Science.gov

Sample records for adaptive remote-sensing techniques

  1. Laser remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1987-01-01

    The properties and advantages of remote sensing lasers are discussed. The theory of nonresonant techniques, which is based on the lidar equation and elastic backscatter, and their applications to aerosol and meteorological parameters are examined. The characteristics and applications of the differential absorption lidar technique, the fluorescence technique, and Raman scattering are described. The use of a laser heterodyne radiometer and fiber optics for remote sensing is studied. Future developments in the field of remote sensing, in particular the improvement of laser sources, the fabrication of compact remote sensing instruments, and space-borne applications for lidar, are considered.

  2. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    SciTech Connect

    Asher, R.B.; Cameron, S.M.; Loubriel, G.M.; Robinett, R.D.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-25

    In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical "and difficult to characterize. An alternative approach is to implement an adap- tively deployable array of sensitive agent-specific devices. Our group has been studying the collective be- havior of an autonomous, multi-agent system applied to chedbio detection and related emerging threat applications, The current physics-based models we are using coordinate a sensor array for mukivanate sig- nal optimization and coverage as re,alized by a swarm of robots or mobile vehicles. These intelligent control systems integrate'glob"ally operating decision-making systems and locally cooperative learning neural net- works to enhance re+-timp operational responses to dynarnical environments examples of which include obstacle avoidance, res~onding to prevailing wind patterns, and overcoming other natural obscurants or in- terferences. Collectively',tkensor nefirons with simple properties, interacting according to basic community rules, can accomplish complex interconnecting functions such as generalization, error correction, pattern recognition, sensor fusion, and localization. Neural nets provide a greater degree of robusmess and fault tolerance than conventional systems in that minor variations or imperfections do not impair performance. The robotic platforms would be equipped with sensor devices that perform opticaI detection of biologicais in combination with multivariate chemical analysis tools based on genetic and neural network algorithms, laser-diode LIDAR analysis, ultra-wideband short-pulsed transmitting and receiving antennas, thermal im- a:ing sensors, and optical Communication technology providing robust data throughput pathways. Mission scenarios under consideration include ground penetrating radar (GPR) for detection of underground struc- tures, airborne systems, and plume migration and mitigation. We will describe our research in

  3. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    SciTech Connect

    Cameron, S.M.; Loubriel, G.M.; Rbinett, R.D. III; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-04-01

    This paper focuses on our recent work at Sandia National Laboratories toward engineering a physics-based swarm of mobile vehicles for distributed sensing applications. Our goal is to coordinate a sensor array that optimizes sensor coverage and multivariate signal analysis by implementing artificial intelligence and evolutionary computational techniques. These intelligent control systems integrate both globally operating decision-making systems and locally cooperative information-sharing modes using genetically-trained neural networks. Once trained, neural networks have the ability to enhance real-time operational responses to dynamical environments, such as obstacle avoidance, responding to prevailing wind patterns, and overcoming other natural obscurants or interferences (jammers). The swarm realizes a collective set of sensor neurons with simple properties incorporating interactions based on basic community rules (potential fields) and complex interconnecting functions based on various neural network architectures, Therefore, the swarm is capable of redundant heterogeneous measurements which furnishes an additional degree of robustness and fault tolerance not afforded by conventional systems, while accomplishing such cognitive tasks as generalization, error correction, pattern recognition, and sensor fission. The robotic platforms could be equipped with specialized sensor devices including transmit/receive dipole antennas, chemical or biological sniffers in combination with recognition analysis tools, communication modulators, and laser diodes. Our group has been studying the collective behavior of an autonomous, multi-agent system applied to emerging threat applications. To accomplish such tasks, research in the fields of robotics, sensor technology, and swarms are being conducted within an integrated program. Mission scenarios under consideration include ground penetrating impulse radar (GPR) for detection of under-ground structures, airborne systems, and plume

  4. Adaptive feature extraction techniques for subpixel target detections in hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Yuen, Peter W. T.; Bishop, Gary J.

    2004-12-01

    Most target detection algorithms employed in hyperspectral remote sensing rely on a measurable difference between the spectral signature of the target and background. Matched filter techniques which utilise a set of library spectra as filter for target detection are often found to be unsatisfactory because of material variability and atmospheric effects in the field data. The aim of this paper is to report an algorithm which extracts features directly from the scene to act as matched filters for target detection. Methods based upon spectral unmixing using geometric simplex volume maximisation (SVM) and independent component analysis (ICA) were employed to generate features of the scene. Target and background like features are then differentiated, and automatically selected, from the endmember set of the unmixed result according to their statistics. Anomalies are then detected from the selected endmember set and their corresponding spectral characteristics are subsequently extracted from the scene, serving as a bank of matched filters for detection. This method, given the acronym SAFED, has a number of advantages for target detection, compared to previous techniques which use orthogonal subspace of the background feature. This paper reports the detection capability of this new technique by using an example simulated hyperspectral scene. Similar results using hyperspectral military data show high detection accuracy with negligible false alarms. Further potential applications of this technique for false alarm rate (FAR) reduction via multiple approach fusion (MAF), and, as a means for thresholding the anomaly detection technique, are outlined.

  5. Some adaptive filtering techniques applied to the passive remote sensing problem. [for Tiros-N and Nimbus 6 experiments

    NASA Technical Reports Server (NTRS)

    Toldalagi, P. M.

    1980-01-01

    A review is made of recursive statistical regression techniques incorporating past or past and future observations through smoothing and Kalman filtering, respectively; with results for the cases of the Tiros-N/MSU and Nimbus-6/Scams remote sensing satellite experiments. In response to the lack of a satisfactory model for the medium sounded, which is presently a major limitation on retrieval technique performance, a novel, global approach is proposed which casts the retrieval problem into the framework of adaptive filtering. A numerical implementation of such an adaptive system is presented, with a multilayer, semi-spectral general circulation model for the atmosphere being used to fine-tune the sensor as well as the dynamical equations of a Kalman filter. It is shown that the assimilation of radiometric data becomes a straightforward subproblem.

  6. Remote sensing as a mineral prospecting technique

    NASA Technical Reports Server (NTRS)

    Meneses, P. R. (Principal Investigator)

    1984-01-01

    Remote sensing and its application as an alternative technique to mineral resource exploration are reviewed. Emphasis is given here to the analysis of the three basic attributes of remote sensing, i.e., spatial attributes related to regional structural mapping, spectral attributes related to rock discrimination and seasonal attributes related to geobotanic anomalies mapping, all of which are employed in mineral exploration. Special emphasis is given to new developments of the Thematic Mapper of the LANDSAT-5, principally with reference to the application of the bands 1.6 and 2.2 microns to map hydrothermally altered rocks and the band of red and blue shift to geobotanical anomalies mapping.

  7. Laser Remote Sensing: Velocimetry Based Techniques

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; Steinvall, Ove

    Laser-based velocity measurement is an area of the field of remote sensing where the coherent properties of laser radiation are the most exposed. Much of the published literature deals with the theory and techniques of remote sensing. We restrict our discussion to current trends in this area, gathered from recent conferences and professional journals. Remote wind sensing and vibrometry are promising in their new scientific, industrial, military, and biomedical applications, including improving flight safety, precise weapon correction, non-contact mine detection, optimization of wind farm operation, object identification based on its vibration signature, fluid flow studies, and vibrometry-associated diagnosis.

  8. Introduction to the physics and techniques of remote sensing

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1987-01-01

    This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.

  9. Multisensor image fusion techniques in remote sensing

    NASA Astrophysics Data System (ADS)

    Ehlers, Manfred

    Current and future remote sensing programs such as Landsat, SPOT, MOS, ERS, JERS, and the space platform's Earth Observing System (Eos) are based on a variety of imaging sensors that will provide timely and repetitive multisensor earth observation data on a global scale. Visible, infrared and microwave images of high spatial and spectral resolution will eventually be available for all parts of the earth. It is essential that efficient processing techniques be developed to cope with the large multisensor data volumes. This paper discusses data fusion techniques that have proved successful for synergistic merging of SPOT HRV, Landsat TM and SIR-B images. It is demonstrated that these techniques can be used to improve rectification accuracies, to depicit greater cartographic detail, and to enhance spatial resolution in multisensor image data sets.

  10. Remote Sensing Techniques for Monitoring Aquatic Vegetation

    NASA Astrophysics Data System (ADS)

    Blanco, Alfonso

    Hydrilla is an important submerged aquatic vegetation because it has a large capacity to absorb pollutants and it is an indicator of the eutrophic status of a waterbody. Monitoring and restoration of submerged aquatic vegetation is key for the preservation and restoration of the Chesapeake Bay. Remote sensing techniques have been used for assessing wetlands and non-invasive aquatic species, but there is limited studies of hydrilla monitoring combined with space-borne, airborne and in-situ remote sensing measurements for detecting and mapping hydrilla infestation. The first objective of this research was to establish a database of hydrilla spectral signatures from an experimental tank and from a field setting using a handheld spectrometer. The spectral signatures collected will be used to identify the optimal spectral and spatial characteristics that are required to identify and classify the distribution of hydrilla canopies in water bodies. The second objective is to process and analyze two hyperspectral images from a space-borne (Hyperion) and airborne (AISA) sensors with ENVI for detecting and mapping the infestation of hydrilla vertillicata in a coastal estuary in Chesapeake Bay. The third objective was to validate the satellite and airborne hyperspectral images with the spectral signatures collected with the in-situ field measurements. In addition, the Hyperion and AISA imaging results were compared with ground surveys and aerial photos collected by the Maryland Department of Natural Resources and the Virginia Institute of Marine Sciences for verifying the extent and the location of the hydrilla canopies. The hyperspectral analysis of both sensors provided for a dual results, one is the identification and classification of hydrilla from hyperspectral imaging sensors and secondly the identification of algae blooms in very productive waters. A hydrilla spectral signature database was established and housed in GMU's EastFIRE Lab of Environmental Science and

  11. Evaluation of reforestation using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Filho, P. H.; Shimabukuro, Y. E.; Dossantos, J. R.

    1982-01-01

    The utilization of remotely sensed orbital data for forestry inventory. The study area (approximately 491,100 ha) encompasses the municipalities of Ribeirao Preto, Altinopolis, Cravinhos, Serra Azul, Luis Antonio, Sao Simao, Sant Rita do Passa Quatro and Santa Rosa do Viterbo (Sao Paulo State). Materials used were LANDSAT data from channels 5 and 7 (scale 1:250,000) and CCT's. Visual interpretation of the imagery showed that for 1977 a total of 37,766.00 ha and for 1979 38,003.75 ha were reforested with Pinus and Eucalyptus within the area under study. The results obtained show that LANDSAT data can be used efficiently in forestry inventory studies.

  12. Remote sensing techniques for mining waste characterization

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Savastru, R. S.; Savastru, D. M.; Miclos, S. I.; Tautan, M. N. M.

    2009-09-01

    Environmental monitoring is essential information routinely required by the mining industry and regulators to demonstrate that the environment is not adversely impacted by exploration and mining. New mining technologies can not only exploit low-grade ores but also produce high volumes of tailings as mining wastes. Satellite remote sensing imagery provided by Landsat TM and ETM sensors is an important investigation tool of mining waste cover screening, mapping and monitoring at local and regional scales of areas containing multiple sources of mining-related heavy metals. By this, satellite remote sensing data can help to rapidly assess the dimension of mining waste risk and therefore better manage such a geohazard as well as for remediation programs. Based on Landsat TM, ETM satellite data over 1989-2007 period, was possible to be achieved a discrimination between weathered materials and other prone to acidification as well as to perform a spatio temporal landcover change detection analysis in some mining waste areas in Maramures County, Romania. Accuracy of image processing results (mineralogical classification) was confirmed through ground sampling and analysis of reflectance spectra with portable GER 2600 spectroradiometer.

  13. Layered classification techniques for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Swain, P. H.; Wu, C. L.; Landgrebe, D. A.; Hauska, H.

    1975-01-01

    The single-stage method of pattern classification utilizes all available features in a single test which assigns the unknown to a category according to a specific decision strategy (such as the maximum likelihood strategy). The layered classifier classifies the unknown through a sequence of tests, each of which may be dependent on the outcome of previous tests. Although the layered classifier was originally investigated as a means of improving classification accuracy and efficiency, it was found that in the context of remote sensing data analysis, other advantages also accrue due to many of the special characteristics of both the data and the applications pursued. The layered classifier method and several of the diverse applications of this approach are discussed.

  14. Monitoring asphalt pavement damages using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Mettas, Christodoulos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Christofe, Andreas; Pilakoutas, Kypros; Hadjimitsis, Diofantos

    2015-06-01

    One of the main issues in the maintenance plans of road agencies or governmental organizations is the early detection of damaged asphalt pavements. The development of a smart and non-destructive systematic technique for monitoring damaged asphalt pavements is considered a main priority to fill this gap. During the 1970's, remote sensing was used to map road surface distress, while during the last decade, remote sensing became more advanced, thereby assisting in the evolution of the identification and mapping of roads. Various techniques were used in order to explore condition, age, weaknesses and imperfections of asphalted pavements. These methods were fairly successful in the classification of asphalted surfaces and in the detection of some of their characteristics. This paper explores the state of the art of using remote sensing techniques for monitoring damaged pavements and some typical spectral profiles of various asphalt pavements in Cyprus area acquired using the SVC1024 field spectroradiometer.

  15. Offshore winds using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Peña, Alfredo; Bay Hasager, Charlotte; Gryning, Sven-Erik; Courtney, Michael; Antoniou, Ioannis; Mikkelsen, Torben; Sørensen, Paul

    2007-07-01

    Ground-based remote sensing instruments can observe winds at different levels in the atmosphere where the wind characteristics change with height: the range of heights where modern turbine rotors are operating. A six-month wind assessment campaign has been made with a LiDAR (Light Detection And Ranging) and a SoDAR (Sound Detection and Ranging) on the transformer/platform of the world's largest offshore wind farm located at the West coast of Denmark to evaluate their ability to observe offshore winds. The high homogeneity and low turbulence levels registered allow the comparison of LiDAR and SoDAR with measurements from cups on masts surrounding the wind farm showing good agreement for both the mean wind speed and the longitudinal component of turbulence. An extension of mean wind speed profiles from cup measurements on masts with LiDAR observations results in a good match for the free sectors at different wind speeds. The log-linear profile is fitted to the extended profiles (averaged over all stabilities and roughness lengths) and the deviations are small. Extended profiles of turbulence intensity are also shown for different wind speeds up to 161 m. Friction velocities and roughness lengths calculated from the fitted log-linear profile are compared with the Charnock model which seems to overestimate the sea roughness for the free sectors.

  16. Natural resource inventory for urban planning utilizing remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Foster, K. E.; Mackey, P. F.; Bonham, C. D.

    1972-01-01

    Remote sensing techniques were applied to the lower Pantano Wash area to acquire data for planning an ecological balance between the expanding Tucson metropolitan area and its environment. The types and distribution of vegetation are discussed along with the hydrologic aspects of the Wash.

  17. Data acquisition and preprocessing techniques for remote sensing field research

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.; Robinson, B. F.

    1983-01-01

    A crops and soils data base has been developed at Purdue University's Laboratory for Applications of Remote Sensing using spectral and agronomic measurements made by several government and university researchers. The data are being used to (1) quantitatively determine the relationships of spectral and agronomic characteristics of crops and soils, (2) define future sensor systems, and (3) develop advanced data analysis techniques. Researchers follow defined data acquisition and preprocessing techniques to provide fully annotated and calibrated sets of spectral, agronomic, and meteorological data. These procedures enable the researcher to combine his data with that acquired by other researchers for remote sensing research. The key elements or requirements for developing a field research data base of spectral data that can be transported across sites and years are appropriate experiment design, accurate spectral data calibration, defined field procedures, and through experiment documentation.

  18. Adaptive regularized scheme for remote sensing image fusion

    NASA Astrophysics Data System (ADS)

    Tang, Sizhang; Shen, Chaomin; Zhang, Guixu

    2016-06-01

    We propose an adaptive regularized algorithm for remote sensing image fusion based on variational methods. In the algorithm, we integrate the inputs using a "grey world" assumption to achieve visual uniformity. We propose a fusion operator that can automatically select the total variation (TV)-L1 term for edges and L2-terms for non-edges. To implement our algorithm, we use the steepest descent method to solve the corresponding Euler-Lagrange equation. Experimental results show that the proposed algorithm achieves remarkable results.

  19. Remote sensing techniques for support of coastal zone resource management.

    NASA Technical Reports Server (NTRS)

    Piland, R. O.

    1973-01-01

    Description of remote sensing studies carried out for the purpose of developing and/or demonstrating techniques which can be employed for land use inventory, marsh vegetation classification, and water characteristics surveys. Attention is given to results obtained with (1) photo interpretation techniques and procedures for the development of land use information from high-altitude aircraft and satellite imagery, (2) computer based pattern recognition techniques utilizing multispectral scanner data for marsh vegetation classification, and (3) infrared and microwave techniques for the monitoring and surveying of coastal water temperature and salinity characteristics.

  20. Remote sensing image subpixel mapping based on adaptive differential evolution.

    PubMed

    Zhong, Yanfei; Zhang, Liangpei

    2012-10-01

    In this paper, a novel subpixel mapping algorithm based on an adaptive differential evolution (DE) algorithm, namely, adaptive-DE subpixel mapping (ADESM), is developed to perform the subpixel mapping task for remote sensing images. Subpixel mapping may provide a fine-resolution map of class labels from coarser spectral unmixing fraction images, with the assumption of spatial dependence. In ADESM, to utilize DE, the subpixel mapping problem is transformed into an optimization problem by maximizing the spatial dependence index. The traditional DE algorithm is an efficient and powerful population-based stochastic global optimizer in continuous optimization problems, but it cannot be applied to the subpixel mapping problem in a discrete search space. In addition, it is not an easy task to properly set control parameters in DE. To avoid these problems, this paper utilizes an adaptive strategy without user-defined parameters, and a reversible-conversion strategy between continuous space and discrete space, to improve the classical DE algorithm. During the process of evolution, they are further improved by enhanced evolution operators, e.g., mutation, crossover, repair, exchange, insertion, and an effective local search to generate new candidate solutions. Experimental results using different types of remote images show that the ADESM algorithm consistently outperforms the previous subpixel mapping algorithms in all the experiments. Based on sensitivity analysis, ADESM, with its self-adaptive control parameter setting, is better than, or at least comparable to, the standard DE algorithm, when considering the accuracy of subpixel mapping, and hence provides an effective new approach to subpixel mapping for remote sensing imagery.

  1. Integration of geological remote-sensing techniques in subsurface analysis

    USGS Publications Warehouse

    Taranik, James V.; Trautwein, Charles M.

    1976-01-01

    Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.

  2. Estimation of Insulator Contaminations by Means of Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Han, Ge; Gong, Wei; Cui, Xiaohui; Zhang, Miao; Chen, Jun

    2016-06-01

    The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC) is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD), digital elevation model (DEM), land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data). Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM) and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.

  3. An integrated study of earth resources in the State of California using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1972-01-01

    Remote sensing activities for the management of California's water project are reported. Integrated efforts are based largely on airborne remote sensing data processing to inventory the various kinds of earth resources observed. Work centered on defining parameters pertinent to determine water yield and discernible through remote sensing techniques; (2) determining accuracy in measuring and mapping parameters using remote sensing data flown to various specifications; and (3) relating water yield predictions to actual water yields. Remote sensing imagery of the Perris valley shows that land developers established a number of locations to promote present agricultural land for non-agricultural land use.

  4. Remote sensing techniques applied to seismic vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Juan Arranz, Jose; Torres, Yolanda; Hahgi, Azade; Gaspar-Escribano, Jorge

    2016-04-01

    Advances in remote sensing and photogrammetry techniques have increased the degree of accuracy and resolution in the record of the earth's surface. This has expanded the range of possible applications of these data. In this research, we have used these data to document the construction characteristics of the urban environment of Lorca, Spain. An exposure database has been created with the gathered information to be used in seismic vulnerability assessment. To this end, we have used data from photogrammetric flights at different periods, using both orthorectified images in the visible and infrared spectrum. Furthermore, the analysis is completed using LiDAR data. From the combination of these data, it has been possible to delineate the building footprints and characterize the constructions with attributes such as the approximate date of construction, area, type of roof and even building materials. To carry out the calculation, we have developed different algorithms to compare images from different times, segment images, classify LiDAR data, and use the infrared data in order to remove vegetation or to compute roof surfaces with height value, tilt and spectral fingerprint. In addition, the accuracy of our results has been validated with ground truth data. Keywords: LiDAR, remote sensing, seismic vulnerability, Lorca

  5. Remote sensing techniques for soil moisture and agricultural drought monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Lingli

    Drought is the most complex and least understood of all natural hazards, affecting more people than any other hazard. Soil moisture is a primary indicator for agricultural drought. This dissertation is aimed at evaluating and investigating soil moisture and drought monitoring using remote sensing techniques. Recent technological advances in remote sensing have shown that soil moisture can be measured by a variety of remote sensing techniques, each with its own strengths and weaknesses. This research is designed to combine the strengths of optical/infrared as well as microwave remote sensing approaches for soil moisture estimation. A soil moisture estimation algorithm at moderate resolution was developed based on the well known 'Universal Triangle' relation by using MODIS land parameters as well as ground measured soil moisture. Though lower in spatial resolution, AMSR-E microwave measurements provides daily global soil moisture of the top soil layer, which are typically less affected by clouds, making them complementary to MODIS measurements over regions of clouds. Considering that the 'Universal Triangle' approach for soil moisture estimation is based on empirical relations which lack solid physical basis, a new physics based drought index, the Normalized Multi-band Drought Index (NMDI) was proposed for monitoring soil and vegetation moisture from space by using one near-infrared (NIR) and two shortwave infrared (SWIR) channels. Typical soil reflectance spectra and satellite acquired canopy reflectances are used to validate the usefulness of NMDI. Its ability for active fire detection has also been investigated using forest fires burning in southern Georgia, USA and southern Greece in 2007. Combining information from multiple NIR and SWIR channels makes NMDI a most promising indicator for drought monitoring and active fire detecting. Given the current technology, satellite remote sensing can only provide soil moisture measurements for the top soil profile, and

  6. Remote sensing techniques for prediction of watershed runoff

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1975-01-01

    Hydrologic parameters of watersheds for use in mathematical models and as design criteria for flood detention structures are sometimes difficult to quantify using conventional measuring systems. The advent of remote sensing devices developed in the past decade offers the possibility that watershed characteristics such as vegetative cover, soils, soil moisture, etc., may be quantified rapidly and economically. Experiments with visible and near infrared data from the LANDSAT-1 multispectral scanner indicate a simple technique for calibration of runoff equation coefficients is feasible. The technique was tested on 10 watersheds in the Chickasha area and test results show more accurate runoff coefficients were obtained than with conventional methods. The technique worked equally as well using a dry fall scene. The runoff equation coefficients were then predicted for 22 subwatersheds with flood detention structures. Predicted values were again more accurate than coefficients produced by conventional methods.

  7. Integration of Field and Remote Sensing Techniques For Landslides Monitoring

    NASA Astrophysics Data System (ADS)

    Allievi, J.; Ambrosi, C.; Ceriani, M.; Colesanti, C.; Crosta, G. B.; Ferretti, A.; Fossati, D.; Menegaz, A.

    The definition of the state of activity of slope movements is of major interest both at local and at regional scale. The Geological Survey of the Regione Lombardia has re- cently started a series of projects aimed to the identification of areas subjected to slope instability and to the assessment of their state of activity. Field survey, aerial photo interpretation and advanced remote sensing techniques have been applied. Some ex- amples of large rock slope instabilities have been investigated in the Valtellina area (Lombardia, Northern Italy). In particular, we demonstrate the degree of integration of the adopted techniques for one of the largest rock slope movements actually recog- nised in the area. The remote sensing approach that has been adopted is the Perma- nent Scatterers (PS) Technique. This technique has been recently developed as a new methodology for surface deformation monitoring, using ESA ERS-SAR data. Its ap- plication to large slope movements in alpine and prealpine areas, with a relatively low urban development, has been tried for the first time in order to evaluate its potential in supporting studies for landslide hazard assessment. Previous results show that this ap- proach allows to reach an accuracy very close to the theoretical limit. This study shows the very good agreement reached for displacement velocities between historical trends and recent PS measurements. Scatterers have been identified by field surveying and some of them are located close to historically monitored benchmark for topographic measurements. Furthermore, the integration of these data with field observations al- lowed us to perform a preliminary reconstrucion of the landslide mechanism and to assess the activity of different landslide structures (scarps, etc.).

  8. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.

    USGS Publications Warehouse

    Clark, R.N.; Roush, T.L.

    1984-01-01

    Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean path length and the implications for use in modeling reflectance spectra are presented.-from Authors

  9. Glacier and climate changes in the Western Indian Himalayas (Ladakh and Lahul-Spiti): remote sensing, field techniques and adaptation techniques

    NASA Astrophysics Data System (ADS)

    Racoviteanu, Adina; Williams, Mark

    2010-05-01

    Anecdotal evidence from glacier termini observations in the Himalayas suggest that these glaciers have been in a state of general retreat since the last century, and point to "alarming" rates of retreat in the past decades. Concomitantly, local communities in the Western Himalayas have reported changes in glacier extents, snow cover and weather patterns. In response to "alarming" rates of glacial retreat, some indigenous cultures in the Himalayan area have begun a number of adaptive responses such as meltwater harvesting to construct "artificial" glaciers, which store the water during the dry season. There is urgency in: a) scientifically evaluating whether such practices of glacier regeneration can help provide water in a timely manner and 2) developing glacier datasets to assist such local efforts to ensure water supply in these data-scarce mountainous areas. Here we compare and contrast scientific and indigenous perspectives on spatial patterns of glacier changes in the dry areas of Ladakh (34.10°N and 77.34°E ) and Lahul-Spiti district (31.11°N and 77.15°E ) in the Western Indian Himalaya. A new glacier inventory of Lahul-Spiti was constructed using a combination of data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor with Shuttle Radar Topography Mission (SRTM), GPS field data and ground photography. Glacier changes were quantified by comparison with older ASTER inventory and topographic maps. We present changes reported by local communities and recorded in video, oral testimonies and ground photography. We focus on two indigenous practices of water harvesting for glacier regeneration: a) artificial glaciers and b) kul irrigation systems. Field data of artificial glaciers was acquired at Sabu, Stakmo and Phuktsey glaciers using a differential GPS system. Kul irrigation systems were documented in Spiti valley (Lara and Kibber villages). We will present the results of mapping these water harvesting systems with the goal

  10. New remote sensing technique for lidar monitoring of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Belen'kii, Mikhail S.; Gimmestad, Gary G.

    1993-09-01

    A new remote sensing technique is proposed for determining the turbulent parameters of the atmosphere using a single-ended lidar system. This technique is based on the enhanced backscattering effect and is insensitive to the scattering volume averaging effect on the intensity fluctuations of the reflected wave and the sounding beam. The corresponding measurements are independent of the turbulent scintillation spectrum and that permits the use of high power pulsed lasers with a relatively low repetition rate for determining the refractive index structure characteristic Cn2, its vertical profile Cn2(h) and inner scale of turbulence lo in the atmosphere. A theory of the method is developed, and the conditions are obtained for observing the backscattering amplification effect in the atmosphere with a laser beam scattered by aerosol. The signal-to-noise ratio and the sensitivity of the measured quantities to the inner scale of turbulence lo variations are estimated. A planned demonstration of this technique in the boundary layer of the atmosphere with an eyesafe lidar which has been developed at Georgia Tech is discussed.

  11. Hyperspectral remote sensing techniques for early detection of plant diseases

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications in Earth observation. Nowadays spectral remote sensing techniques allow presymptomatic monitoring of changes in the physiological state of plants with high spectral resolution. Hyperspectral leaf reflectance and chlorophyll fluorescence proved to be highly suitable for identification of growth anomalies of cultural plants that result from the environmental changes and different stress factors. Hyperspectral technologies can find place in many scientific areas, as well as for monitoring of plants status and functioning to help in making timely management decisions. This research aimed to detect a presence of viral infection in young pepper plants (Capsicum annuum L.) caused by Cucumber Mosaic Virus (CMV) by using hyperspectral reflectance and fluorescence data and to assess the effect of some growth regulators on the development of the disease. In Bulgaria CMV is one of the widest spread pathogens, causing the biggest economical losses in crop vegetable production. Leaf spectral reflectance and fluorescence data were collected by a portable fibre-optics spectrometer in the spectral ranges 450÷850 nm and 600-900 nm. Greenhouse experiment with pepper plants of two cultivars, Sivria (sensitive to CMV) and Ostrion (resistant to CMV) were used. The plants were divided into six groups. The first group consisted of healthy (control) plants. At growth stage 4-6 expanded leaf, the second group was inoculated with CMV. The other four groups were treated with growth regulators: Spermine, MEIA (beta-monomethyl ester of itaconic acid), ВТН (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester) and Phytoxin. On the next day, the pepper plants of these four groups were inoculated with CMV. The viral concentrations in the plants were determined by the serological method DAS-ELISA. Statistical, first derivative and cluster analysis were applied and several vegetation indices were

  12. Advanced remote sensing techniques for forestry applications: an application case in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Nezry, Edmond; Yakam-Simen, Francis; Romeijn, Paul P.; Supit, Iwan; Demargne, Louis

    2001-02-01

    12 This paper reports the operational implementation of new techniques for the exploitation of remote sensing data (SAR and optical) in the framework of forestry applications. In particular, we present a new technique for standing timber volume estimation. This technique is based on remote sensing knowledge (SAR and optical synergy) and forestry knowledge (forest structure models), proved fairly accurate. To illustrate the application of these techniques, an operational commercial case study regarding forest concessions in Sarawak is presented. Validation of this technique by comparison of the remote sensing results and the database of the customer has shown that this technique is fairly accurate.

  13. An integrated study of earth resources in the state of California using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    1973-01-01

    University of California investigations to determine the usefulness of modern remote sensing techniques have concentrated on the water resources of the state. The studies consider in detail the supply, demand, and impact relationships.

  14. A forestry application simulation of man-machine techniques for analyzing remotely sensed data

    NASA Technical Reports Server (NTRS)

    Berkebile, J.; Russell, J.; Lube, B.

    1976-01-01

    The typical steps in the analysis of remotely sensed data for a forestry applications example are simulated. The example uses numerically-oriented pattern recognition techniques and emphasizes man-machine interaction.

  15. Remote sensing techniques from helicopter for water quality and air pollution control

    SciTech Connect

    Geraci, A.L.; Landolina, F.F.

    1996-11-01

    Aircraft remote sensing provides a number of benefits, allowing to vary the detection parameters, giving better resolution, and being little affected by weather conditions and no replaceable under emergency situations. Also as a part of projects funded by the Commission of the European Communities, through the Regional Government of Sicily, applications of remote sensing techniques were carried out from helicopter over selected study areas in Sicily, for water quality and air pollution control. In particular, remotely-sensed data were acquired, using LASER techniques and thermal infrared imagery, for the monitoring of water quality and the assessment of oil pollution. Furthermore, air quality was investigated, using LASER techniques and correlation spectroscopy. In a perspective of integration, the investigations carried out proved effective and useful, confirming the important role of the helicopter as monitoring platform for environmental remote sensing applications. 6 refs., 11 figs.

  16. The application of remote sensing techniques to the study of ophiolites

    NASA Astrophysics Data System (ADS)

    Khan, Shuhab D.; Mahmood, Khalid

    2008-08-01

    Satellite remote sensing methods are a powerful tool for detailed geologic analysis, especially in inaccessible regions of the earth's surface. Short-wave infrared (SWIR) bands are shown to provide spectral information bearing on the lithologic, structural, and geochemical character of rock bodies such as ophiolites, allowing for a more comprehensive assessment of the lithologies present, their stratigraphic relationships, and geochemical character. Most remote sensing data are widely available for little or no cost, along with user-friendly software for non-specialists. In this paper we review common remote sensing systems and methods that allow for the discrimination of solid rock (lithologic) components of ophiolite complexes and their structural relationships. Ophiolites are enigmatic rock bodies which associated with most, if not all, plate collision sutures. Ophiolites are ideal for remote sensing given their widely recognized diversity of lithologic types and structural relationships. Accordingly, as a basis for demonstrating the utility of remote sensing techniques, we briefly review typical ophiolites in the Tethyan tectonic belt. As a case study, we apply integrated remote sensing studies of a well-studied example, the Muslim Bagh ophiolite, located in Balochistan, western Pakistan. On this basis, we attempt to demonstrate how remote sensing data can validate and reconcile existing information obtained from field studies. The lithologic and geochemical diversity of Muslim Bagh are representative of Tethyan ophiolites. Despite it's remote location it has been extensively mapped and characterized by structural and geochemical studies, and is virtually free of vegetative cover. Moreover, integrating the remote sensing data with 'ground truth' information thus offers the potential of an improved template for interpreting remote sensing data sets of other ophiolites for which little or no field information is available.

