Sample records for adaptive recursive filters

  1. Adaptable Iterative and Recursive Kalman Filter Schemes

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  2. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    NASA Technical Reports Server (NTRS)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  3. Recursive time-varying filter banks for subband image coding

    NASA Technical Reports Server (NTRS)

    Smith, Mark J. T.; Chung, Wilson C.

    1992-01-01

    Filter banks and wavelet decompositions that employ recursive filters have been considered previously and are recognized for their efficiency in partitioning the frequency spectrum. This paper presents an analysis of a new infinite impulse response (IIR) filter bank in which these computationally efficient filters may be changed adaptively in response to the input. The filter bank is presented and discussed in the context of finite-support signals with the intended application in subband image coding. In the absence of quantization errors, exact reconstruction can be achieved and by the proper choice of an adaptation scheme, it is shown that IIR time-varying filter banks can yield improvement over conventional ones.

  4. Multichannel signal enhancement

    DOEpatents

    Lewis, Paul S.

    1990-01-01

    A mixed adaptive filter is formulated for the signal processing problem where desired a priori signal information is not available. The formulation generates a least squares problem which enables the filter output to be calculated directly from an input data matrix. In one embodiment, a folded processor array enables bidirectional data flow to solve the recursive problem by back substitution without global communications. In another embodiment, a balanced processor array solves the recursive problem by forward elimination through the array. In a particular application to magnetoencephalography, the mixed adaptive filter enables an evoked response to an auditory stimulus to be identified from only a single trial.

  5. Adaptive Fading Memory H∞ Filter Design for Compensation of Delayed Components in Self Powered Flux Detectors

    NASA Astrophysics Data System (ADS)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2015-08-01

    The paper deals with dynamic compensation of delayed Self Powered Flux Detectors (SPFDs) using discrete time H∞ filtering method for improving the response of SPFDs with significant delayed components such as Platinum and Vanadium SPFD. We also present a comparative study between the Linear Matrix Inequality (LMI) based H∞ filtering and Algebraic Riccati Equation (ARE) based Kalman filtering methods with respect to their delay compensation capabilities. Finally an improved recursive H∞ filter based on the adaptive fading memory technique is proposed which provides an improved performance over existing methods. The existing delay compensation algorithms do not account for the rate of change in the signal for determining the filter gain and therefore add significant noise during the delay compensation process. The proposed adaptive fading memory H∞ filter minimizes the overall noise very effectively at the same time keeps the response time at minimum values. The recursive algorithm is easy to implement in real time as compared to the LMI (or ARE) based solutions.

  6. Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering

    NASA Astrophysics Data System (ADS)

    Olivares, A.; Górriz, J. M.; Ramírez, J.; Olivares, G.

    2011-02-01

    Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed.

  7. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.

  8. Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.

    ERIC Educational Resources Information Center

    Butler, Ronald W.

    The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…

  9. Superresolution restoration of an image sequence: adaptive filtering approach.

    PubMed

    Elad, M; Feuer, A

    1999-01-01

    This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented.

  10. Adaptive Identification and Control of Flow-Induced Cavity Oscillations

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cattafesta, L. N.; Ha, C.

    2002-01-01

    Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.

  11. Adaptive Control and Parameter Identification of a Doubly-Fed Induction Generator for Wind Power

    DTIC Science & Technology

    2011-09-01

    Computer Controlled Systems, Theory and Design, Third Edition, Prentice Hall, New Jersey, 1997. [27] R. G. Brown and P. Y.C. Hwang , Introduction to...V n y iT iT , (0.0) with Ts as the sampling interval. From [26], the recursive estimate can be interpreted as a Kalman Filter for the process...by substituting t with n. The recursive equations for the RLS can then be derived from the Kalman filter equations used in [27]: 29 $ $ $ 1 1

  12. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.

  13. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  14. Simultaneous learning and filtering without delusions: a Bayes-optimal combination of Predictive Inference and Adaptive Filtering.

    PubMed

    Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V

    2015-01-01

    Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.

  15. On recursive least-squares filtering algorithms and implementations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hsieh, Shih-Fu

    1990-01-01

    In many real-time signal processing applications, fast and numerically stable algorithms for solving least-squares problems are necessary and important. In particular, under non-stationary conditions, these algorithms must be able to adapt themselves to reflect the changes in the system and take appropriate adjustments to achieve optimum performances. Among existing algorithms, the QR-decomposition (QRD)-based recursive least-squares (RLS) methods have been shown to be useful and effective for adaptive signal processing. In order to increase the speed of processing and achieve high throughput rate, many algorithms are being vectorized and/or pipelined to facilitate high degrees of parallelism. A time-recursive formulation of RLS filtering employing block QRD will be considered first. Several methods, including a new non-continuous windowing scheme based on selectively rejecting contaminated data, were investigated for adaptive processing. Based on systolic triarrays, many other forms of systolic arrays are shown to be capable of implementing different algorithms. Various updating and downdating systolic algorithms and architectures for RLS filtering are examined and compared in details, which include Householder reflector, Gram-Schmidt procedure, and Givens rotation. A unified approach encompassing existing square-root-free algorithms is also proposed. For the sinusoidal spectrum estimation problem, a judicious method of separating the noise from the signal is of great interest. Various truncated QR methods are proposed for this purpose and compared to the truncated SVD method. Computer simulations provided for detailed comparisons show the effectiveness of these methods. This thesis deals with fundamental issues of numerical stability, computational efficiency, adaptivity, and VLSI implementation for the RLS filtering problems. In all, various new and modified algorithms and architectures are proposed and analyzed; the significance of any of the new method depends crucially on specific application.

  16. Motion adaptive Kalman filter for super-resolution

    NASA Astrophysics Data System (ADS)

    Richter, Martin; Nasse, Fabian; Schröder, Hartmut

    2011-01-01

    Superresolution is a sophisticated strategy to enhance image quality of both low and high resolution video, performing tasks like artifact reduction, scaling and sharpness enhancement in one algorithm, all of them reconstructing high frequency components (above Nyquist frequency) in some way. Especially recursive superresolution algorithms can fulfill high quality aspects because they control the video output using a feed-back loop and adapt the result in the next iteration. In addition to excellent output quality, temporal recursive methods are very hardware efficient and therefore even attractive for real-time video processing. A very promising approach is the utilization of Kalman filters as proposed by Farsiu et al. Reliable motion estimation is crucial for the performance of superresolution. Therefore, robust global motion models are mainly used, but this also limits the application of superresolution algorithm. Thus, handling sequences with complex object motion is essential for a wider field of application. Hence, this paper proposes improvements by extending the Kalman filter approach using motion adaptive variance estimation and segmentation techniques. Experiments confirm the potential of our proposal for ideal and real video sequences with complex motion and further compare its performance to state-of-the-art methods like trainable filters.

  17. Adaptive filtering of GOCE-derived gravity gradients of the disturbing potential in the context of the space-wise approach

    NASA Astrophysics Data System (ADS)

    Piretzidis, Dimitrios; Sideris, Michael G.

    2017-09-01

    Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63-84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10-30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be connected to and employed in the first computational steps of the space-wise approach, where a time-wise Wiener filter is applied at the first stage of GOCE gravity gradient filtering. The results of this work can be extended to using other adaptive filtering algorithms, such as the recursive least-squares and recursive least-squares lattice filters.

  18. CCD filter and transform techniques for interference excision

    NASA Technical Reports Server (NTRS)

    Borsuk, G. M.; Dewitt, R. N.

    1976-01-01

    The theoretical and some experimental results of a study aimed at applying CCD filter and transform techniques to the problem of interference excision within communications channels were presented. Adaptive noise (interference) suppression was achieved by the modification of received signals such that they were orthogonal to the recently measured noise field. CCD techniques were examined to develop real-time noise excision processing. They were recursive filters, circulating filter banks, transversal filter banks, an optical implementation of the chirp Z transform, and a CCD analog FFT.

  19. On the role of dimensionality and sample size for unstructured and structured covariance matrix estimation

    NASA Technical Reports Server (NTRS)

    Morgera, S. D.; Cooper, D. B.

    1976-01-01

    The experimental observation that a surprisingly small sample size vis-a-vis dimension is needed to achieve good signal-to-interference ratio (SIR) performance with an adaptive predetection filter is explained. The adaptive filter requires estimates as obtained by a recursive stochastic algorithm of the inverse of the filter input data covariance matrix. The SIR performance with sample size is compared for the situations where the covariance matrix estimates are of unstructured (generalized) form and of structured (finite Toeplitz) form; the latter case is consistent with weak stationarity of the input data stochastic process.

  20. Experiments with recursive estimation in astronomical image processing

    NASA Technical Reports Server (NTRS)

    Busko, I.

    1992-01-01

    Recursive estimation concepts were applied to image enhancement problems since the 70's. However, very few applications in the particular area of astronomical image processing are known. These concepts were derived, for 2-dimensional images, from the well-known theory of Kalman filtering in one dimension. The historic reasons for application of these techniques to digital images are related to the images' scanned nature, in which the temporal output of a scanner device can be processed on-line by techniques borrowed directly from 1-dimensional recursive signal analysis. However, recursive estimation has particular properties that make it attractive even in modern days, when big computer memories make the full scanned image available to the processor at any given time. One particularly important aspect is the ability of recursive techniques to deal with non-stationary phenomena, that is, phenomena which have their statistical properties variable in time (or position in a 2-D image). Many image processing methods make underlying stationary assumptions either for the stochastic field being imaged, for the imaging system properties, or both. They will underperform, or even fail, when applied to images that deviate significantly from stationarity. Recursive methods, on the contrary, make it feasible to perform adaptive processing, that is, to process the image by a processor with properties tuned to the image's local statistical properties. Recursive estimation can be used to build estimates of images degraded by such phenomena as noise and blur. We show examples of recursive adaptive processing of astronomical images, using several local statistical properties to drive the adaptive processor, as average signal intensity, signal-to-noise and autocorrelation function. Software was developed under IRAF, and as such will be made available to interested users.

  1. Parametric recursive system identification and self-adaptive modeling of the human energy metabolism for adaptive control of fat weight.

    PubMed

    Őri, Zsolt P

    2017-05-01

    A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.

  2. Recursive Implementations of the Consider Filter

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; DSouza, Chris

    2012-01-01

    One method to account for parameters errors in the Kalman filter is to consider their effect in the so-called Schmidt-Kalman filter. This work addresses issues that arise when implementing a consider Kalman filter as a real-time, recursive algorithm. A favorite implementation of the Kalman filter as an onboard navigation subsystem is the UDU formulation. A new way to implement a UDU consider filter is proposed. The non-optimality of the recursive consider filter is also analyzed, and a modified algorithm is proposed to overcome this limitation.

  3. Seeing the unseen: Complete volcano deformation fields by recursive filtering of satellite radar interferograms

    NASA Astrophysics Data System (ADS)

    Gonzalez, Pablo J.

    2017-04-01

    Automatic interferometric processing of satellite radar data has emerged as a solution to the increasing amount of acquired SAR data. Automatic SAR and InSAR processing ranges from focusing raw echoes to the computation of displacement time series using large stacks of co-registered radar images. However, this type of interferometric processing approach demands the pre-described or adaptive selection of multiple processing parameters. One of the interferometric processing steps that much strongly influences the final results (displacement maps) is the interferometric phase filtering. There are a large number of phase filtering methods, however the "so-called" Goldstein filtering method is the most popular [Goldstein and Werner, 1998; Baran et al., 2003]. The Goldstein filter needs basically two parameters, the size of the window filter and a parameter to indicate the filter smoothing intensity. The modified Goldstein method removes the need to select the smoothing parameter based on the local interferometric coherence level, but still requires to specify the dimension of the filtering window. An optimal filtered phase quality usually requires careful selection of those parameters. Therefore, there is an strong need to develop automatic filtering methods to adapt for automatic processing, while maximizing filtered phase quality. Here, in this paper, I present a recursive adaptive phase filtering algorithm for accurate estimation of differential interferometric ground deformation and local coherence measurements. The proposed filter is based upon the modified Goldstein filter [Baran et al., 2003]. This filtering method improves the quality of the interferograms by performing a recursive iteration using variable (cascade) kernel sizes, and improving the coherence estimation by locally defringing the interferometric phase. The method has been tested using simulations and real cases relevant to the characteristics of the Sentinel-1 mission. Here, I present real examples from C-band interferograms showing strong and weak deformation gradients, with moderate baselines ( 100-200 m) and variable temporal baselines of 70 and 190 days over variable vegetated volcanoes (Mt. Etna, Hawaii and Nyragongo-Nyamulagira). The differential phase of those examples show intense localized volcano deformation and also vast areas of small differential phase variation. The proposed method outperforms the classical Goldstein and modified Goldstein filters by preserving subtle phase variations where the deformation fringe rate is high, and effectively suppressing phase noise in smoothly phase variation regions. Finally, this method also has the additional advantage of not requiring input parameters, except for the maximum filtering kernel size. References: Baran, I., Stewart, M.P., Kampes, B.M., Perski, Z., Lilly, P., (2003) A modification to the Goldstein radar interferogram filter. IEEE Transactions on Geoscience and Remote Sensing, vol. 41, No. 9., doi:10.1109/TGRS.2003.817212 Goldstein, R.M., Werner, C.L. (1998) Radar interferogram filtering for geophysical applications, Geophysical Research Letters, vol. 25, No. 21, 4035-4038, doi:10.1029/1998GL900033

  4. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  5. Adaptive particle filter for robust visual tracking

    NASA Astrophysics Data System (ADS)

    Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai

    2009-10-01

    Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.

  6. A study of the x-ray image quality improvement in the examination of the respiratory system based on the new image processing technique

    NASA Astrophysics Data System (ADS)

    Nagai, Yuichi; Kitagawa, Mayumi; Torii, Jun; Iwase, Takumi; Aso, Tomohiko; Ihara, Kanyu; Fujikawa, Mari; Takeuchi, Yumiko; Suzuki, Katsumi; Ishiguro, Takashi; Hara, Akio

    2014-03-01

    Recently, the double contrast technique in a gastrointestinal examination and the transbronchial lung biopsy in an examination for the respiratory system [1-3] have made a remarkable progress. Especially in the transbronchial lung biopsy, better quality of x-ray fluoroscopic images is requested because this examination is performed under a guidance of x-ray fluoroscopic images. On the other hand, various image processing methods [4] for x-ray fluoroscopic images have been developed as an x-ray system with a flat panel detector [5-7] is widely used. A recursive filtering is an effective method to reduce a random noise in x-ray fluoroscopic images. However it has a limitation for its effectiveness of a noise reduction in case of a moving object exists in x-ray fluoroscopic images because the recursive filtering is a noise reduction method by adding last few images. After recursive filtering a residual signal was produced if a moving object existed in x-ray images, and this residual signal disturbed a smooth procedure of the examinations. To improve this situation, new noise reduction method has been developed. The Adaptive Noise Reduction [ANR] is the brand-new noise reduction technique which can be reduced only a noise regardless of the moving object in x-ray fluoroscopic images. Therefore the ANR is a very suitable noise reduction method for the transbronchial lung biopsy under a guidance of x-ray fluoroscopic images because the residual signal caused of the moving object in x-ray fluoroscopic images is never produced after the ANR. In this paper, we will explain an advantage of the ANR by comparing of a performance between the ANR images and the conventional recursive filtering images.

  7. A combination of spatial and recursive temporal filtering for noise reduction when using region of interest (ROI) fluoroscopy for patient dose reduction in image guided vascular interventions with significant anatomical motion

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Khobragade, P.; Ionita, C.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bioprosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.

  8. Event-based recursive filtering for a class of nonlinear stochastic parameter systems over fading channels

    NASA Astrophysics Data System (ADS)

    Shen, Yuxuan; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.

    2018-07-01

    In this paper, the recursive filtering problem is studied for a class of time-varying nonlinear systems with stochastic parameter matrices. The measurement transmission between the sensor and the filter is conducted through a fading channel characterized by the Rice fading model. An event-based transmission mechanism is adopted to decide whether the sensor measurement should be transmitted to the filter. A recursive filter is designed such that, in the simultaneous presence of the stochastic parameter matrices and fading channels, the filtering error covariance is guaranteed to have an upper bound and such an upper bound is then minimized by appropriately choosing filter gain matrix. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed filtering scheme.

  9. Active impulsive noise control using maximum correntropy with adaptive kernel size

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zhao, Haiquan

    2017-03-01

    The active noise control (ANC) based on the principle of superposition is an attractive method to attenuate the noise signals. However, the impulsive noise in the ANC systems will degrade the performance of the controller. In this paper, a filtered-x recursive maximum correntropy (FxRMC) algorithm is proposed based on the maximum correntropy criterion (MCC) to reduce the effect of outliers. The proposed FxRMC algorithm does not requires any priori information of the noise characteristics and outperforms the filtered-x least mean square (FxLMS) algorithm for impulsive noise. Meanwhile, in order to adjust the kernel size of FxRMC algorithm online, a recursive approach is proposed through taking into account the past estimates of error signals over a sliding window. Simulation and experimental results in the context of active impulsive noise control demonstrate that the proposed algorithms achieve much better performance than the existing algorithms in various noise environments.

  10. Application of recursive approaches to differential orbit correction of near Earth asteroids

    NASA Astrophysics Data System (ADS)

    Dmitriev, Vasily; Lupovka, Valery; Gritsevich, Maria

    2016-10-01

    Comparison of three approaches to the differential orbit correction of celestial bodies was performed: batch least squares fitting, Kalman filter, and recursive least squares filter. The first two techniques are well known and widely used (Montenbruck, O. & Gill, E., 2000). The most attention is paid to the algorithm and details of program realization of recursive least squares filter. The filter's algorithm was derived based on recursive least squares technique that are widely used in data processing applications (Simon, D, 2006). Usage recursive least squares filter, makes possible to process a new set of observational data, without reprocessing data, which has been processed before. Specific feature of such approach is that number of observation in data set may be variable. This feature makes recursive least squares filter more flexible approach compare to batch least squares (process complete set of observations in each iteration) and Kalman filtering (suppose updating state vector on each epoch with measurements).Advantages of proposed approach are demonstrated by processing of real astrometric observations of near Earth asteroids. The case of 2008 TC3 was studied. 2008 TC3 was discovered just before its impact with Earth. There are a many closely spaced observations of 2008 TC3 on the interval between discovering and impact, which creates favorable conditions for usage of recursive approaches. Each of approaches has very similar precision in case of 2008 TC3. At the same time, recursive least squares approaches have much higher performance. Thus, this approach more favorable for orbit fitting of a celestial body, which was detected shortly before the collision or close approach to the Earth.This work was carried out at MIIGAiK and supported by the Russian Science Foundation, Project no. 14-22-00197.References:O. Montenbruck and E. Gill, "Satellite Orbits, Models, Methods and Applications," Springer-Verlag, 2000, pp. 1-369.D. Simon, "Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches",1 edition. Hoboken, N.J.: Wiley-Interscience, 2006.

  11. A Stochastic Total Least Squares Solution of Adaptive Filtering Problem

    PubMed Central

    Ahmad, Noor Atinah

    2014-01-01

    An efficient and computationally linear algorithm is derived for total least squares solution of adaptive filtering problem, when both input and output signals are contaminated by noise. The proposed total least mean squares (TLMS) algorithm is designed by recursively computing an optimal solution of adaptive TLS problem by minimizing instantaneous value of weighted cost function. Convergence analysis of the algorithm is given to show the global convergence of the proposed algorithm, provided that the stepsize parameter is appropriately chosen. The TLMS algorithm is computationally simpler than the other TLS algorithms and demonstrates a better performance as compared with the least mean square (LMS) and normalized least mean square (NLMS) algorithms. It provides minimum mean square deviation by exhibiting better convergence in misalignment for unknown system identification under noisy inputs. PMID:24688412

  12. Adaptive angular-velocity Vold-Kalman filter order tracking - Theoretical basis, numerical implementation and parameter investigation

    NASA Astrophysics Data System (ADS)

    Pan, M.-Ch.; Chu, W.-Ch.; Le, Duc-Do

    2016-12-01

    The paper presents an alternative Vold-Kalman filter order tracking (VKF_OT) method, i.e. adaptive angular-velocity VKF_OT technique, to extract and characterize order components in an adaptive manner for the condition monitoring and fault diagnosis of rotary machinery. The order/spectral waveforms to be tracked can be recursively solved by using Kalman filter based on the one-step state prediction. The paper comprises theoretical derivation of computation scheme, numerical implementation, and parameter investigation. Comparisons of the adaptive VKF_OT scheme with two other ones are performed through processing synthetic signals of designated order components. Processing parameters such as the weighting factor and the correlation matrix of process noise, and data conditions like the sampling frequency, which influence tracking behavior, are explored. The merits such as adaptive processing nature and computation efficiency brought by the proposed scheme are addressed although the computation was performed in off-line conditions. The proposed scheme can simultaneously extract multiple spectral components, and effectively decouple close and crossing orders associated with multi-axial reference rotating speeds.

  13. Cascade and parallel combination (CPC) of adaptive filters for estimating heart rate during intensive physical exercise from photoplethysmographic signal

    PubMed Central

    Islam, Mohammad Tariqul; Tanvir Ahmed, Sk.; Zabir, Ishmam; Shahnaz, Celia

    2018-01-01

    Photoplethysmographic (PPG) signal is getting popularity for monitoring heart rate in wearable devices because of simplicity of construction and low cost of the sensor. The task becomes very difficult due to the presence of various motion artefacts. In this study, an algorithm based on cascade and parallel combination (CPC) of adaptive filters is proposed in order to reduce the effect of motion artefacts. First, preliminary noise reduction is performed by averaging two channel PPG signals. Next in order to reduce the effect of motion artefacts, a cascaded filter structure consisting of three cascaded adaptive filter blocks is developed where three-channel accelerometer signals are used as references to motion artefacts. To further reduce the affect of noise, a scheme based on convex combination of two such cascaded adaptive noise cancelers is introduced, where two widely used adaptive filters namely recursive least squares and least mean squares filters are employed. Heart rates are estimated from the noise reduced PPG signal in spectral domain. Finally, an efficient heart rate tracking algorithm is designed based on the nature of the heart rate variability. The performance of the proposed CPC method is tested on a widely used public database. It is found that the proposed method offers very low estimation error and a smooth heart rate tracking with simple algorithmic approach. PMID:29515812

  14. Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor

    PubMed Central

    Cheong, Hejin; Chae, Eunjung; Lee, Eunsung; Jo, Gwanghyun; Paik, Joonki

    2015-01-01

    This paper presents a fast adaptive image restoration method for removing spatially varying out-of-focus blur of a general imaging sensor. After estimating the parameters of space-variant point-spread-function (PSF) using the derivative in each uniformly blurred region, the proposed method performs spatially adaptive image restoration by selecting the optimal restoration filter according to the estimated blur parameters. Each restoration filter is implemented in the form of a combination of multiple FIR filters, which guarantees the fast image restoration without the need of iterative or recursive processing. Experimental results show that the proposed method outperforms existing space-invariant restoration methods in the sense of both objective and subjective performance measures. The proposed algorithm can be employed to a wide area of image restoration applications, such as mobile imaging devices, robot vision, and satellite image processing. PMID:25569760

  15. Full Gradient Solution to Adaptive Hybrid Control

    NASA Technical Reports Server (NTRS)

    Bean, Jacob; Schiller, Noah H.; Fuller, Chris

    2017-01-01

    This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.

  16. Full Gradient Solution to Adaptive Hybrid Control

    NASA Technical Reports Server (NTRS)

    Bean, Jacob; Schiller, Noah H.; Fuller, Chris

    2016-01-01

    This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered-reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.

  17. Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.

    PubMed

    Hu, Liang; Wang, Zidong; Liu, Xiaohui

    2016-08-01

    In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.

  18. On the design of recursive digital filters

    NASA Technical Reports Server (NTRS)

    Shenoi, K.; Narasimha, M. J.; Peterson, A. M.

    1976-01-01

    A change of variables is described which transforms the problem of designing a recursive digital filter to that of approximation by a ratio of polynomials on a finite interval. Some analytic techniques for the design of low-pass filters are presented, illustrating the use of the transformation. Also considered are methods for the design of phase equalizers.

  19. Multiple-hypothesis multiple-model line tracking

    NASA Astrophysics Data System (ADS)

    Pace, Donald W.; Owen, Mark W.; Cox, Henry

    2000-07-01

    Passive sonar signal processing generally includes tracking of narrowband and/or broadband signature components observed on a Lofargram or on a Bearing-Time-Record (BTR) display. Fielded line tracking approaches to date have been recursive and single-hypthesis-oriented Kalman- or alpha-beta filters, with no mechanism for considering tracking alternatives beyond the most recent scan of measurements. While adaptivity is often built into the filter to handle changing track dynamics, these approaches are still extensions of single target tracking solutions to multiple target tracking environment. This paper describes an application of multiple-hypothesis, multiple target tracking technology to the sonar line tracking problem. A Multiple Hypothesis Line Tracker (MHLT) is developed which retains the recursive minimum-mean-square-error tracking behavior of a Kalman Filter in a maximum-a-posteriori delayed-decision multiple hypothesis context. Multiple line track filter states are developed and maintained using the interacting multiple model (IMM) state representation. Further, the data association and assignment problem is enhanced by considering line attribute information (line bandwidth and SNR) in addition to beam/bearing and frequency fit. MHLT results on real sonar data are presented to demonstrate the benefits of the multiple hypothesis approach. The utility of the system in cluttered environments and particularly in crossing line situations is shown.

  20. Testing the Stability of 2-D Recursive QP, NSHP and General Digital Filters of Second Order

    NASA Astrophysics Data System (ADS)

    Rathinam, Ananthanarayanan; Ramesh, Rengaswamy; Reddy, P. Subbarami; Ramaswami, Ramaswamy

    Several methods for testing stability of first quadrant quarter-plane two dimensional (2-D) recursive digital filters have been suggested in 1970's and 80's. Though Jury's row and column algorithms, row and column concatenation stability tests have been considered as highly efficient mapping methods. They still fall short of accuracy as they need infinite number of steps to conclude about the exact stability of the filters and also the computational time required is enormous. In this paper, we present procedurally very simple algebraic method requiring only two steps when applied to the second order 2-D quarter - plane filter. We extend the same method to the second order Non-Symmetric Half-plane (NSHP) filters. Enough examples are given for both these types of filters as well as some lower order general recursive 2-D digital filters. We applied our method to barely stable or barely unstable filter examples available in the literature and got the same decisions thus showing that our method is accurate enough.

  1. Recursive Algorithms for Real-Time Digital CR-RCn Pulse Shaping

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.

    2011-10-01

    This paper reports on recursive algorithms for real-time implementation of CR-(RC)n filters in digital nuclear spectroscopy systems. The algorithms are derived by calculating the Z-transfer function of the filters for filter orders up to n=4 . The performances of the filters are compared with the performance of the conventional digital trapezoidal filter using a noise generator which separately generates pure series, 1/f and parallel noise. The results of our study enable one to select the optimum digital filter for different noise and rate conditions.

  2. A recursive solution for a fading memory filter derived from Kalman filter theory

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    1986-01-01

    A simple recursive solution for a class of fading memory tracking filters is presented. A fading memory filter provides estimates of filter states based on past measurements, similar to a traditional Kalman filter. Unlike a Kalman filter, an exponentially decaying weight is applied to older measurements, discounting their effect on present state estimates. It is shown that Kalman filters and fading memory filters are closely related solutions to a general least squares estimator problem. Closed form filter transfer functions are derived for a time invariant, steady state, fading memory filter. These can be applied in loop filter implementation of the Deep Space Network (DSN) Advanced Receiver carrier phase locked loop (PLL).

  3. Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, R. E., Jr.

    1987-01-01

    This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.

  4. A hybrid video codec based on extended block sizes, recursive integer transforms, improved interpolation, and flexible motion representation

    NASA Astrophysics Data System (ADS)

    Karczewicz, Marta; Chen, Peisong; Joshi, Rajan; Wang, Xianglin; Chien, Wei-Jung; Panchal, Rahul; Coban, Muhammed; Chong, In Suk; Reznik, Yuriy A.

    2011-01-01

    This paper describes video coding technology proposal submitted by Qualcomm Inc. in response to a joint call for proposal (CfP) issued by ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. Proposed video codec follows a hybrid coding approach based on temporal prediction, followed by transform, quantization, and entropy coding of the residual. Some of its key features are extended block sizes (up to 64x64), recursive integer transforms, single pass switched interpolation filters with offsets (single pass SIFO), mode dependent directional transform (MDDT) for intra-coding, luma and chroma high precision filtering, geometry motion partitioning, adaptive motion vector resolution. It also incorporates internal bit-depth increase (IBDI), and modified quadtree based adaptive loop filtering (QALF). Simulation results are presented for a variety of bit rates, resolutions and coding configurations to demonstrate the high compression efficiency achieved by the proposed video codec at moderate level of encoding and decoding complexity. For random access hierarchical B configuration (HierB), the proposed video codec achieves an average BD-rate reduction of 30.88c/o compared to the H.264/AVC alpha anchor. For low delay hierarchical P (HierP) configuration, the proposed video codec achieves an average BD-rate reduction of 32.96c/o and 48.57c/o, compared to the H.264/AVC beta and gamma anchors, respectively.

  5. Recursive least squares method of regression coefficients estimation as a special case of Kalman filter

    NASA Astrophysics Data System (ADS)

    Borodachev, S. M.

    2016-06-01

    The simple derivation of recursive least squares (RLS) method equations is given as special case of Kalman filter estimation of a constant system state under changing observation conditions. A numerical example illustrates application of RLS to multicollinearity problem.

  6. Adaptive feedforward control of non-minimum phase structural systems

    NASA Astrophysics Data System (ADS)

    Vipperman, J. S.; Burdisso, R. A.

    1995-06-01

    Adaptive feedforward control algorithms have been effectively applied to stationary disturbance rejection. For structural systems, the ideal feedforward compensator is a recursive filter which is a function of the transfer functions between the disturbance and control inputs and the error sensor output. Unfortunately, most control configurations result in a non-minimum phase control path; even a collocated control actuator and error sensor will not necessarily produce a minimum phase control path in the discrete domain. Therefore, the common practice is to choose a suitable approximation of the ideal compensator. In particular, all-zero finite impulse response (FIR) filters are desirable because of their inherent stability for adaptive control approaches. However, for highly resonant systems, large order filters are required for broadband applications. In this work, a control configuration is investigated for controlling non-minimum phase lightly damped structural systems. The control approach uses low order FIR filters as feedforward compensators in a configuration that has one more control actuator than error sensors. The performance of the controller was experimentally evaluated on a simply supported plate under white noise excitation for a two-input, one-output (2I1O) system. The results show excellent error signal reduction, attesting to the effectiveness of the method.

  7. Application of adaptive filters in denoising magnetocardiogram signals

    NASA Astrophysics Data System (ADS)

    Khan, Pathan Fayaz; Patel, Rajesh; Sengottuvel, S.; Saipriya, S.; Swain, Pragyna Parimita; Gireesan, K.

    2017-05-01

    Magnetocardiography (MCG) is the measurement of weak magnetic fields from the heart using Superconducting QUantum Interference Devices (SQUID). Though the measurements are performed inside magnetically shielded rooms (MSR) to reduce external electromagnetic disturbances, interferences which are caused by sources inside the shielded room could not be attenuated. The work presented here reports the application of adaptive filters to denoise MCG signals. Two adaptive noise cancellation approaches namely least mean squared (LMS) algorithm and recursive least squared (RLS) algorithm are applied to denoise MCG signals and the results are compared. It is found that both the algorithms effectively remove noisy wiggles from MCG traces; significantly improving the quality of the cardiac features in MCG traces. The calculated signal-to-noise ratio (SNR) for the denoised MCG traces is found to be slightly higher in the LMS algorithm as compared to the RLS algorithm. The results encourage the use of adaptive techniques to suppress noise due to power line frequency and its harmonics which occur frequently in biomedical measurements.

  8. A fast new algorithm for a robot neurocontroller using inverse QR decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, A.S.; Khemaissia, S.

    2000-01-01

    A new adaptive neural network controller for robots is presented. The controller is based on direct adaptive techniques. Unlike many neural network controllers in the literature, inverse dynamical model evaluation is not required. A numerically robust, computationally efficient processing scheme for neutral network weight estimation is described, namely, the inverse QR decomposition (INVQR). The inverse QR decomposition and a weighted recursive least-squares (WRLS) method for neural network weight estimation is derived using Cholesky factorization of the data matrix. The algorithm that performs the efficient INVQR of the underlying space-time data matrix may be implemented in parallel on a triangular array.more » Furthermore, its systolic architecture is well suited for VLSI implementation. Another important benefit is well suited for VLSI implementation. Another important benefit of the INVQR decomposition is that it solves directly for the time-recursive least-squares filter vector, while avoiding the sequential back-substitution step required by the QR decomposition approaches.« less

  9. The recursive combination filter approach of pre-processing for the estimation of standard deviation of RR series.

    PubMed

    Mishra, Alok; Swati, D

    2015-09-01

    Variation in the interval between the R-R peaks of the electrocardiogram represents the modulation of the cardiac oscillations by the autonomic nervous system. This variation is contaminated by anomalous signals called ectopic beats, artefacts or noise which mask the true behaviour of heart rate variability. In this paper, we have proposed a combination filter of recursive impulse rejection filter and recursive 20% filter, with recursive application and preference of replacement over removal of abnormal beats to improve the pre-processing of the inter-beat intervals. We have tested this novel recursive combinational method with median method replacement to estimate the standard deviation of normal to normal (SDNN) beat intervals of congestive heart failure (CHF) and normal sinus rhythm subjects. This work discusses the improvement in pre-processing over single use of impulse rejection filter and removal of abnormal beats for heart rate variability for the estimation of SDNN and Poncaré plot descriptors (SD1, SD2, and SD1/SD2) in detail. We have found the 22 ms value of SDNN and 36 ms value of SD2 descriptor of Poincaré plot as clinical indicators in discriminating the normal cases from CHF cases. The pre-processing is also useful in calculation of Lyapunov exponent which is a nonlinear index as Lyapunov exponents calculated after proposed pre-processing modified in a way that it start following the notion of less complex behaviour of diseased states.

  10. Geomagnetic modeling by optimal recursive filtering

    NASA Technical Reports Server (NTRS)

    Gibbs, B. P.; Estes, R. H.

    1981-01-01

    The results of a preliminary study to determine the feasibility of using Kalman filter techniques for geomagnetic field modeling are given. Specifically, five separate field models were computed using observatory annual means, satellite, survey and airborne data for the years 1950 to 1976. Each of the individual field models used approximately five years of data. These five models were combined using a recursive information filter (a Kalman filter written in terms of information matrices rather than covariance matrices.) The resulting estimate of the geomagnetic field and its secular variation was propogated four years past the data to the time of the MAGSAT data. The accuracy with which this field model matched the MAGSAT data was evaluated by comparisons with predictions from other pre-MAGSAT field models. The field estimate obtained by recursive estimation was found to be superior to all other models.

  11. Computer simulation results of attitude estimation of earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1976-01-01

    Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter.

  12. Learning from adaptive neural dynamic surface control of strict-feedback systems.

    PubMed

    Wang, Min; Wang, Cong

    2015-06-01

    Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.

  13. A Refinement of the McMillen (1988) Recursive Digital Filter for the Analysis of Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Falocchi, Marco; Giovannini, Lorenzo; Franceschi, Massimiliano de; Zardi, Dino

    2018-05-01

    We present a refinement of the recursive digital filter proposed by McMillen (Boundary-Layer Meteorol 43:231-245, 1988), for separating surface-layer turbulence from low-frequency fluctuations affecting the mean flow, especially over complex terrain. In fact, a straightforward application of the filter causes both an amplitude attenuation and a forward phase shift in the filtered signal. As a consequence turbulence fluctuations, evaluated as the difference between the original series and the filtered one, as well as higher-order moments calculated from them, may be affected by serious inaccuracies. The new algorithm (i) produces a rigorous zero-phase filter, (ii) restores the amplitude of the low-frequency signal, and (iii) corrects all filter-induced signal distortions.

  14. Multi-Target Tracking Using an Improved Gaussian Mixture CPHD Filter.

    PubMed

    Si, Weijian; Wang, Liwei; Qu, Zhiyu

    2016-11-23

    The cardinalized probability hypothesis density (CPHD) filter is an alternative approximation to the full multi-target Bayesian filter for tracking multiple targets. However, although the joint propagation of the posterior intensity and cardinality distribution in its recursion allows more reliable estimates of the target number than the PHD filter, the CPHD filter suffers from the spooky effect where there exists arbitrary PHD mass shifting in the presence of missed detections. To address this issue in the Gaussian mixture (GM) implementation of the CPHD filter, this paper presents an improved GM-CPHD filter, which incorporates a weight redistribution scheme into the filtering process to modify the updated weights of the Gaussian components when missed detections occur. In addition, an efficient gating strategy that can adaptively adjust the gate sizes according to the number of missed detections of each Gaussian component is also presented to further improve the computational efficiency of the proposed filter. Simulation results demonstrate that the proposed method offers favorable performance in terms of both estimation accuracy and robustness to clutter and detection uncertainty over the existing methods.

  15. On optimal infinite impulse response edge detection filters

    NASA Technical Reports Server (NTRS)

    Sarkar, Sudeep; Boyer, Kim L.

    1991-01-01

    The authors outline the design of an optimal, computationally efficient, infinite impulse response edge detection filter. The optimal filter is computed based on Canny's high signal to noise ratio, good localization criteria, and a criterion on the spurious response of the filter to noise. An expression for the width of the filter, which is appropriate for infinite-length filters, is incorporated directly in the expression for spurious responses. The three criteria are maximized using the variational method and nonlinear constrained optimization. The optimal filter parameters are tabulated for various values of the filter performance criteria. A complete methodology for implementing the optimal filter using approximating recursive digital filtering is presented. The approximating recursive digital filter is separable into two linear filters operating in two orthogonal directions. The implementation is very simple and computationally efficient, has a constant time of execution for different sizes of the operator, and is readily amenable to real-time hardware implementation.

  16. Optimal Recursive Digital Filters for Active Bending Stabilization

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2013-01-01

    In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.

  17. Current-mode subthreshold MOS implementation of the Herault-Jutten autoadaptive network

    NASA Astrophysics Data System (ADS)

    Cohen, Marc H.; Andreou, Andreas G.

    1992-05-01

    The translinear circuits in subthreshold MOS technology and current-mode design techniques for the implementation of neuromorphic analog network processing are investigated. The architecture, also known as the Herault-Jutten network, performs an independent component analysis and is essentially a continuous-time recursive linear adaptive filter. Analog I/O interface, weight coefficients, and adaptation blocks are all integrated on the chip. A small network with six neurons and 30 synapses was fabricated in a 2-microns n-well double-polysilicon, double-metal CMOS process. Circuit designs at the transistor level yield area-efficient implementations for neurons, synapses, and the adaptation blocks. The design methodology and constraints as well as test results from the fabricated chips are discussed.

  18. Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm

    PubMed Central

    2015-01-01

    This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168

  19. Interacting multiple model forward filtering and backward smoothing for maneuvering target tracking

    NASA Astrophysics Data System (ADS)

    Nandakumaran, N.; Sutharsan, S.; Tharmarasa, R.; Lang, Tom; McDonald, Mike; Kirubarajan, T.

    2009-08-01

    The Interacting Multiple Model (IMM) estimator has been proven to be effective in tracking agile targets. Smoothing or retrodiction, which uses measurements beyond the current estimation time, provides better estimates of target states. Various methods have been proposed for multiple model smoothing in the literature. In this paper, a new smoothing method, which involves forward filtering followed by backward smoothing while maintaining the fundamental spirit of the IMM, is proposed. The forward filtering is performed using the standard IMM recursion, while the backward smoothing is performed using a novel interacting smoothing recursion. This backward recursion mimics the IMM estimator in the backward direction, where each mode conditioned smoother uses standard Kalman smoothing recursion. Resulting algorithm provides improved but delayed estimates of target states. Simulation studies are performed to demonstrate the improved performance with a maneuvering target scenario. The comparison with existing methods confirms the improved smoothing accuracy. This improvement results from avoiding the augmented state vector used by other algorithms. In addition, the new technique to account for model switching in smoothing is a key in improving the performance.

  20. The Power Plant Operating Data Based on Real-time Digital Filtration Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Ning; Chen, Ya-mi; Wang, Hui-jie

    2018-03-01

    Real-time monitoring of the data of the thermal power plant was the basis of accurate analyzing thermal economy and accurate reconstruction of the operating state. Due to noise interference was inevitable; we need real-time monitoring data filtering to get accurate information of the units and equipment operating data of the thermal power plant. Real-time filtering algorithm couldn’t be used to correct the current data with future data. Compared with traditional filtering algorithm, there were a lot of constraints. First-order lag filtering method and weighted recursive average filtering method could be used for real-time filtering. This paper analyzes the characteristics of the two filtering methods and applications for real-time processing of the positive spin simulation data, and the thermal power plant operating data. The analysis was revealed that the weighted recursive average filtering method applied to the simulation and real-time plant data filtering achieved very good results.

  1. Roll Angle Estimation Using Thermopiles for a Flight Controlled Mortar

    DTIC Science & Technology

    2012-06-01

    Using Xilinx’s System generator, the entire design was implemented at a relatively high level within Malab’s Simulink. This allowed VHDL code to...thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA). These results demonstrate the...accurately estimated by processing the thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA

  2. Signal detection by means of orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Hajdu, C. F.; Dabóczi, T.; Péceli, G.; Zamantzas, C.

    2018-03-01

    Matched filtering is a well-known method frequently used in digital signal processing to detect the presence of a pattern in a signal. In this paper, we suggest a time variant matched filter, which, unlike a regular matched filter, maintains a given alignment between the input signal and the template carrying the pattern, and can be realized recursively. We introduce a method to synchronize the two signals for presence detection, usable in case direct synchronization between the signal generator and the receiver is not possible or not practical. We then propose a way of realizing and extending the same filter by modifying a recursive spectral observer, which gives rise to orthogonal filter channels and also leads to another way to synchronize the two signals.

  3. Fast ℓ1-regularized space-time adaptive processing using alternating direction method of multipliers

    NASA Astrophysics Data System (ADS)

    Qin, Lilong; Wu, Manqing; Wang, Xuan; Dong, Zhen

    2017-04-01

    Motivated by the sparsity of filter coefficients in full-dimension space-time adaptive processing (STAP) algorithms, this paper proposes a fast ℓ1-regularized STAP algorithm based on the alternating direction method of multipliers to accelerate the convergence and reduce the calculations. The proposed algorithm uses a splitting variable to obtain an equivalent optimization formulation, which is addressed with an augmented Lagrangian method. Using the alternating recursive algorithm, the method can rapidly result in a low minimum mean-square error without a large number of calculations. Through theoretical analysis and experimental verification, we demonstrate that the proposed algorithm provides a better output signal-to-clutter-noise ratio performance than other algorithms.

  4. Multitarget mixture reduction algorithm with incorporated target existence recursions

    NASA Astrophysics Data System (ADS)

    Ristic, Branko; Arulampalam, Sanjeev

    2000-07-01

    The paper derives a deferred logic data association algorithm based on the mixture reduction approach originally due to Salmond [SPIE vol.1305, 1990]. The novelty of the proposed algorithm provides the recursive formulae for both data association and target existence (confidence) estimation, thus allowing automatic track initiation and termination. T he track initiation performance of the proposed filter is investigated by computer simulations. It is observed that at moderately high levels of clutter density the proposed filter initiates tracks more reliably than its corresponding PDA filter. An extension of the proposed filter to the multi-target case is also presented. In addition, the paper compares the track maintenance performance of the MR algorithm with an MHT implementation.

  5. Image defog algorithm based on open close filter and gradient domain recursive bilateral filter

    NASA Astrophysics Data System (ADS)

    Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen

    2017-11-01

    To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.

  6. Application of Improved 5th-Cubature Kalman Filter in Initial Strapdown Inertial Navigation System Alignment for Large Misalignment Angles.

    PubMed

    Wang, Wei; Chen, Xiyuan

    2018-02-23

    In view of the fact the accuracy of the third-degree Cubature Kalman Filter (CKF) used for initial alignment under large misalignment angle conditions is insufficient, an improved fifth-degree CKF algorithm is proposed in this paper. In order to make full use of the innovation on filtering, the innovation covariance matrix is calculated recursively by an innovative sequence with an exponent fading factor. Then a new adaptive error covariance matrix scaling algorithm is proposed. The Singular Value Decomposition (SVD) method is used for improving the numerical stability of the fifth-degree CKF in this paper. In order to avoid the overshoot caused by excessive scaling of error covariance matrix during the convergence stage, the scaling scheme is terminated when the gradient of azimuth reaches the maximum. The experimental results show that the improved algorithm has better alignment accuracy with large misalignment angles than the traditional algorithm.

  7. Stability of recursive out-of-sequence measurement filters: an open problem

    NASA Astrophysics Data System (ADS)

    Chen, Lingji; Moshtagh, Nima; Mehra, Raman K.

    2011-06-01

    In many applications where communication delays are present, measurements with earlier time stamps can arrive out-of-sequence, i.e., after state estimates have been obtained for the current time instant. To incorporate such an Out-Of-Sequence Measurement (OOSM), many algorithms have been proposed in the literature to obtain or approximate the optimal estimate that would have been obtained if the OOSM had arrived in-sequence. When OOSM occurs repeatedly, approximate estimations as a result of incorporating one OOSM have to serve as the basis for incorporating yet another OOSM. The question of whether the "approximation of approximation" is well behaved, i.e., whether approximation errors accumulate in a recursive setting, has not been adequately addressed in the literature. This paper draws attention to the stability question of recursive OOSM processing filters, formulates the problem in a specific setting, and presents some simulation results that suggest that such filters are indeed well-behaved. Our hope is that more research will be conducted in the future to rigorously establish stability properties of these filters.

  8. Two dimensional recursive digital filters for near real time image processing

    NASA Technical Reports Server (NTRS)

    Olson, D.; Sherrod, E.

    1980-01-01

    A program was designed toward the demonstration of the feasibility of using two dimensional recursive digital filters for subjective image processing applications that require rapid turn around. The concept of the use of a dedicated minicomputer for the processor for this application was demonstrated. The minicomputer used was the HP1000 series E with a RTE 2 disc operating system and 32K words of memory. A Grinnel 256 x 512 x 8 bit display system was used to display the images. Sample images were provided by NASA Goddard on a 800 BPI, 9 track tape. Four 512 x 512 images representing 4 spectral regions of the same scene were provided. These images were filtered with enhancement filters developed during this effort.

  9. Attitude estimation of earth orbiting satellites by decomposed linear recursive filters

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1975-01-01

    Attitude estimation of earth orbiting satellites (including Large Space Telescope) subjected to environmental disturbances and noises was investigated. Modern control and estimation theory is used as a tool to design an efficient estimator for attitude estimation. Decomposed linear recursive filters for both continuous-time systems and discrete-time systems are derived. By using this accurate estimation of the attitude of spacecrafts, state variable feedback controller may be designed to achieve (or satisfy) high requirements of system performance.

  10. Event Compression Using Recursive Least Squares Signal Processing.

    DTIC Science & Technology

    1980-07-01

    decimation of the Burstl signal with and without all-pole prefiltering to reduce aliasing . Figures 3.32a-c and 3.33a-c show the same examples but with 4/1...to reduce aliasing , w~t found that it did not improve the quality of the event compressed signals . If filtering must be performed, all-pole filtering...A-AO89 785 MASSACHUSETTS IN T OF TECH CAMBRIDGE RESEARCH LAB OF--ETC F/B 17/9 EVENT COMPRESSION USING RECURSIVE LEAST SQUARES SIGNAL PROCESSI-ETC(t

  11. A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.

    PubMed

    Zhao, Haiquan; Zhang, Jiashu

    2009-12-01

    To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.

