature maps are made using three different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. In this talk, we will show preliminary results for several clusters, including Abell 2744 and the Bullet cluster. This work is supported by NASA ADAP grant NNX15AE17G.

  3. Naked-eye optical flash from gamma-ray burst 080319B: Tracing the decaying neutrons in the outflow

    SciTech Connect

    Fan Yizhong; Zhang Bing; Wei Daming

    2009-01-15

    For an unsteady baryonic gamma-ray burst (GRB) outflow, the fast and slow proton shells collide with each other and produce energetic soft gamma-ray emission. If the outflow has a significant neutron component, the ultrarelativistic neutrons initially expand freely until decaying at a larger radius. The late-time proton shells ejected from the GRB central engine, after powering the regular internal shocks, will sweep these {beta}-decay products and give rise to very bright UV/optical emission. The naked-eye optical flash from GRB 080319B, an energetic explosion in the distant Universe, can be well explained in this way.

  4. Ray Trace Modeling to Determine Optimal Forest Canopy Gap Size for Reduced Solar Irradiance During Snowmelt: Field Verification and Continental Scale Application

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Pomeroy, J. W.; Link, T. E.

    2014-12-01

    Forest hydrology has long debated the influence of forest gap size on the shortwave radiation regime and subsequent snowmelt rates. To address this question, a new ray trace solar transmittance model is presented to evaluate the sensitivity of gap influence on shortwave irradiance patterns to latitude, gap size, and time of year in fragmented forest environments. The ray trace model takes into account solar position, gap and forest geometry, and position within or near the gap, and was tested against measurements of shortwave radiation from 20 pyranometers in and around a gap in a mixed conifer forest and compared to simpler canopy transmittance models that ignored shading or that scaled transmittance according to leaf area index. The ray trace model reduced the large errors obtained by simple canopy transmittance models; at the 20 pyranometer locations, average biases in excess of ~ ±90 W m-2 were reduced to better than 4 W m-2. These results suggest that an accurate description of the spatial variability of solar irradiance in and around a forest gap requires explicit calculation of how gaps modify the canopy transmittance. To examine model sensitivity to key parameters, gap size, latitude, and day of year were varied under clear-sky conditions. The calculated spatial distribution patterns of cumulative daily solar irradiance inform how forest gap sizes might be optimized to minimize (shortwave) snowmelt energy. As gap size was changed for a given latitude and date, the (spatial) coefficient of variation (CV) of cumulative daily irradiance exhibited a distinct maximum that is a function of gap geometry and solar angle; smaller (larger) gaps with more diffuse (direct beam) radiation exhibited reduced spatial variability of irradiance. The results indicate that optimum forest gap sizes to reduce solar radiation while maximizing gap area depend on date and latitude; using mean snowmelt onset dates for a range of latitudes (31°N - 71°N) spanning North American

  5. A diamond anvil cell for x-ray fluorescence measurements of trace elements in fluids at high pressure and high temperature.

    PubMed

    Petitgirard, Sylvain; Daniel, Isabelle; Dabin, Yves; Cardon, Hervé; Tucoulou, Rémi; Susini, Jean

    2009-03-01

    We present a new diamond anvil cell (DAC), hereafter called the fluoX DAC, dedicated for x-ray fluorescence (XRF) analysis of trace elements in fluids under high pressure and high temperature to 10 GPa and 1273 K at least. This new setup has allowed measurement of Rb, Sr, Y, Zr, with concentrations of 50 ppm to 5.6 GPa and 1273 K. The characteristics of the fluoX DAC consist in an optimized shielding and collection geometry in order to reduce the background level in XRF spectrum. Consequently, minimum detection limits of 0.3 ppm were calculated for the abovementioned elements in this new setup. This new DAC setup coupled to the hard x-rays focusing beamline ID22 (ESRF, France) offers the possibility to analyze in situ at high pressure and high temperature, ppm level concentrations of heavy elements, rare earth elements, and first transition metals, which are of prime importance in geochemical processes. The fluoX DAC is also suitable to x-ray diffraction over the same high pressure-temperature range.

  6. Determination of trace elements in Syrian medicinal plants and their infusions by energy dispersive X-ray fluorescence and total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Khuder, A.; Sawan, M. Kh.; Karjou, J.; Razouk, A. K.

    2009-07-01

    X-ray fluorescence (XRF) and total-reflection X-ray fluorescence (TXRF) techniques suited well for a multi-element determination of K, Ca, Mn, Fe, Cu, Zn, Rb, and Sr in some Syrian medicinal plant species. The accuracy and the precision of both techniques were verified by analyzing the Standard Reference Materials (SRM) peach-1547 and apple leaves-1515. A good agreement between the measured concentrations of the previously mentioned elements and the certified values were obtained with errors less than 10.7% for TXRF and 15.8% for XRF. The determination of Br was acceptable only by XRF with an error less than 24%. Furthermore, the XRF method showed a very good applicability for the determination of K, Ca, Mn, Fe, Cu, Zn, Rb, Sr, and Br in infusions of different Syrian medicinal plant species, namely anise ( Anisum vulgare), licorice root ( Glycyrrhiza glabra), and white wormwood ( Artemisia herba-alba).

  7. Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods.

    PubMed

    Garner, L F; Smith, G; Yao, S; Augusteyn, R C

    2001-04-01

    The gradient refractive index of the crystalline lens in the Black Oreo Dory (Allocyttus Niger) was determined using two methods; an optimisation program based on finite ray-tracing and the path of laser beams through the lens, and magnetic resonance imaging (MRI) and the linear relationship between refractive index and nuclear transverse relaxation rates. The methods showed good agreement in the cortical zone of the lens, but the lack of free water in the core of the lens made MRI measurement impossible in this region. The laser-optimisation method gave mean values of 1.368 and 1.543 for the surface and core refractive indices respectively, with a radial distribution for the gradient refractive index given by n(r)=1.543-0.121r2-0.033r4-0.021r6.

  8. Influence of the coat color on the trace elemental status measured by particle-induced X-ray emission in horse hair.

    PubMed

    Asano, Kimi; Suzuki, Kazuyuki; Chiba, Momoko; Sera, Koichiro; Matsumoto, Tsutomu; Asano, Ryuji; Sakai, Takeo

    2005-02-01

    The influence of hair color on the trace elemental status in horse's hair has been studied. A current analytical technique such as particle-induced X-ray emission (PIXE) used in this study has provided reliable, rapid, easy, and relatively inexpensive diagnostic methods. Twenty-eight elements (Al, Br, Ca, Cl, Co, Cu, Cr, Fe, Ga, Hg, K, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Se, Si, Sr, Ti, V, Y, and Zn) in mane hair were detected by the PIXE method. The gray hair contains significantly greater amounts of Cu, Ti, and Zn, and lower amounts of Br, Ca, Se, and Sr than those in other colored horse hairs (p<0.05). Those results measured in the horse's hair were similar to those found in human and dog hair. When interpreting a result, it should be kept in mind that hair color, especially gray hair, influences the concentrations of some elements in horse hair.

  9. Portable x-ray fluorescence for assessing trace elements in rice and rice products: Comparison with inductively coupled plasma-mass spectrometry.

    PubMed

    Fleming, David E B; Foran, Kelly A; Kim, Jong Sung; Guernsey, Judy R

    2015-10-01

    Portable x-ray fluorescence (XRF) was investigated as a means of assessing trace elements in rice and rice products. Using five measurement trials of 180 s real time, portable XRF was first used to detect arsenic (As), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), and zinc (Zn) in a variety of rice samples. The same samples were then microwave-digested and used to determine elemental concentrations using inductively coupled plasma-mass spectrometry (ICP-MS). The concentrations of As, Mn, Fe, Cu, and Zn determined by ICP-MS were found to be consistent with other recent studies involving various types of rice and rice products. When assessing for As, Mn, Fe, Cu, and Zn, comparison of results between XRF amplitude and ICP-MS concentration (wet weight) demonstrated a linear relationship with a significant correlation. A significant correlation between XRF amplitude and ICP-MS concentration was not found when assessing for Ni.

  10. The extended Beer-Lambert theory for ray tracing modeling of LED chip-scaled packaging application with multiple luminescence materials

    NASA Astrophysics Data System (ADS)

    Yuan, Cadmus C. A.

    2015-12-01

    Optical ray tracing modeling applied Beer-Lambert method in the single luminescence material system to model the white light pattern from blue LED light source. This paper extends such algorithm to a mixed multiple luminescence material system by introducing the equivalent excitation and emission spectrum of individual luminescence materials. The quantum efficiency numbers of individual material and self-absorption of the multiple luminescence material system are considered as well. By this combination, researchers are able to model the luminescence characteristics of LED chip-scaled packaging (CSP), which provides simple process steps and the freedom of the luminescence material geometrical dimension. The method will be first validated by the experimental results. Afterward, a further parametric investigation has been then conducted.

  11. Ray tracing model for the estimation of power spectral properties in laser Doppler velocimetry of retinal vessels and its potential application to retinal vessel oximetry

    NASA Astrophysics Data System (ADS)

    Petrig, Benno L.; Follonier, Lysianne

    2005-12-01

    A new model based on ray tracing was developed to estimate power spectral properties in laser Doppler velocimetry of retinal vessels and to predict the effects of laser beam size and eccentricity as well as absorption of laser light by oxygenated and reduced hemoglobin. We describe the model and show that it correctly converges to the traditional rectangular shape of the Doppler shift power spectrum, given the same assumptions, and that reduced beam size and eccentric alignment cause marked alterations in this shape. The changes in the detected total power of the Doppler-shifted light due to light scattering and absorption by blood can also be quantified with this model and may be used to determine the oxygen saturation in retinal arteries and veins. The potential of this approach is that it uses direct measurements of Doppler signals originating from moving red blood cells. This may open new avenues for retinal vessel oximetry.

  12. Analysis of trace elements during different developmental stages of somatic embryogenesis in Plantago ovata Forssk using energy dispersive X-ray fluorescence.

    PubMed

    Saha, Priyanka; Raychaudhuri, Sarmistha Sen; Sudarshan, Mathummal; Chakraborty, Anindita

    2010-06-01

    Energy dispersive X-ray fluorescence (ED-XRF) technique has been used for the determination of trace element profile during different developmental stages of somatic embryogenic callus of an economically important medicinal plant, Plantago ovata Forssk. Somatic embryogenesis is a plant tissue culture-based technique, which is used for plant regeneration and crop improvement. In the present investigation, elemental content was analysed using ED-XRF technique during different developmental stages and also determine the effect of additives--casein hydrolysate and coconut water on the trace elemental profile of embryogenic callus tissue of P. ovata. Subsequent experiments showed significant alteration in the concentration of K, Ca, Mn, Fe, Zn, Cu, Br, and Sr in both the embryogenic and non-embryogenic callus. Higher K, Ca, Fe, Cu, and Zn accumulation was in embryogenic tissue stage compared to other stages, suggesting these elements are crucial for successful embryogenesis. The results suggest that this information could be useful for formulating a media for in vitro embryo induction of P. ovata.

  13. BGPR_Reconstruct: A MATLAB ® ray-tracing program for nonlinear inversion of first arrival travel time data from zero-offset borehole radar

    NASA Astrophysics Data System (ADS)

    Rucker, Dale F.; Ferré, Ty P. A.

    2004-08-01

    A MATLAB program was developed to invert first arrival travel time picks from zero offset profiling borehole ground penetrating radar traces to obtain the electromagnetic wave propagation velocities in soil. Zero-offset profiling refers to a mode of operation wherein the centers of the bistatic antennae being lowered to the same depth below ground for each measurement. The inversion uses a simulated annealing optimization routine, whereby the model attempts to reduce the root mean square error between the measured and modeled travel time by perturbing the velocity in a ray tracing routine. Measurement uncertainty is incorporated through the presentation of the ensemble mean and standard deviation from the results of a Monte Carlo simulation. The program features a pre-processor to modify or delete travel time information from the profile before inversion and post-processing through presentation of the ensemble statistics of the water contents inferred from the velocity profile. The program includes a novel application of a graphical user interface to animate the velocity fitting routine.

  14. Rapid quantitative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Krishna, A. Keshav; Khanna, Tarun C.; Mohan, K. Rama

    2016-08-01

    This paper introduces a calibration procedure and provides the data achieved for accuracy, precision, reproducibility and the detection limits for major (Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, P) and trace (Ba, Cr, Cu, Hf, La, Nb, Ni, Pb, Rb, Sr, Ta, Th, U, Y, Zn, Zr) elements in the routine analysis of geological and environmental samples. Forty-two rock and soil reference materials were used to calibrate and evaluate the analytical method using a sequential wavelength dispersive X-ray fluorescence spectrometer. Samples were prepared as fused glass discs and analysis performed with a total measuring time of thirty-one minutes. Another set of twelve independent reference materials were analyzed for the evaluation of accuracy. The detection limits and accuracy obtained for the trace elements (1-2 mg/kg) are adequate both for geochemical exploration and environmental studies. The fitness for purpose of the results was also evaluated by the quality criteria test proposed by the International Global Geochemical Mapping Program (IGCP) from which it can be deduced that the method is adequate considering geochemical mapping application and accuracy obtained is within the expected interval of certified values in most cases.