  17. Remote Sensing Techniques as a Tool for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Faisal, K.; AlAhmad, M.; Shaker, A.

    2012-07-01

    The disposal of the solid wastes in landfill sites should be properly monitored by analyzing samples from soil, water, and landfill gases within the landfill site. Nevertheless, ground monitoring systems require intensive efforts and cost. Furthermore, ground monitoring may be difficult to be achieved in large geographic extent. Remote sensing technology has been introduced for waste disposal management and monitoring effects of the landfill sites on the environment. In this paper, two case studies are presented in the Trail Road landfill, Ottawa, Canada and the Al-Jleeb landfill, Al-Farwanyah, Kuwait to evaluate the use of multi-temporal remote sensing images to monitor the landfill sites. The work objectives are: 1) to study the usability of multi-temporal Landsat images for landfill site monitoring by studying the land surface temperature (LST) in the Trail Road landfill, 2) to investigate the relationship between the LST and the amount of the landfill gas emitted in the Trail Road landfill, and 3) to use the multi-temporal LST images to detect the suspicious dumping areas within the Al-Jleeb landfill site. Free archive of multi-temporal Landsat images are obtained from the USGS EarthExplorer. The Landsat images are then atmospherically corrected and the LST images are derived from the thermal band of the corrected Landsat images. In the Trail Road landfill, the results reveal that the LST of the landfill site is always higher than the air temperature by 10°C in average as well as the surroundings. A correlation is also observed between the recorded emitted methane (CH4) from the ground monitoring stations and the LST derived from the Landsat images. Based on the findings in the Al-Jleeb landfill, five locations are identified as suspicious dumping areas by overlaying the highest LST contours generated from the multi-temporal LST images. The study demonstrates that the use of multi-temporal remote sensing images can provide supplementary information for

  18. The application of remote sensing techniques: Technical and methodological issues

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Wagner, T. W.

    1974-01-01

    Capabilities and limitations of modern imaging electromagnetic sensor systems are outlined, and the products of such systems are compared with those of the traditional aerial photographic system. Focus is given to the interface between the rapidly developing remote sensing technology and the information needs of operational agencies, and communication gaps are shown to retard early adoption of the technology by these agencies. An assessment is made of the current status of imaging remote sensors and their potential for the future. Public sources of remote sensor data and several cost comparisons are included.

  19. Introduction to This Special Issue on Geostatistics and Geospatial Techniques in Remote Sensing

    NASA Technical Reports Server (NTRS)

    Atkinson, Peter; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    The germination of this special Computers & Geosciences (C&G) issue began at the Royal Geographical Society (with the Institute of British Geographers) (RGS-IBG) annual meeting in January 1997 held at the University of Exeter, UK. The snow and cold of the English winter were tempered greatly by warm and cordial discussion of how to stimulate and enhance cooperation on geostatistical and geospatial research in remote sensing 'across the big pond' between UK and US researchers. It was decided that one way forward would be to hold parallel sessions in 1998 on geostatistical and geospatial research in remote sensing at appropriate venues in both the UK and the US. Selected papers given at these sessions would be published as special issues of C&G on the UK side and Photogrammetric Engineering and Remote Sensing (PE&RS) on the US side. These issues would highlight the commonality in research on geostatistical and geospatial research in remote sensing on both sides of the Atlantic Ocean. As a consequence, a session on "Geostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the RGS-IBG annual meeting in Guildford, Surrey, UK in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). A similar session was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). The 10 papers that make up this issue of C&G, comprise 7 papers from the UK and 3 papers from the LIS. We are both co-editors of each of the journal special issues, with the lead editor of each journal issue being from their respective side of the Atlantic. The special issue of PE&RS (vol. 65) that constitutes the other half of this co-edited journal series was published in early 1999, comprising 6 papers by US authors. We are indebted to the International Association for Mathematical

  20. Investigation of remote sensing techniques of measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.

    1981-01-01

    Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.

  1. New techniques for clay mineral identification by remote sensing

    SciTech Connect

    Abrams, M.J.; Goetz, A.F.H.; Lang, H.

    1983-03-01

    In the past three years there have been major advancements in our ability to identify clay minerals by remote sensing. Multispectral scanners, including NASA's Thematic Mapper Simulator (analog for Landsat-D Thematic Mapper) have had several broad-band channels in the wavelength region of 1.0 to 2.5 ..mu..m. In particular, the wavelength region 2.0 to 2.5 ..mu..m contains diagnostic spectral-absorption features for most layered silicates. Computer processing of image data obtained with these scanners has allowed the identification of the presence of clay minerals, without, however, being able to identify specific mineralogies. Studies of areas with known hydrocarbon deposits and porphyry copper deposits have demonstrated the value of this information for rock-type discrimination and recognition of hydrothermal alteration zones. Non-imaging, narrow-band radiometers and spectrometers have been used in the field, from aircraft, and from space to identify individual mineralogical constituents. This can be done because of diagnostic spectral absorption features in the 2.0 to 2.5 ..mu..m region characteristic of different clay types. Preliminary analysis of SMIRR data over Egypt showed that kaolinite, carbonate rocks, and possibly montmorillonite, could be identified directly. Plans are currently under way for development of narrow-band imaging systems which will be capable of producing maps showing the surface distribution of individual clay types. This will represent a major step in remote sensing, by allowing unique identification of minerals rather than the current ability only to discriminate among materials. Applications of this technology will provide geologists with a powerful new tool for resource exploration and general geologic mapping problems.

  2. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.

    PubMed

    Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha

    2007-10-26

    Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed.

  3. Surveillance of Arthropod Vector-Borne Infectious Diseases Using Remote Sensing Techniques: A Review

    PubMed Central

    Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha

    2007-01-01

    Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed. PMID:17967056

  4. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.

    PubMed

    Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha

    2007-10-26

    Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed. PMID:17967056

  5. Study on estimating the evapotranspiration cover coefficient for stream flow simulation through remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Wu, Chihda; Cheng, Chichuan; Lo, Hannchung; Chen, Yeongkeung

    2010-08-01

    This study focuses on using remote sensing techniques to estimate the evapotranspiration cover coefficient (CV) which is an important parameter for stream flow. The objective is to derive more accurate stream flow from the estimated CV. The study area is located in the Dan-Shuei watershed in northern Taiwan. The processes include the land-use classification using hybrid classification and four Landsat-5 TM images; the CV estimations based on remote sensing and traditional approaches; comparison of stream flow simulation according to the above two CV values. The result indicated that the study area was classified into seven land-use types with 88.3% classification accuracy. The simulated stream flow using remote sensing approach could represent more accurate hydrological characteristics than a traditional approach. Obviously integrating remote sensing technique and the SEBAL model is a useful approach to estimate the CV. The CV parameter estimated by remote sensing technique did improve the accuracy of the stream flow simulation. Therefore, the results can be extended to further studies such as forest water management.

  6. Remote sensing techniques for conservation and management of natural vegetation ecosystems

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Verdesio, J. J.; Dossantos, J. R.

    1981-01-01

    The importance of using remote sensing techniques, in the visible and near-infrared ranges, for mapping, inventory, conservation and management of natural ecosystems is discussed. Some examples realized in Brazil or other countries are given to evaluate the products from orbital platform (MSS and RBV imagery of LANDSAT) and aerial level (photography) for ecosystems study. The maximum quantitative and qualitative information which can be obtained from each sensor, at different level, are discussed. Based on the developed experiments it is concluded that the remote sensing technique is a useful tool in mapping vegetation units, estimating biomass, forecasting and evaluation of fire damage, disease detection, deforestation mapping and change detection in land-use. In addition, remote sensing techniques can be used in controling implantation and planning natural/artificial regeneration.

  7. Development and Experimental Verification of Key Techniques to Validate Remote Sensing Products

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, S. G.; Ge, Y.; Jin, R.; Liu, S. M.; Ma, M. G.; Shi, W. Z.; Li, R. X.; Liu, Q. H.

    2013-05-01

    Validation of remote sensing land products is a fundamental issue for Earth observation. Ministry of Science and Technology of the People's Republic of China (MOST) has launched a high-tech R&D Program named `Development and experimental verification of key techniques to validate remote sensing products' in 2011. This paper introduces the background, scientific objectives, research contents of this project and research result already achieved. The objectives of this project include (1) to build a technical specification for the validation of remote sensing products; (2) to investigate the performance, we will carry out a comprehensive remote sensing experiment on satellite - aircraft - ground truth and then modify Step 1 until reach the predefined requirement; (3) to establish a validation network of China for remote sensing products. In summer 2012, with support of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER), field observations have been successfully conducted in the central stream of the Heihe River Basin, a typical inland river basin in northwest China. A flux observation matrix composed of eddy covariance (EC) and large aperture scintillometer (LAS), in addition to a densely distributed eco-hydrological wireless sensor network have been established to capture multi-scale heterogeneities of evapotranspiration (ET), leaf area index (LAI), soil moisture and temperature. Airborne missions have been flown with the payloads of imaging spectrometer, light detection and ranging (LiDAR), infrared thermal imager and microwave radiometer that provide various scales of aerial remote sensing observations. Satellite images with high resolution have been collected and pre-processed, e.g. PROBA-CHRIS and TerraSAR-X. Simultaneously, ground measurements have been conducted over specific sampling plots and transects to obtain validation data sets. With this setup complex problems are addressed, e.g. heterogeneity, scaling, uncertainty, and eventually to

  8. Observations of the global structure of the stratosphere and mesosphere with sounding rockets and with remote sensing techniques from satellites

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Hilsenrath, E.; Krueger, A. J.; Nordberg, W.; Prabhakara, C.; Theon, J. S.

    1972-01-01

    Brief descriptions are given of the techniques involved in determining the global structure of the mesosphere and stratosphere based on sounding rocket observations and satellite remotely sensed measurements.

  9. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  10. Rapid Damage Assessment Using High-resolution Remote Sensing Imagery: Tools and Techniques

    SciTech Connect

    Vatsavai, Raju; Tuttle, Mark A; Bhaduri, Budhendra L; Bright, Eddie A; Cheriyadat, Anil M; Chandola, Varun; Graesser, Jordan B

    2011-01-01

    Accurate damage assessment caused by major natural and anthropogenic disasters is becoming critical due to increases in human and economic loss. This increase in loss of life and severe damages can be attributed to growing population, as well as human migration to disaster prone regions of the world. Rapid damage assessment and dissemination of accurate information is critical for creating an effective emergency response. Remote sensing and geographic information systems (GIS) based techniques and tools are important in disaster damage assessment and reporting activities. In this review, we will look into the state of the art techniques in damage assessment using remote sensing and GIS.

  11. Update and review of accuracy assessment techniques for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Congalton, R. G.; Heinen, J. T.; Oderwald, R. G.

    1983-01-01

    Research performed in the accuracy assessment of remotely sensed data is updated and reviewed. The use of discrete multivariate analysis techniques for the assessment of error matrices, the use of computer simulation for assessing various sampling strategies, and an investigation of spatial autocorrelation techniques are examined.

  12. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  13. Considerations and techniques for incorporating remotely sensed imagery into the land resource management process.

    NASA Technical Reports Server (NTRS)

    Brooner, W. G.; Nichols, D. A.

    1972-01-01

    Development of a scheme for utilizing remote sensing technology in an operational program for regional land use planning and land resource management program applications. The scheme utilizes remote sensing imagery as one of several potential inputs to derive desired and necessary data, and considers several alternative approaches to the expansion and/or reduction and analysis of data, using automated data handling techniques. Within this scheme is a five-stage program development which includes: (1) preliminary coordination, (2) interpretation and encoding, (3) creation of data base files, (4) data analysis and generation of desired products, and (5) applications.

  14. A solar energy estimation procedure using remote sensing techniques. [watershed hydrologic models

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1977-01-01

    The objective of this investigation is to design a remote sensing-aided procedure for daily location-specific estimation of solar radiation components over the watershed(s) of interest. This technique has been tested on the Spanish Creek Watershed, Northern California, with successful results.

  15. A selected bibliography: Remote sensing techniques for evaluating the effects of surface mining

    USGS Publications Warehouse

    Carneggie, David M.; Ohlen, Donald O.

    1979-01-01

    This bibliography contains 39 citations of technical papers and other publications dealing with the applications of remote sensing techniques for analyzing and monitoring surface mining. These references summarize recent developments in methods used to identify, map, analyze, and monitor surface mining, particularly coal surface mining.

  16. An adaptive PCA fusion method for remote sensing images

    NASA Astrophysics Data System (ADS)

    Guo, Qing; Li, An; Zhang, Hongqun; Feng, Zhongkui

    2014-10-01

    The principal component analysis (PCA) method is a popular fusion method used for its efficiency and high spatial resolution improvement. However, the spectral distortion is often found in PCA. In this paper, we propose an adaptive PCA method to enhance the spectral quality of the fused image. The amount of spatial details of the panchromatic (PAN) image injected into each band of the multi-spectral (MS) image is appropriately determined by a weighting matrix, which is defined by the edges of the PAN image, the edges of the MS image and the proportions between MS bands. In order to prove the effectiveness of the proposed method, the qualitative visual and quantitative analyses are introduced. The correlation coefficient (CC), the spectral discrepancy (SPD), and the spectral angle mapper (SAM) are used to measure the spectral quality of each fused band image. Q index is calculated to evaluate the global spectral quality of all the fused bands as a whole. The spatial quality is evaluated by the average gradient (AG) and the standard deviation (STD). Experimental results show that the proposed method improves the spectral quality very much comparing to the original PCA method while maintaining the high spatial quality of the original PCA.

  17. A fast and efficient adaptive threshold rate control scheme for remote sensing images.

    PubMed

    Chen, Xiao; Xu, Xiaoqing

    2012-01-01

    The JPEG2000 image compression standard is ideal for processing remote sensing images. However, its algorithm is complex and it requires large amounts of memory, making it difficult to adapt to the limited transmission and storage resources necessary for remote sensing images. In the present study, an improved rate control algorithm for remote sensing images is proposed. The required coded blocks are sorted downward according to their numbers of bit planes prior to entropy coding. An adaptive threshold computed from the combination of the minimum number of bit planes, along with the minimum rate-distortion slope and the compression ratio, is used to truncate passes of each code block during Tier-1 encoding. This routine avoids the encoding of all code passes and improves the coding efficiency. The simulation results show that the computational cost and working buffer memory size of the proposed algorithm reach only 18.13 and 7.81%, respectively, of the same parameters in the postcompression rate distortion algorithm, while the peak signal-to-noise ratio across the images remains almost the same. The proposed algorithm not only greatly reduces the code complexity and buffer requirements but also maintains the image quality.

  18. Development of analysis techniques for remote sensing of vegetation resources

    NASA Technical Reports Server (NTRS)

    Draeger, W. C.

    1972-01-01

    Various data handling and analysis techniques are summarized for evaluation of ERTS-A and supporting high flight imagery. These evaluations are concerned with remote sensors applied to wildland and agricultural vegetation resource inventory problems. Monitoring California's annual grassland, automatic texture analysis, agricultural ground data collection techniques, and spectral measurements are included.

  19. Application of remote sensing techniques for identification of irrigated crop lands in Arizona

    NASA Technical Reports Server (NTRS)

    Billings, H. A.

    1981-01-01

    Satellite imagery was used in a project developed to demonstrate remote sensing methods of determining irrigated acreage in Arizona. The Maricopa water district, west of Phoenix, was chosen as the test area. Band rationing and unsupervised categorization were used to perform the inventory. For both techniques the irrigation district boundaries and section lines were digitized and calculated and displayed by section. Both estimation techniques were quite accurate in estimating irrigated acreage in the 1979 growing season.

  20. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 2: Application of Equilibrium Evaporation Model to Estimate Evapotranspiration by Remote Sensing Technique. [Japan

    NASA Technical Reports Server (NTRS)

    Kotoda, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In a humid region like Japan, it seems that the radiation term in the energy balance equation plays a more important role for evapotranspiration then does the vapor pressure difference between the surface and lower atmospheric boundary layer. A Priestley-Taylor type equation (equilibrium evaporation model) is used to estimate evapotranspiration. Net radiation, soil heat flux, and surface temperature data are obtained. Only temperature data obtained by remotely sensed techniques are used.

  1. Remote sensing of stress using electro-optics imaging technique

    NASA Astrophysics Data System (ADS)

    Chen, Tong; Yuen, Peter; Hong, Kan; Tsitiridis, Aristeidis; Kam, Firmin; Jackman, James; James, David; Richardson, Mark; Oxford, William; Piper, Jonathan; Thomas, Francis; Lightman, Stafford

    2009-09-01

    Emotional or physical stresses induce a surge of adrenaline in the blood stream under the command of the sympathetic nerve system, which, cannot be suppressed by training. The onset of this alleviated level of adrenaline triggers a number of physiological chain reactions in the body, such as dilation of pupil and an increased feed of blood to muscles etc. This paper reports for the first time how Electro-Optics (EO) technologies such as hyperspectral [1,2] and thermal imaging[3] methods can be used for the detection of stress remotely. Preliminary result using hyperspectral imaging technique has shown a positive identification of stress through an elevation of haemoglobin oxygenation saturation level in the facial region, and the effect is seen more prominently for the physical stressor than the emotional one. However, all results presented so far in this work have been interpreted together with the base line information as the reference point, and that really has limited the overall usefulness of the developing technology. The present result has highlighted this drawback and it prompts for the need of a quantitative assessment of the oxygenation saturation and to correlate it directly with the stress level as the top priority of the next stage of research.

  2. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Dong, Laigen; Shan, Jie

    2013-10-01

    Earthquakes are among the most catastrophic natural disasters to affect mankind. One of the critical problems after an earthquake is building damage assessment. The area, amount, rate, and type of the damage are essential information for rescue, humanitarian and reconstruction operations in the disaster area. Remote sensing techniques play an important role in obtaining building damage information because of their non-contact, low cost, wide field of view, and fast response capacities. Now that more and diverse types of remote sensing data become available, various methods are designed and reported for building damage assessment. This paper provides a comprehensive review of these methods in two categories: multi-temporal techniques that evaluate the changes between the pre- and post-event data and mono-temporal techniques that interpret only the post-event data. Both categories of methods are discussed and evaluated in detail in terms of the type of remote sensing data utilized, including optical, LiDAR and SAR data. Performances of the methods and future efforts are drawn from this extensive evaluation.

  3. Introduction. [usefulness of modern remote sensing techniques for studying components of California water resources

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1973-01-01

    Since May 1970, personnel on several campuses of the University of California have been conducting investigations which seek to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Emphasis has been given to California's water resources as exemplified by the Feather River project and other aspects of the California Water Plan. This study is designed to consider in detail the supply, demand, and impact relationships. The specific geographic areas studied are the Feather River drainage in northern California, the Chino-Riverside Basin and Imperial Valley areas in southern California, and selected portions of the west side of San Joaquin Valley in central California. An analysis is also given on how an effective benefit-cost study of remote sensing in relation to California's water resources might best be made.

  4. Multi-Technique Remote-Sensing Observations and Modelling of a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Hardwick, S. A.; Bisi, M. M.; Davies, J.; Morgan, H.; Fallows, R.; Harrison, R. A.; Xiong, M.; Jensen, E. A.

    2012-12-01

    On 14 November 2011, SDO|AIA observed a filament eruption located around S25 to S30 and extended between W20 and W40 of disc centre. The resulting coronal mass ejection (CME) is studied in detail using radio, white-light, and EUV remote-sensing observations from STEREO, SOHO, SDO, and the new next-generation LOFAR radio telescope system. We present a detailed story of the CME as it travels through the heliosphere with its northern flank travelling in the ecliptic out towards Mars. Various models are fitted to the heliospheric white-light data and different portions of the CME are investigated as they propagate through the inner heliosphere. The validity of each model is discussed. This combination of remote-sensing observational and modelling techniques displays a valid framework for further detailed investigations of CMEs.

  5. Remote sensing and GIS techniques for selecting a sustainable scenario for Lake Koronia, Greece.

    PubMed

    Alexandridis, Thomas K; Takavakoglou, Vasileios; Crisman, Thomas L; Zalidis, George C

    2007-02-01

    During recent decades, Lake Koronia has undergone severe degradation as a result of human activities around the lake and throughout the basin. Surface and groundwater abstraction and pollution from agricultural, industrial, and municipal sources are the major sources of degradation. Planning a restoration project was hampered by lack of sufficient data, with gaps evident in both spatial and temporal dimensions. This study emphasized various remote sensing and geographic information system techniques, such as digital image processing and geographic overlay, to fill gaps using satellite imagery and other spatial environmental, hydrological, and hydrogeological data in the process of planning the restoration of Lake Koronia, following Ramsar guidelines. Current and historical remote sensing data were used to assess the current status and level of degradation, set constraints and define the ideotype for the restoration, and, finally, define and select the best restoration scenario.

  6. Advanced Remote Sensing Research

    USGS Publications Warehouse

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  7. The application of remote sensing for climate change adaptation in Sahel region

    NASA Astrophysics Data System (ADS)

    Deafalla, Taisser H. H.; Csaplovics, Elmar; El-Abbas, Mustafa M.

    2014-10-01

    In recent years, there is no doubt that global climate change (CC) has observable development impacts, which seriously threatens the ability of individuals and communities at all levels. During this process, the clear degradation in the situation of ecosystems has produced a global concern of the urgency to mitigate climate threats and related effects. Assessing the impacts and vulnerability of CC requires accurate, up-to-date and improved information. Coupled with the ready availability of historical remote sensing (RS) data, the reduction in data cost and increased resolution from satellite platforms, RS technology appears poised to make a great impact on planning agencies and providing better understanding the dynamics of the climate system, predict and mitigate the expected global changes and the effects on human civilization involved in mapping Land Use Land Cover (LU/LC) at a variety of spatial scales. This research was designed to study the impact of CC in conflict zones and potential flashpoints in Sudan namely Nuba Mountains, where the community in this area living in fragile and unstable conditions, which making them more vulnerable to the risk of violent conflict and CC effects. And to determine the factors that exacerbate vulnerability in the study area as well as to map and assess the LU/LC change during the period 1984 to 2011 covered the years (1999, 2002 and 2009). Multispectral satellite data (i.e. LANDSAT TM and TERRA ASTER) were used. Change detection techniques were applied to analyze the rate of changes, causal factors as well as the drivers of changes. Recent study showed the importance of spatial variables in tackling CC which promoted the use of maps made within a RS. In addition to provide an input for climate models; and thus plan adaptation strategies.

  8. Geographic techniques and recent applications of remote sensing to landscape-water quality studies

    USGS Publications Warehouse

    Griffith, J.A.

    2002-01-01

    This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.

  9. Estimation of seismic building structural types using multi-sensor remote sensing and machine learning techniques

    NASA Astrophysics Data System (ADS)

    Geiß, Christian; Aravena Pelizari, Patrick; Marconcini, Mattia; Sengara, Wayan; Edwards, Mark; Lakes, Tobia; Taubenböck, Hannes

    2015-06-01

    Detailed information about seismic building structural types (SBSTs) is crucial for accurate earthquake vulnerability and risk modeling as it reflects the main load-bearing structures of buildings and, thus, the behavior under seismic load. However, for numerous urban areas in earthquake prone regions this information is mostly outdated, unavailable, or simply not existent. To this purpose, we present an effective approach to estimate SBSTs by combining scarce in situ observations, multi-sensor remote sensing data and machine learning techniques. In particular, an approach is introduced, which deploys a sequential procedure comprising five main steps, namely calculation of features from remote sensing data, feature selection, outlier detection, generation of synthetic samples, and supervised classification under consideration of both Support Vector Machines and Random Forests. Experimental results obtained for a representative study area, including large parts of the city of Padang (Indonesia), assess the capabilities of the presented approach and confirm its great potential for a reliable area-wide estimation of SBSTs and an effective earthquake loss modeling based on remote sensing, which should be further explored in future research activities.

  10. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  11. Remote Sensing.

    ERIC Educational Resources Information Center

    Williams, Richard S., Jr.; Southworth, C. Scott

    1983-01-01

    The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)

  12. Mapping Glauconite Unites with Using Remote Sensing Techniques in North East of Iran

    NASA Astrophysics Data System (ADS)

    Ahmadirouhani, R.; Samiee, S.

    2014-10-01

    Glauconite is a greenish ferric-iron silicate mineral with micaceous structure, characteristically formed in shallow marine environments. Glauconite has been used as a pigmentation agent for oil paint, contaminants remover in environmental studies and a source of potassium in plant fertilizers, and other industries. Koppeh-dagh basin is extended in Iran, Afghanistan and Turkmenistan countries and Glauconite units exist in this basin. In this research for enhancing and mapping glauconitic units in Koppeh-dagh structural zone in north east of Iran, remote sensing techniques such as Spectral Angle Mapper classification (SAM), band ratio and band composition methods on SPOT, ASTER and Landsat data in 3 steps were applied.

  13. Utilization of remotely sensed data for agricultural insurance as adaptation to climate change

    NASA Astrophysics Data System (ADS)

    Hongo, C.; Ogasawara, C.; Sigit, G.; Tamura, E.

    2015-12-01

    Impact of climate change is not only seen on food production but also on food security, socio-economics of the poor and sustainable development of society. Adaptation to climate change is a pressing issue throughout the world to reduce the risks along with the plans and strategies for food security and sustainable development. As a key adaptation to the climate change, agricultural insurance is expected to play an important role in stabilizing agricultural production through compensating the losses caused by the climate change, meaning that the agricultural insurance can contribute to promotion of the stability in food security as one of 4 pillars defined by FOA of the United Nations. Having the above as background, we conducted research on utilization of remote sensing data including satellite data to assess damage ratio of rice production which could be used for calculation of indemnity in the agricultural insurance. Our study site was in West Java, Indonesia. For assessment of the damage ratio, estimation of rice yield is a key. As the result of our study, rice yield in dry season could be estimated at level of 1 % significance using SPOT5 satellite data taken in 2014, and the 10-fold cross-validation result was 0.7t/ha. Then, the decrease ratio in rice yield about each individual paddy field was calculated using data on the estimated result and the average yield of the past 10 years. According to the Indonesian agricultural insurance, if the damage of rice reaches 75% or above, the indemnity shall be paid to farmers. In our study site, the result showed that about 80 paddy fields located in lower irrigation region were the area to be paid by the insurance. Our study results suggest that the utilization of remote sensing data is much useful and promising for assessment of the damage ratio of rice production with precise, quick and quantitative, and also it can be incorporated into the insurance procedures.

  14. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  15. Remote sensing of irregularities in the equatorial ionosphere using the radio scintillation technique

    SciTech Connect

    Franke, S.J.

    1984-01-01

    Experimental measurements of signal level fluctuations (scintillation) on VHF and microwave signals from two geostationary communications satellites are studied in detail. The signals were recorded at an equatorial location which is almost directly beneath the satellites. The scintillation is caused by refraction and diffraction of the signals by variations of the refractive index in the Flayer of the ionosphere. This study is directed toward using the observed multifrequency scintillation to remotely sense the characteristics of the ionospheric irregularities. This is done by considering both statistical and deterministic models for the scintillation producing irregularities. The models are combined with existing propagation theory using analytical and numerical simulation techniques in order to predict the spatial and temporal characteristics of the multifrequency scintillation. Comparison with the observations is used to verify the models. Extensive use is made of numerical simulation. This makes it possible to study both weak and strong scintillations which occur simultaneously on the microwave and VHF frequencies, respectively. In all cases, the models are chosen to be consistent with results from other remote sensing techniques and in situ measurements. Geophysical implications of the results are discussed in light of what is known about equatorial irregularities from previous experimental and theoretical studies.

  16. Groundwater resources development in hard rock terrain - an approach using remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Jagannathan; Mani, Arul; Jayaraman, Venkatakrishnan; Manivel, M.

    To demonstrate the capabilities of remote sensing and Geographic Information System (GIS) techniques for groundwater resources development in hard rock terrains, specifically for the demarcation of suitable sites for artificial recharge of groundwater aquifers, a study was carried out in the Kallar Basin, which is located in parts of the Salem and Tiruchirapalli districts, Tamil Nadu, India. Thematic maps defining lithology, lineaments, landforms, landuse, drainage density, thickness of weathered zone, thickness of fractured zone, hydrological soils, and well yield were prepared from data collected by the Indian Remote Sensing Satellite (IRS) -1C and by conventional methods. All the thematic layers were integrated using a GIS-based model developed specifically for this purpose, enabling a map showing artificial recharge zones to be generated. The exact type of artificial recharge structure, eg, check dam, nallabund, gully plugging and percolation pond, suitable for replenishing groundwater was identified by superposing a drainage network map over an artificial recharge zones map. The GIS-based demarcation of artificial zones developed in the study was based on logical conditions and reasoning, so that the same techniques (with appropriate modifications) could be adopted elsewhere, especially in hard rock terrain, where the occurrence of groundwater is restricted and subject to greater complexity.

  17. A Study on Integrated Community Based Flood Mitigation with Remote Sensing Technique in Kota Bharu, Kelantan

    NASA Astrophysics Data System (ADS)

    'Ainullotfi, A. A.; Ibrahim, A. L.; Masron, T.

    2014-02-01

    This study is conducted to establish a community based flood management system that is integrated with remote sensing technique. To understand local knowledge, the demographic of the local society is obtained by using the survey approach. The local authorities are approached first to obtain information regarding the society in the study areas such as the population, the gender and the tabulation of settlement. The information about age, religion, ethnic, occupation, years of experience facing flood in the area, are recorded to understand more on how the local knowledge emerges. Then geographic data is obtained such as rainfall data, land use, land elevation, river discharge data. This information is used to establish a hydrological model of flood in the study area. Analysis were made from the survey approach to understand the pattern of society and how they react to floods while the analysis of geographic data is used to analyse the water extent and damage done by the flood. The final result of this research is to produce a flood mitigation method with a community based framework in the state of Kelantan. With the flood mitigation that involves the community's understanding towards flood also the techniques to forecast heavy rainfall and flood occurrence using remote sensing, it is hope that it could reduce the casualties and damage that might cause to the society and infrastructures in the study area.

  18. Remote Sensing Center

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The applications are reported of new remote sensing techniques for earth resources surveys and environmental monitoring. Applications discussed include: vegetation systems, environmental monitoring, and plant protection. Data processing systems are described.

  19. Use of remote-sensing techniques to survey the physical habitat of large rivers

    USGS Publications Warehouse

    Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.; Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffrey W.; Kennedy, Gregory W.; Smith, Stephen B.

    1997-01-01

    Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.

  20. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques.

    PubMed

    Gholizadeh, Mohammad Haji; Melesse, Assefa M; Reddi, Lakshmi

    2016-08-16

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water's surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).

  1. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    PubMed Central

    Gholizadeh, Mohammad Haji; Melesse, Assefa M.; Reddi, Lakshmi

    2016-01-01

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). PMID:27537896

  2. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques.

    PubMed

    Gholizadeh, Mohammad Haji; Melesse, Assefa M; Reddi, Lakshmi

    2016-01-01

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water's surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). PMID:27537896

  3. Martian lavas: Three complementary remote sensing techniques to derive flow properties

    NASA Technical Reports Server (NTRS)

    Lopes-Gautier, R.; Bruno, B. C.; Taylor, G. J.; Rowland, S.; Kilburn, C. R. J.

    1993-01-01

    Several remote sensing techniques have been developed to determine various properties of lava flows. We are currently focusing on three such techniques to interpret Martian lava flows on Alba Patera, which are based on measurements of distal flow lobe widths which can be used to infer silica content; convolution of flow margins which can distinguish between pahoehoe and a'a types of basaltic flows; final flow field dimensions which can be combined with ground slope to derive effusion duration and average effusion rate. These methods are extremely complementary and together provide a more significant and complete understanding of extra-terrestrial lava flows. However, each of these techniques have specific and distinct data requirements.

  4. An improved dual-frequency technique for the remote sensing of ocean currents and wave spectra

    NASA Technical Reports Server (NTRS)

    Schuler, D. L.; Eng, W. P.

    1984-01-01

    A two frequency microwave radar technique for the remote sensing of directional ocean wave spectra and surface currents is investigated. This technique is conceptually attractive because its operational physical principle involves a spatial electromagnetic scattering resonance with a single, but selectable, long gravity wave. Multiplexing of signals having different spacing of the two transmitted frequencies allows measurements of the entire long wave ocean spectrum to be carried out. A new scatterometer is developed and experimentally tested which is capable of making measurements having much larger signal/background values than previously possible. This instrument couples the resonance technique with coherent, frequency agility radar capabilities. This scatterometer is presently configured for supporting a program of surface current measurements.

  5. A Remote Sensing Technique For Combustion Gas Temperature Measurement In Black Liquor Recovery Boilers

    NASA Astrophysics Data System (ADS)

    Charagundla, S. R.; Semerjian, H. G.