  12. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    PubMed

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  13. A Parallel Implementation of Multilevel Recursive Spectral Bisection for Application to Adaptive Unstructured Meshes. Chapter 1

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen T.; Simon, Horst; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The design of a parallel implementation of multilevel recursive spectral bisection is described. The goal is to implement a code that is fast enough to enable dynamic repartitioning of adaptive meshes.

  14. SU-E-J-42: Motion Adaptive Image Filter for Low Dose X-Ray Fluoroscopy in the Real-Time Tumor-Tracking Radiotherapy System.

    PubMed

    Miyamoto, N; Ishikawa, M; Sutherland, K; Suzuki, R; Matsuura, T; Takao, S; Toramatsu, C; Nihongi, H; Shimizu, S; Onimaru, R; Umegaki, K; Shirato, H

    2012-06-01

    In the real-time tumor-tracking radiotherapy system, fiducial markers are detected by X-ray fluoroscopy. The fluoroscopic parameters should be optimized as low as possible in order to reduce unnecessary imaging dose. However, the fiducial markers could not be recognized due to effect of statistical noise in low dose imaging. Image processing is envisioned to be a solution to improve image quality and to maintain tracking accuracy. In this study, a recursive image filter adapted to target motion is proposed. A fluoroscopy system was used for the experiment. A spherical gold marker was used as a fiducial marker. About 450 fluoroscopic images of the marker were recorded. In order to mimic respiratory motion of the marker, the images were shifted sequentially. The tube voltage, current and exposure duration were fixed at 65 kV, 50 mA and 2.5 msec as low dose imaging condition, respectively. The tube current was 100 mA as high dose imaging. A pattern recognition score (PRS) ranging from 0 to 100 and image registration error were investigated by performing template pattern matching to each sequential image. The results with and without image processing were compared. In low dose imaging, theimage registration error and the PRS without the image processing were 2.15±1.21 pixel and 46.67±6.40, respectively. Those with the image processing were 1.48±0.82 pixel and 67.80±4.51, respectively. There was nosignificant difference in the image registration error and the PRS between the results of low dose imaging with the image processing and that of high dose imaging without the image processing. The results showed that the recursive filter was effective in order to maintain marker tracking stability and accuracy in low dose fluoroscopy. © 2012 American Association of Physicists in Medicine.

  15. Recursive least squares background prediction of univariate syndromic surveillance data

    PubMed Central

    2009-01-01

    Background Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect. Methods Previous work by the first author has suggested that univariate recursive least squares analysis of syndromic data can be used to characterize the background upon which a prediction and detection component of a biosurvellance system may be built. An adaptive implementation is used to deal with data non-stationarity. In this paper we develop and implement the RLS method for background estimation of univariate data. The distinctly dissimilar distribution of data for different days of the week, however, can affect filter implementations adversely, and so a novel procedure based on linear transformations of the sorted values of the daily counts is introduced. Seven-days ahead daily predicted counts are used as background estimates. A signal injection procedure is used to examine the integrated algorithm's ability to detect synthetic anomalies in real syndromic time series. We compare the method to a baseline CDC forecasting algorithm known as the W2 method. Results We present detection results in the form of Receiver Operating Characteristic curve values for four different injected signal to noise ratios using 16 sets of syndromic data. We find improvements in the false alarm probabilities when compared to the baseline W2 background forecasts. Conclusion The current paper introduces a prediction approach for city-level biosurveillance data streams such as time series of outpatient clinic visits and sales of over-the-counter remedies. This approach uses RLS filters modified by a correction for the weekly patterns often seen in these data series, and a threshold detection algorithm from the residuals of the RLS forecasts. We compare the detection performance of this algorithm to the W2 method recently implemented at CDC. The modified RLS method gives consistently better sensitivity at multiple background alert rates, and we recommend that it should be considered for routine application in bio-surveillance systems. PMID:19149886

  16. Recursive least squares background prediction of univariate syndromic surveillance data.

    PubMed

    Najmi, Amir-Homayoon; Burkom, Howard

    2009-01-16

    Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect. Previous work by the first author has suggested that univariate recursive least squares analysis of syndromic data can be used to characterize the background upon which a prediction and detection component of a biosurvellance system may be built. An adaptive implementation is used to deal with data non-stationarity. In this paper we develop and implement the RLS method for background estimation of univariate data. The distinctly dissimilar distribution of data for different days of the week, however, can affect filter implementations adversely, and so a novel procedure based on linear transformations of the sorted values of the daily counts is introduced. Seven-days ahead daily predicted counts are used as background estimates. A signal injection procedure is used to examine the integrated algorithm's ability to detect synthetic anomalies in real syndromic time series. We compare the method to a baseline CDC forecasting algorithm known as the W2 method. We present detection results in the form of Receiver Operating Characteristic curve values for four different injected signal to noise ratios using 16 sets of syndromic data. We find improvements in the false alarm probabilities when compared to the baseline W2 background forecasts. The current paper introduces a prediction approach for city-level biosurveillance data streams such as time series of outpatient clinic visits and sales of over-the-counter remedies. This approach uses RLS filters modified by a correction for the weekly patterns often seen in these data series, and a threshold detection algorithm from the residuals of the RLS forecasts. We compare the detection performance of this algorithm to the W2 method recently implemented at CDC. The modified RLS method gives consistently better sensitivity at multiple background alert rates, and we recommend that it should be considered for routine application in bio-surveillance systems.

  17. Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS).

    PubMed

    Song, Fang; Zheng, Chuantao; Yan, Wanhong; Ye, Weilin; Wang, Yiding; Tittel, Frank K

    2017-12-11

    To suppress sensor noise with unknown statistical properties, a novel self-adaptive direct laser absorption spectroscopy (SA-DLAS) technique was proposed by incorporating a recursive, least square (RLS) self-adaptive denoising (SAD) algorithm and a 3291 nm interband cascade laser (ICL) for methane (CH 4 ) detection. Background noise was suppressed by introducing an electrical-domain noise-channel and an expectation-known-based RLS SAD algorithm. Numerical simulations and measurements were carried out to validate the function of the SA-DLAS technique by imposing low-frequency, high-frequency, White-Gaussian and hybrid noise on the ICL scan signal. Sensor calibration, stability test and dynamic response measurement were performed for the SA-DLAS sensor using standard or diluted CH 4 samples. With the intrinsic sensor noise considered only, an Allan deviation of ~43.9 ppbv with a ~6 s averaging time was obtained and it was further decreased to 6.3 ppbv with a ~240 s averaging time, through the use of self-adaptive filtering (SAF). The reported SA-DLAS technique shows enhanced sensitivity compared to a DLAS sensor using a traditional sensing architecture and filtering method. Indoor and outdoor atmospheric CH 4 measurements were conducted to validate the normal operation of the reported SA-DLAS technique.

  18. A recursive linear predictive vocoder

    NASA Astrophysics Data System (ADS)

    Janssen, W. A.

    1983-12-01

    A non-real time 10 pole recursive autocorrelation linear predictive coding vocoder was created for use in studying effects of recursive autocorrelation on speech. The vocoder is composed of two interchangeable pitch detectors, a speech analyzer, and speech synthesizer. The time between updating filter coefficients is allowed to vary from .125 msec to 20 msec. The best quality was found using .125 msec between each update. The greatest change in quality was noted when changing from 20 msec/update to 10 msec/update. Pitch period plots for the center clipping autocorrelation pitch detector and simplified inverse filtering technique are provided. Plots of speech into and out of the vocoder are given. Formant versus time three dimensional plots are shown. Effects of noise on pitch detection and formants are shown. Noise effects the voiced/unvoiced decision process causing voiced speech to be re-constructed as unvoiced.

  19. Investigation of FPGA-Based Real-Time Adaptive Digital Pulse Shaping for High-Count-Rate Applications

    NASA Astrophysics Data System (ADS)

    Saxena, Shefali; Hawari, Ayman I.

    2017-07-01

    Digital signal processing techniques have been widely used in radiation spectrometry to provide improved stability and performance with compact physical size over the traditional analog signal processing. In this paper, field-programmable gate array (FPGA)-based adaptive digital pulse shaping techniques are investigated for real-time signal processing. National Instruments (NI) NI 5761 14-bit, 250-MS/s adaptor module is used for digitizing high-purity germanium (HPGe) detector's preamplifier pulses. Digital pulse processing algorithms are implemented on the NI PXIe-7975R reconfigurable FPGA (Kintex-7) using the LabVIEW FPGA module. Based on the time separation between successive input pulses, the adaptive shaping algorithm selects the optimum shaping parameters (rise time and flattop time of trapezoid-shaping filter) for each incoming signal. A digital Sallen-Key low-pass filter is implemented to enhance signal-to-noise ratio and reduce baseline drifting in trapezoid shaping. A recursive trapezoid-shaping filter algorithm is employed for pole-zero compensation of exponentially decayed (with two-decay constants) preamplifier pulses of an HPGe detector. It allows extraction of pulse height information at the beginning of each pulse, thereby reducing the pulse pileup and increasing throughput. The algorithms for RC-CR2 timing filter, baseline restoration, pile-up rejection, and pulse height determination are digitally implemented for radiation spectroscopy. Traditionally, at high-count-rate conditions, a shorter shaping time is preferred to achieve high throughput, which deteriorates energy resolution. In this paper, experimental results are presented for varying count-rate and pulse shaping conditions. Using adaptive shaping, increased throughput is accepted while preserving the energy resolution observed using the longer shaping times.

  20. Recursive Inversion By Finite-Impulse-Response Filters

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1991-01-01

    Recursive approximation gives least-squares best fit to exact response. Algorithm yields finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Applicable to such system-inversion problems as suppression of echoes and identification of target from its scatter response to incident impulse.

  1. Application of Improved 5th-Cubature Kalman Filter in Initial Strapdown Inertial Navigation System Alignment for Large Misalignment Angles

    PubMed Central

    Wang, Wei; Chen, Xiyuan

    2018-01-01

    In view of the fact the accuracy of the third-degree Cubature Kalman Filter (CKF) used for initial alignment under large misalignment angle conditions is insufficient, an improved fifth-degree CKF algorithm is proposed in this paper. In order to make full use of the innovation on filtering, the innovation covariance matrix is calculated recursively by an innovative sequence with an exponent fading factor. Then a new adaptive error covariance matrix scaling algorithm is proposed. The Singular Value Decomposition (SVD) method is used for improving the numerical stability of the fifth-degree CKF in this paper. In order to avoid the overshoot caused by excessive scaling of error covariance matrix during the convergence stage, the scaling scheme is terminated when the gradient of azimuth reaches the maximum. The experimental results show that the improved algorithm has better alignment accuracy with large misalignment angles than the traditional algorithm. PMID:29473912

  2. Recursive mass matrix factorization and inversion: An operator approach to open- and closed-chain multibody dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.

    1988-01-01

    This report advances a linear operator approach for analyzing the dynamics of systems of joint-connected rigid bodies.It is established that the mass matrix M for such a system can be factored as M=(I+H phi L)D(I+H phi L) sup T. This yields an immediate inversion M sup -1=(I-H psi L) sup T D sup -1 (I-H psi L), where H and phi are given by known link geometric parameters, and L, psi and D are obtained recursively by a spatial discrete-step Kalman filter and by the corresponding Riccati equation associated with this filter. The factors (I+H phi L) and (I-H psi L) are lower triangular matrices which are inverses of each other, and D is a diagonal matrix. This factorization and inversion of the mass matrix leads to recursive algortihms for forward dynamics based on spatially recursive filtering and smoothing. The primary motivation for advancing the operator approach is to provide a better means to formulate, analyze and understand spatial recursions in multibody dynamics. This is achieved because the linear operator notation allows manipulation of the equations of motion using a very high-level analytical framework (a spatial operator algebra) that is easy to understand and use. Detailed lower-level recursive algorithms can readily be obtained for inspection from the expressions involving spatial operators. The report consists of two main sections. In Part 1, the problem of serial chain manipulators is analyzed and solved. Extensions to a closed-chain system formed by multiple manipulators moving a common task object are contained in Part 2. To retain ease of exposition in the report, only these two types of multibody systems are considered. However, the same methods can be easily applied to arbitrary multibody systems formed by a collection of joint-connected regid bodies.

  3. Recursive restriction estimation: an alternative to post-stratification in surveys of land and forest cover

    Treesearch

    Raymond L. Czaplewski

    2010-01-01

    Numerous government surveys of natural resources use Post-Stratification to improve statistical efficiency, where strata are defined by full-coverage, remotely sensed data and geopolitical boundaries. Recursive Restriction Estimation, which may be considered a special case of the static Kalman filter, is an attractive alternative. It decomposes a complex estimation...

  4. On-board adaptive model for state of charge estimation of lithium-ion batteries based on Kalman filter with proportional integral-based error adjustment

    NASA Astrophysics Data System (ADS)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai

    2017-10-01

    With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.

  5. Robust Speech Enhancement Using Two-Stage Filtered Minima Controlled Recursive Averaging

    NASA Astrophysics Data System (ADS)

    Ghourchian, Negar; Selouani, Sid-Ahmed; O'Shaughnessy, Douglas

    In this paper we propose an algorithm for estimating noise in highly non-stationary noisy environments, which is a challenging problem in speech enhancement. This method is based on minima-controlled recursive averaging (MCRA) whereby an accurate, robust and efficient noise power spectrum estimation is demonstrated. We propose a two-stage technique to prevent the appearance of musical noise after enhancement. This algorithm filters the noisy speech to achieve a robust signal with minimum distortion in the first stage. Subsequently, it estimates the residual noise using MCRA and removes it with spectral subtraction. The proposed Filtered MCRA (FMCRA) performance is evaluated using objective tests on the Aurora database under various noisy environments. These measures indicate the higher output SNR and lower output residual noise and distortion.

  6. A biased filter for linear discrete dynamic systems.

    NASA Technical Reports Server (NTRS)

    Chang, J. W.; Hoerl, A. E.; Leathrum, J. F.

    1972-01-01

    A recursive estimator, the ridge filter, was developed for the linear discrete dynamic estimation problem. Theorems were established to show that the ridge filter can be, on the average, closer to the expected value of the system state than the Kalman filter. On the other hand, Kalman filter, on the average, is closer to the instantaneous system state than the ridge filter. The ridge filter has been formulated in such a way that the computational features of the Kalman filter are preserved.

  7. Probabilistic multi-person localisation and tracking in image sequences

    NASA Astrophysics Data System (ADS)

    Klinger, T.; Rottensteiner, F.; Heipke, C.

    2017-05-01

    The localisation and tracking of persons in image sequences in commonly guided by recursive filters. Especially in a multi-object tracking environment, where mutual occlusions are inherent, the predictive model is prone to drift away from the actual target position when not taking context into account. Further, if the image-based observations are imprecise, the trajectory is prone to be updated towards a wrong position. In this work we address both these problems by using a new predictive model on the basis of Gaussian Process Regression, and by using generic object detection, as well as instance-specific classification, for refined localisation. The predictive model takes into account the motion of every tracked pedestrian in the scene and the prediction is executed with respect to the velocities of neighbouring persons. In contrast to existing methods our approach uses a Dynamic Bayesian Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image, are modelled as unknowns. This allows the detection to be corrected before it is incorporated into the recursive filter. Our method is evaluated on a publicly available benchmark dataset and outperforms related methods in terms of geometric precision and tracking accuracy.

  8. Novel Digital Signal Processing and Detection Techniques.

    DTIC Science & Technology

    1980-09-01

    decimation and interpolation [11, 1 2]. * Submitted by: Bede Liu Department of Electrical .l Engineering and Computer Science Princeton University ...on the use of recursive filters for decimation and interpolation. 4- UNCL.ASSIFIED~ SECURITY CLASSIFICATION OF PAGEfW1,en Data Fneprd) ...filter structure for realizing low-pass filter is developed 16,7]. By employing decimation and interpolation, the filter uses only coefficients 0, +1, and

  9. Probabilistic Multi-Person Tracking Using Dynamic Bayes Networks

    NASA Astrophysics Data System (ADS)

    Klinger, T.; Rottensteiner, F.; Heipke, C.

    2015-08-01

    Tracking-by-detection is a widely used practice in recent tracking systems. These usually rely on independent single frame detections that are handled as observations in a recursive estimation framework. If these observations are imprecise the generated trajectory is prone to be updated towards a wrong position. In contrary to existing methods our novel approach uses a Dynamic Bayes Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image are modelled as unknowns. These unknowns are estimated in a probabilistic framework taking into account a dynamic model, and a state-of-the-art pedestrian detector and classifier. The classifier is based on the Random Forest-algorithm and is capable of being trained incrementally so that new training samples can be incorporated at runtime. This allows the classifier to adapt to the changing appearance of a target and to unlearn outdated features. The approach is evaluated on a publicly available benchmark. The results confirm that our approach is well suited for tracking pedestrians over long distances while at the same time achieving comparatively good geometric accuracy.

  10. CRISM Hyperspectral Data Filtering with Application to MSL Landing Site Selection

    NASA Astrophysics Data System (ADS)

    Seelos, F. P.; Parente, M.; Clark, T.; Morgan, F.; Barnouin-Jha, O. S.; McGovern, A.; Murchie, S. L.; Taylor, H.

    2009-12-01

    We report on the development and implementation of a custom filtering procedure for Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) IR hyperspectral data that is suitable for incorporation into the CRISM Reduced Data Record (RDR) calibration pipeline. Over the course of the Mars Reconnaissance Orbiter (MRO) Primary Science Phase (PSP) and the ongoing Extended Science Phase (ESP) CRISM has operated with an IR detector temperature between ~107 K and ~127 K. This ~20 K range in operational temperature has resulted in variable data quality, with observations acquired at higher detector temperatures exhibiting a marked increase in both systematic and stochastic noise. The CRISM filtering procedure consists of two main data processing capabilities. The primary systematic noise component in CRISM IR data appears as along track or column oriented striping. This is addressed by the robust derivation and application of an inter-column ratio correction frame. The correction frame is developed through the serial evaluation of band specific column ratio statistics and so does not compromise the spectral fidelity of the image cube. The dominant CRISM IR stochastic noise components appear as isolated data spikes or column oriented segments of variable length with erroneous data values. The non-systematic noise is identified and corrected through the application of an iterative-recursive kernel modeling procedure which employs a formal statistical outlier test as the iteration control and recursion termination criterion. This allows the filtering procedure to make a statistically supported determination between high frequency (spatial/spectral) signal and high frequency noise based on the information content of a given multidimensional data kernel. The governing statistical test also allows the kernel filtering procedure to be self regulating and adaptive to the intrinsic noise level in the data. The CRISM IR filtering procedure is scheduled to be incorporated into the next augmentation of the CRISM IR calibration (version 3). The filtering algorithm will be applied to the I/F data (IF) delivered to the Planetary Data System (PDS), but the radiance on sensor data (RA) will remain unfiltered. The development of CRISM hyperspectral analysis products in support of the Mars Science Laboratory (MSL) landing site selection process has motivated the advance of CRISM-specific data processing techniques. The quantitative results of the CRISM IR filtering procedure as applied to CRISM observations acquired in support of MSL landing site selection will be presented.

  11. The Bayesian Decoding of Force Stimuli from Slowly Adapting Type I Fibers in Humans.

    PubMed

    Kasi, Patrick; Wright, James; Khamis, Heba; Birznieks, Ingvars; van Schaik, André

    2016-01-01

    It is well known that signals encoded by mechanoreceptors facilitate precise object manipulation in humans. It is therefore of interest to study signals encoded by the mechanoreceptors because this will contribute further towards the understanding of fundamental sensory mechanisms that are responsible for coordinating force components during object manipulation. From a practical point of view, this may suggest strategies for designing sensory-controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear decoding paradigm to reconstruct the force stimulus given signals from slowly adapting type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding model which is a function of the force stimulus and the force's rate of change. In the decoding phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike patterns and parameters described by the encoding model. Under the current encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that the force derivative contributes significantly to the rate of change to the SA-I afferent spike modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous because it can incorporate past and current information in order to make predictions--consistent with neural systems--with little computational resources. This makes it suitable for interfacing with prostheses.

  12. The Bayesian Decoding of Force Stimuli from Slowly Adapting Type I Fibers in Humans

    PubMed Central

    Wright, James; Khamis, Heba; Birznieks, Ingvars; van Schaik, André

    2016-01-01

    It is well known that signals encoded by mechanoreceptors facilitate precise object manipulation in humans. It is therefore of interest to study signals encoded by the mechanoreceptors because this will contribute further towards the understanding of fundamental sensory mechanisms that are responsible for coordinating force components during object manipulation. From a practical point of view, this may suggest strategies for designing sensory-controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear decoding paradigm to reconstruct the force stimulus given signals from slowly adapting type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding model which is a function of the force stimulus and the force’s rate of change. In the decoding phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike patterns and parameters described by the encoding model. Under the current encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that the force derivative contributes significantly to the rate of change to the SA-I afferent spike modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous because it can incorporate past and current information in order to make predictions—consistent with neural systems—with little computational resources. This makes it suitable for interfacing with prostheses. PMID:27077750

  13. Recursive inversion of externally defined linear systems by FIR filters

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1989-01-01

    The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least-squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problem of system identification and compensation.

  14. XAPiir: A recursive digital filtering package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, D.

    1990-09-21

    XAPiir is a basic recursive digital filtering package, containing both design and implementation subroutines. XAPiir was developed for the experimental array processor (XAP) software package, and is written in FORTRAN. However, it is intended to be incorporated into any general- or special-purpose signal analysis program. It replaces the older package RECFIL, offering several enhancements. RECFIL is used in several large analysis programs developed at LLNL, including the seismic analysis package SAC, several expert systems (NORSEA and NETSEA), and two general purpose signal analysis packages (SIG and VIEW). This report is divided into two sections: the first describes the use ofmore » the subroutine package, and the second, its internal organization. In the first section, the filter design problem is briefly reviewed, along with the definitions of the filter design parameters and their relationship to the subroutine input parameters. In the second section, the internal organization is documented to simplify maintenance and extensions to the package. 5 refs., 9 figs.« less

  15. Stochastic calibration and learning in nonstationary hydroeconomic models

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Howitt, R.

    2014-05-01

    Concern about water scarcity and adverse climate events over agricultural regions has motivated a number of efforts to develop operational integrated hydroeconomic models to guide adaptation and optimal use of water. Once calibrated, these models are used for water management and analysis assuming they remain valid under future conditions. In this paper, we present and demonstrate a methodology that permits the recursive calibration of economic models of agricultural production from noisy but frequently available data. We use a standard economic calibration approach, namely positive mathematical programming, integrated in a data assimilation algorithm based on the ensemble Kalman filter equations to identify the economic model parameters. A moving average kernel ensures that new and past information on agricultural activity are blended during the calibration process, avoiding loss of information and overcalibration for the conditions of a single year. A regularization constraint akin to the standard Tikhonov regularization is included in the filter to ensure its stability even in the presence of parameters with low sensitivity to observations. The results show that the implementation of the PMP methodology within a data assimilation framework based on the enKF equations is an effective method to calibrate models of agricultural production even with noisy information. The recursive nature of the method incorporates new information as an added value to the known previous observations of agricultural activity without the need to store historical information. The robustness of the method opens the door to the use of new remote sensing algorithms for operational water management.

  16. Kalman filter for statistical monitoring of forest cover across sub-continental regions

    Treesearch

    Raymond L. Czaplewski

    1991-01-01

    The Kalman filter is a multivariate generalization of the composite estimator which recursively combines a current direct estimate with a past estimate that is updated for expected change over time with a prediction model. The Kalman filter can estimate proportions of different cover types for sub-continental regions each year. A random sample of high-resolution...

  17. Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2016-11-01

    Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.

  18. Development and testing of an audio forensic software for enhancing speech signals masked by loud music

    NASA Astrophysics Data System (ADS)

    Dobre, Robert A.; Negrescu, Cristian; Stanomir, Dumitru

    2016-12-01

    In many situations audio recordings can decide the fate of a trial when accepted as evidence. But until they can be taken into account they must be authenticated at first, but also the quality of the targeted content (speech in most cases) must be good enough to remove any doubt. In this scope two main directions of multimedia forensics come into play: content authentication and noise reduction. This paper presents an application that is included in the latter. If someone would like to conceal their conversation, the easiest way to do it would be to turn loud the nearest audio system. In this situation, if a microphone was placed close by, the recorded signal would be apparently useless because the speech signal would be masked by the loud music signal. The paper proposes an adaptive filters based solution to remove the musical content from a previously described signal mixture in order to recover the masked vocal signal. Two adaptive filtering algorithms were tested in the proposed solution: the Normalised Least Mean Squares (NLMS) and Recursive Least Squares (RLS). Their performances in the described situation were evaluated using Simulink, compared and included in the paper.

  19. Identification of observer/Kalman filter Markov parameters: Theory and experiments

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh; Horta, Lucas G.; Longman, Richard W.

    1991-01-01

    An algorithm to compute Markov parameters of an observer or Kalman filter from experimental input and output data is discussed. The Markov parameters can then be used for identification of a state space representation, with associated Kalman gain or observer gain, for the purpose of controller design. The algorithm is a non-recursive matrix version of two recursive algorithms developed in previous works for different purposes. The relationship between these other algorithms is developed. The new matrix formulation here gives insight into the existence and uniqueness of solutions of certain equations and gives bounds on the proper choice of observer order. It is shown that if one uses data containing noise, and seeks the fastest possible deterministic observer, the deadbeat observer, one instead obtains the Kalman filter, which is the fastest possible observer in the stochastic environment. Results are demonstrated in numerical studies and in experiments on an ten-bay truss structure.

  20. Online Denoising Based on the Second-Order Adaptive Statistics Model.

    PubMed

    Yi, Sheng-Lun; Jin, Xue-Bo; Su, Ting-Li; Tang, Zhen-Yun; Wang, Fa-Fa; Xiang, Na; Kong, Jian-Lei

    2017-07-20

    Online denoising is motivated by real-time applications in the industrial process, where the data must be utilizable soon after it is collected. Since the noise in practical process is usually colored, it is quite a challenge for denoising techniques. In this paper, a novel online denoising method was proposed to achieve the processing of the practical measurement data with colored noise, and the characteristics of the colored noise were considered in the dynamic model via an adaptive parameter. The proposed method consists of two parts within a closed loop: the first one is to estimate the system state based on the second-order adaptive statistics model and the other is to update the adaptive parameter in the model using the Yule-Walker algorithm. Specifically, the state estimation process was implemented via the Kalman filter in a recursive way, and the online purpose was therefore attained. Experimental data in a reinforced concrete structure test was used to verify the effectiveness of the proposed method. Results show the proposed method not only dealt with the signals with colored noise, but also achieved a tradeoff between efficiency and accuracy.

  1. Counting digital filters

    NASA Technical Reports Server (NTRS)

    Zohar, S. (Inventor)

    1973-01-01

    Several embodiments of a counting digital filter of the non-recursive type are disclosed. In each embodiment two registers, at least one of which is a shift register, are included. The shift register received j sub x-bit data input words bit by bit. The kth data word is represented by the integer.

  2. Modeling, Control, and Estimation of Flexible, Aerodynamic Structures

    NASA Astrophysics Data System (ADS)

    Ray, Cody W.

    Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.

  3. Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds

    USGS Publications Warehouse

    Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.

    2017-06-26

    Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased slightly high and some biased slightly low compared to the recursive digital filter. There were notable differences between the days at base flow estimated by the different methods, with the recursive digital filter having a smaller range of values. This was attributed to how the different methods determine cessation of quickflow (the part of streamflow which is not base flow).For 109 Chesapeake Bay watershed sites with available specific conductance data, the parameters of the filter were optimized using a chemical-mass-balance constraint and two different models for the time-dependence of base-flow specific conductance. Sixty-seven models were deemed acceptable and the results compared well with non-optimized results. There are a number of limitations to the optimal hydrograph-separation approach resulting from the assumptions implicit in the conceptual model, the mathematical model, and the approach taken to impose chemical mass balance (including tracer choice). These limitations may be evidenced by poor model results; conversely, poor model fit may provide an indication that two-component separation does not adequately describe the hydrologic system’s runoff response.The results of this study may be used to address a number of questions regarding the role of groundwater in understanding past changes in stream-water quality and forecasting possible future changes, such as the timing and magnitude of land-use and management practice effects on stream and groundwater quality. Ongoing and future modeling efforts may benefit from the estimates of base flow as calibration targets or as a means to filter chemical data to model base-flow loads and trends. Ultimately, base-flow estimation might provide the basis for future work aimed at improving the ability to quantify groundwater discharge, not only at the scale of a gaged watershed, but at the scale of individual reaches as well.

  4. Adaptive Kalman filtering for real-time mapping of the visual field

    PubMed Central

    Ward, B. Douglas; Janik, John; Mazaheri, Yousef; Ma, Yan; DeYoe, Edgar A.

    2013-01-01

    This paper demonstrates the feasibility of real-time mapping of the visual field for clinical applications. Specifically, three aspects of this problem were considered: (1) experimental design, (2) statistical analysis, and (3) display of results. Proper experimental design is essential to achieving a successful outcome, particularly for real-time applications. A random-block experimental design was shown to have less sensitivity to measurement noise, as well as greater robustness to error in modeling of the hemodynamic impulse response function (IRF) and greater flexibility than common alternatives. In addition, random encoding of the visual field allows for the detection of voxels that are responsive to multiple, not necessarily contiguous, regions of the visual field. Due to its recursive nature, the Kalman filter is ideally suited for real-time statistical analysis of visual field mapping data. An important feature of the Kalman filter is that it can be used for nonstationary time series analysis. The capability of the Kalman filter to adapt, in real time, to abrupt changes in the baseline arising from subject motion inside the scanner and other external system disturbances is important for the success of clinical applications. The clinician needs real-time information to evaluate the success or failure of the imaging run and to decide whether to extend, modify, or terminate the run. Accordingly, the analytical software provides real-time displays of (1) brain activation maps for each stimulus segment, (2) voxel-wise spatial tuning profiles, (3) time plots of the variability of response parameters, and (4) time plots of activated volume. PMID:22100663

  5. Atmospheric turbulence simulation for Shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1979-01-01

    An improved non-recursive model for atmospheric turbulence along the flight path of the Shuttle Orbiter is developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model the time series for both gusts and gust gradients are generated and stored on a series of magnetic tapes. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digital filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digial filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 3 provides a description of the time series as currently recorded on magnetic tape. Conclusions and recommendations are presented in Section 4.

  6. Randomized path optimization for thevMitigated counter detection of UAVS

    DTIC Science & Technology

    2017-06-01

    using Bayesian filtering . The KL divergence is used to compare the probability density of aircraft termination to a normal distribution around the...Bayesian filtering . The KL divergence is used to compare the probability density of aircraft termination to a normal distribution around the true terminal...algorithm’s success. A recursive Bayesian filtering scheme is used to assimilate noisy measurements of the UAVs position to predict its terminal location. We

  7. Kalman-variant estimators for state of charge in lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Propp, Karsten; Auger, Daniel J.; Fotouhi, Abbas; Longo, Stefano; Knap, Vaclav

    2017-03-01

    Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of 'standard' lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and 'Coulomb counting' are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit-network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort.

  8. Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.

    2017-12-01

    A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.

  9. Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.

    2018-06-01

    A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2 D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.

  10. Design of recursive digital filters having specified phase and magnitude characteristics

    NASA Technical Reports Server (NTRS)

    King, R. E.; Condon, G. W.

    1972-01-01

    A method for a computer-aided design of a class of optimum filters, having specifications in the frequency domain of both magnitude and phase, is described. The method, an extension to the work of Steiglitz, uses the Fletcher-Powell algorithm to minimize a weighted squared magnitude and phase criterion. Results using the algorithm for the design of filters having specified phase as well as specified magnitude and phase compromise are presented.

  11. Tractography from HARDI using an Intrinsic Unscented Kalman Filter

    PubMed Central

    Cheng, Guang; Salehian, Hesamoddin; Forder, John R.; Vemuri, Baba C.

    2014-01-01

    A novel adaptation of the unscented Kalman filter (UKF) was recently introduced in literature for simultaneous multi-tensor estimation and fiber tractography from diffusion MRI. This technique has the advantage over other tractography methods in terms of computational efficiency, due to the fact that the UKF simultaneously estimates the diffusion tensors and propagates the most consistent direction to track along. This UKF and its variants reported later in literature however are not intrinsic to the space of diffusion tensors. Lack of this key property can possibly lead to inaccuracies in the multi-tensor estimation as well as in the tractography. In this paper, we propose a novel intrinsic unscented Kalman filter (IUKF) in the space of diffusion tensors which are symmetric positive definite matrices, that can be used for simultaneous recursive estimation of multi-tensors and propagation of directional information for use in fiber tractography from diffusion weighted MR data. In addition to being more accurate, IUKF retains all the advantages of UKF mentioned above. We demonstrate the accuracy and effectiveness of the proposed method via experiments publicly available phantom data from the fiber cup-challenge (MICCAI 2009) and diffusion weighted MR scans acquired from human brains and rat spinal cords. PMID:25203986

  12. Digital processing of radiographic images

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  13. Coding tools investigation for next generation video coding based on HEVC

    NASA Astrophysics Data System (ADS)

    Chen, Jianle; Chen, Ying; Karczewicz, Marta; Li, Xiang; Liu, Hongbin; Zhang, Li; Zhao, Xin

    2015-09-01

    The new state-of-the-art video coding standard, H.265/HEVC, has been finalized in 2013 and it achieves roughly 50% bit rate saving compared to its predecessor, H.264/MPEG-4 AVC. This paper provides the evidence that there is still potential for further coding efficiency improvements. A brief overview of HEVC is firstly given in the paper. Then, our improvements on each main module of HEVC are presented. For instance, the recursive quadtree block structure is extended to support larger coding unit and transform unit. The motion information prediction scheme is improved by advanced temporal motion vector prediction, which inherits the motion information of each small block within a large block from a temporal reference picture. Cross component prediction with linear prediction model improves intra prediction and overlapped block motion compensation improves the efficiency of inter prediction. Furthermore, coding of both intra and inter prediction residual is improved by adaptive multiple transform technique. Finally, in addition to deblocking filter and SAO, adaptive loop filter is applied to further enhance the reconstructed picture quality. This paper describes above-mentioned techniques in detail and evaluates their coding performance benefits based on the common test condition during HEVC development. The simulation results show that significant performance improvement over HEVC standard can be achieved, especially for the high resolution video materials.

  14. A comparative evaluation of adaptive noise cancellation algorithms for minimizing motion artifacts in a forehead-mounted wearable pulse oximeter.

    PubMed

    Comtois, Gary; Mendelson, Yitzhak; Ramuka, Piyush

    2007-01-01

    Wearable physiological monitoring using a pulse oximeter would enable field medics to monitor multiple injuries simultaneously, thereby prioritizing medical intervention when resources are limited. However, a primary factor limiting the accuracy of pulse oximetry is poor signal-to-noise ratio since photoplethysmographic (PPG) signals, from which arterial oxygen saturation (SpO2) and heart rate (HR) measurements are derived, are compromised by movement artifacts. This study was undertaken to quantify SpO2 and HR errors induced by certain motion artifacts utilizing accelerometry-based adaptive noise cancellation (ANC). Since the fingers are generally more vulnerable to motion artifacts, measurements were performed using a custom forehead-mounted wearable pulse oximeter developed for real-time remote physiological monitoring and triage applications. This study revealed that processing motion-corrupted PPG signals by least mean squares (LMS) and recursive least squares (RLS) algorithms can be effective to reduce SpO2 and HR errors during jogging, but the degree of improvement depends on filter order. Although both algorithms produced similar improvements, implementing the adaptive LMS algorithm is advantageous since it requires significantly less operations.

  15. Contrasts between estimates of baseflow help discern multiple sources of water contributing to rivers

    NASA Astrophysics Data System (ADS)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.

    2014-01-01

    This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. During the early stages of high-discharge events, the chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those based on chemical mass balance using Cl calculated from continuous electrical conductivity measurements. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of the annual discharge with a net baseflow contribution of 16% of total discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of discharge annually with a net baseflow contribution between 2001 and 2011 of 35% of total discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge and 26% of total discharge). These differences most probably reflect how the different techniques characterise baseflow. The local minimum and recursive digital filters probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow, floodplain storage, or interflow) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low-salinity water from the transient stores as discharge falls. The joint use of complementary techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.

  16. On Fusing Recursive Traversals of K-d Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram

    Loop fusion is a key program transformation for data locality optimization that is implemented in production compilers. But optimizing compilers currently cannot exploit fusion opportunities across a set of recursive tree traversal computations with producer-consumer relationships. In this paper, we develop a compile-time approach to dependence characterization and program transformation to enable fusion across recursively specified traversals over k-ary trees. We present the FuseT source-to-source code transformation framework to automatically generate fused composite recursive operators from an input program containing a sequence of primitive recursive operators. We use our framework to implement fused operators for MADNESS, Multiresolution Adaptive Numerical Environmentmore » for Scientific Simulation. We show that locality optimization through fusion can offer more than an order of magnitude performance improvement.« less

  17. Parameter estimation of a three-axis spacecraft simulator using recursive least-squares approach with tracking differentiator and Extended Kalman Filter

    NASA Astrophysics Data System (ADS)

    Xu, Zheyao; Qi, Naiming; Chen, Yukun

    2015-12-01

    Spacecraft simulators are widely used to study the dynamics, guidance, navigation, and control of a spacecraft on the ground. A spacecraft simulator can have three rotational degrees of freedom by using a spherical air-bearing to simulate a frictionless and micro-gravity space environment. The moment of inertia and center of mass are essential for control system design of ground-based three-axis spacecraft simulators. Unfortunately, they cannot be known precisely. This paper presents two approaches, i.e. a recursive least-squares (RLS) approach with tracking differentiator (TD) and Extended Kalman Filter (EKF) method, to estimate inertia parameters. The tracking differentiator (TD) filter the noise coupled with the measured signals and generate derivate of the measured signals. Combination of two TD filters in series obtains the angular accelerations that are required in RLS (TD-TD-RLS). Another method that does not need to estimate the angular accelerations is using the integrated form of dynamics equation. An extended TD (ETD) filter which can also generate the integration of the function of signals is presented for RLS (denoted as ETD-RLS). States and inertia parameters are estimated simultaneously using EKF. The observability is analyzed. All proposed methods are illustrated by simulations and experiments.

  18. Signal averaging technique for noninvasive recording of late potentials in patients with coronary artery disease

    NASA Technical Reports Server (NTRS)

    Abboud, S.; Blatt, C. M.; Lown, B.; Graboys, T. B.; Sadeh, D.; Cohen, R. J.

    1987-01-01

    An advanced non invasive signal averaging technique was used to detect late potentials in two groups of patients: Group A (24 patients) with coronary artery disease (CAD) and without sustained ventricular tachycardia (VT) and Group B (8 patients) with CAD and sustained VT. Recorded analog data were digitized and aligned using a cross correlation function with fast Fourier transform schema, averaged and band pass filtered between 60 and 200 Hz with a non-recursive digital filter. Averaged filtered waveforms were analyzed by computer program for 3 parameters: (1) filtered QRS (fQRS) duration (2) interval between the peak of the R wave peak and the end of fQRS (R-LP) (3) RMS value of last 40 msec of fQRS (RMS). Significant change was found between Groups A and B in fQRS (101 -/+ 13 msec vs 123 -/+ 15 msec; p < .0005) and in R-LP vs 52 -/+ 11 msec vs 71-/+18 msec, p <.002). We conclude that (1) the use of a cross correlation triggering method and non-recursive digital filter enables a reliable recording of late potentials from the body surface; (2) fQRS and R-LP durations are sensitive indicators of CAD patients susceptible to VT.

  19. Soft sensor modelling by time difference, recursive partial least squares and adaptive model updating

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Yang, W.; Xu, O.; Zhou, L.; Wang, J.

    2017-04-01

    To investigate time-variant and nonlinear characteristics in industrial processes, a soft sensor modelling method based on time difference, moving-window recursive partial least square (PLS) and adaptive model updating is proposed. In this method, time difference values of input and output variables are used as training samples to construct the model, which can reduce the effects of the nonlinear characteristic on modelling accuracy and retain the advantages of recursive PLS algorithm. To solve the high updating frequency of the model, a confidence value is introduced, which can be updated adaptively according to the results of the model performance assessment. Once the confidence value is updated, the model can be updated. The proposed method has been used to predict the 4-carboxy-benz-aldehyde (CBA) content in the purified terephthalic acid (PTA) oxidation reaction process. The results show that the proposed soft sensor modelling method can reduce computation effectively, improve prediction accuracy by making use of process information and reflect the process characteristics accurately.

  20. Monitoring the fetal heart rate variability during labor.

    PubMed

    Moslem, B; Mohydeen, A; Bazzi, O

    2015-08-01

    In respect to the main goal of our ongoing work for estimating the heart rate variability (HRV) from fetal electrocardiogram (FECG) signals for monitoring the health of the fetus, we investigate in this paper the possibility of extracting the fetal heart rate variability (HRV) directly from the abdominal composite recordings. Our proposed approach is based on a combination of two techniques: Periodic Component Analysis (PiCA) and recursive least square (RLS) adaptive filtering. The Fetal HRV of the estimated FECG signal is compared to a reference value extracted from an FECG signal recorded by using a spiral electrode attached directly to the fetal scalp. The results obtained show that the fetal HRV can be directly evaluated from the abdominal composite recordings without the need of recording an external reference signal.

  1. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Jain, A.

    1989-01-01

    A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.

  2. Towards rigorous analysis of the Levitov-Mirlin-Evers recursion

    NASA Astrophysics Data System (ADS)

    Fyodorov, Y. V.; Kupiainen, A.; Webb, C.

    2016-12-01

    This paper aims to develop a rigorous asymptotic analysis of an approximate renormalization group recursion for inverse participation ratios P q of critical powerlaw random band matrices. The recursion goes back to the work by Mirlin and Evers (2000 Phys. Rev. B 62 7920) and earlier works by Levitov (1990 Phys. Rev. Lett. 64 547, 1999 Ann. Phys. 8 697-706) and is aimed to describe the ensuing multifractality of the eigenvectors of such matrices. We point out both similarities and dissimilarities between the LME recursion and those appearing in the theory of multiplicative cascades and branching random walks and show that the methods developed in those fields can be adapted to the present case. In particular the LME recursion is shown to exhibit a phase transition, which we expect is a freezing transition, where the role of temperature is played by the exponent q. However, the LME recursion has features that make its rigorous analysis considerably harder and we point out several open problems for further study.

  3. An estimator-predictor approach to PLL loop filter design

    NASA Technical Reports Server (NTRS)

    Statman, Joseph I.; Hurd, William J.

    1990-01-01

    The design of digital phase locked loops (DPLL) using estimation theory concepts in the selection of a loop filter is presented. The key concept, that the DPLL closed-loop transfer function is decomposed into an estimator and a predictor, is discussed. The estimator provides recursive estimates of phase, frequency, and higher-order derivatives, and the predictor compensates for the transport lag inherent in the loop.

  4. A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter.

    PubMed

    Hoffmann, Stefan A; Wohltat, Christian; Müller, Kristian M; Arndt, Katja M

    2017-01-01

    For various experimental applications, microbial cultures at defined, constant densities are highly advantageous over simple batch cultures. Due to high costs, however, devices for continuous culture at freely defined densities still experience limited use. We have developed a small-scale turbidostat for research purposes, which is manufactured from inexpensive components and 3D printed parts. A high degree of spatial system integration and a graphical user interface provide user-friendly operability. The used optical density feedback control allows for constant continuous culture at a wide range of densities and offers to vary culture volume and dilution rates without additional parametrization. Further, a recursive algorithm for on-line growth rate estimation has been implemented. The employed Kalman filtering approach based on a very general state model retains the flexibility of the used control type and can be easily adapted to other bioreactor designs. Within several minutes it can converge to robust, accurate growth rate estimates. This is particularly useful for directed evolution experiments or studies on metabolic challenges, as it allows direct monitoring of the population fitness.

  5. Kalman filters for fractional discrete-time stochastic systems along with time-delay in the observation signal

    NASA Astrophysics Data System (ADS)

    Torabi, H.; Pariz, N.; Karimpour, A.

    2016-02-01

    This paper investigates fractional Kalman filters when time-delay is entered in the observation signal in the discrete-time stochastic fractional order state-space representation. After investigating the common fractional Kalman filter, we try to derive a fractional Kalman filter for time-delay fractional systems. A detailed derivation is given. Fractional Kalman filters will be used to estimate recursively the states of fractional order state-space systems based on minimizing the cost function when there is a constant time delay (d) in the observation signal. The problem will be solved by converting the filtering problem to a usual d-step prediction problem for delay-free fractional systems.

  6. Video noise reduction

    NASA Astrophysics Data System (ADS)

    Drewery, J. O.; Storey, R.; Tanton, N. E.

    1984-07-01

    A video noise and film grain reducer is described which is based on a first-order recursive temporal filter. Filtering of moving detail is avoided by inhibiting recursion in response to the amount of motion in a picture. Motion detection is based on the point-by-point power of the picture difference signal coupled with a knowledge of the noise statistics. A control system measures the noise power and adjusts the working point of the motion detector accordingly. A field trial of a manual version of the equipment at Television Center indicated that a worthwhile improvement in the quality of noisy or grainy pictures received by the viewer could be obtained. Subsequent trials of the automated version confirmed that the improvement could be maintained. Commercial equipment based on the design is being manufactured and marketed by Pye T.V.T. under license. It is in regular use on both the BBC1 and BBC2 networks.

  7. A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system

    PubMed Central

    Miyamoto, Naoki; Ishikawa, Masayori; Sutherland, Kenneth; Suzuki, Ryusuke; Matsuura, Taeko; Toramatsu, Chie; Takao, Seishin; Nihongi, Hideaki; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2015-01-01

    In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within ±2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction. PMID:25129556

  8. Hardware accelerator of convolution with exponential function for image processing applications

    NASA Astrophysics Data System (ADS)

    Panchenko, Ivan; Bucha, Victor

    2015-12-01

    In this paper we describe a Hardware Accelerator (HWA) for fast recursive approximation of separable convolution with exponential function. This filter can be used in many Image Processing (IP) applications, e.g. depth-dependent image blur, image enhancement and disparity estimation. We have adopted this filter RTL implementation to provide maximum throughput in constrains of required memory bandwidth and hardware resources to provide a power-efficient VLSI implementation.

  9. An innovations approach to decoupling of multibody dynamics and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1989-01-01

    The problem of hinged multibody dynamics is solved using an extension of the innovations approach of linear filtering and prediction theory to the problem of mechanical system modeling and control. This approach has been used quite effectively to diagonalize the equations for filtering and prediction for linear state space systems. It has similar advantages in the study of dynamics and control of multibody systems. The innovations approach advanced here consists of expressing the equations of motion in terms of two closely related processes: (1) the innovations process e, a sequence of moments, obtained from the applied moments T by means of a spatially recursive Kalman filter that goes from the tip of the manipulator to its base; (2) a residual process, a sequence of velocities, obtained from the joint-angle velocities by means of an outward smoothing operations. The innovations e and the applied moments T are related by means of the relationships e = (I - L)T and T = (I + K)e. The operation (I - L) is a causal lower triangular matrix which is generated by a spatially recursive Kalman filter and the corresponding discrete-step Riccati equation. Hence, the innovations and the applied moments can be obtained from each other by means of a causal operation which is itself casually invertible.