  15. Role of x-ray-induced transcripts in adaptive responses following x-rays. Progress report, Year 2

    SciTech Connect

    Not Available

    1993-09-01

    I will describe our recent data in which we have extracted and purified a sufficient amount of RNA from primed and unprimed U1-Mel cells to begin the search for new genes which are modulated by priming or high dose irradiation during the establishment and/or challenge of adapted cells, respectively. Gene transcripts which are altered during ASRs now include alterations in xip5 (a gene with homology to human growth hormone), xipl2 (a gene with homology to human angiogenesis factor and a gene which may be involved in apoptosis due to its possible RNase activity), cyclin A (which is altered in primed cells only after a high dose of ionizing radiation), cyclin B (which is also altered in a similar manner as cyclin A), p53 (a tumor suppressor gene involved in cell division control in G{sub 1} following ionizing radiation), and glutathionine S transferase-pi (a gene product which has been demonstrated to be involved in DNA repair and redox cycling). In contrast, the remaining xip CDNA clones [i.e., xip1-4,6-11, which were isolated following high dose ionizing radiation exposure to human U1-Mel cells], Prad-1 (a gene involved in cell cycle controlling events at the G{sub 1} portion of the cell cycle), 36B4 (a gene involved in homeostasis), and cdc2 (a gene involved in the regulation of the S-phase portion of the cell cycle), were not altered following ionizing radiation, either during the establishment or challenge of adapted human cells.

  16. N-body ray-tracing modeling of Saturn's rings for analysis of UVIS/VIMS optical depths and CIRS temperatures

    NASA Astrophysics Data System (ADS)

    Morishima, Ryuji; Spilker, Linda; Ballouz, Ronald-Louis; Richardson, Derek C.

    2016-10-01

    Various observations of Saturn's A and B rings indicate that ring particles are highly compacted near the mid-plane, making non-uniform structures. Such structures complicate deduction of properties of individual ring particles characterized by, for example, the albedo and the size distribution. Modeling using N-body simulations and ray-tracing calculations is one of the most promising approaches to understanding the dense rings of Saturn. We are developing a ray-tracing code that is applicable to analysis of UVIS/VIMS optical depths and CIRS temperatures. In the presentation, we report optical depth profiles of dense rings produced by large-scale N-body simulations (Ballouz et al. 2016; in preparation) and compare them with those from UVIS/VIMS occultation observations. Ballouz et al. (2016) find that prominent overstability wakes are produced at B ring locations either if the internal density is low and/or the friction forces are strong enough. For low internal density cases, the photometric optical depths become as high as those for the B ring, but rings are not necessarily most transparent when the line of sight is aligned to overstability wakes, in contrast to observations of the outer B ring (Colwell et al. 2007). For cases with high internal density and strong friction, rings become most transparent when the line of sight is roughly aligned to overstability wakes, but the photometric optical depths become much lower than the observed values due to highly transparent inter-wake gaps. These facts may indicate that small particles not considered in the simulations fill inter-wake gaps. We also report the progress of code modifications for analysis of CIRS temperature data. For calculations of the energy balance of ring particles, effects due to multiply scattered photometric light and to mutual heating between ring particles are added to the code.

  17. Determination of selenium at trace levels in geologic materials by energy-dispersive X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Wahlberg, J.S.

    1981-01-01

    Low levels of selenium (0.1-500 ppm) in both organic and inorganic geologic materials can be semiquantitatively measured by isolating Se as a thin film for presentation to an energy-dispersive X-ray fluorescence spectrometer. Suitably pulverized samples are first digested by fusing with a mixture of Na2CO3 and Na2O2. The fusion cake is dissolved in distilled water, buffered with NH4Cl, and filtered to remove Si and the R2O3 group. A carrier solution of Na2TeO4, plus solid KI, hydrazine sulfate and Na2SO3, is added to the filtrate. The solution is then vacuum-filtered through a 0.45-??m pore-size filter disc. The filter, with the thin film of precipitate, is supported between two sheets of Mylar?? film for analysis. Good agreement is shown between data reported in this study and literature values reported by epithermal neutron-activation analysis and spectrofluorimetry. The method can be made quantitative by utilizing a secondary precipitation to assure complete recovery of the Se. The X-ray method offers fast turn-around time and a reasonably high production rate. ?? 1981.

  18. Role of x-ray-induced transcripts in adaptive responses following x-rays. Progress report, year 1

    SciTech Connect

    Boothman, D.A.

    1992-09-01

    Potentially lethal damage repair (PLDR) and sublethal damage repair, may be the same manifestations of a series of common enzymatic steps. PLDR, has two distinct phases based upon DNA lesion repair and survival recovery studies. The first phase of PLDR occurs very quickly (t{sub {1/2}}:2--20 mins) to increase the survival of X-irradiated cells by mending the vast array of DNA lesions created by ionizing radiation. The second slower phase of PLDR proceeds much later (i.e., >1--2 hrs) following X-irradiation, during which the remaining double-stranded DNA breaks are completely repaired. This second phase of repair closely corresponds to the restructuring of gross chromosomal damage, and can be partially blocked in some human cells by inhibiting protein synthesis. This slower phase of PLDR correlated with a rapid decline in X-ray-induced transformation of normal cells. The fast component of PLDR may be due to constitutively synthesized DNA ligases, topoisomerases, or polymerases, which act immediately to repair damaged, DNA. In contrast, the slow phase of PLDR in human cells may require the induction of specific genes and gene product`s involved in the repair of potentially lethal or carcinogenic DNA lesions. Induced gene products (i.e., proteins) specifically synthesized in response to physiological doses of ionizing radiation in radioresistant human melanoma (U1-Mel) cells, and in a variety of other human normal and cancer-prone cells, were identified using two-dimensional gel electrophoresis. We identified and partially characterized ten proteins synthesized by U1-Mel cells. The synthesis of eight of these proteins were specifically induced by ionizing radiation and two proteins were repressed Neither heat shock, UV-irradiation, nor bifunctional alkylating agent treatments resulted in the induction of these proteins. The expression of one protein, XIP269, correlated very well with PLDR capacity.

  19. Alteration of spermatozoal structure and trace metal profile of testis and epididymis of rat under chronic low-level X-ray irradiation.

    PubMed

    Chatterjee, J; De, K; Basu, S K; Das, A K

    1994-06-01

    This study investigates the short-term as well as long-term effects of low-level X-ray irradiation on the Spermatozoal structure and trace metal (Zn, Fe, Cu, and Cd) contents in the testis and epididymis of whole-body irradiated albino rats. Male rats were exposed to 0.675, 1.350, 2.700, and 4.050 cGy of X-ray intermittently in 45, 90, 180, and 270 equal fractions (each fraction of 0.015 cGy s-1), respectively. SEM study had revealed numerous fusiform swelling in sperm tail in most of the x-irradiated groups. Moreover, in 2.700 and 4.050 cGy dose groups, the tail sheath of several sperm were eroded out. In the TEM study, damage in microtubules of sperm tail in 4.050 cGy irradiated group was noted. The AAS study showed a transient increase in Zn content in 0.675 and 1.350 cGy dose groups, but its concentration was decreased in 2.700 and 4.050 cGy dose groups. Fe concentration was increased in all the cases in comparison to that of control group. Nevertheless, Cu and Cd contents were increased mostly in 2.700 and 4.050 cGy doses. Thus present findings probably throw some light regarding mammalian response threshold at low-level X-ray irradiation. Moreover, it raises questions regarding the validity of "safe dose ionizing radiation."

  20. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    NASA Astrophysics Data System (ADS)

    Maruthi, Y. A.; Das, N. Lakshmana; Ramprasad, S.; Ram, S. S.; Sudarshan, M.

    2015-08-01

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk

  1. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    SciTech Connect

    Maruthi, Y. A.; Das, N. Lakshmana; Ramprasad, S.; Ram, S. S.; Sudarshan, M.

    2015-08-28

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk.

  2. Mutagenic adaptive response to high-LET radiation in human lymphoblastoid cells exposed to X-rays.

    PubMed

    Varès, Guillaume; Wang, Bing; Tanaka, Kaoru; Kakimoto, Ayana; Eguchi-Kasai, Kyomi; Nenoi, Mitsuru

    2011-01-10

    The ability of cells to adapt low-dose or low-dose rate radiation is well known. High-LET radiation has unique characteristics, and the data concerning low doses effects and high-LET radiation remain fragmented. In this study, we assessed in vitro the ability of low doses of X-rays to induce an adaptive response (AR) to a subsequent challenging dose of heavy-ion radiation. Lymphoblastoid cells (TK6, AHH-1, NH32) were exposed to priming 0.02-0.1Gy X-rays, followed 6h later by challenging 1Gy heavy-ion radiation (carbon-ion: 20 and 40keV/μm, neon-ion: 150keV/μm). Pre-exposure of p53-competent cells resulted in decreased mutation frequencies at hypoxanthine-guanine phosphoribosyl transferase locus and different H2AX phosphorylation kinetics, as compared to cells exposed to challenging radiation alone. This phenomenon did not seem to be linked with cell cycle effects or radiation-induced apoptosis. Taken together, our results suggested the existence of an AR to mutagenic effects of heavy-ion radiation in lymphoblastoid cells and the involvement of double-strand break repair mechanisms.

  3. Low-resolution detergent tracing in protein crystals using xenon or krypton to enhance X-ray contrast.

    PubMed

    Sauer, Oliver; Roth, Michel; Schirmer, Tilman; Rummel, Gabriele; Kratky, Christoph

    2002-01-01

    Xenon and krypton show different solubilities in polar versus apolar solvents. Therefore, these noble gases should accumulate in apolar regions of protein crystals. Specifically, they should accumulate in lipid and detergent solvent regions within crystals of membrane proteins, which can be used as a basis for contrast-variation experiments to distinguish such apolar solvent regions from the aqueous phase by a low-resolution X-ray diffraction experiment. This possibility was explored with the OmpF porin, one of the general diffusion pores of the Escherichia coli outer membrane. Trigonal crystals were exposed to elevated pressures of the two noble gases (up to 10(7) Pa) for several minutes and subsequently flash-cooled to liquid-nitrogen temperatures. Both rare gases bind to a number of 'specific' sites, which can be classified as 'typical' noble-gas binding sites. Compared with a representative water-soluble protein, they are however much more abundant in OmpF. In addition, a very large number of weakly populated sites are observed which accumulate in the region of the 'detergent belt' for crystals exposed to xenon. After application of a Fourier-filtering protocol, low-resolution images of the detergent belt can be obtained. The resulting maps are similar to maps obtained from low-resolution neutron diffraction experiments on contrast-matched crystals.

  4. Determination of trace elements in freshwater rotifers and ciliates by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Woelfl, S.; Óvári, M.; Nimptsch, J.; Neu, T. R.; Mages, M.

    2016-02-01

    Element determination in plankton is important for the assessment of metal contamination of aquatic environments. Until recently, it has been difficult to determine elemental content in rotifers or ciliates derived from natural plankton samples because of the difficulty in handling and separation of these fragile organisms. The aim of this study was to evaluate methods for separation of rotifers and large ciliates from natural plankton samples (μg range dry weight) and subsequent analysis of their elemental content using total-reflection X-ray fluorescence spectrometry (TXRF). Plankton samples were collected from different aquatic environments (three lakes, one river) in Chile, Argentina and Hungary. From one to eighty specimens of five rotifer species (Brachionus calyciflorus, Brachionus falcatus, Asplanchna sieboldii, Asplanchna sp., Philodina sp.) and four to twelve specimens of one large ciliate (Stentor amethystinus) were prepared according to the dry method originally developed for microcrustaceans, and analysed by TRXF following in situ microdigestion. Our results demonstrated that it possible to process these small and fragile organisms (individual dry mass: 0.17-9.39 μg ind- 1) via careful washing and preparation procedures. We found species-dependent differences of the element mass fractions for some of the elements studied (Cr, Mn, Fe, Ni, Cu, Zn, As, Pb), especially for Cu, Fe and Mn. One large rotifer species (A. sieboldii) also showed a negative correlation between individual dry weight and the element content for Pb, Ni and Cr. We conclude that our application of the in situ microdigestion-TRXF method is suitable even for rotifers and ciliates, greatly expanding the possibilities for use of plankton in biomonitoring of metal contamination in aquatic environments.

  5. Analysis of nutrition-relevant trace elements in human blood and serum by means of total reflection X-ray fluorescence (TXRF) spectroscopy

    NASA Astrophysics Data System (ADS)

    Stosnach, Hagen; Mages, Margarete

    2009-04-01

    In clinical service laboratories, one of the most common analytical tasks with regard to inorganic traces is the determination of the nutrition-relevant elements Fe, Cu, Zn, and Se. Because of the high numbers of samples and the commercial character of these analyses, a time-consuming sample preparation must be avoided. In this presentation, the results of total reflection X-ray fluorescence measurements with a low-power system and different sample preparation procedures are compared with those derived from analysis with common methods like Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The results of these investigations indicate that the optimal total reflection X-ray fluorescence analysis of the nutrition-relevant elements Fe, Cu, Zn, and Se can be performed by preparing whole blood and serum samples after dilution with ultrapure water and transferring 10 μl of internally standardized sample to an unsiliconized quartz glass sample carrier with subsequent drying in a laboratory oven. Suitable measurement time was found to be 600 s. The enhanced sample preparation by means of microwave or open digestion, in parts combined with cold plasma ashing, led to an improvement of detection limits by a factor of 2 for serum samples while for whole blood samples an improvement was only observed for samples prepared by means of microwave digestion. As the matrix elements P, S, Cl, and for whole blood Fe have a major influence on the detection limits, most probably a further enhancement of analytical quality requires the removal of the organic matrix. However, for the routine analysis of the nutrition-relevant elements, the dilution preparation was found to be sufficient.