    1986-10-01

    A remote sensing technique, based on the principles of emission spectroscopy, is being developed for temperature measurements in black liquor recovery boilers. Several tests have been carried out, both in the laboratory and at a number of recovery boilers, to characterize the emission spectra in the wavelength range of 300 nm to 800 nm. These tests have pointed out the potential for temperature measurements using the line intensity ratio technique based on a pair of emission lines at 404.4 nm and 766.5 nm observed in the recovery boiler combustion zone; these emission lines are due to potassium, a common constituent found in all the black liquors. Accordingly, a fiber optics based four-color system has been developed. This in-situ, nonintrusive temperature measurement technique, together with some of the more recent results, is described in this paper.

  6. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed.

  7. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three dimensional concentration fields from atmospheric diffusion models. General conditions are derived for the "reconstructability' of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data is developed.

  8. Application of Remote Sensing Techniques for Appraising Changes in Wildlife Habitat

    NASA Technical Reports Server (NTRS)

    Nelson, H. K.; Klett, A. T.; Johnston, J. E.

    1971-01-01

    An attempt was made to investigate the potential of airborne, multispectral, line scanner data acquisition and computer-implemented automatic recognition techniques for providing useful information about waterfowl breeding habitat in North Dakota. The spectral characteristics of the components of a landscape containing waterfowl habitat can be detected with airborne scanners. By analyzing these spectral characteristics it is possible to identify and map the landscape components through analog and digital processing methods. At the present stage of development multispectral remote sensing techniques are not ready for operational application to surveys of migratory bird habitat and other such resources. Further developments are needed to: (1) increase accuracy; (2) decrease retrieval and processing time; and (3) reduce costs.

  9. Progress in passive microwave remote sensing - Nonlinear retrieval techniques. [for meteorological parameters

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.

    1980-01-01

    A variety of nonlinear retrieval methods have been applied to passive microwave remote sensing problems. These problems can be characterized in part by the degree to which their underlying physics and statistics can be understood and characterized in a simple way. Four examples of varying complexity are considered here; the simplest problem requires only analytic expressions for retrievals, whereas the most complex problem has been handled only with pattern classification techniques. The four examples are: (1) Doppler measurements of winds at 70 to 100 km, (2) retrieval of atmospheric water vapor profiles using the opaque 183-GHz water vapor resonance, (3) retrieval of snow accumulation rate by means of combined theoretical and empirical procedures, and (4) classification of diverse polar terrain by means of pattern recognition techniques.

  10. Application of remote sensing techniques at different scales of observation on wetland evapotranspiration

    NASA Astrophysics Data System (ADS)

    Juan, Chung-Hsin

    The establishment and maintenance of the structure and functions in wetland ecosystems is greatly influenced by hydrologic conditions. Evapotranspiration (ET) is the major output component in the hydrologic water budget. Therefore, in order to provide efficient information for water resources management and the conservation of wetland ecosystems, research on ET is urgently needed. Moreover, to overcome the variable spatial vegetation distribution and the temporal change of wetlands, appropriate remote sensing techniques are also greatly needed. The goal of this research was to study fundamental wetland ET and then with the aid of remote sensing techniques from the micro scale to the macro scale to develop useful wetland ET estimation methods. The study site was located in the Ft. Drum Marsh, Upper St. John's River Basin in Indian River County, Florida. The site is a freshwater marsh with southern cattail ( Typha domingensis Pers.) and sawgrass (Cladium jamaicense Crantz) as the dominant vegetation species. There were four stages of the study: (1) a fundamental ET study with a lysimeter system, (2) ground measurements and analyses of spectral responses of wetland vegetation using a field spectroradiometer, (3) wetland vegetation mapping using aerial hyperspectral images, and (4) application of satellite images to delineate wetland vegetation and estimate marsh-wide ET. The results of the fundamental ET study showed the various important vegetation parameters of sawgrass and cattail. A more appropriate estimation method of canopy resistance for sawgrass and cattail was proposed. Among the various ET estimation methods, the Priestley-Taylor method was found to be most applicable. The ground spectral response measurements of sawgrass and cattail demonstrated a distinguishable difference in red wavebands and normalized difference vegetation index (NDVI), which indicated the spectral separability of the two wetland species. Leaf area index and stomatal resistance

  11. Laboratory insights into the detection of surface biosignatures by remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Poch, O.; Pommerol, A.; Jost, B.; Roditi, I.; Frey, J.; Thomas, N.

    2014-03-01

    With the progress of direct imaging techniques, it will be possible in the short or long-term future to retrieve more efficiently the information on the physical properties of the light reflected by rocky exoplanets (Traub et al., 2010). The search for visible-infrared absorption bands of peculiar gases (O2, CH4 etc.) in this light could give clues for the presence of life (Kaltenegger and Selsis, 2007). Even more uplifting would be the direct detection of life itself, on the surface of an exoplanet. Considering this latter possibility, what is the potential of optical remote-sensing methods to detect surface biosignatures? Reflected light from the surface of the Earth exhibits a strong surface biosignature in the form of an abrupt change of reflectance between the visible and infrared range of the spectrum (Seager et al., 2005). This spectral feature called "vegetation red-edge" is possibly the consequence of biological evolution selecting the right chemical structures enabling the plants to absorb the visible energy, while preventing them from overheating by reflecting more efficiently the infrared. Such red-edge is also found in primitive photosynthetic bacteria, cyanobacteria, that colonized the surface of the Earth ocean and continents billions of years before multicellular plants (Knacke, 2003). If life ever arose on an Earth-like exoplanet, one could hypothesize that some form of its surface-life evolves into similar photo-active organisms, also exhibiting a red-edge. In this paper, we will present our plan and preliminary results of a laboratory study aiming at precising the potentiality of remote sensing techniques in detecting such surface biosignatures. Using equipment that has been developed in our team for surface photometry studies (Pommerol 2011, Jost 2013, Pommerol 2013), we will investigate the reflectance spectra and bidirectional reflectance function of soils containing bacteria such as cyanobacteria, in various environmental conditions. We will

  12. Water impact studies. [impact of remote sensing techniques on management storage, flow, and delivery of California water

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1973-01-01

    An investigation has begun into the potential impact of using modern remote sensing techniques as an aid in managing, even on a day-to-day basis, the storage, flow, and delivery of water made available through the California Water Project. It is obvious that the amount of this impact depends upon the extent to which remote sensing is proven to be useful in improving predictions of both the amount of water that will be available and the amount that will be needed. It is also proposed to investigate the potential impact of remote sensing techniques as an aid in monitoring, and perhaps even in directing, changes in land use and life style being brought about through the increased availability of water in central and southern California as a result of the California Water Project. The impact of remote sensing can be of appreciable significance only if: (1) the induced changes are very substantial ones; (2) remote sensing is found, in this context, to be very useful and potentially very cost effective; and (3) resource managers adopt this new technology. Analyses will be conducted of the changing economic bases and the new land use demands resulting from increased water availability in central and southern California.

  13. Mapping Tamarix: New techniques for field measurements, spatial modeling and remote sensing

    NASA Astrophysics Data System (ADS)

    Evangelista, Paul H.

    peak growing months. These studies demonstrate that new techniques can further our understanding of tamarisk's impacts on ecosystem processes, predict potential distribution and new invasions, and improve our ability to detect occurrence using remote sensing techniques. Collectively, the results of my studies may increase our ability to map tamarisk distributions and better quantify its impacts over multiple spatial and temporal scales.

  14. Change Detection of Vegetation Cover, using Multi- Temporal Remote Sensing Data and GIS Techniques.

    NASA Astrophysics Data System (ADS)

    Adia, Oro-Ghene

    Remote sensing technology in combination with geographic information system (GIS) can render reliable information on vegetation cover. The analysis of the spatial extent and temporal change of vegetation cover using remotely sensed data is of critical importance to agricultural sciences. This paper investigates the Spatio- Temporal change of vegetation cover of Jos and its surrounding areas. For this study landsat images

  15. Applications of remote sensing techniques to county land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Clark, R. B.; Conn, J. S.; Miller, D. A.; Mouat, D. A.

    1975-01-01

    The application of remote sensing in Arizona is discussed. Land use and flood hazard mapping completed by the Applied Remote Sensing Program is described. Areas subject to periodic flood inundation are delineated and land use maps monitoring the growth within specific counties are provided.

  16. Enhancements of target detection using atmospheric correction preprocessing techniques in hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Yuen, Peter W. T.; Bishop, Gary J.

    2004-12-01

    This paper reports the result of a study on how atmospheric correction techniques (ACT) enhance target detection in hyperspectral remote sensing, using different sets of real data. Based on the data employed in this study, it has been shown that ACT can reduce the masking effect of the atmosphere and effectively improving spectral contrast. By using the standard Kmeans cluster based unsupervised classifier, it has been shown that the accuracy of the classification obtained from the atmospheric corrected data is almost an order of magnitude better than that achieved using the radiance data. This enhancement is entirely due to the improved separability of the classes in the atmospherically corrected data. Moreover, it has been found that intrinsic information concerning the nature of the imaged surface can be retrieved from the atmospherically corrected data. This has been done to within an error of 5% by using a model based atmospheric correction package ATCOR.

  17. Comparison of multispectral remote-sensing techniques for monitoring subsurface drain conditions. [Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Goettelman, R. C.; Grass, L. B.; Millard, J. P.; Nixon, P. R.

    1983-01-01

    The following multispectral remote-sensing techniques were compared to determine the most suitable method for routinely monitoring agricultural subsurface drain conditions: airborne scanning, covering the visible through thermal-infrared (IR) portions of the spectrum; color-IR photography; and natural-color photography. Color-IR photography was determined to be the best approach, from the standpoint of both cost and information content. Aerial monitoring of drain conditions for early warning of tile malfunction appears practical. With careful selection of season and rain-induced soil-moisture conditions, extensive regional surveys are possible. Certain locations, such as the Imperial Valley, Calif., are precluded from regional monitoring because of year-round crop rotations and soil stratification conditions. Here, farms with similar crops could time local coverage for bare-field and saturated-soil conditions.

  18. Application of remote sensing techniques to the geology of the bonanza volcanic center

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    A program is reported for evaluating remote sensing as an aid to geologic mapping for the past four years. Data tested in this evaluation include color and color infrared photography, multiband photography, low sun-angle photography, thermal infrared scanner imagery, and side-looking airborne radar. The relative utility of color and color infrared photography was tested as it was used to refine geologic maps in previously mapped areas, as field photos while mapping in the field, and in making photogeologic maps prior to field mapping. The latter technique served as a test of the maximum utility of the photography. In this application the photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all Quaternary deposits and 62% of all areas of Tertiary volcanic outcrop in the area.

  19. Improved technique for retrieval of forest parameters from hyperspectral remote sensing data.

    PubMed

    Kozoderov, Vladimir V; Dmitriev, Egor V; Sokolov, Anton A

    2015-11-30

    This paper describes an approach of machine-learning pattern recognition procedures for the land surface objects using their spectral and textural features on remotely sensed hyperspectral images together with the biological parameters retrieval for the recognized classes of forests. Modified Bayesian classifier is used to improve the related procedures in spatial and spectral domains. Direct and inverse problems of atmospheric optics are solved based on modeling results of the projective cover and density of the forest canopy for the selected classes of forests of different species and ages. Applying the proposed techniques to process images of high spectral and spatial resolution, we have detected object classes including forests within their contours on a particular image and can retrieve the phytomass amount of leaves/needles as well as the relevant total biomass amount for the forest canopy. PMID:26698785

  20. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    PubMed

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

  1. A Study of Flood Evacuation Center Using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Mustaffa, A. A.; Rosli, M. F.; Abustan, M. S.; Adib, R.; Rosli, M. I.; Masiri, K.; Saifullizan, B.

    2016-07-01

    This research demonstrated the use of Remote Sensing technique and GIS to determine the suitability of an evacuation center. This study was conducted in Batu Pahat areas that always hit by a series of flood. The data of Digital Elevation Model (DEM) was obtained by ASTER database that has been used to delineate extract contour line and elevation. Landsat 8 image was used for classification purposes such as land use map. Remote Sensing incorporate with GIS techniques was used to determined the suitability location of the evacuation center from contour map of flood affected areas in Batu Pahat. GIS will calculate the elevation of the area and information about the country of the area, the road access and percentage of the affected area. The flood affected area map may provide the suitability of the flood evacuation center during the several levels of flood. The suitability of evacuation centers can be determined based on several criteria and the existing data of the evacuation center will be analysed. From the analysis among 16 evacuation center listed, there are only 8 evacuation center suitable for the usage during emergency situation. The suitability analysis was based on the location and the road access of the evacuation center toward the flood affected area. There are 10 new locations with suitable criteria of evacuation center proposed on the study area to facilitate the process of rescue and evacuating flood victims to much safer and suitable locations. The results of this study will help in decision making processes and indirectly will help organization such as fire-fighter and the Department of Social Welfare in their work. Thus, this study can contribute more towards the society.

  2. Remote Sensing Methods

    NASA Technical Reports Server (NTRS)

    Sever, Thomas L.

    1998-01-01

    Remotely sensed data allows archeologists and historic preservationists the ability to non-destructively detect phenomena previously unobservable to them. Archeologists have successfully used aerial photography since the turn of the century and it continues to be an important research tool today. Multispectral scanners and computer-implemented analysis techniques extend the range of human vision and provides the investigator with innovative research designs at scales previously unimaginable. Pioneering efforts in the use of remote sensing technology have demonstrated its potential, but it is the recent technological developments in remote sensing instrumentation and computer capability that provide for unlimited, cost-effective applications in the future. The combination of remote sensing, Global Positioning System (GPS) technology, and Geographic Information Systems (GIS) are radically altering survey, inventory, and modelling approaches.

  3. Remote Sensing

    ERIC Educational Resources Information Center

    Williams, Richard S., Jr.; Kover, Allan W.

    1978-01-01

    The steady growth of the Landsat image data base continues to make this kind of remotely sensed data second only to aerial photographs in use by geoscientists who employ image data in their research. Article reviews data uses, meetings and symposia, publications, problems, and future trends. (Author/MA)

  4. A new strategy for snow-cover mapping using remote sensing data and ensemble based systems techniques

    NASA Astrophysics Data System (ADS)

    Roberge, S.; Chokmani, K.; De Sève, D.

    2012-04-01

    The snow cover plays an important role in the hydrological cycle of Quebec (Eastern Canada). Consequently, evaluating its spatial extent interests the authorities responsible for the management of water resources, especially hydropower companies. The main objective of this study is the development of a snow-cover mapping strategy using remote sensing data and ensemble based systems techniques. Planned to be tested in a near real-time operational mode, this snow-cover mapping strategy has the advantage to provide the probability of a pixel to be snow covered and its uncertainty. Ensemble systems are made of two key components. First, a method is needed to build an ensemble of classifiers that is diverse as much as possible. Second, an approach is required to combine the outputs of individual classifiers that make up the ensemble in such a way that correct decisions are amplified, and incorrect ones are cancelled out. In this study, we demonstrate the potential of ensemble systems to snow-cover mapping using remote sensing data. The chosen classifier is a sequential thresholds algorithm using NOAA-AVHRR data adapted to conditions over Eastern Canada. Its special feature is the use of a combination of six sequential thresholds varying according to the day in the winter season. Two versions of the snow-cover mapping algorithm have been developed: one is specific for autumn (from October 1st to December 31st) and the other for spring (from March 16th to May 31st). In order to build the ensemble based system, different versions of the algorithm are created by varying randomly its parameters. One hundred of the versions are included in the ensemble. The probability of a pixel to be snow, no-snow or cloud covered corresponds to the amount of votes the pixel has been classified as such by all classifiers. The overall performance of ensemble based mapping is compared to the overall performance of the chosen classifier, and also with ground observations at meteorological

  5. The application of remote sensing techniques to inter and intra urban analysis

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1972-01-01

    This is an effort to assess the applicability of air and spaceborne photography toward providing data inputs to urban and regional planning, management, and research. Through evaluation of remote sensing inputs to urban change detection systems, analyzing an effort to replicate an existing urban land use data file using remotely sensed data, estimating population and dwelling units from imagery, and by identifying and evaluating a system of urban places ultilizing space photography, it was determined that remote sensing can provide data concerning land use, changes in commercial structure, data for transportation planning, housing quality, residential dynamics, and population density.

  6. Spatial and functional characterization, identification and assessment of isolated wetlands in Alachua County, Florida, USA - GIS and remote sensing techniques

    EPA Science Inventory

    In this study, Geographic Information Systems (GIS) and remote sensing mapping techniques were developed to identify the locations of isolated wetlands in Alachua County, FL, a 2510 sq km area in north-central Florida with diverse geology and numerous isolated wetlands. The resul...

  7. Wetland functional health assessment using remote sensing and other techniques: Literature search and overview. Technical memo

    SciTech Connect

    Patience, N.; Klemas, V.

    1993-03-01

    Contents: introduction; remote sensing of wetland biomass and other wetland condition indicators; conceptual approaches in wetland assessment; wetland extent and type; landscape and wetland patterns; wetland biomass and productivity; wetland vegetation; wetland habitat quality; wetland hydrology; and conclusions and recommendations.

  8. Applying remote sensing and GIS techniques in solving rural county information needs

    NASA Technical Reports Server (NTRS)

    Johannsen, Chris J.; Fernandez, R. Norberto; Lozano-Garcia, D. Fabian

    1992-01-01

    The project designed was to acquaint county government officials and their clientele with remote sensing and GIS products that contain information about land conditions and land use. Other users determined through the course of this project were federal agencies working at the county level, agricultural businesses and others in need of spatial information. The specific project objectives were: (1) to investigate the feasibility of using remotely sensed data to identify and quantify specific land cover categories and conditions for purposes of tax assessment, cropland area measurements and land use evaluation; (2) to investigate the use of satellite remote sensing data as an aid in assessing soil management practices; and (3) to evaluate the use of remotely sensed data to assess soil resources and conditions which affect productivity.

  9. [Evaluation of eco-environmental quality based on artificial neural network and remote sensing techniques].

    PubMed

    Li, Hongyi; Shi, Zhou; Sha, Jinming; Cheng, Jieliang

    2006-08-01

    In the present study, vegetation, soil brightness, and moisture indices were extracted from Landsat ETM remote sensing image, heat indices were extracted from MODIS land surface temperature product, and climate index and other auxiliary geographical information were selected as the input of neural network. The remote sensing eco-environmental background value of standard interest region evaluated in situ was selected as the output of neural network, and the back propagation (BP) neural network prediction model containing three layers was designed. The network was trained, and the remote sensing eco-environmental background value of Fuzhou in China was predicted by using software MATLAB. The class mapping of remote sensing eco-environmental background values based on evaluation standard showed that the total classification accuracy was 87. 8%. The method with a scheme of prediction first and classification then could provide acceptable results in accord with the regional eco-environment types. PMID:17066706

  10. Advanced retrieval method in satellite remote sensing atmosphere: the technique of computed tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Xun, Yulong

    1998-08-01

    Computed Tomography (CT) is a modern medical diagnostic technique in which x-ray transmission measurements at numerous angles through the human body are processed by computer to produce cross-sectional pictures of the body. This technique also has found applications in such diverse fields as materials testing, astronomy, microscopy, image processing and oceanography.In this paper, a modification of this technique, using emitted IR or microwave radiation instead of transmitted x-ray radiation, can be applied to satellite radiance measurements taken along the orbital track at various angles. The channels of IR sensors for the CT retrieval are selected from HITRAN Database, and analyzed by Eigen-value analysis. We discuss in detail the effect retrieval result of CT technique form projection-angle. Finally, using the balloon sounding data, the result of CT are compared with the result of conventional method. Because the advantage over conventional remote sensing methods is the additional information acquired by viewing a given point in the atmosphere at several angles as well as several frequencies. The results show that the temperature profiles by CT retrieval are better than the conventional method.

  11. Comparison of remote sensing image processing techniques to identify tornado damage areas from Landsat TM data

    USGS Publications Warehouse

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.P.

    2008-01-01

    Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and objectoriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. ?? 2008 by MDPI.

  12. Remotely sensed data assimilation technique to develop machine learning models for use in water management

    NASA Astrophysics Data System (ADS)

    Zaman, Bushra

    Increasing population and water conflicts are making water management one of the most important issues of the present world. It has become absolutely necessary to find ways to manage water more efficiently. Technological advancement has introduced various techniques for data acquisition and analysis, and these tools can be used to address some of the critical issues that challenge water resource management. This research used learning machine techniques and information acquired through remote sensing, to solve problems related to soil moisture estimation and crop identification on large spatial scales. In this dissertation, solutions were proposed in three problem areas that can be important in the decision making process related to water management in irrigated systems. A data assimilation technique was used to build a learning machine model that generated soil moisture estimates commensurate with the scale of the data. The research was taken further by developing a multivariate machine learning algorithm to predict root zone soil moisture both in space and time. Further, a model was developed for supervised classification of multi-spectral reflectance data using a multi-class machine learning algorithm. The procedure was designed for classifying crops but the model is data dependent and can be used with other datasets and hence can be applied to other landcover classification problems. The dissertation compared the performance of relevance vector and the support vector machines in estimating soil moisture. A multivariate relevance vector machine algorithm was tested in the spatio-temporal prediction of soil moisture, and the multi-class relevance vector machine model was used for classifying different crop types. It was concluded that the classification scheme may uncover important data patterns contributing greatly to knowledge bases, and to scientific and medical research. The results for the soil moisture models would give a rough idea to farmers

  13. New remote sensing techniques facilitate study of earth's far-flung volcanos

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Pieri, David C.

    1990-01-01

    The study of volcanos using remote sensing is discussed. The dynamics of volcanic eruptions and the interactions between volcanos and the atmosphere and ecosphere are examined. Remote sensing equipment can effectively detect mud flows, pyroclastic falls, debris avalanches, lava flows, and hazards to aircraft from eruption plumes. Consideration is given to the use of thermal IR imaging, weather satellites, and polar-orbiting satellites to study such features as lava flow, silica content, and SO2 distribution.

  14. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.

    1976-01-01

    The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.

  15. Development of Satellite Remote Sensing Techniques for Quantifying Volcanic Ash Cloud Properties

    NASA Astrophysics Data System (ADS)

    Pavolonis, Michael J.

    Novel new approaches to automatically detect and characterize volcanic ash using satellite data are presented. The Spectrally Enhanced Cloud Objects (SECO) ash detection algorithm, combines radiative transfer theory, Bayesian methods, and image processing/computer vision concepts to identify volcanic ash clouds in satellite data with skill that is generally comparable to a human expert, especially with respect to false alarm rate. The SECO method is globally applicable and can be applied to virtually any low earth orbit or geostationary satellite sensor. The new ash detection approach was quantitatively proven to be significantly more skillful than traditional pixel based approaches, including the commonly used "split-window" technique. The performance of the SECO approach is extremely promising and well suited for a variety of new and improved applications. A new approach to retrieve volcanic ash cloud properties from infrared satellite measurements was also developed. The algorithm utilizes an optimal estimation framework to retrieve ash cloud height, mass loading, and effective particle radius. Optimal estimation allows uncertainties in the measurements and forward model to be taken into account and uncertainty estimates for each of the retrieved parameters to be determined. Background atmospheric water vapor, surface temperature, and surface emissivity are explicitly accounted for on a pixel-by-pixel basis, so the algorithm is globally applicable. In addition, the ash cloud retrieval algorithm is unique because it allows the cloud temperature/height to be a free parameter. Volcanic ash clouds are a major aviation hazard. Fine-grained ash from explosive eruptions can be transported long distances (>1000 km) from the source volcano by atmospheric winds, severely disrupting aviation operations. Volcanic ash clouds are complex and the background environment in which they reside can be as well. Thus, sophisticated satellite remote sensing techniques for extracting

  16. Urban Mapping and Growth Prediction using Remote Sensing and GIS Techniques, Pune, India

    NASA Astrophysics Data System (ADS)

    Sivakumar, V.

    2014-11-01

    This study aims to map the urban area in and around Pune region between the year 1991 and 2010, and predict its probable future growth using remote sensing and GIS techniques. The Landsat TM and ETM+ satellite images of 1991, 2001 and 2010 were used for analyzing urban land use class. Urban class was extracted / mapped using supervised classification technique with maximum likelihood classifier. The accuracy assessment was carried out for classified maps. The achieved overall accuracy and Kappa statistics were 86.33 % & 0.76 respectively. Transition probability matrix and area change were obtained using different classified images. A plug-in was developed in QGIS software (open source) based on Markov Chain model algorithm for predicting probable urban growth for the future year 2021. Based on available data set, the result shows that urban area is expected to grow much higher in the year 2021 when compared to 2010. This study provides an insight into understanding of urban growth and aids in subsequent infrastructure planning, management and decision-making.

  17. Geobotanical discrimination of ultramafic parent materials An evaluation of remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Morrissey, L. A.; Horn, E. M.

    1984-01-01

    Color and color infrared aerial photography and imagery acquired from a Daedalus DEI-1260 multispectral airborne scanner were employed in an investigation to discriminate ultramafic rock types in a test site in southwest Oregon. An analysis of the relationships between vegetation characteristics and parent materials was performed using a vegetation classification and map developed for the project, lithologic information derived from published geologic maps of the region, and terrain information gathered in the field. Several analytical methods, including visual image analysis, band ratioing, principal components analysis, and contrast enhancement and subsequent color composite generation were used in the investigation. There was a close correspondence between vegetation types and major rock types. These were readily discriminated by the remote sensing techniques. It was found that ultramafic rock types were separable from non-ultramafic rock types and serpentine was distinguishable from non-serpentinized peridotite. Further investigations involving spectroradiometric and digital classification techniques are being performed to further identify rock types and to discriminate chromium and nickel-bearing rock types.

  18. Application of remote sensing techniques to hydrography with emphasis on bathymetry. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Meireles, D. S.

    1980-01-01

    Remote sensing techniques are utilized for the determination of hydrographic characteristics, with emphasis in bathymetry. Two sensor systems were utilized: the Metric Camera Wild RC-10 and the Multispectral Scanner of LANDSAT Satellite (MSS-LANDSAT). From photographs of the metric camera, data of photographic density of points with known depth are obtained. A correlation between the variables density x depth is calculated through a regression straight line. From this line, the depth of points with known photographic density is determined. The LANDSAT MSS images are interpreted automatically in the Iterative Multispectral Analysis System (I-100) with the obtention of point subareas with the same gray level. With some simplifications done, it is assumed that the depth of a point is directly related with its gray level. Subareas with points of the same depth are then determined and isobathymetric curves are drawn. The coast line is obtained through the sensor systems already mentioned. Advantages and limitations of the techniques and of the sensor systems utilized are discussed and the results are compared with ground truth.

  19. Irrigated rice area estimation using remote sensing techniques: Project's proposal and preliminary results. [Rio Grande do Sul, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Deassuncao, G. V.; Moreira, M. A.; Novaes, R. A.

    1984-01-01

    The development of a methodology for annual estimates of irrigated rice crop in the State of Rio Grande do Sul, Brazil, using remote sensing techniques is proposed. The project involves interpretation, digital analysis, and sampling techniques of LANDSAT imagery. Results are discussed from a preliminary phase for identifying and evaluating irrigated rice crop areas in four counties of the State, for the crop year 1982/1983. This first phase involved just visual interpretation techniques of MSS/LANDSAT images.

  20. An Adaptive Web-Based Learning Environment for the Application of Remote Sensing in Schools

    NASA Astrophysics Data System (ADS)

    Wolf, N.; Fuchsgruber, V.; Riembauer, G.; Siegmund, A.

    2016-06-01

    Satellite images have great educational potential for teaching on environmental issues and can promote the motivation of young people to enter careers in natural science and technology. Due to the importance and ubiquity of remote sensing in science, industry and the public, the use of satellite imagery has been included into many school curricular in Germany. However, its implementation into school practice is still hesitant, mainly due to lack of teachers' know-how and education materials that align with the curricula. In the project "Space4Geography" a web-based learning platform is developed with the aim to facilitate the application of satellite imagery in secondary school teaching and to foster effective student learning experiences in geography and other related subjects in an interdisciplinary way. The platform features ten learning modules demonstrating the exemplary application of original high spatial resolution remote sensing data (RapidEye and TerraSAR-X) to examine current environmental issues such as droughts, deforestation and urban sprawl. In this way, students will be introduced into the versatile applications of spaceborne earth observation and geospatial technologies. The integrated web-based remote sensing software "BLIF" equips the students with a toolset to explore, process and analyze the satellite images, thereby fostering the competence of students to work on geographical and environmental questions without requiring prior knowledge of remote sensing. This contribution presents the educational concept of the learning environment and its realization by the example of the learning module "Deforestation of the rainforest in Brasil".

  1. Impacts of soil sealing on potential agriculture in Egypt using remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Mohamed, Elsayed Said; Belal, Abdelaziz; Shalaby, Adel

    2015-10-01

    This paper highlights the impacts of soil sealing on the agricultural soils in Nile Delta using remote sensing and GIS. The current work focuses on two aims. The first aim is to evaluate soil productivity lost to urban sprawl, which is a significant cause of soil sealing in Nile Delta. The second aim is to evaluate the Land Use and Land Cover Changes (LU LC) from 2001 to 2013 in El-Gharbia governorate as a case study. Three temporal data sets of images from two different sensors: Landsat 7 Enhanced Thematic Mapper (ETM+) with 30 m resolution acquired in 2001 and Landsat 8 acquired in 2013 with 30 m resolution, and Egypt sat acquired in 2010 with 7.8 m resolution, consequently were used. Four different supervised classification techniques (Maximum Likelihood (ML), Minimum Distance, Neural Networks (NN); and Support Vector Machine (SVM) were applied to monitor the changes of LULC in the investigated area. The results showed that the agricultural soils of the investigated area are characterized by high soil productivity depending on its chemical and physical properties. During 2010-2013, soil sealing took place on 1397 ha from the study area which characterized by soil productivity classes ranging between I and II. It is expected that the urban sprawl will be increased to 12.4% by 2020 from the study area, which means that additional 3400 ha of productive soils will be lost from agriculture. However, population growth is the most significant factor effecting urban sprawl in Nile Delta.

  2. Ultra precision machining technique of off-axis optics for coastal water remote sensing

    NASA Astrophysics Data System (ADS)

    Jeon, Min-Woo; Hyun, Sang-Won; Han, Jeong-Yeol; Kim, Geon-Hee

    2015-10-01

    An off-axis optical system can effectively avoid some problems, such as aberrations, shielded area created by the secondary mirror and a narrow field of view (FOV), while an on-axis optical system has the problems. Inspired by the consideration, the off-axis optical system is generally used for hyperspectral sensors and telescopes. However, there are several obstacles limiting the productivity of the off-axis optics in fabrication and measurement processes. In this study, to overcome this weakness, we suggests a new fabrication technique using a customized jig, not separated from the work-piece. A convex aspheric mirror and the off-axis mirror are fabricated by Single Point Diamond Turning Machine (SPDTM) for comparison analysis of surface state. The mirrors are made from aluminum (Al6061-T6) and used for the reflectors of a coastal water remote sensing system. We show fast machining and simple measurement in comparison with traditional off-axis single machining and measurement, provide performance results, such as form accuracy and surface roughness measured by both contact 3D profilometer (UA3P) and non-contact 3D profiler (CCI-Optics). The customized ultra-precision machining process can be effectively used for complex off-axis mirror fabricating.

  3. Evaluation of remote sensing techniques for measuring cloud water and drizzle in marine stratocumulus clouds

    SciTech Connect

    Feingold, G.; Frisch, A.S.; Stevens, B.; Cotton, W.R.

    1994-12-31

    NOAA`s Environmental Technology Laboratory has developed techniques for retrieving cloud liquid water content and drizzle characteristics using a K{sub {alpha}}-band Doppler radar and microwave radiometer. The instruments were deployed on the island of Porto Santo in the Maderias during the recent Atlantic Stratocumulus Transition Experiment (ASTEX), June 1992. Unfortunately, there were no useful overflights of the island and there are no direct in-situ measurements against which to compare the remote measurements. In this paper the authors will use a data set generated by a 3-D large eddy simulation model as a surrogate for real data. The model results should not be viewed in the context of this work as a case study but rather as a data set describing a typical marine stratocumulus capped boundary layer which is used to analyze the behavior of the remote sensing retrievals. The model is a version of the Regional Atmospheric Modeling System (RAMS) which has been modified to include explicit treatment of cloud condensation nucleus and droplet size spectra.