  10. Remaining useful life assessment of lithium-ion batteries in implantable medical devices

    NASA Astrophysics Data System (ADS)

    Hu, Chao; Ye, Hui; Jain, Gaurav; Schmidt, Craig

    2018-01-01

    This paper presents a prognostic study on lithium-ion batteries in implantable medical devices, in which a hybrid data-driven/model-based method is employed for remaining useful life assessment. The method is developed on and evaluated against data from two sets of lithium-ion prismatic cells used in implantable applications exhibiting distinct fade performance: 1) eight cells from Medtronic, PLC whose rates of capacity fade appear to be stable and gradually decrease over a 10-year test duration; and 2) eight cells from Manufacturer X whose rates appear to be greater and show sharp increase after some period over a 1.8-year test duration. The hybrid method enables online prediction of remaining useful life for predictive maintenance/control. It consists of two modules: 1) a sparse Bayesian learning module (data-driven) for inferring capacity from charge-related features; and 2) a recursive Bayesian filtering module (model-based) for updating empirical capacity fade models and predicting remaining useful life. A generic particle filter is adopted to implement recursive Bayesian filtering for the cells from the first set, whose capacity fade behavior can be represented by a single fade model; a multiple model particle filter with fixed-lag smoothing is proposed for the cells from the second data set, whose capacity fade behavior switches between multiple fade models.

  11. An adaptive model for vanadium redox flow battery and its application for online peak power estimation

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Meng, Shujuan; Tseng, King Jet; Lim, Tuti Mariana; Soong, Boon Hee; Skyllas-Kazacos, Maria

    2017-03-01

    An accurate battery model is the prerequisite for reliable state estimate of vanadium redox battery (VRB). As the battery model parameters are time varying with operating condition variation and battery aging, the common methods where model parameters are empirical or prescribed offline lacks accuracy and robustness. To address this issue, this paper proposes to use an online adaptive battery model to reproduce the VRB dynamics accurately. The model parameters are online identified with both the recursive least squares (RLS) and the extended Kalman filter (EKF). Performance comparison shows that the RLS is superior with respect to the modeling accuracy, convergence property, and computational complexity. Based on the online identified battery model, an adaptive peak power estimator which incorporates the constraints of voltage limit, SOC limit and design limit of current is proposed to fully exploit the potential of the VRB. Experiments are conducted on a lab-scale VRB system and the proposed peak power estimator is verified with a specifically designed "two-step verification" method. It is shown that different constraints dominate the allowable peak power at different stages of cycling. The influence of prediction time horizon selection on the peak power is also analyzed.

  12. Decentralized Adaptive Neural Output-Feedback DSC for Switched Large-Scale Nonlinear Systems.

    PubMed

    Lijun Long; Jun Zhao

    2017-04-01

    In this paper, for a class of switched large-scale uncertain nonlinear systems with unknown control coefficients and unmeasurable states, a switched-dynamic-surface-based decentralized adaptive neural output-feedback control approach is developed. The approach proposed extends the classical dynamic surface control (DSC) technique for nonswitched version to switched version by designing switched first-order filters, which overcomes the problem of multiple "explosion of complexity." Also, a dual common coordinates transformation of all subsystems is exploited to avoid individual coordinate transformations for subsystems that are required when applying the backstepping recursive design scheme. Nussbaum-type functions are utilized to handle the unknown control coefficients, and a switched neural network observer is constructed to estimate the unmeasurable states. Combining with the average dwell time method and backstepping and the DSC technique, decentralized adaptive neural controllers of subsystems are explicitly designed. It is proved that the approach provided can guarantee the semiglobal uniformly ultimately boundedness for all the signals in the closed-loop system under a class of switching signals with average dwell time, and the tracking errors to a small neighborhood of the origin. A two inverted pendulums system is provided to demonstrate the effectiveness of the method proposed.

  13. Impedance learning for robotic contact tasks using natural actor-critic algorithm.

    PubMed

    Kim, Byungchan; Park, Jooyoung; Park, Shinsuk; Kang, Sungchul

    2010-04-01

    Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment.

  14. FPGA/NIOS Implementation of an Adaptive FIR Filter Using Linear Prediction to Reduce Narrow-Band RFI for Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Fraenkel, E. D.; van den Berg, Ad M.

    2013-10-01

    We present the FPGA/NIOS implementation of an adaptive finite impulse response (FIR) filter based on linear prediction to suppress radio frequency interference (RFI). This technique will be used for experiments that observe coherent radio emission from extensive air showers induced by ultra-high-energy cosmic rays. These experiments are designed to make a detailed study of the development of the electromagnetic part of air showers. Therefore, these radio signals provide information that is complementary to that obtained by water-Cherenkov detectors which are predominantly sensitive to the particle content of an air shower at ground. The radio signals from air showers are caused by the coherent emission due to geomagnetic and charge-excess processes. These emissions can be observed in the frequency band between 10-100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. A FIR filter implemented in the FPGA logic segment of the front-end electronics of a radio sensor significantly improves the signal-to-noise ratio. In this paper we discuss an adaptive filter which is based on linear prediction. The coefficients for the linear predictor (LP) are dynamically refreshed and calculated in the embedded NIOS processor, which is implemented in the same FPGA chip. The Levinson recursion, used to obtain the filter coefficients, is also implemented in the NIOS and is partially supported by direct multiplication in the DSP blocks of the logic FPGA segment. Tests confirm that the LP can be an alternative to other methods involving multiple time-to-frequency domain conversions using an FFT procedure. These multiple conversions draw heavily on the power consumption of the FPGA and are avoided by the linear prediction approach. Minimization of the power consumption is an important issue because the final system will be powered by solar panels. The FIR filter has been successfully tested in the Altera development kits with the EP4CE115F29C7 from the Cyclone IV family and the EP3C120F780C7 from the Cyclone III family at a 170 MHz sampling rate, a 12-bit I/O resolution, and an internal 30-bit dynamic range. Most of the slow floating-point NIOS calculations have been moved to the FPGA logic segments as extended fixed-point operations, which significantly reduced the refreshing time of the coefficients used in the LP. We conclude that the LP is a viable alternative to other methods such as non-adaptive methods involving digital notch filters or multiple time-to-frequency domain conversions using an FFT procedure.

  15. Chandrasekhar-type algorithms for fast recursive estimation in linear systems with constant parameters

    NASA Technical Reports Server (NTRS)

    Choudhury, A. K.; Djalali, M.

    1975-01-01

    In this recursive method proposed, the gain matrix for the Kalman filter and the convariance of the state vector are computed not via the Riccati equation, but from certain other equations. These differential equations are of Chandrasekhar-type. The 'invariant imbedding' idea resulted in the reduction of the basic boundary value problem of transport theory to an equivalent initial value system, a significant computational advance. Initial value experience showed that there is some computational savings in the method and the loss of positive definiteness of the covariance matrix is less vulnerable.

  16. DAFi: A directed recursive data filtering and clustering approach for improving and interpreting data clustering identification of cell populations from polychromatic flow cytometry data.

    PubMed

    Lee, Alexandra J; Chang, Ivan; Burel, Julie G; Lindestam Arlehamn, Cecilia S; Mandava, Aishwarya; Weiskopf, Daniela; Peters, Bjoern; Sette, Alessandro; Scheuermann, Richard H; Qian, Yu

    2018-04-17

    Computational methods for identification of cell populations from polychromatic flow cytometry data are changing the paradigm of cytometry bioinformatics. Data clustering is the most common computational approach to unsupervised identification of cell populations from multidimensional cytometry data. However, interpretation of the identified data clusters is labor-intensive. Certain types of user-defined cell populations are also difficult to identify by fully automated data clustering analysis. Both are roadblocks before a cytometry lab can adopt the data clustering approach for cell population identification in routine use. We found that combining recursive data filtering and clustering with constraints converted from the user manual gating strategy can effectively address these two issues. We named this new approach DAFi: Directed Automated Filtering and Identification of cell populations. Design of DAFi preserves the data-driven characteristics of unsupervised clustering for identifying novel cell subsets, but also makes the results interpretable to experimental scientists through mapping and merging the multidimensional data clusters into the user-defined two-dimensional gating hierarchy. The recursive data filtering process in DAFi helped identify small data clusters which are otherwise difficult to resolve by a single run of the data clustering method due to the statistical interference of the irrelevant major clusters. Our experiment results showed that the proportions of the cell populations identified by DAFi, while being consistent with those by expert centralized manual gating, have smaller technical variances across samples than those from individual manual gating analysis and the nonrecursive data clustering analysis. Compared with manual gating segregation, DAFi-identified cell populations avoided the abrupt cut-offs on the boundaries. DAFi has been implemented to be used with multiple data clustering methods including K-means, FLOCK, FlowSOM, and the ClusterR package. For cell population identification, DAFi supports multiple options including clustering, bisecting, slope-based gating, and reversed filtering to meet various autogating needs from different scientific use cases. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  17. Hybrid recursive active filters for duplexing in RF transmitter front-ends

    NASA Astrophysics Data System (ADS)

    Gottardo, Giuseppe; Donati, Giovanni; Musolff, Christian; Fischer, Georg; Felgentreff, Tilman

    2016-08-01

    Duplex filters in modern base transceiver stations shape the channel in order to perform common frequency division duplex operations. Usually, they are designed as cavity filters, which are expensive and have large dimensions. Thanks to the emerging digital technology and fast digital converters, it is possible to transfer the efforts of designing analog duplex filters into digital numeric algorithms applied to feedback structures, operating on power. This solution provides the shaping of the signal spectrum directly at the output of the radio frequency (RF) power amplifiers (PAs) relaxing the transmitter design especially in the duplexer and in the antenna sections. The design of a digital baseband feedback applied to the analog power RF amplifiers (hybrid filter) is presented and verified by measurements. A model to describe the hybrid system is investigated, and the relation between phase and resonance peaks of the resulting periodic band-pass transfer function is described. The stability condition of the system is analyzed using Nyquist criterion. A solution involving a number of digital feedback and forward branches is investigated defining the parameters of the recursive structure. This solution allows the closed loop system to show a periodic band pass with up to 500 kHz bandwidth at the output of the RF amplifier. The band-pass magnitude reaches up to 17 dB selectivity. The rejection of the PA noise in the out-of-band frequencies is verified by measurements. The filter is tested with a modulated LTE (Long Term Evolution) signal showing an ACPR (Adjacent Channel Power Ratio) enhancement of 10 dB of the transmitted signal.

  18. Spacecraft attitude determination using a second-order nonlinear filter

    NASA Technical Reports Server (NTRS)

    Vathsal, S.

    1987-01-01

    The stringent attitude determination accuracy and faster slew maneuver requirements demanded by present-day spacecraft control systems motivate the development of recursive nonlinear filters for attitude estimation. This paper presents the second-order filter development for the estimation of attitude quaternion using three-axis gyro and star tracker measurement data. Performance comparisons have been made by computer simulation of system models and filter mechanization. It is shown that the second-order filter consistently performs better than the extended Kalman filter when the performance index of the root sum square estimation error of the quaternion vector is compared. The second-order filter identifies the gyro drift rates faster than the extended Kalman filter. The uniqueness of this algorithm is the online generation of the time-varying process and measurement noise covariance matrices, derived as a function or the process and measurement nonlinearity, respectively.

  19. A robust adaptive flightpath reconstruction technique

    NASA Technical Reports Server (NTRS)

    Verhaegen, M. H.

    1986-01-01

    Computational schemes are presented that allow accurate reconstruction of an aircraft's flightpath in real-time. The reconstruction of the flightpath is formulated as a linear state reconstruction problem, which can be solved via Kalman filtering (KF) techniques. This imposes some conditions upon the flight-test equipment. A reliable square root covariance KF (SRCF) implementation is chosen and further developed into a fully adaptive flightpath reconstruction scheme. Therefore, the basic SRCF is modified in order to cope with several practical problems such as: the automatic control of the convergence of the recursive KF calculations, time varying zero-bias errors on the input signal of the system model used in the KF, and the changing aircraft dynamics owing to a change in reference flight condition. The developed solutions for these problems are all implemented in a numerically stable way, which guarantees the overall flightpath reconstruction scheme to be robust. Furthermore, some special features of the used system model are exploited to make the algorithmic implementation very efficient. An experimental simulation study using simulated flight test data demonstrated these different capabilities.

  20. Real-time Adaptive EEG Source Separation using Online Recursive Independent Component Analysis

    PubMed Central

    Hsu, Sheng-Hsiou; Mullen, Tim; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2016-01-01

    Independent Component Analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257

  1. Reduced kernel recursive least squares algorithm for aero-engine degradation prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Haowen; Huang, Jinquan; Lu, Feng

    2017-10-01

    Kernel adaptive filters (KAFs) generate a linear growing radial basis function (RBF) network with the number of training samples, thereby lacking sparseness. To deal with this drawback, traditional sparsification techniques select a subset of original training data based on a certain criterion to train the network and discard the redundant data directly. Although these methods curb the growth of the network effectively, it should be noted that information conveyed by these redundant samples is omitted, which may lead to accuracy degradation. In this paper, we present a novel online sparsification method which requires much less training time without sacrificing the accuracy performance. Specifically, a reduced kernel recursive least squares (RKRLS) algorithm is developed based on the reduced technique and the linear independency. Unlike conventional methods, our novel methodology employs these redundant data to update the coefficients of the existing network. Due to the effective utilization of the redundant data, the novel algorithm achieves a better accuracy performance, although the network size is significantly reduced. Experiments on time series prediction and online regression demonstrate that RKRLS algorithm requires much less computational consumption and maintains the satisfactory accuracy performance. Finally, we propose an enhanced multi-sensor prognostic model based on RKRLS and Hidden Markov Model (HMM) for remaining useful life (RUL) estimation. A case study in a turbofan degradation dataset is performed to evaluate the performance of the novel prognostic approach.

  2. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qing, E-mail: qing.gao.chance@gmail.com; Dong, Daoyi, E-mail: daoyidong@gmail.com; Petersen, Ian R., E-mail: i.r.petersen@gmai.com

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  3. Wavefront correction with Kalman filtering for the WFIRST-AFTA coronagraph instrument

    NASA Astrophysics Data System (ADS)

    Riggs, A. J. Eldorado; Kasdin, N. Jeremy; Groff, Tyler D.

    2015-09-01

    The only way to characterize most exoplanets spectrally is via direct imaging. For example, the Coronagraph Instrument (CGI) on the proposed Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) mission plans to image and characterize several cool gas giants around nearby stars. The integration time on these faint exoplanets will be many hours to days. A crucial assumption for mission planning is that the time required to dig a dark hole (a region of high star-to-planet contrast) with deformable mirrors is small compared to science integration time. The science camera must be used as the wavefront sensor to avoid non-common path aberrations, but this approach can be quite time intensive. Several estimation images are required to build an estimate of the starlight electric field before it can be partially corrected, and this process is repeated iteratively until high contrast is reached. Here we present simulated results of batch process and recursive wavefront estimation schemes. In particular, we test a Kalman filter and an iterative extended Kalman filter (IEKF) to reduce the total exposure time and improve the robustness of wavefront correction for the WFIRST-AFTA CGI. An IEKF or other nonlinear filter also allows recursive, real-time estimation of sources incoherent with the star, such as exoplanets and disks, and may therefore reduce detection uncertainty.

  4. Helicopter rotor blade frequency evolution with damage growth and signal processing

    NASA Astrophysics Data System (ADS)

    Roy, Niranjan; Ganguli, Ranjan

    2005-05-01

    Structural damage in materials evolves over time due to growth of fatigue cracks in homogenous materials and a complicated process of matrix cracking, delamination, fiber breakage and fiber matrix debonding in composite materials. In this study, a finite element model of the helicopter rotor blade is used to analyze the effect of damage growth on the modal frequencies in a qualitative manner. Phenomenological models of material degradation for homogenous and composite materials are used. Results show that damage can be detected by monitoring changes in lower as well as higher mode flap (out-of-plane bending), lag (in-plane bending) and torsion rotating frequencies, especially for composite materials where the onset of the last stage of damage of fiber breakage is most critical. Curve fits are also proposed for mathematical modeling of the relationship between rotating frequencies and cycles. Finally, since operational data are noisy and also contaminated with outliers, denoising algorithms based on recursive median filters and radial basis function neural networks and wavelets are studied and compared with a moving average filter using simulated data for improved health-monitoring application. A novel recursive median filter is designed using integer programming through genetic algorithm and is found to have comparable performance to neural networks with much less complexity and is better than wavelet denoising for outlier removal. This filter is proposed as a tool for denoising time series of damage indicators.

  5. Optimal quantum operations at zero energy cost

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; Yang, Yuxiang

    2017-08-01

    Quantum technologies are developing powerful tools to generate and manipulate coherent superpositions of different energy levels. Envisaging a new generation of energy-efficient quantum devices, here we explore how coherence can be manipulated without exchanging energy with the surrounding environment. We start from the task of converting a coherent superposition of energy eigenstates into another. We identify the optimal energy-preserving operations, both in the deterministic and in the probabilistic scenario. We then design a recursive protocol, wherein a branching sequence of energy-preserving filters increases the probability of success while reaching maximum fidelity at each iteration. Building on the recursive protocol, we construct efficient approximations of the optimal fidelity-probability trade-off, by taking coherent superpositions of the different branches generated by probabilistic filtering. The benefits of this construction are illustrated in applications to quantum metrology, quantum cloning, coherent state amplification, and ancilla-driven computation. Finally, we extend our results to transitions where the input state is generally mixed and we apply our findings to the task of purifying quantum coherence.

  6. Some error bounds for K-iterated Gaussian recursive filters

    NASA Astrophysics Data System (ADS)

    Cuomo, Salvatore; Galletti, Ardelio; Giunta, Giulio; Marcellino, Livia

    2016-10-01

    Recursive filters (RFs) have achieved a central role in several research fields over the last few years. For example, they are used in image processing, in data assimilation and in electrocardiogram denoising. More in particular, among RFs, the Gaussian RFs are an efficient computational tool for approximating Gaussian-based convolutions and are suitable for digital image processing and applications of the scale-space theory. As is a common knowledge, the Gaussian RFs, applied to signals with support in a finite domain, generate distortions and artifacts, mostly localized at the boundaries. Heuristic and theoretical improvements have been proposed in literature to deal with this issue (namely boundary conditions). They include the case in which a Gaussian RF is applied more than once, i.e. the so called K-iterated Gaussian RFs. In this paper, starting from a summary of the comprehensive mathematical background, we consider the case of the K-iterated first-order Gaussian RF and provide the study of its numerical stability and some component-wise theoretical error bounds.

  7. Rao-Blackwellization for Adaptive Gaussian Sum Nonlinear Model Propagation

    NASA Technical Reports Server (NTRS)

    Semper, Sean R.; Crassidis, John L.; George, Jemin; Mukherjee, Siddharth; Singla, Puneet

    2015-01-01

    When dealing with imperfect data and general models of dynamic systems, the best estimate is always sought in the presence of uncertainty or unknown parameters. In many cases, as the first attempt, the Extended Kalman filter (EKF) provides sufficient solutions to handling issues arising from nonlinear and non-Gaussian estimation problems. But these issues may lead unacceptable performance and even divergence. In order to accurately capture the nonlinearities of most real-world dynamic systems, advanced filtering methods have been created to reduce filter divergence while enhancing performance. Approaches, such as Gaussian sum filtering, grid based Bayesian methods and particle filters are well-known examples of advanced methods used to represent and recursively reproduce an approximation to the state probability density function (pdf). Some of these filtering methods were conceptually developed years before their widespread uses were realized. Advanced nonlinear filtering methods currently benefit from the computing advancements in computational speeds, memory, and parallel processing. Grid based methods, multiple-model approaches and Gaussian sum filtering are numerical solutions that take advantage of different state coordinates or multiple-model methods that reduced the amount of approximations used. Choosing an efficient grid is very difficult for multi-dimensional state spaces, and oftentimes expensive computations must be done at each point. For the original Gaussian sum filter, a weighted sum of Gaussian density functions approximates the pdf but suffers at the update step for the individual component weight selections. In order to improve upon the original Gaussian sum filter, Ref. [2] introduces a weight update approach at the filter propagation stage instead of the measurement update stage. This weight update is performed by minimizing the integral square difference between the true forecast pdf and its Gaussian sum approximation. By adaptively updating each component weight during the nonlinear propagation stage an approximation of the true pdf can be successfully reconstructed. Particle filtering (PF) methods have gained popularity recently for solving nonlinear estimation problems due to their straightforward approach and the processing capabilities mentioned above. The basic concept behind PF is to represent any pdf as a set of random samples. As the number of samples increases, they will theoretically converge to the exact, equivalent representation of the desired pdf. When the estimated qth moment is needed, the samples are used for its construction allowing further analysis of the pdf characteristics. However, filter performance deteriorates as the dimension of the state vector increases. To overcome this problem Ref. [5] applies a marginalization technique for PF methods, decreasing complexity of the system to one linear and another nonlinear state estimation problem. The marginalization theory was originally developed by Rao and Blackwell independently. According to Ref. [6] it improves any given estimator under every convex loss function. The improvement comes from calculating a conditional expected value, often involving integrating out a supportive statistic. In other words, Rao-Blackwellization allows for smaller but separate computations to be carried out while reaching the main objective of the estimator. In the case of improving an estimator's variance, any supporting statistic can be removed and its variance determined. Next, any other information that dependents on the supporting statistic is found along with its respective variance. A new approach is developed here by utilizing the strengths of the adaptive Gaussian sum propagation in Ref. [2] and a marginalization approach used for PF methods found in Ref. [7]. In the following sections a modified filtering approach is presented based on a special state-space model within nonlinear systems to reduce the dimensionality of the optimization problem in Ref. [2]. First, the adaptive Gaussian sum propagation is explained and then the new marginalized adaptive Gaussian sum propagation is derived. Finally, an example simulation is presented.

  8. Adaptive error covariances estimation methods for ensemble Kalman filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, Yicun, E-mail: zhen@math.psu.edu; Harlim, John, E-mail: jharlim@psu.edu

    2015-08-01

    This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for usingmore » information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.« less

  9. [Glossary of terms used by radiologists in image processing].

    PubMed

    Rolland, Y; Collorec, R; Bruno, A; Ramée, A; Morcet, N; Haigron, P

    1995-01-01

    We give the definition of 166 words used in image processing. Adaptivity, aliazing, analog-digital converter, analysis, approximation, arc, artifact, artificial intelligence, attribute, autocorrelation, bandwidth, boundary, brightness, calibration, class, classification, classify, centre, cluster, coding, color, compression, contrast, connectivity, convolution, correlation, data base, decision, decomposition, deconvolution, deduction, descriptor, detection, digitization, dilation, discontinuity, discretization, discrimination, disparity, display, distance, distorsion, distribution dynamic, edge, energy, enhancement, entropy, erosion, estimation, event, extrapolation, feature, file, filter, filter floaters, fitting, Fourier transform, frequency, fusion, fuzzy, Gaussian, gradient, graph, gray level, group, growing, histogram, Hough transform, Houndsfield, image, impulse response, inertia, intensity, interpolation, interpretation, invariance, isotropy, iterative, JPEG, knowledge base, label, laplacian, learning, least squares, likelihood, matching, Markov field, mask, matching, mathematical morphology, merge (to), MIP, median, minimization, model, moiré, moment, MPEG, neural network, neuron, node, noise, norm, normal, operator, optical system, optimization, orthogonal, parametric, pattern recognition, periodicity, photometry, pixel, polygon, polynomial, prediction, pulsation, pyramidal, quantization, raster, reconstruction, recursive, region, rendering, representation space, resolution, restoration, robustness, ROC, thinning, transform, sampling, saturation, scene analysis, segmentation, separable function, sequential, smoothing, spline, split (to), shape, threshold, tree, signal, speckle, spectrum, spline, stationarity, statistical, stochastic, structuring element, support, syntaxic, synthesis, texture, truncation, variance, vision, voxel, windowing.

  10. Investigation of adaptive filtering and MDL mitigation based on space-time block-coding for spatial division multiplexed coherent receivers

    NASA Astrophysics Data System (ADS)

    Weng, Yi; He, Xuan; Yao, Wang; Pacheco, Michelle C.; Wang, Junyi; Pan, Zhongqi

    2017-07-01

    In this paper, we explored the performance of space-time block-coding (STBC) assisted multiple-input multiple-output (MIMO) scheme for modal dispersion and mode-dependent loss (MDL) mitigation in spatial-division multiplexed optical communication systems, whereas the weight matrices of frequency-domain equalization (FDE) were updated heuristically using decision-directed recursive least squares (RLS) algorithm for convergence and channel estimation. The proposed STBC-RLS algorithm can achieve 43.6% enhancement on convergence rate over conventional least mean squares (LMS) for quadrature phase-shift keying (QPSK) signals with merely 16.2% increase in hardware complexity. The overall optical signal to noise ratio (OSNR) tolerance can be improved via STBC by approximately 3.1, 4.9, 7.8 dB for QPSK, 16-quadrature amplitude modulation (QAM) and 64-QAM with respective bit-error-rates (BER) and minimum-mean-square-error (MMSE).

  11. Comparison of two non-convex mixed-integer nonlinear programming algorithms applied to autoregressive moving average model structure and parameter estimation

    NASA Astrophysics Data System (ADS)

    Uilhoorn, F. E.

    2016-10-01

    In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.

  12. Spatiotemporal attention operator using isotropic contrast and regional homogeneity

    NASA Astrophysics Data System (ADS)

    Palenichka, Roman; Lakhssassi, Ahmed; Zaremba, Marek

    2011-04-01

    A multiscale operator for spatiotemporal isotropic attention is proposed to reliably extract attention points during image sequence analysis. Its consecutive local maxima indicate attention points as the centers of image fragments of variable size with high intensity contrast, region homogeneity, regional shape saliency, and temporal change presence. The scale-adaptive estimation of temporal change (motion) and its aggregation with the regional shape saliency contribute to the accurate determination of attention points in image sequences. Multilocation descriptors of an image sequence are extracted at the attention points in the form of a set of multidimensional descriptor vectors. A fast recursive implementation is also proposed to make the operator's computational complexity independent from the spatial scale size, which is the window size in the spatial averaging filter. Experiments on the accuracy of attention-point detection have proved the operator consistency and its high potential for multiscale feature extraction from image sequences.

  13. Efficient implementations of a pseudodynamical stochastic filtering strategy for static elastography.

    PubMed

    Banerjee, Biswanath; Roy, Debasish; Vasu, Ram Mohan

    2009-08-01

    A computationally efficient pseudodynamical filtering setup is established for elasticity imaging (i.e., reconstruction of shear modulus distribution) in soft-tissue organs given statically recorded and partially measured displacement data. Unlike a regularized quasi-Newton method (QNM) that needs inversion of ill-conditioned matrices, the authors explore pseudodynamic extended and ensemble Kalman filters (PD-EKF and PD-EnKF) that use a parsimonious representation of states and bypass explicit regularization by recursion over pseudotime. Numerical experiments with QNM and the two filters suggest that the PD-EnKF is the most robust performer as it exhibits no sensitivity to process noise covariance and yields good reconstruction even with small ensemble sizes.

  14. Solution of the two-dimensional spectral factorization problem

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.

    1985-01-01

    An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.

  15. Concurrent MR-NIR Imaging for Breast Cancer Diagnosis

    DTIC Science & Technology

    2008-06-01

    the extended Kalman filtering (EKF) framework. Note that both the fluorophore concentrations in different compartments, C(rj , k), and the system...r1 − r2)δ(k1 − k2)Z1. 10) Estimation of Pharmacokinetic-Rate Images by Extended Kalman Filtering: Our objective is to estimate the fluorophore...covariance update at time k. Hk is the recursive Kalman gain matrix at time k and I is the identity matrix. Jk−1 is the Jacobian matrix due to iterative

  16. A particle filter for multi-target tracking in track before detect context

    NASA Astrophysics Data System (ADS)

    Amrouche, Naima; Khenchaf, Ali; Berkani, Daoud

    2016-10-01

    The track-before-detect (TBD) approach can be used to track a single target in a highly noisy radar scene. This is because it makes use of unthresholded observations and incorporates a binary target existence variable into its target state estimation process when implemented as a particle filter (PF). This paper proposes the recursive PF-TBD approach to detect multiple targets in low-signal-to noise ratios (SNR). The algorithm's successful performance is demonstrated using a simulated two target example.

  17. EEG/ERP adaptive noise canceller design with controlled search space (CSS) approach in cuckoo and other optimization algorithms.

    PubMed

    Ahirwal, M K; Kumar, Anil; Singh, G K

    2013-01-01

    This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.

  18. The development rainfall forecasting using kalman filter

    NASA Astrophysics Data System (ADS)

    Zulfi, Mohammad; Hasan, Moh.; Dwidja Purnomo, Kosala

    2018-04-01

    Rainfall forecasting is very interesting for agricultural planing. Rainfall information is useful to make decisions about the plan planting certain commodities. In this studies, the rainfall forecasting by ARIMA and Kalman Filter method. Kalman Filter method is used to declare a time series model of which is shown in the form of linear state space to determine the future forecast. This method used a recursive solution to minimize error. The rainfall data in this research clustered by K-means clustering. Implementation of Kalman Filter method is for modelling and forecasting rainfall in each cluster. We used ARIMA (p,d,q) to construct a state space for KalmanFilter model. So, we have four group of the data and one model in each group. In conclusions, Kalman Filter method is better than ARIMA model for rainfall forecasting in each group. It can be showed from error of Kalman Filter method that smaller than error of ARIMA model.

  19. Geomagnetic field modeling by optimal recursive filtering

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Data sets selected for mini-batches and the software modifications required for processing these sets are described. Initial analysis was performed on minibatch field model recovery. Studies are being performed to examine the convergence of the solutions and the maximum expansion order the data will support in the constant and secular terms.

  20. An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources.

    PubMed

    Doulamis, A D; Doulamis, N D; Kollias, S D

    2003-01-01

    Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.

  1. A Robust Approach For Acoustic Noise Suppression In Speech Using ANFIS

    NASA Astrophysics Data System (ADS)

    Martinek, Radek; Kelnar, Michal; Vanus, Jan; Bilik, Petr; Zidek, Jan

    2015-11-01

    The authors of this article deals with the implementation of a combination of techniques of the fuzzy system and artificial intelligence in the application area of non-linear noise and interference suppression. This structure used is called an Adaptive Neuro Fuzzy Inference System (ANFIS). This system finds practical use mainly in audio telephone (mobile) communication in a noisy environment (transport, production halls, sports matches, etc). Experimental methods based on the two-input adaptive noise cancellation concept was clearly outlined. Within the experiments carried out, the authors created, based on the ANFIS structure, a comprehensive system for adaptive suppression of unwanted background interference that occurs in audio communication and degrades the audio signal. The system designed has been tested on real voice signals. This article presents the investigation and comparison amongst three distinct approaches to noise cancellation in speech; they are LMS (least mean squares) and RLS (recursive least squares) adaptive filtering and ANFIS. A careful review of literatures indicated the importance of non-linear adaptive algorithms over linear ones in noise cancellation. It was concluded that the ANFIS approach had the overall best performance as it efficiently cancelled noise even in highly noise-degraded speech. Results were drawn from the successful experimentation, subjective-based tests were used to analyse their comparative performance while objective tests were used to validate them. Implementation of algorithms was experimentally carried out in Matlab to justify the claims and determine their relative performances.

  2. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    PubMed

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  3. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1991-01-01

    A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.

  4. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan

    1989-01-01

    A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.

  5. A transition matrix approach to the Davenport gryo calibration scheme

    NASA Technical Reports Server (NTRS)

    Natanson, G. A.

    1998-01-01

    The in-flight gyro calibration scheme commonly used by NASA Goddard Space Flight Center (GSFC) attitude ground support teams closely follows an original version of the Davenport algorithm developed in the late seventies. Its basic idea is to minimize the least-squares differences between attitudes gyro- propagated over the course of a maneuver and those determined using post- maneuver sensor measurements. The paper represents the scheme in a recursive form by combining necessary partials into a rectangular matrix, which is propagated in exactly the same way as a Kalman filters square transition matrix. The nontrivial structure of the propagation matrix arises from the fact that attitude errors are not included in the state vector, and therefore their derivatives with respect to estimated a parameters do not appear in the transition matrix gyro defined in the conventional way. In cases when the required accuracy can be achieved by a single iteration, representation of the Davenport gyro calibration scheme in a recursive form allows one to discard each gyro measurement immediately after it was used to propagate the attitude and state transition matrix. Another advantage of the new approach is that it utilizes the same expression for the error sensitivity matrix as that used by the Kalman filter. As a result the suggested modification of the Davenport algorithm made it possible to reuse software modules implemented in the Kalman filter estimator, where both attitude errors and gyro calibration parameters are included in the state vector. The new approach has been implemented in the ground calibration utilities used to support the Tropical Rainfall Measuring Mission (TRMM). The paper analyzes some preliminary results of gyro calibration performed by the TRMM ground attitude support team. It is demonstrated that an effect of the second iteration on estimated values of calibration parameters is negligibly small, and therefore there is no need to store processed gyro data. This opens a promising opportunity for onboard implementation of the suggested recursive procedure by combining, it with the Kalman filter used to obtain necessary attitude solutions at the beginning and end of each maneuver.

  6. Experimental evaluation of a recursive model identification technique for type 1 diabetes.

    PubMed

    Finan, Daniel A; Doyle, Francis J; Palerm, Cesar C; Bevier, Wendy C; Zisser, Howard C; Jovanovic, Lois; Seborg, Dale E

    2009-09-01

    A model-based controller for an artificial beta cell requires an accurate model of the glucose-insulin dynamics in type 1 diabetes subjects. To ensure the robustness of the controller for changing conditions (e.g., changes in insulin sensitivity due to illnesses, changes in exercise habits, or changes in stress levels), the model should be able to adapt to the new conditions by means of a recursive parameter estimation technique. Such an adaptive strategy will ensure that the most accurate model is used for the current conditions, and thus the most accurate model predictions are used in model-based control calculations. In a retrospective analysis, empirical dynamic autoregressive exogenous input (ARX) models were identified from glucose-insulin data for nine type 1 diabetes subjects in ambulatory conditions. Data sets consisted of continuous (5-minute) glucose concentration measurements obtained from a continuous glucose monitor, basal insulin infusion rates and times and amounts of insulin boluses obtained from the subjects' insulin pumps, and subject-reported estimates of the times and carbohydrate content of meals. Two identification techniques were investigated: nonrecursive, or batch methods, and recursive methods. Batch models were identified from a set of training data, whereas recursively identified models were updated at each sampling instant. Both types of models were used to make predictions of new test data. For the purpose of comparison, model predictions were compared to zero-order hold (ZOH) predictions, which were made by simply holding the current glucose value constant for p steps into the future, where p is the prediction horizon. Thus, the ZOH predictions are model free and provide a base case for the prediction metrics used to quantify the accuracy of the model predictions. In theory, recursive identification techniques are needed only when there are changing conditions in the subject that require model adaptation. Thus, the identification and validation techniques were performed with both "normal" data and data collected during conditions of reduced insulin sensitivity. The latter were achieved by having the subjects self-administer a medication, prednisone, for 3 consecutive days. The recursive models were allowed to adapt to this condition of reduced insulin sensitivity, while the batch models were only identified from normal data. Data from nine type 1 diabetes subjects in ambulatory conditions were analyzed; six of these subjects also participated in the prednisone portion of the study. For normal test data, the batch ARX models produced 30-, 45-, and 60-minute-ahead predictions that had average root mean square error (RMSE) values of 26, 34, and 40 mg/dl, respectively. For test data characterized by reduced insulin sensitivity, the batch ARX models produced 30-, 60-, and 90-minute-ahead predictions with average RMSE values of 27, 46, and 59 mg/dl, respectively; the recursive ARX models demonstrated similar performance with corresponding values of 27, 45, and 61 mg/dl, respectively. The identified ARX models (batch and recursive) produced more accurate predictions than the model-free ZOH predictions, but only marginally. For test data characterized by reduced insulin sensitivity, RMSE values for the predictions of the batch ARX models were 9, 5, and 5% more accurate than the ZOH predictions for prediction horizons of 30, 60, and 90 minutes, respectively. In terms of RMSE values, the 30-, 60-, and 90-minute predictions of the recursive models were more accurate than the ZOH predictions, by 10, 5, and 2%, respectively. In this experimental study, the recursively identified ARX models resulted in predictions of test data that were similar, but not superior, to the batch models. Even for the test data characteristic of reduced insulin sensitivity, the batch and recursive models demonstrated similar prediction accuracy. The predictions of the identified ARX models were only marginally more accurate than the model-free ZOH predictions. Given the simplicity of the ARX models and the computational ease with which they are identified, however, even modest improvements may justify the use of these models in a model-based controller for an artificial beta cell. 2009 Diabetes Technology Society.

  7. Essential energy space random walks to accelerate molecular dynamics simulations: Convergence improvements via an adaptive-length self-healing strategy

    NASA Astrophysics Data System (ADS)

    Zheng, Lianqing; Yang, Wei

    2008-07-01

    Recently, accelerated molecular dynamics (AMD) technique was generalized to realize essential energy space random walks so that further sampling enhancement and effective localized enhanced sampling could be achieved. This method is especially meaningful when essential coordinates of the target events are not priori known; moreover, the energy space metadynamics method was also introduced so that biasing free energy functions can be robustly generated. Despite the promising features of this method, due to the nonequilibrium nature of the metadynamics recursion, it is challenging to rigorously use the data obtained at the recursion stage to perform equilibrium analysis, such as free energy surface mapping; therefore, a large amount of data ought to be wasted. To resolve such problem so as to further improve simulation convergence, as promised in our original paper, we are reporting an alternate approach: the adaptive-length self-healing (ALSH) strategy for AMD simulations; this development is based on a recent self-healing umbrella sampling method. Here, the unit simulation length for each self-healing recursion is increasingly updated based on the Wang-Landau flattening judgment. When the unit simulation length for each update is long enough, all the following unit simulations naturally run into the equilibrium regime. Thereafter, these unit simulations can serve for the dual purposes of recursion and equilibrium analysis. As demonstrated in our model studies, by applying ALSH, both fast recursion and short nonequilibrium data waste can be compromised. As a result, combining all the data obtained from all the unit simulations that are in the equilibrium regime via the weighted histogram analysis method, efficient convergence can be robustly ensured, especially for the purpose of free energy surface mapping.

  8. Filtering with Marked Point Process Observations via Poisson Chaos Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Wei, E-mail: wsun@mathstat.concordia.ca; Zeng Yong, E-mail: zengy@umkc.edu; Zhang Shu, E-mail: zhangshuisme@hotmail.com

    2013-06-15

    We study a general filtering problem with marked point process observations. The motivation comes from modeling financial ultra-high frequency data. First, we rigorously derive the unnormalized filtering equation with marked point process observations under mild assumptions, especially relaxing the bounded condition of stochastic intensity. Then, we derive the Poisson chaos expansion for the unnormalized filter. Based on the chaos expansion, we establish the uniqueness of solutions of the unnormalized filtering equation. Moreover, we derive the Poisson chaos expansion for the unnormalized filter density under additional conditions. To explore the computational advantage, we further construct a new consistent recursive numerical schememore » based on the truncation of the chaos density expansion for a simple case. The new algorithm divides the computations into those containing solely system coefficients and those including the observations, and assign the former off-line.« less

  9. Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey

    2015-12-01

    The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.

  10. Pseudo-Linear Attitude Determination of Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2004-01-01

    This paper presents the overall mathematical model and results from pseudo linear recursive estimators of attitude and rate for a spinning spacecraft. The measurements considered are vector measurements obtained by sun-sensors, fixed head star trackers, horizon sensors, and three axis magnetometers. Two filters are proposed for estimating the attitude as well as the angular rate vector. One filter, called the q-Filter, yields the attitude estimate as a quaternion estimate, and the other filter, called the D-Filter, yields the estimated direction cosine matrix. Because the spacecraft is gyro-less, Euler s equation of angular motion of rigid bodies is used to enable the estimation of the angular velocity. A simpler Markov model is suggested as a replacement for Euler's equation in the case where the vector measurements are obtained at high rates relative to the spacecraft angular rate. The performance of the two filters is examined using simulated data.

  11. Space-Time Joint Interference Cancellation Using Fuzzy-Inference-Based Adaptive Filtering Techniques in Frequency-Selective Multipath Channels

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Chang; Lin, Hsuan-Yu; Chen, Yu-Fan; Wen, Jyh-Horng

    2006-12-01

    An adaptive minimum mean-square error (MMSE) array receiver based on the fuzzy-logic recursive least-squares (RLS) algorithm is developed for asynchronous DS-CDMA interference suppression in the presence of frequency-selective multipath fading. This receiver employs a fuzzy-logic control mechanism to perform the nonlinear mapping of the squared error and squared error variation, denoted by ([InlineEquation not available: see fulltext.],[InlineEquation not available: see fulltext.]), into a forgetting factor[InlineEquation not available: see fulltext.]. For the real-time applicability, a computationally efficient version of the proposed receiver is derived based on the least-mean-square (LMS) algorithm using the fuzzy-inference-controlled step-size[InlineEquation not available: see fulltext.]. This receiver is capable of providing both fast convergence/tracking capability as well as small steady-state misadjustment as compared with conventional LMS- and RLS-based MMSE DS-CDMA receivers. Simulations show that the fuzzy-logic LMS and RLS algorithms outperform, respectively, other variable step-size LMS (VSS-LMS) and variable forgetting factor RLS (VFF-RLS) algorithms at least 3 dB and 1.5 dB in bit-error-rate (BER) for multipath fading channels.

  12. Real-time monitoring of capacity loss for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Bhattarai, Arjun; Zou, Changfu; Meng, Shujuan; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2018-06-01

    The long-term operation of the vanadium redox flow battery is accompanied by ion diffusion across the separator and side reactions, which can lead to electrolyte imbalance and capacity loss. The accurate online monitoring of capacity loss is therefore valuable for the reliable and efficient operation of vanadium redox flow battery system. In this paper, a model-based online monitoring method is proposed to detect capacity loss in the vanadium redox flow battery in real time. A first-order equivalent circuit model is built to capture the dynamics of the vanadium redox flow battery. The model parameters are online identified from the onboard measureable signals with the recursive least squares, in seeking to keep a high modeling accuracy and robustness under a wide range of working scenarios. Based on the online adapted model, an observer is designed with the extended Kalman Filter to keep tracking both the capacity and state of charge of the battery in real time. Experiments are conducted on a lab-scale battery system. Results suggest that the online adapted model is able to simulate the battery behavior with high accuracy. The capacity loss as well as the state of charge can be estimated accurately in a real-time manner.

  13. Event-triggered distributed filtering over sensor networks with deception attacks and partial measurements

    NASA Astrophysics Data System (ADS)

    Bu, Xianye; Dong, Hongli; Han, Fei; Li, Gongfa

    2018-07-01

    This paper is concerned with the distributed filtering problem for a class of time-varying systems subject to deception attacks and event-triggering protocols. Due to the bandwidth limitation, an event-triggered communication strategy is adopted to alleviate the data transmission pressure in the algorithm implementation process. The partial nodes-based filtering problem is considered, where only a partial of nodes can measure the information of the plant. Meanwhile, the measurement information possibly suffers the deception attacks in the transmission process. Sufficient conditions can be established such that the error dynamics satisfies the prescribed average ? performance constraints. The parameters of designed filters can be calculated by solving a series of recursive linear matrix inequalities. A simulation example is presented to demonstrate the effectiveness of the proposed filtering method in this paper.

  14. The design of dual-mode complex signal processors based on quadratic modular number codes

    NASA Astrophysics Data System (ADS)

    Jenkins, W. K.; Krogmeier, J. V.

    1987-04-01

    It has been known for a long time that quadratic modular number codes admit an unusual representation of complex numbers which leads to complete decoupling of the real and imaginary channels, thereby simplifying complex multiplication and providing error isolation between the real and imaginary channels. This paper first presents a tutorial review of the theory behind the different types of complex modular rings (fields) that result from particular parameter selections, and then presents a theory for a 'dual-mode' complex signal processor based on the choice of augmented power-of-2 moduli. It is shown how a diminished-1 binary code, used by previous designers for the realization of Fermat number transforms, also leads to efficient realizations for dual-mode complex arithmetic for certain augmented power-of-2 moduli. Then a design is presented for a recursive complex filter based on a ROM/ACCUMULATOR architecture and realized in an augmented power-of-2 quadratic code, and a computer-generated example of a complex recursive filter is shown to illustrate the principles of the theory.

  15. Efficient method for computing the electronic transport properties of a multiterminal system

    NASA Astrophysics Data System (ADS)

    Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio

    2018-04-01

    We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.

  16. A 3D Image Filter for Parameter-Free Segmentation of Macromolecular Structures from Electron Tomograms

    PubMed Central

    Ali, Rubbiya A.; Landsberg, Michael J.; Knauth, Emily; Morgan, Garry P.; Marsh, Brad J.; Hankamer, Ben

    2012-01-01

    3D image reconstruction of large cellular volumes by electron tomography (ET) at high (≤5 nm) resolution can now routinely resolve organellar and compartmental membrane structures, protein coats, cytoskeletal filaments, and macromolecules. However, current image analysis methods for identifying in situ macromolecular structures within the crowded 3D ultrastructural landscape of a cell remain labor-intensive, time-consuming, and prone to user-bias and/or error. This paper demonstrates the development and application of a parameter-free, 3D implementation of the bilateral edge-detection (BLE) algorithm for the rapid and accurate segmentation of cellular tomograms. The performance of the 3D BLE filter has been tested on a range of synthetic and real biological data sets and validated against current leading filters—the pseudo 3D recursive and Canny filters. The performance of the 3D BLE filter was found to be comparable to or better than that of both the 3D recursive and Canny filters while offering the significant advantage that it requires no parameter input or optimisation. Edge widths as little as 2 pixels are reproducibly detected with signal intensity and grey scale values as low as 0.72% above the mean of the background noise. The 3D BLE thus provides an efficient method for the automated segmentation of complex cellular structures across multiple scales for further downstream processing, such as cellular annotation and sub-tomogram averaging, and provides a valuable tool for the accurate and high-throughput identification and annotation of 3D structural complexity at the subcellular level, as well as for mapping the spatial and temporal rearrangement of macromolecular assemblies in situ within cellular tomograms. PMID:22479430

  17. Adaptive Identification by Systolic Arrays.

    DTIC Science & Technology

    1987-12-01

    BIBLIOGRIAPHY Anton , Howard, Elementary Linear Algebra , John Wiley & Sons, 19S4. Cristi, Roberto, A Parallel Structure Jor Adaptive Pole Placement...10 11. SYSTEM IDENTIFICATION M*YETHODS ....................... 12 A. LINEAR SYSTEM MODELING ......................... 12 B. SOLUTION OF SYSTEMS OF... LINEAR EQUATIONS ......... 13 C. QR DECOMPOSITION ................................ 14 D. RECURSIVE LEAST SQUARES ......................... 16 E. BLOCK

  18. Real-time correction of tsunami site effect by frequency-dependent tsunami-amplification factor

    NASA Astrophysics Data System (ADS)

    Tsushima, H.