  6. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model

    PubMed Central

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-01-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J. The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. PMID:27702991

  7. Method and mechanism of vapor phase treatment-total reflection X-ray fluorescence for trace element analysis on silicon wafer surface

    NASA Astrophysics Data System (ADS)

    Takahara, Hikari; Mori, Yoshihiro; Shimazaki, Ayako; Gohshi, Yohichi

    2010-12-01

    Vapor phase treatment (VPT) is a pretreatment with hydrofluoric acid vapor to raise the sensitivity of total reflection X-ray fluorescence spectroscopy (TXRF) for trace metal analysis on silicon wafers. The International Organization for Standardization/Technical Committee 201/Working Group 2 (ISO/TC201/WG2) has been investigating the method to analyze 10 9 atoms/cm 2 level of metallic contamination on the silicon wafer surface. Though VPT can enhance the TXRF signal intensity from the metallic contamination, it has turned out that the magnitude of the enhancement varies with the type of methods and the process conditions. In this study, approaches to increase TXRF intensity by VPT are investigated using a fuming chamber in an automated VPD instrument. Higher signal intensity can be obtained when condensation is formed on the sample surface in a humidifying atmosphere and with a decreasing stage temperature. Surface observations with SEM and AFM show that particles with ~ 4 μm in diameter are formed and unexpectedly they are dented from the top surface level.

  8. Fabry-Pérot-based thin film structure used as IR-emitter of an NDIR gas sensor: ray tracing simulations and measurements

    NASA Astrophysics Data System (ADS)

    Mayrwöger, Johann; Mitterer, Christian; Reichl, Wolfgang; Krutzler, Christian; Jakoby, Bernhard

    2011-06-01

    Non-dispersive infrared (NDIR) gas sensors make use of the specific infrared absorption of particular gas molecules in order to measure their distinctive gas concentration. The main parts of such a NDIR gas sensor are: an IR-emitter, a chamber containing the sample-gas, and an IR-detector with a filter for the characteristic absorption wavelength. The effectiveness of the IR-source for the total system is characterized by its temperature and the emissivity (i.e., the difference to blackbody radiation) of the device surface. Due to the fact that conventional metal surfaces provide a rather low emissivity, their emitting temperature must be set very high to generate sufficient IR-radiation for this kind of sensors. We developed an IR-source consisting of a stack of thin films with a much higher emissivity. Its main part is a combination of two mirrors and a dielectric layer which represent a Fabry-Perot structure. The obtained emission of the Fabry-Perot structure and the consequences for the performance of the whole NDIR gas sensor system were simulated with the enhanced transmittance matrix approach and a 3D ray tracing model. As an example, CO2 was considered as sample gas where the major characteristic absorption occur around 4.26 μm. The theoretical results are validated by comparing them to experiments obtained with prototype devices.

  9. SU-E-T-397: Evaluation of Planned Dose Distributions by Monte Carlo (0.5%) and Ray Tracing Algorithm for the Spinal Tumors with CyberKnife

    SciTech Connect

    Cho, H; Brindle, J; Hepel, J

    2015-06-15

    Purpose: To analyze and evaluate dose distribution between Ray Tracing (RT) and Monte Carlo (MC) algorithms of 0.5% uncertainty on a critical structure of spinal cord and gross target volume and planning target volume. Methods: Twenty four spinal tumor patients were treated with stereotactic body radiotherapy (SBRT) by CyberKnife in 2013 and 2014. The MC algorithm with 0.5% of uncertainty is used to recalculate the dose distribution for the treatment plan of the patients using the same beams, beam directions, and monitor units (MUs). Results: The prescription doses are uniformly larger for MC plans than RT except one case. Up to a factor of 1.19 for 0.25cc threshold volume and 1.14 for 1.2cc threshold volume of dose differences are observed for the spinal cord. Conclusion: The MC recalculated dose distributions are larger than the original MC calculations for the spinal tumor cases. Based on the accuracy of the MC calculations, more radiation dose might be delivered to the tumor targets and spinal cords with the increase prescription dose.

  10. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model.

    PubMed

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-11-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed.

  11. General relativistic ray-tracing algorithm for the determination of the electron-positron energy deposition rate from neutrino pair annihilation around rotating neutron and quark stars

    NASA Astrophysics Data System (ADS)

    Kovács, Z.; Harko, T.

    2011-11-01

    We present a full general relativistic numerical code for estimating the energy-momentum deposition rate (EMDR) from neutrino pair annihilation (?). The source of the neutrinos is assumed to be a neutrino-cooled accretion disc around neutron and quark stars. We calculate the neutrino trajectories by using a ray-tracing algorithm with the general relativistic Hamilton's equations for neutrinos and derive the spatial distribution of the EMDR due to the annihilations of neutrinos and antineutrinos around rotating neutron and quark stars. We obtain the EMDR for several classes of rotating neutron stars, described by different equations of state of the neutron matter, and for quark stars, described by the Massachusetts Institute of Technology (MIT) bag model equation of state and in the colour-flavour-locked (CFL) phase. The distribution of the total annihilation rate of the neutrino-antineutrino pairs around rotating neutron and quark stars is studied for isothermal discs and accretion discs in thermodynamical equilibrium. We demonstrate both the differences in the equations of state for neutron and quark matter and rotation with the general relativistic effects significantly modify the EMDR of the electrons and positrons generated by the neutrino-antineutrino pair annihilation around compact stellar objects, as measured at infinity.

  12. Inside marginal adaptation of crowns by X-ray micro-computed tomography

    SciTech Connect

    Dos Santos, T. M.; Lima, I.; Lopes, R. T.; Author, S. B. Jr.

    2015-07-01

    The objective of this work was to access dental arcade by using X-ray micro-computed tomography. For this purpose high resolution system was used and three groups were studied: Zirkonzahn CAD-CAM system, IPS e.max Press, and metal ceramic. The three systems assessed in this study showed results of marginal and discrepancy gaps clinically accepted. The great result of 2D and 3D evaluations showed that the used technique is a powerful method to investigate quantitative characteristics of dental arcade. (authors)

  13. Crystallization and preliminary X-ray diffraction analysis of a cold-adapted catalase from Vibrio salmonicida

    SciTech Connect

    Riise, Ellen Kristin; Lorentzen, Marit Sjo; Helland, Ronny; Willassen, Nils Peder

    2006-01-01

    Monoclinic (P2{sub 1}) crystals of a His-tagged form of V. salmonicida catalase without cofactor diffract X-rays to 1.96 Å. Catalase (EC 1.11.1.6) catalyses the breakdown of hydrogen peroxide to water and molecular oxygen. Recombinant Vibrio salmonicida catalase (VSC) possesses typical cold-adapted features, with higher catalytic efficiency, lower thermal stability and a lower temperature optimum than its mesophilic counterpart from Proteus mirabilis. Crystals of VSC were produced by the hanging-drop vapour-diffusion method using ammonium sulfate as precipitant. The crystals belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 98.15, b = 217.76, c = 99.28 Å, β = 110.48°. Data were collected to 1.96 Å and a molecular-replacement solution was found with eight molecules in the asymmetric unit.

  14. THREE-DIMENSIONAL ADAPTIVE MESH REFINEMENT SIMULATIONS OF LONG-DURATION GAMMA-RAY BURST JETS INSIDE MASSIVE PROGENITOR STARS

    SciTech Connect

    Lopez-Camara, D.; Lazzati, Davide; Morsony, Brian J.; Begelman, Mitchell C.

    2013-04-10

    We present the results of special relativistic, adaptive mesh refinement, 3D simulations of gamma-ray burst jets expanding inside a realistic stellar progenitor. Our simulations confirm that relativistic jets can propagate and break out of the progenitor star while remaining relativistic. This result is independent of the resolution, even though the amount of turbulence and variability observed in the simulations is greater at higher resolutions. We find that the propagation of the jet head inside the progenitor star is slightly faster in 3D simulations compared to 2D ones at the same resolution. This behavior seems to be due to the fact that the jet head in 3D simulations can wobble around the jet axis, finding the spot of least resistance to proceed. Most of the average jet properties, such as density, pressure, and Lorentz factor, are only marginally affected by the dimensionality of the simulations and therefore results from 2D simulations can be considered reliable.

  15. Educational x-ray experiments and XRF measurements with a portable setup adapted for the characterization of cultural heritage objects

    NASA Astrophysics Data System (ADS)

    Sianoudis, I.; Drakaki, E.; Hein, A.

    2010-05-01

    It is common to modify valuable, sophisticated equipment, originally acquired for other purposes, to adapt it for the needs of educational experiments, with great didactic effectiveness. The present project concerns a setup developed from components of a portable system for energy dispersive x-ray fluorescence spectroscopy (EDXRF). Two educational modules have been developed on the basis of this setup. Module 1 comprises a series of x-ray laboratory exercises investigating basic principles, such as the verification of Moseley's law, Compton's law and the Lambert-Beer law. Module 2 concerns the calibration of the XRF with reference materials, aiming to get quantitative measurements of the elemental composition of objects of cultural interest. The application of the calibrated experimental setup is demonstrated with indicative measurements of metal objects and pigments of wall paintings, in order to discuss their spectra, and their qualitative and quantitative analyses. The setup and the applied experiments are designed as an educational package of laboratory exercises on the one hand for students in natural sciences, and on the other for the education of students who will work in the field of cultural heritage, such as conservation science or archaeological science.

  16. Informing interested parties of changes in the optical performance of the cornea caused by keratorefractive surgery: a ray-tracing model that tailors presentation of results to fit the level of soph

    NASA Astrophysics Data System (ADS)

    Maguire, Leo J.; Camp, Jon J.; Robb, Richard A.

    1992-09-01

    Keratorefractive surgery changes a patient's spectacle correction by altering the curve of the cornea. Often the optical performance of the cornea is degraded as a result of surgery. Clinical tests such as visual acuity testing with high contrast optotypes are too insensitive to measure how the operation degrades optical quality. Ray tracing models offer promise as a sensitive indicator of optical degradation, but unfortunately most patients and many ophthalmologists and health care analysts do not understand results from such models when they are displayed as wither Fourier representations of optical degradation or as point spread functions. To address this problem, we improved on an earlier ray tracing program that models the optical performance of the cornea so that it now presents results in whatever format is best understood by the target audience.

  17. Stent enhancement in digital x-ray fluoroscopy using an adaptive feature enhancement filter

    NASA Astrophysics Data System (ADS)

    Jiang, Yuhao; Zachary, Josey

    2016-03-01

    Fluoroscopic images belong to the classes of low contrast and high noise. Simply lowering radiation dose will render the images unreadable. Feature enhancement filters can reduce patient dose by acquiring images at low dose settings and then digitally restoring them to the original quality. In this study, a stent contrast enhancement filter is developed to selectively improve the contrast of stent contour without dramatically boosting the image noise including quantum noise and clinical background noise. Gabor directional filter banks are implemented to detect the edges and orientations of the stent. A high orientation resolution of 9° is used. To optimize the use of the information obtained from Gabor filters, a computerized Monte Carlo simulation followed by ROC study is used to find the best nonlinear operator. The next stage of filtering process is to extract symmetrical parts in the stent. The global and local symmetry measures are used. The information gathered from previous two filter stages are used to generate a stent contour map. The contour map is then scaled and added back to the original image to get a contrast enhanced stent image. We also apply a spatio-temporal channelized Hotelling observer model and other numerical measures to characterize the response of the filters and contour map to optimize the selections of parameters for image quality. The results are compared to those filtered by an adaptive unsharp masking filter previously developed. It is shown that stent enhancement filter can effectively improve the stent detection and differentiation in the interventional fluoroscopy.

  18. Comparison of slope and height profiles for flat synchrotron x-ray mirrors measured with a long trace profiler and a PMI Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Assoufid, Lahsen; Macrander, Albert

    2007-09-01

    Long trace profilers (LTPs) (1) have been used at many synchrotron radiation laboratories worldwide for over a decade to measure surface slope profiles of long grazing incidence x-ray mirrors. Phase measuring interferometers (PMIs) of the Fizeau type, on the other hand, are being used by most mirror manufacturers to accomplish the same task. However, large mirrors whose dimensions exceed the aperture of the Fizeau interferometer require measurements to be carried out at grazing incidence, and aspheric optics require the use of a null lens. While an LTP provides a direct measurement of 1D slope profiles, PMIs measure area height profiles from which the slope can be obtained by a differentiation algorithm. Measurements of the two types of instruments have been found by us to be in good agreement, but to our knowledge there is no published work directly comparing the two instruments. This paper documents that comparison. We measured two different nominally flat mirrors with both the LTP in operation at the Advanced Photon Source (a type-II LTP) and a Fizeau-type PMI interferometer (Wyko model 6000). One mirror was 500 mm long and made of Zerodur, and the other mirror was 350 mm long and made of silicon. Slope error results with these instruments agree within nearly 100% (3.11+/-0.15 μrad for the LTP, and 3.11+/-0.02μrad for the Fizeau PMI interferometer) for the medium quality Zerodur mirror with 3 μrad rms nominal slope error. A significant difference was observed with the much higher quality silicon mirror. For the Si mirror, slope error data is 0.39+/-0.08Χrad from LTP measurements but it is 0.35 +/- 0.01 μrad from PMI interferometer measurements. The standard deviations show that the Fizeau PMI interferometer has much better measurement repeatability.