  4. Coastal geomorphological change monitoring by remote sensing techniques in Nouakchott, Mauritania

    NASA Astrophysics Data System (ADS)

    Wu, Weicheng; Courel, Marie-Francoise; Le Rhun, Jeannine

    2003-03-01

    Since the construction of a harbour, Port de l'Amitie, an important importation gate for Nouakchott in 1987, the previous coast dynamic equilibrium had been destroyed and thus a significant littoral geomorphological change has occurred, which has produced a severe degradation of the littoral and urban environment. Our research is focused on this coastal environmental change monitoring and its potential evolution estimation by remote sensing techniques using multi-temporal SPOT images and Markov chain analysis. The objectives of this study are to understand coastline evolution particularities, measure geomorphological change rates, evaluate life-span of the harbour, produce useful data for the government to control the environment degradation and provide reference for the future similar coastal engineering. According to our research, the north beach of the harbour has extended by 0.92km2 (91.6ha) from 1989 to 2001 and the accretion will probably reach its maximum limit in about 13.4 +/- 0.5 years (in 2014-2015) and the harbour will arrive at the end of service. The south sandbar has been eroded by 1.34km2 (134ha) and the coastline has landward retreated at the maximum by 362m. Another 0.91km2 of land will be nibbled by seawater in the next 10 years. This erosion has caused several times inundation into the suburb and urban areas, provoking a deterioration of the urban environment.

  5. Feasibility study for locating archaeological village sites by satellite remote sensing techniques. [multispectral photography of Alaska

    NASA Technical Reports Server (NTRS)

    Cook, J. P. (Principal Investigator); Stringer, W. J.

    1974-01-01

    The author has identified the following significant results. The objective is to determine the feasibility of detecting large Alaskan archaeological sites by satellite remote sensing techniques and mapping such sites. The approach used is to develop digital multispectral signatures of dominant surface features including vegetation, exposed soils and rock, hydrological patterns and known archaeological sites. ERTS-1 scenes are then printed out digitally in a map-like array with a letter reflecting the most appropriate classification representing each pixel. Preliminary signatures were developed and tested. It was determined that there was a need to tighten up the archaeological site signature by developing accurate signatures for all naturally-occurring vegetation and surface conditions in the vicinity of the test area. These second generation signatures have been tested by means of computer printouts and classified tape displays on the University of Alaska CDU-200 and by comparison with aerial photography. It has been concluded that the archaeological signatures now in use are as good as can be developed. Plans are to print out signatures for the entire test area and locate on topographic maps the likely locations of archaeological sites within the test area.

  6. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  7. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa

    PubMed Central

    2012-01-01

    Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling

  8. Development of satellite remote sensing techniques as an economic tool for forestry industry

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.; Jadkowski, Mark A.

    1989-01-01

    A cooperative commercial development project designed to focus on cost-effective and practical applications of satellite remote sensing in forest management is discussed. The project, initiated in September, 1988 is being executed in three phases: (1) development of a forest resource inventory and geographic information system (GIS) updating systems; (2) testing and evaluation of remote-sensing products against forest industry specifications; and (3) integration of remote-sensing services and products in an operational setting. An advisory group represented by eleven major forest-product companies will provide direct involvement of the target market. The advisory group will focus on the following questions: Does the technology work for them? How can it be packaged to provide the needed forest-management information? Can the products and information be provided in a cost-effective manner?

  9. Use of remote sensing techniques for inventorying and planning utilization of land resources in South Dakota

    NASA Technical Reports Server (NTRS)

    Myers, V. I.; Frazee, C. J.; Rusche, A. E.; Moore, D. G.; Nelson, G. D.; Westin, F. C.

    1974-01-01

    The basic procedures for interpreting remote sensing imagery to rapidly develop general soils and land use inventories were developed and utilized in Pennington County, South Dakota. These procedures and remote sensing data products were illustrated and explained to many user groups, some of whom are interested in obtaining similar data. The general soils data were integrated with land soils data supplied by the county director of equalization to prepare a land value map. A computer print-out of this map indicating a land value for each quarter section is being used in tax reappraisal of Pennington County. The land use data provided the land use planners with the present use of land in Pennington County. Additional uses of remote sensing applications are also discussed including tornado damage assessment, hail damage evaluation, and presentation of soil and land value information on base maps assembled from ERTS-1 imagery.

  10. Optimized fractional cloudiness determination from five ground-based remote sensing techniques

    SciTech Connect

    Boers, R.; de Haij, M. J.; Wauben, W.M.F.; Baltink, Henk K.; van Ulft, L. H.; Savenije, M.; Long, Charles N.

    2010-12-23

    A one-year record of fractional cloudiness at 10 minute intervals was generated for the Cabauw Experimental Site for Atmospheric Research [CESAR] (51°58’N, 4° 55’E) using an integrated assessment of five different observational methods. The five methods are based on active as well as passive systems and use either a hemispheric or column remote sensing technique. The one-year instrumental cloudiness data were compared against a 30 year climatology of Observer data in the vicinity of CESAR [1971- 2000]. In the intermediate 2 - 6 octa range, most instruments, but especially the column methods, report lower frequency of occurrence of cloudiness than the absolute minimum values from the 30 year Observer climatology. At night, the Observer records less clouds in the 1, 2 octa range than during the day, while the instruments registered more clouds. During daytime the Observer also records much more 7 octa cloudiness than the instruments. One column method combining a radar with a lidar outstrips all other techniques in recording cloudiness, even up to height in excess of 9 km. This is mostly due to the high sensitivity of the radar that is used in the technique. A reference algorithm was designed to derive a continuous and optimized record of fractional cloudiness. Output from individual instruments were weighted according to the cloud base height reported at the observation time; the larger the height, the lower the weight. The algorithm was able to provide fractional cloudiness observations every 10 minutes for 98% of the total period of 12 months [15 May 2008 - 14 May 2009].

  11. Assessing grapevine canopy health in the Texas Hill Country with remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Mathews, Adam J.

    Vineyards are typically managed uniformly over space, although known spatial variation exists in the performance of vines within and across vineyard blocks. Identifying spatial variability in crop performance at a large scale (one or a few vineyard blocks) is useful to vineyard managers wishing to address such variation by enacting separate management plans for differing areas of performance. Zonal management and the institution of precision viticultural practices (i.e. use of GIS and remote sensing techniques to study this spatial variation) has proven profitable for a number of reasons, namely zonal harvesting based on zone performance. This dissertation implements cutting-edge, practical, and low-cost equipment and techniques, specifically an unmanned aerial vehicle (UAV), digital cameras, and Structure from Motion (SfM), to identify spatial variation in grapevine canopy vigor at a vineyard in the Texas Hill Country American Viticultural Area. Three research objectives were addressed in this dissertation including: (1) the setup and implementation of a practical imaging system and processing methodology (digital cameras and a UAV) to produce very high spatial resolution orthophotomosaics of vineyards with visible and near-infrared bands, (2) observation of spatial and temporal variation in grapevine canopy vigor that can aid in improving vineyard management practice, and (3) development of a three-dimensional method for visualizing and quantifying vineyard canopy density. Results concluded that the low-cost tools and techniques outlined in this study provided a practical means by which to identify spatial variation in canopy vigor at the study vineyard. Of the three methods used to identify this variation, spectrally-based (NDVI), planimetrically-based (canopy extent), and three-dimensionally-derived (SfM point clouds), the latter two were most successful and would be recommended for future use. Most importantly, due to the low cost of the technology used to

  12. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  13. Comparison of remote sensing change detection techniques for assessing hurricane damage to forests.

    PubMed

    Wang, Fugui; Xu, Y Jun

    2010-03-01

    This study compared performance of four change detection algorithms with six vegetation indices derived from pre- and post-Katrina Landsat Thematic Mapper (TM) imagery and a composite of the TM bands 4, 5, and 3 in order to select an optimal remote sensing technique for identifying forestlands disturbed by Hurricane Katrina. The algorithms included univariate image differencing (UID), selective principal component analysis (PCA), change vector analysis (CVA), and postclassification comparison (PCC). The indices consisted of near-infrared to red ratios, normalized difference vegetation index, Tasseled Cap index of greenness, brightness, and wetness (TCW), and soil-adjusted vegetation index. In addition to the satellite imagery, the "ground truth" data of forest damage were also collected through field investigation and interpretation of post-Katrina aerial photos. Disturbed forests were identified by classifying the composite and the continuous change imagery with the supervised classification method. Results showed that the change detection techniques exerted apparent influence on detection results with an overall accuracy varying between 51% and 86% and a kappa statistics ranging from 0.02 to 0.72. Detected areas of disturbed forestlands were noticeable in two groups: 180,832-264,617 and 85,861-124,205 ha. The landscape of disturbed forests also displayed two unique patterns, depending upon the area group. The PCC algorithm along with the composite image contributed the highest accuracy and lowest error (0.5%) in estimating areas of disturbed forestlands. Both UID and CVA performed similarly, but caution should be taken when using selective PCA in detecting hurricane disturbance to forests. Among the six indices, TCW outperformed the other indices owing to its maximum sensitivity to forest modification. This study suggested that compared with the detection algorithms, proper selection of vegetation indices was more critical for obtaining satisfactory results.

  14. Detecting Subsurface Agricultural Tile Drainage using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Budhathoki, M.; Gokkaya, K.; Tank, J. L.; Christopher, S. F.; Hanrahan, B.

    2015-12-01

    Subsurface tile drainage is a common practice in many of the row crop dominated agricultural lands in the Upper Midwest, which increases yield by making the soil more productive. It is reported that nearly half of all cropland in Indiana benefits from some sort of artificial drainage. However, subsurface tile has a significant negative impact on surface water quality by providing a fast means of transport for nutrients from fertilizers. Therefore, generating spatial data of tile drainage in the field is important and useful for agricultural landscape and hydrological studies. Subsurface tile drains in Indiana's croplands are not widely mapped. In this study, we will delineate subsurface tile drainage in agricultural land in Shatto Ditch watershed, located in Kosciusko County, Indiana. We will use geo-spatial methodology, which was purposed by earlier researchers to detect tile drainage. We will use aerial color-infrared and satellite imagery along with Light Detection and Ranging (LiDAR) data. In order to map tile lines with possible accuracy, we will use GIS-based analysis in combination with remotely sensed data. This research will be comprised of three stages: 1) masking out the potential drainage area using a decision tree rule based on land cover information, soil drainage category, surface slope, and satellite image differencing technique, 2) delineate tile lines using image processing techniques, and 3) check the accuracy of mapped tile lines with ground control points. To our knowledge, this study will be the first to check the accuracy of mapping with ground truth data. Based on the accuracy of results, we will extend the methodology to greater spatial scales. The results are expected to contribute to better characterizing and controlling water pollution sources in Indiana, which is a major environmental problem.

  15. Remote Sensing and the Earth.

    ERIC Educational Resources Information Center

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  16. Development of a remote sensing technique to study the hydrology of earth stock tanks on a semiarid watershed

    NASA Technical Reports Server (NTRS)

    Cluff, C. B.; Lovely, C. J.

    1974-01-01

    The stock tanks considered are relatively small earthen reservoirs, built in tributary stream channels and drainageways. A remote sensing technique is developed for obtaining quantitative data on water levels and water losses from stock tanks. Details of the used approaches are discussed along with some difficulties which would have to be overcome in order to determine the effects of the stock tanks on stream flow.

  17. Experimental validation of a millimeter wave radar technique to remotely sense atmospheric pressure at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1984-01-01

    Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.

  18. Path integrated optical remote sensing technique to estimate ammonia and methane gas emissions from CAFOs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. EPA recently demonstrated the open-path optical remote sensing technology to identify hot spots and estimate mass flux of fugitive gases from closed landfill. The objective of this research is to validate this technology for estimating ammonia and methane emission from concentrated animal f...

  19. Application of remote sensing

    NASA Technical Reports Server (NTRS)

    Graff, W. J. (Compiler)

    1973-01-01

    Remote sensing and aerial photographic interpretation are discussed along with the specific imagery techniques used for this research. The method used to select sites, the results of data analyses for the Houston metropolitan area, and the location of dredging sites along the Houston Ship Channel are presented. The work proposed for the second year of the project is described.

  20. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Ghosh, Manoj Kumer; Kumar, Lalit; Roy, Chandan

    2015-03-01

    A large percentage of the world's population is concentrated along the coastal zones. These environmentally sensitive areas are under intense pressure from natural processes such as erosion, accretion and natural disasters as well as anthropogenic processes such as urban growth, resource development and pollution. These threats have made the coastal zone a priority for coastline monitoring programs and sustainable coastal management. This research utilizes integrated techniques of remote sensing and geographic information system (GIS) to monitor coastline changes from 1989 to 2010 at Hatiya Island, Bangladesh. In this study, satellite images from Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) were used to quantify the spatio-temporal changes that took place in the coastal zone of Hatiya Island during the specified period. The modified normalized difference water index (MNDWI) algorithm was applied to TM (1989 and 2010) and ETM (2000) images to discriminate the land-water interface and the on-screen digitizing approach was used over the MNDWI images of 1989, 2000 and 2010 for coastline extraction. Afterwards, the extent of changes in the coastline was estimated through overlaying the digitized maps of Hatiya Island of all three years. Coastline positions were highlighted to infer the erosion/accretion sectors along the coast, and the coastline changes were calculated. The results showed that erosion was severe in the northern and western parts of the island, whereas the southern and eastern parts of the island gained land through sedimentation. Over the study period (1989-2010), this offshore island witnessed the erosion of 6476 hectares. In contrast it experienced an accretion of 9916 hectares. These erosion and accretion processes played an active role in the changes of coastline during the study period.

  1. Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas

    2008-01-01

    Remote sensing is measuring something without touching it. Most methods measure a portion of the electro-magnetic spectrum using energy reflected from or emitted by a material. Moving the instrument away makes it easier to see more at one time. Airplanes are good but satellites are much better. Many things can not be easily measured on the scale of an individual person. Example - measuring all the vegetation growing at one time in even the smallest country. A satellite can see things over large areas repeatedly and in a consistent way. Data from the detector is reported as digital values for a grid that covers some portion of the Earth. Because it is digital and consistent a computer can extract information or enhance the data for a specific purpose.

  2. Remote-sensing based technique to account for sub-grid scale variability of land surface properties

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Laymon, Charles A.

    1995-01-01

    A method has been presented for the representation of sub-grid scale variability of surface properties within a land surface processes model. The method uses remotely-sensed data to directly or indirectly estimate probability density functions (PDF's) or key surface variables. Application of this technique in a coupled land surface-atmosphere model requires only grid-scale values of the variables of interest, obtained from low-resolution satellite imagery or surface/remote sensing data assimilation. The PDF's of each controlling surface property are superimposed on the respective grid-scale values to simulate sub-grid scale heterogeneity. Sensitivity studies will be carried out to ascertain the relative importance of the heterogeneity of several variables, and the degree to which non-linear property-process interactions impact large-scale fluxes.

  3. Application of remote sensing techniques for monitoring the thermal pollution of cooling-water discharge from nuclear power plant.

    PubMed

    Chen, Chuqun; Shi, Ping; Mao, Qingwen

    2003-08-01

    This article introduces a practical method to investigate thermal pollution in coastal water from satellite data. The intensity and distribution areas of thermal pollution by the heated effluent discharge from the nuclear power plant on Daya Bay, southern China were investigated by using Landsat-5 Thematic Mapper (TM) thermal band data from 1994 to 2001. A local algorithm was developed, based on sea-truth data of water surface temperature measured when the satellite passed over the study area. The local algorithm was then applied to estimate water temperature from TM data. It shows that the remote sensing technique provides an effective means to quantitatively monitor the intensity of thermal pollution and to retrieve a very detailed distribution pattern of thermal pollution in coastal waters. The remotely-sensed results of the thermal pollution can be used for environmental management of coastal waters.

  4. Monitoring soil moisture patterns in alpine meadows using ground sensor networks and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Brenner, Johannes; Notarnicola, Claudia; Greifeneder, Felix; Nicolini, Irene; Della Chiesa, Stefano; Niedrist, Georg; Tappeiner, Ulrike

    2015-04-01

    Soil moisture content (SMC) is a key factor for numerous processes, including runoff generation, groundwater recharge, evapotranspiration, soil respiration, and biological productivity. Understanding the controls on the spatial and temporal variability of SMC in mountain catchments is an essential step towards improving quantitative predictions of catchment hydrological processes and related ecosystem services. The interacting influences of precipitation, soil properties, vegetation, and topography on SMC and the influence of SMC patterns on runoff generation processes have been extensively investigated (Vereecken et al., 2014). However, in mountain areas, obtaining reliable SMC estimations is still challenging, because of the high variability in topography, soil and vegetation properties. In the last few years, there has been an increasing interest in the estimation of surface SMC at local scales. On the one hand, low cost wireless sensor networks provide high-resolution SMC time series. On the other hand, active remote sensing microwave techniques, such as Synthetic Aperture Radars (SARs), show promising results (Bertoldi et al. 2014). As these data provide continuous coverage of large spatial extents with high spatial resolution (10-20 m), they are particularly in demand for mountain areas. However, there are still limitations related to the fact that the SAR signal can penetrate only a few centimeters in the soil. Moreover, the signal is strongly influenced by vegetation, surface roughness and topography. In this contribution, we analyse the spatial and temporal dynamics of surface and root-zone SMC (2.5 - 5 - 25 cm depth) of alpine meadows and pastures in the Long Term Ecological Research (LTER) Area Mazia Valley (South Tyrol - Italy) with different techniques: (I) a network of 18 stations; (II) field campaigns with mobile ground sensors; (III) 20-m resolution RADARSAT2 SAR images; (IV) numerical simulations using the GEOtop hydrological model (Rigon et al

  5. Predicting species cover of marine macrophyte and invertebrate species combining hyperspectral remote sensing, machine learning and regression techniques.

    PubMed

    Kotta, Jonne; Kutser, Tiit; Teeveer, Karolin; Vahtmäe, Ele; Pärnoja, Merli

    2014-01-01

    In order to understand biotic patterns and their changes in nature there is an obvious need for high-quality seamless measurements of such patterns. If remote sensing methods have been applied with reasonable success in terrestrial environment, their use in aquatic ecosystems still remained challenging. In the present study we combined hyperspectral remote sensing and boosted regression tree modelling (BTR), an ensemble method for statistical techniques and machine learning, in order to test their applicability in predicting macrophyte and invertebrate species cover in the optically complex seawater of the Baltic Sea. The BRT technique combined with remote sensing and traditional spatial modelling succeeded in identifying, constructing and testing functionality of abiotic environmental predictors on the coverage of benthic macrophyte and invertebrate species. Our models easily predicted a large quantity of macrophyte and invertebrate species cover and recaptured multitude of interactions between environment and biota indicating a strong potential of the method in the modelling of aquatic species in the large variety of ecosystems.

  6. Predicting Species Cover of Marine Macrophyte and Invertebrate Species Combining Hyperspectral Remote Sensing, Machine Learning and Regression Techniques

    PubMed Central

    Kotta, Jonne; Kutser, Tiit; Teeveer, Karolin; Vahtmäe, Ele; Pärnoja, Merli

    2013-01-01

    In order to understand biotic patterns and their changes in nature there is an obvious need for high-quality seamless measurements of such patterns. If remote sensing methods have been applied with reasonable success in terrestrial environment, their use in aquatic ecosystems still remained challenging. In the present study we combined hyperspectral remote sensing and boosted regression tree modelling (BTR), an ensemble method for statistical techniques and machine learning, in order to test their applicability in predicting macrophyte and invertebrate species cover in the optically complex seawater of the Baltic Sea. The BRT technique combined with remote sensing and traditional spatial modelling succeeded in identifying, constructing and testing functionality of abiotic environmental predictors on the coverage of benthic macrophyte and invertebrate species. Our models easily predicted a large quantity of macrophyte and invertebrate species cover and recaptured multitude of interactions between environment and biota indicating a strong potential of the method in the modelling of aquatic species in the large variety of ecosystems. PMID:23755113

  7. Advanced laser remote sensing

    SciTech Connect

    Schultz, J.; Czuchlewski, S.; Karl, R.

    1996-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Remote measurement of wind velocities is critical to a wide variety of applications such as environmental studies, weather prediction, aircraft safety, the accuracy of projectiles, bombs, parachute drops, prediction of the dispersal of chemical and biological warfare agents, and the debris from nuclear explosions. Major programs to develop remote sensors for these applications currently exist in the DoD and NASA. At present, however, there are no real-time, three-dimensional wind measurement techniques that are practical for many of these applications and we report on two new promising techniques. The first new technique uses an elastic backscatter lidar to track aerosol patterns in the atmosphere and to calculate three dimensional wind velocities from changes in the positions of the aerosol patterns. This was first done by Professor Ed Eloranta of the University of Wisconsin using post processing techniques and we are adapting Professor Eloranta`s algorithms to a real-time data processor and installing it in an existing elastic backscatter lidar system at Los Alamos (the XM94 helicopter lidar), which has a compatible data processing and control system. The second novel wind sensing technique is based on radio-frequency (RF) modulation and spatial filtering of elastic backscatter lidars. Because of their compactness and reliability, solid state lasers are the lasers of choice for many remote sensing applications, including wind sensing.

  8. Using Advanced Remote Sensing Data Fusion Techniques for Studying Earth Surface Processes and Hazards: A Landslide Detection Case Study

    NASA Astrophysics Data System (ADS)

    Hulslander, D.

    2014-12-01

    A major problem in earth surface process and hazards research is we have little to no knowledge of precisely where and when the next significant event may occur. This makes it nearly impossible to set up adequate instrumentation and observation ahead of time. Furthermore, it is not practical to overcome this challenge by instrumenting and observing everywhere all the time. We can't be everywhere and see everything. Remote sensing helps us to fill that gap with missions such as Landsat and WorldView2 offering regular global coverage. However, remote sensing systems for global monitoring have several inherent compromises. Tradeoffs must be made between data storage, processing capacity, spatial resolution, spectral resolution, and temporal resolution. Additionally, instruments and systems must be designed in advance and from a generalized standpoint to serve as many purposes as possible, often at the expense of high performance in specific tasks. Because of these practical constraints, when using remote sensing data to study earth surface processes it is critical to maximize signal content or information obtained from all available data. Several approaches, including multi-temporal data fusion, multi-sensor data fusion, and fusion with derivative products such as band ratios or vegetation indices can help expand how much information can be extracted from remote sensing acquisitions. Fused dataset results contain more coherent information than the sum of their individual constituents. Examples using Landsat and WorldView2 data in this study show this added information makes it possible to map earth surface processes and events, such as the 2011 Cinque Terre landslides, in a more automated and repeatable fashion over larger areas than is possible with manual imagery analysis techniques and with greater chance of successful detection.

  9. Reflectance spectroscopy - Quantitative analysis techniques for remote sensing applications. [in planetary surface geology

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Roush, T. L.

    1984-01-01

    The empirical methods and scattering theories that are important for solving remote sensing problems are among the methods for remotely sensed reflectance data analysis presently compared. In the case of the photon mean optical path length concept's implications for reflectance spectra modeling, it is shown that the mean optical path length in a particulate surface is in roughly inverse proportion to the square root of the absorption coefficient. Absorption bands, which are Gaussian in shape when plotted as true absorptance vs photon energy, are also Gaussians in apparent absorptance, although they have a smaller intensity. An apparent continuum in a reflectance spectrum is modeled as a mathematical function that is used to isolate a particular absorption feature for analysis, and it is noted that this continuum should be removed by dividing it into the reflectance spectrum.

  10. Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Houghton, W. M.; Esaias, W.; Harriss, R. C.; Farmer, F. H.; White, H. H.

    1983-01-01

    The theoretical concepts underlying remote sensing of estuarine parameters using laser excitation are examined. The concepts are extended to include Mie scattering as a measure of the total suspended solids and to develop the water Raman signal as an internal standard. Experimental validation of the theory was performed using backscattered laser light from a laboratory tank to simulate a remote-sensing geometry. Artificially prepared sediments and biological cultures were employed to check specific aspects of the theory under controlled conditions. Natural samples gathered from a variety of water types were also analyzed in the tank to further enhance the simulation. The results indicate that it should be possible to remotely quantify total suspended solids, dissolved organics, attenuation coefficient, chlorophyll a, and phycoerythrin in estuarine water using laser excitation.

  11. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    NASA Astrophysics Data System (ADS)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2016-03-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  12. Analysis of multispectral signatures and investigation of multi-aspect remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Hieber, R. H.; Sarno, J. E.

    1974-01-01

    Two major aspects of remote sensing with multispectral scanners (MSS) are investigated. The first, multispectral signature analysis, includes the effects on classification performance of systematic variations found in the average signals received from various ground covers as well as the prediction of these variations with theoretical models of physical processes. The foremost effects studied are those associated with the time of day airborne MSS data are collected. Six data collection runs made over the same flight line in a period of five hours are analyzed, it is found that the time span significantly affects classification performance. Variations associated with scan angle also are studied. The second major topic of discussion is multi-aspect remote sensing, a new concept in remote sensing with scanners. Here, data are collected on multiple passes by a scanner that can be tilted to scan forward of the aircraft at different angles on different passes. The use of such spatially registered data to achieve improved classification of agricultural scenes is investigated and found promising. Also considered are the possibilities of extracting from multi-aspect data, information on the condition of corn canopies and the stand characteristics of forests.

  13. Remote Sensing of Surface Electric Potential on the Moon: A New Technique Using ENAs for Future Missions

    NASA Astrophysics Data System (ADS)

    Futaana, Y.; Barabash, S.; Wieser, M.

    2013-09-01

    Electric potential at lunar surface provides essential information for understanding fundamental science and environment of the Moon, which directly impacts on future lunar exploration. Here we present a new technique of remote sensing of surface electric potential at the Moon [4]. The technique relies on the energy spectra of the energetic neutral atoms (ENAs) backscattered from the Moon. We applied this technique to the existing dataset of ENAs, and created the first 2-D image of the electric potential distribution near a magnetic anomaly. The result revealed that the magnetized area provides a preferable landing site of the Moon, while strong surface potential exists.

  14. Soil Degradation Assessment in North Nile Delta Using Remote Sensing and GIS Techniques

    NASA Astrophysics Data System (ADS)

    El Nahry, A. H.; Ibraheim, M. M.; El Baroudy, A. A.

    2015-04-01

    The present work aims at monitoring soil degradation process within the last two decades in the northern part of Nile Delta. The investigated area lies between longitudes 31° 00- & 31° 15- E and latitudes 31° 00' & 31° 37' N., covering an area of about 161760 feddans. Detecting soil degradation and recognizing its various types is a necessity to take the practical measures for combating it as well as conserving and keeping the agricultural soil healthy. Land degradation was assessed by adopting new approach through the integration of GLASOD/FAO approach and Remote Sensing / GIS techniques .The main types of human induced soil degradation that observed in the studied area are salinity, alkalinity (sodicity), compaction and water logging .On the other hand water erosion because of sea rise is assessed. The obtained data showed that, areas that were affected by compaction increment have been spatially enlarged by 40.9 % and those affected by compaction decrease have been spatially reduced by 22.6 % of the total area ,meanwhile areas that have been unchanged were estimated by 36.5% of the total area. The areas that were affected by water logging increase have been spatially enlarged by 52.2 % and those affected by water logging decrease have been spatially reduced by 10.1 % of the total area, meanwhile the areas which have been unchanged were represented by 37.7 % of the total area. Areas that were affected by salinity increase have been spatially enlarged by 31.4 % of the total area and those affected by salinity decrease have been reduced by 43.3 % of the total area. An area represented by 25.2 % of the total area has been unchanged. Alkalinization (sodicity) was expressed by the exchangeable sodium percentage (ESP).Areas that were affected by sodicity increase have been spatially enlarged by 33.7 %, meanwhile those affected by sodicity decrease have been spatially reduced by 33.6 % of the total area. An area represented by 32.6 % of the total area has been

  15. Precise Satellite Navigation Combining Kinematic and Dynamic Techniques in Support of Remote Sensing From Space

    NASA Astrophysics Data System (ADS)

    Colombo, O. L.; Rowlands, D. D.; Chinn, D.; Poulose, S.

    2002-05-01

    A precise orbit determination method combining kinematic and dynamic techniques has been used to analyze two full days of on-board GPS receiver data from TOPEX and from a set of 20 IGS ground sites around the world. The resulting orbits agree, to better than 4 cm rms in height and a total of 10 cm rms in three-dimensions, with the corresponding Goddard Precise Orbit Estimates (POE). These POE, produced by NASA for the TOPEX Geophysical Data Records, are based only on laser and DORIS Doppler tracking data, so they can be used as a totally independent control for GPS-based results. There are two main steps:(1) A preliminary 24-hour kinematic trajectory, precise to a few meters, is obtained from double-differenced pseudo-range data. A one-day orbit is fitted to this trajectory, using the classical dynamic approach (in this case, as implemented in the Goddard SFC program GEODYN). (2) The fitted orbit is used to help correct cycle-slips in the carrier phase data. The corrected phase data, alone, are used to get a more precise kinematic trajectory. A new dynamic orbit fit is made to this trajectory to obtain the final, precise orbit. For the dynamic orbit determination, the forces acting on the satellite have been modeled, as for the POE, with a fixed box-wing model for the effect of solar radiation and drag on the satellite, and the gravitational acceleration with the JGM3 gravity field model, developed for TOPEX. In addition, a few force parameters were estimated, along with the orbit initial conditions: one drag scale factor every four hours, and one daily set of four empirical parameters representing unmodeled and mismodeled forces, for a total of 16 unknowns in each 24-hour solution. This approach combines the high precision of the dynamic method with the efficient data processing of the kinematic method, and has been implemented at Goddard using only pre-existing software. In general, this method could be used in support of remote sensing from space, when it is

  16. Quantifying land-cover proportions for urban runoff prediction. The advantage of distributed remote sensing techniques.

    NASA Astrophysics Data System (ADS)

    Berezowski, T.; Chormanski, J.; Batelaan, O.; Canters, F.; Van de Voorde, T.

    2012-04-01

    that, the subpixel scenario is suggested as a cost effective solution in hydrological applications; hard-classification of high resolution imagery should be used in high risk projects like flood prediction. The standard modeling approach is found not proper for urban application. Moreover, the results prove the usefulness of remote sensing techniques and their advantage over standard methods for quantifying parameters for hydrological models.

  17. Realizing parameterless automatic classification of remote sensing imagery using ontology engineering and cyberinfrastructure techniques

    NASA Astrophysics Data System (ADS)

    Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng

    2016-09-01

    It was an untouchable dream for remote sensing experts to realize total automatic image classification without inputting any parameter values. Experts usually spend hours and hours on tuning the input parameters of classification algorithms in order to obtain the best results. With the rapid development of knowledge engineering and cyberinfrastructure, a lot of data processing and knowledge reasoning capabilities become online accessible, shareable and interoperable. Based on these recent improvements, this paper presents an idea of parameterless automatic classification which only requires an image and automatically outputs a labeled vector. No parameters and operations are needed from endpoint consumers. An approach is proposed to realize the idea. It adopts an ontology database to store the experiences of tuning values for classifiers. A sample database is used to record training samples of image segments. Geoprocessing Web services are used as functionality blocks to finish basic classification steps. Workflow technology is involved to turn the overall image classification into a total automatic process. A Web-based prototypical system named PACS (Parameterless Automatic Classification System) is implemented. A number of images are fed into the system for evaluation purposes. The results show that the approach could automatically classify remote sensing images and have a fairly good average accuracy. It is indicated that the classified results will be more accurate if the two databases have higher quality. Once the experiences and samples in the databases are accumulated as many as an expert has, the approach should be able to get the results with similar quality to that a human expert can get. Since the approach is total automatic and parameterless, it can not only relieve remote sensing workers from the heavy and time-consuming parameter tuning work, but also significantly shorten the waiting time for consumers and facilitate them to engage in image

  18. Adapting remotely sensed snow data for daily flow modeling on the Upper Humber River, Newfoundland and Labrador

    NASA Astrophysics Data System (ADS)

    Tom, Melissa

    meteorological data: rainfall, snow cover, and temperature. The results from the snowmelt runoff model using the snow cover data provided very good final Nash-Sutcliffe coefficients of 0.85 for the calibration stage and 0.81 for the validation stage, but a consistent one-day lag of the modeled flow values was also observed. Although these results were not superior to currently employed flood forecasting models for the Upper Humber (because of a one-day lag in the modeled flows), the methodology developed herein may be useful for other river basins in NL where the flows are dominated by snowmelt during the spring such as the Exploits River Basin located in central NL. Remotely sensed snow water equivalent (SWE) data obtained from an advanced microwave scanning radiometer (AMSR-E), aboard the Aqua satellite, was also investigated for daily flow modeling applications. SWE often provide a better estimate of snowmelt than snow cover but this data had several disadvantages in the Humber River Basin. The major obstacles included large spatial resolution (25 km), data inaccuracy for wet snow, boreal forest, mountainous regions, and time step irregularities. Extremely large variances in the SWE data rendered the information inaccurate and ineffective for streamflow forecasting on Newfoundland and Labrador's Humber River. This research makes significant contributions to the field of hydrology providing a valuable methodology in adapting remotely sensed snow data to daily flow simulation and will be helpful to local authorities.

  19. Analytical techniques for the study of some parameters of multispectral scanner systems for remote sensing

    NASA Technical Reports Server (NTRS)

    Wiswell, E. R.; Cooper, G. R. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The concept of average mutual information in the received spectral random process about the spectral scene was developed. Techniques amenable to implementation on a digital computer were also developed to make the required average mutual information calculations. These techniques required identification of models for the spectral response process of scenes. Stochastic modeling techniques were adapted for use. These techniques were demonstrated on empirical data from wheat and vegetation scenes.