    2017-12-01

    For tsunami early warning, I developed frequency-dependent tsunami-amplification factor and used it to design a recursive digital filter that can be applicable for real-time correction of tsunami site response. In this study, I assumed that a tsunami waveform at an observing point could be modeled by convolution of source, path and site effects in time domain. Under this assumption, spectral ratio between offshore and the nearby coast can be regarded as site response (i.e. frequency-dependent amplification factor). If the amplification factor can be prepared before tsunamigenic earthquakes, its temporal convolution to offshore tsunami waveform provides tsunami prediction at coast in real time. In this study, tsunami waveforms calculated by tsunami numerical simulations were used to develop frequency-dependent tsunami-amplification factor. Firstly, I performed numerical tsunami simulations based on nonlinear shallow-water theory from many tsuanmigenic earthquake scenarios by varying the seismic magnitudes and locations. The resultant tsunami waveforms at offshore and the nearby coastal observing points were then used in spectral-ratio analysis. An average of the resulted spectral ratios from the tsunamigenic-earthquake scenarios is regarded as frequency-dependent amplification factor. Finally, the estimated amplification factor is used in design of a recursive digital filter that can be applicable in time domain. The above procedure is applied to Miyako bay at the Pacific coast of northeastern Japan. The averaged tsunami-height spectral ratio (i.e. amplification factor) between the location at the center of the bay and the outside show a peak at wave-period of 20 min. A recursive digital filter based on the estimated amplification factor shows good performance in real-time correction of tsunami-height amplification due to the site effect. This study is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant 15K16309.

  19. Recursive least squares estimation and its application to shallow trench isolation

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Qin, S. Joe; Bode, Christopher A.; Purdy, Matthew A.

    2003-06-01

    In recent years, run-to-run (R2R) control technology has received tremendous interest in semiconductor manufacturing. One class of widely used run-to-run controllers is based on the exponentially weighted moving average (EWMA) statistics to estimate process deviations. Using an EWMA filter to smooth the control action on a linear process has been shown to provide good results in a number of applications. However, for a process with severe drifts, the EWMA controller is insufficient even when large weights are used. This problem becomes more severe when there is measurement delay, which is almost inevitable in semiconductor industry. In order to control drifting processes, a predictor-corrector controller (PCC) and a double EWMA controller have been developed. Chen and Guo (2001) show that both PCC and double-EWMA controller are in effect Integral-double-Integral (I-II) controllers, which are able to control drifting processes. However, since offset is often within the noise of the process, the second integrator can actually cause jittering. Besides, tuning the second filter is not as intuitive as a single EWMA filter. In this work, we look at an alternative way Recursive Least Squares (RLS), to estimate and control the drifting process. EWMA and double-EWMA are shown to be the least squares estimate for locally constant mean model and locally constant linear trend model. Then the recursive least squares with exponential factor is applied to shallow trench isolation etch process to predict the future etch rate. The etch process, which is a critical process in the flash memory manufacturing, is known to suffer from significant etch rate drift due to chamber seasoning. In order to handle the metrology delay, we propose a new time update scheme. RLS with the new time update method gives very good result. The estimate error variance is smaller than that from EWMA, and mean square error decrease more than 10% compared to that from EWMA.

  20. A multi-mode real-time terrain parameter estimation method for wheeled motion control of mobile robots

    NASA Astrophysics Data System (ADS)

    Li, Yuankai; Ding, Liang; Zheng, Zhizhong; Yang, Qizhi; Zhao, Xingang; Liu, Guangjun

    2018-05-01

    For motion control of wheeled planetary rovers traversing on deformable terrain, real-time terrain parameter estimation is critical in modeling the wheel-terrain interaction and compensating the effect of wheel slipping. A multi-mode real-time estimation method is proposed in this paper to achieve accurate terrain parameter estimation. The proposed method is composed of an inner layer for real-time filtering and an outer layer for online update. In the inner layer, sinkage exponent and internal frictional angle, which have higher sensitivity than that of the other terrain parameters to wheel-terrain interaction forces, are estimated in real time by using an adaptive robust extended Kalman filter (AREKF), whereas the other parameters are fixed with nominal values. The inner layer result can help synthesize the current wheel-terrain contact forces with adequate precision, but has limited prediction capability for time-variable wheel slipping. To improve estimation accuracy of the result from the inner layer, an outer layer based on recursive Gauss-Newton (RGN) algorithm is introduced to refine the result of real-time filtering according to the innovation contained in the history data. With the two-layer structure, the proposed method can work in three fundamental estimation modes: EKF, REKF and RGN, making the method applicable for flat, rough and non-uniform terrains. Simulations have demonstrated the effectiveness of the proposed method under three terrain types, showing the advantages of introducing the two-layer structure.

  1. Is the difference between chemical and numerical estimates of baseflow meaningful?

    NASA Astrophysics Data System (ADS)

    Cartwright, Ian; Gilfedder, Ben; Hofmann, Harald

    2014-05-01

    Both chemical and numerical techniques are commonly used to calculate baseflow inputs to gaining rivers. In general the chemical methods yield lower estimates of baseflow than the numerical techniques. In part, this may be due to the techniques assuming two components (event water and baseflow) whereas there may also be multiple transient stores of water. Bank return waters, interflow, or waters stored on floodplains are delayed components that may be geochemically similar to the surface water from which they are derived; numerical techniques may record these components as baseflow whereas chemical mass balance studies are likely to aggregate them with the surface water component. This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. While more sophisticated techniques exist, these methods of estimating baseflow are readily applied with the available data and have been used widely elsewhere. During the early stages of high-discharge events, chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those from chemical mass balance using Cl calculated from continuous electrical conductivity. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of annual discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of annual discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge). These differences most probably reflect how the different techniques characterise the transient water sources in this catchment. The local minimum and recursive digital filters aggregate much of the water from delayed sources as baseflow. However, as many of these delayed transient water stores (such as bank return flow, floodplain storage, or interflow) have Cl concentrations that are similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low-salinity water from the transient stores as discharge falls. The use of complementary techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.

  2. Squids in the Study of Cerebral Magnetic Field

    NASA Astrophysics Data System (ADS)

    Romani, G. L.; Narici, L.

    The following sections are included: * INTRODUCTION * HISTORICAL OVERVIEW * NEUROMAGNETIC FIELDS AND AMBIENT NOISE * DETECTORS * Room temperature sensors * SQUIDs * DETECTION COILS * Magnetometers * Gradiometers * Balancing * Planar gradiometers * Choice of the gradiometer parameters * MODELING * Current pattern due to neural excitations * Action potentials and postsynaptic currents * The current dipole model * Neural population and detected fields * Spherically bounded medium * SPATIAL CONFIGURATION OF THE SENSORS * SOURCE LOCALIZATION * Localization procedure * Experimental accuracy and reproducibility * SIGNAL PROCESSING * Analog Filtering * Bandpass filters * Line rejection filters * DATA ANALYSIS * Analysis of evoked/event-related responses * Simple average * Selected average * Recursive techniques * Similarity analysis * Analysis of spontaneous activity * Mapping and localization * EXAMPLES OF NEUROMAGNETIC STUDIES * Neuromagnetic measurements * Studies on the normal brain * Clinical applications * Epilepsy * Tinnitus * CONCLUSIONS * ACKNOWLEDGEMENTS * REFERENCES

  3. A real-time recursive filter for the attitude determination of the Spacelab instrument pointing subsystem

    NASA Technical Reports Server (NTRS)

    West, M. E.

    1992-01-01

    A real-time estimation filter which reduces sensitivity to system variations and reduces the amount of preflight computation is developed for the instrument pointing subsystem (IPS). The IPS is a three-axis stabilized platform developed to point various astronomical observation instruments aboard the shuttle. Currently, the IPS utilizes a linearized Kalman filter (LKF), with premission defined gains, to compensate for system drifts and accumulated attitude errors. Since the a priori gains are generated for an expected system, variations result in a suboptimal estimation process. This report compares the performance of three real-time estimation filters with the current LKF implementation. An extended Kalman filter and a second-order Kalman filter are developed to account for the system nonlinearities, while a linear Kalman filter implementation assumes that the nonlinearities are negligible. The performance of each of the four estimation filters are compared with respect to accuracy, stability, settling time, robustness, and computational requirements. It is shown, that for the current IPS pointing requirements, the linear Kalman filter provides improved robustness over the LKF with less computational requirements than the two real-time nonlinear estimation filters.

  4. Efficient block processing of long duration biotelemetric brain data for health care monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soumya, I.; Zia Ur Rahman, M., E-mail: mdzr-5@ieee.org; Rama Koti Reddy, D. V.

    In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS,more » which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence.« less

  5. Recursive Bayesian recurrent neural networks for time-series modeling.

    PubMed

    Mirikitani, Derrick T; Nikolaev, Nikolay

    2010-02-01

    This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.

  6. Adaptive mesh refinement for characteristic grids

    NASA Astrophysics Data System (ADS)

    Thornburg, Jonathan

    2011-05-01

    I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius and Lehner (J Comp Phys 198:10, 2004), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in two-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null slices. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both second and fourth order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.

  7. Adaptive model reduction for continuous systems via recursive rational interpolation

    NASA Technical Reports Server (NTRS)

    Lilly, John H.

    1994-01-01

    A method for adaptive identification of reduced-order models for continuous stable SISO and MIMO plants is presented. The method recursively finds a model whose transfer function (matrix) matches that of the plant on a set of frequencies chosen by the designer. The algorithm utilizes the Moving Discrete Fourier Transform (MDFT) to continuously monitor the frequency-domain profile of the system input and output signals. The MDFT is an efficient method of monitoring discrete points in the frequency domain of an evolving function of time. The model parameters are estimated from MDFT data using standard recursive parameter estimation techniques. The algorithm has been shown in simulations to be quite robust to additive noise in the inputs and outputs. A significant advantage of the method is that it enables a type of on-line model validation. This is accomplished by simultaneously identifying a number of models and comparing each with the plant in the frequency domain. Simulations of the method applied to an 8th-order SISO plant and a 10-state 2-input 2-output plant are presented. An example of on-line model validation applied to the SISO plant is also presented.

  8. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  9. A vision-based system for measuring the displacements of large structures: Simultaneous adaptive calibration and full motion estimation

    NASA Astrophysics Data System (ADS)

    Santos, C. Almeida; Costa, C. Oliveira; Batista, J.

    2016-05-01

    The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.

  10. Vehicle States Observer Using Adaptive Tire-Road Friction Estimator

    NASA Astrophysics Data System (ADS)

    Kwak, Byunghak; Park, Youngjin

    Vehicle stability control system is a new idea which can enhance the vehicle stability and handling in the emergency situation. This system requires the information of the yaw rate, sideslip angle and road friction in order to control the traction and braking forces at the individual wheels. This paper proposes an observer for the vehicle stability control system. This observer consisted of the state observer for vehicle motion estimation and the road condition estimator for the identification of the coefficient of the road friction. The state observer uses 2 degrees-of-freedom bicycle model and estimates the system variables based on the Kalman filter. The road condition estimator uses the same vehicle model and identifies the coefficient of the tire-road friction based on the recursive least square method. Both estimators make use of each other information. We show the effectiveness and feasibility of the proposed scheme under various road conditions through computer simulations of a fifteen degree-of-freedom non-linear vehicle model.

  11. Recursive least-squares learning algorithms for neural networks

    NASA Astrophysics Data System (ADS)

    Lewis, Paul S.; Hwang, Jenq N.

    1990-11-01

    This paper presents the development of a pair of recursive least squares (ItLS) algorithms for online training of multilayer perceptrons which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is 0(N2) where N is the number of network parameters. This is due to the estimation of the N x N inverse Hessian matrix. Less computationally intensive approximations of the ilLS algorithms can be easily derived by using only block diagonal elements of this matrix thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6 1 BACKGROUND Artificial neural networks (ANNs) offer an interesting and potentially useful paradigm for signal processing and pattern recognition. The majority of ANN applications employ the feed-forward multilayer perceptron (MLP) network architecture in which network parameters are " trained" by a supervised learning algorithm employing the generalized delta rule (GDIt) [1 2]. The GDR algorithm approximates a fixed step steepest descent algorithm using derivatives computed by error backpropagatiori. The GDII algorithm is sometimes referred to as the backpropagation algorithm. However in this paper we will use the term backpropagation to refer only to the process of computing error derivatives. While multilayer perceptrons provide a very powerful nonlinear modeling capability GDR training can be very slow and inefficient. In linear adaptive filtering the analog of the GDR algorithm is the leastmean- squares (LMS) algorithm. Steepest descent-based algorithms such as GDR or LMS are first order because they use only first derivative or gradient information about the training error to be minimized. To speed up the training process second order algorithms may be employed that take advantage of second derivative or Hessian matrix information. Second order information can be incorporated into MLP training in different ways. In many applications especially in the area of pattern recognition the training set is finite. In these cases block learning can be applied using standard nonlinear optimization techniques [3 4 5].

  12. Development and evaluation of evidence-based nursing (EBN) filters and related databases*

    PubMed Central

    Lavin, Mary A.; Krieger, Mary M.; Meyer, Geralyn A.; Spasser, Mark A.; Cvitan, Tome; Reese, Cordie G.; Carlson, Judith H.; Perry, Anne G.; McNary, Patricia

    2005-01-01

    Objectives: Difficulties encountered in the retrieval of evidence-based nursing (EBN) literature and recognition of terminology, research focus, and design differences between evidence-based medicine and nursing led to the realization that nursing needs its own filter strategies for evidence-based practice. This article describes the development and evaluation of filters that facilitate evidence-based nursing searches. Methods: An inductive, multistep methodology was employed. A sleep search strategy was developed for uniform application to all filters for filter development and evaluation purposes. An EBN matrix was next developed as a framework to illustrate conceptually the placement of nursing-sensitive filters along two axes: horizontally, an adapted nursing process, and vertically, levels of evidence. Nursing diagnosis, patient outcomes, and primary data filters were developed recursively. Through an interface with the PubMed search engine, the EBN matrix filters were inserted into a database that executes filter searches, retrieves citations, and stores and updates retrieved citations sets hourly. For evaluation purposes, the filters were subjected to sensitivity and specificity analyses and retrieval set comparisons. Once the evaluation was complete, hyperlinks providing access to any one or a combination of completed filters to the EBN matrix were created. Subject searches on any topic may be applied to the filters, which interface with PubMed. Results: Sensitivity and specificity for the combined nursing diagnosis and primary data filter were 64% and 99%, respectively; for the patient outcomes filter, the results were 75% and 71%, respectively. Comparisons were made between the EBN matrix filters (nursing diagnosis and primary data) and PubMed's Clinical Queries (diagnosis and sensitivity) filters. Additional comparisons examined publication types and indexing differences. Review articles accounted for the majority of the publication type differences, because “review” was accepted by the CQ but was “NOT'd” by the EBN filter. Indexing comparisons revealed that although the term “nursing diagnosis” is in Medical Subject Headings (MeSH), the nursing diagnoses themselves (e.g., sleep deprivation, disturbed sleep pattern) are not indexed as nursing diagnoses. As a result, abstracts deemed to be appropriate nursing diagnosis by the EBN filter were not accepted by the CQ diagnosis filter. Conclusions: The EBN filter capture of desired articles may be enhanced by further refinement to achieve a greater degree of filter sensitivity. Retrieval set comparisons revealed publication type differences and indexing issues. The EBN matrix filter “NOT'd” out “review,” while the CQ filter did not. Indexing issues were identified that explained the retrieval of articles deemed appropriate by the EBN filter matrix but not included in the CQ retrieval. These results have MeSH definition and indexing implications as well as implications for clinical decision support in nursing practice. PMID:15685282

  13. Adaptive Two Dimensional RLS (Recursive Least Squares) Algorithms

    DTIC Science & Technology

    1989-03-01

    in Monterey wonderful. IX I. INTRODUCTION Adaptive algorithms have been used successfully for many years in a wide range of digital signal...SIMULATION RESULTS The 2-D FRLS algorithm was tested both on computer-generated data and on digitized images. For a baseline reference the 2-D L:rv1S...Alexander, S. T. Adaptivt Signal Processing: Theory and Applications. Springer- Verlag, New York. 1986. 7. Bellanger, Maurice G. Adaptive Digital

  14. A class of least-squares filtering and identification algorithms with systolic array architectures

    NASA Technical Reports Server (NTRS)

    Kalson, Seth Z.; Yao, Kung

    1991-01-01

    A unified approach is presented for deriving a large class of new and previously known time- and order-recursive least-squares algorithms with systolic array architectures, suitable for high-throughput-rate and VLSI implementations of space-time filtering and system identification problems. The geometrical derivation given is unique in that no assumption is made concerning the rank of the sample data correlation matrix. This method utilizes and extends the concept of oblique projections, as used previously in the derivations of the least-squares lattice algorithms. Exponentially weighted least-squares criteria are considered for both sliding and growing memory.

  15. A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers

    PubMed Central

    Liu, Zhuowei; Chen, Shuxin; Wu, Hao; He, Renke; Hao, Lin

    2018-01-01

    In multi-target tracking, the outliers-corrupted process and measurement noises can reduce the performance of the probability hypothesis density (PHD) filter severely. To solve the problem, this paper proposed a novel PHD filter, called Student’s t mixture PHD (STM-PHD) filter. The proposed filter models the heavy-tailed process noise and measurement noise as a Student’s t distribution as well as approximates the multi-target intensity as a mixture of Student’s t components to be propagated in time. Then, a closed PHD recursion is obtained based on Student’s t approximation. Our approach can make full use of the heavy-tailed characteristic of a Student’s t distribution to handle the situations with heavy-tailed process and the measurement noises. The simulation results verify that the proposed filter can overcome the negative effect generated by outliers and maintain a good tracking accuracy in the simultaneous presence of process and measurement outliers. PMID:29617348

  16. Health monitoring system for transmission shafts based on adaptive parameter identification

    NASA Astrophysics Data System (ADS)

    Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.

    2018-05-01

    A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.

  17. Recursive regularization step for high-order lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Coreixas, Christophe; Wissocq, Gauthier; Puigt, Guillaume; Boussuge, Jean-François; Sagaut, Pierre

    2017-09-01

    A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved through a recursive computation of nonequilibrium Hermite polynomial coefficients. In addition to the reduced computational cost of this procedure with respect to the standard one, the recursive step allows to considerably enhance the stability and accuracy of the numerical scheme by properly filtering out second- (and higher-) order nonhydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 104 to 106, and where a thorough analysis of the case at Re=3 ×104 is conducted. In the latter, results obtained using both regularization steps are compared against the Bhatnagar-Gross-Krook LBM for standard (D2Q9) and high-order (D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed approach. Further comparisons on thermal and fully compressible flows, using the general extension of this procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They confirm the stability increase induced by the recursive approach as compared with the standard one.

  18. Data-driven strategies for robust forecast of continuous glucose monitoring time-series.

    PubMed

    Fiorini, Samuele; Martini, Chiara; Malpassi, Davide; Cordera, Renzo; Maggi, Davide; Verri, Alessandro; Barla, Annalisa

    2017-07-01

    Over the past decade, continuous glucose monitoring (CGM) has proven to be a very resourceful tool for diabetes management. To date, CGM devices are employed for both retrospective and online applications. Their use allows to better describe the patients' pathology as well as to achieve a better control of patients' level of glycemia. The analysis of CGM sensor data makes possible to observe a wide range of metrics, such as the glycemic variability during the day or the amount of time spent below or above certain glycemic thresholds. However, due to the high variability of the glycemic signals among sensors and individuals, CGM data analysis is a non-trivial task. Standard signal filtering solutions fall short when an appropriate model personalization is not applied. State-of-the-art data-driven strategies for online CGM forecasting rely upon the use of recursive filters. Each time a new sample is collected, such models need to adjust their parameters in order to predict the next glycemic level. In this paper we aim at demonstrating that the problem of online CGM forecasting can be successfully tackled by personalized machine learning models, that do not need to recursively update their parameters.

  19. Arbitrary-level hanging nodes for adaptive hphp-FEM approximations in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Kus; Pavel Solin; David Andrs

    2014-11-01

    In this paper we discuss constrained approximation with arbitrary-level hanging nodes in adaptive higher-order finite element methods (hphp-FEM) for three-dimensional problems. This technique enables using highly irregular meshes, and it greatly simplifies the design of adaptive algorithms as it prevents refinements from propagating recursively through the finite element mesh. The technique makes it possible to design efficient adaptive algorithms for purely hexahedral meshes. We present a detailed mathematical description of the method and illustrate it with numerical examples.

  20. Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose, and Meal Intake: An Extended Kalman Filter Approach.

    PubMed

    Wang, Qian; Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan

    2014-03-01

    An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctuations. Using the 3-variate time series of glucose level, insulin dose, and meal intake of an individual type 1 diabetic subject, we apply an extended Kalman filter (EKF) to estimate time-varying coefficients of the patient-specific state-space model. We evaluate our empirical modeling using (1) the FDA-approved UVa/Padova simulator with 30 virtual patients and (2) clinical data of 5 type 1 diabetic patients under natural living conditions. Compared to a forgetting-factor-based recursive ARX model of the same order, the EKF model predictions have higher fit, and significantly better temporal gain and J index and thus are superior in early detection of upward and downward trends in glucose. The EKF based state-space model developed in this article is particularly suitable for model-based state-feedback control designs since the Kalman filter estimates the state variable of the glucose dynamics based on the measured glucose time series. In addition, since the model parameters are estimated in real time, this model is also suitable for adaptive control. © 2014 Diabetes Technology Society.

  1. An adaptable binary entropy coder

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.

  2. A fast ellipse extended target PHD filter using box-particle implementation

    NASA Astrophysics Data System (ADS)

    Zhang, Yongquan; Ji, Hongbing; Hu, Qi

    2018-01-01

    This paper presents a box-particle implementation of the ellipse extended target probability hypothesis density (ET-PHD) filter, called the ellipse extended target box particle PHD (EET-BP-PHD) filter, where the extended targets are described as a Poisson model developed by Gilholm et al. and the term "box" is here equivalent to the term "interval" used in interval analysis. The proposed EET-BP-PHD filter is capable of dynamically tracking multiple ellipse extended targets and estimating the target states and the number of targets, in the presence of clutter measurements, false alarms and missed detections. To derive the PHD recursion of the EET-BP-PHD filter, a suitable measurement likelihood is defined for a given partitioning cell, and the main implementation steps are presented along with the necessary box approximations and manipulations. The limitations and capabilities of the proposed EET-BP-PHD filter are illustrated by simulation examples. The simulation results show that a box-particle implementation of the ET-PHD filter can avoid the high number of particles and reduce computational burden, compared to a particle implementation of that for extended target tracking.

  3. Recent developments in learning control and system identification for robots and structures

    NASA Technical Reports Server (NTRS)

    Phan, M.; Juang, J.-N.; Longman, R. W.

    1990-01-01

    This paper reviews recent results in learning control and learning system identification, with particular emphasis on discrete-time formulation, and their relation to adaptive theory. Related continuous-time results are also discussed. Among the topics presented are proportional, derivative, and integral learning controllers, time-domain formulation of discrete learning algorithms. Newly developed techniques are described including the concept of the repetition domain, and the repetition domain formulation of learning control by linear feedback, model reference learning control, indirect learning control with parameter estimation, as well as related basic concepts, recursive and non-recursive methods for learning identification.

  4. Simulation for noise cancellation using LMS adaptive filter

    NASA Astrophysics Data System (ADS)

    Lee, Jia-Haw; Ooi, Lu-Ean; Ko, Ying-Hao; Teoh, Choe-Yung

    2017-06-01

    In this paper, the fundamental algorithm of noise cancellation, Least Mean Square (LMS) algorithm is studied and enhanced with adaptive filter. The simulation of the noise cancellation using LMS adaptive filter algorithm is developed. The noise corrupted speech signal and the engine noise signal are used as inputs for LMS adaptive filter algorithm. The filtered signal is compared to the original noise-free speech signal in order to highlight the level of attenuation of the noise signal. The result shows that the noise signal is successfully canceled by the developed adaptive filter. The difference of the noise-free speech signal and filtered signal are calculated and the outcome implies that the filtered signal is approaching the noise-free speech signal upon the adaptive filtering. The frequency range of the successfully canceled noise by the LMS adaptive filter algorithm is determined by performing Fast Fourier Transform (FFT) on the signals. The LMS adaptive filter algorithm shows significant noise cancellation at lower frequency range.

  5. An Unscented Kalman-Particle Hybrid Filter for Space Object Tracking

    NASA Astrophysics Data System (ADS)

    Raihan A. V, Dilshad; Chakravorty, Suman

    2018-03-01

    Optimal and consistent estimation of the state of space objects is pivotal to surveillance and tracking applications. However, probabilistic estimation of space objects is made difficult by the non-Gaussianity and nonlinearity associated with orbital mechanics. In this paper, we present an unscented Kalman-particle hybrid filtering framework for recursive Bayesian estimation of space objects. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. To assess the performance of the hybrid filtering approach, we consider two test cases of space objects that are assumed to undergo full three dimensional orbital motion under the effects of J 2 and atmospheric drag perturbations. It is demonstrated that the hybrid filters can furnish fast, accurate and consistent estimates outperforming standard UKF and particle filter (PF) implementations.

  6. Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique

    NASA Astrophysics Data System (ADS)

    Shrivastava, Akash; Mohanty, A. R.

    2018-03-01

    This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.

  7. Processing of fetal heart rate through non-invasive adaptive system based on recursive least squares algorithm

    NASA Astrophysics Data System (ADS)

    Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir

    2017-10-01

    In this article, we describe an innovative non-invasive method of Fetal Phonocardiography (fPCG) using fiber-optic sensors and adaptive algorithm for the measurement of fetal heart rate (fHR). Conventional PCG is based on a noninvasive scanning of acoustic signals by means of a microphone placed on the thorax. As for fPCG, the microphone is placed on the maternal abdomen. Our solution is based on patent pending non-invasive scanning of acoustic signals by means of a fiber-optic interferometer. Fiber-optic sensors are resistant to technical artifacts such as electromagnetic interferences (EMI), thus they can be used in situations where it is impossible to use conventional EFM methods, e.g. during Magnetic Resonance Imaging (MRI) examination or in case of delivery in water. The adaptive evaluation system is based on Recursive least squares (RLS) algorithm. Based on real measurements provided on five volunteers with their written consent, we created a simplified dynamic signal model of a distribution of heartbeat sounds (HS) through the human body. Our created model allows us to verification of the proposed adaptive system RLS algorithm. The functionality of the proposed non-invasive adaptive system was verified by objective parameters such as Sensitivity (S+) and Signal to Noise Ratio (SNR).

  8. Unified sensor management in unknown dynamic clutter

    NASA Astrophysics Data System (ADS)

    Mahler, Ronald; El-Fallah, Adel

    2010-04-01

    In recent years the first author has developed a unified, computationally tractable approach to multisensor-multitarget sensor management. This approach consists of closed-loop recursion of a PHD or CPHD filter with maximization of a "natural" sensor management objective function called PENT (posterior expected number of targets). In this paper we extend this approach so that it can be used in unknown, dynamic clutter backgrounds.

  9. An estimator-predictor approach to PLL loop filter design

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Hurd, W. J.

    1986-01-01

    An approach to the design of digital phase locked loops (DPLLs), using estimation theory concepts in the selection of a loop filter, is presented. The key concept is that the DPLL closed-loop transfer function is decomposed into an estimator and a predictor. The estimator provides recursive estimates of phase, frequency, and higher order derivatives, while the predictor compensates for the transport lag inherent in the loop. This decomposition results in a straightforward loop filter design procedure, enabling use of techniques from optimal and sub-optimal estimation theory. A design example for a particular choice of estimator is presented, followed by analysis of the associated bandwidth, gain margin, and steady state errors caused by unmodeled dynamics. This approach is under consideration for the design of the Deep Space Network (DSN) Advanced Receiver Carrier DPLL.

  10. Ultrasound thermography: A new temperature reconstruction model and in vivo results

    NASA Astrophysics Data System (ADS)

    Bayat, Mahdi; Ballard, John R.; Ebbini, Emad S.

    2017-03-01

    The recursive echo strain filter (RESF) model is presented as a new echo shift-based ultrasound temperature estimation model. The model is shown to have an infinite impulse response (IIR) filter realization of a differentitor-integrator operator. This model is then used for tracking sub-therapeutic temperature changes due to high intensity focused ultrasound (HIFU) shots in the hind limb of the Copenhagen rats in vivo. In addition to the reconstruction filter, a motion compensation method is presented which takes advantage of the deformation field outside the region of interest to correct the motion errors during temperature tracking. The combination of the RESF model and motion compensation algorithm is shown to greatly enhance the accuracy of the in vivo temperature estimation using ultrasound echo shifts.

  11. Triangular covariance factorizations for. Ph.D. Thesis. - Calif. Univ.

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.

    1976-01-01

    An improved computational form of the discrete Kalman filter is derived using an upper triangular factorization of the error covariance matrix. The covariance P is factored such that P = UDUT where U is unit upper triangular and D is diagonal. Recursions are developed for propagating the U-D covariance factors together with the corresponding state estimate. The resulting algorithm, referred to as the U-D filter, combines the superior numerical precision of square root filtering techniques with an efficiency comparable to that of Kalman's original formula. Moreover, this method is easily implemented and involves no more computer storage than the Kalman algorithm. These characteristics make the U-D method an attractive realtime filtering technique. A new covariance error analysis technique is obtained from an extension of the U-D filter equations. This evaluation method is flexible and efficient and may provide significantly improved numerical results. Cost comparisons show that for a large class of problems the U-D evaluation algorithm is noticeably less expensive than conventional error analysis methods.

  12. New distributed fusion filtering algorithm based on covariances over sensor networks with random packet dropouts

    NASA Astrophysics Data System (ADS)

    Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.

    2017-07-01

    This paper studies the distributed fusion estimation problem from multisensor measured outputs perturbed by correlated noises and uncertainties modelled by random parameter matrices. Each sensor transmits its outputs to a local processor over a packet-erasure channel and, consequently, random losses may occur during transmission. Different white sequences of Bernoulli variables are introduced to model the transmission losses. For the estimation, each lost output is replaced by its estimator based on the information received previously, and only the covariances of the processes involved are used, without requiring the signal evolution model. First, a recursive algorithm for the local least-squares filters is derived by using an innovation approach. Then, the cross-correlation matrices between any two local filters is obtained. Finally, the distributed fusion filter weighted by matrices is obtained from the local filters by applying the least-squares criterion. The performance of the estimators and the influence of both sensor uncertainties and transmission losses on the estimation accuracy are analysed in a numerical example.

  13. Some estimation formulae for continuous time-invariant linear systems

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.; Sidhu, G. S.

    1975-01-01

    In this brief paper we examine a Riccati equation decomposition due to Reid and Lainiotis and apply the result to the continuous time-invariant linear filtering problem. Exploitation of the time-invariant structure leads to integration-free covariance recursions which are of use in covariance analyses and in filter implementations. A super-linearly convergent iterative solution to the algebraic Riccati equation (ARE) is developed. The resulting algorithm, arranged in a square-root form, is thought to be numerically stable and competitive with other ARE solution methods. Certain covariance relations that are relevant to the fixed-point and fixed-lag smoothing problems are also discussed.

  14. Stable and verifiable state estimation methods and systems with spacecraft applications

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Wu, Yeong-Wei Andy (Inventor)

    2001-01-01

    The stability of a recursive estimator process (e.g., a Kalman filter is assured for long time periods by periodically resetting an error covariance P(t.sub.n) of the system to a predetermined reset value P.sub.r. The recursive process is thus repetitively forced to start from a selected covariance and continue for a time period that is short compared to the system's total operational time period. The time period in which the process must maintain its numerical stability is significantly reduced as is the demand on the system's numerical stability. The process stability for an extended operational time period T.sub.o is verified by performing the resetting step at the end of at least one reset time period T.sub.r whose duration is less than the operational time period T.sub.o and then confirming stability of the process over the reset time period T.sub.r. Because the recursive process starts from a selected covariance at the beginning of each reset time period T.sub.r, confirming stability of the process over at least one reset time period substantially confirms stability over the longer operational time period T.sub.o.

  15. Moving Horizon Estimation on a Chip

    DTIC Science & Technology

    2014-06-26

    description, e.g. VHDL or Verilog, for FPGA implementation . Especially for those whose main expertise is in control system design, writing algorithms in C...ditional Kalman Filter(KF) where recursive solution is available. We devel- oped various MHE designs and implemented them on the Xilinx Zynq ZC702 FPGA...practical deployment of the MHE technology. 2.2 Implementation of MHE on FPGA The next paper demonstrated the feasibility of implementing MHE algo

  16. Reply to comment by Rannik on "A simple method for estimating frequency response corrections for eddy covariance systems"

    Treesearch

    W. J. Massman

    2001-01-01

    First, my thanks to Dr. Ullar Rannik for his interest and insights in my recent study of spectral corrections and associated eddy covariance flux loss (Massman, 2000, henceforth denoted by M2000). His comments are important and germane to the attenuation of low frequencies of the turbulent cospectra due to recursive filtering and block averaging. Dr. Rannik addresses...

  17. Quantitative identification of riverine nitrogen from point, direct runoff and base flow sources.

    PubMed

    Huang, Hong; Zhang, Baifa; Lu, Jun

    2014-01-01

    We present a methodological example for quantifying the contributions of riverine total nitrogen (TN) from point, direct runoff and base flow sources by combining a recursive digital filter technique and statistical methods. First, we separated daily riverine flow into direct runoff and base flow using a recursive digital filter technique; then, a statistical model was established using daily simultaneous data for TN load, direct runoff rate, base flow rate, and temperature; and finally, the TN loading from direct runoff and base flow sources could be inversely estimated. As a case study, this approach was adopted to identify the TN source contributions in Changle River, eastern China. Results showed that, during 2005-2009, the total annual TN input to the river was 1,700.4±250.2 ton, and the contributions of point, direct runoff and base flow sources were 17.8±2.8%, 45.0±3.6%, and 37.2±3.9%, respectively. The innovation of the approach is that the nitrogen from direct runoff and base flow sources could be separately quantified. The approach is simple but detailed enough to take the major factors into account, providing an effective and reliable method for riverine nitrogen loading estimation and source apportionment.

  18. Frequency domain FIR and IIR adaptive filters

    NASA Technical Reports Server (NTRS)

    Lynn, D. W.

    1990-01-01

    A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.

  19. Practical low-cost visual communication using binary images for deaf sign language.

    PubMed

    Manoranjan, M D; Robinson, J A

    2000-03-01

    Deaf sign language transmitted by video requires a temporal resolution of 8 to 10 frames/s for effective communication. Conventional videoconferencing applications, when operated over low bandwidth telephone lines, provide very low temporal resolution of pictures, of the order of less than a frame per second, resulting in jerky movement of objects. This paper presents a practical solution for sign language communication, offering adequate temporal resolution of images using moving binary sketches or cartoons, implemented on standard personal computer hardware with low-cost cameras and communicating over telephone lines. To extract cartoon points an efficient feature extraction algorithm adaptive to the global statistics of the image is proposed. To improve the subjective quality of the binary images, irreversible preprocessing techniques, such as isolated point removal and predictive filtering, are used. A simple, efficient and fast recursive temporal prefiltering scheme, using histograms of successive frames, reduces the additive and multiplicative noise from low-cost cameras. An efficient three-dimensional (3-D) compression scheme codes the binary sketches. Subjective tests performed on the system confirm that it can be used for sign language communication over telephone lines.

  20. Modeling Adsorption Based Filters (Bio-remediation of Heavy Metal Contaminated Water)

    NASA Astrophysics Data System (ADS)

    McCarthy, Chris

    I will discuss kinetic models of adsorption, as well as models of filters based on those mechanisms. These mathematical models have been developed in support of our interdisciplinary lab group, which is centered at BMCC/CUNY (City University of New York). Our group conducts research into bio-remediation of heavy metal contaminated water via filtration. The filters are constructed out of biomass, such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). The models involve differential equations, stochastic methods, and recursive functions. I will compare the models' predictions to data obtained from computer simulations and experimentally by our lab group. Funding: CUNY Collaborative Incentive Research Grant (Round 12); CUNY Research Scholars Program.

  1. Flat-Passband 3 × 3 Interleaving Filter Designed With Optical Directional Couplers in Lattice Structure

    NASA Astrophysics Data System (ADS)

    Wang, Qi Jie; Zhang, Ying; Soh, Yeng Chai

    2005-12-01

    This paper presents a novel lattice optical delay-line circuit using 3 × 3 directional couplers to implement three-port optical interleaving filters. It is shown that the proposed circuit can deliver three channels of 2pi/3 phase-shifted interleaving transmission spectra if the coupling ratios of the last two directional couplers are selected appropriately. The other performance requirements of an optical interleaver can be achieved by designing the remaining part of the lattice circuit. A recursive synthesis design algorithm is developed to calculate the design parameters of the lattice circuit that will yield the desired filter response. As illustrative examples, interleavers with maximally flat-top passband transmission and with given transmission performance on passband ripples and passband bandwidth, respectively, are designed to verify the effectiveness of the proposed design scheme.

  2. Time-domain representation of frequency-dependent foundation impedance functions

    USGS Publications Warehouse

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  3. Adaptive Filtering to Enhance Noise Immunity of Impedance and Admittance Spectroscopy: Comparison with Fourier Transformation

    NASA Astrophysics Data System (ADS)

    Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.

    2017-05-01

    The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.

  4. Photon counting spectral breast CT: effect of adaptive filtration on CT numbers, noise, and contrast to noise ratio.

    PubMed

    Silkwood, Justin D; Matthews, Kenneth L; Shikhaliev, Polad M

    2013-05-01

    Photon counting spectral (PCS) computed tomography (CT) shows promise for breast imaging. An issue with current photon-counting detectors is low count rate capabilities, artifacts resulting from nonuniform count rate across the field of view, and suboptimal spectral information. These issues are addressed in part by using tissue-equivalent adaptive filtration of the x-ray beam. The purpose of the study was to investigate the effect of adaptive filtration on different aspects of PCS breast CT. The theoretical formulation for the filter shape was derived for different filter materials and evaluated by simulation and an experimental prototype of the filter was fabricated from a tissue-like material (acrylic). The PCS CT images of a glandular breast phantom with adipose and iodine contrast elements were simulated at 40, 60, 90, and 120 kVp tube voltages, with and without adaptive filter. The CT numbers, CT noise, and contrast-to-noise ratio (CNR) were compared for spectral CT images acquired with and without adaptive filters. Similar comparison was made for material-decomposed PCS CT images. The adaptive filter improved the uniformity of CT numbers, CT noise, and CNR in both ordinary and material decomposed PCS CT images. At the same tube output the average CT noise with adaptive filter, although uniform, was higher than the average noise without adaptive filter due to x-ray absorption by the filter. Increasing tube output, so that average skin exposure with the adaptive filter was same as without filter, made the noise with adaptive filter comparable to or lower than that without adaptive filter. Similar effects were observed when energy weighting was applied, and when material decompositions were performed using energy selective CT data. An adaptive filter decreases count rate requirements to the photon counting detectors which enables PCS breast CT based on commercially available detector technologies. Adaptive filter also improves image quality in PCS breast CT by decreasing beam hardening artifacts and by eliminating spatial nonuniformities of CT numbers, noise, and CNR.

  5. Identification and stochastic control of helicopter dynamic modes

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.; Bar-Shalom, Y.

    1983-01-01

    A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.

  6. Ridge Regression Signal Processing

    NASA Technical Reports Server (NTRS)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  7. Adaptive linear predictor FIR filter based on the Cyclone V FPGA with HPS to reduce narrow band RFI in AERA radio detection of cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szadkowski, Zbigniew

    We present the new approach to a filtering of radio frequency interferences (RFI) in the Auger Engineering Radio Array (AERA) which study the electromagnetic part of the Extensive Air Showers. The radio stations can observe radio signals caused by coherent emissions due to geomagnetic radiation and charge excess processes. AERA observes frequency band from 30 to 80 MHz. This range is highly contaminated by human-made RFI. In order to improve the signal to noise ratio RFI filters are used in AERA to suppress this contamination. The first kind of filter used by AERA was the Median one, based on themore » Fast Fourier Transform (FFT) technique. The second one, which is currently in use, is the infinite impulse response (IIR) notch filter. The proposed new filter is a finite impulse response (FIR) filter based on a linear prediction (LP). A periodic contamination hidden in a registered signal (digitized in the ADC) can be extracted and next subtracted to make signal cleaner. The FIR filter requires a calculation of n=32, 64 or even 128 coefficients (dependent on a required speed or accuracy) by solving of n linear equations with coefficients built from the covariance Toeplitz matrix. This matrix can be solved by the Levinson recursion, which is much faster than the Gauss procedure. The filter has been already tested in the real AERA radio stations on Argentinean pampas with a very successful results. The linear equations were solved either in the virtual soft-core NIOSR processor (implemented in the FPGA chip as a net of logic elements) or in the external Voipac PXA270M ARM processor. The NIOS processor is relatively slow (50 MHz internal clock), calculations performed in an external processor consume a significant amount of time for data exchange between the FPGA and the processor. Test showed a very good efficiency of the RFI suppression for stationary (long-term) contaminations. However, we observed a short-time contaminations, which could not be suppressed either by the IIR-notch filter or by the FIR filter based on the linear predictions. For the LP FIR filter the refreshment time of the filter coefficients was to long and filter did not keep up with the changes of a contamination structure, mainly due to a long calculation time in a slow processors. We propose to use the Cyclone V SE chip with embedded micro-controller operating with 925 MHz internal clock to significantly reduce a refreshment time of the FIR coefficients. The lab results are promising. (authors)« less

  8. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems.

    PubMed

    Kazemi, Mahdi; Arefi, Mohammad Mehdi

    2017-03-01

    In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Theory of Mind: Did Evolution Fool Us?

    PubMed Central

    Devaine, Marie; Hollard, Guillaume; Daunizeau, Jean

    2014-01-01

    Theory of Mind (ToM) is the ability to attribute mental states (e.g., beliefs and desires) to other people in order to understand and predict their behaviour. If others are rewarded to compete or cooperate with you, then what they will do depends upon what they believe about you. This is the reason why social interaction induces recursive ToM, of the sort “I think that you think that I think, etc.”. Critically, recursion is the common notion behind the definition of sophistication of human language, strategic thinking in games, and, arguably, ToM. Although sophisticated ToM is believed to have high adaptive fitness, broad experimental evidence from behavioural economics, experimental psychology and linguistics point towards limited recursivity in representing other’s beliefs. In this work, we test whether such apparent limitation may not in fact be proven to be adaptive, i.e. optimal in an evolutionary sense. First, we propose a meta-Bayesian approach that can predict the behaviour of ToM sophistication phenotypes who engage in social interactions. Second, we measure their adaptive fitness using evolutionary game theory. Our main contribution is to show that one does not have to appeal to biological costs to explain our limited ToM sophistication. In fact, the evolutionary cost/benefit ratio of ToM sophistication is non trivial. This is partly because an informational cost prevents highly sophisticated ToM phenotypes to fully exploit less sophisticated ones (in a competitive context). In addition, cooperation surprisingly favours lower levels of ToM sophistication. Taken together, these quantitative corollaries of the “social Bayesian brain” hypothesis provide an evolutionary account for both the limitation of ToM sophistication in humans as well as the persistence of low ToM sophistication levels. PMID:24505296

  10. Theory of mind: did evolution fool us?

    PubMed

    Devaine, Marie; Hollard, Guillaume; Daunizeau, Jean

    2014-01-01

    Theory of Mind (ToM) is the ability to attribute mental states (e.g., beliefs and desires) to other people in order to understand and predict their behaviour. If others are rewarded to compete or cooperate with you, then what they will do depends upon what they believe about you. This is the reason why social interaction induces recursive ToM, of the sort "I think that you think that I think, etc.". Critically, recursion is the common notion behind the definition of sophistication of human language, strategic thinking in games, and, arguably, ToM. Although sophisticated ToM is believed to have high adaptive fitness, broad experimental evidence from behavioural economics, experimental psychology and linguistics point towards limited recursivity in representing other's beliefs. In this work, we test whether such apparent limitation may not in fact be proven to be adaptive, i.e. optimal in an evolutionary sense. First, we propose a meta-Bayesian approach that can predict the behaviour of ToM sophistication phenotypes who engage in social interactions. Second, we measure their adaptive fitness using evolutionary game theory. Our main contribution is to show that one does not have to appeal to biological costs to explain our limited ToM sophistication. In fact, the evolutionary cost/benefit ratio of ToM sophistication is non trivial. This is partly because an informational cost prevents highly sophisticated ToM phenotypes to fully exploit less sophisticated ones (in a competitive context). In addition, cooperation surprisingly favours lower levels of ToM sophistication. Taken together, these quantitative corollaries of the "social Bayesian brain" hypothesis provide an evolutionary account for both the limitation of ToM sophistication in humans as well as the persistence of low ToM sophistication levels.

  11. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    PubMed

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-07-16

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.

  12. An adaptive three-stage extended Kalman filter for nonlinear discrete-time system in presence of unknown inputs.

    PubMed

    Xiao, Mengli; Zhang, Yongbo; Wang, Zhihua; Fu, Huimin

    2018-04-01

    Considering the performances of conventional Kalman filter may seriously degrade when it suffers stochastic faults and unknown input, which is very common in engineering problems, a new type of adaptive three-stage extended Kalman filter (AThSEKF) is proposed to solve state and fault estimation in nonlinear discrete-time system under these conditions. The three-stage UV transformation and adaptive forgetting factor are introduced for derivation, and by comparing with the adaptive augmented state extended Kalman filter, it is proven to be uniformly asymptotically stable. Furthermore, the adaptive three-stage extended Kalman filter is applied to a two-dimensional radar tracking scenario to illustrate the effect, and the performance is compared with that of conventional three stage extended Kalman filter (ThSEKF) and the adaptive two-stage extended Kalman filter (ATEKF). The results show that the adaptive three-stage extended Kalman filter is more effective than these two filters when facing the nonlinear discrete-time systems with information of unknown inputs not perfectly known. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Distributed Event-Based Set-Membership Filtering for a Class of Nonlinear Systems With Sensor Saturations Over Sensor Networks.

    PubMed

    Ma, Lifeng; Wang, Zidong; Lam, Hak-Keung; Kyriakoulis, Nikos

    2017-11-01

    In this paper, the distributed set-membership filtering problem is investigated for a class of discrete time-varying system with an event-based communication mechanism over sensor networks. The system under consideration is subject to sector-bounded nonlinearity, unknown but bounded noises and sensor saturations. Each intelligent sensing node transmits the data to its neighbors only when certain triggering condition is violated. By means of a set of recursive matrix inequalities, sufficient conditions are derived for the existence of the desired distributed event-based filter which is capable of confining the system state in certain ellipsoidal regions centered at the estimates. Within the established theoretical framework, two additional optimization problems are formulated: one is to seek the minimal ellipsoids (in the sense of matrix trace) for the best filtering performance, and the other is to maximize the triggering threshold so as to reduce the triggering frequency with satisfactory filtering performance. A numerically attractive chaos algorithm is employed to solve the optimization problems. Finally, an illustrative example is presented to demonstrate the effectiveness and applicability of the proposed algorithm.