  19. Polarization Ray Tracing Calculation of Polarized Bidirectional Reflectance Distribution Function (pBRDF) of Microfaceted Surfaces to Investigate Multiple Reflection Effects

    NASA Astrophysics Data System (ADS)

    Bradley, C. L.; Kupinski, M.; Xu, F.; Diner, D. J.; Chipman, R. A.

    2015-12-01

    Remote sensing algorithms for aerosol retrieval rely on surface reflectance models for the extraction of path radiance of aerosol scattering in top of atmosphere measurements. A well-defined surface boundary condition is necessary due to the variability in the surface albedo and bidirectional reflectance distribution function. Polarization measurements can help constrain the surface model. Prior work features polarization measurements taken by Jet Propulsion Laboratory's Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI). This work has shown that an analytical model that assumes singly reflected light from a rough surface comprised of microfacets sufficiently represents the polarized reflectance of natural surfaces (such as grass), but is less successful for manmade objects. For the linear Stokes parameters (I, Q, U), a single reflection of unpolarized light will result in a null U Stokes parameter relative to the scattering plane. However, some GroundMSPI measurements exhibit a non-zero U Stokes parameter. We show that multiple reflections may be a cause for this discrepancy by using a polarization ray trace (PRT) routine to calculate the polarized Bidirectional Reflectance Distribution Function (pBRDF) for a microfaceted surface. While the effect of multiple reflections, particularly for double reflections, is an order of magnitude smaller compared to single reflections, we show non-zero U Stokes parameters generated from multiple reflections. Furthermore, we have found that for illumination-view geometries with scattering angles less than ~45 degrees, Q and U parameters can have similar magnitude. We report on the magnitude of this effect and compare the PRT simulations to non-zero U measurements from GroundMSPI.

  20. Comparison of slope and height profiles for flat synchrotron x-ray mirrors measured with a long trace profiler and a Fizeau interferometer.

    SciTech Connect

    Qian, J.; Assoufid, L.; Macrander, A.; X-Ray Science Division

    2007-01-01

    Long trace profilers (LTPS) have been used at many synchrotron radiation laboratories worldwide for over a decade to measure surface slope profiles of long grazing incidence x-ray mirrors. Phase measuring interferometers (PMIs) of the Fizeau type, on the other hand, are being used by most mirror manufacturers to accomplish the same task. However, large mirrors whose dimensions exceed the aperture of the Fizeau interferometer require measurements to be carried out at grazing incidence, and aspheric optics require the use of a null lens. While an LTP provides a direct measurement of ID slope profiles, PMIs measure area height profiles from which the slope can be obtained by a differentiation algorithm. Measurements of the two types of instruments have been found by us to be in good agreement, but to our knowledge there is no published work directly comparing the two instruments. This paper documents that comparison. We measured two different nominally flat mirrors with both the LTP in operation at the Advanced Photon Source (a type-II LTP) and a Fizeau-type PMI interferometer (Wyko model 6000). One mirror was 500 mm long and made of Zerodur, and the other mirror was 350 mm long and made of silicon. Slope error results with these instruments agree within nearly 100% (3.11 {+-} 0.15 {micro}rad for the LTP, and 3.11 {+-} 0.02 {micro}rad for the Fizeau PMI interferometer) for the medium quality Zerodur mirror with 3 {micro}rad rms nominal slope error. A significant difference was observed with the much higher quality silicon mirror. For the Si mirror, slope error data is 0.39 {+-} 0.08 {micro}rad from LTP measurements but it is 0.35 {+-} 0.01 {micro}rad from PMI interferometer measurements. The standard deviations show that the Fizeau PMI interferometer has much better measurement repeatability.

  1. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part I: The ray tracing with diffraction on facets method

    NASA Astrophysics Data System (ADS)

    Baran, A. J.; Hesse, Evelyn; Sourdeval, Odran

    2017-03-01

    Future satellite missions, from 2022 onwards, will obtain near-global measurements of cirrus at microwave and sub-millimetre frequencies. To realise the potential of these observations, fast and accurate light-scattering methods are required to calculate scattered millimetre and sub-millimetre intensities from complex ice crystals. Here, the applicability of the ray tracing with diffraction on facets method (RTDF) in predicting the bulk scalar optical properties and phase functions of randomly oriented hexagonal ice columns and hexagonal ice aggregates at millimetre frequencies is investigated. The applicability of RTDF is shown to be acceptable down to size parameters of about 18, between the frequencies of 243 and 874 GHz. It is demonstrated that RTDF is generally well within about 10% of T-matrix solutions obtained for the scalar optical properties assuming hexagonal ice columns. Moreover, on replacing electromagnetic scalar optical property solutions obtained for the hexagonal ice aggregate with the RTDF counterparts at size parameter values of about 18 or greater, the bulk scalar optical properties can be calculated to generally well within ±5% of an electromagnetic-based database. The RTDF-derived bulk scalar optical properties result in brightness temperature errors to generally within about ±4 K at 874 GHz. Differing microphysics assumptions can easily exceed such errors. Similar findings are found for the bulk scattering phase functions. This finding is owing to the scattering solutions being dominated by the processes of diffraction and reflection, both being well described by RTDF. The impact of centimetre-sized complex ice crystals on interpreting cirrus polarisation measurements at sub-millimetre frequencies is discussed.

  2. SU-E-T-85: Comparison of Treatment Plans Calculated Using Ray Tracing and Monte Carlo Algorithms for Lung Cancer Patients Having Undergone Radiotherapy with Cyberknife

    SciTech Connect

    Pennington, A; Selvaraj, R; Kirkpatrick, S; Oliveira, S; Leventouri, T

    2014-06-01

    Purpose: The latest publications indicate that the Ray Tracing algorithm significantly overestimates the dose delivered as compared to the Monte Carlo (MC) algorithm. The purpose of this study is to quantify this overestimation and to identify significant correlations between the RT and MC calculated dose distributions. Methods: Preliminary results are based on 50 preexisting RT algorithm dose optimization and calculation treatment plans prepared on the Multiplan treatment planning system (Accuray Inc., Sunnyvale, CA). The analysis will be expanded to include 100 plans. These plans are recalculated using the MC algorithm, with high resolution and 1% uncertainty. The geometry and number of beams for a given plan, as well as the number of monitor units, is constant for the calculations for both algorithms and normalized differences are compared. Results: MC calculated doses were significantly smaller than RT doses. The D95 of the PTV was 27% lower for the MC calculation. The GTV and PTV mean coverage were 13 and 39% less for MC calculation. The first parameter of conformality, as defined as the ratio of the Prescription Isodose Volume to the PTV Volume was on average 1.18 for RT and 0.62 for MC. Maximum doses delivered to OARs was reduced in the MC plans. The doses for 1000 and 1500 cc of total lung minus PTV, respectively were reduced by 39% and 53% for the MC plans. The correlation of the ratio of air in PTV to the PTV with the difference in PTV coverage had a coefficient of −0.54. Conclusion: The preliminary results confirm that the RT algorithm significantly overestimates the dosages delivered confirming previous analyses. Finally, subdividing the data into different size regimes increased the correlation for the smaller size PTVs indicating the MC algorithm improvement verses the RT algorithm is dependent upon the size of the PTV.

  3. Adaptive-weighted Total Variation Minimization for Sparse Data toward Low-dose X-ray Computed Tomography Image Reconstruction

    PubMed Central

    Liu, Yan; Ma, Jianhua; Fan, Yi; Liang, Zhengrong

    2012-01-01

    Previous studies have shown that by minimizing the total variation (TV) of the to-be-estimated image with some data and other constraints, a piecewise-smooth X-ray computed tomography (CT) can be reconstructed from sparse-view projection data without introducing noticeable artifacts. However, due to the piecewise constant assumption for the image, a conventional TV minimization algorithm often suffers from over-smoothness on the edges of the resulting image. To mitigate this drawback, we present an adaptive-weighted TV (AwTV) minimization algorithm in this paper. The presented AwTV model is derived by considering the anisotropic edge property among neighboring image voxels, where the associated weights are expressed as an exponential function and can be adaptively adjusted by the local image-intensity gradient for the purpose of preserving the edge details. Inspired by the previously-reported TV-POCS (projection onto convex sets) implementation, a similar AwTV-POCS implementation was developed to minimize the AwTV subject to data and other constraints for the purpose of sparse-view low-dose CT image reconstruction. To evaluate the presented AwTV-POCS algorithm, both qualitative and quantitative studies were performed by computer simulations and phantom experiments. The results show that the presented AwTV-POCS algorithm can yield images with several noticeable gains, in terms of noise-resolution tradeoff plots and full width at half maximum values, as compared to the corresponding conventional TV-POCS algorithm. PMID:23154621

  4. A comparison of photogrammetrically determined astronomical refraction of sunlight at high zenith angles with a ray-tracing computer model employing rawinsonde profiles

    NASA Astrophysics Data System (ADS)

    Sampson, Russell Dean

    2001-11-01

    Many important areas of science such as geodesy, astrometry, satellite navigation, and remote sensing require accurate understanding of the amount of astronomical refraction. However, very little work has been done to actually compare the observed and modelled astronomical refraction at high zenith angles. In this study, a ray tracing model using atmospheric data from rawinsondes is for the first time compared with the measured astronomical refraction presented by the setting Sun. These measurements were obtained on December 8, 14 and 22, 1998 from the campus of the University of Alberta in Edmonton, and the Stony Plain Upper Air Station, about 25 km west of Edmonton, Alberta. Astronomical refraction values were measured through a theodolite survey (Edmonton) and photogrammetry (Stony Plain). Photogrammetric images were obtained using a Questar 3.5 inch telescopic lens and then scanned on an Agfa Studio Scan 11 si flat bed colour scanner. Before accurate measurements could be extracted from the negatives, the camera and scanner required calibration. The calibration of the scanner found systematic linear and non-linear distortions of less than 0.6%. The calibration of a consumer grade flatbed scanner has so far, not appeared in the literature. Photographs of star fields were used to determine the focal length (1445.3 +/- 3.6 mm) and the distortions of the Questar lens. A terrestrial calibration method helped verify these results. Both methods showed no measurable lens distortion. The photogrammetric calibration of a Questar 3.5 inch telescopic lens has not appeared in the literature. The theodolite measurements of astronomical refraction from Edmonton and photogrammetric measurements from Stony Plain showed good agreement with the refraction model for the December 14 and 22 sunsets. The poorest fit occurred during the December 8 sunset when a substantial horizontal temperature gradient was present. From conversations with Environment Canada employees it is also

  5. SU-E-T-587: Monte Carlo Versus Ray-Tracing for Treatment Planning Involving CNS Tumors On the MultiPlan System for CyberKnife Radiosurgery

    SciTech Connect

    Forbang, R Teboh

    2014-06-01

    Purpose: MultiPlan, the treatment planning system for the CyberKnife Robotic Radiosurgery system offers two approaches to dose computation, namely Ray-Tracing (RT), the default technique and Monte Carlo (MC), an option. RT is deterministic, however it accounts for primary heterogeneity only. MC on the other hand has an uncertainty associated with the calculation results. The advantage is that in addition, it accounts for heterogeneity effects on the scattered dose. Not all sites will benefit from MC. The goal of this work was to focus on central nervous system (CNS) tumors and compare dosimetrically, treatment plans computed with RT versus MC. Methods: Treatment plans were computed using both RT and MC for sites covering (a) the brain (b) C-spine (c) upper T-spine (d) lower T-spine (e) L-spine and (f) sacrum. RT was first used to compute clinically valid treatment plans. Then the same treatment parameters, monitor units, beam weights, etc., were used in the MC algorithm to compute the dose distribution. The plans were then compared for tumor coverage to illustrate the difference if any. All MC calculations were performed at a 1% uncertainty. Results: Using the RT technique, the tumor coverage for the brain, C-spine (C3–C7), upper T-spine (T4–T6), lower T-spine (T10), Lspine (L2) and sacrum were 96.8%, 93.1%, 97.2%, 87.3%, 91.1%, and 95.3%. The corresponding tumor coverage based on the MC approach was 98.2%, 95.3%, 87.55%, 88.2%, 92.5%, and 95.3%. It should be noted that the acceptable planning target coverage for our clinical practice is >95%. The coverage can be compromised for spine tumors to spare normal tissues such as the spinal cord. Conclusion: For treatment planning involving the CNS, RT and MC appear to be similar for most sites but for the T-spine area where most of the beams traverse lung tissue. In this case, MC is highly recommended.

  6. Assessment of the Accuracy of the Conventional Ray-Tracing Technique: Implications in Remote Sensing and Radiative Transfer Involving Ice Clouds.

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Van Diedenhoven, Bastiaan; Iwabuchi, Hironobu

    2014-01-01

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TMþIGOM are considered as a benchmark because the IITM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TMþIGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 micrometers) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical

  7. Synchrotron X-Ray Fluorescence Analysis of Trace Elements in Focused Ion Beam Prepared Sections of Carbonaceous Chondrite Iron Sulfides (CM and CR) and Associated Metal (CR)

    NASA Astrophysics Data System (ADS)

    Singerling, S. A.; Sutton, S. R.; Lanzirotti, A.; Newville, M.; Brearley, A. J.