  20. Multi-scale characterization of rock mass discontinuities and rock slope geometry using terrestrial remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Sturzenegger, Matthieu

    Terrestrial remote sensing techniques including both digital photogrammetry and laser scanning, represent useful complements to conventional field mapping and rock mass discontinuity characterization. Several studies have highlighted practical advantages at close-range (< 300 m), including the ability to map inaccessible rock exposures and hazard reduction related to both traffic and rockfall along investigated outcrops. In addition, several authors have demonstrated their potential to provide adequate quantification of discontinuity parameters. Consequently, their incorporation into rock slope stability investigations and design projects has grown substantially over recent years. As these techniques are increasingly applied by geologists and geological engineers, it is important that their use be properly evaluated. Furthermore, guidelines to optimize their application are required in a similar manner to standardization of conventional discontinuity mapping techniques. An important thesis objective is to develop recommendations for optimal applications of terrestrial remote sensing techniques for discontinuity characterization, based on a quantitative evaluation of various registration approaches, sampling bias and extended manual mapping of 3D digital models. It is shown that simple registration networks can provide adequate measurement of discontinuity geometry for engineering purposes. The bias associated with remote sensing mapping is described. The advantages of these techniques over conventional mapping are demonstrated, including reliable discontinuity orientation measurements. Persistence can be precisely quantified instead of approximately estimated, resulting in a new class for extremely persistent discontinuities being suggested. Secondary roughness and curvature can also be considered at larger scales. The techniques are suitable for the definition of discontinuity sets, and the estimation of both trace intensity and block size/shape, if sampling bias

  1. Regional adaptation of a dynamic global vegetation model using a remote sensing data derived land cover map of Russia

    NASA Astrophysics Data System (ADS)

    Khvostikov, S.; Venevsky, S.; Bartalev, S.

    2015-12-01

    The dynamic global vegetation model (DGVM) SEVER has been regionally adapted using a remote sensing data-derived land cover map in order to improve the reconstruction conformity of the distribution of vegetation functional types over Russia. The SEVER model was modified to address noticeable divergences between modelling results and the land cover map. The model modification included a light competition method elaboration and the introduction of a tundra class into the model. The rigorous optimisation of key model parameters was performed using a two-step procedure. First, an approximate global optimum was found using the efficient global optimisation (EGO) algorithm, and afterwards a local search in the vicinity of the approximate optimum was performed using the quasi-Newton algorithm BFGS. The regionally adapted model shows a significant improvement of the vegetation distribution reconstruction over Russia with better matching with the satellite-derived land cover map, which was confirmed by both a visual comparison and a formal conformity criterion.

  2. Remote sensing techniques applied to multispectral recognition of the Aranjuez pilot zone

    NASA Technical Reports Server (NTRS)

    Lemos, G. L.; Salinas, J.; Rebollo, M.

    1977-01-01

    A rectangular (7 x 14 km) area 40 km S of Madrid was remote-sensed with a three-stage recognition process. Ground truth was established in the first phase, airborne sensing with a multispectral scanner and photographic cameras were used in the second phase, and Landsat satellite data were obtained in the third phase. Agronomic and hydrological photointerpretation problems are discussed. Color, black/white, and labeled areas are displayed for crop recognition in the land-use survey; turbidity, concentrations of pollutants and natural chemicals, and densitometry of the water are considered in the evaluation of water resources.

  3. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.

    1979-01-01

    The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.

  4. Validation of satellite data through the remote sensing techniques and the inclusion of them into agricultural education pilot programs

    NASA Astrophysics Data System (ADS)

    Papadavid, Georgios; Kountios, Georgios; Bournaris, T.; Michailidis, Anastasios; Hadjimitsis, Diofantos G.

    2016-08-01

    Nowadays, the remote sensing techniques have a significant role in all the fields of agricultural extensions as well as agricultural economics and education but they are used more specifically in hydrology. The aim of this paper is to demonstrate the use of field spectroscopy for validation of the satellite data and how combination of remote sensing techniques and field spectroscopy can have more accurate results for irrigation purposes. For this reason vegetation indices are used which are mostly empirical equations describing vegetation parameters during the lifecycle of the crops. These numbers are generated by some combination of remote sensing bands and may have some relationship to the amount of vegetation in a given image pixel. Due to the fact that most of the commonly used vegetation indices are only concerned with red-near-infrared spectrum and can be divided to perpendicular and ratio based indices the specific goal of the research is to illustrate the effect of the atmosphere to those indices, in both categories. In this frame field spectroscopy is employed in order to derive the spectral signatures of different crops in red and infrared spectrum after a campaign of ground measurements. The main indices have been calculated using satellite images taken at interval dates during the whole lifecycle of the crops by using a GER 1500 spectro-radiomete. These indices was compared to those extracted from satellite images after applying an atmospheric correction algorithm -darkest pixel- to the satellite images at a pre-processing level so as the indices would be in comparable form to those of the ground measurements. Furthermore, there has been a research made concerning the perspectives of the inclusion of the above mentioned remote satellite techniques to agricultural education pilot programs.

  5. [Thematic Issue: Remote Sensing.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1978-01-01

    Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…

  6. Use of acoustic velocity methodology and remote sensing techniques to measure unsteady flow on the lower Yazoo River in Mississippi

    USGS Publications Warehouse

    Turnipseed, D. Phil; Cooper, Lance M.; Davis, Angela A.

    1998-01-01

    Methodologies have been developed for computing continuous discharge during varied, non-uniform low and medium flows on the Yazoo River at the U.S. Geological Survey streamgage below Steele Bayou near Long Lake, Mississippi, using acoustic signal processing and conventional streamgaging techniques. Procedures were also developed to compute locations of discharges during future high flow events when the stream reach is subject to hi-directional and reverse flow caused by rising stages on the Mississippi River using a combination of acoustic equipment and remote sensing technology. A description of the study area is presented. Selected results of these methods are presented for the period from March through September 1997.

  7. Water quality mapping using remote sensing technique in Penang Straits, Malaysia

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Alias, A. N.; Mohd. Saleh, N.

    2008-10-01

    The application of remote sensing to assess water quality for coastal and open ocean has escalated recently due to its capability of scanning wide water bodies within a short time period. In this paper, we examined the spatial variability of chlorophyll within Penang straits, Malaysia. Coastal and estuarine ecosystems typically exhibit high temporal and spatial variability in phytoplankton biomass that is often too difficult to characterize with a limited set of in situ shipboard measurements. In this study, we used ALOS satellite imagery acquired on 24 April 2007. An algorithm for retrieval of chlorophyll level was developed for ALOS data. Chlorophyll samples were collected using a small boat simultaneously with the acquisition of the satellite image. The water locations were determined using a handheld Global Positioning System (GPS). And then the digital numbers for each band corresponding to the sea-truth locations were extracted and then converted into radiance values and reflectance values. The reflectance values were used for calibration of the chlorophyll algorithm. For the regression model, the correlation coefficient (R) and the root-mean-square deviation (RMS) were noted. The proposed algorithm is considered superior based on the values of the correlation coefficient and root-mean-square The water quality image was generated using the multispectral data set and the proposed calibrated TSS algorithm. This study demonstrates that remote sensing can play an important role in water quality assessment by using high resolution satellite image of ALOS data.

  8. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  9. The aid of remote sensing and environmental history techniques for planning and successful implementation of decentralized flood reduction

    NASA Astrophysics Data System (ADS)

    Seeling, Stephan; Gross, Michael

    2010-05-01

    The history of European landscapes is a history of changes. Based on the geophysical spatial features like geology, soils or topography the interaction with regional climate and particular human land use practices led to the development of the recent mosaic of European landscapes. For centuries the human incitements behind these actions have been to conquer nature and to optimize human benefit. Hence the maintenance or future development of other landscape functions like biodiversity or buffer and balance functions for energy and mass flows have often been neglected. As a consequence most recent cultivated landscapes feature a deficit of close to nature water retention capacities. Modern catchment orientated water management plans launch at this point and try to recover or even enhance former decentralized landscape abilities for water retention. Additionally remote sensing is a fast, effective and not too expensive tool for conducting landscape inventories or expose trends in land cover changes. Both can be seen as mandatory components for planning and successful implementation of decentralized flood protection measures. For three different landscapes of Southwest Germany we analysed the trends in land use change within the last four decades, based on remote sensing and statistical methods, to deduct on main human driving forces behind these changes. Together with other spatial analyses this offers support for prioritisation and implementation of landscape adapted and locally accepted decentralized flood protection measures.

  10. Remote Sensing Techniques as a Tool for Geothermal Exploration: the Case Study of Blawan Ijen, East Java

    NASA Astrophysics Data System (ADS)

    Pasqua, Claudio; Verdoya, Massimo

    2014-05-01

    The use of remote sensing techniques in the initial phase of geothermal surveys represents a very cost-effective tool, which can contribute to a successful exploration program. Remote sensing allows the analysis of large surfaces and can lead to a significant improvement of the identification of surface thermal anomalies, through the use of thermal infra red data (TIR), as well as of zones of widespread and recent faulting, which can reflect larger permeability of geological formations. Generally, the fractures analysis from remote sensing can be fundamental to clarify the structural setting of an area. In a regional volcanic framework, it can also help in defining the spatial and time evolution of the different volcanic apparatuses. This paper describes the main results of a remote sensing study, conducted in the Blawan-Ijen volcanic area (East Java), which is at present subject of geothermal exploration. This area is characterized by the presence of a 15 km wide caldera originated by a collapsed strato volcano. This event was followed by the emplacement of several peri-calderic and intra-calderic volcanoes, among which G. Raung, as testified by the frequent occurrence of shallow earthquakes and by H2S emission and sulfur deposition, and G. Kawah Ijen, occurring at the eastern rim of the caldera, are still active. The summit of G. Kawah Ijen volcano consists of two interlocking craters forming an E-W elongated depression filled up by a hyperacidic lake. Along the southern shore of the lake, a small rhyolitic dome occurs, which exhibits strong fumarolic activity with temperature of as much as 600 °C. We performed an analysis based on the combined interpretation of Landsat ETM+7, Aster and Synthetic Aperture Radar (SAR) images, focused on the identification of subsurface high permeability zones. The main trends of the linear features as derived from the fractures analysis, as well as their relation with the distribution of volcanic centres, were identified

  11. Study on the techniques of valuation of ecosystem services based on remote sensing in Anxin County

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Li, Zengyuan; Gao, Zhihai; Wang, Bengyu; Bai, Lina; Wu, Junjun; Sun, Bin; Wang, Zhibo

    2014-05-01

    The farmland ecosystem is an important component of terrestrial ecosystems and has a fundamental role in the human life. The wetland is an unique and versatile ecological system. It is important for rational development and sustainable utilization of farmland and wetland resources to study on the measurement of valuation of farmland and wetland ecosystem services. It also has important significance for improving productivity. With the rapid development of remote sensing technology, it has become a powerful tool for evaluation of the value of ecosystem services. The land cover types in Anxin County mainly was farmland and wetland, the indicator system for ecosystem services valuation was brought up based on the remote sensing data of high spatial resolution ratio(Landsat-5 TM data and SPOT-5 data), the technology system for measurement of ecosystem services value was established. The study results show that the total ecosystem services value in 2009 in Anxin was 4.216 billion yuan, and the unit area value was between 8489 yuan/hm2 and 329535 yuan/hm2. The value of natural resources, water conservation value in farmland ecosystem and eco-tourism value in wetland ecosystem were higher than the other, total of the three values reached 2.858 billion yuan, and the percentage of the total ecosystem services values in Anxin was 67.79%. Through the statistics in the nine towns and three villages of Anxin County, the juantou town has the highest services value, reached 0.736 billion yuan. Scientific and comprehensive evaluation of the ecosystem services can conducive to promoting the understanding of the importance of the ecosystem. The research results had significance to ensure the sustainable use of wetland resources and the guidance of ecological construction in Anxin County.

  12. Irrigation Management with Remote Sensing Techniques. Crop Water Requirements and Biophysical Indicators

    NASA Astrophysics Data System (ADS)

    Toureiro, Célia; Serralheiro, Ricardo

    2013-04-01

    Saving water in irrigated agriculture is increasingly relevant, as the irrigation sector is in many regions the biggest water consumer, but must be a sustainable activity. Therefore, the need urges for water use control methods and water resources planning. In irrigated agriculture, the right way for saving water is constituted by the increase of efficiency in water management. This work validates procedures and methodologies with remote sensing to determine the water availability in the soil at each moment and therefore the opportunity for the application of the water volume strictly necessary to optimize crop growth (irrigation opportunity and irrigation amount). The analysis applied to the Irrigation District of Divor, Évora, having used 7 experiment plots, which are areas watered by center-pivot systems, cultivated to corn. Data were determined from multispectral and infrared images of the cultivated surface obtained by satellite or by flying unmanned platform and integrated with parameters of the atmosphere and of the crops for calculating biophysical indicators and indices of water stress in the vegetation (NDVI, Kc, Kcb, CWSI). Therefore, evapotranspiration (ETc) was estimated, with which crop water requirement was calculated, with the opportunity and the amount of irrigation water to allocate. As this information is geographic referenced, maps can be prepared with GIS technology, describing water situation and the opportunity for watering crops. If the remote images are available with enough high spatial and temporal resolution, the frequent availability of maps can serve as a basis for a farmers irrigation advice system and for the regional irrigation authority to make decisions on the irrigation management at the regional scale. This can be a significant contribute to an efficient water management technology and a sustainable irrigated agriculture. Key-Words: Remote Sensing, Vegetation Index, Crop Coefficients, Water Balance

  13. An overview of GNSS remote sensing

    NASA Astrophysics Data System (ADS)

    Yu, Kegen; Rizos, Chris; Burrage, Derek; Dempster, Andrew G.; Zhang, Kefei; Markgraf, Markus

    2014-12-01

    The Global Navigation Satellite System (GNSS) signals are always available, globally, and the signal structures are well known, except for those dedicated to military use. They also have some distinctive characteristics, including the use of L-band frequencies, which are particularly suited for remote sensing purposes. The idea of using GNSS signals for remote sensing - the atmosphere, oceans or Earth surface - was first proposed more than two decades ago. Since then, GNSS remote sensing has been intensively investigated in terms of proof of concept studies, signal processing methodologies, theory and algorithm development, and various satellite-borne, airborne and ground-based experiments. It has been demonstrated that GNSS remote sensing can be used as an alternative passive remote sensing technology. Space agencies such as NASA, NOAA, EUMETSAT and ESA have already funded, or will fund in the future, a number of projects/missions which focus on a variety of GNSS remote sensing applications. It is envisaged that GNSS remote sensing can be either exploited to perform remote sensing tasks on an independent basis or combined with other techniques to address more complex applications. This paper provides an overview of the state of the art of this relatively new and, in some respects, underutilised remote sensing technique. Also addressed are relevant challenging issues associated with GNSS remote sensing services and the performance enhancement of GNSS remote sensing to accurately and reliably retrieve a range of geophysical parameters.

  14. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  15. Species identification of mixed algal bloom in the Northern Arabian Sea using remote sensing techniques.

    PubMed

    Dwivedi, R; Rafeeq, M; Smitha, B R; Padmakumar, K B; Thomas, Lathika Cicily; Sanjeevan, V N; Prakash, Prince; Raman, Mini

    2015-02-01

    Oceanic waters of the Northern Arabian Sea experience massive algal blooms during winter-spring (mid Feb-end Mar), which prevail for at least for 3 months covering the entire northern half of the basin from east to west. Ship cruises were conducted during winter-spring of 2001-2012 covering different stages of the bloom to study the biogeochemistry of the region. Phytoplankton analysis indicated the presence of green tides of dinoflagellate, Noctiluca scintillans (=N. miliaris), in the oceanic waters. Our observations indicated that diatoms are coupled and often co-exist with N. scintillans, making it a mixed-species ecosystem. In this paper, we describe an approach for detection of bloom-forming algae N. scintillans and its discrimination from diatoms using Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua data in a mixed-species environment. In situ remote sensing reflectance spectra were generated using Satlantic™ hyperspectral radiometer for the bloom and non-bloom waters. Spectral shapes of the reflectance spectra for different water types were distinct, and the same were used for species identification. Scatter of points representing different phytoplankton classes on a derivative plot revealed four diverse clusters, viz. N. scintillans, diatoms, non-bloom oceanic, and non-bloom coastal waters. The criteria developed for species discrimination were implemented on MODIS data and validated using inputs from a recent ship cruise conducted in March 2013.

  16. Modelling submerged coastal environments: Remote sensing technologies, techniques, and comparative analysis

    NASA Astrophysics Data System (ADS)

    Dillon, Chris

    Built upon remote sensing and GIS littoral zone characterization methodologies of the past decade, a series of loosely coupled models aimed to test, compare and synthesize multi-beam SONAR (MBES), Airborne LiDAR Bathymetry (ALB), and satellite based optical data sets in the Gulf of St. Lawrence, Canada, eco-region. Bathymetry and relative intensity metrics for the MBES and ALB data sets were run through a quantitative and qualitative comparison, which included outputs from the Benthic Terrain Modeller (BTM) tool. Substrate classification based on relative intensities of respective data sets and textural indices generated using grey level co-occurrence matrices (GLCM) were investigated. A spatial modelling framework built in ArcGIS(TM) for the derivation of bathymetric data sets from optical satellite imagery was also tested for proof of concept and validation. Where possible, efficiencies and semi-automation for repeatable testing was achieved using ArcGIS(TM) ModelBuilder. The findings from this study could assist future decision makers in the field of coastal management and hydrographic studies. Keywords: Seafloor terrain characterization, Benthic Terrain Modeller (BTM), Multi-beam SONAR, Airborne LiDAR Bathymetry, Satellite Derived Bathymetry, ArcGISTM ModelBuilder, Textural analysis, Substrate classification.

  17. Species identification of mixed algal bloom in the Northern Arabian Sea using remote sensing techniques.

    PubMed

    Dwivedi, R; Rafeeq, M; Smitha, B R; Padmakumar, K B; Thomas, Lathika Cicily; Sanjeevan, V N; Prakash, Prince; Raman, Mini

    2015-02-01

    Oceanic waters of the Northern Arabian Sea experience massive algal blooms during winter-spring (mid Feb-end Mar), which prevail for at least for 3 months covering the entire northern half of the basin from east to west. Ship cruises were conducted during winter-spring of 2001-2012 covering different stages of the bloom to study the biogeochemistry of the region. Phytoplankton analysis indicated the presence of green tides of dinoflagellate, Noctiluca scintillans (=N. miliaris), in the oceanic waters. Our observations indicated that diatoms are coupled and often co-exist with N. scintillans, making it a mixed-species ecosystem. In this paper, we describe an approach for detection of bloom-forming algae N. scintillans and its discrimination from diatoms using Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua data in a mixed-species environment. In situ remote sensing reflectance spectra were generated using Satlantic™ hyperspectral radiometer for the bloom and non-bloom waters. Spectral shapes of the reflectance spectra for different water types were distinct, and the same were used for species identification. Scatter of points representing different phytoplankton classes on a derivative plot revealed four diverse clusters, viz. N. scintillans, diatoms, non-bloom oceanic, and non-bloom coastal waters. The criteria developed for species discrimination were implemented on MODIS data and validated using inputs from a recent ship cruise conducted in March 2013. PMID:25638059

  18. Remote sensing and object-based techniques for mapping fine-scale industrial disturbances

    NASA Astrophysics Data System (ADS)

    Powers, Ryan P.; Hermosilla, Txomin; Coops, Nicholas C.; Chen, Gang

    2015-02-01

    Remote sensing provides an important data source for the detection and monitoring of disturbances; however, using this data to recognize fine-spatial resolution industrial disturbances dispersed across extensive areas presents unique challenges (e.g., accurate delineation and identification) and deserves further investigation. In this study, we present and assess a geographic object-based image analysis (GEOBIA) approach with high-spatial resolution imagery (SPOT 5) to map industrial disturbances using the oil sands region of Alberta's northeastern boreal forest as a case study. Key components of this study were (i) the development of additional spectral, texture, and geometrical descriptors for characterizing image-objects (groups of alike pixels) and their contextual properties, and (ii) the introduction of decision trees with boosting to perform the object-based land cover classification. Results indicate that the approach achieved an overall accuracy of 88%, and that all descriptor groups provided relevant information for the classification. Despite challenges remaining (e.g., distinguishing between spectrally similar classes, or placing discrete boundaries), the approach was able to effectively delineate and classify fine-spatial resolution industrial disturbances.

  19. Virtual Sensors: Using Data Mining Techniques to Efficiently Estimate Remote Sensing Spectra

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Oza, Nikunj; Stroeve, Julienne

    2004-01-01

    Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. These instruments are sometimes built in a phased approach, with some measurement capabilities being added in later phases. In other cases, there may not be a planned increase in measurement capability, but technology may mature to the point that it offers new measurement capabilities that were not available before. In still other cases, detailed spectral measurements may be too costly to perform on a large sample. Thus, lower resolution instruments with lower associated cost may be used to take the majority of measurements. Higher resolution instruments, with a higher associated cost may be used to take only a small fraction of the measurements in a given area. Many applied science questions that are relevant to the remote sensing community need to be addressed by analyzing enormous amounts of data that were generated from instruments with disparate measurement capability. This paper addresses this problem by demonstrating methods to produce high accuracy estimates of spectra with an associated measure of uncertainty from data that is perhaps nonlinearly correlated with the spectra. In particular, we demonstrate multi-layer perceptrons (MLPs), Support Vector Machines (SVMs) with Radial Basis Function (RBF) kernels, and SVMs with Mixture Density Mercer Kernels (MDMK). We call this type of an estimator a Virtual Sensor because it predicts, with a measure of uncertainty, unmeasured spectral phenomena.

  20. Textbooks and technical references for remote sensing

    NASA Technical Reports Server (NTRS)

    Rudd, R. D.; Bowden, L. W.; Colwell, R. N.; Estes, J. E.

    1980-01-01

    A selective bibliography is presented which cites 89 textbooks, monographs, and articles covering introductory and advanced remote sensing techniques, photointerpretation, photogrammetry, and image processing.

  1. On the detection of adobe buried archaeological structures using multiscale remote sensing techniques : Piramide Naranja in Cahuachi (Peru)

    NASA Astrophysics Data System (ADS)

    Masini, N.; Rizzo, E.; Lasaponara, R.; Orefici, G.

    2009-04-01

    The detection of buried adobe structures is a crucial issue for the remote sensing (ground, aerial and satellite) applied to archaeology for the widespread of sun-dried earth as building material in several ancient civilizations in Central and Southern America, Middle East and North Africa. Moreover it is complex, due to the subtle contrast existing between the archaeological features and the surrounding, especially in arid setting, as in the case of the well know Nazca Ceremonial Centre of Cahuachi, located in the desert of Nazca (Southern Peru) . During the last two decades of excavations adobe monuments dating back from the 6th century B.C. to the 4th century A.D have been highlighted by the Centro de Estudios Arqueológicos Precolombinos (CEAP), an italian-peruvian mission directed by Giuseppe Orefici. Actually, the archaeologists are excavating and restoring the core of the Ceremonial centre where is located a great pyramid (kown as Gran Piramide). Beginning from 2007 the two institutes of CNR, IMAA and IBAM, have been involved by CEAP, in order to provide a scientific and technological support for the archaeological research. Therefore, a multi-scale approach based on the integration of aerial and satellite remote sensing with geophysical techniques was employed in order to provide data useful for archaeological excavations. The abstract refers to the last investigations performed on a mound, known as "Piramide Naranja", during the 2008. The processing of an aerial imagery time series and two QuickBird satellite images acquired in 2002 and 2005, allowed for identifying some features related to shallow and buried structures. Such features were verified by means of geophysical prospections, performed by using the magnetometric method which observed changes in the magnetic field within the first few metres beneath the subsurface detecting buried walls and anomalies linked to ceramic deposits referable to possible tombs. Finally, the integration of all data

  2. Application of Hyperspectral Remote Sensing Techniques to Evaluate Water Quality in Turbid Coastal Waters of South Carolina.

    NASA Astrophysics Data System (ADS)

    Ali, K. A.; Ryan, K.

    2014-12-01

    Coastal and inland waters represent a diverse set of resources that support natural habitat and provide valuable ecosystem services to the human population. Conventional techniques to monitor water quality using in situ sensors and laboratory analysis of water samples can be very time- and cost-intensive. Alternatively, remote sensing techniques offer better spatial coverage and temporal resolution to accurately characterize the dynamic and unique water quality parameters. Existing remote sensing ocean color products, such as the water quality proxy chlorophyll-a, are based on ocean derived bio-optical models that are primarily calibrated in Case 1 type waters. These traditional models fail to work when applied in turbid (Case 2 type), coastal waters due to spectral interference from other associated color producing agents such as colored dissolved organic matter and suspended sediments. In this work, we introduce a novel technique for the predictive modeling of chlorophyll-a using a multivariate-based approach applied to in situ hyperspectral radiometric data collected from the coastal waters of Long Bay, South Carolina. This method uses a partial least-squares regression model to identify prominent wavelengths that are more sensitive to chlorophyll-a relative to other associated color-producing agents. The new model was able to explain 80% of the observed chlorophyll-a variability in Long Bay with RMSE = 2.03 μg/L. This approach capitalizes on the spectral advantage gained from current and future hyperspectral sensors, thus providing a more robust predicting model. This enhanced mode of water quality monitoring in marine environments will provide insight to point-sources and problem areas that may contribute to a decline in water quality. The utility of this tool is in its versatility to a diverse set of coastal waters and its use by coastal and fisheries managers with regard to recreation, regulation, economic and public health purposes.

  3. Assessment of practicality of remote sensing techniques for a study of the effects of strip mining in Alabama

    NASA Technical Reports Server (NTRS)

    Hughes, T. H.; Dillion, A. C., III; White, J. R., Jr.; Drummond, S. E., Jr.; Hooks, W. G.

    1975-01-01

    Because of the volume of coal produced by strip mining, the proximity of mining operations, and the diversity of mining methods (e.g. contour stripping, area stripping, multiple seam stripping, and augering, as well as underground mining), the Warrior Coal Basin seemed best suited for initial studies on the physical impact of strip mining in Alabama. Two test sites, (Cordova and Searles) representative of the various strip mining techniques and environmental problems, were chosen for intensive studies of the correlation between remote sensing and ground truth data. Efforts were eventually concentrated in the Searles Area, since it is more accessible and offers a better opportunity for study of erosional and depositional processes than the Cordova Area.

  4. Techniques of the environmental observer: India's earth remote sensing program in the age of global information

    NASA Astrophysics Data System (ADS)

    Denicola, Lane A.

    This research examines the emergence in India of earth remote sensing (ERS), a principal medium for environmental analysis, communication, and policy-making. ERS---the science and "craft" of analyzing images of terrestrial phenomena collected by aircraft or satellite---constitutes an information technology whose predominance in environmental discourse has grown continuously since first proposed for such applications by American researchers in 1962. Raising many thorny issues in information access and control, the use and popularization of ERS has intensified dramatically since the mid-1980s. In Westernized discourse (both popular and expert), space research and industry are often depicted at a double-remove from the so-called "developing world," where exotic technologies and esoteric goals are overshadowed by patent human needs and a lack of basic infrastructure. Yet advocates hail the utility of ERS in socially relevant applications, and India has amassed upwards of five decades of experience in space, with systems and products rivaled today only by those of the United States and China. A multi-sited ethnography of a nascent visual medium, the dissertation triangulates on its topic by tracing three analytical threads: (1) a diachronic analysis of Indian ERS satellites as an allegory of statehood and participation in the global present, (2) a synchronic analysis of ERS imagery as a discursive artifact and global information commodity, and (3) an analysis of interpretive practice as observed through a single class of Indian and foreign students at the Indian Institute of Remote Sensing (IIRS), considered here as an "interpretive community" of environmental experts. The dissertation is the result of four years of research with ERS students, faculty, researchers, users and administrators in the U.S., the U.K., Turkey and India. In particular, I conducted nine months of ethnographic fieldwork in India in 2002 and 2005, the latter half of which was spent in participant

  5. Application of multispectral remote sensing techniques for dismissed mine sites monitoring and rehabilitation

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia

    2007-09-01

    Mining activities, expecially those operated in open air (open pit), present a deep impact on the sourrondings. Such an impact, and the related problems, are directly related to the correct operation of the activities, and usually strongly interact with the environment. Impact can be mainly related to the following issues: high volumes of handled material, ii) generation of dust, noise and vibrations, water pollution, visual impact and, finally, mining area recovery at the end of exploitation activities. All these aspects can be considered very important, and must be properly evaluated and monitored. Environmental impact control is usually carried out during and after the end of the mining activities, adopting methods related to the detection, collection, analysis of specific environmental indicators and with their further comparison with reference thresholding values stated by official regulations. Aim of the study was to investigate, and critically evaluate, the problems related to development of an integrated set of procedures based on the collection and the analysis of remote sensed data in order to evaluate the effect of rehabilitation of land contaminated by extractive industry activities. Starting from the results of these analyses, a monitoring and registration of the environmental impact of such operations was performed by the application and the integration of modern information technologies, as the previous mentioned Earth Observation (EO), with Geographic Information Systems (GIS). The study was developed with reference to different dismissed mine sites in India, Thailand and China. The results of the study have been utilized as input for the construction of a knowledge based decision support system finalized to help in the identification of the appropriate rehabilitation technologies for all those dismissed area previously interested by extractive industry activities. The work was financially supported within the framework of the Project ASIA IT&C - CN

  6. Hyperspectral Remote Sensing Techniques in Predicting Phycocyanin Concentrations in Cyanobacteria: A Comprehensive Study

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Mishra, D. R.; Schluchter, W. M.

    2009-12-01

    The purpose of this research was to evaluate the performance of existing spectral band ratio algorithms and develop a novel algorithm to quantify phycocyanin (PC) in cyanobacteria using hyperspectral remotely-sensed data. We performed four spectroscopic experiments on two different laboratory cultured cyanobacterial species and found that the existing band ratio algorithms are highly sensitive to chlorophylls, making them inaccurate in predicting cyanobacterial abundance in the presence of other chlorophyll-containing organisms. Our results also show that the widely used 654 nm reflectance peak in existing algorithms is highly sensitive to changes in chlorophyll-a concentration and offers poor PC predictive ability. We present a novel spectral band ratio algorithm that is least sensitive to the presence of chlorophyll. The newly developed band ratio model showed promising results by yielding low root mean squared error (RMSE, 15,260 cells mL-1) and significantly low relative root mean squared error (RMS, 101%) as compared to the existing band ratio algorithms. Natural logarithmic transformation of the new model yielded the lowest RMSE (13,885 cells mL-1) and a high coefficient of determination (0.95) between measured and predicted PC concentration. We also show that the new algorithm is species independent and accurately retrieves PC concentration in the presence of varying amount of chlorophyll-a in the system. Band setting of the model confirms that it can be used for retrieval of PC using hyperspectral sensors such as Hyperion as well as data acquired by other airborne sensors. Figure (A, B, C) Percent reflectance spectra of Synechocystis PCC 6803 from Exp I, II, III respectively. (D) Percent reflectance spectra of Anabaena from Exp IV. Data collected from these experiments were included in the evaluation of existing PC predictive models and the calibration and validation of the new spectral band ratio model.

  7. Remote sensing techniques to monitor nitrogen-driven carbon dynamics in field corn

    NASA Astrophysics Data System (ADS)

    Corp, Lawrence A.; Middleton, Elizabeth M.; Campbell, Petya K. E.; Huemmrich, K. Fred; Cheng, Yen-Ben; Daughtry, Craig S. T.

    2009-08-01

    Patterns of change in vegetation growth and condition are one of the primary indicators of the present and future ecological status of the globe. Nitrogen (N) is involved in photochemical processes and is one of the primary resources regulating plant growth. As a result, biological carbon (C) sequestration is driven by N availability. Large scale monitoring of photosynthetic processes are currently possible only with remote sensing systems that rely heavily on passive reflectance (R) information. Unlike R, fluorescence (F) emitted from chlorophyll is directly related to photochemical reactions and has been extensively used for the elucidation of the photosynthetic pathways. Recent advances in passive fluorescence instrumentation have made the remote acquisition of solar-induced fluorescence possible. The goal of this effort is to evaluate existing reflectance and emerging fluorescence methodologies for determining vegetation parameters related to photosynthetic function and carbon sequestration dynamics in plants. Field corn N treatment levels of 280, 140, 70, and 0 kg N / ha were sampled from an intensive test site for a multi-disciplinary project, Optimizing Production Inputs for Economic and Environmental Enhancement (OPE). Aircraft, near-ground, and leaf-level measurements were used to compare and contrast treatment effects within this experiment site assessed with both reflectance and fluorescence approaches. A number of spectral indices including the R derivative index D730/D705, the normalized difference of R750 vs. R705, and simple ratio R800/R750 differentiated three of the four N fertilization rates and yielded high correlations to three important carbon parameters: C:N, light use efficiency, and grain yield. These results advocate the application of hyperspectral sensors for remotely monitoring carbon cycle dynamics in terrestrial ecosystems.