  14. A recursive Bayesian updating model of haptic stiffness perception.

    PubMed

    Wu, Bing; Klatzky, Roberta L

    2018-06-01

    Stiffness of many materials follows Hooke's Law, but the mechanism underlying the haptic perception of stiffness is not as simple as it seems in the physical definition. The present experiments support a model by which stiffness perception is adaptively updated during dynamic interaction. Participants actively explored virtual springs and estimated their stiffness relative to a reference. The stimuli were simulations of linear springs or nonlinear springs created by modulating a linear counterpart with low-amplitude, half-cycle (Experiment 1) or full-cycle (Experiment 2) sinusoidal force. Experiment 1 showed that subjective stiffness increased (decreased) as a linear spring was positively (negatively) modulated by a half-sinewave force. In Experiment 2, an opposite pattern was observed for full-sinewave modulations. Modeling showed that the results were best described by an adaptive process that sequentially and recursively updated an estimate of stiffness using the force and displacement information sampled over trajectory and time. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1986-01-01

    A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.

  16. Recursive causality in evolution: a model for epigenetic mechanisms in cancer development.

    PubMed

    Haslberger, A; Varga, F; Karlic, H

    2006-01-01

    Interactions between adaptative and selective processes are illustrated in the model of recursive causality as defined in Rupert Riedl's systems theory of evolution. One of the main features of this theory also termed as theory of evolving complexity is the centrality of the notion of 'recursive' or 'feedback' causality - 'the idea that every biological effect in living systems, in some way, feeds back to its own cause'. Our hypothesis is that "recursive" or "feedback" causality provides a model for explaining the consequences of interacting genetic and epigenetic mechanisms which are known to play a key role in development of cancer. Epigenetics includes any process that alters gene activity without changes of the DNA sequence. The most important epigenetic mechanisms are DNA-methylation and chromatin remodeling. Hypomethylation of so-called oncogenes and hypermethylation of tumor suppressor genes appear to be critical determinants of cancer. Folic acid, vitamin B12 and other nutrients influence the function of enzymes that participate in various methylation processes by affecting the supply of methyl groups into a variety of molecules which may be directly or indirectly associated with cancerogenesis. We present an example from our own studies by showing that vitamin D3 has the potential to de-methylate the osteocalcin-promoter in MG63 osteosarcoma cells. Consequently, a stimulation of osteocalcin synthesis can be observed. The above mentioned enzymes also play a role in development and differentiation of cells and organisms and thus illustrate the close association between evolutionary and developmental mechanisms. This enabled new ways to understand the interaction between the genome and environment and may improve biomedical concepts including environmental health aspects where epigenetic and genetic modifications are closely associated. Recent observations showed that methylated nucleotides in the gene promoter may serve as a target for solar UV-induced mutations of the p53 tumor suppressor gene. This illustrates the close interaction of genetic and epigenetic mechanisms in cancerogenesis resulting from changes in transcriptional regulation and its contribution to a phenotype at the micro- or macroevolutionary level. Above-mentioned interactions of genetic and epigenetic mechanisms in oncogenesis defy explanation by plain linear causality, things like the continuing adaptability of complex systems. They can be explained by the concept of recursive causality and has introduced molecular biology into the realm of cognition science and systems theory: based on the notion of so-called feedback- or recursive causality a model for epigenetic mechanisms with relevance for oncology and biomedicine is provided.

  17. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation

    PubMed Central

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-01-01

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361

  18. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-12-19

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.

  19. Experimental Demonstration of Adaptive Infrared Multispectral Imaging Using Plasmonic Filter Array (Postprint)

    DTIC Science & Technology

    2016-10-10

    AFRL-RX-WP-JA-2017-0189 EXPERIMENTAL DEMONSTRATION OF ADAPTIVE INFRARED MULTISPECTRAL IMAGING USING PLASMONIC FILTER ARRAY...March 2016 – 23 May 2016 4. TITLE AND SUBTITLE EXPERIMENTAL DEMONSTRATION OF ADAPTIVE INFRARED MULTISPECTRAL IMAGING USING PLASMONIC FILTER ARRAY...experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios

  20. Method and system for determining induction motor speed

    DOEpatents

    Parlos, Alexander G.; Bharadwaj, Raj M.

    2004-03-30

    A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.

  1. A nonlinear Kalman filtering approach to embedded control of turbocharged diesel engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The development of efficient embedded control for turbocharged Diesel engines, requires the programming of elaborated nonlinear control and filtering methods. To this end, in this paper nonlinear control for turbocharged Diesel engines is developed with the use of Differential flatness theory and the Derivative-free nonlinear Kalman Filter. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances the Derivative-free nonlinear Kalman Filter is used and redesigned as a disturbance observer. The filter consists of the Kalman Filter recursion on the linearized equivalent of the Diesel engine model and of an inverse transformation based on differential flatness theory which enables to obtain estimates for the state variables of the initial nonlinear model. Once the disturbances variables are identified it is possible to compensate them by including an additional control term in the feedback loop. The efficiency of the proposed control method is tested through simulation experiments.

  2. Multilevel Mixture Kalman Filter

    NASA Astrophysics Data System (ADS)

    Guo, Dong; Wang, Xiaodong; Chen, Rong

    2004-12-01

    The mixture Kalman filter is a general sequential Monte Carlo technique for conditional linear dynamic systems. It generates samples of some indicator variables recursively based on sequential importance sampling (SIS) and integrates out the linear and Gaussian state variables conditioned on these indicators. Due to the marginalization process, the complexity of the mixture Kalman filter is quite high if the dimension of the indicator sampling space is high. In this paper, we address this difficulty by developing a new Monte Carlo sampling scheme, namely, the multilevel mixture Kalman filter. The basic idea is to make use of the multilevel or hierarchical structure of the space from which the indicator variables take values. That is, we draw samples in a multilevel fashion, beginning with sampling from the highest-level sampling space and then draw samples from the associate subspace of the newly drawn samples in a lower-level sampling space, until reaching the desired sampling space. Such a multilevel sampling scheme can be used in conjunction with the delayed estimation method, such as the delayed-sample method, resulting in delayed multilevel mixture Kalman filter. Examples in wireless communication, specifically the coherent and noncoherent 16-QAM over flat-fading channels, are provided to demonstrate the performance of the proposed multilevel mixture Kalman filter.

  3. Flatness-based control and Kalman filtering for a continuous-time macroeconomic model

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.

    2017-11-01

    The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.

  4. Adaptive filter design using recurrent cerebellar model articulation controller.

    PubMed

    Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S

    2010-07-01

    A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.

  5. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model

    PubMed Central

    Li, Xiaoqing; Wang, Yu

    2018-01-01

    Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology. PMID:29351254

  6. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model.

    PubMed

    Xin, Jingzhou; Zhou, Jianting; Yang, Simon X; Li, Xiaoqing; Wang, Yu

    2018-01-19

    Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology.

  7. Adaptive Filter Design Using Type-2 Fuzzy Cerebellar Model Articulation Controller.

    PubMed

    Lin, Chih-Min; Yang, Ming-Shu; Chao, Fei; Hu, Xiao-Min; Zhang, Jun

    2016-10-01

    This paper aims to propose an efficient network and applies it as an adaptive filter for the signal processing problems. An adaptive filter is proposed using a novel interval type-2 fuzzy cerebellar model articulation controller (T2FCMAC). The T2FCMAC realizes an interval type-2 fuzzy logic system based on the structure of the CMAC. Due to the better ability of handling uncertainties, type-2 fuzzy sets can solve some complicated problems with outstanding effectiveness than type-1 fuzzy sets. In addition, the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so that the convergence of the filtering error can be guaranteed. In order to demonstrate the performance of the proposed adaptive T2FCMAC filter, it is tested in signal processing applications, including a nonlinear channel equalization system, a time-varying channel equalization system, and an adaptive noise cancellation system. The advantages of the proposed filter over the other adaptive filters are verified through simulations.

  8. Teaching learning based optimization-functional link artificial neural network filter for mixed noise reduction from magnetic resonance image.

    PubMed

    Kumar, M; Mishra, S K

    2017-01-01

    The clinical magnetic resonance imaging (MRI) images may get corrupted due to the presence of the mixture of different types of noises such as Rician, Gaussian, impulse, etc. Most of the available filtering algorithms are noise specific, linear, and non-adaptive. There is a need to develop a nonlinear adaptive filter that adapts itself according to the requirement and effectively applied for suppression of mixed noise from different MRI images. In view of this, a novel nonlinear neural network based adaptive filter i.e. functional link artificial neural network (FLANN) whose weights are trained by a recently developed derivative free meta-heuristic technique i.e. teaching learning based optimization (TLBO) is proposed and implemented. The performance of the proposed filter is compared with five other adaptive filters and analyzed by considering quantitative metrics and evaluating the nonparametric statistical test. The convergence curve and computational time are also included for investigating the efficiency of the proposed as well as competitive filters. The simulation outcomes of proposed filter outperform the other adaptive filters. The proposed filter can be hybridized with other evolutionary technique and utilized for removing different noise and artifacts from others medical images more competently.

  9. Truth and Consequences: Believing as Adaptive Behavior.

    ERIC Educational Resources Information Center

    Sawyer, Llewlee L.

    A theoretical cornerstone of cognitive therapy is the idea that the relationship between experience and cognition, the interpretation of experience, is recursive. Human beings can respond to a given experience with more than one description and/or explanation of the experience and these alternative interpretations can have different experiential…

  10. Sub-band/transform compression of video sequences

    NASA Technical Reports Server (NTRS)

    Sauer, Ken; Bauer, Peter

    1992-01-01

    The progress on compression of video sequences is discussed. The overall goal of the research was the development of data compression algorithms for high-definition television (HDTV) sequences, but most of our research is general enough to be applicable to much more general problems. We have concentrated on coding algorithms based on both sub-band and transform approaches. Two very fundamental issues arise in designing a sub-band coder. First, the form of the signal decomposition must be chosen to yield band-pass images with characteristics favorable to efficient coding. A second basic consideration, whether coding is to be done in two or three dimensions, is the form of the coders to be applied to each sub-band. Computational simplicity is of essence. We review the first portion of the year, during which we improved and extended some of the previous grant period's results. The pyramid nonrectangular sub-band coder limited to intra-frame application is discussed. Perhaps the most critical component of the sub-band structure is the design of bandsplitting filters. We apply very simple recursive filters, which operate at alternating levels on rectangularly sampled, and quincunx sampled images. We will also cover the techniques we have studied for the coding of the resulting bandpass signals. We discuss adaptive three-dimensional coding which takes advantage of the detection algorithm developed last year. To this point, all the work on this project has been done without the benefit of motion compensation (MC). Motion compensation is included in many proposed codecs, but adds significant computational burden and hardware expense. We have sought to find a lower-cost alternative featuring a simple adaptation to motion in the form of the codec. In sequences of high spatial detail and zooming or panning, it appears that MC will likely be necessary for the proposed quality and bit rates.

  11. Adaptive filtering in biological signal processing.

    PubMed

    Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A

    1990-01-01

    The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed.

  12. A Novel Adaptive H∞ Filtering Method with Delay Compensation for the Transfer Alignment of Strapdown Inertial Navigation Systems.

    PubMed

    Lyu, Weiwei; Cheng, Xianghong

    2017-11-28

    Transfer alignment is always a key technology in a strapdown inertial navigation system (SINS) because of its rapidity and accuracy. In this paper a transfer alignment model is established, which contains the SINS error model and the measurement model. The time delay in the process of transfer alignment is analyzed, and an H∞ filtering method with delay compensation is presented. Then the H∞ filtering theory and the robust mechanism of H∞ filter are deduced and analyzed in detail. In order to improve the transfer alignment accuracy in SINS with time delay, an adaptive H∞ filtering method with delay compensation is proposed. Since the robustness factor plays an important role in the filtering process and has effect on the filtering accuracy, the adaptive H∞ filter with delay compensation can adjust the value of robustness factor adaptively according to the dynamic external environment. The vehicle transfer alignment experiment indicates that by using the adaptive H∞ filtering method with delay compensation, the transfer alignment accuracy and the pure inertial navigation accuracy can be dramatically improved, which demonstrates the superiority of the proposed filtering method.

  13. An adaptive Kalman filter approach for cardiorespiratory signal extraction and fusion of non-contacting sensors

    PubMed Central

    2014-01-01

    Background Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e. magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and time-varying offset and are likely to be disturbed by measurement noise. Basic filtering techniques fail to extract relevant information for monitoring purposes. Methods We present a real-time filtering system based on an adaptive Kalman filter approach that separates signal offsets, respiratory and heart signals from three different sensor channels. It continuously estimates respiration and heart rates, which are fed back into the system model to enhance performance. Sensor and system noise covariance matrices are automatically adapted to the aimed application, thus improving the signal separation capabilities. We apply the filtering to two different subjects with different heart rates and sensor properties and compare the results to the non-adaptive version of the same Kalman filter. Also, the performance, depending on the initialization of the filters, is analyzed using three different configurations ranging from best to worst case. Results Extracted data are compared with reference heart rates derived from a standard pulse-photoplethysmographic sensor and respiration rates from a flowmeter. In the worst case for one of the subjects the adaptive filter obtains mean errors (standard deviations) of -0.2 min −1 (0.3 min −1) and -0.7 bpm (1.7 bpm) (compared to -0.2 min −1 (0.4 min −1) and 42.0 bpm (6.1 bpm) for the non-adaptive filter) for respiration and heart rate, respectively. In bad conditions the heart rate is only correctly measurable when the Kalman matrices are adapted to the target sensor signals. Also, the reduced mean error between the extracted offset and the raw sensor signal shows that adapting the Kalman filter continuously improves the ability to separate the desired signals from the raw sensor data. The average total computational time needed for the Kalman filters is under 25% of the total signal length rendering it possible to perform the filtering in real-time. Conclusions It is possible to measure in real-time heart and breathing rates using an adaptive Kalman filter approach. Adapting the Kalman filter matrices improves the estimation results and makes the filter universally deployable when measuring cardiorespiratory signals. PMID:24886253

  14. An adaptive Kalman filter approach for cardiorespiratory signal extraction and fusion of non-contacting sensors.

    PubMed

    Foussier, Jerome; Teichmann, Daniel; Jia, Jing; Misgeld, Berno; Leonhardt, Steffen

    2014-05-09

    Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e. magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and time-varying offset and are likely to be disturbed by measurement noise. Basic filtering techniques fail to extract relevant information for monitoring purposes. We present a real-time filtering system based on an adaptive Kalman filter approach that separates signal offsets, respiratory and heart signals from three different sensor channels. It continuously estimates respiration and heart rates, which are fed back into the system model to enhance performance. Sensor and system noise covariance matrices are automatically adapted to the aimed application, thus improving the signal separation capabilities. We apply the filtering to two different subjects with different heart rates and sensor properties and compare the results to the non-adaptive version of the same Kalman filter. Also, the performance, depending on the initialization of the filters, is analyzed using three different configurations ranging from best to worst case. Extracted data are compared with reference heart rates derived from a standard pulse-photoplethysmographic sensor and respiration rates from a flowmeter. In the worst case for one of the subjects the adaptive filter obtains mean errors (standard deviations) of -0.2 min(-1) (0.3 min(-1)) and -0.7 bpm (1.7 bpm) (compared to -0.2 min(-1) (0.4 min(-1)) and 42.0 bpm (6.1 bpm) for the non-adaptive filter) for respiration and heart rate, respectively. In bad conditions the heart rate is only correctly measurable when the Kalman matrices are adapted to the target sensor signals. Also, the reduced mean error between the extracted offset and the raw sensor signal shows that adapting the Kalman filter continuously improves the ability to separate the desired signals from the raw sensor data. The average total computational time needed for the Kalman filters is under 25% of the total signal length rendering it possible to perform the filtering in real-time. It is possible to measure in real-time heart and breathing rates using an adaptive Kalman filter approach. Adapting the Kalman filter matrices improves the estimation results and makes the filter universally deployable when measuring cardiorespiratory signals.

  15. Estimation Filter for Alignment of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David

    2007-01-01

    A document presents a summary of an onboard estimation algorithm now being used to calibrate the alignment of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility). The algorithm, denoted the S2P calibration filter, recursively generates estimates of the alignment angles between a telescope reference frame and a star-tracker reference frame. At several discrete times during the day, the filter accepts, as input, attitude estimates from the star tracker and observations taken by the Pointing Control Reference Sensor (a sensor in the field of view of the telescope). The output of the filter is a calibrated quaternion that represents the best current mean-square estimate of the alignment angles between the telescope and the star tracker. The S2P calibration filter incorporates a Kalman filter that tracks six states - two for each of three orthogonal coordinate axes. Although, in principle, one state per axis is sufficient, the use of two states per axis makes it possible to model both short- and long-term behaviors. Specifically, the filter properly models transient learning, characteristic times and bounds of thermomechanical drift, and long-term steady-state statistics, whether calibration measurements are taken frequently or infrequently. These properties ensure that the S2P filter performance is optimal over a broad range of flight conditions, and can be confidently run autonomously over several years of in-flight operation without human intervention.

  16. Dynamic Estimation of Rigid Motion from Perspective Views via Recursive Identification of Exterior Differential Systems with Parameters on a Topological Manifold

    DTIC Science & Technology

    1994-02-15

    0. Faugeras. Three dimensional vision, a geometric viewpoint. MIT Press, 1993. [19] 0 . D. Faugeras and S. Maybank . Motion from point mathces...multiplicity of solutions. Int. J. of Computer Vision, 1990. 1201 0.D. Faugeras, Q.T. Luong, and S.J. Maybank . Camera self-calibration: theory and...Kalrnan filter-based algorithms for estimating depth from image sequences. Int. J. of computer vision, 1989. [41] S. Maybank . Theory of

  17. ITAS - A Better Way of Coding.

    DTIC Science & Technology

    1980-03-01

    ray tube, eliminates the tedium and time delays associated with conventional language programing. G ! vii SECTION I The Problem Our objective was to...8217 Input Gan+ Delay •Del ay Gai Figure 1 - An Itagram of a first order recursive digital filter. 3 ktmuIeN PAM NO FILMED MAR Using a light pen, the user... the computer in a positive active role, i.e. the user has to determine why an answer is wrong and take action to correct the fault. This is accomplished

  18. Spatial operator approach to flexible multibody system dynamics and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1991-01-01

    The inverse and forward dynamics problems for flexible multibody systems were solved using the techniques of spatially recursive Kalman filtering and smoothing. These algorithms are easily developed using a set of identities associated with mass matrix factorization and inversion. These identities are easily derived using the spatial operator algebra developed by the author. Current work is aimed at computational experiments with the described algorithms and at modelling for control design of limber manipulator systems. It is also aimed at handling and manipulation of flexible objects.

  19. Analyzing nonstationary financial time series via hilbert-huang transform (HHT)

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2008-01-01

    An apparatus, computer program product and method of analyzing non-stationary time varying phenomena. A representation of a non-stationary time varying phenomenon is recursively sifted using Empirical Mode Decomposition (EMD) to extract intrinsic mode functions (IMFs). The representation is filtered to extract intrinsic trends by combining a number of IMFs. The intrinsic trend is inherent in the data and identifies an IMF indicating the variability of the phenomena. The trend also may be used to detrend the data.

  20. Adaptation of a Filter Assembly to Assess Microbial Bioburden of Pressurant Within a Propulsion System

    NASA Technical Reports Server (NTRS)

    Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.

    2012-01-01

    A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.

  1. Estimation of object motion parameters from noisy images.

    PubMed

    Broida, T J; Chellappa, R

    1986-01-01

    An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.

  2. A high-temperature fiber sensor using a low cost interrogation scheme.

    PubMed

    Barrera, David; Sales, Salvador

    2013-09-04

    Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity.

  3. A High-Temperature Fiber Sensor Using a Low Cost Interrogation Scheme

    PubMed Central

    Barrera, David; Sales, Salvador

    2013-01-01

    Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity. PMID:24008282

  4. Investigation of optical current transformer signal processing method based on an improved Kalman algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Ge, Jin-ming; Zhang, Guo-qing; Yu, Wen-bin; Liu, Rui-tong; Fan, Wei; Yang, Ying-xuan

    2018-01-01

    This paper explores the problem of signal processing in optical current transformers (OCTs). Based on the noise characteristics of OCTs, such as overlapping signals, noise frequency bands, low signal-to-noise ratios, and difficulties in acquiring statistical features of noise power, an improved standard Kalman filtering algorithm was proposed for direct current (DC) signal processing. The state-space model of the OCT DC measurement system is first established, and then mixed noise can be processed by adding mixed noise into measurement and state parameters. According to the minimum mean squared error criterion, state predictions and update equations of the improved Kalman algorithm could be deduced based on the established model. An improved central difference Kalman filter was proposed for alternating current (AC) signal processing, which improved the sampling strategy and noise processing of colored noise. Real-time estimation and correction of noise were achieved by designing AC and DC noise recursive filters. Experimental results show that the improved signal processing algorithms had a good filtering effect on the AC and DC signals with mixed noise of OCT. Furthermore, the proposed algorithm was able to achieve real-time correction of noise during the OCT filtering process.

  5. Suppression of Biodynamic Interference by Adaptive Filtering

    NASA Technical Reports Server (NTRS)

    Velger, M.; Merhav, S. J.; Grunwald, A. J.

    1984-01-01

    Preliminary experimental results obtained in moving base simulator tests are presented. Both for pursuit and compensatory tracking tasks, a strong deterioration in tracking performance due to biodynamic interference is found. The use of adaptive filtering is shown to substantially alleviate these effects, resulting in a markedly improved tracking performance and reduction in task difficulty. The effect of simulator motion and of adaptive filtering on human operator describing functions is investigated. Adaptive filtering is found to substantially increase pilot gain and cross-over frequency, implying a more tight tracking behavior. The adaptive filter is found to be effective in particular for high-gain proportional dynamics, low display forcing function power and for pursuit tracking task configurations.

  6. Adaptive filtering with the self-organizing map: a performance comparison.

    PubMed

    Barreto, Guilherme A; Souza, Luís Gustavo M

    2006-01-01

    In this paper we provide an in-depth evaluation of the SOM as a feasible tool for nonlinear adaptive filtering. A comprehensive survey of existing SOM-based and related architectures for learning input-output mappings is carried out and the application of these architectures to nonlinear adaptive filtering is formulated. Then, we introduce two simple procedures for building RBF-based nonlinear filters using the Vector-Quantized Temporal Associative Memory (VQTAM), a recently proposed method for learning dynamical input-output mappings using the SOM. The aforementioned SOM-based adaptive filters are compared with standard FIR/LMS and FIR/LMS-Newton linear transversal filters, as well as with powerful MLP-based filters in nonlinear channel equalization and inverse modeling tasks. The obtained results in both tasks indicate that SOM-based filters can consistently outperform powerful MLP-based ones.

  7. Accurate B-spline-based 3-D interpolation scheme for digital volume correlation

    NASA Astrophysics Data System (ADS)

    Ren, Maodong; Liang, Jin; Wei, Bin

    2016-12-01

    An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.

  8. An Innovations-Based Noise Cancelling Technique on Inverse Kepstrum Whitening Filter and Adaptive FIR Filter in Beamforming Structure

    PubMed Central

    Jeong, Jinsoo

    2011-01-01

    This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure. PMID:22163987

  9. A Novel Adaptive H∞ Filtering Method with Delay Compensation for the Transfer Alignment of Strapdown Inertial Navigation Systems

    PubMed Central

    Lyu, Weiwei

    2017-01-01

    Transfer alignment is always a key technology in a strapdown inertial navigation system (SINS) because of its rapidity and accuracy. In this paper a transfer alignment model is established, which contains the SINS error model and the measurement model. The time delay in the process of transfer alignment is analyzed, and an H∞ filtering method with delay compensation is presented. Then the H∞ filtering theory and the robust mechanism of H∞ filter are deduced and analyzed in detail. In order to improve the transfer alignment accuracy in SINS with time delay, an adaptive H∞ filtering method with delay compensation is proposed. Since the robustness factor plays an important role in the filtering process and has effect on the filtering accuracy, the adaptive H∞ filter with delay compensation can adjust the value of robustness factor adaptively according to the dynamic external environment. The vehicle transfer alignment experiment indicates that by using the adaptive H∞ filtering method with delay compensation, the transfer alignment accuracy and the pure inertial navigation accuracy can be dramatically improved, which demonstrates the superiority of the proposed filtering method. PMID:29182592

  10. MR fingerprinting reconstruction with Kalman filter.

    PubMed

    Zhang, Xiaodi; Zhou, Zechen; Chen, Shiyang; Chen, Shuo; Li, Rui; Hu, Xiaoping

    2017-09-01

    Magnetic resonance fingerprinting (MR fingerprinting or MRF) is a newly introduced quantitative magnetic resonance imaging technique, which enables simultaneous multi-parameter mapping in a single acquisition with improved time efficiency. The current MRF reconstruction method is based on dictionary matching, which may be limited by the discrete and finite nature of the dictionary and the computational cost associated with dictionary construction, storage and matching. In this paper, we describe a reconstruction method based on Kalman filter for MRF, which avoids the use of dictionary to obtain continuous MR parameter measurements. With this Kalman filter framework, the Bloch equation of inversion-recovery balanced steady state free-precession (IR-bSSFP) MRF sequence was derived to predict signal evolution, and acquired signal was entered to update the prediction. The algorithm can gradually estimate the accurate MR parameters during the recursive calculation. Single pixel and numeric brain phantom simulation were implemented with Kalman filter and the results were compared with those from dictionary matching reconstruction algorithm to demonstrate the feasibility and assess the performance of Kalman filter algorithm. The results demonstrated that Kalman filter algorithm is applicable for MRF reconstruction, eliminating the need for a pre-define dictionary and obtaining continuous MR parameter in contrast to the dictionary matching algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Parameter Estimation for a Hybrid Adaptive Flight Controller

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Nguyen, Nhan T.; Kaneshige, John; Krishnakumar, Kalmanje

    2009-01-01

    This paper expands on the hybrid control architecture developed at the NASA Ames Research Center by addressing issues related to indirect adaptation using the recursive least squares (RLS) algorithm. Specifically, the hybrid control architecture is an adaptive flight controller that features both direct and indirect adaptation techniques. This paper will focus almost exclusively on the modifications necessary to achieve quality indirect adaptive control. Additionally this paper will present results that, using a full non -linear aircraft model, demonstrate the effectiveness of the hybrid control architecture given drastic changes in an aircraft s dynamics. Throughout the development of this topic, a thorough discussion of the RLS algorithm as a system identification technique will be provided along with results from seven well-known modifications to the popular RLS algorithm.

  12. TU-E-217BCD-04: Spectral Breast CT: Effect of Adaptive Filtration on CT Numbers, CT Noise, and CNR.

    PubMed

    Silkwood, J; Matthews, K; Shikhaliev, P

    2012-06-01

    Photon counting spectral breast CT is feasible in part due to using an adaptive filter. An adaptive filter provides flat x-ray intensity profile and constant x-ray energy spectrum across detector surface, decreases required detector count rate, and eliminates beam hardening artifacts. However, the altered x-ray exposure profiles at the breast and detector surface may influence the distribution of CT noise, CT numbers, and contrast to noise ratio (CNR) across the CT images. The purpose of this work was to investigate these effects. Images of a CT phantom with and without adaptive filter were simulated at 60kVp, 90kVp, and 120kVp tube voltages and 660 mR total skin exposure. The CT phantom with water content had 14cm diameter, contrast elements representing adipose tissue and 2.5mg/cc iodine contrast located at 1cm, 3.5cm, and 6cm from center of the phantom. The CT numbers, CT noise, and CNR were measured at multiple locations for several filter/exposure combinations: (1)without adaptive filter for 660mR skin exposure; (2)with adaptive filter for 660mR skin exposure along central axis (mean skin exposure across the breast was <660mR); and (3)with adaptive filter for scaled exposure (mean skin exposure was 660mR). Beam hardening (cupping) artifacts had 47HU magnitude without adaptive filter but were eliminated with adaptive filter. CNR of contrast elements was comparable for (1) and (2) over central parts but was higher by 20-30% for (1) near the edge of the phantom. CNR was higher by 20-30% in (3) as compared to (2) over central parts and comparable near the edges. The adaptive filter provided: uniform distribution of CT noise, CNR, and CT numbers across CT images; comparable or better CNR with no dose penalty to the breast; and eliminated beam hardening artifacts. © 2012 American Association of Physicists in Medicine.

  13. Evolutionary computing based approach for the removal of ECG artifact from the corrupted EEG signal.

    PubMed

    Priyadharsini, S Suja; Rajan, S Edward

    2014-01-01

    Electroencephalogram (EEG) is an important tool for clinical diagnosis of brain-related disorders and problems. However, it is corrupted by various biological artifacts, of which ECG is one among them that reduces the clinical importance of EEG especially for epileptic patients and patients with short neck. To remove the ECG artifact from the measured EEG signal using an evolutionary computing approach based on the concept of Hybrid Adaptive Neuro-Fuzzy Inference System, which helps the Neurologists in the diagnosis and follow-up of encephalopathy. The proposed hybrid learning methods are ANFIS-MA and ANFIS-GA, which uses Memetic Algorithm (MA) and Genetic algorithm (GA) for tuning the antecedent and consequent part of the ANFIS structure individually. The performances of the proposed methods are compared with that of ANFIS and adaptive Recursive Least Squares (RLS) filtering algorithm. The proposed methods are experimentally validated by applying it to the simulated data sets, subjected to non-linearity condition and real polysomonograph data sets. Performance metrics such as sensitivity, specificity and accuracy of the proposed method ANFIS-MA, in terms of correction rate are found to be 93.8%, 100% and 99% respectively, which is better than current state-of-the-art approaches. The evaluation process used and demonstrated effectiveness of the proposed method proves that ANFIS-MA is more effective in suppressing ECG artifacts from the corrupted EEG signals than ANFIS-GA, ANFIS and RLS algorithm.

  14. Electronic filters, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor); Zheng, Baohua (Inventor)

    1991-01-01

    An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a filtered signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the filtered signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems, and methods of operating them are also disclosed.

  15. Control of AUVs using differential flatness theory and the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Raffo, Guilerme

    2015-12-01

    The paper proposes nonlinear control and filtering for Autonomous Underwater Vessels (AUVs) based on differential flatness theory and on the use of the Derivative-free nonlinear Kalman Filter. First, it is shown that the 6-DOF dynamic model of the AUV is a differentially flat one. This enables its transformation into the linear canonical (Brunovsky) form and facilitates the design of a state feedback controller. A problem that has to be dealt with is the uncertainty about the parameters of the AUV's dynamic model, as well the external perturbations which affect its motion. To cope with this, it is proposed to use a disturbance observer which is based on the Derivative-free nonlinear Kalman Filter. The considered filtering method consists of the standard Kalman Filter recursion applied on the linearized model of the vessel and of an inverse transformation based on differential flatness theory, which enables to obtain estimates of the state variables of the initial nonlinear model of the vessel. The Kalman Filter-based disturbance observer performs simultaneous estimation of the non-measurable state variables of the AUV and of the perturbation terms that affect its dynamics. By estimating such disturbances, their compensation is also succeeded through suitable modification of the feedback control input. The efficiency of the proposed AUV control and estimation scheme is confirmed through simulation experiments.

  16. Distortion analysis of subband adaptive filtering methods for FMRI active noise control systems.

    PubMed

    Milani, Ali A; Panahi, Issa M; Briggs, Richard

    2007-01-01

    Delayless subband filtering structure, as a high performance frequency domain filtering technique, is used for canceling broadband fMRI noise (8 kHz bandwidth). In this method, adaptive filtering is done in subbands and the coefficients of the main canceling filter are computed by stacking the subband weights together. There are two types of stacking methods called FFT and FFT-2. In this paper, we analyze the distortion introduced by these two stacking methods. The effect of the stacking distortion on the performance of different adaptive filters in FXLMS algorithm with non-minimum phase secondary path is explored. The investigation is done for different adaptive algorithms (nLMS, APA and RLS), different weight stacking methods, and different number of subbands.

  17. Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators

    PubMed Central

    2015-01-01

    This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391

  18. Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators.

    PubMed

    Chen, Ming-Hung

    2015-01-01

    This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.

  19. Improving the Response of Accelerometers for Automotive Applications by Using LMS Adaptive Filters: Part II

    PubMed Central

    Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg Y.; Fernández, Eduardo

    2010-01-01

    In this paper, the fast least-mean-squares (LMS) algorithm was used to both eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications, and improve the convergence rate of the filtering process based on the conventional LMS algorithm. The response of the accelerometer under test was corrupted by process and measurement noise, and the signal processing stage was carried out by using both conventional filtering, which was already shown in a previous paper, and optimal adaptive filtering. The adaptive filtering process relied on the LMS adaptive filtering family, which has shown to have very good convergence and robustness properties, and here a comparative analysis between the results of the application of the conventional LMS algorithm and the fast LMS algorithm to solve a real-life filtering problem was carried out. In short, in this paper the piezoresistive accelerometer was tested for a multi-frequency acceleration excitation. Due to the kind of test conducted in this paper, the use of conventional filtering was discarded and the choice of one adaptive filter over the other was based on the signal-to-noise ratio improvement and the convergence rate. PMID:22315579

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraioli, Luigi; Hueller, Mauro; Vitale, Stefano

    The scientific objectives of the LISA Technology Package experiment on board of the LISA Pathfinder mission demand accurate calibration and validation of the data analysis tools in advance of the mission launch. The level of confidence required in the mission outcomes can be reached only by intensively testing the tools on synthetically generated data. A flexible procedure allowing the generation of a cross-correlated stationary noise time series was set up. A multichannel time series with the desired cross-correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure comprises a noisemore » coloring, multichannel filter designed via a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a subsequent fit in the Z domain. The common problem of initial transients in a filtered time series is solved with a proper initialization of the filter recursion equations. The noise generator performance was tested in a two-dimensional case study of the closed-loop LISA Technology Package dynamics along the two principal degrees of freedom.« less

  1. An adaptive optimal control for smart structures based on the subspace tracking identification technique

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele

    2014-04-01

    A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.

  2. Adaptive noise Wiener filter for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Teh, V; Nia, M E

    2016-01-01

    Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. © Wiley Periodicals, Inc.

  3. Nonlinear Kalman filters for calibration in radio interferometry

    NASA Astrophysics Data System (ADS)

    Tasse, C.

    2014-06-01

    The data produced by the new generation of interferometers are affected by a wide variety of partially unknown complex effects such as pointing errors, phased array beams, ionosphere, troposphere, Faraday rotation, or clock drifts. Most algorithms addressing direction-dependent calibration solve for the effective Jones matrices, and cannot constrain the underlying physical quantities of the radio interferometry measurement equation (RIME). A related difficulty is that they lack robustness in the presence of low signal-to-noise ratios, and when solving for moderate to large numbers of parameters they can be subject to ill-conditioning. These effects can have dramatic consequences in the image plane such as source or even thermal noise suppression. The advantage of solvers directly estimating the physical terms appearing in the RIME is that they can potentially reduce the number of free parameters by orders of magnitudes while dramatically increasing the size of usable data, thereby improving conditioning. We present here a new calibration scheme based on a nonlinear version of the Kalman filter that aims at estimating the physical terms appearing in the RIME. We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. Using simulations we show that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly computationally cheap algorithm that we believe to be robust, especially in low signal-to-noise regimes. Potentially, the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that the effects corrupting visibilities are understood and analytically stable. Recursive algorithms are particularly well adapted for pre-calibration and sky model estimate in a streaming way. This may be useful for the SKA-type instruments that produce huge amounts of data that have to be calibrated before being averaged.

  4. Algorithms for System Identification and Source Location.

    NASA Astrophysics Data System (ADS)

    Nehorai, Arye

    This thesis deals with several topics in least squares estimation and applications to source location. It begins with a derivation of a mapping between Wiener theory and Kalman filtering for nonstationary autoregressive moving average (ARMO) processes. Applying time domain analysis, connections are found between time-varying state space realizations and input-output impulse response by matrix fraction description (MFD). Using these connections, the whitening filters are derived by the two approaches, and the Kalman gain is expressed in terms of Wiener theory. Next, fast estimation algorithms are derived in a unified way as special cases of the Conjugate Direction Method. The fast algorithms included are the block Levinson, fast recursive least squares, ladder (or lattice) and fast Cholesky algorithms. The results give a novel derivation and interpretation for all these methods, which are efficient alternatives to available recursive system identification algorithms. Multivariable identification algorithms are usually designed only for left MFD models. In this work, recursive multivariable identification algorithms are derived for right MFD models with diagonal denominator matrices. The algorithms are of prediction error and model reference type. Convergence analysis results obtained by the Ordinary Differential Equation (ODE) method are presented along with simulations. Sources of energy can be located by estimating time differences of arrival (TDOA's) of waves between the receivers. A new method for TDOA estimation is proposed for multiple unknown ARMA sources and additive correlated receiver noise. The method is based on a formula that uses only the receiver cross-spectra and the source poles. Two algorithms are suggested that allow tradeoffs between computational complexity and accuracy. A new time delay model is derived and used to show the applicability of the methods for non -integer TDOA's. Results from simulations illustrate the performance of the algorithms. The last chapter analyzes the response of exact least squares predictors for enhancement of sinusoids with additive colored noise. Using the matrix inversion lemma and the Christoffel-Darboux formula, the frequency response and amplitude gain of the sinusoids are expressed as functions of the signal and noise characteristics. The results generalize the available white noise case.

  5. Preprocessing of PHERMEX flash radiographic images with Haar and adaptive filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brolley, J.E.

    1978-11-01

    Work on image preparation has continued with the application of high-sequency boosting via Haar filtering. This is useful in developing line or edge structures. Widrow LMS adaptive filtering has also been shown to be useful in developing edge structure in special problems. Shadow effects can be obtained with the latter which may be useful for some problems. Combined Haar and adaptive filtering is illustrated for a PHERMEX image.

  6. CMOS analog switches for adaptive filters

    NASA Technical Reports Server (NTRS)

    Dixon, C. E.

    1980-01-01

    Adaptive active low-pass filters incorporate CMOS (Complimentary Metal-Oxide Semiconductor) analog switches (such as 4066 switch) that reduce variation in switch resistance when filter is switched to any selected transfer function.

  7. Modeling Adsorption Kinetics (Bio-remediation of Heavy Metal Contaminated Water)

    NASA Astrophysics Data System (ADS)

    McCarthy, Chris

    My talk will focus on modeling the kinetics of the adsorption and filtering process using differential equations, stochastic methods, and recursive functions. The models have been developed in support of our interdisciplinary lab group which is conducting research into bio-remediation of heavy metal contaminated water via filtration through biomass such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). Funding: CUNY Collaborative Incentive Research Grant.

  8. Integrating the ECG power-line interference removal methods with rule-based system.

    PubMed

    Kumaravel, N; Senthil, A; Sridhar, K S; Nithiyanandam, N

    1995-01-01

    The power-line frequency interference in electrocardiographic signals is eliminated to enhance the signal characteristics for diagnosis. The power-line frequency normally varies +/- 1.5 Hz from its standard value of 50 Hz. In the present work, the performances of the linear FIR filter, Wave digital filter (WDF) and adaptive filter for the power-line frequency variations from 48.5 to 51.5 Hz in steps of 0.5 Hz are studied. The advantage of the LMS adaptive filter in the removal of power-line frequency interference even if the frequency of interference varies by +/- 1.5 Hz from its normal value of 50 Hz over other fixed frequency filters is very well justified. A novel method of integrating rule-based system approach with linear FIR filter and also with Wave digital filter are proposed. The performances of Rule-based FIR filter and Rule-based Wave digital filter are compared with the LMS adaptive filter.

  9. Formulation and implementation of nonstationary adaptive estimation algorithm with applications to air-data reconstruction

    NASA Technical Reports Server (NTRS)

    Whitmore, S. A.

    1985-01-01

    The dynamics model and data sources used to perform air-data reconstruction are discussed, as well as the Kalman filter. The need for adaptive determination of the noise statistics of the process is indicated. The filter innovations are presented as a means of developing the adaptive criterion, which is based on the true mean and covariance of the filter innovations. A method for the numerical approximation of the mean and covariance of the filter innovations is presented. The algorithm as developed is applied to air-data reconstruction for the space shuttle, and data obtained from the third landing are presented. To verify the performance of the adaptive algorithm, the reconstruction is also performed using a constant covariance Kalman filter. The results of the reconstructions are compared, and the adaptive algorithm exhibits better performance.

  10. Hypersonic entry vehicle state estimation using nonlinearity-based adaptive cubature Kalman filters

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Xin, Ming

    2017-05-01

    Guidance, navigation, and control of a hypersonic vehicle landing on the Mars rely on precise state feedback information, which is obtained from state estimation. The high uncertainty and nonlinearity of the entry dynamics make the estimation a very challenging problem. In this paper, a new adaptive cubature Kalman filter is proposed for state trajectory estimation of a hypersonic entry vehicle. This new adaptive estimation strategy is based on the measure of nonlinearity of the stochastic system. According to the severity of nonlinearity along the trajectory, the high degree cubature rule or the conventional third degree cubature rule is adaptively used in the cubature Kalman filter. This strategy has the benefit of attaining higher estimation accuracy only when necessary without causing excessive computation load. The simulation results demonstrate that the proposed adaptive filter exhibits better performance than the conventional third-degree cubature Kalman filter while maintaining the same performance as the uniform high degree cubature Kalman filter but with lower computation complexity.

  11. Development of adaptive control applied to chaotic systems

    NASA Astrophysics Data System (ADS)

    Rhode, Martin Andreas

    1997-12-01

    Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.

  12. A simple approach to nonlinear estimation of physical systems

    USGS Publications Warehouse

    Christakos, G.

    1988-01-01

    Recursive algorithms for estimating the states of nonlinear physical systems are developed. This requires some key hypotheses regarding the structure of the underlying processes. Members of this class of random processes have several desirable properties for the nonlinear estimation of random signals. An assumption is made about the form of the estimator, which may then take account of a wide range of applications. Under the above assumption, the estimation algorithm is mathematically suboptimal but effective and computationally attractive. It may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. To link theory with practice, some numerical results for a simulated system are presented, in which the responses from the proposed and the extended Kalman algorithms are compared. ?? 1988.

  13. Toward blind removal of unwanted sound from orchestrated music

    NASA Astrophysics Data System (ADS)

    Chang, Soo-Young; Chun, Joohwan

    2000-11-01

    The problem addressed in this paper is to removing unwanted sounds from music sound. The sound to be removed could be disturbance such as cough. We shall present some preliminary results on this problem using statistical properties of signals. Our approach consists of three steps. We first estimate the fundamental frequencies and partials given noise-corrupted music sound. This gives us the autoregressive (AR) model of the music sound. Then we filter the noise-corrupted sound using the AR parameters. The filtered signal is then subtracted from the original noise-corrupted signal to get the disturbance. Finally, the obtained disturbance is used a reference signal to eliminate the disturbance from the noise- corrupted music signal. Above three steps are carried out in a recursive manner using a sliding window or an infinitely growing window with an appropriate forgetting factor.

  14. Band-selective filter in a zigzag graphene nanoribbon.

    PubMed

    Nakabayashi, Jun; Yamamoto, Daisuke; Kurihara, Susumu

    2009-02-13

    Electric transport of a zigzag graphene nanoribbon through a steplike potential and a barrier potential is investigated by using the recursive Green's function method. In the case of the steplike potential, we demonstrate numerically that scattering processes obey a selection rule for the band indices when the number of zigzag chains is even; the electrons belonging to the "even" ("odd") bands are scattered only into the even (odd) bands so that the parity of the wave functions is preserved. In the case of the barrier potential, by tuning the barrier height to be an appropriate value, we show that it can work as the "band-selective filter", which transmits electrons selectively with respect to the indices of the bands to which the incident electrons belong. Finally, we suggest that this selection rule can be observed in the conductance by applying two barrier potentials.

  15. Event-Based Variance-Constrained ${\\mathcal {H}}_{\\infty }$ Filtering for Stochastic Parameter Systems Over Sensor Networks With Successive Missing Measurements.

    PubMed

    Wang, Licheng; Wang, Zidong; Han, Qing-Long; Wei, Guoliang

    2018-03-01

    This paper is concerned with the distributed filtering problem for a class of discrete time-varying stochastic parameter systems with error variance constraints over a sensor network where the sensor outputs are subject to successive missing measurements. The phenomenon of the successive missing measurements for each sensor is modeled via a sequence of mutually independent random variables obeying the Bernoulli binary distribution law. To reduce the frequency of unnecessary data transmission and alleviate the communication burden, an event-triggered mechanism is introduced for the sensor node such that only some vitally important data is transmitted to its neighboring sensors when specific events occur. The objective of the problem addressed is to design a time-varying filter such that both the requirements and the variance constraints are guaranteed over a given finite-horizon against the random parameter matrices, successive missing measurements, and stochastic noises. By recurring to stochastic analysis techniques, sufficient conditions are established to ensure the existence of the time-varying filters whose gain matrices are then explicitly characterized in term of the solutions to a series of recursive matrix inequalities. A numerical simulation example is provided to illustrate the effectiveness of the developed event-triggered distributed filter design strategy.

  16. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering.

    PubMed

    Rigatos, Gerasimos G; Rigatou, Efthymia G; Djida, Jean Daniel

    2015-10-01

    A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of x2 change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies).

  17. A general transfer-function approach to noise filtering in open-loop quantum control

    NASA Astrophysics Data System (ADS)

    Viola, Lorenza

    2015-03-01

    Hamiltonian engineering via unitary open-loop quantum control provides a versatile and experimentally validated framework for manipulating a broad class of non-Markovian open quantum systems of interest, with applications ranging from dynamical decoupling and dynamically corrected quantum gates, to noise spectroscopy and quantum simulation. In this context, transfer-function techniques directly motivated by control engineering have proved invaluable for obtaining a transparent picture of the controlled dynamics in the frequency domain and for quantitatively analyzing performance. In this talk, I will show how to identify a computationally tractable set of ``fundamental filter functions,'' out of which arbitrary filter functions may be assembled up to arbitrary high order in principle. Besides avoiding the infinite recursive hierarchy of filter functions that arises in general control scenarios, this fundamental set suffices to characterize the error suppression capabilities of the control protocol in both the time and frequency domain. I will show, in particular, how the resulting notion of ``filtering order'' reveals conceptually distinct, albeit complementary, features of the controlled dynamics as compared to the ``cancellation order,'' traditionally defined in the Magnus sense. Implications for current quantum control experiments will be discussed. Work supported by the U.S. Army Research Office under Contract No. W911NF-14-1-0682.

  18. Dose reduction in fluoroscopic interventions using a combination of a region of interest (ROI) x-ray attenuator and spatially different, temporally variable temporal filtering

    NASA Astrophysics Data System (ADS)

    Swetadri Vasan, S. N.; Pope, Liza; Ionita, Ciprian N.; Titus, A. H.; Bednarek, D. R.; Rudin, S.

    2013-03-01

    A novel dose reduction technique for fluoroscopic interventions involving a combination of a material x-ray region of interest (ROI) attenuator and spatially different, temporally variable ROI temporal recursive filter, was used to guide the catheter to the ROI in three live animal studies, two involving rabbits and one involving a sheep. In the two rabbit studies presented , a catheter was guided to the entrance of the carotid artery. With the added ROI attenuator the image under the high attenuation region is very noisy. By using temporal filtering with a filter weight of 0.6 on previous frames, the noise is reduced. In the sheep study the catheter was guided to the descending aorta of the animal. The sheep offered a relatively higher attenuation to the incident x-rays and thus a higher temporal filter weight of 0.8 on previous frames was used during the procedure to reduce the noise to levels acceptable by the interventionalist. The image sequences from both studies show that significant dose reduction of 5-6 times can be achieved with acceptable image quality outside the ROI by using the above mentioned technique. Even though the temporal filter weighting outside the ROI is higher, the consequent lag does not prevent perception of catheter movement.