    2016-08-01

    This study presents data on trace element abundances in CM and CR sulfides and metals. We determined that Ge and Zn were observed to be depleted relative to CI chondrite while the more volatile Se was observed to be enriched.

  8. Trace metal concentrations in single specimens of the intestinal broad flatworm ( Diphyllobothrium latum), compared to their fish host ( Oncorhynchus mykiss) measured by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Woelfl, Stefan; Mages, Margarete; Torres, Patricio

    2008-12-01

    The aim of this study was to investigate (1) whether intestine endoparasites ( Diphyllobothrium latum) accumulate trace elements related to its body size and (2) whether parasites bioconcentrate more trace elements than their host. Freshwater fish (rainbow trout Oncorhynchus mykiss) were sampled in the deep, oligotrophic and uncontaminated Lake Riñihue in Southern Chile. The element concentration of different organs (intestine, muscle, liver) and of the intestine endoparasites were analyzed using total reflection X-ray fluorescence spectrometry. The results showed that the mass fraction for Mn, Fe, Ni, Cu, and Pb decreased significantly with the body size (dry weight) of the endoparasite. Only Zn did not reveal such a relationship. Small parasites accumulated up to 80 times more Fe, Ni, Mn, Pb, and Cu than large parasites. Compared to the fish organs, small parasites accumulated in maximum 35 to 307 times more Mn, 5 to 255 times more Fe, 98 to 220 times more Ni, 3 to 175 times more Cu, and 0.4 to 12 times more Zn than the fish. Lead was only found in the endoparasite, but not in the fish organs. We conclude that (1) D. latum is a good indicator for trace element accumulation in fishes and that (2) small endoparasites are more sensitive as bioindicators because they showed higher bioconcentrations of trace metals than larger parasites.

  9. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)

    NASA Astrophysics Data System (ADS)

    Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.

    2016-08-01

    The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.

  10. [Manifestation of the adaptive response and bystander-effect of C3H10T1/2 fibroblasts irradiated by protons and gamma-rays].

    PubMed

    Voskanian, K Sh; Mitsyn, G V; Gaevskiĭ, V N

    2009-01-01

    Adaptive response and bystander-effect were studied in mice fibroblasts irradiated by gamma-rays and protons with the energy of 150 MeV Monolayer of fibroblasts cultivated on the wall of a plastic vial first were exposed to 2 and 4 cGy of ionizing radiation (presumably adaptive doses) and later, after 40-min. or 16-hr. period at 37 degrees C, to damaging 4 Gy. To study the bystander-effect, either the whole vial surface (25 cm2) or central area (1 cm2) were irradiated by a beam of protons. The results showed that the preliminary gamma-irradiation 40-min. or 16-hr. before exposure to the damaging dose equally alleviates the harmful effect of protons on fibroblasts. The adaptive response was observed as in the cells subjected to the direct irradiation by protons at 4 Gy, so in bystander-cells. When protons were used for adaptive irradiation, the response was visible only to the dose of 4 cGy in fibroblasts exposed to gamma-radiation 16 hrs. later. In all the rest cases, proton- and gamma-induced damages added together. Besides, the experiments showed that the adaptive effect of protons is passed on to bystander-cells. Adaptive and damaging gamma-irradiation evoked the response invariably.

  11. Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients

    SciTech Connect

    Wilcox, Ellen E.; Daskalov, George M.; Lincoln, Holly; Shumway, Richard C.; Kaplan, Bruce M.; Colasanto, Joseph M.

    2010-05-01

    Purpose: To compare dose distributions calculated using the Monte Carlo algorithm (MC) and Ray-Trace algorithm (effective path length method, EPL) for CyberKnife treatments of lung tumors. Materials and Methods: An acceptable treatment plan is created using Multiplan 2.1 and MC dose calculation. Dose is prescribed to the isodose line encompassing 95% of the planning target volume (PTV) and this is the plan clinically delivered. For comparison, the Ray-Trace algorithm with heterogeneity correction (EPL) is used to recalculate the dose distribution for this plan using the same beams, beam directions, and monitor units (MUs). Results: The maximum doses calculated by the EPL to target PTV are uniformly larger than the MC plans by up to a factor of 1.63. Up to a factor of four larger maximum dose differences are observed for the critical structures in the chest. More beams traversing larger distances through low density lung are associated with larger differences, consistent with the fact that the EPL overestimates doses in low-density structures and this effect is more pronounced as collimator size decreases. Conclusions: We establish that changing the treatment plan calculation algorithm from EPL to MC can produce large differences in target and critical organs' dose coverage. The observed discrepancies are larger for plans using smaller collimator sizes and have strong dependency on the anatomical relationship of target-critical structures.

  12. Comparison of adverse effects of proton and X-ray chemoradiotherapy for esophageal cancer using an adaptive dose-volume histogram analysis.

    PubMed

    Makishima, Hirokazu; Ishikawa, Hitoshi; Terunuma, Toshiyuki; Hashimoto, Takayuki; Yamanashi, Koichi; Sekiguchi, Takao; Mizumoto, Masashi; Okumura, Toshiyuki; Sakae, Takeji; Sakurai, Hideyuki

    2015-05-01

    Cardiopulmonary late toxicity is of concern in concurrent chemoradiotherapy (CCRT) for esophageal cancer. The aim of this study was to examine the benefit of proton beam therapy (PBT) using clinical data and adaptive dose-volume histogram (DVH) analysis. The subjects were 44 patients with esophageal cancer who underwent definitive CCRT using X-rays (n = 19) or protons (n = 25). Experimental recalculation using protons was performed for the patient actually treated with X-rays, and vice versa. Target coverage and dose constraints of normal tissues were conserved. Lung V5-V20, mean lung dose (MLD), and heart V30-V50 were compared for risk organ doses between experimental plans and actual treatment plans. Potential toxicity was estimated using protons in patients actually treated with X-rays, and vice versa. Pulmonary events of Grade ≥2 occurred in 8/44 cases (18%), and cardiac events were seen in 11 cases (25%). Risk organ doses in patients with events of Grade ≥2 were significantly higher than for those with events of Grade ≤1. Risk organ doses were lower in proton plans compared with X-ray plans. All patients suffering toxicity who were treated with X-rays (n = 13) had reduced predicted doses in lung and heart using protons, while doses in all patients treated with protons (n = 24) with toxicity of Grade ≤1 had worsened predicted toxicity with X-rays. Analysis of normal tissue complication probability showed a potential reduction in toxicity by using proton beams. Irradiation dose, volume and adverse effects on the heart and lung can be reduced using protons. Thus, PBT is a promising treatment modality for the management of esophageal cancer.

  13. Integration of airborne LiDAR data and voxel-based ray tracing to determine high-resolution solar radiation dynamics at the forest floor: implications for improving stand-scale distributed snowmelt models

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Molotch, N. P.; Margulis, S. A.

    2012-12-01

    Forest architecture dictates sub-canopy solar irradiance and the resulting patterns can vary seasonally and over short spatial distances. These radiation dynamics are thought to have significant implications on snowmelt processes, regional hydrology, and remote sensing signatures. The variability calls into question many assumptions inherent in traditional canopy models (e.g. Beer's Law) when applied at high resolution (i.e. 1 m). We present a method of estimating solar canopy transmissivity using airborne LiDAR data. The canopy structure is represented in 3-D voxel space (i.e. a cubic discretization of a 3-D domain analogous to a pixel representation of a 2-D space). The solar direct beam canopy transmissivity (DBT) is estimated with a ray-tracing algorithm and the diffuse component is estimated from LiDAR-derived effective LAI. Results from one year at five-minute temporal and 1 m spatial resolutions are presented from Sequoia National Park. Compared to estimates from 28 hemispherical photos, the ray-tracing model estimated daily mean DBT with a 10% average error, while the errors from a Beer's-type DBT estimate exceeded 20%. Compared to the ray-tracing estimates, the Beer's-type transmissivity method was unable to resolve complex spatial patterns resulting from canopy gaps, individual tree canopies and boles, and steep variable terrain. The snowmelt model SNOWPACK was applied at locations of ultrasonic snow depth sensors. Two scenarios were tested; 1) a nominal case where canopy model parameters were obtained from hemispherical photographs, and 2) an explicit scenario where the model was modified to accept LiDAR-derived time-variant DBT. The bulk canopy treatment was generally unable to simulate the sub-canopy snowmelt dynamics observed at the depth sensor locations. The explicit treatment reduced error in the snow disappearance date by one week and both positive and negative melt-season SWE biases were reduced. The results highlight the utility of LiDAR canopy

  14. Planck Lensing and Cosmic Infrared Background Cross-correlation with Fermi-LAT: Tracing Dark Matter Signals in the Gamma-ray Background

    NASA Astrophysics Data System (ADS)

    Feng, Chang; Cooray, Asantha; Keating, Brian

    2017-02-01

    The extragalactic γ-ray background and its spatial anisotropy could potentially contain a signature of dark matter (DM) annihilation or particle decay. Astrophysical foregrounds, such as blazars and star-forming galaxies (SFGs), however, dominate the γ-ray background, precluding an easy detection of the signal associated with the DM annihilation or decay in the background intensity spectrum. The DM imprint on the γ-ray background is expected to be correlated with large-scale structure tracers. In some cases, such a cross-correlation is even expected to have a higher signal-to-noise ratio than the auto-correlation. One reliable tracer of the DM distribution in the large-scale structure is lensing of the cosmic microwave background (CMB), and the cosmic infrared background (CIB) is a reliable tracer of SFGs. We analyze Fermi-LAT data taken over 92 months and study the cross-correlation with Planck CMB lensing, Planck CIB, and Fermi-γ maps. We put upper limits on the DM annihilation cross-section from the cross-power spectra with the γ-ray background anisotropies. The unbiased power spectrum estimation is validated with simulations that include cross-correlated signals. We also provide a set of systematic tests and show that no significant contaminations are found for the measurements presented here. Using γ-ray background map from data gathered over 92 months, we find the best constraint on the DM annihilation with a 1σ confidence level upper limit of 10‑25–10‑24 cm3 s‑1, when the mass of DM particles is between 20 and 100 GeV.

  15. Determination of trace amounts of hexavalent chromium in drinking waters by dispersive microsolid-phase extraction using modified multiwalled carbon nanotubes combined with total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Bahadir, Z.; Bulut, V. N.; Hidalgo, M.; Soylak, M.; Marguí, E.

    2015-05-01

    A methodology based on the combination of dispersive microsolid-phase extraction (DMSPE) with total reflection X-ray fluorescence (TXRF) spectrometry is proposed for the determination of hexavalent chromium in drinking waters. Multiwalled carbon nanotubes (MWCNTs) modified with the anionic exchanger tricaprylmethylammonium chloride (Aliquat 336) were used as solid sorbents. After the sorption process of Cr(VI) on the modified MWCNTs, the aqueous sample was separated by centrifugation and the loaded MWCNTs were suspended using a small volume of an internal standard solution and analyzed directly by a benchtop TXRF spectrometer, without any elution step. Parameters affecting the extraction process (pH and volume of the aqueous sample, amount of MWCNTs, extraction time) and TXRF analysis (volume of internal standard, volume of deposited suspension on the reflector, drying mode, and instrumental parameters) have been carefully evaluated to test the real capability of the developed methodology for the determination of Cr(VI) at trace levels. Using the best analytical conditions, it was found that the minimum Cr(VI) content that can be detected in an aqueous solution was 3 μg L- 1. This value is almost 20 times lower than the maximum hexavalent chromium content permissible in drinking waters, according to the World Health Organization (WHO). Recoveries for spiked tap and mineral water samples were, in most cases, in the range of 101-108% which demonstrates the suitability of the TXRF methodology for monitoring Cr(VI) at trace levels in drinking water samples.

  16. Internal skeletal analysis of the colonial azooxanthellate scleractinian Dendrophyllia cribrosa using microfocus X-ray CT images: underlying basis for its rigid and highly adaptive colony structure.

    PubMed

    Sentoku, Asuka; Morisaki, Hitomi; Masumoto, Shinji; Ohno, Rie; Tomiyama, Takayuki; Ezaki, Yoichi

    2015-01-01

    Dendrophyllid Scleractinia exhibit a variety of colonial morphologies, formed under the strict constraints on (1) budding sites, (2) orientations of the directive septa of offsets, (3) inclination of budding direction, and (4) those constraints in every generation. Dendrophyllia cribrosa exhibits a sympodial dendroid form, characteristically large coralla, and occasional fusions of adjacent branches within the same colony. Adjacent corallites are bound and supported by coenosteum skeleton. This study examined the inner skeletal structures at the junctions of fused branches using a non-destructive microfocus X-ray computed tomography (CT) imaging approach, and considered the reasons for the large colonial sizes and their adaptive significance. Three-dimensional reconstructions of two-dimensional X-ray CT images reveal that individual corallites are not directly connected in fused parts. Additionally, no completely buried individuals were found within fused skeleton. When adjacent branches approach one another, constituent corallites change their growth directions to avoid collisions between the branches. The adjacent branches fuse without a reduction in the number of constituent corallites, leading to the establishment of reticular and rigid colonial structures. In addition, a nearly even distribution of individuals on the colony surface facilitates efficient intake of nutrients. Thus, the growth of large D. cribrosa colonies involves avoidance of collision between constituent individuals, the reinforcement of colonial structure, and efficient uptake of nutrients. These observations provide insights on the dynamics of interrelationships between colony-making mechanisms and the adaptive strategies required under habitat conditions such as specific current activities.