  8. Himalayan glaciers: Combining remote sensing, field techniques and indigenous knowledge to understand spatio-temporal patterns of glacier changes and their impact on water resources

    NASA Astrophysics Data System (ADS)

    Racoviteanu, Adina

    With contradictory statements about "disappearing Himalayan glaciers" in the last few years, increasing concerns have been raised about the impact of snow and glacier changes on regional water supplies. Concomitantly, local communities in the western Himalaya report changes in glacier extents, snow cover and weather patterns. In response to perceived water scarcity, indigenous Himalayan cultures have begun a number of adaptive responses such as meltwater harvesting to construct "artificial" glaciers. This research addresses the need for a detailed assessment of glacier and climate parameters in the Himalaya, with the goal of identifying "at risk" glacierized areas and helping these local communities plan future water resources. The objectives of the research are threefold: 1) to review existing knowledge about glacier fluctuations and remote sensing methods for glacier mapping in the Himalaya; 3) to quantify spatio-temporal patterns of glacier changes in the eastern Himalaya in the last decades using remote sensing techniques and field measurements and 3) to quantify the role of glacier melt to streamflow using a combination of remote sensing and isotopic techniques. This thesis focuses on the monsoon-influenced eastern Himalaya (the Langtang and Khumbu regions in the Nepal Himalaya, and Sikkim in the Indian Himalaya). The research is grounded in extensive field surveys conducted from 2006 to 2010 across the Himalaya, including glacier mass balance expeditions, water sampling, ground-control point (GCP) acquisition and GPS-enabled photos. The goal of this research is to understand how topographic and climatic factors influence the rates of glacier change at various spatial scales, and how these changes re likely to affect future water resources. Multi-temporal (decadal) glacier datasets were derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor, Landsat ETM+, older topographic maps, declassified Corona imagery and very high

  9. Remote sensing of auroral E region plasma structures by radio, radar, and UV techniques at solar minimum

    SciTech Connect

    Basu, S.; Valladares, C.E. ); Basu, S.; Eastes, R.; Huffman, R.E. ); Daniell, R.E. ); Chaturvedi, P.K. ); Livingston, R.C. )

    1993-02-01

    The unique capability of the Polar BEAR satellite to simultaneously image auroral luminosities at multiple ultraviolet (UV) wavelengths and to remote sense large-scale (hundreds to tens of kilometers) and small-scale (kilometers to hundreds of meters) plasma density structures with its multifrequency beacon package is utilized to probe the auroral E region in the vicinity of the incoherent scatter radar (ISR) facility near Sondrestrom. In particular, we present coordinated observations on two nights obtained during the sunspot minimum (sunspot number < 10) January-February 1987 period when good spatial and temporal conjunction was obtained between Polar BEAR overflights and Sondrestrom ISR measurements. With careful coordinated observations we were able to confirm that the energetic particle precipitation responsible for the UV emissions causes the electron density increases in the E region. The integrations up to the topside of these ISR electron density profiles were consistent with the total electron content (TEC) measured by the Polar BEAR satellite. An electron transport model was utilized to determine quantitatively the electron density profiles which could be produced by the particle precipitation, which also produced multiple UV emissions measured by the imager; these profiles were found to be in good agreement with the observed ISR profiles in the E region. This outer scale size is also consistent with the measured phase to amplitude scintillation ratio. An estimate of the linear growth rate of the gradient-drift instability in the E region shows that these plasma density irregularities could have been generated by this process. The mutual consistency of these different sets of measurements provides confidence in the ability of the different techniques to remote sense large- and small-scale plasma density structures in the E region at least during sunspot minimum when the convection-dominated high-latitude F region is fairly weak. 56 refs., 16 figs.

  10. Estimating primary productivity of tropical oil palm in Malaysia using remote sensing technique and ancillary data

    NASA Astrophysics Data System (ADS)

    Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.

    2014-10-01

    The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (<10 years old), as young oil palm trees contribute to lower oil palm LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.

  11. Technical keynote address on remote sensing

    NASA Technical Reports Server (NTRS)

    Holter, M. R.; Park, A. B.

    1972-01-01

    A review of remote sensing techniques is presented. Various types of remote sensors are described and the platforms used to mount the sensors are examined. Examples of remote sensing by aerial photography in infrared, ultraviolet, and visual spectra are included. The types of equipment are designated and their specific areas of application are defined. It is concluded that the primary objective of remote sensing is to contribute to man's ability to manage and use the terrestrial environment.

  12. Remote sensing for urban planning

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Schmidt, Nicholas; Jensen, John R.; Cowen, Dave J.; Halls, Joanne; Narumalani, Sunil; Burgess, Bryan

    1994-01-01

    Utility companies are challenged to provide services to a highly dynamic customer base. With factory closures and shifts in employment becoming a routine occurrence, the utility industry must develop new techniques to maintain records and plan for expected growth. BellSouth Telecommunications, the largest of the Bell telephone companies, currently serves over 13 million residences and 2 million commercial customers. Tracking the movement of customers and scheduling the delivery of service are major tasks for BellSouth that require intensive manpower and sophisticated information management techniques. Through NASA's Commercial Remote Sensing Program Office, BellSouth is investigating the utility of remote sensing and geographic information system techniques to forecast residential development. This paper highlights the initial results of this project, which indicate a high correlation between the U.S. Bureau of Census block group statistics and statistics derived from remote sensing data.

  13. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    EPA Science Inventory

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  14. An integrated study of earth resources in the state of California using remote sensing techniques. [planning and management of water resources

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.; Churchman, C. W.; Burgy, R. H.; Schubert, G.; Estes, J. E.; Bowden, L. W.; Algazi, R.; Coulson, K. L. (Principal Investigator)

    1973-01-01

    The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources.

  15. Remote sensing aids geologic mapping.

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1973-01-01

    Remote sensing techniques have been applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is to be used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area. Regional and local geologic mapping can be aided by the proper application of remote sensing techniques. Conventional color and color infrared photos contain a large amount of easily-extractable general geologic information and are easily used by geologists untrained in the field of remote sensing. Other kinds of sensor data used in this study, with the exception of SLAR imagery, were generally found to be impractical or unappropriate for broad-scale general geologic mapping.

  16. Mississippi Sound Remote Sensing Study

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  17. Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Pathak, S.; Bhadra, B. K.; Sharma, J. R.

    2012-07-01

    The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized

  18. Applications of remote sensing to watershed management

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1975-01-01

    Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.

  19. Use of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Powell, N. L.; Newhouse, M. E.

    1974-01-01

    Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated.

  20. Morphostructural characterization of the western edge of the Huila Plateau (SW Angola), based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Lopes, Fernando Carlos; Pereira, Alcides José; Mantas, Vasco Manuel; Mpengo, Horácio Kativa

    2016-05-01

    Recognition of the main morphostructural features of the western edge of the Huila Plateau (SW Angola) can be done by using remote sensing techniques associated with field work. A digital elevation model (DEM) of the area was built for this purpose. This model is based on altimeter data acquired from the Aster sensor, on which image processing techniques such as enhancement techniques, contrast change and filtering were applied. Other techniques, such as RGB colour composition, were also tested. The processed satellite images were interpreted by visual process and the results were then compared with available geological maps (scale 1: 1 000 000). To facilitate both analysis and interpretation, the edge of the plateau was divided into three sectors: northern (or Chongoroi Edge), central (or Humpata Edge) and southern (or Oncocua Edge). For each sector, the main morphological aspects and main lineament systems were identified and characterized. In the specific case of the central sector, these parameters were also confirmed by field work. This study shows that the morphology of the western edge of the plateau is dominated by N50°W-N60°W, N60°E and N-S trending main tectonic systems. These results have important implications in terms of geological mapping and regional tectonics as well as in land-use planning and other areas, such as hydrogeology or geotechnics.

  1. Remote Sensing in Environmental Education.

    ERIC Educational Resources Information Center

    Huber, Thomas P.

    1983-01-01

    Describes general concepts of remote sensing and provides three examples of how its techniques have been used in the context of environmental issues. Examples focus on the use of this data gathering technique in the visible (aerial photography), near infrared, and thermal infrared ranges. (JN)

  2. Remote sensing. [land use mapping

    NASA Technical Reports Server (NTRS)

    Jinich, A.

    1979-01-01

    Various imaging techniques are outlined for use in mapping, land use, and land management in Mexico. Among the techniques discussed are pattern recognition and photographic processing. The utilization of information from remote sensing devices on satellites are studied. Multispectral band scanners are examined and software, hardware, and other program requirements are surveyed.

  3. Streamlined environmental remediation characterization using remote sensing techniques: Case studies for the US Department of Energy, Oak Ridge Operations

    SciTech Connect

    Carden, D.M.; Smyre, J.L.; Evers, T.K.; King, A.L.

    1996-07-01

    This paper provides an overview of the DOE Oak Ridge Operations Remote Sensing Program and discusses how data from this program have assisted the environmental restoration program in streamlining site-characterization activities. Three case studies are described where remote sensing imagery has provided a more focused understanding of site problems with a resultant reduction in the need for costly and time-consuming, ground-based sampling approaches.

  4. Remote Sensing of Environmental Pollution

    NASA Technical Reports Server (NTRS)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  5. Sun Photometer Laser and Lamp Based Radiometric Calibrations; Comparison with the Langley Technique and Implications on Remote Sensing

    NASA Astrophysics Data System (ADS)

    Souaidia, N.; Pietras, C.; Brown, S. W.; Lykke, K. R.; Frouin, R.; Deschamps, P.; Fargion, G.; Johnson, B. C.

    2002-12-01

    Satellite-based remote sensing of the earth is a valuable data source for biological and oceanic studies. However when using remote sensing, it is necessary to correct the measured signal for atmospheric effects. As aerosols play a major role in atmospheric scattering, correcting algorithms based on Aerosol Optical Thickness (AOT) data have been developed to describe the scattering of radiation by aerosols. AOT data are collected by filter radiometers measuring the solar irradiance. The AOT is then retrieved applying the Beer-Bouger-Lambert Law to those measurements. Two radiometers, called Satellite Validation for Marine Biology and Aerosol Determination (SimbadA), were calibrated in this study. These instruments measure the upwelling radiance from the ocean as well as the solar irradiance, providing information on both marine reflectance and AOT. The goals of this study were to calibrate the radiometers using independent methods, evaluate the uncertainties for each method, and assess the influence of the results in terms of the science requirements. The radiometers were calibrated in irradiance and radiance mode using a monochromatic, laser-illuminated integrating sphere, in radiance mode using two different lamp-illuminated integrating spheres, and in irradiance mode using the Langley technique. First, a limited characterization of the instrument was conducted. The instrument's temporal stability and its spectral out-of-band response were evaluated. The instrument was then calibrated in radiance mode using a laser-illuminated integrating sphere that overfilled its field of view (FOV). The absolute radiance responsivity from this calibration was compared to results from measurements of two calibrated lamp illuminated spheres. The first comparison, with the NIST portable radiometric source (NPR), was a validation as good agreement between the two methods has been reported in previous studies. The second comparison was with the Hardy sphere from the Goddard Space

  6. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques.

    PubMed

    Thilagavathi, N; Subramani, T; Suresh, M; Karunanidhi, D

    2015-04-01

    This study proposes to introduce the remote sensing and geographic information system (GIS) techniques in mapping the groundwater potential zones. Remote sensing and GIS techniques have been used to map the groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India. Charnockites and fissile hornblende biotite gneiss are the major rock types in this region. Dunites and peridodites are the ultramafic rocks which cut across the foliation planes of the gneisses and are highly weathered. It comprises magnesite and chromite deposits which are excavated by five mining companies by adopting bench mining. The thickness of weathered and fracture zone varies from 2.2 to 50 m in gneissic formation and 5.8 to 55 m in charnockite. At the contacts of gneiss and charnockite, the thickness ranges from 9.0 to 90.8 m favoring good groundwater potential. The mine lease area is underlined by fractured and sheared hornblende biotite gneiss where groundwater potential is good. Water catchment tanks in this area of 5 km radius are small to moderate in size and are only seasonal. They remain dry during summer seasons. As perennial water resources are remote, the domestic and agricultural activities in this region depend mainly upon the groundwater resources. The mines are located in gently slope area, and accumulation of water is not observed except in mine pits even during the monsoon period. Therefore, it is essential to map the groundwater potential zones for proper management of the aquifer system. Satellite imageries were also used to extract lineaments, hydrogeomorphic landforms, drainage patterns, and land use, which are the major controlling factors for the occurrence of groundwater. Various thematic layers pertaining to groundwater existence such as geology, geomorphology, land use/land cover, lineament, lineament density, drainage, drainage density, slope, and soil were generated using GIS tools. By integrating all the above thematic layers based on the ranks and

  7. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques.

    PubMed

    Thilagavathi, N; Subramani, T; Suresh, M; Karunanidhi, D

    2015-04-01

    This study proposes to introduce the remote sensing and geographic information system (GIS) techniques in mapping the groundwater potential zones. Remote sensing and GIS techniques have been used to map the groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India. Charnockites and fissile hornblende biotite gneiss are the major rock types in this region. Dunites and peridodites are the ultramafic rocks which cut across the foliation planes of the gneisses and are highly weathered. It comprises magnesite and chromite deposits which are excavated by five mining companies by adopting bench mining. The thickness of weathered and fracture zone varies from 2.2 to 50 m in gneissic formation and 5.8 to 55 m in charnockite. At the contacts of gneiss and charnockite, the thickness ranges from 9.0 to 90.8 m favoring good groundwater potential. The mine lease area is underlined by fractured and sheared hornblende biotite gneiss where groundwater potential is good. Water catchment tanks in this area of 5 km radius are small to moderate in size and are only seasonal. They remain dry during summer seasons. As perennial water resources are remote, the domestic and agricultural activities in this region depend mainly upon the groundwater resources. The mines are located in gently slope area, and accumulation of water is not observed except in mine pits even during the monsoon period. Therefore, it is essential to map the groundwater potential zones for proper management of the aquifer system. Satellite imageries were also used to extract lineaments, hydrogeomorphic landforms, drainage patterns, and land use, which are the major controlling factors for the occurrence of groundwater. Various thematic layers pertaining to groundwater existence such as geology, geomorphology, land use/land cover, lineament, lineament density, drainage, drainage density, slope, and soil were generated using GIS tools. By integrating all the above thematic layers based on the ranks and

  8. Applying aerial digital photography as a spectral remote sensing technique for macrophytic cover assessment in small rural streams

    NASA Astrophysics Data System (ADS)

    Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.

    2011-12-01

    Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (<3m width). In the current study, a remote sensing approach for monitoring and research of small ecosystem was developed. The method is based on differentiation between two indicative vegetation species out of the ecosystem flora. Since when studied, the channel was covered mostly by a filamentous green alga (Cladophora glomerata) and watercress (Nasturtium officinale), these species were chosen as indicative; nonetheless, common reed (Phragmites australis) was also classified in order to exclude it from the stream ROI. The procedure included: A. For both section and habitat scales classifications, acquisition of aerial digital RGB datasets. B. For section scale classification, hyperspectral (HSR) dataset acquisition. C. For calibration, HSR reflectance measurements of specific ground targets, in close proximity to each dataset acquisition swath. D. For habitat scale classification, manual, in-stream flora grid transects classification. The digital RGB datasets were converted to reflectance units by spectral calibration against colored reference plates. These red, green, blue, white, and black EVA foam reference plates were measured by an ASD field spectrometer and each was given a spectral value. Each spectral value was later applied to the spectral calibration and radiometric correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB

  9. Remote Sensing in Archeology: Classifying Bajos of the Paten, Guatemala

    NASA Technical Reports Server (NTRS)

    Lowry, James D., Jr.

    1998-01-01

    This project focuses on the adaptation of human populations to their environments from prehistoric times to the present. It emphasizes interdisciplinary research to develop ecological baselines through the use of remotely sensed imagery, in situ field work, and the modeling of human population dynamics. It utilizes cultural and biological data from dated archaeological sites to assess the subsistence and settlement patterns of human societies in response to changing climatic and environmental conditions. The utilization of remote sensing techniques in archaeology is relatively new, exciting, and opens many doors.

  10. Romantic versus scientific perspective: the ruins of Radlin palace in Wielkopolska region in the light of remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Wilgocka, Aleksandra; Ruciński, Dominik; RÄ czkowski, Włodzimierz

    2015-06-01

    Although ruins of palace in Radlin, localized in Wielkopolska Region (Poland), could have been a great inspiration for romantic landscape painters, they were hardly considered as the subject of artistic interest. Nevertheless they stand as a marker in a landscape as a romantic background for the village on one hand and a memento for the neighbouring graveyard on another. Small scale excavations carried out in late 1950s with historical maps and analysis of still standing remains gave a general idea about wings order, localisation of main entrance and communication routs inside courtyard. Those early research thereby were the first step to change the meaning of this place from romantic to more scientific. New remote sensing technology allows move even further into scientific direction. The ruins in Radlin have been included into project ArchEO - archaeological applications of Earth Observation techniques. The main aim of the project in case of Radlin is an attempt to answer the question to what extent very high resolution optical satellite imagery might allow better understanding the spatial structure of the place. The various processing techniques were applied to facilitate the detection of archaeological features' impact on the vegetation condition. It enabled to assess the usefulness of satellite based data in recognizing specific archaeological remains. Thus, potential and limitations of satellite imagery versus other sources of spatial information like historic maps, excavation results, aerial photographs and Lidar will be discussed.

  11. Evaluation of Different Change Detection Techniques in Forestry for Improvement of Spatial Objects Extraction Algorithms by Very High Resolution Remote Sensing Digital Imagery

    NASA Astrophysics Data System (ADS)

    Amiri, N.

    2013-09-01

    Earth observations which are being useable by spatial analysis ability play an important role in detecting, management and solving environmental problems such as climate changes, deforestation, disasters, land use, water resource and carbon cycle. Remote sensing technology in combination with geospatial information system (GIS) can render reliable information on vegetation cover. Satellite Remote sensed data and GIS for land cover/use with its changes is a key to many diverse applications such as Forestry. Change detection can be defined as the process of identifying differences in the state of an object or phenomenon by observing it at different times. The analysis of the spatial extent and temporal change of vegetation cover (Forest) by using remotely sensed data is critically importance to natural resource management sciences. The main aim of this review paper is to go through the different change detection methods and algorithms based on very high resolution remote sensing imagery data, evaluate the quality of the spatial individual crown cover extraction in forests with high density, analyse, compare the results by optimized performance of control data for the same objects to provide the improvement in technique for detection and improve the mathematical sides of the change detection algorithms for high dense forests regions with different boundaries.

  12. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Johnson, J. D.; Foster, K. E.

    1977-01-01

    Descriptions of projects engaged by the Applied Remote Sensors Program in the state of Arizona are contained in an annual report for the fiscal year 1976-1977. Remote sensing techniques included thermal infrared imagery in analog and digital form and conversion of data into thermograms. Delineation of geologic areas, surveys of vegetation and inventory of resources were also presented.

  13. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan; Maiti, Subodh Kumar

    2016-11-01

    The objective of the present study is to monitor reclamation activity in mining areas. Monitoring of these reclaimed sites in the vicinity of mining areas and on closed Over Burden (OB) dumps is critical for improving the overall environmental condition, especially in developing countries where area around the mines are densely populated. The present study evaluated the reclamation success in the Block II area of Jharia coal field, India, using Landsat satellite images for the years 2000 and 2015. Four image processing methods (support vector machine, ratio vegetation index, enhanced vegetation index, and normalized difference vegetation index) were used to quantify the change in vegetation cover between the years 2000 and 2015. The study also evaluated the relationship between vegetation health and moisture content of the study area using remote sensing techniques. Statistical linear regression analysis revealed that Normalized Difference Vegetation Index (NDVI) coupled with Normalized Difference Moisture Index (NDMI) is the best method for vegetation monitoring in the study area when compared to other indices. A strong linear relationship (r(2) > 0.86) was found between NDVI and NDMI. An increase of 21% from 213.88 ha in 2000 to 258.9 ha in 2015 was observed in the vegetation cover of the reclaimed sites for an open cast mine, indicating satisfactory reclamation activity. NDVI results indicated that vegetation health also improved over the years.

  14. Remote sensing and GIS techniques for evaluation of groundwater quality in municipal corporation of Hyderabad (Zone-V), India.

    PubMed

    Asadi, S S; Vuppala, Padmaja; Reddy, M Anji

    2007-03-01

    Groundwater quality in Hyderabad has special significance and needs great attention of all concerned since it is the major alternate source of domestic, industrial and drinking water supply. The present study monitors the ground water quality, relates it to the land use / land cover and maps such quality using Remote sensing and GIS techniques for a part of Hyderabad metropolis. Thematic maps for the study are prepared by visual interpretation of SOI toposheets and linearly enhanced fused data of IRS-ID PAN and LISS-III imagery on 1:50,000 scale using AutoCAD and ARC/INFO software. Physico-chemical analysis data of the groundwater samples collected at predetermined locations forms the attribute database for the study, based on which, spatial distribution maps of major water quality parameters are prepared using curve fitting method in Arc View GIS software. Water Quality Index (WQI) was then calculated to find the suitability of water for drinking purpose. The overall view of the water quality index of the present study area revealed that most of the study area with >50 standard rating of water quality index exhibited poor, very poor and unfit water quality except in places like Banjara Hills, Erragadda and Tolichowki. Appropriate methods for improving the water quality in affected areas have been suggested.

  15. Remote sensing and GIS techniques for evaluation of groundwater quality in municipal corporation of Hyderabad (Zone-V), India.

    PubMed

    Asadi, S S; Vuppala, Padmaja; Reddy, M Anji

    2007-03-01

    Groundwater quality in Hyderabad has special significance and needs great attention of all concerned since it is the major alternate source of domestic, industrial and drinking water supply. The present study monitors the ground water quality, relates it to the land use / land cover and maps such quality using Remote sensing and GIS techniques for a part of Hyderabad metropolis. Thematic maps for the study are prepared by visual interpretation of SOI toposheets and linearly enhanced fused data of IRS-ID PAN and LISS-III imagery on 1:50,000 scale using AutoCAD and ARC/INFO software. Physico-chemical analysis data of the groundwater samples collected at predetermined locations forms the attribute database for the study, based on which, spatial distribution maps of major water quality parameters are prepared using curve fitting method in Arc View GIS software. Water Quality Index (WQI) was then calculated to find the suitability of water for drinking purpose. The overall view of the water quality index of the present study area revealed that most of the study area with >50 standard rating of water quality index exhibited poor, very poor and unfit water quality except in places like Banjara Hills, Erragadda and Tolichowki. Appropriate methods for improving the water quality in affected areas have been suggested. PMID:17431315

  16. Project OPTEX: Field study at a petrochemical facility to assess optical remote sensing and dispersion modeling techniques

    SciTech Connect

    Paien, R.J.; Zwicker, J.O.; Feldman, H.

    1997-12-31

    The American Petroleum Inst. has conducted a field study at a petrochemical facility for the purpose of (1) testing the ability of optical remote sensing (ORS) techniques to characterize fugitive emissions, and (2) assembling ambient and tracer sampler data for evaluating air dispersion models. The study, referred to as the OPTEX (Operational Petrochemical Tracer Experiment) Project, took place during October 1996 at a Texas petrochemical facility. This paper reports on the design of the field study and summarizes the measurements that were obtained in the field. Several aspects of the field study are described in the paper: the types and locations of the emission releases and tracer gases that were used, the deployment of tracer samplers at various downwind distances, the use of open-path FTIR (OP-FTIR) equipment at the site to quantify tracer gas emissions, special short-term tracer gas emissions designed to test the ability of the ORS systems to detect accidental releases, and the use of a Doppler sodar to evaluate vertical profiles of wind and turbulence upwind and downwind of the facility. The data base for this study, as well as that from an earlier field study that took place at the Duke Forest green field site in North Carolina, will be used for evaluating air dispersion model performance and the ability of ORS measurements to quantify fugitive emissions.

  17. Application of remote-sensing techniques to hydrologic studies in selected coal-mine areas of southeastern Kansas

    USGS Publications Warehouse

    Kenny, J.F.; McCauley, J.R.

    1983-01-01

    Disturbances resulting from intensive coal mining in the Cherry Creek basin of southeastern Kansas were investigated using color and color-infrared aerial photography in conjunction with water-quality data from simultaneously acquired samples. Imagery was used to identify the type and extent of vegetative cover on strip-mined lands and the extent and success of reclamation practices. Drainage patterns, point sources of acid mine drainage, and recharge areas for underground mines were located for onsite inspection. Comparison of these interpretations with water-quality data illustrated differences between the eastern and western parts of the Cherry Creek basin. Contamination in the eastern part is due largely to circulation of water from unreclaimed strip mines and collapse features through the network of underground mines and subsequent discharge of acidic drainage through seeps. Contamination in the western part is primarily caused by runoff and seepage from strip-mined lands in which surfaces have frequently been graded and limed but are generally devoid of mature stands of soil-anchoring vegetation. The successful use of aerial photography in the study of Cherry Creek basin indicates the potential of using remote-sensing techniques in studies of other coal-mined regions. (USGS)

  18. Remote Sensing and GIS Techniques for Evaluation of Groundwater Quality in Municipal Corporation of Hyderabad (Zone-V), India

    PubMed Central

    Asadi, S. S.; Vuppala, Padmaja; Reddy, M. Anji

    2007-01-01

    Groundwater quality in Hyderabad has special significance and needs great attention of all concerned since it is the major alternate source of domestic, industrial and drinking water supply. The present study monitors the ground water quality, relates it to the land use / land cover and maps such quality using Remote sensing and GIS techniques for a part of Hyderabad metropolis. Thematic maps for the study are prepared by visual interpretation of SOI toposheets and linearly enhanced fused data of IRS-ID PAN and LISS-III imagery on 1:50,000 scale using AutoCAD and ARC/INFO software. Physico-chemical analysis data of the groundwater samples collected at predetermined locations forms the attribute database for the study, based on which, spatial distribution maps of major water quality parameters are prepared using curve fitting method in Arc View GIS software. Water Quality Index (WQI) was then calculated to find the suitability of water for drinking purpose. The overall view of the water quality index of the present study area revealed that most of the study area with > 50 standard rating of water quality index exhibited poor, very poor and unfit water quality except in places like Banjara Hills, Erragadda and Tolichowki. Appropriate methods for improving the water quality in affected areas have been suggested. PMID:17431315

  19. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan; Maiti, Subodh Kumar

    2016-11-01

    The objective of the present study is to monitor reclamation activity in mining areas. Monitoring of these reclaimed sites in the vicinity of mining areas and on closed Over Burden (OB) dumps is critical for improving the overall environmental condition, especially in developing countries where area around the mines are densely populated. The present study evaluated the reclamation success in the Block II area of Jharia coal field, India, using Landsat satellite images for the years 2000 and 2015. Four image processing methods (support vector machine, ratio vegetation index, enhanced vegetation index, and normalized difference vegetation index) were used to quantify the change in vegetation cover between the years 2000 and 2015. The study also evaluated the relationship between vegetation health and moisture content of the study area using remote sensing techniques. Statistical linear regression analysis revealed that Normalized Difference Vegetation Index (NDVI) coupled with Normalized Difference Moisture Index (NDMI) is the best method for vegetation monitoring in the study area when compared to other indices. A strong linear relationship (r(2) > 0.86) was found between NDVI and NDMI. An increase of 21% from 213.88 ha in 2000 to 258.9 ha in 2015 was observed in the vegetation cover of the reclaimed sites for an open cast mine, indicating satisfactory reclamation activity. NDVI results indicated that vegetation health also improved over the years. PMID:27491028

  20. Comparison of data inversion techniques for remotely sensed wide-angle observations of Earth emitted radiation

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1981-01-01

    The shape factor, parameter estimation, and deconvolution data analysis techniques were applied to the same set of Earth emitted radiation measurements to determine the effects of different techniques on the estimated radiation field. All three techniques are defined and their assumptions, advantages, and disadvantages are discussed. Their results are compared globally, zonally, regionally, and on a spatial spectrum basis. The standard deviations of the regional differences in the derived radiant exitance varied from 7.4 W-m/2 to 13.5 W-m/2.

  1. Adaptive Multi-Objective Sub-Pixel Mapping Framework Based on Memetic Algorithm for Hyperspectral Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Zhang, L.

    2012-07-01

    Sub-pixel mapping technique can specify the location of each class within the pixels based on the assumption of spatial dependence. Traditional sub-pixel mapping algorithms only consider the spatial dependence at the pixel level. The spatial dependence of each sub-pixel is ignored and sub-pixel spatial relation is lost. In this paper, a novel multi-objective sub-pixel mapping framework based on memetic algorithm, namely MSMF, is proposed. In MSMF, the sub-pixel mapping is transformed to a multi-objective optimization problem, which maximizing the spatial dependence index (SDI) and Moran's I, synchronously. Memetic algorithm is utilized to solve the multi-objective problem, which combines global search strategies with local search heuristics. In this framework, the sub-pixel mapping problem can be solved using different evolutionary algorithms and local algorithms. In this paper, memetic algorithm based on clonal selection algorithm (CSA) and random swapping as an example is designed and applied simultaneously in the proposed MSMF. In MSMF, CSA inherits the biologic properties of human immune systems, i.e. clone, mutation, memory, to search the possible sub-pixel mapping solution in the global space. After the exploration based on CSA, the local search based on random swapping is employed to dynamically decide which neighbourhood should be selected to stress exploitation in each generation. In addition, a solution set is used in MSMF to hold and update the obtained non-dominated solutions for multi-objective problem. Experimental results demonstrate that the proposed approach outperform traditional sub-pixel mapping algorithms, and hence provide an effective option for sub-pixel mapping of hyperspectral remote sensing imagery.

  2. Land Remote Sensing Overview

    NASA Technical Reports Server (NTRS)

    Byrnes, Ray

    2007-01-01

    A general overview of the USGS land remote sensing program is presented. The contents include: 1) Brief overview of USGS land remote sensing program; 2) Highlights of JACIE work at USGS; 3) Update on NASA/USGS Landsat Data Continuity Mission; and 4) Notes on alternative data sources.

  3. Remote sensing applications program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The activities of the Mississippi Remote Sensing Center are described in addition to technology transfer and information dissemination, remote sensing topics such as timber identification, water quality, flood prevention, land use, erosion control, animal habitats, and environmental impact studies are also discussed.

  4. Computer-implemented remote sensing techniques for measuring coastal productivity and nutrient transport systems

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1981-01-01

    An automatic technique has been developed to measure marsh plant production by inference from a species classification derived from Landsat MSS data. A separate computer technique has been developed to calculate the transport path length of detritus and nutrients from their point of origin in the marsh to the shoreline from Landsat data. A nutrient availability indicator, the ratio of production to transport path length, was derived for each marsh-identified Landsat cell. The use of a data base compatible with the Landsat format facilitated data handling and computations.

  5. High-Sensitivity Optical Techniques for Atmospheric Spectroscopy, Kinetics and Remote Sensing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A principal objective of the work supported by this Grant has been to use IntraCavity Laser Absorption Spectroscopy (ICLAS) to acquire data on weakly absorbing species of atmospheric interest that are not accessible, or cannot be determined with sufficient precision, using conventional spectroscopic instrumentation. The principal focus has been to adapt the existing instrument to carry out Kinetic studies using IntraCavity Absorption Spectroscopy (KICAS) in order to measure rate parameters for weakly absorbing, environmentally significant species. Additional related work has been carried out in collaboration with Prof. M.J. Molina's program on air pollution in the Mexico City Metropolitan Area on modeling the role of these species in atmospheric chemistry.

  6. An information system design for watershed-wide modeling of water loss to the atmosphere using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1977-01-01

    Results are presented of a study intended to develop a general location-specific remote-sensing procedure for watershed-wide estimation of water loss to the atmosphere by evaporation and transpiration. The general approach involves a stepwise sequence of required information definition (input data), appropriate sample design, mathematical modeling, and evaluation of results. More specifically, the remote sensing-aided system developed to evaluate evapotranspiration employs a basic two-stage two-phase sample of three information resolution levels. Based on the discussed design, documentation, and feasibility analysis to yield timely, relatively accurate, and cost-effective evapotranspiration estimates on a watershed or subwatershed basis, work is now proceeding to implement this remote sensing-aided system.

  7. Investigations of remote sensing techniques for early detection of Dutch elm disease

    NASA Technical Reports Server (NTRS)

    Hammerschlag, R. S.; Sopstyle, W. J.