  19. Application of dynamic recurrent neural networks in nonlinear system identification

    NASA Astrophysics Data System (ADS)

    Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang

    2006-11-01

    An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.

  20. An adaptive spatio-temporal Gaussian filter for processing cardiac optical mapping data.

    PubMed

    Pollnow, S; Pilia, N; Schwaderlapp, G; Loewe, A; Dössel, O; Lenis, G

    2018-06-04

    Optical mapping is widely used as a tool to investigate cardiac electrophysiology in ex vivo preparations. Digital filtering of fluorescence-optical data is an important requirement for robust subsequent data analysis and still a challenge when processing data acquired from thin mammalian myocardium. Therefore, we propose and investigate the use of an adaptive spatio-temporal Gaussian filter for processing optical mapping signals from these kinds of tissue usually having low signal-to-noise ratio (SNR). We demonstrate how filtering parameters can be chosen automatically without additional user input. For systematic comparison of this filter with standard filtering methods from the literature, we generated synthetic signals representing optical recordings from atrial myocardium of a rat heart with varying SNR. Furthermore, all filter methods were applied to experimental data from an ex vivo setup. Our developed filter outperformed the other filter methods regarding local activation time detection at SNRs smaller than 3 dB which are typical noise ratios expected in these signals. At higher SNRs, the proposed filter performed slightly worse than the methods from literature. In conclusion, the proposed adaptive spatio-temporal Gaussian filter is an appropriate tool for investigating fluorescence-optical data with low SNR. The spatio-temporal filter parameters were automatically adapted in contrast to the other investigated filters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Playful and Mindful Interactions in the Recursive Adaptations of the Zone of Proximal Development: A Critical Complexity Science Approach

    ERIC Educational Resources Information Center

    Raia, Federica; Deng, Mario C.

    2011-01-01

    We discuss Konstantinos Alexakos, Jayson Jones and Victor Rodriguez's hermeneutic study of formation and function of kinship-like relationships among inner city male students of color in a college physics classroom. From our Critical Complexity Science framework we first discuss the reading "erlebnisse" of students laughing at and with each other…

  2. Remotely serviced filter and housing

    DOEpatents

    Ross, M.J.; Zaladonis, L.A.

    1987-07-22

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station. 6 figs.

  3. Classification of visible and infrared hyperspectral images based on image segmentation and edge-preserving filtering

    NASA Astrophysics Data System (ADS)

    Cui, Binge; Ma, Xiudan; Xie, Xiaoyun; Ren, Guangbo; Ma, Yi

    2017-03-01

    The classification of hyperspectral images with a few labeled samples is a major challenge which is difficult to meet unless some spatial characteristics can be exploited. In this study, we proposed a novel spectral-spatial hyperspectral image classification method that exploited spatial autocorrelation of hyperspectral images. First, image segmentation is performed on the hyperspectral image to assign each pixel to a homogeneous region. Second, the visible and infrared bands of hyperspectral image are partitioned into multiple subsets of adjacent bands, and each subset is merged into one band. Recursive edge-preserving filtering is performed on each merged band which utilizes the spectral information of neighborhood pixels. Third, the resulting spectral and spatial feature band set is classified using the SVM classifier. Finally, bilateral filtering is performed to remove "salt-and-pepper" noise in the classification result. To preserve the spatial structure of hyperspectral image, edge-preserving filtering is applied independently before and after the classification process. Experimental results on different hyperspectral images prove that the proposed spectral-spatial classification approach is robust and offers more classification accuracy than state-of-the-art methods when the number of labeled samples is small.

  4. Artifact removal from EEG signals using adaptive filters in cascade

    NASA Astrophysics Data System (ADS)

    Garcés Correa, A.; Laciar, E.; Patiño, H. D.; Valentinuzzi, M. E.

    2007-11-01

    Artifacts in EEG (electroencephalogram) records are caused by various factors, like line interference, EOG (electro-oculogram) and ECG (electrocardiogram). These noise sources increase the difficulty in analyzing the EEG and to obtaining clinical information. For this reason, it is necessary to design specific filters to decrease such artifacts in EEG records. In this paper, a cascade of three adaptive filters based on a least mean squares (LMS) algorithm is proposed. The first one eliminates line interference, the second adaptive filter removes the ECG artifacts and the last one cancels EOG spikes. Each stage uses a finite impulse response (FIR) filter, which adjusts its coefficients to produce an output similar to the artifacts present in the EEG. The proposed cascade adaptive filter was tested in five real EEG records acquired in polysomnographic studies. In all cases, line-frequency, ECG and EOG artifacts were attenuated. It is concluded that the proposed filter reduces the common artifacts present in EEG signals without removing significant information embedded in these records.

  5. Fast digital zooming system using directionally adaptive image interpolation and restoration.

    PubMed

    Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki

    2014-01-01

    This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.

  6. Electronic filters, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor)

    1995-01-01

    An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electrical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a first signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the first signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems and methods of operating them are also disclosed.

  7. An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing

    NASA Astrophysics Data System (ADS)

    Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin

    2018-02-01

    The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.

  8. Adaptive torque estimation of robot joint with harmonic drive transmission

    NASA Astrophysics Data System (ADS)

    Shi, Zhiguo; Li, Yuankai; Liu, Guangjun

    2017-11-01

    Robot joint torque estimation using input and output position measurements is a promising technique, but the result may be affected by the load variation of the joint. In this paper, a torque estimation method with adaptive robustness and optimality adjustment according to load variation is proposed for robot joint with harmonic drive transmission. Based on a harmonic drive model and a redundant adaptive robust Kalman filter (RARKF), the proposed approach can adapt torque estimation filtering optimality and robustness to the load variation by self-tuning the filtering gain and self-switching the filtering mode between optimal and robust. The redundant factor of RARKF is designed as a function of the motor current for tolerating the modeling error and load-dependent filtering mode switching. The proposed joint torque estimation method has been experimentally studied in comparison with a commercial torque sensor and two representative filtering methods. The results have demonstrated the effectiveness of the proposed torque estimation technique.

  9. Remotely serviced filter and housing

    DOEpatents

    Ross, Maurice J.; Zaladonis, Larry A.

    1988-09-27

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge using an overhead crane. The filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station.

  10. Control, Filtering and Prediction for Phased Arrays in Directed Energy Systems

    DTIC Science & Technology

    2016-04-30

    adaptive optics. 15. SUBJECT TERMS control, filtering, prediction, system identification, adaptive optics, laser beam pointing, target tracking, phase... laser beam control; furthermore, wavefront sensors are plagued by the difficulty of maintaining the required alignment and focusing in dynamic mission...developed new methods for filtering, prediction and system identification in adaptive optics for high energy laser systems including phased arrays. The

  11. SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliopoulos, AS; Sun, X; Floros, D

    Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well asmore » histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial signal/noise variations. An efficient multi-scale computational mechanism is developed to curtail processing latency. Spatially adaptive filtering may impact subsequent processing tasks such as reconstruction and numerical gradient computations for deformable registration. NIH Grant No. R01-184173.« less

  12. Method for implementation of recursive hierarchical segmentation on parallel computers

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Inventor)

    2005-01-01

    A method, computer readable storage, and apparatus for implementing a recursive hierarchical segmentation algorithm on a parallel computing platform. The method includes setting a bottom level of recursion that defines where a recursive division of an image into sections stops dividing, and setting an intermediate level of recursion where the recursive division changes from a parallel implementation into a serial implementation. The segmentation algorithm is implemented according to the set levels. The method can also include setting a convergence check level of recursion with which the first level of recursion communicates with when performing a convergence check.

  13. Real time microcontroller implementation of an adaptive myoelectric filter.

    PubMed

    Bagwell, P J; Chappell, P H

    1995-03-01

    This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.

  14. Is recursion language-specific? Evidence of recursive mechanisms in the structure of intentional action.

    PubMed

    Vicari, Giuseppe; Adenzato, Mauro

    2014-05-01

    In their 2002 seminal paper Hauser, Chomsky and Fitch hypothesize that recursion is the only human-specific and language-specific mechanism of the faculty of language. While debate focused primarily on the meaning of recursion in the hypothesis and on the human-specific and syntax-specific character of recursion, the present work focuses on the claim that recursion is language-specific. We argue that there are recursive structures in the domain of motor intentionality by way of extending John R. Searle's analysis of intentional action. We then discuss evidence from cognitive science and neuroscience supporting the claim that motor-intentional recursion is language-independent and suggest some explanatory hypotheses: (1) linguistic recursion is embodied in sensory-motor processing; (2) linguistic and motor-intentional recursions are distinct and mutually independent mechanisms. Finally, we propose some reflections about the epistemic status of HCF as presenting an empirically falsifiable hypothesis, and on the possibility of testing recursion in different cognitive domains. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Light-based Modeling and Control of Circadian Rhythm

    DTIC Science & Technology

    2016-08-29

    the foundation of the full research. 1. Circadian phase estimation and control: Demonstrate the applicability of the adaptive notch filter (ANF) to...the adaptive notch filter (ANF) to extract circadian phase from noisy Drosophila locomotive activity measurements and the efficacy of using the ANF...full research. 1. Circadian phase estimation and control: Demonstrate the applicability of the adaptive notch filter (ANF) to extract circadian

  16. The Nature of the Language Faculty and Its Implications for Evolution of Language (Reply to Fitch, Hauser, and Chomsky)

    ERIC Educational Resources Information Center

    Jackendoff, Ray; Pinker, Steven

    2005-01-01

    In a continuation of the conversation with Fitch, Chomsky, and Hauser on the evolution of language, we examine their defense of the claim that the uniquely human, language-specific part of the language faculty (the ''narrow language faculty'') consists only of recursion, and that this part cannot be considered an adaptation to communication. We…

  17. Adaptive Deblurring of Noisy Images

    DTIC Science & Technology

    2007-10-01

    deblurring filter adaptively by estimating energy of the signal and noise of the image to determine the passband and transition-band of the filter...The deblurring filter design criteria are: a) filter magnitude is less than one at the frequencies where the noise is stronger than the desired signal...filter is able to deblur the image by a desired amount based on the estimated or known blurring function while suppressing the noise in the output

  18. An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter

    NASA Astrophysics Data System (ADS)

    Gorsevski, Pece V.; Jankowski, Piotr

    2010-08-01

    The Kalman recursive algorithm has been very widely used for integrating navigation sensor data to achieve optimal system performances. This paper explores the use of the Kalman filter to extend the aggregation of spatial multi-criteria evaluation (MCE) and to find optimal solutions with respect to a decision strategy space where a possible decision rule falls. The approach was tested in a case study in the Clearwater National Forest in central Idaho, using existing landslide datasets from roaded and roadless areas and terrain attributes. In this approach, fuzzy membership functions were used to standardize terrain attributes and develop criteria, while the aggregation of the criteria was achieved by the use of a Kalman filter. The approach presented here offers advantages over the classical MCE theory because the final solution includes both the aggregated solution and the areas of uncertainty expressed in terms of standard deviation. A comparison of this methodology with similar approaches suggested that this approach is promising for predicting landslide susceptibility and further application as a spatial decision support system.

  19. Joint passive radar tracking and target classification using radar cross section

    NASA Astrophysics Data System (ADS)

    Herman, Shawn M.

    2004-01-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  20. Joint passive radar tracking and target classification using radar cross section

    NASA Astrophysics Data System (ADS)

    Herman, Shawn M.

    2003-12-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  1. Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters

    NASA Astrophysics Data System (ADS)

    Abhayaratne, Charith

    2011-07-01

    Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.

  2. On-line estimation of nonlinear physical systems

    USGS Publications Warehouse

    Christakos, G.

    1988-01-01

    Recursive algorithms for estimating states of nonlinear physical systems are presented. Orthogonality properties are rediscovered and the associated polynomials are used to linearize state and observation models of the underlying random processes. This requires some key hypotheses regarding the structure of these processes, which may then take account of a wide range of applications. The latter include streamflow forecasting, flood estimation, environmental protection, earthquake engineering, and mine planning. The proposed estimation algorithm may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. Moreover, the method has several advantages over nonrecursive estimators like disjunctive kriging. To link theory with practice, some numerical results for a simulated system are presented, in which responses from the proposed and extended Kalman algorithms are compared. ?? 1988 International Association for Mathematical Geology.

  3. A new event detector designed for the Seismic Research Observatories

    USGS Publications Warehouse

    Murdock, James N.; Hutt, Charles R.

    1983-01-01

    A new short-period event detector has been implemented on the Seismic Research Observatories. For each signal detected, a printed output gives estimates of the time of onset of the signal, direction of the first break, quality of onset, period and maximum amplitude of the signal, and an estimate of the variability of the background noise. On the SRO system, the new algorithm runs ~2.5x faster than the former (power level) detector. This increase in speed is due to the design of the algorithm: all operations can be performed by simple shifts, additions, and comparisons (floating point operations are not required). Even though a narrow-band recursive filter is not used, the algorithm appears to detect events competitively with those algorithms that employ such filters. Tests at Albuquerque Seismological Laboratory on data supplied by Blandford suggest performance commensurate with the on-line detector of the Seismic Data Analysis Center, Alexandria, Virginia.

  4. Information theoretic methods for image processing algorithm optimization

    NASA Astrophysics Data System (ADS)

    Prokushkin, Sergey F.; Galil, Erez

    2015-01-01

    Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).

  5. Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics

    PubMed Central

    Yang, Wan; Karspeck, Alicia; Shaman, Jeffrey

    2014-01-01

    A variety of filtering methods enable the recursive estimation of system state variables and inference of model parameters. These methods have found application in a range of disciplines and settings, including engineering design and forecasting, and, over the last two decades, have been applied to infectious disease epidemiology. For any system of interest, the ideal filter depends on the nonlinearity and complexity of the model to which it is applied, the quality and abundance of observations being entrained, and the ultimate application (e.g. forecast, parameter estimation, etc.). Here, we compare the performance of six state-of-the-art filter methods when used to model and forecast influenza activity. Three particle filters—a basic particle filter (PF) with resampling and regularization, maximum likelihood estimation via iterated filtering (MIF), and particle Markov chain Monte Carlo (pMCMC)—and three ensemble filters—the ensemble Kalman filter (EnKF), the ensemble adjustment Kalman filter (EAKF), and the rank histogram filter (RHF)—were used in conjunction with a humidity-forced susceptible-infectious-recovered-susceptible (SIRS) model and weekly estimates of influenza incidence. The modeling frameworks, first validated with synthetic influenza epidemic data, were then applied to fit and retrospectively forecast the historical incidence time series of seven influenza epidemics during 2003–2012, for 115 cities in the United States. Results suggest that when using the SIRS model the ensemble filters and the basic PF are more capable of faithfully recreating historical influenza incidence time series, while the MIF and pMCMC do not perform as well for multimodal outbreaks. For forecast of the week with the highest influenza activity, the accuracies of the six model-filter frameworks are comparable; the three particle filters perform slightly better predicting peaks 1–5 weeks in the future; the ensemble filters are more accurate predicting peaks in the past. PMID:24762780

  6. Normalised subband adaptive filtering with extended adaptiveness on degree of subband filters

    NASA Astrophysics Data System (ADS)

    Samuyelu, Bommu; Rajesh Kumar, Pullakura

    2017-12-01

    This paper proposes an adaptive normalised subband adaptive filtering (NSAF) to accomplish the betterment of NSAF performance. In the proposed NSAF, an extended adaptiveness is introduced from its variants in two ways. In the first way, the step-size is set adaptive, and in the second way, the selection of subbands is set adaptive. Hence, the proposed NSAF is termed here as variable step-size-based NSAF with selected subbands (VS-SNSAF). Experimental investigations are carried out to demonstrate the performance (in terms of convergence) of the VS-SNSAF against the conventional NSAF and its state-of-the-art adaptive variants. The results report the superior performance of VS-SNSAF over the traditional NSAF and its variants. It is also proved for its stability, robustness against noise and substantial computing complexity.

  7. Synthesis and evaluation of phase detectors for active bit synchronizers

    NASA Technical Reports Server (NTRS)

    Mcbride, A. L.

    1974-01-01

    Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.

  8. The epoch state navigation filter. [for maximum likelihood estimates of position and velocity vectors

    NASA Technical Reports Server (NTRS)

    Battin, R. H.; Croopnick, S. R.; Edwards, J. A.

    1977-01-01

    The formulation of a recursive maximum likelihood navigation system employing reference position and velocity vectors as state variables is presented. Convenient forms of the required variational equations of motion are developed together with an explicit form of the associated state transition matrix needed to refer measurement data from the measurement time to the epoch time. Computational advantages accrue from this design in that the usual forward extrapolation of the covariance matrix of estimation errors can be avoided without incurring unacceptable system errors. Simulation data for earth orbiting satellites are provided to substantiate this assertion.

  9. Preparation of Fiber Based Binder Materials to Enhance the Gas Adsorption Efficiency of Carbon Air Filter.

    PubMed

    Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young

    2015-10-01

    Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter.

  10. Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui

    2017-05-01

    The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.

  11. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    PubMed

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary to fixed window length conventional filters. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Adaptive marginal median filter for colour images.

    PubMed

    Morillas, Samuel; Gregori, Valentín; Sapena, Almanzor

    2011-01-01

    This paper describes a new filter for impulse noise reduction in colour images which is aimed at improving the noise reduction capability of the classical vector median filter. The filter is inspired by the application of a vector marginal median filtering process over a selected group of pixels in each filtering window. This selection, which is based on the vector median, along with the application of the marginal median operation constitutes an adaptive process that leads to a more robust filter design. Also, the proposed method is able to process colour images without introducing colour artifacts. Experimental results show that the images filtered with the proposed method contain less noisy pixels than those obtained through the vector median filter.

  13. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    PubMed

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  14. Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms

    NASA Technical Reports Server (NTRS)

    Linares, Irving (Inventor)

    2004-01-01

    The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.

  15. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Brown, Edward J.; Baldasaro, Paul F.; Dziendziel, Randolph J.

    1997-01-01

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength .lambda..sub.IF approximately equal to the bandgap wavelength .lambda..sub.g of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5.lambda..sub.IF to .lambda..sub.IF and reflect from .lambda..sub.IF to about 2.lambda..sub.IF ; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5.lambda..sub.IF.

  16. Combination of Adaptive Feedback Cancellation and Binaural Adaptive Filtering in Hearing Aids

    NASA Astrophysics Data System (ADS)

    Lombard, Anthony; Reindl, Klaus; Kellermann, Walter

    2009-12-01

    We study a system combining adaptive feedback cancellation and adaptive filtering connecting inputs from both ears for signal enhancement in hearing aids. For the first time, such a binaural system is analyzed in terms of system stability, convergence of the algorithms, and possible interaction effects. As major outcomes of this study, a new stability condition adapted to the considered binaural scenario is presented, some already existing and commonly used feedback cancellation performance measures for the unilateral case are adapted to the binaural case, and possible interaction effects between the algorithms are identified. For illustration purposes, a blind source separation algorithm has been chosen as an example for adaptive binaural spatial filtering. Experimental results for binaural hearing aids confirm the theoretical findings and the validity of the new measures.

  17. A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Sanner, Robert M.

    2012-01-01

    Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.

  18. Adaptive MPC based on MIMO ARX-Laguerre model.

    PubMed

    Ben Abdelwahed, Imen; Mbarek, Abdelkader; Bouzrara, Kais

    2017-03-01

    This paper proposes a method for synthesizing an adaptive predictive controller using a reduced complexity model. This latter is given by the projection of the ARX model on Laguerre bases. The resulting model is entitled MIMO ARX-Laguerre and it is characterized by an easy recursive representation. The adaptive predictive control law is computed based on multi-step-ahead finite-element predictors, identified directly from experimental input/output data. The model is tuned in each iteration by an online identification algorithms of both model parameters and Laguerre poles. The proposed approach avoids time consuming numerical optimization algorithms associated with most common linear predictive control strategies, which makes it suitable for real-time implementation. The method is used to synthesize and test in numerical simulations adaptive predictive controllers for the CSTR process benchmark. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong

    2013-09-01

    This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.

  20. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish.

    PubMed

    Stagaman, Keaton; Burns, Adam R; Guillemin, Karen; Bohannan, Brendan Jm

    2017-07-01

    All animals live in intimate association with communities of microbes, collectively referred to as their microbiota. Certain host traits can influence which microbial taxa comprise the microbiota. One potentially important trait in vertebrate animals is the adaptive immune system, which has been hypothesized to act as an ecological filter, promoting the presence of some microbial taxa over others. Here we surveyed the intestinal microbiota of 68 wild-type zebrafish, with functional adaptive immunity, and 61 rag1 - zebrafish, lacking functional B- and T-cell receptors, to test the role of adaptive immunity as an ecological filter on the intestinal microbiota. In addition, we tested the robustness of adaptive immunity's filtering effects to host-host interaction by comparing the microbiota of fish populations segregated by genotype to those containing both genotypes. The presence of adaptive immunity individualized the gut microbiota and decreased the contributions of neutral processes to gut microbiota assembly. Although mixing genotypes led to increased phylogenetic diversity in each, there was no significant effect of adaptive immunity on gut microbiota composition in either housing condition. Interestingly, the most robust effect on microbiota composition was co-housing within a tank. In all, these results suggest that adaptive immunity has a role as an ecological filter of the zebrafish gut microbiota, but it can be overwhelmed by other factors, including transmission of microbes among hosts.

  1. Teaching and learning recursive programming: a review of the research literature

    NASA Astrophysics Data System (ADS)

    McCauley, Renée; Grissom, Scott; Fitzgerald, Sue; Murphy, Laurie

    2015-01-01

    Hundreds of articles have been published on the topics of teaching and learning recursion, yet fewer than 50 of them have published research results. This article surveys the computing education research literature and presents findings on challenges students encounter in learning recursion, mental models students develop as they learn recursion, and best practices in introducing recursion. Effective strategies for introducing the topic include using different contexts such as recurrence relations, programming examples, fractal images, and a description of how recursive methods are processed using a call stack. Several studies compared the efficacy of introducing iteration before recursion and vice versa. The paper concludes with suggestions for future research into how students learn and understand recursion, including a look at the possible impact of instructor attitude and newer pedagogies.

  2. Application of adaptive Kalman filter in vehicle laser Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Fan, Zhe; Sun, Qiao; Du, Lei; Bai, Jie; Liu, Jingyun

    2018-03-01

    Due to the variation of road conditions and motor characteristics of vehicle, great root-mean-square (rms) error and outliers would be caused. Application of Kalman filter in laser Doppler velocimetry(LDV) is important to improve the velocity measurement accuracy. In this paper, the state-space model is built by using current statistical model. A strategy containing two steps is adopted to make the filter adaptive and robust. First, the acceleration variance is adaptively adjusted by using the difference of predictive observation and measured observation. Second, the outliers would be identified and the measured noise variance would be adjusted according to the orthogonal property of innovation to reduce the impaction of outliers. The laboratory rotating table experiments show that adaptive Kalman filter greatly reduces the rms error from 0.59 cm/s to 0.22 cm/s and has eliminated all the outliers. Road experiments compared with a microwave radar show that the rms error of LDV is 0.0218 m/s, and it proves that the adaptive Kalman filtering is suitable for vehicle speed signal processing.

  3. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter

    PubMed Central

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan

    2018-01-01

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509

  4. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.

    PubMed

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan

    2018-02-06

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.

  5. Recursion Removal as an Instructional Method to Enhance the Understanding of Recursion Tracing

    ERIC Educational Resources Information Center

    Velázquez-Iturbide, J. Ángel; Castellanos, M. Eugenia; Hijón-Neira, Raquel

    2016-01-01

    Recursion is one of the most difficult programming topics for students. In this paper, an instructional method is proposed to enhance students' understanding of recursion tracing. The proposal is based on the use of rules to translate linear recursion algorithms into equivalent, iterative ones. The paper has two main contributions: the…

  6. An efficient recursive least square-based condition monitoring approach for a rail vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Alfi, S.; Bruni, S.

    2016-06-01

    A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic 'input-output' model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software 'ADTreS' are utilised as 'virtual measurements' considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.

  7. Strain improvement of Sporolactobacillus inulinus ATCC 15538 for acid tolerance and production of D-lactic acid by genome shuffling.

    PubMed

    Zheng, Huijie; Gong, Jixian; Chen, Tao; Chen, Xun; Zhao, Xueming

    2010-02-01

    Improvement of acid tolerance and production of D-lactic acid by Sporolactobacillus inulinus ATCC 15538 was performed by using recursive protoplast fusion in a genome shuffling format. The starting population was generated by ultraviolet irradiation, diethyl sulfate mutagenesis, and pH-gradient filter and then, subjected for the recursive protoplast fusion. The concentration of lysozyme, time, and temperature for enzyme treatment were optimized by response surface methodology based on the central composite design. Based on contour plots and variance analysis, the model predicted a maximum Y (multiply protoplasts formation ratio by protoplasts regeneration ratio), 60.4%, and the corresponding above used values were 7.75 mg/ml lysozyme, 1.59 h, and 38 degrees C. A pH-5-resistant recombinant, F3-4, was obtained after three rounds of genome shuffling and its production of D-lactic acid reached 93.4 g/l in a 5 L bioreactor, which was increased by 39.8% and 119% in comparison with that of UV generated strain and the original strain S. inulinus ATCC 15538, respectively. The subculture experiments indicated that F3-4 was genetically stable.

  8. Multiple-camera/motion stereoscopy for range estimation in helicopter flight

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.; Sridhar, Banavar; Suorsa, Raymond E.

    1993-01-01

    Aiding the pilot to improve safety and reduce pilot workload by detecting obstacles and planning obstacle-free flight paths during low-altitude helicopter flight is desirable. Computer vision techniques provide an attractive method of obstacle detection and range estimation for objects within a large field of view ahead of the helicopter. Previous research has had considerable success by using an image sequence from a single moving camera to solving this problem. The major limitations of single camera approaches are that no range information can be obtained near the instantaneous direction of motion or in the absence of motion. These limitations can be overcome through the use of multiple cameras. This paper presents a hybrid motion/stereo algorithm which allows range refinement through recursive range estimation while avoiding loss of range information in the direction of travel. A feature-based approach is used to track objects between image frames. An extended Kalman filter combines knowledge of the camera motion and measurements of a feature's image location to recursively estimate the feature's range and to predict its location in future images. Performance of the algorithm will be illustrated using an image sequence, motion information, and independent range measurements from a low-altitude helicopter flight experiment.

  9. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  10. Adaptive box filters for removal of random noise from digital images

    USGS Publications Warehouse

    Eliason, E.M.; McEwen, A.S.

    1990-01-01

    We have developed adaptive box-filtering algorithms to (1) remove random bit errors (pixel values with no relation to the image scene) and (2) smooth noisy data (pixels related to the image scene but with an additive or multiplicative component of noise). For both procedures, we use the standard deviation (??) of those pixels within a local box surrounding each pixel, hence they are adaptive filters. This technique effectively reduces speckle in radar images without eliminating fine details. -from Authors

  11. Fast spacecraft adaptive attitude tracking control through immersion and invariance design

    NASA Astrophysics Data System (ADS)

    Wen, Haowei; Yue, Xiaokui; Li, Peng; Yuan, Jianping

    2017-10-01

    This paper presents a novel non-certainty-equivalence adaptive control method for the attitude tracking control problem of spacecraft with inertia uncertainties. The proposed immersion and invariance (I&I) based adaptation law provides a more direct and flexible approach to circumvent the limitations of the basic I&I method without employing any filter signal. By virtue of the adaptation high-gain equivalence property derived from the proposed adaptive method, the closed-loop adaptive system with a low adaptation gain could recover the high adaptation gain performance of the filter-based I&I method, and the resulting control torque demands during the initial transient has been significantly reduced. A special feature of this method is that the convergence of the parameter estimation error has been observably improved by utilizing an adaptation gain matrix instead of a single adaptation gain value. Numerical simulations are presented to highlight the various benefits of the proposed method compared with the certainty-equivalence-based control method and filter-based I&I control schemes.

  12. Adaptive Environmental Source Localization and Tracking with Unknown Permittivity and Path Loss Coefficients †

    PubMed Central

    Fidan, Barış; Umay, Ilknur

    2015-01-01

    Accurate signal-source and signal-reflector target localization tasks via mobile sensory units and wireless sensor networks (WSNs), including those for environmental monitoring via sensory UAVs, require precise knowledge of specific signal propagation properties of the environment, which are permittivity and path loss coefficients for the electromagnetic signal case. Thus, accurate estimation of these coefficients has significant importance for the accuracy of location estimates. In this paper, we propose a geometric cooperative technique to instantaneously estimate such coefficients, with details provided for received signal strength (RSS) and time-of-flight (TOF)-based range sensors. The proposed technique is integrated to a recursive least squares (RLS)-based adaptive localization scheme and an adaptive motion control law, to construct adaptive target localization and adaptive target tracking algorithms, respectively, that are robust to uncertainties in aforementioned environmental signal propagation coefficients. The efficiency of the proposed adaptive localization and tracking techniques are both mathematically analysed and verified via simulation experiments. PMID:26690441

  13. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    PubMed

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  14. Orthonormal filters for identification in active control systems

    NASA Astrophysics Data System (ADS)

    Mayer, Dirk

    2015-12-01

    Many active noise and vibration control systems require models of the control paths. When the controlled system changes slightly over time, adaptive digital filters for the identification of the models are useful. This paper aims at the investigation of a special class of adaptive digital filters: orthonormal filter banks possess the robust and simple adaptation of the widely applied finite impulse response (FIR) filters, but at a lower model order, which is important when considering implementation on embedded systems. However, the filter banks require prior knowledge about the resonance frequencies and damping of the structure. This knowledge can be supposed to be of limited precision, since in many practical systems, uncertainties in the structural parameters exist. In this work, a procedure using a number of training systems to find the fixed parameters for the filter banks is applied. The effect of uncertainties in the prior knowledge on the model error is examined both with a basic example and in an experiment. Furthermore, the possibilities to compensate for the imprecise prior knowledge by a higher filter order are investigated. Also comparisons with FIR filters are implemented in order to assess the possible advantages of the orthonormal filter banks. Numerical and experimental investigations show that significantly lower computational effort can be reached by the filter banks under certain conditions.

  15. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

    1997-12-23

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}. 10 figs.

  16. Adaptive spatio-temporal filtering of disturbed ECGs: a multi-channel approach to heartbeat detection in smart clothing.

    PubMed

    Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif

    2007-06-01

    Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.

  17. Real-time 3D adaptive filtering for portable imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.

  18. The Role of Scale and Model Bias in ADAPT's Photospheric Eatimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godinez Vazquez, Humberto C.; Hickmann, Kyle Scott; Arge, Charles Nicholas

    2015-05-20

    The Air Force Assimilative Photospheric flux Transport model (ADAPT), is a magnetic flux propagation based on Worden-Harvey (WH) model. ADAPT would be used to provide a global photospheric map of the Earth. A data assimilation method based on the Ensemble Kalman Filter (EnKF), a method of Monte Carlo approximation tied with Kalman filtering, is used in calculating the ADAPT models.

  19. Reduction of Magnetic Noise Associated with Ocean Waves by Sage-Husa Adaptive Kalman Filter in Towed Overhauser Marine Magnetic Sensor

    NASA Astrophysics Data System (ADS)

    GE, J.; Dong, H.; Liu, H.; Luo, W.

    2016-12-01

    In the extreme sea conditions and deep-sea detection, the towed Overhauser marine magnetic sensor is easily affected by the magnetic noise associated with ocean waves. We demonstrate the reduction of the magnetic noise by Sage-Husa adaptive Kalman filter. Based on Weaver's model, we analyze the induced magnetic field variations associated with the different ocean depths, wave periods and amplitudes in details. Furthermore, we take advantage of the classic Kalman filter to reduce the magnetic noise and improve the signal to noise ratio of the magnetic anomaly data. In the practical marine magnetic surveys, the extreme sea conditions can change priori statistics of the noise, and may decrease the effect of Kalman filtering estimation. To solve this problem, an improved Sage-Husa adaptive filtering algorithm is used to reduce the dependence on the prior statistics. In addition, we implement a towed Overhauser marine magnetometer (Figure 1) to test the proposed method, and it consists of a towfish, an Overhauser total field sensor, a console, and other condition monitoring sensors. Over all, the comparisons of simulation experiments with and without the filter show that the power spectral density of the magnetic noise is reduced to 0.1 nT/Hz1/2@1Hz from 1 nT/Hz1/2@1Hz. The contrasts between the Sage-Husa filter and the classic Kalman filter (Figure 2) show the filtering accuracy and adaptive capacity are improved.

  20. Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.

  1. Progressive sample processing of band selection for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Liu, Keng-Hao; Chien, Hung-Chang; Chen, Shih-Yu

    2017-10-01

    Band selection (BS) is one of the most important topics in hyperspectral image (HSI) processing. The objective of BS is to find a set of representative bands that can represent the whole image with lower inter-band redundancy. Many types of BS algorithms were proposed in the past. However, most of them can be carried on in an off-line manner. It means that they can only be implemented on the pre-collected data. Those off-line based methods are sometime useless for those applications that are timeliness, particular in disaster prevention and target detection. To tackle this issue, a new concept, called progressive sample processing (PSP), was proposed recently. The PSP is an "on-line" framework where the specific type of algorithm can process the currently collected data during the data transmission under band-interleavedby-sample/pixel (BIS/BIP) protocol. This paper proposes an online BS method that integrates a sparse-based BS into PSP framework, called PSP-BS. In PSP-BS, the BS can be carried out by updating BS result recursively pixel by pixel in the same way that a Kalman filter does for updating data information in a recursive fashion. The sparse regression is solved by orthogonal matching pursuit (OMP) algorithm, and the recursive equations of PSP-BS are derived by using matrix decomposition. The experiments conducted on a real hyperspectral image show that the PSP-BS can progressively output the BS status with very low computing time. The convergence of BS results during the transmission can be quickly achieved by using a rearranged pixel transmission sequence. This significant advantage allows BS to be implemented in a real time manner when the HSI data is transmitted pixel by pixel.

  2. Hypoglycemia early alarm systems based on recursive autoregressive partial least squares models.

    PubMed

    Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick

    2013-01-01

    Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. © 2012 Diabetes Technology Society.

  3. Hypoglycemia Early Alarm Systems Based on Recursive Autoregressive Partial Least Squares Models

    PubMed Central

    Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick

    2013-01-01

    Background Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. Methods A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Results Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. Conclusions The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. PMID:23439179

  4. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-raymore » views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.« less

  5. Stochastic system identification in structural dynamics

    USGS Publications Warehouse

    Safak, Erdal

    1988-01-01

    Recently, new identification methods have been developed by using the concept of optimal-recursive filtering and stochastic approximation. These methods, known as stochastic identification, are based on the statistical properties of the signal and noise, and do not require the assumptions of current methods. The criterion for stochastic system identification is that the difference between the recorded output and the output from the identified system (i.e., the residual of the identification) should be equal to white noise. In this paper, first a brief review of the theory is given. Then, an application of the method is presented by using ambient vibration data from a nine-story building.

  6. Log-polar mapping-based scale space tracking with adaptive target response

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Wen, Gongjian; Kuai, Yangliu; Zhang, Ximing

    2017-05-01

    Correlation filter-based tracking has exhibited impressive robustness and accuracy in recent years. Standard correlation filter-based trackers are restricted to translation estimation and equipped with fixed target response. These trackers produce an inferior performance when encountered with a significant scale variation or appearance change. We propose a log-polar mapping-based scale space tracker with an adaptive target response. This tracker transforms the scale variation of the target in the Cartesian space into a shift along the logarithmic axis in the log-polar space. A one-dimensional scale correlation filter is learned online to estimate the shift along the logarithmic axis. With the log-polar representation, scale estimation is achieved accurately without a multiresolution pyramid. To achieve an adaptive target response, a variance of the Gaussian function is computed from the response map and updated online with a learning rate parameter. Our log-polar mapping-based scale correlation filter and adaptive target response can be combined with any correlation filter-based trackers. In addition, the scale correlation filter can be extended to a two-dimensional correlation filter to achieve joint estimation of the scale variation and in-plane rotation. Experiments performed on an OTB50 benchmark demonstrate that our tracker achieves superior performance against state-of-the-art trackers.

  7. An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.

    PubMed

    Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2016-01-01

    This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications.

  8. Adaptive variational mode decomposition method for signal processing based on mode characteristic

    NASA Astrophysics Data System (ADS)

    Lian, Jijian; Liu, Zhuo; Wang, Haijun; Dong, Xiaofeng

    2018-07-01

    Variational mode decomposition is a completely non-recursive decomposition model, where all the modes are extracted concurrently. However, the model requires a preset mode number, which limits the adaptability of the method since a large deviation in the number of mode set will cause the discard or mixing of the mode. Hence, a method called Adaptive Variational Mode Decomposition (AVMD) was proposed to automatically determine the mode number based on the characteristic of intrinsic mode function. The method was used to analyze the simulation signals and the measured signals in the hydropower plant. Comparisons have also been conducted to evaluate the performance by using VMD, EMD and EWT. It is indicated that the proposed method has strong adaptability and is robust to noise. It can determine the mode number appropriately without modulation even when the signal frequencies are relatively close.

  9. An on-line equivalent system identification scheme for adaptive control. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1984-01-01

    A prime obstacle to the widespread use of adaptive control is the degradation of performance and possible instability resulting from the presence of unmodeled dynamics. The approach taken is to explicitly include the unstructured model uncertainty in the output error identification algorithm. The order of the compensator is successively increased by including identified modes. During this model building stage, heuristic rules are used to test for convergence prior to designing compensators. Additionally, the recursive identification algorithm as extended to multi-input, multi-output systems. Enhancements were also made to reduce the computational burden of an algorithm for obtaining minimal state space realizations from the inexact, multivariate transfer functions which result from the identification process. A number of potential adaptive control applications for this approach are illustrated using computer simulations. Results indicated that when speed of adaptation and plant stability are not critical, the proposed schemes converge to enhance system performance.

  10. A generalized adaptive mathematical morphological filter for LIDAR data

    NASA Astrophysics Data System (ADS)

    Cui, Zheng

    Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in processing LIDAR data to effectively and efficiently identify ground measurements for the complex terrains in a large LIDAR data set. The GAPM filter is highly automatic and requires little human input. Therefore, it can significantly reduce the effort of manually processing voluminous LIDAR measurements.

  11. Categorial Compositionality III: F-(co)algebras and the Systematicity of Recursive Capacities in Human Cognition

    PubMed Central

    Phillips, Steven; Wilson, William H.

    2012-01-01

    Human cognitive capacity includes recursively definable concepts, which are prevalent in domains involving lists, numbers, and languages. Cognitive science currently lacks a satisfactory explanation for the systematic nature of such capacities (i.e., why the capacity for some recursive cognitive abilities–e.g., finding the smallest number in a list–implies the capacity for certain others–finding the largest number, given knowledge of number order). The category-theoretic constructs of initial F-algebra, catamorphism, and their duals, final coalgebra and anamorphism provide a formal, systematic treatment of recursion in computer science. Here, we use this formalism to explain the systematicity of recursive cognitive capacities without ad hoc assumptions (i.e., to the same explanatory standard used in our account of systematicity for non-recursive capacities). The presence of an initial algebra/final coalgebra explains systematicity because all recursive cognitive capacities, in the domain of interest, factor through (are composed of) the same component process. Moreover, this factorization is unique, hence no further (ad hoc) assumptions are required to establish the intrinsic connection between members of a group of systematically-related capacities. This formulation also provides a new perspective on the relationship between recursive cognitive capacities. In particular, the link between number and language does not depend on recursion, as such, but on the underlying functor on which the group of recursive capacities is based. Thus, many species (and infants) can employ recursive processes without having a full-blown capacity for number and language. PMID:22514704

  12. What's special about human language? The contents of the "narrow language faculty" revisited.

    PubMed

    Traxler, Matthew J; Boudewyn, Megan; Loudermilk, Jessica

    2012-10-01

    In this review we re-evaluate the recursion-only hypothesis, advocated by Fitch, Hauser and Chomsky (Hauser, Chomsky & Fitch, 2002; Fitch, Hauser & Chomsky, 2005). According to the recursion-only hypothesis, the property that distinguishes human language from animal communication systems is recursion, which refers to the potentially infinite embedding of one linguistic representation within another of the same type. This hypothesis predicts (1) that non-human primates and other animals lack the ability to learn recursive grammar, and (2) that recursive grammar is the sole cognitive mechanism that is unique to human language. We first review animal studies of recursive grammar, before turning to the claim that recursion is a property of all human languages. Finally, we discuss other views on what abilities may be unique to human language.

  13. An information theoretic approach of designing sparse kernel adaptive filters.

    PubMed

    Liu, Weifeng; Park, Il; Principe, José C

    2009-12-01

    This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented.

  14. Adaptive Low Dissipative High Order Filter Methods for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern

    2004-01-01

    Adaptive low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous MHD flows has been constructed. Several variants of the filter approach that cater to different flow types are proposed. These filters provide a natural and efficient way for the minimization of the divergence of the magnetic field [divergence of B] numerical error in the sense that no standard divergence cleaning is required. For certain 2-D MHD test problems, divergence free preservation of the magnetic fields of these filter schemes has been achieved.

  15. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  16. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  17. Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path.

    PubMed

    Costa, Márcio Holsbach

    2017-12-01

    Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system. However, limited dynamic range, low-cost loudspeakers, and nonlinear power amplifiers may distort the hearing aid output signal. In this way, linear-based predictions of the canceller performance may lead to significant deviations from its actual behavior. This work presents a theoretical performance analysis of a Least Mean Square based shadow filter that is applied to set up the coefficients of a feedback canceller, which is subject to a static saturation type nonlinearity at the output of the direct path. Deterministic recursive equations are derived to predict the mean square feedback error and the mean coefficient vector evolution between updates of the feedback canceller. These models are defined as functions of the canceller parameters and input signal statistics. Comparisons with Monte Carlo simulations show the provided models are highly accurate under the considered assumptions. The developed models allow inferences about the potential impact of an overdriven loudspeaker over the transient performance of the direct method feedback canceller, serving as insightful tools for understanding the involved mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Real-Time Multi-Target Localization from Unmanned Aerial Vehicles

    PubMed Central

    Wang, Xuan; Liu, Jinghong; Zhou, Qianfei

    2016-01-01

    In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions. PMID:28029145

  19. Real-Time Multi-Target Localization from Unmanned Aerial Vehicles.

    PubMed

    Wang, Xuan; Liu, Jinghong; Zhou, Qianfei

    2016-12-25

    In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions.

  20. Learning Motivation and Adaptive Video Caption Filtering for EFL Learners Using Handheld Devices

    ERIC Educational Resources Information Center

    Hsu, Ching-Kun

    2015-01-01

    The aim of this study was to provide adaptive assistance to improve the listening comprehension of eleventh grade students. This study developed a video-based language learning system for handheld devices, using three levels of caption filtering adapted to student needs. Elementary level captioning excluded 220 English sight words (see Section 1…

  1. Adaptive texture filtering for defect inspection in ultrasound images

    NASA Astrophysics Data System (ADS)

    Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Nash, Charles

    1993-05-01

    The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly-textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.

  2. Particle Filter-Based Recursive Data Fusion With Sensor Indexing for Large Core Neutron Flux Estimation

    NASA Astrophysics Data System (ADS)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2017-06-01

    We introduce a sequential importance sampling particle filter (PF)-based multisensor multivariate nonlinear estimator for estimating the in-core neutron flux distribution for pressurized heavy water reactor core. Many critical applications such as reactor protection and control rely upon neutron flux information, and thus their reliability is of utmost importance. The point kinetic model based on neutron transport conveniently explains the dynamics of nuclear reactor. The neutron flux in the large core loosely coupled reactor is sensed by multiple sensors measuring point fluxes located at various locations inside the reactor core. The flux values are coupled to each other through diffusion equation. The coupling facilitates redundancy in the information. It is shown that multiple independent data about the localized flux can be fused together to enhance the estimation accuracy to a great extent. We also propose the sensor anomaly handling feature in multisensor PF to maintain the estimation process even when the sensor is faulty or generates data anomaly.

  3. Electrical valley filtering in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Hsieh, Tzu-Chi; Chou, Mei-Yin; Wu, Yu-Shu

    2018-03-01

    This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides. We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling rates, and perform the study with both a k .p -based analytic method and a recursive Green's function-based numerical method. The study yields the transmission coefficient as a function of incident energy and transverse wave vector, for holes going through lateral quantum barriers oriented in either armchair or zigzag directions, in both homogeneous and heterogeneous systems. The main findings are the following: (1) The tunneling current valley polarization increases with increasing barrier width or height; (2) both the valley-orbit interaction and band structure warping contribute to valley-dependent tunneling, with the former contribution being manifest in structures with asymmetric potential barriers, and the latter being orientation dependent and reaching maximum for transmission in the armchair direction; and (3) for transmission ˜0.1 , a tunneling current valley polarization of the order of 10 % can be achieved.

  4. An Architecture for Measuring Joint Angles Using a Long Period Fiber Grating-Based Sensor

    PubMed Central

    Perez-Ramirez, Carlos A.; Almanza-Ojeda, Dora L.; Guerrero-Tavares, Jesus N.; Mendoza-Galindo, Francisco J.; Estudillo-Ayala, Julian M.; Ibarra-Manzano, Mario A.

    2014-01-01

    The implementation of signal filters in a real-time form requires a tradeoff between computation resources and the system performance. Therefore, taking advantage of low lag response and the reduced consumption of resources, in this article, the Recursive Least Square (RLS) algorithm is used to filter a signal acquired from a fiber-optics-based sensor. In particular, a Long-Period Fiber Grating (LPFG) sensor is used to measure the bending movement of a finger. After that, the Gaussian Mixture Model (GMM) technique allows us to classify the corresponding finger position along the motion range. For these measures to help in the development of an autonomous robotic hand, the proposed technique can be straightforwardly implemented on real time platforms such as Field Programmable Gate Array (FPGA) or Digital Signal Processors (DSP). Different angle measurements of the finger's motion are carried out by the prototype and a detailed analysis of the system performance is presented. PMID:25536002

  5. Neural Net Gains Estimation Based on an Equivalent Model

    PubMed Central

    Aguilar Cruz, Karen Alicia; Medel Juárez, José de Jesús; Fernández Muñoz, José Luis; Esmeralda Vigueras Velázquez, Midory

    2016-01-01

    A model of an Equivalent Artificial Neural Net (EANN) describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN). The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB) the factors based on the functional error and the reference signal built with the past information of the system. PMID:27366146

  6. Neural Net Gains Estimation Based on an Equivalent Model.

    PubMed

    Aguilar Cruz, Karen Alicia; Medel Juárez, José de Jesús; Fernández Muñoz, José Luis; Esmeralda Vigueras Velázquez, Midory

    2016-01-01

    A model of an Equivalent Artificial Neural Net (EANN) describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN). The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB) the factors based on the functional error and the reference signal built with the past information of the system.

  7. Evolving RBF neural networks for adaptive soft-sensor design.

    PubMed

    Alexandridis, Alex

    2013-12-01

    This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.

  8. Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays.

    PubMed

    Niu, Ben; Li, Lu

    2018-06-01

    This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.