  17. Thermal optical path difference analysis of off-axis lens ray trace foot-print at Cassegrain telescope correct lens assembly

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Ying; Lin, Yu-Chuan; Chan, Chia-Yen; Lin, Wei-Cheng; Chan, Shenq-Tsong; Huang, Ting-Ming

    2012-10-01

    The Cassegrain telescope system in this study, is discussion correct lens thermal OPD (Optical Path Difference) effect optical performance. The correct lens assembly are includes several components such as correct lens, lens mount, spacer, mount barrel and retainer. The heat transfer from surrounding to the correct lens barrel will causes optical system aberration. Meanwhile, the off-axis rays path of the OPD must consider lens incidence point and emergence point. The correct lens temperature distribution is calculate the lens barrel heat transfer analysis, the thermal distortion and stress are solve by FEM (Finite Element Method) software. The temperature calculation results can be weighting to each incidence ray path and calculate thermal OPD. The thermal OPD on Z-direction can be fitted by rigid body motion and Zernike polynomial. The fitting results can be used to evaluate the thermal effect on correct lens assembly in telescope system.

  18. [Adaptive Wiener filter based on Gaussian mixture distribution model for denoising chest X-ray CT image].

    PubMed

    Tabuchi, Motohiro; Yamane, Nobumoto; Morikawa, Yoshitaka

    2008-05-20

    In recent decades, X-ray CT imaging has become more important as a result of its high-resolution performance. However, it is well known that the X-ray dose is insufficient in the techniques that use low-dose imaging in health screening or thin-slice imaging in work-up. Therefore, the degradation of CT images caused by the streak artifact frequently becomes problematic. In this study, we applied a Wiener filter (WF) using the universal Gaussian mixture distribution model (UNI-GMM) as a statistical model to remove streak artifact. In designing the WF, it is necessary to estimate the statistical model and the precise co-variances of the original image. In the proposed method, we obtained a variety of chest X-ray CT images using a phantom simulating a chest organ, and we estimated the statistical information using the images for training. The results of simulation showed that it is possible to fit the UNI-GMM to the chest X-ray CT images and reduce the specific noise.

  19. Development of a digital panoramic X-ray imaging system of adaptive image layers for dental applications

    NASA Astrophysics Data System (ADS)

    Choi, S. I.; Park, Y. O.; Cho, H. S.; Oh, J. E.; Cho, H. M.; Hong, D. K.; Lee, M. S.; Yang, Y. J.; Je, U. K.; Kim, D. S.; Lee, H. K.

    2011-10-01

    As a continuation of our digital radiographic sensor R&D, we have developed a prototyped digital panoramic X-ray imaging system for dental applications. The imaging system consists of a slit-collimated X-ray generator with a 0.4 mm focal spot size and a 3.5 mm Al filtration, a linear-array typed CMOS imager with a 48×48 μm 2 pixel size and a 128 (in the scan direction)×3072 (in the vertical direction) pixel format, a series of microstep motors for the precise motion control of the imaging system, and the designed sequences for the motion control and pixel readout required to make a specific plane of interest (POI) to be focused. With the several test phantoms we designed, we obtained useful digital panoramic X-ray images by moving the X-ray generator and the CMOS imager along a continuously sliding rotational center. In this study, we demonstrated that the prototype system can be applicable to any shaped POI or multi-POIs simultaneously to be focused, provided that adequate sequences for motion control and pixel readout are designed. We expect that the imaging system will be useful for our ongoing applications of dental panoramic radiography and nondestructive testing.

  20. Variability in cytogenetic adaptive response of cultured human lymphocytes to mitomycin C, bleomycin, quinacrine dihydrochloride, Co60 gamma-rays and hyperthermia.

    PubMed

    Krishnaja, A P; Sharma, N K

    2008-03-01

    Adaptive response (AR) is a well-documented phenomenon by which cells or organisms exposed to low dose of a genotoxicant become less sensitive to subsequent high-dose exposure to the same or another genotoxicant. AR, if induced can modify the efficacy leading to drug or radio-resistance, during anti-neoplastic drug or radiation treatment. Contradictions exist in AR induction by different genotoxicants with respect to the biomarkers, time schedules, and inter-individual variability, reflecting the complexity of AR in eukaryotic cells. In order to further ascertain these factors, AR induced by anti-neoplastic agents mitomycin C (MMC), bleomycin (BLM) and chemosterilant quinacrine dihydrochloride was examined in different donors and time schedules using cytogenetic biomarkers chromosome aberrations, sister chromatid exchanges and micronuclei (MN). BLM- and hyperthermia (HT)-induced cross-resistance to gamma rays and MMC/BLM, respectively, was also studied. Difference between MMC- and BLM-induced protective effects in biomarkers examined in the same donors was noticed. Adaptation to BLM and HT showed cross-resistance to chromosome damage induction by gamma rays and BLM/MMC, respectively. Cell cycle analysis indicated that adaptation is not caused by change in the rate of cell proliferation after challenge dose. MN as a chromosomal biomarker in large-scale population studies on AR is advocated, based on similar AR induced in all donors by MMC/BLM and rapid assessment in binucleated cells. Influence of certain genotypes on chromosomal biomarkers used in AR studies and role of AR in radiation and chemotherapy need to be further deciphered.

  1. Determination of ultra trace contaminants on silicon wafer surfaces using total-reflection X-ray fluorescence TXRF 'state-of-the-art'

    NASA Astrophysics Data System (ADS)

    Pahlke, S.; Fabry, L.; Kotz, L.; Mantler, C.; Ehmann, T.

    2001-11-01

    In a well balanced system of highly motivated, well trained personnel and automated equipment, pure reagents and bulk media, cleanrooms and integrated data management, total-reflection X-ray fluorescence (TXRF) can and must contribute to quality assurance and process stability, support and canalize creative engineering by continuous learning about materials and processes. TXRF has the advantage of controlled one-point calibration, a linear dynamic range of three orders of magnitude, high grade of automation in operation and data management, high up-time, and a simple control of data plausibility.

  2. Tracing the History of the Energy Sector Related Applications Using Specially Adapted NASA Long-Term Climate Data Sets and Measures of Their Socio-Economic Value

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W.; Hoell, J. M.; Chandler, W.; Westberg, D. J.; Zhang, T.

    2012-12-01

    In the mid-1990's the National Renewable Energy Laboratory approached NASA Langley Research Center to gain information about the solar resource in Africa as estimated via early satellite based methods. From this began an effort that eventually involved collaboration with DOE NREL, Natural Resources Canada RETScreen International, and numerous other partners in industry and universities to make progressively improved data products available for the renewable energy and other energy related applications. In 2002, NASA Applied Science projects were initiated providing a more focused effort to accomplish the goal of empowering energy related decision support tools using NASA meteorological and climate related data sets. At this time, NASA Langley Research Center reorganized a project aimed to make long-term solar energy and meteorological data sets available to Energy sector related industries, including sustainable buildings and agroclimatology. This task involved the design and adaption of NASA derived data sets that these industries use, key partnerships, a commitment to validation, a commitment to expansion of parameters and data products over time, and a web based interface that allows energy industry specialists to obtained the needed data parameters in easy to use formats. This presentation shows the history of the NASA Langley Research Center effort to provide data sets for energy sector applications. This includes the development and usage of the Surface meteorology and Solar Energy (SSE, http://eosweb.larc.nasa.gov/sse/) web interface that has been improved under the Prediction of Worldwide renewable Energy Resource Project (POWER, http://power.larc.nasa.gov). Through the years the data sets provided now span more than 30 years and since 2009 include global parameters released within about 4-6 days of real time. The history of usage of this web site is discussed in terms of key partnerships and new data releases. We will present ways of categorizing the

  3. Determination of molybdenum and tungsten at trace levels in rocks and minerals by solvent extraction and X-ray fluorescence spectrometry.

    PubMed

    Sen, N; Roy, N K; Das, A K

    1989-06-01

    Separation by solvent extraction followed by X-ray fluorescence spectrometry has been used for determination of molybdenum and tungsten in rocks and minerals. Samples are decomposed either by heating with a mixture of hydrofluoric acid and perchloric acid or by fusion with potassium pyrosulphate, followed by extraction of molybdenum and tungsten with N-benzoylphenylhydroxylamine in toluene from 4-5M sulphuric acid medium. The extract is collected on a mass of cellulose powder, which is dried in vacuum, mixed thoroughly and pressed into a disc for XRF measurements. The method is free from all matrix effects and needs no mathematical corrections for interelement effects. The method is suitable for determination of molybdenum and tungsten in geological materials down to ppm levels, with reasonable precision and accuracy.

  4. The interaction between gravity waves and solar tides in a linear tidal model with a 4-D ray-tracing gravity-wave parameterization

    NASA Astrophysics Data System (ADS)

    Ribstein, B.; Achatz, U.

    2016-09-01

    Gravity waves (GWs) play an important role in atmospheric dynamics. Due to their short wavelengths, they must be parameterized in current weather and forecast models, which cannot resolve them explicitly. We are here the first to report the possibility and the implication of having an online GW parameterization in a linear but global model that incorporates their horizontal propagation, the effects of transients and of horizontal background gradients on GW dynamics. The GW parameterization is based on a ray-tracer model with a spectral formulation that is safe against numerical instabilities due to caustics. The global model integrates the linearized primitive equations to obtain solar tides (STs), with a seasonally dependent reference climatology, forced by a climatological daily cycle of the tropospheric and stratospheric heating, and the (instantaneous) GW momentum and buoyancy flux convergences resulting from the ray tracer. Under a more conventional "single-column" approximation, where GWs only propagate vertically and do not respond to horizontal gradients of the resolved flow, GW impacts are shown to be significantly changed in comparison with "full" experiments, leading to significant differences in ST amplitudes and phases, pointing at a sensitive issue of GW parameterizations in general. In the full experiment, significant semidiurnal STs arise even if the tidal model is only forced by diurnal heating rates. This indicates that an important part of the tidal signal is forced directly by GWs via their momentum and buoyancy deposition. In general, the effect of horizontal GW propagation and the GW response to horizontal large-scale flow gradients is rather observed in nonmigrating than in migrating tidal components.

  5. Trace Elements in Ovaries: Measurement and Physiology.

    PubMed

    Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J

    2016-04-01

    Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary.

  6. Comparison of Organ Dose and Dose Equivalent Using Ray Tracing of Male and Female Voxel Phantoms to Space Flight Phantom Torso Data

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Qualls, Garry D.; Cucinotta, Francis A.

    2008-01-01

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  7. Study on trace elements behaviour in cancerous and healthy tissues of colon, breast and stomach: Total reflection X-ray fluorescence applications

    NASA Astrophysics Data System (ADS)

    Magalhães, T.; Carvalho, M. L.; Von Bohlen, A.; Becker, M.

    2010-06-01

    In this work Total-reflection X-ray fluorescence (TXRF) was used to analyse healthy and cancerous tissues of the same individual along several contiguous thin sections of each tissue. Thirty two samples (16 pairs) of breast tissue, 30 samples (15 pairs) of intestine tissue and 10 samples (5 pairs) of stomach tissue were analysed. The samples were obtained in Civil Hospitals of Germany (Dortmund) and Portugal (Lisbon). The elemental distribution of P, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr and Pb in these samples was studied. Descriptive statistics based on bar graphics and hypotheses tests and also an automatic classification based on hierarchical grouping analysis was used for the several analysed tissues. It was shown that the behaviour of the elements is tissue dependent. Some elements, like P and K exhibit the same behaviour in all the analysed tissue types. They have increased concentrations in all cancerous tissues. Unlike, other elements like Br show completely different behaviour depending on the tissue: similar concentration in healthy and cancerous stomach, decreased levels in colon cancerous tissues and enhanced concentrations in breast was observed. Moreover cancer tissues present decreased Se concentrations on colon and increased on breast.

  8. Ab Initio Molecular Dynamics of Uranium Incorporated in Goethite (α-FeOOH): Interpretation of X-ray Absorption Spectroscopy of Trace Polyvalent Metals.

    PubMed

    Kerisit, Sebastien; Bylaska, Eric J; Massey, Michael S; McBriarty, Martin E; Ilton, Eugene S

    2016-11-21

    Incorporation of economically or environmentally consequential polyvalent metals into iron (oxyhydr)oxides has applications in environmental chemistry, remediation, and materials science. A primary tool for characterizing the local coordination environment of such metals, and therefore building models to predict their behavior, is extended X-ray absorption fine structure spectroscopy (EXAFS). Accurate structural information can be lacking yet is required to constrain and inform data interpretation. In this regard, ab initio molecular dynamics (AIMD) was used to calculate the local coordination environment of minor amounts of U incorporated in the structure of goethite (α-FeOOH). U oxidation states (VI, V, and IV) and charge compensation schemes were varied. Simulated trajectories were used to calculate the U LIII-edge EXAFS function and fit experimental EXAFS data for U incorporated into goethite under reducing conditions. Calculations that closely matched the U EXAFS of the well-characterized mineral uraninite (UO2), and constrained the S0(2) parameter to be 0.909, validated the approach. The results for the U-goethite system indicated that U(V) substituted for structural Fe(III) in octahedral uranate coordination. Charge balance was achieved by the loss of one structural proton coupled to addition of one electron into the solid (-1 H(+), +1 e(-)). The ability of AIMD to model higher energy states thermally accessible at room temperature is particularly relevant for protonated systems such as goethite, where proton transfers between adjacent octahedra had a dramatic effect on the calculated EXAFS. Vibrational effects as a function of temperature were also estimated using AIMD, allowing separate quantification of thermal and configurational disorder. In summary, coupling AIMD structural modeling and EXAFS experiments enables modeling of the redox behavior of polyvalent metals that are incorporated in conductive materials such as iron (oxyhydr)oxides, with

  9. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    SciTech Connect

    Menten, Martin J. Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2015-12-15

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  10. Improving the quality of reconstructed X-ray CT images of polymer gel dosimeters: zero-scan coupled with adaptive mean filtering.