    1975-01-01

    Several forms of aerial photography were pursued in quest of a technique which could provide early detection of Dutch elm disease. The two most promising techniques tested were multispectral photography with object enhancement and biband ratioing coupled with scanning microdensitometry. For practical purposes the multispectral system has the advantage of providing a readily interpretable image in a relatively short time. Laboratory studies indicated that less emphasis should be placed on the use of a red filter or the near infrared beyond 750 mm for early detection of stress within a single plant species. Color infrared film would be optimal when used for a long term detection of loss of plant vigor which results in a physical change in a plant canopy, but should find minimal practicality for early detection of specific sources of plant stress such as Dutch elm disease. Considerable discretion should be used when interpreting imagery on copy film because of loss of resolution and color definition.

  8. Recent Developments in Monitoring of Gas and Ash in Volcanic Plumes by Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Arellano, S. R.

    2007-05-01

    Since the 1970s, a growing list of methods for the remote detection and measurement of the composition and dynamics of volcanic plumes has been available for volcanologists and atmospheric scientists. During the last decade of intensive volcanic activity in Ecuador, the use of spectroscopic techniques like COSPEC, DOAS or FTIR has become an important tool in routine volcano monitoring which has resulted in a better understanding of source and path processes related to volcanogenic gas and ash emissions with increasing spatial-temporal resolution capabilities. The most important developments achieved with these techniques include the incorporation of radiative transfer and diffusion modelling in automatic data processing routines. In addition, work is being done to identify and quantitatively estimate the presence of ash by means of UV spectroscopy. The use of these methods allowed us to follow the degassing process of Tungurahua volcano with unprecedented detail. A brief description of these improvements and their results are presented.

  9. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.

    1979-01-01

    The paper attempts to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. It is reported that investigation of the signal response shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined. Laboratory data are used to demonstrate that the technique is applicable to water mixtures which contain constituents with both linear and nonlinear radiance gradients. Finally, it is concluded that instrument noise, ground-truth placement, and time lapse between remote sensor overpass and water sample operations are serious barriers to successful use of the technique.

  10. A preliminary study of air-pollution measurement by active remote-sensing techniques

    NASA Technical Reports Server (NTRS)

    Wright, M. L.; Proctor, E. K.; Gasiorek, L. S.; Liston, E. M.

    1975-01-01

    Air pollutants are identified, and the needs for their measurement from satellites and aircraft are discussed. An assessment is made of the properties of these pollutants and of the normal atmosphere, including interactions with light of various wavelengths and the resulting effects on transmission and scattering of optical signals. The possible methods for active remote measurement are described; the relative performance capabilities of double-ended and single-ended systems are compared qualitatively; and the capabilities of the several single-ended or backscattering techniques are compared quantitatively. The differential-absorption lidar (DIAL) technique is shown to be superior to the other backscattering techniques. The lidar system parameters and their relationships to the environmental factors and the properties of pollutants are examined in detail. A computer program that models both the atmosphere (including pollutants) and the lidar system is described. The performance capabilities of present and future lidar components are assessed, and projections are made of prospective measurement capabilities for future lidar systems. Following a discussion of some important operational factors that affect both the design and measurement capabilities of airborne and satellite-based lidar systems, the extensive analytical results obtained through more than 1000 individual cases analyzed with the aid of the computer program are summarized and discussed. The conclusions are presented. Recommendations are also made for additional studies to investigate cases that could not be explored adequately during this study.

  11. Structural Analysis for Gold Mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment: Island of Lesvos, Hellas

    SciTech Connect

    Rokos, D. Argialas, D. Mavrantza, R. St Seymour, K.; Vamvoukakis, C.; Kouli, M.; Lamera, S.; Paraskevas, H.; Karfakis, I.; Denes, G

    2000-12-15

    Exploration for epithermal Au has been active lately in the Aegean Sea of the eastern Mediterranean Basin, both in the islands of the Quaternary arc and in those of the back-arc region. The purpose of this study was the structural mapping and analysis for a preliminary investigation of possible epithermal gold mineralization, using remotely sensed data and techniques, structural and field data, and geochemical information, for a specific area on the Island of Lesvos. Therefore, Landsat-TM and SPOT-Pan satellite images and the Digital Elevation Model (DEM) of the study area were processed digitally using spatial filtering techniques for the enhancement and recognition of the geologically significant lineaments, as well as algebraic operations with band ratios and Principal Component Analysis (PCA), for the identification of alteration zones. Statistical rose diagrams and a SCHMIDT projection Stereo Net were generated from the lineament maps and the collected field data (dip and strike measurements of faults, joints, and veins), respectively. The derived lineament map and the band ratio images were manipulated in a GIS environment, in order to study the relation of the tectonic pattern to both the alteration zoning and the geomorphology of the volcanic field of the study area. Target areas of high interest for possible mineralization also were specified using geochemical techniques, such as X-Ray Diffraction (XRD) analysis, trace-element, and fluid-inclusion analysis. Finally, preliminary conclusions were derived about possible mineralization, the type (high or low sulfidation), and the extent of mineralization, by combining the structural information with geochemical information.

  12. a Temporal and Spatial Analysis of Urban Heat Island in Basin City Utilizing Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Chang, Hsiao-Tung

    2016-06-01

    Urban Heat Island (UHI) has been becoming a key factor in deteriorating the urban ecological environment. Spatial-temporal analysis on its prototype of basin city's UHI and quantitatively evaluating effect from rapid urbanization will provide theoretical foundation for relieving UHI effect. Based on Landsat 8, ETM+ and TM images of Taipei basin areas from 1900 to 2015, this article has retrieved the land surface temperature (LST) at summer solstice of each year, and then analysed spatial-temporal pattern and evolution characters of UHI in Taipei basin in this decade. The results showed that the expansion built district, UHI area constantly expanded from centre city to the suburb areas. The prototype of UHI in Taipei basin that showed in addition to higher temperatures in the centre city also were relatively high temperatures gathered boundaries surrounded by foot of mountains side. It calls "sinking heat island". From 1900 to 2000, the higher UHI areas were different land use type change had obvious difference by public infrastructure works. And then, in next 15 years till 2015, building density of urban area has been increasing gradually. It has the trend that UHI flooding raises follow urban land use density. Hot spot of UHI in Taipei basin also has the same characteristics. The results suggest that anthropogenic heat release probably plays a significant role in the UHI effect, and must be considered in urban planning adaptation strategies.

  13. Diffusion coefficients and current velocities in coastal waters by remote sensing techniques.

    NASA Technical Reports Server (NTRS)

    James, W. P.

    1972-01-01

    This paper presents a simplified procedure for determining water current velocities and diffusion coefficients. Dye drops which form dye patches in the receiving water are made from an aircraft. The changes in position and size of the patches are recorded from two flights over the area. The data processing procedure requires that the ground coordinates about the dye patches be determined at the time of each flight. With an automatic recording coordinatograph for measuring coordinates and a computer for processing the data, this technique provides a practical method of determining circulation patterns and mixing characteristics of large aquatic systems.

  14. Current research in geological applications of remote sensing techniques and implications for petroleum geology

    SciTech Connect

    Settle, M.; Taranik, J.V.

    1983-03-01

    Exploration geologists have made extensive use of aerial photography and orbital Landsat imagery, primarily for purposes of structural mapping. The Landsat 4 spacecraft launched in July 1982 is carrying a new imaging instrument called the Thematic Mapper which represents a significant advance over earlier Landsat sensors. Experimental studies with airborne Thematic Mapper simulators tentatively indicate that these measurement capabilities will have a major payoff in terms of our ability to detect variations in clay mineralogy and abundance, to map bleaching effects in surficial rocks and soils that may be produced by hydrocarbon seepage, and to detect variations in the distribution and vigor of natural vegetation that are also related to seepage phenomena. The improved spatial resolution of the Thematic Mapper will enable photogeologists to identify smaller scale landforms and drainage features which will also contribute to improved structural mapping capabilities. Research is currently underway to determine the utility of Thematic Mapper measurements for geologic mapping in complex areas characterized by large relief and extensive vegetation. Radar imaging techniques also represent an important source of information concerning geological conditions at the earth's surface. Exploration geologists have made extensive use of airborne radar surveys for terrain analysis and structural mapping, particularly in tropical environments. Orbital radar techniques may provide an important new tool for mapping facies variations within sedimentary basins.

  15. Surface soil humidity retrieval using remote sensing techniques: a triangle method validation

    NASA Astrophysics Data System (ADS)

    Maltese, Antonino; Cammalleri, Carmelo; Capodici, Fulvio; Ciraolo, Giuseppe; La Loggia, Goffredo

    2010-10-01

    Soil humidity plays a key-role in hydrological and agricultural processes. In the rainfall-runoff processes the knowledge of its spatial distribution is fundamental to accurately model these phenomena. Furthermore in agronomy and agricultural sciences, assessing the water content of the root zone is required in order to optimize the plant productivity and to improve the irrigation systems management. Despite the importance of this variable the in situ measurements techniques based on Time Domain Reflectometry (TDR) or on the standard thermo-gravimetric methods, are neither cost-effective nor representative of its spatial and temporal variability. Indirect estimations via Earth Observation (EO) images include the triangle method, which shows that Land Surface Temperature (LST) is prevalently controlled by surface and root zone humidity in bare and vegetated soils respectively. The effects of pre-processing techniques correcting for altimetry and seasonality are analyzed by means of shortwave and longwave airborne images acquired on a vineyard during a whole phenological period. The paper also discusses the advantages induced by replacing the absolute temperatures with relative values, that were obtained subtracting the temperatures measured by micrometeorological station or the surface temperature of high thermal inertia surfaces (as small irrigation reservoir) chosen as reference values. The validation with in situ data also highlights that a higher spatial resolution not necessarily imply a higher accuracy.

  16. An integrated study of earth resources in the state of California using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. A weighted stratified double sample design using hardcopy LANDSAT-1 and ground data was utilized in developmental studies for snow water content estimation. Study results gave a correlation coefficient of 0.80 between LANDSAT sample units estimates of snow water content and ground subsamples. A basin snow water content estimate allowable error was given as 1.00 percent at the 99 percent confidence level with the same budget level utilized in conventional snow surveys. Several evapotranspiration estimation models were selected for efficient application at each level of data to be sampled. An area estimation procedure for impervious surface types of differing impermeability adjacent to stream channels was developed. This technique employs a double sample of 1:125,000 color infrared hightflight transparency data with ground or large scale photography.

  17. Characterization and delineation of caribou habitat on Unimak Island using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Atkinson, Brain M.

    The assessment of herbivore habitat quality is traditionally based on quantifying the forages available to the animal across their home range through ground-based techniques. While these methods are highly accurate, they can be time-consuming and highly expensive, especially for herbivores that occupy vast spatial landscapes. The Unimak Island caribou herd has been decreasing in the last decade at rates that have prompted discussion of management intervention. Frequent inclement weather in this region of Alaska has provided for little opportunity to study the caribou forage habitat on Unimak Island. The overall objectives of this study were two-fold 1) to assess the feasibility of using high-resolution color and near-infrared aerial imagery to map the forage distribution of caribou habitat on Unimak Island and 2) to assess the use of a new high-resolution multispectral satellite imagery platform, RapidEye, and use of the "red-edge" spectral band on vegetation classification accuracy. Maximum likelihood classification algorithms were used to create land cover maps in aerial and satellite imagery. Accuracy assessments and transformed divergence values were produced to assess vegetative spectral information and classification accuracy. By using RapidEye and aerial digital imagery in a hierarchical supervised classification technique, we were able to produce a high resolution land cover map of Unimak Island. We obtained overall accuracy rates of 71.4 percent which are comparable to other land cover maps using RapidEye imagery. The "red-edge" spectral band included in the RapidEye imagery provides additional spectral information that allows for a more accurate overall classification, raising overall accuracy 5.2 percent.

  18. Detecting river sediments to assess hazardous materials at volcanic lake using advanced remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Saepuloh, Asep; Fitrianingtyas, Chintya

    2016-05-01

    The Toba Caldera formed from large depression of Quaternary volcanism is a remarkable feature at the Earth surface. The last Toba super eruptions were recorded around 73 ka and produced the Youngest Toba Tuff about 2,800 km3. Since then, there is no record of significant volcanic seismicity at Toba Volcanic Complex (TVC). However, the hydrothermal activities are still on going as presented by the existence of hot springs and alteration zones at the northwest caldera. The hydrothermal fluids probably containing some chemical compositions mixed with surficial water pollutant and contaminated the Toba Lake. Therefore, an environmental issues related to the existence of chemical composition and degradation of water clearness in the lake had been raised in the local community. The pollutant sources are debatable between natural and anthropogenic influences because some human activities grow rapidly at and around the lake such as hotels, tourisms, husbandry, aquaculture, as well as urbanization. Therefore, obtaining correct information about the source materials floating at the surface of the Toba Lake is crucial for environmental and hazard mitigation purposes. Overcoming the problem, we presented this paper to assess the source possibility of floating materials at Toba Lake, especially from natural sources such as hydrothermal activities of TVC and river stream sediments. The Spectral Angle Mapper (SAM) techniques using atmospherically corrected of Landsat-8 and colour composite of Polarimetric Synthetic Aperture Radar (PolSAR) were used to map the distribution of floating materials. The seven ground truth points were used to confirm the correctness of proposed method. Based on the SAM and PolSAR techniques, we could detect the interface of hydrothermal fluid at the lake surfaces. Various distributions of stream sediment were also detected from the river mouth to the lake. The influence possibilities of the upwelling process from the bottom floor of Toba Lake were also

  19. Remote Sensing of Precipitation Using Multiparameter Radar: Statistics, Processing Algorithms and Analysis Techniques.

    NASA Astrophysics Data System (ADS)

    Liu, Li.

    With the advent of the multiparameter weather radar, i.e., dual-polarization, dual-frequency, Doppler radar, radar meteorologists have been able to study physical processes in precipitation in more detail, and the quantitative measurement of rainfall as well as the identification of different types of hydrometeors have become possible. However, the effects of propagation through the rain medium must be carefully considered whenever dual-polarization techniques are considered. The correction of propagation effects such as attenuation, differential attenuation and differential propagation phase in precipitation are very important for quantitative interpretation of echo powers at high frequencies. In this dissertation, a simplified scattering matrix with propagation effects is described. A number of parameters are derived based on the covariance matrix of the scattering element array. The processing techniques for estimating some specific parameters, such as K_{dp }, A_{x} and intrinsic LDR using the CSU-CHILL and CP-2 radar measurements, are discussed. Recent research has suggested that the copolar correlation coefficient termed rho_ {hv}(0) can be used to identify large hail and improve polarization estimates of rainfall. The typical measured values of rho_{hv }(0) at S-band vary between 0.8-1.0. For applications to hail identification the required accuracy should be within +/-0.01 while for rainfall improvement a higher accuracy is necessary, e.g., within +/-0.001. We discuss the statistics of several estimators of rho_{hv }(0) using the Gaussian spectrum approximation from both an analytical approach and via simulations. The standard deviation and bias in rho _{hv}(0) are computed as a function of number of samples, Doppler spectral width and mean rho_{hv}(0). The effect of finite signal-to-noise ratio (SNR) and phase noise are also studied via simulations. Time series data collected with the CSU-CHILL radar are analyzed and compared with the simulations. Antenna

  20. Optimal spatial sampling techniques for ground truth data in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Rao, R. G. S.; Ulaby, F. T.

    1977-01-01

    The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.

  1. Applying satellite remote sensing technique in disastrous rainfall systems around Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Gin-Rong; Chen, Kwan-Ru; Kuo, Tsung-Hua; Liu, Chian-Yi; Lin, Tang-Huang; Chen, Liang-De

    2016-05-01

    Many people in Asia regions have been suffering from disastrous rainfalls year by year. The rainfall from typhoons or tropical cyclones (TCs) is one of their key water supply sources, but from another perspective such TCs may also bring forth unexpected heavy rainfall, thereby causing flash floods, mudslides or other disasters. So far we cannot stop or change a TC route or intensity via present techniques. Instead, however we could significantly mitigate the possible heavy casualties and economic losses if we can earlier know a TC's formation and can estimate its rainfall amount and distribution more accurate before its landfalling. In light of these problems, this short article presents methods to detect a TC's formation as earlier and to delineate its rainfall potential pattern more accurate in advance. For this first part, the satellite-retrieved air-sea parameters are obtained and used to estimate the thermal and dynamic energy fields and variation over open oceans to delineate the high-possibility typhoon occurring ocean areas and cloud clusters. For the second part, an improved tropical rainfall potential (TRaP) model is proposed with better assumptions then the original TRaP for TC rainfall band rotations, rainfall amount estimation, and topographic effect correction, to obtain more accurate TC rainfall distributions, especially for hilly and mountainous areas, such as Taiwan.

  2. A study and evaluation of image analysis techniques applied to remotely sensed data

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.; Dasarathy, B. V.; Lybanon, M.; Ramapriyan, H. K.

    1976-01-01

    An analysis of phenomena causing nonlinearities in the transformation from Landsat multispectral scanner coordinates to ground coordinates is presented. Experimental results comparing rms errors at ground control points indicated a slight improvement when a nonlinear (8-parameter) transformation was used instead of an affine (6-parameter) transformation. Using a preliminary ground truth map of a test site in Alabama covering the Mobile Bay area and six Landsat images of the same scene, several classification methods were assessed. A methodology was developed for automatic change detection using classification/cluster maps. A coding scheme was employed for generation of change depiction maps indicating specific types of changes. Inter- and intraseasonal data of the Mobile Bay test area were compared to illustrate the method. A beginning was made in the study of data compression by applying a Karhunen-Loeve transform technique to a small section of the test data set. The second part of the report provides a formal documentation of the several programs developed for the analysis and assessments presented.

  3. Comparing Remote Sensing Techniques in Detecting Salmonid Habitat, Salmon River, Oregon

    NASA Astrophysics Data System (ADS)

    Shintani, C. M.

    2015-12-01

    Many restoration projects in the Pacific Northwest are implemented to improve habitat quality, quantity, and complexity for fish. Although numerous engineered log structures have been constructed in the hopes of achieving these goals, relatively few projects have been rigorously monitored to determine their success. This research seeks to compare the utility and application between photogrammetric and spectral depth approaches in detecting fish habitat in order to determine which method is more accurate and affordable for monitoring channel bathymetry. While each of these techniques has been individually studied, previous research has not directly compared and quantified their differences. Channel bathymetry data were collected by combining pre- and post-restoration digital photographs of the Salmon River in Northeast Clackamas County, Oregon, using structure-from-motion (SfM). The resulting 3D point cloud will be used to estimate water depths using photogrammetry and spectral depth. The photogrammetric method applies a refraction correction to the extracted water depth from the SfM topography to derive water depth. A regression between the surveyed water depth values and digital number values of surface pixels will derive depth. The resulting water depths from these two methods will be compared to the surveyed water depths for their accuracy and precision, particularly in critical salmonid habitats. The quantification of these differences will be an important contribution to river restoration science as it will allow for more accurate measurement and monitoring of changes in fish habitat. In the future, these data will be used in an eco-hydraulic River2D model to simulate changes in salmonid habitat availability after restoration.

  4. Efficiencies of Rotational Raman, and Rayleigh Techniques for Laser Remote Sensing of the Atmospheric Temperature

    NASA Technical Reports Server (NTRS)

    Ivanova, I. D.; Gurdev, L. L.; Mitev, V. M.

    1992-01-01

    Various lidar methods have been developed for measuring the atmospheric temperature, making use of the temperature dependant characteristics of rotational Raman scattering (RRS) from nitrogen and oxygen, and Rayleigh or Rayleigh-Brillowin scattering (RS or RBS). These methods have various advantages and disadvantages as compared to each other but their potential accuracies are principal characteristics of their efficiency. No systematic attempt has been undertaken so far to compare the efficiences, in the above meaning, of different temperature lidar methods. Two RRS techniques have been compared. Here, we do such a comparison using two methods based on the detection and analysis of RS (RBS) spectra. Four methods are considered here for measuring the atmospheric temperature. One of them (Schwiesow and Lading, 1981) is based on an analysis of the RS linewidth with two Michelson interferometers (MI) in parallel. The second method (Shimisu et al., 1986) employs a high-resolution analysis of the RBS line shape. The third method (Cooney, 1972) employs the temperature dependance of the RRS spectrum envelope. The fourth method (Armstrong, 1974) makes use of a scanning Fabry-Perot interferometer (FPI) as a comb filter for processing the periodic RRS spectrum of the nitrogen. Let us denote the corresponding errors in measuring the temperature by sigma(sub MI), sigma(sub HR), sigma(sub ENV), and sigma(sub FPI). Let us also define the ratios chi(sub 1) = sigma(sub MI)/sigma(sub ENV), chi(sub 2) = sigma(sub HR)/sigma(sub ENV), and chi(sub 3) = sigma(sub FPI)/sigma(sub ENV) interpreted as relative errors with respect to sigma(sub ENV).

  5. Potential of a New Technique for Remote Sensing of Hydrocarbon Accumulations and Blind Uranium Deposits: Buried Lif Thermoluminescence Dosimeters

    NASA Technical Reports Server (NTRS)

    Siegel, F. R.; Vaz, J. E.; Lindholm, R. C.

    1982-01-01

    Buried thermoluminescence dosimeters may be useful in remote sensing of petroleum and natural gas accumulations and blind uranium deposits. They act as integrating detectors that smooth out the effects of environmental variations that affect other measuring systems and result in irregularities and poor repeatability in measurements made during gas and radiometric surveys.

  6. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Philipson, W. R. (Principal Investigator)

    1983-01-01

    Built on Cornell's thirty years of experience in aerial photographic studies, the NASA-sponsored remote sensing program strengthened instruction and research in remote sensing, established communication links within and beyond the university community, and conducted research projects for or with town, county, state, federal, and private organizations in New York State. The 43 completed applied research projects are listed as well as 13 spinoff grants/contracts. The curriculum offered, consultations provided, and data processing facilities available are described. Publications engendered are listed including the thesis of graduates in the remote sensing program.

  7. Near-earth orbital guidance and remote sensing

    NASA Technical Reports Server (NTRS)

    Powers, W. F.

    1972-01-01

    The curriculum of a short course in remote sensing and parameter optimization is presented. The subjects discussed are: (1) basics of remote sensing and the user community, (2) multivariant spectral analysis, (3) advanced mathematics and physics of remote sensing, (4) the atmospheric environment, (5) imaging sensing, and (6)nonimaging sensing. Mathematical models of optimization techniques are developed.

  8. Reconstruction of a Tornado Disaster Employing Remote Sensing Techniques: A Case Study of the 1999 Moore, Oklahoma Tornado

    NASA Astrophysics Data System (ADS)

    Wagner, Melissa A.

    Remote sensing has demonstrated to be an instrumental tool in monitoring land changes as a result of anthropogenic change or natural disasters. Most disaster studies have focused on large-scale events with few analyzing small-scale disasters such as tornadoes. These studies have only provided a damage assessment perspective with the continued need to assess reconstruction. This study attempts to fill that void by examining recovery from the 1999 Moore, Oklahoma Tornado utilizing Landsat TM and ETM+ imagery. Recovery was assessed for 2000, 2001 and 2002 using spectral enhancements (vegetative and urban indices and a combination of the two), a recovery index and different statistical thresholds. Classification accuracy assessments were performed to determine the precision of recovery and select the best results. This analysis proved that medium resolution imagery could be used in conjunction with geospatial techniques to capture recovery. The new indices, Shortwave Infrared Index (SWIRI) and Coupled Vegetation and Urban Index (CVUI), developed for disaster management, were the most effective at discerning reconstruction using the 1.5 standard deviation threshold. Recovery rates for F-scale damages revealed that the most incredibly damaged areas associated with an F5 rating were the slowest to recover, while the lesser damaged areas associated with F1-F3 ratings were the quickest to rebuild. These findings were consistent for 2000, 2001 and 2002 also exposing that complete recovery was never attained in any of the F-scale damage zones by 2002. This study illustrates the significance the biophysical impact has on recovery as well as the effectiveness of using medium resolution imagery such as Landsat in future research.

  9. An Integrated Use of Experimental, Modeling and Remote Sensing Techniques to Investigate Carbon and Phosphorus Dynamics in the Humid Tropics

    NASA Technical Reports Server (NTRS)

    Townsend, Alan R.; Asner, Gregory P.; Bustamante, Mercedes M. C.

    2001-01-01

    Moist tropical forests comprise one of the world's largest and most diverse biomes, and exchange more carbon, water, and energy with the atmosphere than any other ecosystem. In recent decades, tropical forests have also become one of the globe's most threatened biomes, subjected to exceptionally high rates of deforestation and land degradation. Thus, the importance of and threats to tropical forests are undeniable, yet our understanding of basic ecosystem processes in both intact and disturbed portions of the moist tropics remains poorer than for almost any other major biome. Our approach in this project was to take a multi-scale, multi-tool approach to address two different problems. First, we wanted to test if land-use driven changes in the cycles of probable limiting nutrients in forest systems were a key driver in the frequently observed pattern of declining pasture productivity and carbon stocks. Given the enormous complexity of land use change in the tropics, in which one finds a myriad of different land use types and intensities overlain on varying climates and soil types, we also wanted to see if new remote sensing techniques would allow some novel links between parameters which could be sensed remotely, and key biogeochemical variables which cannot. Second, we addressed to general questions about the role of tropical forests in the global carbon cycle. First, we used a new approach for quantifying and minimizing non-biological artifacts in the NOAA/NASA AVHRR Pathfinder time series of surface reflectance data so that we could address potential links between Amazonian forest dynamics and ENSO cycles. Second, we showed that the disequilibrium in C-13 exchanged between land and atmosphere following tropical deforestation probably has a significant impact on the use of 13-CO2 data to predict regional fluxes in the global carbon cycle.

  10. A novel approach to model exposure of coastal-marine ecosystems to riverine flood plumes based on remote sensing techniques.

    PubMed

    Álvarez-Romero, Jorge G; Devlin, Michelle; Teixeira da Silva, Eduardo; Petus, Caroline; Ban, Natalie C; Pressey, Robert L; Kool, Johnathan; Roberts, Jason J; Cerdeira-Estrada, Sergio; Wenger, Amelia S; Brodie, Jon

    2013-04-15

    Increased loads of land-based pollutants are a major threat to coastal-marine ecosystems. Identifying the affected marine areas and the scale of influence on ecosystems is critical to assess the impacts of degraded water quality and to inform planning for catchment management and marine conservation. Studies using remotely-sensed data have contributed to our understanding of the occurrence and influence of river plumes, and to our ability to assess exposure of marine ecosystems to land-based pollutants. However, refinement of plume modeling techniques is required to improve risk assessments. We developed a novel, complementary, approach to model exposure of coastal-marine ecosystems to land-based pollutants. We used supervised classification of MODIS-Aqua true-color satellite imagery to map the extent of plumes and to qualitatively assess the dispersal of pollutants in plumes. We used the Great Barrier Reef (GBR), the world's largest coral reef system, to test our approach. We combined frequency of plume occurrence with spatially distributed loads (based on a cost-distance function) to create maps of exposure to suspended sediment and dissolved inorganic nitrogen. We then compared annual exposure maps (2007-2011) to assess inter-annual variability in the exposure of coral reefs and seagrass beds to these pollutants. We found this method useful to map plumes and qualitatively assess exposure to land-based pollutants. We observed inter-annual variation in exposure of ecosystems to pollutants in the GBR, stressing the need to incorporate a temporal component into plume exposure/risk models. Our study contributes to our understanding of plume spatial-temporal dynamics of the GBR and offers a method that can also be applied to monitor exposure of coastal-marine ecosystems to plumes and explore their ecological influences.

  11. Monitoring land-use change by combining participatory land-use maps with standard remote sensing techniques: Showcase from a remote forest catchment on Mindanao, Philippines

    NASA Astrophysics Data System (ADS)

    Mialhe, François; Gunnell, Yanni; Ignacio, J. Andres F.; Delbart, Nicolas; Ogania, Jenifer L.; Henry, Sabine

    2015-04-01

    This paper combines participatory activities (PA) with remote sensing analysis into an integrated methodology to describe and explain land-cover changes. A remote watershed on Mindanao (Philippines) is used to showcase the approach, which hypothesizes that the accuracy of expert knowledge gained from remote sensing techniques can be further enhanced by inputs from vernacular knowledge when attempting to understand complex land mosaics and past land-use changes. Six participatory sessions based on focus-group discussions were conducted. These were enhanced by community-based land-use mapping, resulting in a final total of 21 participatory land-use maps (PLUMs) co-produced by a sample of stakeholders with different sociocultural and ecological perspectives. In parallel, seven satellite images (Landsat MSS, Landsat TM, Landsat ETM+, and SPOT4) were classified following standard techniques and provided snapshots for the years 1976, 1996, and 2010. Local knowledge and collective memory contributed to define and qualify relevant land-use classes. This also provided information about what had caused the land-use changes in the past. Results show that combining PA with remote-sensing analysis provides a unique understanding of land-cover change because the two methods complement and validate one another. Substantive qualitative information regarding the chronology of land-cover change was obtained in a short amount of time across an area poorly covered by scientific literature. The remote sensing techniques contributed to test and to quantify verbal reports of land-use and land-cover change by stakeholders. We conclude that the method is particularly relevant to data-poor areas or conflict zones where rapid reconnaissance work is the only available option. It provides a preliminary but accurate baseline for capturing land changes and for reporting their causes and consequences. A discussion of the main challenges encountered (i.e. how to combine different systems of

  12. Remote sensing of wetlands

    NASA Technical Reports Server (NTRS)

    Roller, N. E. G.

    1977-01-01

    The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.

  13. Remote Sensing Information Classification

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.

    2008-01-01

    This viewgraph presentation reviews the classification of Remote Sensing data in relation to epidemiology. Classification is a way to reduce the dimensionality and precision to something a human can understand. Classification changes SCALAR data into NOMINAL data.

  14. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques.

    PubMed

    Gao, Yongnian; Gao, Junfeng; Yin, Hongbin; Liu, Chuansheng; Xia, Ting; Wang, Jing; Huang, Qi

    2015-03-15

    Remote sensing has been widely used for ater quality monitoring, but most of these monitoring studies have only focused on a few water quality variables, such as chlorophyll-a, turbidity, and total suspended solids, which have typically been considered optically active variables. Remote sensing presents a challenge in estimating the phosphorus concentration in water. The total phosphorus (TP) in lakes has been estimated from remotely sensed observations, primarily using the simple individual band ratio or their natural logarithm and the statistical regression method based on the field TP data and the spectral reflectance. In this study, we investigated the possibility of establishing a spatial modeling scheme to estimate the TP concentration of a large lake from multi-spectral satellite imagery using band combinations and regional multivariate statistical modeling techniques, and we tested the applicability of the spatial modeling scheme. The results showed that HJ-1A CCD multi-spectral satellite imagery can be used to estimate the TP concentration in a lake. The correlation and regression analysis showed a highly significant positive relationship between the TP concentration and certain remotely sensed combination variables. The proposed modeling scheme had a higher accuracy for the TP concentration estimation in the large lake compared with the traditional individual band ratio method and the whole-lake scale regression-modeling scheme. The TP concentration values showed a clear spatial variability and were high in western Lake Chaohu and relatively low in eastern Lake Chaohu. The northernmost portion, the northeastern coastal zone and the southeastern portion of western Lake Chaohu had the highest TP concentrations, and the other regions had the lowest TP concentration values, except for the coastal zone of eastern Lake Chaohu. These results strongly suggested that the proposed modeling scheme, i.e., the band combinations and the regional multivariate

  15. Energy and remote sensing

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1977-01-01

    Effective implementation of the President's National Energy Plan and the Nuclear Power Policy Statement require application of the best remote sensing tools available. The potential contributions of remote sensing, particularly LANDSAT data, have yet to be clearly identified and exploited. These contributions investigated fall into the following categories: (1) exploration; (2) exploitation; (3) power plant siting; (4) environmental assessment and monitoring; and (5) transportation infrastructure.

  16. Online Remote Sensing Interface

    NASA Technical Reports Server (NTRS)

    Lawhead, Joel

    2007-01-01

    BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.

  17. Remote Sensing in Agriculture: An Introductory Review.

    ERIC Educational Resources Information Center

    Curran, Paul J.

    1987-01-01

    Discusses the use of remote sensing techniques to obtain locational, estimated, and mapped information at the scales varying from individual fields and farms, to entire continents and the world. (AEM)

  18. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1994-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture... This Paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods.

  19. An integrated study of earth resources in the state of California using remote sensing techniques. [water and forest management

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1974-01-01

    Progress and results of an integrated study of California's water resources are discussed. The investigation concerns itself primarily with the usefulness of remote sensing of relation to two categories of problems: (1) water supply; and (2) water demand. Also considered are its applicability to forest management and timber inventory. The cost effectiveness and utility of remote sensors such as the Earth Resources Technology Satellite for water and timber management are presented.

  20. Challenges in Infrared Remote Sensing

    SciTech Connect

    Strasburg, Jana D.; Harper, Warren W.