  9. What's special about human language? The contents of the "narrow language faculty" revisited

    PubMed Central

    Traxler, Matthew J.; Boudewyn, Megan; Loudermilk, Jessica

    2012-01-01

    In this review we re-evaluate the recursion-only hypothesis, advocated by Fitch, Hauser and Chomsky (Hauser, Chomsky & Fitch, 2002; Fitch, Hauser & Chomsky, 2005). According to the recursion-only hypothesis, the property that distinguishes human language from animal communication systems is recursion, which refers to the potentially infinite embedding of one linguistic representation within another of the same type. This hypothesis predicts (1) that non-human primates and other animals lack the ability to learn recursive grammar, and (2) that recursive grammar is the sole cognitive mechanism that is unique to human language. We first review animal studies of recursive grammar, before turning to the claim that recursion is a property of all human languages. Finally, we discuss other views on what abilities may be unique to human language. PMID:23105948

  10. Infiltration of forest fire and residential wood smoke: an evaluation of air cleaner effectiveness.

    PubMed

    Barn, Prabjit; Larson, Timothy; Noullett, Melanie; Kennedy, Susan; Copes, Ray; Brauer, Michael

    2008-09-01

    Communities impacted by fine-particle air pollution (particles with an aerodynamic diameter less than 2.5 microm; PM(2.5)) from forest fires and residential wood burning require effective, evidence-based exposure-reduction strategies. Public health recommendations during smoke episodes typically include advising community members to remain indoors and the use of air cleaners, yet little information is available on the effectiveness of these measures. Our study attempted to address the following objectives: to measure indoor infiltration factor (F(inf)) of PM(2.5) from forest fires/wood smoke, to determine the effectiveness of high-efficiency particulate air (HEPA) filter air cleaners in reducing indoor PM(2.5), and to analyze the home determinants of F(inf) and air cleaner effectiveness (ACE). We collected indoor/outdoor 1-min PM(2.5) averages and 48-h outdoor PM(2.5) filter samples for 21 winter and 17 summer homes impacted by wood burning and forest fire smoke, respectively, during 2004-2005. A portable HEPA filter air cleaner was operated indoors with the filter removed for one of two sampling days. Particle F(inf) and ACE were calculated for each home using a recursive model. We found mean F(inf)+/-SD was 0.27+/-0.18 and 0.61+/-0.27 in winter (n=19) and summer (n=13), respectively, for days when HEPA filters were not used. Lower F(inf)+/-SD values of 0.10+/-0.08 and 0.19+/-0.20 were found on corresponding days when HEPA filters were in place. Mean+/-SD ACE ([F(inf) without filter-F(inf) with filter]/F(inf) without filter) in winter and summer were 55+/-38% and 65+/-35%, respectively. Number of windows and season predicted F(inf) (P<0.001). No significant predictors of ACE were identified. Our findings show that remaining indoors combined with use of air cleaner can effectively reduce PM(2.5) exposure during forest fires and residential wood burning.

  11. HARDI denoising using nonlocal means on S2

    NASA Astrophysics Data System (ADS)

    Kuurstra, Alan; Dolui, Sudipto; Michailovich, Oleg

    2012-02-01

    Diffusion MRI (dMRI) is a unique imaging modality for in vivo delineation of the anatomical structure of white matter in the brain. In particular, high angular resolution diffusion imaging (HARDI) is a specific instance of dMRI which is known to excel in detection of multiple neural fibers within a single voxel. Unfortunately, the angular resolution of HARDI is known to be inversely proportional to SNR, which makes the problem of denoising of HARDI data be of particular practical importance. Since HARDI signals are effectively band-limited, denoising can be accomplished by means of linear filtering. However, the spatial dependency of diffusivity in brain tissue makes it impossible to find a single set of linear filter parameters which is optimal for all types of diffusion signals. Hence, adaptive filtering is required. In this paper, we propose a new type of non-local means (NLM) filtering which possesses the required adaptivity property. As opposed to similar methods in the field, however, the proposed NLM filtering is applied in the spherical domain of spatial orientations. Moreover, the filter uses an original definition of adaptive weights, which are designed to be invariant to both spatial rotations as well as to a particular sampling scheme in use. As well, we provide a detailed description of the proposed filtering procedure, its efficient implementation, as well as experimental results with synthetic data. We demonstrate that our filter has substantially better adaptivity as compared to a number of alternative methods.

  12. Modeling level change in Lake Urmia using hybrid artificial intelligence approaches

    NASA Astrophysics Data System (ADS)

    Esbati, M.; Ahmadieh Khanesar, M.; Shahzadi, Ali

    2017-06-01

    The investigation of water level fluctuations in lakes for protecting them regarding the importance of these water complexes in national and regional scales has found a special place among countries in recent years. The importance of the prediction of water level balance in Lake Urmia is necessary due to several-meter fluctuations in the last decade which help the prevention from possible future losses. For this purpose, in this paper, the performance of adaptive neuro-fuzzy inference system (ANFIS) for predicting the lake water level balance has been studied. In addition, for the training of the adaptive neuro-fuzzy inference system, particle swarm optimization (PSO) and hybrid backpropagation-recursive least square method algorithm have been used. Moreover, a hybrid method based on particle swarm optimization and recursive least square (PSO-RLS) training algorithm for the training of ANFIS structure is introduced. In order to have a more fare comparison, hybrid particle swarm optimization and gradient descent are also applied. The models have been trained, tested, and validated based on lake level data between 1991 and 2014. For performance evaluation, a comparison is made between these methods. Numerical results obtained show that the proposed methods with a reasonable error have a good performance in water level balance prediction. It is also clear that with continuing the current trend, Lake Urmia will experience more drop in the water level balance in the upcoming years.

  13. A Survey on Teaching and Learning Recursive Programming

    ERIC Educational Resources Information Center

    Rinderknecht, Christian

    2014-01-01

    We survey the literature about the teaching and learning of recursive programming. After a short history of the advent of recursion in programming languages and its adoption by programmers, we present curricular approaches to recursion, including a review of textbooks and some programming methodology, as well as the functional and imperative…

  14. Sequential estimation of surface water mass changes from daily satellite gravimetry data

    NASA Astrophysics Data System (ADS)

    Ramillien, G. L.; Frappart, F.; Gratton, S.; Vasseur, X.

    2015-03-01

    We propose a recursive Kalman filtering approach to map regional spatio-temporal variations of terrestrial water mass over large continental areas, such as South America. Instead of correcting hydrology model outputs by the GRACE observations using a Kalman filter estimation strategy, regional 2-by-2 degree water mass solutions are constructed by integration of daily potential differences deduced from GRACE K-band range rate (KBRR) measurements. Recovery of regional water mass anomaly averages obtained by accumulation of information of daily noise-free simulated GRACE data shows that convergence is relatively fast and yields accurate solutions. In the case of cumulating real GRACE KBRR data contaminated by observational noise, the sequential method of step-by-step integration provides estimates of water mass variation for the period 2004-2011 by considering a set of suitable a priori error uncertainty parameters to stabilize the inversion. Spatial and temporal averages of the Kalman filter solutions over river basin surfaces are consistent with the ones computed using global monthly/10-day GRACE solutions from official providers CSR, GFZ and JPL. They are also highly correlated to in situ records of river discharges (70-95 %), especially for the Obidos station where the total outflow of the Amazon River is measured. The sparse daily coverage of the GRACE satellite tracks limits the time resolution of the regional Kalman filter solutions, and thus the detection of short-term hydrological events.

  15. Self-tuning control of attitude and momentum management for the Space Station

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Yuan, Z. Z.; Zhao, X. M.

    1992-01-01

    This paper presents a hybrid state-space self-tuning design methodology using dual-rate sampling for suboptimal digital adaptive control of attitude and momentum management for the Space Station. This new hybrid adaptive control scheme combines an on-line recursive estimation algorithm for indirectly identifying the parameters of a continuous-time system from the available fast-rate sampled data of the inputs and states and a controller synthesis algorithm for indirectly finding the slow-rate suboptimal digital controller from the designed optimal analog controller. The proposed method enables the development of digitally implementable control algorithms for the robust control of Space Station Freedom with unknown environmental disturbances and slowly time-varying dynamics.

  16. An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy

    NASA Astrophysics Data System (ADS)

    Hu, Han; Ding, Yulin; Zhu, Qing; Wu, Bo; Lin, Hui; Du, Zhiqiang; Zhang, Yeting; Zhang, Yunsheng

    2014-06-01

    The filtering of point clouds is a ubiquitous task in the processing of airborne laser scanning (ALS) data; however, such filtering processes are difficult because of the complex configuration of the terrain features. The classical filtering algorithms rely on the cautious tuning of parameters to handle various landforms. To address the challenge posed by the bundling of different terrain features into a single dataset and to surmount the sensitivity of the parameters, in this study, we propose an adaptive surface filter (ASF) for the classification of ALS point clouds. Based on the principle that the threshold should vary in accordance to the terrain smoothness, the ASF embeds bending energy, which quantitatively depicts the local terrain structure to self-adapt the filter threshold automatically. The ASF employs a step factor to control the data pyramid scheme in which the processing window sizes are reduced progressively, and the ASF gradually interpolates thin plate spline surfaces toward the ground with regularization to handle noise. Using the progressive densification strategy, regularization and self-adaption, both performance improvement and resilience to parameter tuning are achieved. When tested against the benchmark datasets provided by ISPRS, the ASF performs the best in comparison with all other filtering methods, yielding an average total error of 2.85% when optimized and 3.67% when using the same parameter set.

  17. Adaptive Control of Linear Modal Systems Using Residual Mode Filters and a Simple Disturbance Estimator

    NASA Technical Reports Server (NTRS)

    Balas, Mark; Frost, Susan

    2012-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter.

  18. Development of Na Adaptive Filter to Estimate the Percentage of Body Fat Based on Anthropometric Measures

    NASA Astrophysics Data System (ADS)

    do Lago, Naydson Emmerson S. P.; Kardec Barros, Allan; Sousa, Nilviane Pires S.; Junior, Carlos Magno S.; Oliveira, Guilherme; Guimares Polisel, Camila; Eder Carvalho Santana, Ewaldo

    2018-01-01

    This study aims to develop an algorithm of an adaptive filter to determine the percentage of body fat based on the use of anthropometric indicators in adolescents. Measurements such as body mass, height and waist circumference were collected for a better analysis. The development of this filter was based on the Wiener filter, used to produce an estimate of a random process. The Wiener filter minimizes the mean square error between the estimated random process and the desired process. The LMS algorithm was also studied for the development of the filter because it is important due to its simplicity and facility of computation. Excellent results were obtained with the filter developed, being these results analyzed and compared with the data collected.

  19. Recursion in aphasia.

    PubMed

    Bánréti, Zoltán

    2010-11-01

    This study investigates how aphasic impairment impinges on syntactic and/or semantic recursivity of human language. A series of tests has been conducted with the participation of five Hungarian speaking aphasic subjects and 10 control subjects. Photographs representing simple situations were presented to subjects and questions were asked about them. The responses are supposed to involve formal structural recursion, but they contain semantic-pragmatic operations instead, with 'theory of mind' type embeddings. Aphasic individuals tend to exploit the parallel between 'theory of mind' embeddings and syntactic-structural embeddings in order to avoid formal structural recursion. Formal structural recursion may be more impaired in Broca's aphasia and semantic recursivity may remain selectively unimpaired in this type of aphasia.

  20. Teaching and Learning Recursive Programming: A Review of the Research Literature

    ERIC Educational Resources Information Center

    McCauley, Renée; Grissom, Scott; Fitzgerald, Sue; Murphy, Laurie

    2015-01-01

    Hundreds of articles have been published on the topics of teaching and learning recursion, yet fewer than 50 of them have published research results. This article surveys the computing education research literature and presents findings on challenges students encounter in learning recursion, mental models students develop as they learn recursion,…

  1. How Learning Logic Programming Affects Recursion Comprehension

    ERIC Educational Resources Information Center

    Haberman, Bruria

    2004-01-01

    Recursion is a central concept in computer science, yet it is difficult for beginners to comprehend. Israeli high-school students learn recursion in the framework of a special modular program in computer science (Gal-Ezer & Harel, 1999). Some of them are introduced to the concept of recursion in two different paradigms: the procedural…

  2. Recursive Objects--An Object Oriented Presentation of Recursion

    ERIC Educational Resources Information Center

    Sher, David B.

    2004-01-01

    Generally, when recursion is introduced to students the concept is illustrated with a toy (Towers of Hanoi) and some abstract mathematical functions (factorial, power, Fibonacci). These illustrate recursion in the same sense that counting to 10 can be used to illustrate a for loop. These are all good illustrations, but do not represent serious…

  3. Detection of circuit-board components with an adaptive multiclass correlation filter

    NASA Astrophysics Data System (ADS)

    Diaz-Ramirez, Victor H.; Kober, Vitaly

    2008-08-01

    A new method for reliable detection of circuit-board components is proposed. The method is based on an adaptive multiclass composite correlation filter. The filter is designed with the help of an iterative algorithm using complex synthetic discriminant functions. The impulse response of the filter contains information needed to localize and classify geometrically distorted circuit-board components belonging to different classes. Computer simulation results obtained with the proposed method are provided and compared with those of known multiclass correlation based techniques in terms of performance criteria for recognition and classification of objects.

  4. How children perceive fractals: Hierarchical self-similarity and cognitive development

    PubMed Central

    Martins, Maurício Dias; Laaha, Sabine; Freiberger, Eva Maria; Choi, Soonja; Fitch, W. Tecumseh

    2014-01-01

    The ability to understand and generate hierarchical structures is a crucial component of human cognition, available in language, music, mathematics and problem solving. Recursion is a particularly useful mechanism for generating complex hierarchies by means of self-embedding rules. In the visual domain, fractals are recursive structures in which simple transformation rules generate hierarchies of infinite depth. Research on how children acquire these rules can provide valuable insight into the cognitive requirements and learning constraints of recursion. Here, we used fractals to investigate the acquisition of recursion in the visual domain, and probed for correlations with grammar comprehension and general intelligence. We compared second (n = 26) and fourth graders (n = 26) in their ability to represent two types of rules for generating hierarchical structures: Recursive rules, on the one hand, which generate new hierarchical levels; and iterative rules, on the other hand, which merely insert items within hierarchies without generating new levels. We found that the majority of fourth graders, but not second graders, were able to represent both recursive and iterative rules. This difference was partially accounted by second graders’ impairment in detecting hierarchical mistakes, and correlated with between-grade differences in grammar comprehension tasks. Empirically, recursion and iteration also differed in at least one crucial aspect: While the ability to learn recursive rules seemed to depend on the previous acquisition of simple iterative representations, the opposite was not true, i.e., children were able to acquire iterative rules before they acquired recursive representations. These results suggest that the acquisition of recursion in vision follows learning constraints similar to the acquisition of recursion in language, and that both domains share cognitive resources involved in hierarchical processing. PMID:24955884

  5. Resolving occlusion and segmentation errors in multiple video object tracking

    NASA Astrophysics Data System (ADS)

    Cheng, Hsu-Yung; Hwang, Jenq-Neng

    2009-02-01

    In this work, we propose a method to integrate the Kalman filter and adaptive particle sampling for multiple video object tracking. The proposed framework is able to detect occlusion and segmentation error cases and perform adaptive particle sampling for accurate measurement selection. Compared with traditional particle filter based tracking methods, the proposed method generates particles only when necessary. With the concept of adaptive particle sampling, we can avoid degeneracy problem because the sampling position and range are dynamically determined by parameters that are updated by Kalman filters. There is no need to spend time on processing particles with very small weights. The adaptive appearance for the occluded object refers to the prediction results of Kalman filters to determine the region that should be updated and avoids the problem of using inadequate information to update the appearance under occlusion cases. The experimental results have shown that a small number of particles are sufficient to achieve high positioning and scaling accuracy. Also, the employment of adaptive appearance substantially improves the positioning and scaling accuracy on the tracking results.

  6. A P-band SAR interference filter

    NASA Technical Reports Server (NTRS)

    Taylor, Victor B.

    1992-01-01

    The synthetic aperture radar (SAR) interference filter is an adaptive filter designed to reduce the effects of interference while minimizing the introduction of undesirable side effects. The author examines the adaptive spectral filter and the improvement in processed SAR imagery using this filter for Jet Propulsion Laboratory Airborne SAR (JPL AIRSAR) data. The quality of these improvements is determined through several data fidelity criteria, such as point-target impulse response, equivalent number of looks, SNR, and polarization signatures. These parameters are used to characterize two data sets, both before and after filtering. The first data set consists of data with the interference present in the original signal, and the second set consists of clean data which has been coherently injected with interference acquired from another scene.

  7. Statistical estimation of ultrasonic propagation path parameters for aberration correction.

    PubMed

    Waag, Robert C; Astheimer, Jeffrey P

    2005-05-01

    Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.

  8. Alternative methods to smooth the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Jekeli, C.

    1981-01-01

    Convolutions on the sphere with corresponding convolution theorems are developed for one and two dimensional functions. Some of these results are used in a study of isotropic smoothing operators or filters. Well known filters in Fourier spectral analysis, such as the rectangular, Gaussian, and Hanning filters, are adapted for data on a sphere. The low-pass filter most often used on gravity data is the rectangular (or Pellinen) filter. However, its spectrum has relatively large sidelobes; and therefore, this filter passes a considerable part of the upper end of the gravity spectrum. The spherical adaptations of the Gaussian and Hanning filters are more efficient in suppressing the high-frequency components of the gravity field since their frequency response functions are strongly field since their frequency response functions are strongly tapered at the high frequencies with no, or small, sidelobes. Formulas are given for practical implementation of these new filters.

  9. Adaptive iterated function systems filter for images highly corrupted with fixed - Value impulse noise

    NASA Astrophysics Data System (ADS)

    Shanmugavadivu, P.; Eliahim Jeevaraj, P. S.

    2014-06-01

    The Adaptive Iterated Functions Systems (AIFS) Filter presented in this paper has an outstanding potential to attenuate the fixed-value impulse noise in images. This filter has two distinct phases namely noise detection and noise correction which uses Measure of Statistics and Iterated Function Systems (IFS) respectively. The performance of AIFS filter is assessed by three metrics namely, Peak Signal-to-Noise Ratio (PSNR), Mean Structural Similarity Index Matrix (MSSIM) and Human Visual Perception (HVP). The quantitative measures PSNR and MSSIM endorse the merit of this filter in terms of degree of noise suppression and details/edge preservation respectively, in comparison with the high performing filters reported in the recent literature. The qualitative measure HVP confirms the noise suppression ability of the devised filter. This computationally simple noise filter broadly finds application wherein the images are highly degraded by fixed-value impulse noise.

  10. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.

  11. Analysis on Influence Factors of Adaptive Filter Acting on ANC

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuqun; Zou, Liang; Ni, Guangkui; Wang, Xiaojun; Han, Tao; Zhao, Quanfu

    The noise problem has become more and more serious in recent years. The adaptive filter theory which is applied in ANC [1] (active noise control) has also attracted more and more attention. In this article, the basic principle and algorithm of adaptive theory are both researched. And then the influence factor that affects its covergence rate and noise reduction is also simulated.

  12. A New Method to Cancel RFI---The Adaptive Filter

    NASA Astrophysics Data System (ADS)

    Bradley, R.; Barnbaum, C.

    1996-12-01

    An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation effectiveness of the system on the 140 ft telescope at Green Bank Observatory.

  13. Development of an adaptive bilateral filter for evaluating color image difference

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Hardeberg, Jon Yngve

    2012-04-01

    Spatial filtering, which aims to mimic the contrast sensitivity function (CSF) of the human visual system (HVS), has previously been combined with color difference formulae for measuring color image reproduction errors. These spatial filters attenuate imperceptible information in images, unfortunately including high frequency edges, which are believed to be crucial in the process of scene analysis by the HVS. The adaptive bilateral filter represents a novel approach, which avoids the undesirable loss of edge information introduced by CSF-based filtering. The bilateral filter employs two Gaussian smoothing filters in different domains, i.e., spatial domain and intensity domain. We propose a method to decide the parameters, which are designed to be adaptive to the corresponding viewing conditions, and the quantity and homogeneity of information contained in an image. Experiments and discussions are given to support the proposal. A series of perceptual experiments were conducted to evaluate the performance of our approach. The experimental sample images were reproduced with variations in six image attributes: lightness, chroma, hue, compression, noise, and sharpness/blurriness. The Pearson's correlation values between the model-predicted image difference and the observed difference were employed to evaluate the performance, and compare it with that of spatial CIELAB and image appearance model.

  14. Estimation in Linear Systems Featuring Correlated Uncertain Observations Coming from Multiple Sensors

    NASA Astrophysics Data System (ADS)

    Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.

    2009-08-01

    In this paper, the state least-squares linear estimation problem from correlated uncertain observations coming from multiple sensors is addressed. It is assumed that, at each sensor, the state is measured in the presence of additive white noise and that the uncertainty in the observations is characterized by a set of Bernoulli random variables which are only correlated at consecutive time instants. Assuming that the statistical properties of such variables are not necessarily the same for all the sensors, a recursive filtering algorithm is proposed, and the performance of the estimators is illustrated by a numerical simulation example wherein a signal is estimated from correlated uncertain observations coming from two sensors with different uncertainty characteristics.

  15. An Empirical Comparison between Two Recursive Filters for Attitude and Rate Estimation of Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    2006-01-01

    The advantages of inducing a constant spin rate on a spacecraft are well known. A variety of science missions have used this technique as a relatively low cost method for conducting science. Starting in the late 1970s, NASA focused on building spacecraft using 3-axis control as opposed to the single-axis control mentioned above. Considerable effort was expended toward sensor and control system development, as well as the development of ground systems to independently process the data. As a result, spinning spacecraft development and their resulting ground system development stagnated. In the 1990s, shrinking budgets made spinning spacecraft an attractive option for science. The attitude requirements for recent spinning spacecraft are more stringent and the ground systems must be enhanced in order to provide the necessary attitude estimation accuracy. Since spinning spacecraft (SC) typically have no gyroscopes for measuring attitude rate, any new estimator would need to rely on the spacecraft dynamics equations. One estimation technique that utilized the SC dynamics and has been used successfully in 3-axis gyro-less spacecraft ground systems is the pseudo-linear Kalman filter algorithm. Consequently, a pseudo-linear Kalman filter has been developed which directly estimates the spacecraft attitude quaternion and rate for a spinning SC. Recently, a filter using Markley variables was developed specifically for spinning spacecraft. The pseudo-linear Kalman filter has the advantage of being easier to implement but estimates the quaternion which, due to the relatively high spinning rate, changes rapidly for a spinning spacecraft. The Markley variable filter is more complicated to implement but, being based on the SC angular momentum, estimates parameters which vary slowly. This paper presents a comparison of the performance of these two filters. Monte-Carlo simulation runs will be presented which demonstrate the advantages and disadvantages of both filters.

  16. Entropy-based adaptive attitude estimation

    NASA Astrophysics Data System (ADS)

    Kiani, Maryam; Barzegar, Aylin; Pourtakdoust, Seid H.

    2018-03-01

    Gaussian approximation filters have increasingly been developed to enhance the accuracy of attitude estimation in space missions. The effective employment of these algorithms demands accurate knowledge of system dynamics and measurement models, as well as their noise characteristics, which are usually unavailable or unreliable. An innovation-based adaptive filtering approach has been adopted as a solution to this problem; however, it exhibits two major challenges, namely appropriate window size selection and guaranteed assurance of positive definiteness for the estimated noise covariance matrices. The current work presents two novel techniques based on relative entropy and confidence level concepts in order to address the abovementioned drawbacks. The proposed adaptation techniques are applied to two nonlinear state estimation algorithms of the extended Kalman filter and cubature Kalman filter for attitude estimation of a low earth orbit satellite equipped with three-axis magnetometers and Sun sensors. The effectiveness of the proposed adaptation scheme is demonstrated by means of comprehensive sensitivity analysis on the system and environmental parameters by using extensive independent Monte Carlo simulations.

  17. Destriping of Landsat MSS images by filtering techniques

    USGS Publications Warehouse

    Pan, Jeng-Jong; Chang, Chein-I

    1992-01-01

    : The removal of striping noise encountered in the Landsat Multispectral Scanner (MSS) images can be generally done by using frequency filtering techniques. Frequency do~ain filteri~g has, how~ver, se,:era~ prob~ems~ such as storage limitation of data required for fast Fourier transforms, nngmg artl~acts appe~nng at hlgh-mt,enslty.dlscontinuities, and edge effects between adjacent filtered data sets. One way for clrcu~,,:entmg the above difficulties IS, to design a spatial filter to convolve with the images. Because it is known that the,stnpmg a.lways appears at frequencies of 1/6, 1/3, and 1/2 cycles per line, it is possible to design a simple one-dimensIOnal spat~a~ fll,ter to take advantage of this a priori knowledge to cope with the above problems. The desired filter is the type of ~mlte Impuls~ response which can be designed by a linear programming and Remez's exchange algorithm coupled ~lth an adaptIve tec,hmque. In addition, a four-step spatial filtering technique with an appropriate adaptive approach IS also presented which may be particularly useful for geometrically rectified MSS images.

  18. Kalman filter based control for Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry

    2004-12-01

    Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.

  19. Cognitive representation of "musical fractals": Processing hierarchy and recursion in the auditory domain.

    PubMed

    Martins, Mauricio Dias; Gingras, Bruno; Puig-Waldmueller, Estela; Fitch, W Tecumseh

    2017-04-01

    The human ability to process hierarchical structures has been a longstanding research topic. However, the nature of the cognitive machinery underlying this faculty remains controversial. Recursion, the ability to embed structures within structures of the same kind, has been proposed as a key component of our ability to parse and generate complex hierarchies. Here, we investigated the cognitive representation of both recursive and iterative processes in the auditory domain. The experiment used a two-alternative forced-choice paradigm: participants were exposed to three-step processes in which pure-tone sequences were built either through recursive or iterative processes, and had to choose the correct completion. Foils were constructed according to generative processes that did not match the previous steps. Both musicians and non-musicians were able to represent recursion in the auditory domain, although musicians performed better. We also observed that general 'musical' aptitudes played a role in both recursion and iteration, although the influence of musical training was somehow independent from melodic memory. Moreover, unlike iteration, recursion in audition was well correlated with its non-auditory (recursive) analogues in the visual and action sequencing domains. These results suggest that the cognitive machinery involved in establishing recursive representations is domain-general, even though this machinery requires access to information resulting from domain-specific processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Hybrid adaptive ascent flight control for a flexible launch vehicle

    NASA Astrophysics Data System (ADS)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the hybrid adaptive flight controller, development of a Newton's method based online parameter update that is modified to include a step size which regulates the rate of change in the parameter estimates, comparison of the modified Newton's method and recursive least squares online parameter update algorithms, modification of the neural network's input structure to accommodate for the nature of the nonlinearities present in a launch vehicle's ascent flight, examination of both tracking error based and modeling error based neural network weight update laws, and integration of feedback filters for the purpose of preventing harmful interaction between the flight control system and flexible structural modes. To validate the hybrid adaptive controller, a high-fidelity Ares I ascent flight simulator and a classical gain-scheduled proportional-integral-derivative (PID) ascent flight controller were obtained from the NASA Marshall Space Flight Center. The classical PID flight controller is used as a benchmark when analyzing the performance of the hybrid adaptive flight controller. Simulations are conducted which model both nominal and off-nominal flight conditions with structural flexibility of the vehicle either enabled or disabled. First, rigid body ascent simulations are performed with the hybrid adaptive controller under nominal flight conditions for the purpose of selecting the update laws which drive the indirect and direct adaptive components. With the neural network disabled, the results revealed that the recursive least squares online parameter update caused high frequency oscillations to appear in the engine gimbal commands. This is highly undesirable for long and slender launch vehicles, such as the Ares I, because such oscillation of the rocket nozzle could excite unstable structural flex modes. In contrast, the modified Newton's method online parameter update produced smooth control signals and was thus selected for use in the hybrid adaptive launch vehicle flight controller. In the simulations where the online parameter identification algorithm was disabled, the tracking error based neural network weight update law forced the network's output to diverge despite repeated reductions of the adaptive learning rate. As a result, the modeling error based neural network weight update law (which generated bounded signals) is utilized by the hybrid adaptive controller in all subsequent simulations. Comparing the PID and hybrid adaptive flight controllers under nominal flight conditions in rigid body ascent simulations showed that their tracking error magnitudes are similar for a period of time during the middle of the ascent phase. Though the PID controller performs better for a short interval around the 20 second mark, the hybrid adaptive controller performs far better from roughly 70 to 120 seconds. Elevating the aerodynamic loads by increasing the force and moment coefficients produced results very similar to the nominal case. However, applying a 5% or 10% thrust reduction to the first stage rocket motor causes the tracking error magnitude observed by the PID controller to be significantly elevated and diverge rapidly as the simulation concludes. In contrast, the hybrid adaptive controller steadily maintains smaller errors (often less than 50% of the corresponding PID value). Under the same sets of flight conditions with flexibility enabled, the results exhibit similar trends with the hybrid adaptive controller performing even better in each case. Again, the reduction of the first stage rocket motor's thrust clearly illustrated the superior robustness of the hybrid adaptive flight controller.

  1. Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI.

    PubMed

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R

    2017-04-01

    Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved.

  2. Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI

    NASA Astrophysics Data System (ADS)

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R.

    2017-04-01

    Objective. Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. Approach. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. Main results. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. Significance. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved

  3. Multidimensional deconvolution of optical microscope and ultrasound imaging using adaptive least-mean-square (LMS) inverse filtering

    NASA Astrophysics Data System (ADS)

    Sapia, Mark Angelo

    2000-11-01

    Three-dimensional microscope images typically suffer from reduced resolution due to the effects of convolution, optical aberrations and out-of-focus blurring. Two- dimensional ultrasound images are also degraded by convolutional bluffing and various sources of noise. Speckle noise is a major problem in ultrasound images. In microscopy and ultrasound, various methods of digital filtering have been used to improve image quality. Several methods of deconvolution filtering have been used to improve resolution by reversing the convolutional effects, many of which are based on regularization techniques and non-linear constraints. The technique discussed here is a unique linear filter for deconvolving 3D fluorescence microscopy or 2D ultrasound images. The process is to solve for the filter completely in the spatial-domain using an adaptive algorithm to converge to an optimum solution for de-blurring and resolution improvement. There are two key advantages of using an adaptive solution: (1)it efficiently solves for the filter coefficients by taking into account all sources of noise and degraded resolution at the same time, and (2)achieves near-perfect convergence to the ideal linear deconvolution filter. This linear adaptive technique has other advantages such as avoiding artifacts of frequency-domain transformations and concurrent adaptation to suppress noise. Ultimately, this approach results in better signal-to-noise characteristics with virtually no edge-ringing. Many researchers have not adopted linear techniques because of poor convergence, noise instability and negative valued data in the results. The methods presented here overcome many of these well-documented disadvantages and provide results that clearly out-perform other linear methods and may also out-perform regularization and constrained algorithms. In particular, the adaptive solution is most responsible for overcoming the poor performance associated with linear techniques. This linear adaptive approach to deconvolution is demonstrated with results of restoring blurred phantoms for both microscopy and ultrasound and restoring 3D microscope images of biological cells and 2D ultrasound images of human subjects (courtesy of General Electric and Diasonics, Inc.).

  4. Initial Alignment of Large Azimuth Misalignment Angles in SINS Based on Adaptive UPF

    PubMed Central

    Sun, Jin; Xu, Xiao-Su; Liu, Yi-Ting; Zhang, Tao; Li, Yao

    2015-01-01

    The case of large azimuth misalignment angles in a strapdown inertial navigation system (SINS) is analyzed, and a method of using the adaptive UPF for the initial alignment is proposed. The filter is based on the idea of a strong tracking filter; through the introduction of the attenuation memory factor to effectively enhance the corrections of the current information residual error on the system, it reduces the influence on the system due to the system simplification, and the uncertainty of noise statistical properties to a certain extent; meanwhile, the UPF particle degradation phenomenon is better overcome. Finally, two kinds of non-linear filters, UPF and adaptive UPF, are adopted in the initial alignment of large azimuth misalignment angles in SINS, and the filtering effects of the two kinds of nonlinear filter on the initial alignment were compared by simulation and turntable experiments. The simulation and turntable experiment results show that the speed and precision of the initial alignment using adaptive UPF for a large azimuth misalignment angle in SINS under the circumstance that the statistical properties of the system noise are certain or not have been improved to some extent. PMID:26334277

  5. Low-cost, high-fidelity, adaptive cancellation of periodic 60 Hz noise.

    PubMed

    Wesson, Kyle D; Ochshorn, Robert M; Land, Bruce R

    2009-12-15

    A common method to eliminate unwanted power line interference in neurobiology laboratories where sensitive electronic signals are measured is with a notch filter. However a fixed-frequency notch filter cannot remove all power line noise contamination since inherent frequency and phase variations exist in the contaminating signal. One way to overcome the limitations of a fixed-frequency notch filter is with adaptive noise cancellation. Adaptive noise cancellation is an active approach that uses feedback to create a signal that when summed with the contaminated signal destructively interferes with the noise component leaving only the desired signal. We have implemented an optimized least mean square adaptive noise cancellation algorithm on a low-cost 16 MHz, 8-bit microcontroller to adaptively cancel periodic 60 Hz noise. In our implementation, we achieve between 20 and 25 dB of cancellation of the fundamental 60 Hz noise component.

  6. Distributed parameter system coupled ARMA expansion identification and adaptive parallel IIR filtering - A unified problem statement. [Auto Regressive Moving-Average

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.; Balas, M. J.

    1980-01-01

    A novel interconnection of distributed parameter system (DPS) identification and adaptive filtering is presented, which culminates in a common statement of coupled autoregressive, moving-average expansion or parallel infinite impulse response configuration adaptive parameterization. The common restricted complexity filter objectives are seen as similar to the reduced-order requirements of the DPS expansion description. The interconnection presents the possibility of an exchange of problem formulations and solution approaches not yet easily addressed in the common finite dimensional lumped-parameter system context. It is concluded that the shared problems raised are nevertheless many and difficult.

  7. Adaptive Control of Non-Minimum Phase Modal Systems Using Residual Mode Filters2. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Frost, Susan

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. This paper will be divided into two parts. Here in Part I we will review the basic adaptive control approach and introduce the primary ideas. In Part II, we will present the RMF methodology and complete the proofs of all our results. Also, we will apply the above theoretical results to a simple flexible structure example to illustrate the behavior with and without the residual mode filter.

  8. An analysis of neural receptive field plasticity by point process adaptive filtering

    PubMed Central

    Brown, Emery N.; Nguyen, David P.; Frank, Loren M.; Wilson, Matthew A.; Solo, Victor

    2001-01-01

    Neural receptive fields are plastic: with experience, neurons in many brain regions change their spiking responses to relevant stimuli. Analysis of receptive field plasticity from experimental measurements is crucial for understanding how neural systems adapt their representations of relevant biological information. Current analysis methods using histogram estimates of spike rate functions in nonoverlapping temporal windows do not track the evolution of receptive field plasticity on a fine time scale. Adaptive signal processing is an established engineering paradigm for estimating time-varying system parameters from experimental measurements. We present an adaptive filter algorithm for tracking neural receptive field plasticity based on point process models of spike train activity. We derive an instantaneous steepest descent algorithm by using as the criterion function the instantaneous log likelihood of a point process spike train model. We apply the point process adaptive filter algorithm in a study of spatial (place) receptive field properties of simulated and actual spike train data from rat CA1 hippocampal neurons. A stability analysis of the algorithm is sketched in the Appendix. The adaptive algorithm can update the place field parameter estimates on a millisecond time scale. It reliably tracked the migration, changes in scale, and changes in maximum firing rate characteristic of hippocampal place fields in a rat running on a linear track. Point process adaptive filtering offers an analytic method for studying the dynamics of neural receptive fields. PMID:11593043

  9. Adaptive non-local means on local principle neighborhood for noise/artifacts reduction in low-dose CT images.

    PubMed

    Zhang, Yuanke; Lu, Hongbing; Rong, Junyan; Meng, Jing; Shang, Junliang; Ren, Pinghong; Zhang, Junying

    2017-09-01

    Low-dose CT (LDCT) technique can reduce the x-ray radiation exposure to patients at the cost of degraded images with severe noise and artifacts. Non-local means (NLM) filtering has shown its potential in improving LDCT image quality. However, currently most NLM-based approaches employ a weighted average operation directly on all neighbor pixels with a fixed filtering parameter throughout the NLM filtering process, ignoring the non-stationary noise nature of LDCT images. In this paper, an adaptive NLM filtering scheme on local principle neighborhoods (PC-NLM) is proposed for structure-preserving noise/artifacts reduction in LDCT images. Instead of using neighboring patches directly, in the PC-NLM scheme, the principle component analysis (PCA) is first applied on local neighboring patches of the target patch to decompose the local patches into uncorrelated principle components (PCs), then a NLM filtering is used to regularize each PC of the target patch and finally the regularized components is transformed to get the target patch in image domain. Especially, in the NLM scheme, the filtering parameter is estimated adaptively from local noise level of the neighborhood as well as the signal-to-noise ratio (SNR) of the corresponding PC, which guarantees a "weaker" NLM filtering on PCs with higher SNR and a "stronger" filtering on PCs with lower SNR. The PC-NLM procedure is iteratively performed several times for better removal of the noise and artifacts, and an adaptive iteration strategy is developed to reduce the computational load by determining whether a patch should be processed or not in next round of the PC-NLM filtering. The effectiveness of the presented PC-NLM algorithm is validated by experimental phantom studies and clinical studies. The results show that it can achieve promising gain over some state-of-the-art methods in terms of artifact suppression and structure preservation. With the use of PCA on local neighborhoods to extract principal structural components, as well as adaptive NLM filtering on PCs of the target patch using filtering parameter estimated based on the local noise level and corresponding SNR, the proposed PC-NLM method shows its efficacy in preserving fine anatomical structures and suppressing noise/artifacts in LDCT images. © 2017 American Association of Physicists in Medicine.

  10. Model Adaptation for Prognostics in a Particle Filtering Framework

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Goebel, Kai Frank

    2011-01-01

    One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  11. Speckle noise reduction of 1-look SAR imagery

    NASA Technical Reports Server (NTRS)

    Nathan, Krishna S.; Curlander, John C.

    1987-01-01

    Speckle noise is inherent to synthetic aperture radar (SAR) imagery. Since the degradation of the image due to this noise results in uncertainties in the interpretation of the scene and in a loss of apparent resolution, it is desirable to filter the image to reduce this noise. In this paper, an adaptive algorithm based on the calculation of the local statistics around a pixel is applied to 1-look SAR imagery. The filter adapts to the nonstationarity of the image statistics since the size of the blocks is very small compared to that of the image. The performance of the filter is measured in terms of the equivalent number of looks (ENL) of the filtered image and the resulting resolution degradation. The results are compared to those obtained from different techniques applied to similar data. The local adaptive filter (LAF) significantly increases the ENL of the final image. The associated loss of resolution is also lower than that for other commonly used speckle reduction techniques.

  12. Design of adaptive control systems by means of self-adjusting transversal filters

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.

    1986-01-01

    The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.

  13. Efficient Adaptive FIR and IIR Filters.

    DTIC Science & Technology

    1979-12-01

    Squared) algorithm. -An analysis of the simplified gradient approach is presented and confirmed experimentally for the specific example of an adaptive line...APPENDIX A - SIMULATION 130 A.1 - THE SIMULATION METHOD 130 A.2 - FIR SIMULATION PRO)GRAM 133 A.3 - IIR SIMULATION PROGRAM 136 APPENDIX B - RANDOM...surface. The generation of the reference signal is a key consi- deration in adaptive filter implementation. There are various practical methods as

  14. A CCD Monolithic LMS Adaptive Analog Signal Processor Integrated Circuit.

    DTIC Science & Technology

    1980-03-01

    adaptive filter with electrically- reprogrammable MOS analog conductance weights. I The analog and digital peripheral MOS on-chip circuits are provided with...electrically reprogrammable analog weights at tap positions along a CCD analog delay line in order to form a basic linear combiner for adaptive filtering...electrically reprogrammable analog conductance weights was introduced with the use of non-volatile MNOS memory 6-7 transistors biased in their triode

  15. A hand tracking algorithm with particle filter and improved GVF snake model

    NASA Astrophysics Data System (ADS)

    Sun, Yi-qi; Wu, Ai-guo; Dong, Na; Shao, Yi-zhe

    2017-07-01

    To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow (GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.

  16. Recursive Subsystems in Aphasia and Alzheimer's Disease: Case Studies in Syntax and Theory of Mind.

    PubMed

    Bánréti, Zoltán; Hoffmann, Ildikó; Vincze, Veronika

    2016-01-01

    The relationship between recursive sentence embedding and theory-of-mind (ToM) inference is investigated in three persons with Broca's aphasia, two persons with Wernicke's aphasia, and six persons with mild and moderate Alzheimer's disease (AD). We asked questions of four types about photographs of various real-life situations. Type 4 questions asked participants about intentions, thoughts, or utterances of the characters in the pictures ("What may X be thinking/asking Y to do?"). The expected answers typically involved subordinate clauses introduced by conjunctions or direct quotations of the characters' utterances. Broca's aphasics did not produce answers with recursive sentence embedding. Rather, they projected themselves into the characters' mental states and gave direct answers in the first person singular, with relevant ToM content. We call such replies "situative statements." Where the question concerned the mental state of the character but did not require an answer with sentence embedding ("What does X hate?"), aphasics gave descriptive answers rather than situative statements. Most replies given by persons with AD to Type 4 questions were grammatical instances of recursive sentence embedding. They also gave a few situative statements but the ToM content of these was irrelevant. In more than one third of their well-formed sentence embeddings, too, they conveyed irrelevant ToM contents. Persons with moderate AD were unable to pass secondary false belief tests. The results reveal double dissociation: Broca's aphasics are unable to access recursive sentence embedding but they can make appropriate ToM inferences; moderate AD persons make the wrong ToM inferences but they are able to access recursive sentence embedding. The double dissociation may be relevant for the nature of the relationship between the two recursive capacities. Broca's aphasics compensated for the lack of recursive sentence embedding by recursive ToM reasoning represented in very simple syntactic forms: they used one recursive subsystem to stand in for another recursive subsystem.

  17. Recursive Subsystems in Aphasia and Alzheimer's Disease: Case Studies in Syntax and Theory of Mind

    PubMed Central

    Bánréti, Zoltán; Hoffmann, Ildikó; Vincze, Veronika

    2016-01-01

    The relationship between recursive sentence embedding and theory-of-mind (ToM) inference is investigated in three persons with Broca's aphasia, two persons with Wernicke's aphasia, and six persons with mild and moderate Alzheimer's disease (AD). We asked questions of four types about photographs of various real-life situations. Type 4 questions asked participants about intentions, thoughts, or utterances of the characters in the pictures (“What may X be thinking/asking Y to do?”). The expected answers typically involved subordinate clauses introduced by conjunctions or direct quotations of the characters' utterances. Broca's aphasics did not produce answers with recursive sentence embedding. Rather, they projected themselves into the characters' mental states and gave direct answers in the first person singular, with relevant ToM content. We call such replies “situative statements.” Where the question concerned the mental state of the character but did not require an answer with sentence embedding (“What does X hate?”), aphasics gave descriptive answers rather than situative statements. Most replies given by persons with AD to Type 4 questions were grammatical instances of recursive sentence embedding. They also gave a few situative statements but the ToM content of these was irrelevant. In more than one third of their well-formed sentence embeddings, too, they conveyed irrelevant ToM contents. Persons with moderate AD were unable to pass secondary false belief tests. The results reveal double dissociation: Broca's aphasics are unable to access recursive sentence embedding but they can make appropriate ToM inferences; moderate AD persons make the wrong ToM inferences but they are able to access recursive sentence embedding. The double dissociation may be relevant for the nature of the relationship between the two recursive capacities. Broca's aphasics compensated for the lack of recursive sentence embedding by recursive ToM reasoning represented in very simple syntactic forms: they used one recursive subsystem to stand in for another recursive subsystem. PMID:27064887

  18. Wideband FM Demodulation and Multirate Frequency Transformations

    DTIC Science & Technology

    2016-12-15

    FM signals. 2.2.1 Adaptive Linear Predictive IF Tracking For a pure FM signal, the IF demodulation approach employing adaptive filters was proposed...desired signal. As summarized in [5], the prediction error filter is given by: E (z) = 1− L∑ l=1 goptl z −l, (8) 2 Approved for public release...assumption and the further assumption that the message signal remains es- sentially invariant over the sampling range of the linear prediction filter , we end

  19. An MRI denoising method using image data redundancy and local SNR estimation.

    PubMed

    Golshan, Hosein M; Hasanzadeh, Reza P R; Yousefzadeh, Shahrokh C

    2013-09-01

    This paper presents an LMMSE-based method for the three-dimensional (3D) denoising of MR images assuming a Rician noise model. Conventionally, the LMMSE method estimates the noise-less signal values using the observed MR data samples within local neighborhoods. This is not an efficient procedure to deal with this issue while the 3D MR data intrinsically includes many similar samples that can be used to improve the estimation results. To overcome this problem, we model MR data as random fields and establish a principled way which is capable of choosing the samples not only from a local neighborhood but also from a large portion of the given data. To follow the similar samples within the MR data, an effective similarity measure based on the local statistical moments of images is presented. The parameters of the proposed filter are automatically chosen from the estimated local signal-to-noise ratio. To further enhance the denoising performance, a recursive version of the introduced approach is also addressed. The proposed filter is compared with related state-of-the-art filters using both synthetic and real MR datasets. The experimental results demonstrate the superior performance of our proposal in removing the noise and preserving the anatomical structures of MR images. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Angular-Rate Estimation Using Delayed Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.

  1. Online vegetation parameter estimation using passive microwave remote sensing observations

    USDA-ARS?s Scientific Manuscript database

    In adaptive system identification the Kalman filter can be used to identify the coefficient of the observation operator of a linear system. Here the ensemble Kalman filter is tested for adaptive online estimation of the vegetation opacity parameter of a radiative transfer model. A state augmentatio...

  2. Apollo 9 Mission image - View of the Lunar Module (LM) 3 and Service Module (SM) LM Adapter

    NASA Image and Video Library

    1969-03-03

    View of the Lunar Module (LM) 3 and Service Module (SM) LM Adapter. Film magazine was A,film type was SO-368 Ektachrome with 0.460 - 0.710 micrometers film / filter transmittance response and haze filter, 80mm lens.

  3. Optimized method for atmospheric signal reduction in irregular sampled InSAR time series assisted by external atmospheric information

    NASA Astrophysics Data System (ADS)

    Gong, W.; Meyer, F. J.

    2013-12-01

    It is well known that spatio-temporal the tropospheric phase signatures complicate the interpretation and detection of smaller magnitude deformation signals or unstudied motion fields. Several advanced time-series InSAR techniques were developed in the last decade that make assumptions about the stochastic properties of the signal components in interferometric phases to reduce atmospheric delay effects on surface deformation estimates. However, their need for large datasets to successfully separate the different phase contributions limits their performance if data is scarce and irregularly sampled. Limited SAR data coverage is true for many areas affected by geophysical deformation. This is either due to their low priority in mission programming, unfavorable ground coverage condition, or turbulent seasonal weather effects. In this paper, we present new adaptive atmospheric phase filtering algorithms that are specifically designed to reconstruct surface deformation signals from atmosphere-affected and irregularly sampled InSAR time series. The filters take advantage of auxiliary atmospheric delay information that is extracted from various sources, e.g. atmospheric weather models. They are embedded into a model-free Persistent Scatterer Interferometry (PSI) approach that was selected to accommodate non-linear deformation patterns that are often observed near volcanoes and earthquake zones. Two types of adaptive phase filters were developed that operate in the time dimension and separate atmosphere from deformation based on their different temporal correlation properties. Both filter types use the fact that atmospheric models can reliably predict the spatial statistics and signal power of atmospheric phase delay fields in order to automatically optimize the filter's shape parameters. In essence, both filter types will attempt to maximize the linear correlation between a-priori and the extracted atmospheric phase information. Topography-related phase components, orbit errors and the master atmospheric delays are first removed in a pre-processing step before the atmospheric filters are applied. The first adaptive filter type is using a filter kernel of Gaussian shape and is adaptively adjusting the width (defined in days) of this filter until the correlation of extracted and modeled atmospheric signal power is maximized. If atmospheric properties vary along the time series, this approach will lead to filter setting that are adapted to best reproduce atmospheric conditions at a certain observation epoch. Despite the superior performance of this first filter design, its Gaussian shape imposes non-physical relative weights onto acquisitions that ignore the known atmospheric noise in the data. Hence, in our second approach we are using atmospheric a-priori information to adaptively define the full shape of the atmospheric filter. For this process, we use a so-called normalized convolution (NC) approach that is often used in image reconstruction. Several NC designs will be presented in this paper and studied for relative performance. A cross-validation of all developed algorithms was done using both synthetic and real data. This validation showed designed filters are outperforming conventional filter methods that particularly useful for regions with limited data coverage or lack of a deformation field prior.