    PubMed

    Kakakhel, M B; Jirasek, A; Johnston, H; Kairn, T; Trapp, J V

    2017-03-01

    This study evaluated the feasibility of combining the 'zero-scan' (ZS) X-ray computed tomography (CT) based polymer gel dosimeter (PGD) readout with adaptive mean (AM) filtering for improving the signal to noise ratio (SNR), and to compare these results with available average scan (AS) X-ray CT readout techniques. NIPAM PGD were manufactured, irradiated with 6 MV photons, CT imaged and processed in Matlab. AM filter for two iterations, with 3 × 3 and 5 × 5 pixels (kernel size), was used in two scenarios (a) the CT images were subjected to AM filtering (pre-processing) and these were further employed to generate AS and ZS gel images, and (b) the AS and ZS images were first reconstructed from the CT images and then AM filtering was carried out (post-processing). SNR was computed in an ROI of 30 × 30 for different pre and post processing cases. Results showed that the ZS technique combined with AM filtering resulted in improved SNR. Using the previously-recommended 25 images for reconstruction the ZS pre-processed protocol can give an increase of 44% and 80% in SNR for 3 × 3 and 5 × 5 kernel sizes respectively. However, post processing using both techniques and filter sizes introduced blur and a reduction in the spatial resolution. Based on this work, it is possible to recommend that the ZS method may be combined with pre-processed AM filtering using appropriate kernel size, to produce a large increase in the SNR of the reconstructed PGD images.

  11. Low-mAs X-ray CT image reconstruction by adaptive-weighted TV-constrained penalized re-weighted least-squares

    PubMed Central

    Liu, Yan; Ma, Jianhua; Zhang, Hao; Wang, Jing; Liang, Zhengrong

    2014-01-01

    Background The negative effects of X-ray exposure, such as inducing genetic and cancerous diseases, has arisen more attentions. Objective This paper aims to investigate a penalized re-weighted least-square (PRWLS) strategy for low-mAs X-ray computed tomography image reconstruction by incorporating an adaptive weighted total variation (AwTV) penalty term and a noise variance model of projection data. Methods An AwTV penalty is introduced in the objective function by considering both piecewise constant property and local nearby intensity similarity of the desired image. Furthermore, the weight of data fidelity term in the objective function is determined by our recent study on modeling variance estimation of projection data in the presence of electronic background noise. Results The presented AwTV-PRWLS algorithm can achieve the highest full-width-at-half-maximum (FWHM) measurement, for data conditions of (1) full-view 10mA acquisition and (2) sparse-view 80mA acquisition. In comparison between the AwTV/TV-PRWLS strategies and the previous reported AwTV/TV-projection onto convex sets (AwTV/TV-POCS) approaches, the former can gain in terms of FWHM for data condition (1), but cannot gain for the data condition (2). Conclusions In the case of full-view 10mA projection data, the presented AwTV-PRWLS shows potential improvement. However, in the case of sparse-view 80mA projection data, the AwTV/TV-POCS shows advantage over the PRWLS strategies. PMID:25080113

  12. Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  13. Parametric Trace Slicing

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  14. Optical and control modeling for adaptive beam-combining experiments

    SciTech Connect

    Gruetzner, J.K.; Tucker, S.D.; Neal, D.R.; Bentley, A.E.; Simmons-Potter, K.

    1995-08-01

    The development of modeling algorithms for adaptive optics systems is important for evaluating both performance and design parameters prior to system construction. Two of the most critical subsystems to be modeled are the binary optic design and the adaptive control system. Since these two are intimately related, it is beneficial to model them simultaneously. Optic modeling techniques have some significant limitations. Diffraction effects directly limit the utility of geometrical ray-tracing models, and transform techniques such as the fast fourier transform can be both cumbersome and memory intensive. The authors have developed a hybrid system incorporating elements of both ray-tracing and fourier transform techniques. In this paper they present an analytical model of wavefront propagation through a binary optic lens system developed and implemented at Sandia. This model is unique in that it solves the transfer function for each portion of a diffractive optic analytically. The overall performance is obtained by a linear superposition of each result. The model has been successfully used in the design of a wide range of binary optics, including an adaptive optic for a beam combining system consisting of an array of rectangular mirrors, each controllable in tip/tilt and piston. Wavefront sensing and the control models for a beam combining system have been integrated and used to predict overall systems performance. Applicability of the model for design purposes is demonstrated with several lens designs through a comparison of model predictions with actual adaptive optics results.

  15. A General Purpose Ionospheric Ray Tracing Procedure

    DTIC Science & Technology

    1993-08-01

    PUBUC RELEASE UNCLASSIFIED i IIt ii 11 UNCLASSIFIED DST0O A U S T R A L I A SURVEILLANCE RESEARCH LABORATORY ZDMC QUAIrrY High Frequency Radar ...tol = tolerance (Kms) at each step of raytracing (a value of * * l.d-6 is sufficient in most cases) * * CHARACTER * * cha - ’y’ if magnetic fields...Director, Surveillance Research Laboratory 1 Chief High Frequency Radar Division 1 Research Leader, Jindalee Operational Radar Network 1 Head, Radar

  16. Tracing the X-Ray Trail

    MedlinePlus

    ... que firme un formulario de liberación si sus estudios de imagen recibe una petición películas se encuentran en otro establecimiento. de su médico, especificando el tipo de examen necesario, la razón para el examen ...

  17. Comparison of Ray Tracing through Ionospheric Models

    DTIC Science & Technology

    2006-03-01

    Frequency- and Electron Density-Dependence of Index of Refraction......................... 11 2.5. A Real-Time Ionogram ...shown in the ionogram in Figure 2.5. An ionogram is generated by an ionosonde, which transmits and records the echoes from vertically-aimed, high...altitude versus 12 frequency is shown in figure 2.5 as the lowest curve spanning the ionogram and increasing from left to right. Frequency, MHz

  18. Adaptation of a clustered lumpy background model for task-based image quality assessment in x-ray phase-contrast mammography

    PubMed Central

    Zysk, Adam M.; Brankov, Jovan G.; Wernick, Miles N.; Anastasio, Mark A.

    2012-01-01

    Purpose: Since the introduction of clinical x-ray phase-contrast mammography (PCM), a technique that exploits refractive-index variations to create edge enhancement at tissue boundaries, a number of optimization studies employing physical image-quality metrics have been performed. Ideally, task-based assessment of PCM would have been conducted with human readers. These studies have been limited, however, in part due to the large parameter-space of PCM system configurations and the difficulty of employing expert readers for large-scale studies. It has been proposed that numerical observers can be used to approximate the statistical performance of human readers, thus enabling the study of task-based performance over a large parameter-space. Methods: Methods are presented for task-based image quality assessment of PCM images with a numerical observer, the most significant of which is an adapted lumpy background from the conventional mammography literature that accounts for the unique wavefield propagation physics of PCM image formation and will be used with a numerical observer to assess image quality. These methods are demonstrated by performing a PCM task-based image quality study using a numerical observer. This study employs a signal-known-exactly, background-known-statistically Bayesian ideal observer method to assess the detectability of a calcification object in PCM images when the anode spot size and calcification diameter are varied. Results: The first realistic model for the structured background in PCM images has been introduced. A numerical study demonstrating the use of this background model has compared PCM and conventional mammography detection of calcification objects. The study data confirm the strong PCM calcification detectability dependence on anode spot size. These data can be used to balance the trade-off between enhanced image quality and the potential for motion artifacts that comes with use of a reduced spot size and increased exposure time

  19. Adaptive CT scanning system

    SciTech Connect

    Sampayan, Stephen E.

    2016-11-22

    Apparatus, systems, and methods that provide an X-ray interrogation system having a plurality of stationary X-ray point sources arranged to substantially encircle an area or space to be interrogated. A plurality of stationary detectors are arranged to substantially encircle the area or space to be interrogated, A controller is adapted to control the stationary X-ray point sources to emit X-rays one at a time, and to control the stationary detectors to detect the X-rays emitted by the stationary X-ray point sources.

  20. Crystallization and X-ray Crystallographic Analysis of the Adhesive SpaC Pilin Subunit in the SpaCBA Pilus of Gut-adapted Lactobacillus rhamnosus GG.

    PubMed

    Kant, Abhiruchi; von Ossowski, Ingemar; Palva, Airi; Krishnan, Vengadesan

    2016-01-01

    Gram-positive Lactobacillus rhamnosus GG, a gut-adapted commensalic (and probiotic) strain, is known to express sortase-assembled pili on its cell surface. These SpaCBA-called pili consist of three different types of building blocks; the SpaA backbone-pilin subunit and the SpaB and SpaC ancillary pilins. SpaC is a relatively large (~90kDa) multi-domain fimbrial adhesin, and while it is located primarily at the SpaCBA pilus tip, occasionally, it can also be detected throughout the length of pilus backbone. Functionally, SpaC mainly accounts for SpaCBA pilus-mediated interactions with intestinal mucus, collagen, and human gut epithelial cells. Moreover, SpaC adhesiveness is also perceived to have a causal relationship with SpaCBA pilus-induced host-cell immune responses. In order to improve the mechanistic understanding of SpaC and its adhesive properties by structural investigation, we purified and successfully crystallized a recombinant construct of the near full-length SpaC protein (residues 36-856) in the presence of magnesium ions. X-ray diffraction data were collected to 2.6 Å resolution. The SpaC crystal belongs to the space group P21212 with unit cell parameters a = 116.5, b = 128.3, c = 136.5 Å and contains two molecules in the asymmetric unit. Presence of conserved metal ion-dependent adhesion site containing von Willebrand factor type A domain suggests its likely role in the function of SpaC.

  1. A Frequency Dependent Ray Theory

    DTIC Science & Technology

    1988-03-28

    THE UNBOUNDED HOMOGENEOUS MEDIUM CASE 27 C. THE LINEAR SOUND SPEED CASE 28 D. A SMOOTH CAUSTIC SYSTEM 29 1. Classical ray analysis of the Kornilitsin...consequence of the exact ray equation being first order is that eigenrays for arbitrary points can often be found by tracing the ray backwards from an...tangent to the ray path is unique, which in turn forces us to conclude that only one ray passes through each point r. There is exactly one eigenray

  2. Biological trace element measurements using synchrotron radiation

    SciTech Connect

    Giauque, R.D.; Jaklevic, J.M.; Thompson, A.C.

    1985-07-01

    The feasibility of performing x-ray fluorescence trace element determinations at concentrations substantially below the ppM level for biological materials is demonstrated. Conditions for achieving optimum sensitivity were ascertained. Results achieved for five standard reference materials were, in most cases, in excellent agreement with listed values. Minimum detectable limits of 20 ppM were measured for most elements.

  3. Adaptive hormetic response of pre-exposure of mouse brain with low-dose 12C 6+ ion or 60Co γ-ray on growth hormone (GH) and body weight induced by subsequent high-dose irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Xie, Yi; Zhou, Qingming; Liu, Bing; Li, Wenjian; Li, Xiaoda; Duan, Xin; Yuan, Zhigang; Zhou, Guangming; Min, Fengling

    2006-01-01

    The brain of the Kun-Ming strain mice were irradiated with 0.05 Gy of 12C 6+ ion or 60Co γ-ray as the pre-exposure dose, and were then irradiated with 2 Gy of 12C 6+ ion or 60Co γ-ray as challenging irradiation dose at 4 h after per-exposure. Body weight and serum growth hormone (GH) concentration were measured at 35th day after irradiation. The results showed that irradiation of mouse brain with 2 Gy of 12C 6+ ion or 60Co γ-ray significantly diminished mouse body weight and level of serum GH. The relative biological effectiveness values of a 2 Gy dose of 12C 6+ ion calculated with respect to 60Co γ-ray were 1.47 and 1.34 for body weight and serum GH concentration, respectively. Pre-exposure with a low-dose (0.05 Gy) of 12C 6+ ion or 60Co γ-ray significantly alleviated reductions of mouse body weight and level of serum GH induced by a subsequent high-dose (2 Gy) irradiation. The data suggested that low-dose ionizing irradiation can induce adaptive hormetic responses to the harmful effects of pituitary by subsequent high-dose exposure.

  4. Quantum heat traces

    NASA Astrophysics Data System (ADS)

    Avramidi, Ivan G.

    2017-02-01

    We study new invariants of elliptic partial differential operators acting on sections of a vector bundle over a closed Riemannian manifold that we call the relativistic heat trace and the quantum heat traces. We obtain some reduction formulas expressing these new invariants in terms of some integral transforms of the usual classical heat trace and compute the asymptotics of these invariants. The coefficients of these asymptotic expansion are determined by the usual heat trace coefficients (which are locally computable) as well as by some new global invariants.

  5. [Role of gravitation-dependent systems in visual tracing].

    PubMed

    Kornilova, L N

    2003-03-01

    In 31 astronauts under conditions of free falling, when the visual functions proper were preserved, the precision and speedy parameters of all the forms of visual tracing (saccades, smooth tracing) became worse, and in a number of cases a complete disintegration of the smooth tracing reflex occurred as well as a 2-fold and greater enhancement of the time for fixing the stare at a target. In the beginning of adaptation to altered gravitation conditions, a transition of the smooth visual tracing into the strategy of saccadic approximation, occurs. These disorders were shown to be due to a vestibular deprivation.

  6. A low, adaptive dose of gamma-rays reduced the number and altered the spectrum of S1- mutants in human-hamster hybrid AL cells

    NASA Technical Reports Server (NTRS)

    Ueno, A. M.; Vannais, D. B.; Gustafson, D. L.; Wong, J. C.; Waldren, C. A.

    1996-01-01

    We examined the effects of a low, adaptive dose of 137Cs-gamma-irradiation (0.04 Gy) on the number and kinds of mutants induced in AL human-hamster hybrid cells by a later challenge dose of 4 Gy. The yield of S1- mutants was significantly less (by 53%) after exposure to both the adaptive and challenge doses compared to the challenge dose alone. The yield of hprt- mutants was similarly decreased. Incubation with cycloheximide (CX) or 3-aminobenzamide largely negated the decrease in mutant yield. The adaptive dose did not perturb the cell cycle, was not cytotoxic, and did not of itself increase the mutant yield above background. The adaptive dose did, however, alter the spectrum of S1- mutants from populations exposed only to the adaptive dose, as well as affecting the spectrum of S1- mutants generated by the challenge dose. The major change in both cases was a significant increase in the proportion of complex mutations compared to small mutations and simple deletions.

  7. Microwave and optical ray geometry

    NASA Astrophysics Data System (ADS)

    Cornbleet, S.

    The laws of refraction and reflection are examined, and the zero-distance phase front is discussed, taking into account aspects of definition and general derivation, refraction in a circular interface, reflection in a circle, reflection in a general curve, geometrical constructions, and caustic approximations. Other subjects explored are related to the inversion theorem of Damien, the mechanical description of optical surfaces, ray-tracing in nonuniform media, rays in linear and cylindrical media, rays in spherical and axisymmetric media, geodesics, rays and trajectories, curves and their formulae, derived curves, applications of Abel's integral, and the radiation patterns of Luneburg lenses. Attention is given to a geometrical method of optical design, lens bending, the general two-surface reflector system, the ray-tracing equations, expansions of the ray equations, transformations of the spherical lenses, and rays in an angular variable medium.

  8. Trace Elements and Health

    ERIC Educational Resources Information Center

    Pettyjohn, Wayne A.

    1972-01-01

    Summarizes the effects of arsenic, lead, zinc, mercury, and cadmium on human health, indicates the sources of the elements in water, and considers the possibility of students in high schools analyzing water for trace amounts of the elements. (AL)

  9. Trace Organic Analysis

    ERIC Educational Resources Information Center

    Ember, Lois R.

    1978-01-01

    Trace organic analysis (TOA) is seen as a more useful way to quantify environmental pollutants. Current practices and future trends are discussed in detail. Seven steps in TOA are identified: collection, storage, extraction, concentration, isolation, identification, and quantification. (MA)

  10. SMEAT atmosphere trace contaminants.

    NASA Technical Reports Server (NTRS)

    Schornick, J. L.; Heinrich, C. T.; Garcia, G. S., Jr.; Verostko, C. E.

    1973-01-01

    The atmosphere trace contaminant analysis support provided for the Skylab Medical Experiments Altitude Test (SMEAT) which was conducted from July 26 through September 20, 1972, at the JSC Crew Systems Division facility is discussed. Sample acquisition techniques and analytical instrumentation methodology utilized for identification and quantification of the trace contaminants are described. Emphasis is placed on the contaminants found, their occurrence patterns, and possible sources.

  11. TraceContract

    NASA Technical Reports Server (NTRS)

    Kavelund, Klaus; Barringer, Howard

    2012-01-01

    TraceContract is an API (Application Programming Interface) for trace analysis. A trace is a sequence of events, and can, for example, be generated by a running program, instrumented appropriately to generate events. An event can be any data object. An example of a trace is a log file containing events that a programmer has found important to record during a program execution. Trace - Contract takes as input such a trace together with a specification formulated using the API and reports on any violations of the specification, potentially calling code (reactions) to be executed when violations are detected. The software is developed as an internal DSL (Domain Specific Language) in the Scala programming language. Scala is a relatively new programming language that is specifically convenient for defining such internal DSLs due to a number of language characteristics. This includes Scala s elegant combination of object-oriented and functional programming, a succinct notation, and an advanced type system. The DSL offers a combination of data-parameterized state machines and temporal logic, which is novel. As an extension of Scala, it is a very expressive and convenient log file analysis framework.

  12. Trace elements in dialysis.

    PubMed

    Filler, Guido; Felder, Sarah

    2014-08-01

    In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.

  13. Standardization of (55)Fe by tracing method.

    PubMed

    Koskinas, M F; Pires, C A; Yamazaki, I M; Silva, E A; Dias, M S

    2008-01-01

    This work describes the procedure followed by the Laboratório de Metrologia Nuclear (LMN) for the standardization of (55)Fe by the tracing method. This technique was applied using two radionuclides, which decay by the electron capture process followed by a prompt gamma-ray, namely (51)Cr and (54)Mn, as tracers. The calibration was performed in a 4pibeta-gamma coincidence system. The efficiency was obtained by selecting a gamma-ray window set at the 320keV total absorption peak for (51)Cr and at 834keV for (54)Mn.

  14. Trace Fossil Analysis

    NASA Astrophysics Data System (ADS)

    Hasiotis, Stephen T.

    2009-05-01

    Today, the study of trace fossils—ichnology—is an important subdiscipline of geology at the interface of paleontology and sedimentology, mostly because of the efforts of Adolf Seilacher. His ability to synthesize various aspects of ichnology and produce a hierarchy of marine ichna and sedimentary facies has made ichnology useful worldwide in interpreting paleodiversity, rates of sedimentation, oxygenation of bottom water and sediment pore water, and depositional energy. Seilacher's book Trace Fossil Analysis provides a glimpse into the mind, methodology, and insights of the father of modern ichnology, generated from his course notes as a professor and a guest lecturer. The title sounds misleading—readers looking for up-to-date principles and approaches to trace fossil analysis in marine and continental strata will be disappointed. In his preface, however, Seilacher clearly gives direction for the use of his text: “This is a course book—meaning that it is intended to confer not knowledge, but skill.” Thus, it is not meant as a total compilation of all trace fossils, ichnotaxonomy, ichnological interpretations, applications, or the most relevant and up-to-date references. Rather, it takes the reader on a personal journey, explaining how trace fossils are understood in the context of their three-dimensional (3-D) morphology and sedimentary facies.

  15. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: Tracing the evolution of AGN feedback in clusters of galaxies out to z = 1.2

    DOE PAGES

    Hlavacek-Larrondo, J.; McDonald, M.; Benson, B. A.; ...

    2015-05-18

    X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). Here, we report on a survey for X-ray cavities in 83 massive, high-redshift (more » $$0.4\\lt z\\lt 1.2$$) clusters of galaxies selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. Based on Chandra X-ray images, we find a total of six clusters having symmetric pairs of surface brightness depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium (ICM). Furthermore, the majority of these detections are of relatively low significance and require deeper follow-up data in order to be confirmed. Further, this search will miss small (<10 kpc) X-ray cavities that are unresolved by Chandra at high ($$z\\gtrsim 0.5$$) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in BCGs has remained unchanged for over half of the age of the universe ($$\\gt 7$$ Gyr at $$z\\sim 0.8$$). On average, the detected X-ray cavities have powers of $$(0.8-5)\\times {{10}^{45}}\\ {\\rm erg}\\ {{{\\rm s}}^{-1}}$$, enthalpies of $$(3-6)\\times {{10}^{59}}\\ {\\rm erg}$$, and radii of ~17 kpc. Integrating over 7 Gyr, we find that the supermassive black holes in BCGs may have accreted 108 to several $${{10}^{9}}\\;{{M}_{\\odot }}$$ of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high redshift may inject an excess heat of 0.1–1.0 keV per particle into the hot ICM above and beyond the energy needed to offset cooling. Though our result needs to be confirmed, we note that the magnitude of excess heating is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess entropy in hot atmospheres.« less

  16. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: Tracing the evolution of AGN feedback in clusters of galaxies out to z = 1.2

    SciTech Connect

    Hlavacek-Larrondo, J.; McDonald, M.; Benson, B. A.; Forman, W. R.; Allen, S. W.; Bleem, L. E.; Ashby, M. L. N.; Bocquet, S.; Brodwin, M.; Dietrich, J. P.; Jones, C.; Liu, J.; Reichardt, C. L.; Saliwanchik, B. R.; Saro, A.; Schrabback, T.; Song, J.; Stalder, B.; Vikhlinin, A.; Zenteno, A.

    2015-05-18

    X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). Here, we report on a survey for X-ray cavities in 83 massive, high-redshift ($0.4\\lt z\\lt 1.2$) clusters of galaxies selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. Based on Chandra X-ray images, we find a total of six clusters having symmetric pairs of surface brightness depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium (ICM). Furthermore, the majority of these detections are of relatively low significance and require deeper follow-up data in order to be confirmed. Further, this search will miss small (<10 kpc) X-ray cavities that are unresolved by Chandra at high ($z\\gtrsim 0.5$) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in BCGs has remained unchanged for over half of the age of the universe ($\\gt 7$ Gyr at $z\\sim 0.8$). On average, the detected X-ray cavities have powers of $(0.8-5)\\times {{10}^{45}}\\ {\\rm erg}\\ {{{\\rm s}}^{-1}}$, enthalpies of $(3-6)\\times {{10}^{59}}\\ {\\rm erg}$, and radii of ~17 kpc. Integrating over 7 Gyr, we find that the supermassive black holes in BCGs may have accreted 108 to several ${{10}^{9}}\\;{{M}_{\\odot }}$ of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high redshift may inject an excess heat of 0.1–1.0 keV per particle into the hot ICM above and beyond the energy needed to offset cooling. Though our result needs to be confirmed, we note that the magnitude of excess heating is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess entropy in hot atmospheres.

  17. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies. Tracing the evolution of AGN feedback in clusters of galaxies out to z = 1.2

    SciTech Connect

    Hlavacek-Larrondo, J.; McDonald, M.; Benson, B. A.; Forman, W. R.; Allen, S. W.; Bleem, L. E.; Ashby, M. L. N.; Bocquet, S.; Brodwin, M.; Dietrich, J. P.; Jones, C.; Liu, J.; Reichardt, C. L.; Saliwanchik, B. R.; Saro, A.; Schrabback, T.; Song, J.; Stalder, B.; Vikhlinin, A.; Zenteno, A.

    2015-05-18

    X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). We report on a survey for X-ray cavities in 83 massive, high-redshift ($0.4\\lt z\\lt 1.2$) clusters of galaxies selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. Based on Chandra X-ray images, we find a total of six clusters having symmetric pairs of surface brightness depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium (ICM). The majority of these detections are of relatively low significance and require deeper follow-up data in order to be confirmed. Further, this search will miss small (<10 kpc) X-ray cavities that are unresolved by Chandra at high ($z\\gtrsim 0.5$) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in BCGs has remained unchanged for over half of the age of the universe ($\\gt 7$ Gyr at $z\\sim 0.8$). On average, the detected X-ray cavities have powers of $(0.8-5)\\times {{10}^{45}}\\ {\\rm erg}\\ {{{\\rm s}}^{-1}}$, enthalpies of $(3-6)\\times {{10}^{59}}\\ {\\rm erg}$, and radii of ~17 kpc. Integrating over 7 Gyr, we find that the supermassive black holes in BCGs may have accreted 108 to several ${{10}^{9}}\\;{{M}_{\\odot }}$ of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high redshift may inject an excess heat of 0.1–1.0 keV per particle into the hot ICM above and beyond the energy needed to offset cooling. Although this result needs to be confirmed, we note that the magnitude of excess heating is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess entropy in hot atmospheres.

  18. SWAT system performance predictions. Project report. [SWAT (Short-Wavelength Adaptive Techniques)

    SciTech Connect

    Parenti, R.R.; Sasiela, R.J.

    1993-03-10

    In the next phase of Lincoln Laboratory's SWAT (Short-Wavelength Adaptive Techniques) program, the performance of a 241-actuator adaptive-optics system will be measured using a variety of synthetic-beacon geometries. As an aid in this experimental investigation, a detailed set of theoretical predictions has also been assembled. The computational tools that have been applied in this study include a numerical approach in which Monte-Carlo ray-trace simulations of accumulated phase error are developed, and an analytical analysis of the expected system behavior. This report describes the basis of these two computational techniques and compares their estimates of overall system performance. Although their regions of applicability tend to be complementary rather than redundant, good agreement is usually obtained when both sets of results can be derived for the same engagement scenario.... Adaptive optics, Phase conjugation, Atmospheric turbulence Synthetic beacon, Laser guide star.

  19. X-ray monitoring optical elements

    SciTech Connect

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  20. Stack Trace Analysis Tool

    SciTech Connect

    2013-02-19

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallell application. STAT uses the MRNet tree based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to from a single call prefix tree. The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence slasses. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.