  4. Inverse optimal self-tuning PID control design for an autonomous underwater vehicle

    NASA Astrophysics Data System (ADS)

    Rout, Raja; Subudhi, Bidyadhar

    2017-01-01

    This paper presents a new approach to path following control design for an autonomous underwater vehicle (AUV). A NARMAX model of the AUV is derived first and then its parameters are adapted online using the recursive extended least square algorithm. An adaptive Propotional-Integral-Derivative (PID) controller is developed using the derived parameters to accomplish the path following task of an AUV. The gain parameters of the PID controller are tuned using an inverse optimal control technique, which alleviates the problem of solving Hamilton-Jacobian equation and also satisfies an error cost function. Simulation studies were pursued to verify the efficacy of the proposed control algorithm. From the obtained results, it is envisaged that the proposed NARMAX model-based self-tuning adaptive PID control provides good path following performance even in the presence of uncertainty arising due to ocean current or hydrodynamic parameter.

  5. Adaptive positive position feedback control with a feedforward compensator of a magnetostrictive beam for vibration suppression

    NASA Astrophysics Data System (ADS)

    Bian, Leixiang; Zhu, Wei

    2018-07-01

    In this paper, a Fe–Ga alloy magnetostrictive beam is designed as an actuator to restrain the vibration of a supported mass. Dynamic modeling of the system based on the transfer matrix method of multibody system is first shown, and then a hybrid controller is developed to achieve vibration control. The proposed vibration controller combines a multi-mode adaptive positive position feedback (APPF) with a feedforward compensator. In the APPF control, an adaptive natural frequency estimator based on the recursive least-square method is developed to be used. In the feedforward compensator, the hysteresis of the magnetostrictive beam is linearized based on a Bouc–Wen model. The further remarkable vibration suppression capability of the proposed hybrid controller is demonstrated experimentally and compared with the positive position feedback controller. Experiment results show that the proposed controller is applicable to the magnetostrictive beam for improving vibration control effectiveness.

  6. RLS Channel Estimation with Adaptive Forgetting Factor for DS-CDMA Frequency-Domain Equalization

    NASA Astrophysics Data System (ADS)

    Kojima, Yohei; Tomeba, Hiromichi; Takeda, Kazuaki; Adachi, Fumiyuki

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can increase the downlink bit error rate (BER) performance of DS-CDMA beyond that possible with conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. Recently, we proposed a pilot-assisted channel estimation (CE) based on the MMSE criterion. Using MMSE-CE, the channel estimation accuracy is almost insensitive to the pilot chip sequence, and a good BER performance is achieved. In this paper, we propose a channel estimation scheme using one-tap recursive least square (RLS) algorithm, where the forgetting factor is adapted to the changing channel condition by the least mean square (LMS)algorithm, for DS-CDMA with FDE. We evaluate the BER performance using RLS-CE with adaptive forgetting factor in a frequency-selective fast Rayleigh fading channel by computer simulation.

  7. Meshfree truncated hierarchical refinement for isogeometric analysis

    NASA Astrophysics Data System (ADS)

    Atri, H. R.; Shojaee, S.

    2018-05-01

    In this paper truncated hierarchical B-spline (THB-spline) is coupled with reproducing kernel particle method (RKPM) to blend advantages of the isogeometric analysis and meshfree methods. Since under certain conditions, the isogeometric B-spline and NURBS basis functions are exactly represented by reproducing kernel meshfree shape functions, recursive process of producing isogeometric bases can be omitted. More importantly, a seamless link between meshfree methods and isogeometric analysis can be easily defined which provide an authentic meshfree approach to refine the model locally in isogeometric analysis. This procedure can be accomplished using truncated hierarchical B-splines to construct new bases and adaptively refine them. It is also shown that the THB-RKPM method can provide efficient approximation schemes for numerical simulations and represent a promising performance in adaptive refinement of partial differential equations via isogeometric analysis. The proposed approach for adaptive locally refinement is presented in detail and its effectiveness is investigated through well-known benchmark examples.

  8. Blended particle filters for large-dimensional chaotic dynamical systems

    PubMed Central

    Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.

    2014-01-01

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886

  9. Contrasts between chemical and physical estimates of baseflow help discern multiple sources of water contributing to rivers

    NASA Astrophysics Data System (ADS)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.

    2013-05-01

    This study compares geochemical and physical methods of estimating baseflow in the upper reaches of the Barwon River, southeast Australia. Estimates of baseflow from physical techniques such as local minima and recursive digital filters are higher than those based on chemical mass balance using continuous electrical conductivity (EC). Between 2001 and 2011 the baseflow flux calculated using chemical mass balance is between 1.8 × 103 and 1.5 × 104 ML yr-1 (15 to 25% of the total discharge in any one year) whereas recursive digital filters yield baseflow fluxes of 3.6 × 103 to 3.8 × 104 ML yr-1 (19 to 52% of discharge) and the local minimum method yields baseflow fluxes of 3.2 × 103 to 2.5 × 104 ML yr-1 (13 to 44% of discharge). These differences most probably reflect how the different techniques characterise baseflow. Physical methods probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow or floodplain storage) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The mismatch between geochemical and physical estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months. Consistent with these interpretations, modelling of bank storage indicates that bank return flows provide water to the river for several weeks after flood events. EC vs. discharge variations during individual flow events also imply that an inflow of low EC water stored within the banks or on the floodplain occurs as discharge falls. The joint use of physical and geochemical techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.

  10. Embodied niche construction in the hominin lineage: semiotic structure and sustained attention in human embodied cognition

    PubMed Central

    Stutz, Aaron J.

    2014-01-01

    Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment. PMID:25136323

  11. Embodied niche construction in the hominin lineage: semiotic structure and sustained attention in human embodied cognition.

    PubMed

    Stutz, Aaron J

    2014-01-01

    Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment.

  12. An information-theoretic approach to motor action decoding with a reconfigurable parallel architecture.

    PubMed

    Craciun, Stefan; Brockmeier, Austin J; George, Alan D; Lam, Herman; Príncipe, José C

    2011-01-01

    Methods for decoding movements from neural spike counts using adaptive filters often rely on minimizing the mean-squared error. However, for non-Gaussian distribution of errors, this approach is not optimal for performance. Therefore, rather than using probabilistic modeling, we propose an alternate non-parametric approach. In order to extract more structure from the input signal (neuronal spike counts) we propose using minimum error entropy (MEE), an information-theoretic approach that minimizes the error entropy as part of an iterative cost function. However, the disadvantage of using MEE as the cost function for adaptive filters is the increase in computational complexity. In this paper we present a comparison between the decoding performance of the analytic Wiener filter and a linear filter trained with MEE, which is then mapped to a parallel architecture in reconfigurable hardware tailored to the computational needs of the MEE filter. We observe considerable speedup from the hardware design. The adaptation of filter weights for the multiple-input, multiple-output linear filters, necessary in motor decoding, is a highly parallelizable algorithm. It can be decomposed into many independent computational blocks with a parallel architecture readily mapped to a field-programmable gate array (FPGA) and scales to large numbers of neurons. By pipelining and parallelizing independent computations in the algorithm, the proposed parallel architecture has sublinear increases in execution time with respect to both window size and filter order.

  13. Adaptive nonlinear L2 and L3 filters for speckled image processing

    NASA Astrophysics Data System (ADS)

    Lukin, Vladimir V.; Melnik, Vladimir P.; Chemerovsky, Victor I.; Astola, Jaakko T.

    1997-04-01

    Here we propose adaptive nonlinear filters based on calculation and analysis of two or three order statistics in a scanning window. They are designed for processing images corrupted by severe speckle noise with non-symmetrical. (Rayleigh or one-side exponential) distribution laws; impulsive noise can be also present. The proposed filtering algorithms provide trade-off between impulsive noise can be also present. The proposed filtering algorithms provide trade-off between efficient speckle noise suppression, robustness, good edge/detail preservation, low computational complexity, preservation of average level for homogeneous regions of images. Quantitative evaluations of the characteristics of the proposed filter are presented as well as the results of the application to real synthetic aperture radar and ultrasound medical images.

  14. High-throughput sample adaptive offset hardware architecture for high-efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Yan, Chang; Zhang, Jingzhi; Zhou, Xin

    2018-03-01

    A high-throughput hardware architecture for a sample adaptive offset (SAO) filter in the high-efficiency video coding video coding standard is presented. First, an implementation-friendly and simplified bitrate estimation method of rate-distortion cost calculation is proposed to reduce the computational complexity in the mode decision of SAO. Then, a high-throughput VLSI architecture for SAO is presented based on the proposed bitrate estimation method. Furthermore, multiparallel VLSI architecture for in-loop filters, which integrates both deblocking filter and SAO filter, is proposed. Six parallel strategies are applied in the proposed in-loop filters architecture to improve the system throughput and filtering speed. Experimental results show that the proposed in-loop filters architecture can achieve up to 48% higher throughput in comparison with prior work. The proposed architecture can reach a high-operating clock frequency of 297 MHz with TSMC 65-nm library and meet the real-time requirement of the in-loop filters for 8 K × 4 K video format at 132 fps.

  15. GPU-based parallel algorithm for blind image restoration using midfrequency-based methods

    NASA Astrophysics Data System (ADS)

    Xie, Lang; Luo, Yi-han; Bao, Qi-liang

    2013-08-01

    GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.

  16. Active listening room compensation for massive multichannel sound reproduction systems using wave-domain adaptive filtering.

    PubMed

    Spors, Sascha; Buchner, Herbert; Rabenstein, Rudolf; Herbordt, Wolfgang

    2007-07-01

    The acoustic theory for multichannel sound reproduction systems usually assumes free-field conditions for the listening environment. However, their performance in real-world listening environments may be impaired by reflections at the walls. This impairment can be reduced by suitable compensation measures. For systems with many channels, active compensation is an option, since the compensating waves can be created by the reproduction loudspeakers. Due to the time-varying nature of room acoustics, the compensation signals have to be determined by an adaptive system. The problems associated with the successful operation of multichannel adaptive systems are addressed in this contribution. First, a method for decoupling the adaptation problem is introduced. It is based on a generalized singular value decomposition and is called eigenspace adaptive filtering. Unfortunately, it cannot be implemented in its pure form, since the continuous adaptation of the generalized singular value decomposition matrices to the variable room acoustics is numerically very demanding. However, a combination of this mathematical technique with the physical description of wave propagation yields a realizable multichannel adaptation method with good decoupling properties. It is called wave domain adaptive filtering and is discussed here in the context of wave field synthesis.

  17. Rule-based fuzzy vector median filters for 3D phase contrast MRI segmentation

    NASA Astrophysics Data System (ADS)

    Sundareswaran, Kartik S.; Frakes, David H.; Yoganathan, Ajit P.

    2008-02-01

    Recent technological advances have contributed to the advent of phase contrast magnetic resonance imaging (PCMRI) as standard practice in clinical environments. In particular, decreased scan times have made using the modality more feasible. PCMRI is now a common tool for flow quantification, and for more complex vector field analyses that target the early detection of problematic flow conditions. Segmentation is one component of this type of application that can impact the accuracy of the final product dramatically. Vascular segmentation, in general, is a long-standing problem that has received significant attention. Segmentation in the context of PCMRI data, however, has been explored less and can benefit from object-based image processing techniques that incorporate fluids specific information. Here we present a fuzzy rule-based adaptive vector median filtering (FAVMF) algorithm that in combination with active contour modeling facilitates high-quality PCMRI segmentation while mitigating the effects of noise. The FAVMF technique was tested on 111 synthetically generated PC MRI slices and on 15 patients with congenital heart disease. The results were compared to other multi-dimensional filters namely the adaptive vector median filter, the adaptive vector directional filter, and the scalar low pass filter commonly used in PC MRI applications. FAVMF significantly outperformed the standard filtering methods (p < 0.0001). Two conclusions can be drawn from these results: a) Filtering should be performed after vessel segmentation of PC MRI; b) Vector based filtering methods should be used instead of scalar techniques.

  18. Hierarchical image segmentation via recursive superpixel with adaptive regularity

    NASA Astrophysics Data System (ADS)

    Nakamura, Kensuke; Hong, Byung-Woo

    2017-11-01

    A fast and accurate segmentation algorithm in a hierarchical way based on a recursive superpixel technique is presented. We propose a superpixel energy formulation in which the trade-off between data fidelity and regularization is dynamically determined based on the local residual in the energy optimization procedure. We also present an energy optimization algorithm that allows a pixel to be shared by multiple regions to improve the accuracy and appropriate the number of segments. The qualitative and quantitative evaluations demonstrate that our algorithm, combining the proposed energy and optimization, outperforms the conventional k-means algorithm by up to 29.10% in F-measure. We also perform comparative analysis with state-of-the-art algorithms in the hierarchical segmentation. Our algorithm yields smooth regions throughout the hierarchy as opposed to the others that include insignificant details. Our algorithm overtakes the other algorithms in terms of balance between accuracy and computational time. Specifically, our method runs 36.48% faster than the region-merging approach, which is the fastest of the comparing algorithms, while achieving a comparable accuracy.

  19. Restoration of distorted depth maps calculated from stereo sequences

    NASA Technical Reports Server (NTRS)

    Damour, Kevin; Kaufman, Howard

    1991-01-01

    A model-based Kalman estimator is developed for spatial-temporal filtering of noise and other degradations in velocity and depth maps derived from image sequences or cinema. As an illustration of the proposed procedures, edge information from image sequences of rigid objects is used in the processing of the velocity maps by selecting from a series of models for directional adaptive filtering. Adaptive filtering then allows for noise reduction while preserving sharpness in the velocity maps. Results from several synthetic and real image sequences are given.

  20. Edge enhancement and image equalization by unsharp masking using self-adaptive photochromic filters.

    PubMed

    Ferrari, José A; Flores, Jorge L; Perciante, César D; Frins, Erna

    2009-07-01

    A new method for real-time edge enhancement and image equalization using photochromic filters is presented. The reversible self-adaptive capacity of photochromic materials is used for creating an unsharp mask of the original image. This unsharp mask produces a kind of self filtering of the original image. Unlike the usual Fourier (coherent) image processing, the technique we propose can also be used with incoherent illumination. Validation experiments with Bacteriorhodopsin and photochromic glass are presented.

  1. Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.

    PubMed

    Sun, Kangkang; Sui, Shuai; Tong, Shaocheng

    2018-04-01

    This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.

  2. Adaptive Approximation-Based Regulation Control for a Class of Uncertain Nonlinear Systems Without Feedback Linearizability.

    PubMed

    Wang, Ning; Sun, Jing-Chao; Han, Min; Zheng, Zhongjiu; Er, Meng Joo

    2017-09-06

    In this paper, for a general class of uncertain nonlinear (cascade) systems, including unknown dynamics, which are not feedback linearizable and cannot be solved by existing approaches, an innovative adaptive approximation-based regulation control (AARC) scheme is developed. Within the framework of adding a power integrator (API), by deriving adaptive laws for output weights and prediction error compensation pertaining to single-hidden-layer feedforward network (SLFN) from the Lyapunov synthesis, a series of SLFN-based approximators are explicitly constructed to exactly dominate completely unknown dynamics. By the virtue of significant advancements on the API technique, an adaptive API methodology is eventually established in combination with SLFN-based adaptive approximators, and it contributes to a recursive mechanism for the AARC scheme. As a consequence, the output regulation error can asymptotically converge to the origin, and all other signals of the closed-loop system are uniformly ultimately bounded. Simulation studies and comprehensive comparisons with backstepping- and API-based approaches demonstrate that the proposed AARC scheme achieves remarkable performance and superiority in dealing with unknown dynamics.

  3. An Adaptive Altitude Information Fusion Method for Autonomous Landing Processes of Small Unmanned Aerial Rotorcraft

    PubMed Central

    Lei, Xusheng; Li, Jingjing

    2012-01-01

    This paper presents an adaptive information fusion method to improve the accuracy and reliability of the altitude measurement information for small unmanned aerial rotorcraft during the landing process. Focusing on the low measurement performance of sensors mounted on small unmanned aerial rotorcraft, a wavelet filter is applied as a pre-filter to attenuate the high frequency noises in the sensor output. Furthermore, to improve altitude information, an adaptive extended Kalman filter based on a maximum a posteriori criterion is proposed to estimate measurement noise covariance matrix in real time. Finally, the effectiveness of the proposed method is proved by static tests, hovering flight and autonomous landing flight tests. PMID:23201993

  4. A selective-update affine projection algorithm with selective input vectors

    NASA Astrophysics Data System (ADS)

    Kong, NamWoong; Shin, JaeWook; Park, PooGyeon

    2011-10-01

    This paper proposes an affine projection algorithm (APA) with selective input vectors, which based on the concept of selective-update in order to reduce estimation errors and computations. The algorithm consists of two procedures: input- vector-selection and state-decision. The input-vector-selection procedure determines the number of input vectors by checking with mean square error (MSE) whether the input vectors have enough information for update. The state-decision procedure determines the current state of the adaptive filter by using the state-decision criterion. As the adaptive filter is in transient state, the algorithm updates the filter coefficients with the selected input vectors. On the other hand, as soon as the adaptive filter reaches the steady state, the update procedure is not performed. Through these two procedures, the proposed algorithm achieves small steady-state estimation errors, low computational complexity and low update complexity for colored input signals.

  5. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    PubMed

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-07-26

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.

  6. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

    PubMed Central

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-01-01

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336

  7. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  8. Detecting an atomic clock frequency anomaly using an adaptive Kalman filter algorithm

    NASA Astrophysics Data System (ADS)

    Song, Huijie; Dong, Shaowu; Wu, Wenjun; Jiang, Meng; Wang, Weixiong

    2018-06-01

    The abnormal frequencies of an atomic clock mainly include frequency jump and frequency drift jump. Atomic clock frequency anomaly detection is a key technique in time-keeping. The Kalman filter algorithm, as a linear optimal algorithm, has been widely used in real-time detection for abnormal frequency. In order to obtain an optimal state estimation, the observation model and dynamic model of the Kalman filter algorithm should satisfy Gaussian white noise conditions. The detection performance is degraded if anomalies affect the observation model or dynamic model. The idea of the adaptive Kalman filter algorithm, applied to clock frequency anomaly detection, uses the residuals given by the prediction for building ‘an adaptive factor’ the prediction state covariance matrix is real-time corrected by the adaptive factor. The results show that the model error is reduced and the detection performance is improved. The effectiveness of the algorithm is verified by the frequency jump simulation, the frequency drift jump simulation and the measured data of the atomic clock by using the chi-square test.

  9. An application of change-point recursive models to the relationship between litter size and number of stillborns in pigs.

    PubMed

    Ibáñez-Escriche, N; López de Maturana, E; Noguera, J L; Varona, L

    2010-11-01

    We developed and implemented change-point recursive models and compared them with a linear recursive model and a standard mixed model (SMM), in the scope of the relationship between litter size (LS) and number of stillborns (NSB) in pigs. The proposed approach allows us to estimate the point of change in multiple-segment modeling of a nonlinear relationship between phenotypes. We applied the procedure to a data set provided by a commercial Large White selection nucleus. The data file consisted of LS and NSB records of 4,462 parities. The results of the analysis clearly identified the location of the change points between different structural regression coefficients. The magnitude of these coefficients increased with LS, indicating an increasing incidence of LS on the NSB ratio. However, posterior distributions of correlations were similar across subpopulations (defined by the change points on LS), except for those between residuals. The heritability estimates of NSB did not present differences between recursive models. Nevertheless, these heritabilities were greater than those obtained for SMM (0.05) with a posterior probability of 85%. These results suggest a nonlinear relationship between LS and NSB, which supports the adequacy of a change-point recursive model for its analysis. Furthermore, the results from model comparisons support the use of recursive models. However, the adequacy of the different recursive models depended on the criteria used: the linear recursive model was preferred on account of its smallest deviance value, whereas nonlinear recursive models provided a better fit and predictive ability based on the cross-validation approach.

  10. A Recursive Method for Calculating Certain Partition Functions.

    ERIC Educational Resources Information Center

    Woodrum, Luther; And Others

    1978-01-01

    Describes a simple recursive method for calculating the partition function and average energy of a system consisting of N electrons and L energy levels. Also, presents an efficient APL computer program to utilize the recursion relation. (Author/GA)

  11. Recursive inverse factorization.

    PubMed

    Rubensson, Emanuel H; Bock, Nicolas; Holmström, Erik; Niklasson, Anders M N

    2008-03-14

    A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules.

  12. Toward faster and more accurate star sensors using recursive centroiding and star identification

    NASA Astrophysics Data System (ADS)

    Samaan, Malak Anees

    The objective of this research is to study different novel developed techniques for spacecraft attitude determination methods using star tracker sensors. This dissertation addresses various issues on developing improved star tracker software, presents new approaches for better performance of star trackers, and considers applications to realize high precision attitude estimates. Star-sensors are often included in a spacecraft attitude-system instrument suite, where high accuracy pointing capability is required. Novel methods for image processing, camera parameters ground calibration, autonomous star pattern recognition, and recursive star identification are researched and implemented to achieve high accuracy and a high frame rate star tracker that can be used for many space missions. This dissertation presents the methods and algorithms implemented for the one Field of View 'FOV'Star NavI sensor that was tested aboard the STS-107 mission in spring 2003 and the two fields of view StarNavII sensor for the EO-3 spacecraft scheduled for launch in 2007. The results of this research enable advances in spacecraft attitude determination based upon real time star sensing and pattern recognition. Building upon recent developments in image processing, pattern recognition algorithms, focal plane detectors, electro-optics, and microprocessors, the star tracker concept utilized in this research has the following key objectives for spacecraft of the future: lower cost, lower mass and smaller volume, increased robustness to environment-induced aging and instrument response variations, increased adaptability and autonomy via recursive self-calibration and health-monitoring on-orbit. Many of these attributes are consequences of improved algorithms that are derived in this dissertation.

  13. Cross-validation and Peeling Strategies for Survival Bump Hunting using Recursive Peeling Methods

    PubMed Central

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil

    2015-01-01

    We introduce a framework to build a survival/risk bump hunting model with a censored time-to-event response. Our Survival Bump Hunting (SBH) method is based on a recursive peeling procedure that uses a specific survival peeling criterion derived from non/semi-parametric statistics such as the hazards-ratio, the log-rank test or the Nelson--Aalen estimator. To optimize the tuning parameter of the model and validate it, we introduce an objective function based on survival or prediction-error statistics, such as the log-rank test and the concordance error rate. We also describe two alternative cross-validation techniques adapted to the joint task of decision-rule making by recursive peeling and survival estimation. Numerical analyses show the importance of replicated cross-validation and the differences between criteria and techniques in both low and high-dimensional settings. Although several non-parametric survival models exist, none addresses the problem of directly identifying local extrema. We show how SBH efficiently estimates extreme survival/risk subgroups unlike other models. This provides an insight into the behavior of commonly used models and suggests alternatives to be adopted in practice. Finally, our SBH framework was applied to a clinical dataset. In it, we identified subsets of patients characterized by clinical and demographic covariates with a distinct extreme survival outcome, for which tailored medical interventions could be made. An R package PRIMsrc (Patient Rule Induction Method in Survival, Regression and Classification settings) is available on CRAN (Comprehensive R Archive Network) and GitHub. PMID:27034730

  14. Scoring and staging systems using cox linear regression modeling and recursive partitioning.

    PubMed

    Lee, J W; Um, S H; Lee, J B; Mun, J; Cho, H

    2006-01-01

    Scoring and staging systems are used to determine the order and class of data according to predictors. Systems used for medical data, such as the Child-Turcotte-Pugh scoring and staging systems for ordering and classifying patients with liver disease, are often derived strictly from physicians' experience and intuition. We construct objective and data-based scoring/staging systems using statistical methods. We consider Cox linear regression modeling and recursive partitioning techniques for censored survival data. In particular, to obtain a target number of stages we propose cross-validation and amalgamation algorithms. We also propose an algorithm for constructing scoring and staging systems by integrating local Cox linear regression models into recursive partitioning, so that we can retain the merits of both methods such as superior predictive accuracy, ease of use, and detection of interactions between predictors. The staging system construction algorithms are compared by cross-validation evaluation of real data. The data-based cross-validation comparison shows that Cox linear regression modeling is somewhat better than recursive partitioning when there are only continuous predictors, while recursive partitioning is better when there are significant categorical predictors. The proposed local Cox linear recursive partitioning has better predictive accuracy than Cox linear modeling and simple recursive partitioning. This study indicates that integrating local linear modeling into recursive partitioning can significantly improve prediction accuracy in constructing scoring and staging systems.

  15. Empirical and numerical investigation of mass movements - data fusion and analysis

    NASA Astrophysics Data System (ADS)

    Schmalz, Thilo; Eichhorn, Andreas; Buhl, Volker; Tinkhof, Kurt Mair Am; Preh, Alexander; Tentschert, Ewald-Hans; Zangerl, Christian

    2010-05-01

    Increasing settlement activities of people in mountanious regions and the appearance of extreme climatic conditions motivate the investigation of landslides. Within the last few years a significant rising of disastrous slides could be registered which generated a broad public interest and the request for security measures. The FWF (Austrian Science Fund) funded project ‘KASIP' (Knowledge-based Alarm System with Identified Deformation Predictor) deals with the development of a new type of alarm system based on calibrated numerical slope models for the realistic calculation of failure scenarios. In KASIP, calibration is the optimal adaptation of a numerical model to available monitoring data by least-squares techniques (e.g. adaptive Kalman-filtering). Adaptation means the determination of a priori uncertain physical parameters like the strength of the geological structure. The object of our studies in KASIP is the landslide ‘Steinlehnen' near Innsbruck (Northern Tyrol, Austria). The first part of the presentation is focussed on the determination of geometrical surface-information. This also includes the description of the monitoring system for the collection of the displacement data and filter approaches for the estimation of the slopes kinematic behaviour. The necessity of continous monitoring and the effect of data gaps for reliable filter results and the prediction of the future state is discussed. The second part of the presentation is more focussed on the numerical modelling of the slope by FD- (Finite Difference-) methods and the development of the adaptive Kalman-filter. The realisation of the numerical slope model is developed by FLAC3D (software company HCItasca Ltd.). The model contains different geomechanical approaches (like Mohr-Coulomb) and enables the calculation of great deformations and the failure of the slope. Stability parameters (like the factor-of-safety FS) allow the evaluation of the current state of the slope. Until now, the adaptation of relevant material parameters is often performed by trial and error methods. This common method shall be improved by adaptive Kalman-filtering methods. In contrast to trial and error, Kalman-filtering also considers stochastical information of the input data. Especially the estimation of strength parameters (cohesion c, angle of internal friction phi) in a dynamic consideration of the slope is discussed. Problems with conditioning and numerical stability of the filter matrices, memory overflow and computing time are outlined. It is shown that the Kalman-filter is in principle suitable for an semi-automated adaptation process and obtains realistic values for the unknown material parameters.

  16. 1 λ × 1.44 Tb/s free-space IM-DD transmission employing OAM multiplexing and PDM.

    PubMed

    Zhu, Yixiao; Zou, Kaiheng; Zheng, Zhennan; Zhang, Fan

    2016-02-22

    We report the experimental demonstration of single wavelength terabit free-space intensity modulation direct detection (IM-DD) system employing both orbital angular momentum (OAM) multiplexing and polarization division multiplexing (PDM). In our experiment, 12 OAM modes with two orthogonal polarization states are used to generate 24 channels for transmission. Each channel carries 30 Gbaud Nyquist PAM-4 signal. Therefore an aggregate gross capacity record of 1.44 Tb/s (12 × 2 × 30 × 2 Gb/s) is acheived with a modulation efficiency of 48 bits/symbol. After 0.8m free-space transmission, the bit error rates (BERs) of all the channels are below the 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10(-2). After applying the decision directed recursive least square (DD-RLS) based filter and post filter, the BERs of two polarizations can be reduced from 5.3 × 10(-3) and 7.3 × 10(-3) to 2.2 × 10(-3) and 3.4 × 10(-3), respectively.

  17. On VLSI Design of Rank-Order Filtering using DCRAM Architecture

    PubMed Central

    Lin, Meng-Chun; Dung, Lan-Rong

    2009-01-01

    This paper addresses on VLSI design of rank-order filtering (ROF) with a maskable memory for real-time speech and image processing applications. Based on a generic bit-sliced ROF algorithm, the proposed design uses a special-defined memory, called the dual-cell random-access memory (DCRAM), to realize major operations of ROF: threshold decomposition and polarization. Using the memory-oriented architecture, the proposed ROF processor can benefit from high flexibility, low cost and high speed. The DCRAM can perform the bit-sliced read, partial write, and pipelined processing. The bit-sliced read and partial write are driven by maskable registers. With recursive execution of the bit-slicing read and partial write, the DCRAM can effectively realize ROF in terms of cost and speed. The proposed design has been implemented using TSMC 0.18 μm 1P6M technology. As shown in the result of physical implementation, the core size is 356.1 × 427.7μm2 and the VLSI implementation of ROF can operate at 256 MHz for 1.8V supply. PMID:19865599

  18. Damage Detection in Flexible Plates through Reduced-Order Modeling and Hybrid Particle-Kalman Filtering

    PubMed Central

    Capellari, Giovanni; Eftekhar Azam, Saeed; Mariani, Stefano

    2015-01-01

    Health monitoring of lightweight structures, like thin flexible plates, is of interest in several engineering fields. In this paper, a recursive Bayesian procedure is proposed to monitor the health of such structures through data collected by a network of optimally placed inertial sensors. As a main drawback of standard monitoring procedures is linked to the computational costs, two remedies are jointly considered: first, an order-reduction of the numerical model used to track the structural dynamics, enforced with proper orthogonal decomposition; and, second, an improved particle filter, which features an extended Kalman updating of each evolving particle before the resampling stage. The former remedy can reduce the number of effective degrees-of-freedom of the structural model to a few only (depending on the excitation), whereas the latter one allows to track the evolution of damage and to locate it thanks to an intricate formulation. To assess the effectiveness of the proposed procedure, the case of a plate subject to bending is investigated; it is shown that, when the procedure is appropriately fed by measurements, damage is efficiently and accurately estimated. PMID:26703615

  19. Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels.

    PubMed

    Al-Samman, A M; Azmi, M H; Rahman, T A; Khan, I; Hindia, M N; Fattouh, A

    2016-01-01

    This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk-1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method.

  20. Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels

    PubMed Central

    Al-Samman, A. M.; Azmi, M. H.; Rahman, T. A.; Khan, I.; Hindia, M. N.; Fattouh, A.

    2016-01-01

    This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk−1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method. PMID:27992445

  1. Remaining dischargeable time prediction for lithium-ion batteries using unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai; Sun, Han; Yu, Xiaowei

    2017-10-01

    To overcome the range anxiety, one of the important strategies is to accurately predict the range or dischargeable time of the battery system. To accurately predict the remaining dischargeable time (RDT) of a battery, a RDT prediction framework based on accurate battery modeling and state estimation is presented in this paper. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery. Then, an online recursive least-square-algorithm method and unscented-Kalman-filter are employed to estimate the system matrices and SOC at every prediction point. Besides, a discrete wavelet transform technique is employed to capture the statistical information of past dynamics of input currents, which are utilized to predict the future battery currents. Finally, the RDT can be predicted based on the battery model, SOC estimation results and predicted future battery currents. The performance of the proposed methodology has been verified by a lithium-ion battery cell. Experimental results indicate that the proposed method can provide an accurate SOC and parameter estimation and the predicted RDT can solve the range anxiety issues.

  2. Recursion to food plants by free-ranging Bornean elephant

    PubMed Central

    Gillespie, Graeme; Goossens, Benoit; Ismail, Sulaiman; Ancrenaz, Marc; Linklater, Wayne

    2015-01-01

    Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis) in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months) for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody) and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant’s preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when quantities have recovered sufficiently to meet their intake requirements. The implications for habitat and elephant management are discussed. PMID:26290779

  3. Recursion to food plants by free-ranging Bornean elephant.

    PubMed

    English, Megan; Gillespie, Graeme; Goossens, Benoit; Ismail, Sulaiman; Ancrenaz, Marc; Linklater, Wayne

    2015-01-01

    Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis) in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months) for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody) and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant's preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when quantities have recovered sufficiently to meet their intake requirements. The implications for habitat and elephant management are discussed.

  4. Selected annotated bibliographies for adaptive filtering of digital image data

    USGS Publications Warehouse

    Mayers, Margaret; Wood, Lynnette

    1988-01-01

    Digital spatial filtering is an important tool both for enhancing the information content of satellite image data and for implementing cosmetic effects which make the imagery more interpretable and appealing to the eye. Spatial filtering is a context-dependent operation that alters the gray level of a pixel by computing a weighted average formed from the gray level values of other pixels in the immediate vicinity.Traditional spatial filtering involves passing a particular filter or set of filters over an entire image. This assumes that the filter parameter values are appropriate for the entire image, which in turn is based on the assumption that the statistics of the image are constant over the image. However, the statistics of an image may vary widely over the image, requiring an adaptive or "smart" filter whose parameters change as a function of the local statistical properties of the image. Then a pixel would be averaged only with more typical members of the same population. This annotated bibliography cites some of the work done in the area of adaptive filtering. The methods usually fall into two categories, (a) those that segment the image into subregions, each assumed to have stationary statistics, and use a different filter on each subregion, and (b) those that use a two-dimensional "sliding window" to continuously estimate the filter either the spatial or frequency domain, or may utilize both domains. They may be used to deal with images degraded by space variant noise, to suppress undesirable local radiometric statistics while enforcing desirable (user-defined) statistics, to treat problems where space-variant point spread functions are involved, to segment images into regions of constant value for classification, or to "tune" images in order to remove (nonstationary) variations in illumination, noise, contrast, shadows, or haze.Since adpative filtering, like nonadaptive filtering, is used in image processing to accomplish various goals, this bibliography is organized in subsections based on application areas. Contrast enhancement, edge enhancement, noise suppression, and smoothing are typically performed in order imaging process, (for example, degradations due to the optics and electronics of the sensor, or to blurring caused by the intervening atmosphere, uniform motion, or defocused optics). Some of the papers listed may apply to more than one of the above categories; when this happens the paper is listed under the category for which the paper's emphasis is greatest. A list of survey articles is also supplied. These articles are general discussions on adaptive filters and reviews of work done. Finally, a short list of miscellaneous articles are listed which were felt to be sufficiently important to be included, but do not fit into any of the above categories. This bibliography, listing items published from 1970 through 1987, is extensive, but by no means complete. It is intended as a guide for scientists and image analysts, listing references for background information as well as areas of significant development in adaptive filtering.

  5. Study of Interpolated Timing Recovery Phase-Locked Loop with Linearly Constrained Adaptive Prefilter for Higher-Density Optical Disc

    NASA Astrophysics Data System (ADS)

    Kajiwara, Yoshiyuki; Shiraishi, Junya; Kobayashi, Shoei; Yamagami, Tamotsu

    2009-03-01

    A digital phase-locked loop (PLL) with a linearly constrained adaptive filter (LCAF) has been studied for higher-linear-density optical discs. LCAF has been implemented before an interpolated timing recovery (ITR) PLL unit in order to improve the quality of phase error calculation by using an adaptively equalized partial response (PR) signal. Coefficient update of an asynchronous sampled adaptive FIR filter with a least-mean-square (LMS) algorithm has been constrained by a projection matrix in order to suppress the phase shift of the tap coefficients of the adaptive filter. We have developed projection matrices that are suitable for Blu-ray disc (BD) drive systems by numerical simulation. Results have shown the properties of the projection matrices. Then, we have designed the read channel system of the ITR PLL with an LCAF model on the FPGA board for experiments. Results have shown that the LCAF improves the tilt margins of 30 gigabytes (GB) recordable BD (BD-R) and 33 GB BD read-only memory (BD-ROM) with a sufficient LMS adaptation stability.

  6. Visual information processing; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1992-01-01

    Topics discussed in these proceedings include nonlinear processing and communications; feature extraction and recognition; image gathering, interpolation, and restoration; image coding; and wavelet transform. Papers are presented on noise reduction for signals from nonlinear systems; driving nonlinear systems with chaotic signals; edge detection and image segmentation of space scenes using fractal analyses; a vision system for telerobotic operation; a fidelity analysis of image gathering, interpolation, and restoration; restoration of images degraded by motion; and information, entropy, and fidelity in visual communication. Attention is also given to image coding methods and their assessment, hybrid JPEG/recursive block coding of images, modified wavelets that accommodate causality, modified wavelet transform for unbiased frequency representation, and continuous wavelet transform of one-dimensional signals by Fourier filtering.

  7. Interactive digital signal processor

    NASA Technical Reports Server (NTRS)

    Mish, W. H.; Wenger, R. M.; Behannon, K. W.; Byrnes, J. B.

    1982-01-01

    The Interactive Digital Signal Processor (IDSP) is examined. It consists of a set of time series analysis Operators each of which operates on an input file to produce an output file. The operators can be executed in any order that makes sense and recursively, if desired. The operators are the various algorithms used in digital time series analysis work. User written operators can be easily interfaced to the sysatem. The system can be operated both interactively and in batch mode. In IDSP a file can consist of up to n (currently n=8) simultaneous time series. IDSP currently includes over thirty standard operators that range from Fourier transform operations, design and application of digital filters, eigenvalue analysis, to operators that provide graphical output, allow batch operation, editing and display information.

  8. Adaptive nonlocal means filtering based on local noise level for CT denoising

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.

    2014-01-15

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analyticalmore » noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the shape and peak frequency of the noise power spectrum better than commercial smoothing kernels, and indicate that the spatial resolution at low contrast levels is not significantly degraded. Both the subjective evaluation using the ACR phantom and the objective evaluation on a low-contrast detection task using a CHO model observer demonstrate an improvement on low-contrast performance. The GPU implementation can process and transfer 300 slice images within 5 min. On patient data, the adaptive NLM algorithm provides more effective denoising of CT data throughout a volume than standard NLM, and may allow significant lowering of radiation dose. After a two week pilot study of lower dose CT urography and CT enterography exams, both GI and GU radiology groups elected to proceed with permanent implementation of adaptive NLM in their GI and GU CT practices. Conclusions: This work describes and validates a computationally efficient technique for noise map estimation directly from CT images, and an adaptive NLM filtering based on this noise map, on phantom and patient data. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with clinical workflow. The adaptive NLM algorithm provides effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose.« less

  9. Distinctive signatures of recursion.

    PubMed

    Martins, Maurício Dias

    2012-07-19

    Although recursion has been hypothesized to be a necessary capacity for the evolution of language, the multiplicity of definitions being used has undermined the broader interpretation of empirical results. I propose that only a definition focused on representational abilities allows the prediction of specific behavioural traits that enable us to distinguish recursion from non-recursive iteration and from hierarchical embedding: only subjects able to represent recursion, i.e. to represent different hierarchical dependencies (related by parenthood) with the same set of rules, are able to generalize and produce new levels of embedding beyond those specified a priori (in the algorithm or in the input). The ability to use such representations may be advantageous in several domains: action sequencing, problem-solving, spatial navigation, social navigation and for the emergence of conventionalized communication systems. The ability to represent contiguous hierarchical levels with the same rules may lead subjects to expect unknown levels and constituents to behave similarly, and this prior knowledge may bias learning positively. Finally, a new paradigm to test for recursion is presented. Preliminary results suggest that the ability to represent recursion in the spatial domain recruits both visual and verbal resources. Implications regarding language evolution are discussed.

  10. The Recursive Paradigm: Suppose We Already Knew.

    ERIC Educational Resources Information Center

    Maurer, Stephen B.

    1995-01-01

    Explains the recursive model in discrete mathematics through five examples and problems. Discusses the relationship between the recursive model, mathematical induction, and inductive reasoning and the relevance of these concepts in the school curriculum. Provides ideas for approaching this material with students. (Author/DDD)

  11. Fedosov differentials and Catalan numbers

    NASA Astrophysics Data System (ADS)

    Löffler, Johannes

    2010-06-01

    The aim of the paper is to establish a non-recursive formula for the general solution of Fedosov's 'quadratic' fixed-point equation (Fedosov 1994 J. Diff. Geom. 40 213-38). Fedosov's geometrical fixed-point equation for a differential is rewritten in a form similar to the functional equation for the generating function of Catalan numbers. This allows us to guess the solution. An adapted example for Kaehler manifolds of constant sectional curvature is considered in detail. Also for every connection on a manifold a familiar classical differential will be introduced. Dedicated to the memory of Nikolai Neumaier.

  12. Modular microfluidic system for biological sample preparation

    DOEpatents

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  13. Wave-filter-based approach for generation of a quiet space in a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Iwamoto, Hiroyuki; Tanaka, Nobuo; Sanada, Akira

    2018-02-01

    This paper is concerned with the generation of a quiet space in a rectangular cavity using active wave control methodology. It is the purpose of this paper to present the wave filtering method for a rectangular cavity using multiple microphones and its application to an adaptive feedforward control system. Firstly, the transfer matrix method is introduced for describing the wave dynamics of the sound field, and then feedforward control laws for eliminating transmitted waves is derived. Furthermore, some numerical simulations are conducted that show the best possible result of active wave control. This is followed by the derivation of the wave filtering equations that indicates the structure of the wave filter. It is clarified that the wave filter consists of three portions; modal group filter, rearrangement filter and wave decomposition filter. Next, from a numerical point of view, the accuracy of the wave decomposition filter which is expressed as a function of frequency is investigated using condition numbers. Finally, an experiment on the adaptive feedforward control system using the wave filter is carried out, demonstrating that a quiet space is generated in the target space by the proposed method.

  14. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  15. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems

    PubMed Central

    Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.

    2015-01-01

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211

  16. Thermal bioaerosol cloud tracking with Bayesian classification

    NASA Astrophysics Data System (ADS)

    Smith, Christian W.; Dupuis, Julia R.; Schundler, Elizabeth C.; Marinelli, William J.

    2017-05-01

    The development of a wide area, bioaerosol early warning capability employing existing uncooled thermal imaging systems used for persistent perimeter surveillance is discussed. The capability exploits thermal imagers with other available data streams including meteorological data and employs a recursive Bayesian classifier to detect, track, and classify observed thermal objects with attributes consistent with a bioaerosol plume. Target detection is achieved based on similarity to a phenomenological model which predicts the scene-dependent thermal signature of bioaerosol plumes. Change detection in thermal sensor data is combined with local meteorological data to locate targets with the appropriate thermal characteristics. Target motion is tracked utilizing a Kalman filter and nearly constant velocity motion model for cloud state estimation. Track management is performed using a logic-based upkeep system, and data association is accomplished using a combinatorial optimization technique. Bioaerosol threat classification is determined using a recursive Bayesian classifier to quantify the threat probability of each tracked object. The classifier can accept additional inputs from visible imagers, acoustic sensors, and point biological sensors to improve classification confidence. This capability was successfully demonstrated for bioaerosol simulant releases during field testing at Dugway Proving Grounds. Standoff detection at a range of 700m was achieved for as little as 500g of anthrax simulant. Developmental test results will be reviewed for a range of simulant releases, and future development and transition plans for the bioaerosol early warning platform will be discussed.

  17. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems.

    PubMed

    Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D

    2015-07-10

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  18. A new fault diagnosis algorithm for AUV cooperative localization system

    NASA Astrophysics Data System (ADS)

    Shi, Hongyang; Miao, Zhiyong; Zhang, Yi

    2017-10-01

    Multiple AUVs cooperative localization as a new kind of underwater positioning technology, not only can improve the positioning accuracy, but also has many advantages the single AUV does not have. It is necessary to detect and isolate the fault to increase the reliability and availability of the AUVs cooperative localization system. In this paper, the Extended Multiple Model Adaptive Cubature Kalmam Filter (EMMACKF) method is presented to detect the fault. The sensor failures are simulated based on the off-line experimental data. Experimental results have shown that the faulty apparatus can be diagnosed effectively using the proposed method. Compared with Multiple Model Adaptive Extended Kalman Filter and Multi-Model Adaptive Unscented Kalman Filter, both accuracy and timelines have been improved to some extent.

  19. Multireference adaptive noise canceling applied to the EEG.

    PubMed

    James, C J; Hagan, M T; Jones, R D; Bones, P J; Carroll, G J

    1997-08-01

    The technique of multireference adaptive noise canceling (MRANC) is applied to enhance transient nonstationarities in the electroeancephalogram (EEG), with the adaptation implemented by means of a multilayer-perception artificial neural network (ANN). The method was applied to recorded EEG segments and the performance on documented nonstationarities recorded. The results show that the neural network (nonlinear) gives an improvement in performance (i.e., signal-to-noise ratio (SNR) of the nonstationarities) compared to a linear implementation of MRANC. In both cases an improvement in the SNR was obtained. The advantage of the spatial filtering aspect of MRANC is highlighted when the performance of MRANC is compared to that of the inverse auto-regressive filtering of the EEG, a purely temporal filter.

  20. [Increase in the effectiveness of identifying peaks and feet of the photoplethysmographic pulse to be reconstructed it using adaptive filtering].

    PubMed

    Becerra-Luna, Brayans; Martínez-Memije, Raúl; Cartas-Rosado, Raúl; Infante-Vázquez, Oscar

    To improve the identification of peaks and feet in photoplethysmographic (PPG) pulses deformed by myokinetic noise, through the implementation of a modified fingertip and applying adaptive filtering. PPG signals were recordedfrom 10 healthy volunteers using two photoplethysmography systems placed on the index finger of each hand. Recordings lasted three minutes andwere done as follows: during the first minute, both handswere at rest, and for the lasting two minutes only the left hand was allowed to make quasi-periodicmovementsin order to add myokinetic noise. Two methodologies were employed to process the signals off-line. One consisted on using an adaptive filter based onthe Least Mean Square (LMS) algorithm, and the other includeda preprocessing stage in addition to the same LMS filter. Both filtering methods were compared and the one with the lowest error was chosen to assess the improvement in the identification of peaks and feet from PPG pulses. Average percentage errorsobtained wereof 22.94% with the first filtering methodology, and 3.72% withthe second one. On identifying peaks and feet from PPG pulsesbefore filtering, error percentages obtained were of 24.26% and 48.39%, respectively, and once filtered error percentageslowered to 2.02% for peaks and 3.77% for feet. The attenuation of myokinetic noise in PPG pulses through LMS filtering, plusa preprocessing stage, allows increasingthe effectiveness onthe identification of peaks and feet from PPG pulses, which are of great importance for medical assessment. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

Top