    2005-06-01

    During the last several years, Pacific Northwest National Lab has developed a remote sensing system designed to detect trace chemicals present in the atmosphere. Using Frequency Modulated Differential Absorption LIDAR (FM DIAL) techniques chemical signatures have been observed over pathlengths ranging from several hundred meters to several kilometers. Throughout the development process, we have encountered many challenges. Some of these have been overcome but others will require new laser technology.

  1. Integration of remote sensing and ground-based techniques for the study of land degradation phenomena in coastal areas.

    NASA Astrophysics Data System (ADS)

    Imbrenda, Vito; Coluzzi, Rosa; Calamita, Giuseppe; Luigia Giannossi, Maria; D'Emilio, Mariagrazia; Lanfredi, Maria; Makris, John; Palombo, Angelo; Pascucci, Simone; Santini, Federico; Margiotta, Salvatore; Emanuela Bonomo, Agnese; De Martino, Gregory; Perrone, Angela; Rizzo, Enzo; Pignatti, Stefano; Summa, Vito; Simoniello, Tiziana

    2015-04-01

    Land degradation processes, such as salinization and waterlogging, are increasingly affecting extensive areas devoted to agriculture threatening the sustainability of farming practices. Soil salinization typically appears as an excess accumulation of salt generally pronounced at the soil surface. Commonly, soil salinity is defined and measured by means of laboratory measurements of the electrical conductivity of liquid extracted from saturated soil-paste or different soil-water suspensions. Lab measurements are generally time consuming, costly, destructive, untimely for practical situations where the determination of the causes and/or the assessment of management practices are of interest. Recently, emerging survey techniques proved to be powerful tools to support soil salinity appraisal reducing costs and increasing the amount of spatial information. In the frame of PRO-LAND project (PO-FESR Basilicata 2007-2013) the research activities have been focused on the study of a complex salinization phenomenon occurring in a coastal environment of the Basilicata region (Southern Italy) as a result of natural and anthropic disturbances. The study area is located in the southernmost part of the Bradanic Trough along the sandy Ionian coastal plain. The hydrogeological conditions affect shallowness of the aquifer (45-50 cm below the ground) allowing the occurrence of seawater intrusion. Moreover, during last century, human activities, i.e. built-up of dams, the emergence of farms and industries, played a relevant role in the alteration of soil and groundwater quality of the area. In this work, both ground-based and remote sensing data were used. First, a geophysical mapping of electrical conductivity was carried out using a multi-frequency portable electro-magnetic induction (EMI) sensor. Based on the geophysical mapping and on optimization sampling approach, a number of locations were identified to collect soil samples for the geomineralogical characterization. Airborne

  2. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    PubMed Central

    Wang, Kai; Franklin, Steven E.; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS). PMID:22163432

  3. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists.

    PubMed

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).

  4. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  5. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing Determination of Various Atmospheric Trace Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.; Wilson, E. L.

    2007-01-01

    New type of remote sensing instrument based upon the Fabry-Perot inte rferometric technique has been developed at NASA's Goddard Space Flight Center. Fabry-Perot interferometry (FPI) is a well known, powerful spectroscopic technique and one of its many applications is to be use d to measure greenhouse gases and also some harmful species in the at mosphere. With this technique, absorption of particular species is me asured and related to its concentration. A solid Fabry-Perot etalon is used as a frequency filter to restrict the measurement to particular absorption bands of the gas of interest. With adjusting the thicknes s of the etalon that separation (in frequency) of the transmitted fri nges can be made equal to the almost constant separation of the gas a bsorption lines. By adjusting the temperature of the etalon, which changes the index of refi-action of its material, the transmission fring es can be brought into nearly exact correspondence with absorption li nes of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosph ere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The instrument that we have dev eloped detects the absorption of various atmospheric trace gases in d irect or reflected sunlight. Our instrument employing Fabry-Perot interferometer makes use of two features to achieve high sensitivity. The first is high spectral resolution enabling one to match the width of an atmospheric absorption feature by the instrumental band pass. The second is high optical throughput enabled by using multiple spectral lines simultaneously. For any species that one wishes to measure, thi s first feature is available while the use of multiple spectral features can be employed only for species with suitable spectra and freedom from interfering species in the same wavelength region. We have deve loped an instrument for use as ground based

  6. Aerosol Remote Sensing

    NASA Technical Reports Server (NTRS)

    Lenoble, Jacqueline (Editor); Remer, Lorraine (Editor); Tanre, Didier (Editor)

    2012-01-01

    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified.

  7. Use of remote sensing techniques for geological hazard surveys in vegetated urban regions. [multispectral imagery for lithological mapping

    NASA Technical Reports Server (NTRS)

    Stow, S. H.; Price, R. C.; Hoehner, F.; Wielchowsky, C.

    1976-01-01

    The feasibility of using aerial photography for lithologic differentiation in a heavily vegetated region is investigated using multispectral imagery obtained from LANDSAT satellite and aircraft-borne photography. Delineating and mapping of localized vegetal zones can be accomplished by the use of remote sensing because a difference in morphology and physiology results in different natural reflectances or signatures. An investigation was made to show that these local plant zones are affected by altitude, topography, weathering, and gullying; but are controlled by lithology. Therefore, maps outlining local plant zones were used as a basis for lithologic map construction.

  8. Future use of digital remote sensing data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.; Jones, N. L.

    1978-01-01

    Users of remote sensing data are increasingly turning to digital processing techniques for the extraction of land resource, environmental, and natural resource information. This paper presents the results of recent and ongoing research efforts sponsored, in part, by NASA/Marshall Space Flight Center on the current uses of and future needs for digital remote sensing data. An ongoing investigation involves a comprehensive survey of capabilities for digital Landsat data use in the Southeastern U.S. Another effort consists of an evaluation of future needs for digital remote sensing data by federal, state, and local governments and the private sector. These needs are projected into the 1980-1985 time frame. Furthermore, the accelerating use of digital remote sensing data is not limited to the U.S. or even to the developed countries of the world.

  9. Remote sensing by satellite - Technical and operational implications for international cooperation

    NASA Technical Reports Server (NTRS)

    Doyle, S. E.

    1976-01-01

    International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.

  10. Integration of conventional GIS-based techniques and remote sensing analysis to landslide risk assessment at basin scale

    NASA Astrophysics Data System (ADS)

    Agili, F.; Bartolomei, A.; Casagli, N.; Catani, F.; Ermini, L.; Farina, P.; Kukavicic, M.; Mirannalti, M.; Moretti, S.; Righini, G.

    2003-04-01

    This note concerns the preliminary results gathered in a research project aimed at landslide risk assessment in the Arno River basin (9000 km^2). The project, sponsored by the Basin Authority of the Arno River, started in the year 2002 and it will finish in the 2004. The objective of such a project consists of the updating of the landslide risk cartography related to the PAI document (Piano Assetto Idrogeologico) with reference to the Italian Law 267/1998. Different types of products will be generated: the updating of the existing inventory maps and the definition and application of a methodology for landslide hazard and risk mapping. Conventional methods, such as aerial-photo interpretation and field surveys are coupled with the use of different remote sensing methods, and all the data are integrated within a GIS environment. The analysis of remote sensing data regards both optical and radar images. In particular for the analysis of optical data, panchromatic and multispectral Landsat images are used in order to update the Corine standard land cover maps. In addition high resolution images (Ikonos and Quickbird), acquired in stereoscopic configuration, are analysed for integrating the aerial-photo intepretation. Differential SAR interferometry, implemented by using ERS and JERS data, is used in order to detect new mass movements, not yet observed and to evaluate the state of activity of known phenomena. Such data represent the base needed to produce the final landslide risk cartography.

  11. Application of remote sensing and GIS techniques for forest cover monitoring in the southern part of Laos

    NASA Astrophysics Data System (ADS)

    Keonuchan, Ammala; Liu, Yaolin

    2008-12-01

    Forest resource is the important material foundation of national sustainable development. And it need to master the status and change of forest resource timely for reasonable exploitation of forest and its renewal. Laos is located in the heart of the Indochinese peninsular, in southeast Asia, latitude 14° to 23 °north and longitude 100°to 108°east, covered a total 236, 800 square kilometers, and country of nearly 6 million people. The forest of Laos dropped from close to two-third in the 1970's to less than half by the 1990's. This deforestation has been attributed to two human activities : a traditional of shifting cultivation or slash and burn farming, and logging without reforestation. Remote sensing and GIS are the most modern technologies which have been widely used in the field of natural resource management and monitoring. These technologies provide very powerful tools to observe and collect information on natural resources and dynamic phenomenon on the earth surface, and ability to integrate different data and present data in different formats. In this study, using forest cover map and Landsat 7 ETM data, we analyze and compare forest cover change from 1997 to 2002. And the maximum likelihood method of supervised classification was used to classify the remote sensing data, we processed Spectral Enhancement, including Normalized Difference Vegetation Index (NDVI) ,and re-classify data again base on Principle Components Analysis (PCA) and NDVI.

  12. Measuring urban sprawl on geospatial indices characterized by leap frog development using remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Noor, N. M.; Asmawi, M. Z.; Rusni, N. A.

    2014-02-01

    Characterizing urban sprawl using spatial measures requires a concise definition of what constitutes sprawling urban spatial patterns. This research attempts to study a measurement of defining sprawl by using leapfrog development index through remote sensing and GIS approach. The IKONOS pan-sharpened and SPOT-5 with 1 and 2.5 meter resolution were used and combined with Geographical information system (GIS) database to analyze the geospatial indicators using the leapfrog development index. Kuantan city has been selected as a study area to examine the leapfrog development based on land use pattern for year 2012. The findings show Kuantan has identified as non-sprawling cities with result from characterization in leapfrog development that has been tested. However, the gap between sprawl and non-sprawling was very low. It is anticipated this research will provide a new direction in sprawl nationally that address finding of sprawl at the atomic level and present a robust analytical approach for characterizing urban development in city scale at once promoting a city via GIS & Remote Sensing technology respectively towards Digital and Green cities.

  13. Comparative analysis of property taxation policies within Greece and Cyprus evaluating the use of GIS, CAMA, and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Thomas; Labropoulos, Tassos; Hadjimitsis, Diofantos G.

    2014-08-01

    This paper aims to examine how CAMA, GIS and Remote Sensing are integrated to assist property taxation. Real property tax apart from its fiscal dimension is directly linked to geographic location. The value of the land and other immovable features such as buildings and structures is determined from specific parameters. All these immovable assets are visible and have specific geographic location & coordinates, materials, occupied area, land-use & utility, ownership & occupancy status and finally a specific value (ad valorem property taxation system) according to which the property tax is levied to taxpayers. Of high importance in the tax imposing procedure is that the use of CAMA, GIS and Remote Sensing tools is capable of providing effective and efficient collection of this property value determining data. Furthermore, these tools can track changes during a property's lifecycle such parcel subdivision into plots, demolition of a building and development of a new one or track a change in the planning zone. The integration of these systems also supports a full range of business processes on revenue mobilization ranging from billing to taxpayers objections management.

  14. Evaluating Damage Assessment of Breaches Along the Embankments of Indus River during Flood 2010 Using Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Daniyal, D.

    2013-09-01

    Natural disasters cause human sufferings and property loss, if not managed properly. It cannot be prevented but their adverse impacts can be reduced through proper planning and disaster mitigation measures. The floods triggered by heavy rains during July 2010 in Pakistan caused swallowing of rivers causing human, agriculture, livestock and property losses in almost all over the country. The heavy rains in upper part of country were attributed to El-Nina effect. Accumulated water in the rivers floodplain overtopped and breached flood protective infrastructure. Flood damage particularly in Sindh province was caused by breaches in the embankments and even after months of flood recession in rivers, flood water affected settled areas in the province. This study evaluates the role of satellite remote sensing particularly in assessment of breaches and consequential damages as well as measures leading to minimize the effects of floods caused by breaches in flood protective infrastructure. More than 50 SPOT-5 imageries had been used for this purpose and breached areas were delineated using pre and post flood imageries, later on rehabilitation work were also monitored. A total 136 breaches were delineated out of which 60 were in the Punjab and 76 in Sindh province. The study demonstrates the potentials of satellite remote sensing for mapping and monitoring natural disasters and devising mitigation strategies.

  15. A Technique for Remote Sensing of Suspended Sediments and Shallow Coastal Waters Using MODIS Visible and Near-IR Channels

    NASA Technical Reports Server (NTRS)

    Li, Rong-Rong; Kaufman, Yoram J.

    2002-01-01

    We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 micron that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  16. EPA REMOTE SENSING RESEARCH

    EPA Science Inventory

    The 2006 transgenic corn imaging research campaign has been greatly assisted through a cooperative effort with several Illinois growers who provided planting area and crop composition. This research effort was designed to evaluate the effectiveness of remote sensed imagery of var...

  17. Solar System Remote Sensing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the symposium on Solar System Remote Sensing, September 20-21, 2002, in Pittsburgh, Pennsylvania. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.

  18. APPLIED REMOTE SENSING

    EPA Science Inventory

    Remote Sensing is a scientific discipline of non-contact monitoring. It includes a range of technologies that span from aerial photography to advanced spectral imaging and analytical methods. This Session is designed to demonstrate contemporary practical applications of remote se...

  19. Integrating Remote Sensing Data with Directional Two-Dimensional Wavelet Analysis and Open Geospatial Techniques for Efficient Disaster Monitoring and Management

    PubMed Central

    Lin, Yun-Bin; Lin, Yu-Pin; Deng, Dong-Po; Chen, Kuan-Wei

    2008-01-01

    In Taiwan, earthquakes have long been recognized as a major cause of landslides that are wide spread by floods brought by typhoons followed. Distinguishing between landslide spatial patterns in different disturbance regimes is fundamental for disaster monitoring, management, and land-cover restoration. To circumscribe landslides, this study adopts the normalized difference vegetation index (NDVI), which can be determined by simply applying mathematical operations of near-infrared and visible-red spectral data immediately after remotely sensed data is acquired. In real-time disaster monitoring, the NDVI is more effective than using land-cover classifications generated from remotely sensed data as land-cover classification tasks are extremely time consuming. Directional two-dimensional (2D) wavelet analysis has an advantage over traditional spectrum analysis in that it determines localized variations along a specific direction when identifying dominant modes of change, and where those modes are located in multi-temporal remotely sensed images. Open geospatial techniques comprise a series of solutions developed based on Open Geospatial Consortium specifications that can be applied to encode data for interoperability and develop an open geospatial service for sharing data. This study presents a novel approach and framework that uses directional 2D wavelet analysis of real-time NDVI images to effectively identify landslide patterns and share resulting patterns via open geospatial techniques. As a case study, this study analyzed NDVI images derived from SPOT HRV images before and after the ChiChi earthquake (7.3 on the Richter scale) that hit the Chenyulan basin in Taiwan, as well as images after two large typhoons (xangsane and Toraji) to delineate the spatial patterns of landslides caused by major disturbances. Disturbed spatial patterns of landslides that followed these events were successfully delineated using 2D wavelet analysis, and results of pattern recognitions

  20. Remote Sensing and the Earth

    NASA Technical Reports Server (NTRS)

    Brosius, C. A.; Gervin, J. C.; Ragusa, J. M.

    1977-01-01

    A text book on remote sensing, as part of the earth resources Skylab programs, is presented. The fundamentals of remote sensing and its application to agriculture, land use, geology, water and marine resources, and environmental monitoring are summarized.

  1. Microwave remote sensing laboratory design

    NASA Technical Reports Server (NTRS)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  2. Remote sensing and image interpretation

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)

    1979-01-01

    A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

  3. THE EPA REMOTE SENSING ARCHIVE

    EPA Science Inventory

    What would you do if you were faced with organizing 30 years of remote sensing projects that had been haphazardly stored at two separate locations for years then combined? The EPA Remote Sensing Archive, currently located in Las Vegas, Nevada. contains the remote sensing data and...

  4. Characterization of Solang valley watershed in western Himalaya for bio-resource conservation using remote sensing techniques.

    PubMed

    Kumar, Amit; Chawla, Amit; Rajkumar, S

    2011-08-01

    The development activities in mountainous region though provide comfort to the human being and enhance the socioeconomic status of the people but create pressure on the bio-resources. In this paper, the current status of land use/landcover and the vegetation communities of the Solang valley watershed in Himachal Pradesh of Indian western Himalaya has been mapped and presented using remote sensing. This watershed area was dominated by alpine and sub-alpine pastures (30.34%) followed by scree slopes (22.34%) and forests (21.06%). Many tree, shrub, and herb species identified in the study area are among the prioritized species for conservation in the Indian Himalayan Region. Thus, scientific interventions and preparation of action plans based on ecological survey are required for conservation of the Solang valley watershed.

  5. Polar Remote Sensing: A Web Resource to Promote the Use of Remote Sensing Data in Undergraduate Education and Research

    NASA Astrophysics Data System (ADS)

    Gens, R.; Prakash, A.; McClung, S.

    2006-12-01

    Remote sensing offers a powerful means to study the dynamic Polar Regions that respond to and drive changes elsewhere on Earth. Polar Remote Sensing (www.polar-remotesensing.alaska.edu/ ) is a web resource that includes a brief introduction to the Polar Regions and the International Polar Year (IPY). Through a series of short case studies that are based on the use of remote sensing data, this resource provides glimpses of polar features and processes. The case studies are primarily designed for post-secondary students and faculty who already have basic knowledge of remote sensing data and tools. Each case study is independent and includes pedagogic wrappers, such as assessment techniques, and ideas on how to extend and adapt the case studies to meet faculty and student course / research requirements. Currently two completed case studies are included that serve as a prototype for developing possibly several other case studies. The first case study uses field observations and multi-temporal remote sensing images to monitor the receding terminus of the Mendenhall glacier in southeast Alaska, and is drawn primarily from a class project carried out by UAF graduate student Eleanor Boyce. The second case study uses synthetic aperture radar images to detect and map the seaward edge of landfast sea ice along the coast of Barrow, the northern most point of the US. This case study is based on a part of the doctoral research of UAF graduate student Andy Mahoney. The authors propose to develop a series of such case studies, and possibly develop and test a Spanish version of the resource subject to the availability of funds. remotesensing.alaska.edu/

  6. Remote Sensing Laboratory - RSL

    SciTech Connect

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  7. Evapotranspiration and remote sensing

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Gurney, R.

    1982-01-01

    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.

  8. Remote Sensing Laboratory - RSL

    ScienceCinema

    None

    2016-07-12

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  9. Remote sensing research in geographic education: An alternative view

    NASA Technical Reports Server (NTRS)

    Wilson, H.; Cary, T. K.; Goward, S. N.

    1981-01-01

    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  10. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1993-01-01

    Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  11. Role of remote sensing in documenting living resources

    NASA Technical Reports Server (NTRS)

    Wagner, P. E.; Anderson, R. R.; Brun, B.; Eisenberg, M.; Genys, J. B.; Lear, D. W., Jr.; Miller, M. H.

    1978-01-01

    Specific cases of known or potentially useful applications of remote sensing in assessing biological resources are discussed. It is concluded that the more usable remote sensing techniques relate to the measurement of population fluctuations in aquatic systems. Sensing of the flora and the fauna of the Bay is considered with emphasis on direct sensing of aquatic plant populations and of water quality. Recommendations for remote sensing projects are given.

  12. High resolution derivative spectra in remote sensing

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, Tanvir H.; Steven, Michael D.; Clark, Jeremy A.

    1990-01-01

    The use of derivative spectra is an established technique in analytical chemistry for the elimination of background signals and for resolving overlapping spectral features. Application of this technique for tackling analogous problems such as interference from soil background reflectance in the remote sensing of vegetation or for resolving complex spectra of several target species within individual pixels in remote sensing is proposed. Methods for generating derivatives of high spectral resolution data are reviewed. Results of experiments to test the use of derivatives for monitoring chlorosis in vegetation show that derivative spectral indices are superior to conventional broad-band spectral indices such as the near-infrared/red reflectance ratio. Conventional broad-band indices are sensitive to both leaf cover as well as leaf color. New derivative spectral indices which were able to monitor chlorosis unambiguously were identified. Potential areas for the application of this technique in remote sensing are considered.

  13. Using remote sensing and GIS techniques to estimate discharge and recharge. fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Keith, Turner A.

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.

  14. Practical applications of remote sensing technology

    NASA Technical Reports Server (NTRS)

    Whitmore, Roy A., Jr.

    1990-01-01

    Land managers increasingly are becoming dependent upon remote sensing and automated analysis techniques for information gathering and synthesis. Remote sensing and geographic information system (GIS) techniques provide quick and economical information gathering for large areas. The outputs of remote sensing classification and analysis are most effective when combined with a total natural resources data base within the capabilities of a computerized GIS. Some examples are presented of the successes, as well as the problems, in integrating remote sensing and geographic information systems. The need to exploit remotely sensed data and the potential that geographic information systems offer for managing and analyzing such data continues to grow. New microcomputers with vastly enlarged memory, multi-fold increases in operating speed and storage capacity that was previously available only on mainframe computers are a reality. Improved raster GIS software systems have been developed for these high performance microcomputers. Vector GIS systems previously reserved for mini and mainframe systems are available to operate on these enhanced microcomputers. One of the more exciting areas that is beginning to emerge is the integration of both raster and vector formats on a single computer screen. This technology will allow satellite imagery or digital aerial photography to be presented as a background to a vector display.

  15. Application of remote sensing techniques in land-use planning: Flood-plain delineation. [Cochise County, Arizona

    NASA Technical Reports Server (NTRS)

    Altenstadter, J. (Principal Investigator); Clark, R. B.

    1974-01-01

    The delineation of areas subject to inundation by means of remotely-sensed data acquisition represents a considerable saving in personnel time. Repeated input from aerial sensor sources provides the planner with a potent tool for the formation of a data base and for the monitoring of land use patterns over a period of time. The primary output of this project was a set of base map overlays at a scale of 1:62,500 delineating areas which require special regulations when proposed for land use involving human habitation or certain classes of storage. A secondary product of the study was county-wide maps of watershed configurations and of soil hydrologic groups. Further research is anticipated to extend the mapping of watershed areas outside the political boundaries of Cochise County, which will provide data for subsequent rainfall-runoff relationship studies in the area. All of the data provided will be incorporated into the Cochise County composite computer mapping project now operational. Results of this project have improved the pool of information available to the planning staff of Cochise County.

  16. Remote sensing of natural resources: Quarterly literature review

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A quarterly review of technical literature concerning remote sensing techniques is presented. The format contains indexed and abstracted materials with emphasis on data gathering techniques performed or obtained remotely from space, aircraft, or ground-based stations. Remote sensor applications including the remote sensing of natural resources are presented.

  17. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Whitmore, R. A., Jr. (Principal Investigator)

    1980-01-01

    A syllabus and training materials prepared and used in a series of one-day workshops to introduce modern remote sensing technology to selected groups of professional personnel in Vermont are described. Success in using computer compatible tapes, LANDSAT imagery and aerial photographs is reported for the following applications: (1) mapping defoliation of hardwood forests by tent caterpillar and gypsy moth; (2) differentiating conifer species; (3) mapping ground cover of major lake and pond watersheds; (4) inventorying and locating artificially regenerated conifer forest stands; (5) mapping water quality; (6) ascertaining the boat population to quantify recreational activity on lakes and waterways; and (7) identifying potential aquaculture sites.

  18. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  19. Applications of Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jacha, Charlene

    2015-04-01

    Remote sensing is one of the best ways to be able to monitor and see changes in the Earth. The use of satellite images in the classroom can be a practical way to help students understand the importance and use of remote sensing and Geographic Information Systems (GIS). It is essential in helping students to understand that underlying individual data points are converted to a broad spatial form. The use of actual remote sensing data makes this more understandable to the students e.g. an online map of recent earthquake events, geologic maps, satellite imagery. For change detection, images of years ten or twenty years apart of the same area can be compared and observations recorded. Satellite images of different places can be available on the Internet or from the local space agency. In groups of mixed abilities, students can observe changes in land use over time and also give possible reasons and explanations to those changes. Students should answer essential questions like, how does satellite imagery offer valuable information to different faculties e.g. military, weather, environmental departments and others. Before and after images on disasters for example, volcanoes, floods and earthquakes should be obtained and observed. Key questions would be; how can scientists use these images to predict, or to change the future outcomes over time. How to manage disasters and how the archived images can assist developers in planning land use around that area in the future. Other material that would be useful includes maps and aerial photographs of the area. A flight should be organized over the area for students to acquire aerial photographs of their own; this further enhances their understanding of the concept "remote sensing". Environmental issues such as air, water and land pollution can also be identified on satellite images. Key questions for students would include causes, effects and possible solutions to the problem. Conducting a fieldwork exercise around the area would

  20. Hyperspectral remote sensing techniques applied to the noninvasive investigation of mural paintings: a feasibility study carried out on a wall painting by Beato Angelico in Florence

    NASA Astrophysics Data System (ADS)

    Cucci, Costanza; Picollo, Marcello; Chiarantini, Leandro; Sereni, Barbara

    2015-06-01

    Nowadays hyperspectral imaging is a well-established methodology for the non-invasive diagnostics of polychrome surfaces, and is increasingly utilized in museums and conservation laboratories for documentation purposes and in support of restoration procedures. However, so far the applications of hyperspectral imaging have been mainly limited to easel paintings or paper-based artifacts. Indeed, specifically designed hyperspectral imagers, are usually used for applications in museum context. These devices work at short-distances from the targets and cover limited size surfaces. Instead, almost still unexplored remain the applications of hyperspectral imaging to the investigations of frescoes and large size mural paintings. For this type of artworks a remote sensing approach, based on sensors capable of acquiring hyperspectral data from distances of the order of tens of meters, is needed. This paper illustrates an application of hyperspectral remote sensing to an important wall-painting by Beato Angelico, located in the San Marco Museum in Florence. Measurements were carried out using a re-adapted version of the Galileo Avionica Multisensor Hyperspectral System (SIM-GA), an avionic hyperspectral imager originally designed for applications from mobile platforms. This system operates in the 400-2500 nm range with over 700 channels, thus guaranteeing acquisition of high resolution hyperspectral data exploitable for materials identification and mapping. In the present application, the SIM-GA device was mounted on a static scanning platform for ground-based applications. The preliminary results obtained on the Angelico's wall-painting are discussed, with highlights on the main technical issues addressed to optimize the SIM-GA system for new applications on cultural assets.

  1. Determination of potential groundwater discharge zones into a Salt Lake using remote sensing techniques and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Kilic, Ecenur; Kamil Yilmaz, Koray; Lutfi Suzen, M.

    2015-04-01

    Groundwater and surface water are integral components of the hydrologic system with strong feedback mechanisms and hence should be treated as a single resource. Existence of groundwater discharge into lakes is a very significant factor that affects both the water quantity of the lake as well as its ecological and biological diversity. The degree of interaction is more significant for shallow lakes because of their increased vulnerability due to limited volume and rapid changes in the extent and duration of the wet/dry cycles. The Salt Lake, located in Central Anatolia, Turkey, is a hyper-saline, shallow lake that is ranked as the second largest lake in Turkey. The majority of the lake dries during the late summer season enabling investigation of the lake bottom morphology. Through analysis of the high-resolution satellite images we identified circular features that may indicate possible groundwater seepage locations. The density and shape properties of these features were then investigated via spatial statistics to identify possible trends that can be linked to controlling mechanism(s) such as underlying sediments, geology, hydrogeology and wind patterns. The analysis was supported by field measurement of salt thickness at various locations in a systematic way. Long-term precipitation, lake level and groundwater level data were compared to investigate possible relationships and trends. In this presentation the framework to investigate remotely-sensed and in-situ measurements will be discussed with potential links to the groundwater recharge to the Salt Lake. Future work will focus on installing long-term monitoring networks in the lake.

  2. Remote sensing techniques of geospatial geotechnical site characterization applied to competence studies of mine tailings impoundments and slope stability investigations

    NASA Astrophysics Data System (ADS)

    Greuer, Wilhelm Max-Otto

    2006-04-01

    The research presented in this dissertation suggests methods of deriving critical engineering properties of soils from appropriate high altitude spectral data, or imagery. Soil interaction with ambient or applied electromagnetic radiation results in spatially varying degrees of reflection and absorption of electromagnetic radiation. Soil properties govern the band-specific interaction of the soil with the applied electromagnetic radiation, visually resulting in a soil's colour and brightness. The visual appearance, or cumulative interaction of the soil with each applied band of electromagnetic radiation, is recorded by cameras mounted on a remote sensing platform. From the resulting imagery, representing the soil's reflection/absorption intensity, key dielectric soil properties are calculated. Dielectric properties govern the soil's reflection and absorption intensities. In turn, dielectric properties are governed by the soil's structure and composition and are indicative of the soil's principal geotechnical properties. Dielectric properties of soil are the tie connection between the engineering properties of soil and geospatial data provided as imagery. This provides a fast, simple, inexpensive, and comprehensive geotechnical site assessment, performed by a single user in a GIS system, with soil spectral data as the principal input. Included with the image-extracted soil properties are principal slope engineering parameters. Using GIS and the prescribed series of computations, image-extracted geospatial data sets representing these key properties are applied to an area-wide modification of a common slope stability analysis method, resulting in a map illustrating the risk of slope failures throughout the area encompassed by imagery. This method is the skeleton of a possible automated satellite-based forecasting and warning system against landslides. In addition to the presented slope stability investigation, ground moisture surveys are also applied to competence

  3. [A review on polarization information in the remote sensing detection].

    PubMed

    Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao

    2010-04-01

    Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.

  4. Laboratory exercises, remote sensing of the environment

    NASA Technical Reports Server (NTRS)

    Mintzer, O.; Ray, J.

    1981-01-01

    The exercises are designed to convey principles and theory of remote sensing, and methodologies of its application to civil engineering and environmental concerns, including agronomy, geography, geology, wildlife, forestry, hydrology, and other related fields. During the exercises the student is introduced to several types of remote sensing represented by imagery from conventional format: panchromatic, black-and-white infrared, color, and infrared, 35mm aerial photography, thermal infrared, radar, multispectral scanner, and LANDSAT. Upon completion of the exercises the student is expected to know: (1) the electromagnetic spectrum, its various wavelength sub-sections and their uses as sensors, (2) the limitations of each sensor, (3) the interpretation techniques used for extracting data from the various types of imagery, and (4) the cost effectiveness of remote sensing procedures for acquiring and evaluating data of the natural environment.

  5. Geobotanical Remote Sensing for Geothermal Exploration

    SciTech Connect

    Pickles, W L; Kasameyer, P W; Martini, B A; Potts, D C; Silver, E A

    2001-05-22

    This paper presents a plan for increasing the mapped resource base for geothermal exploration in the Western US. We plan to image large areas in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults, surface effluents, historical signatures, and discover subtle hidden faults and hidden thermal systems. Large regions can be imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping faults and effluents the Long Valley Caldera and Mammoth Mountain in California.

  6. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    NASA Technical Reports Server (NTRS)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data

  7. In situ spectrometric and chemical measurements of methane emissions from a natural marine hydrocarbon seep field, Coal Oil Point, California: Validation of methane remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Luyendyk, B. P.; Leifer, I.; Roberts, D.; Margolis, J. S.

    2006-12-01

    Remote sensing techniques can significantly improve our understanding of the sources and sinks of the important greenhouse gas methane. Field and laboratory studies used spectral and in-situ chemical measurements of geologic methane plumes from natural marine seepage and radiative-transfer calculations to test the feasibility of using NASA's Airborne Visual/Infrared Imaging Spectrometer (AVIRIS) for methane remote sensing of this marine source. Based on numerical MODTRAN simulations, the spectral region between 2200 and 2340 nm was chosen for its sensitivity to CH4 with mild sensitivity to water vapor interference. During one marine field study, an intense seep area was repeatedly transected by boat using flame ion detectors (FID) to characterize the methane plume along with detailed meteorological measurements. Based on a Gaussian plume dispersion model for 3 m/s wind speed, methane column-abundances were calculated and showed a plume with methane concentrations greater than 0.5 g/m2 extending downwind 70 m with a 20 m width, much larger than the 3 to 5 m AVIRIS pixel size. Most of the methane was in the lower 10 m. MODTRAN calculations showed this to be well above the noise equivalent detection level of AVIRIS. During a separate field study, FIDs at three heights above the sea surface (2.2, 3.6, and 5 m) measured methane concentrations as high as 200 ppm while transecting an active seep area. Simultaneous spectra were obtained with a field spectrometer. Several plumes were identified from the FID data and a clear relationship was shown between the presence of methane plumes along the incident path and the presence of methane absorption features in spectra. Methane absorption features above atmospheric background were not observed outside the plumes.

  8. Relating Multi-Scale Phenology to Arctic Ecosystem Parameters Using Various High Spatial and Spectral Resolution Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Vargas, S. A.; Melendez, M.; Tweedie, C. E.; Oberbauer, S. F.

    2012-12-01

    The need to improve the spatial and temporal scaling and extrapolation of plot level ecosystem properties and processes to the landscape level remains a persistent research challenge in the Arctic. Plant and landscape phenology is sensitive to a number of variable environmental factors such as soil moisture, temperature, and radiation. Seasonal and inter-annual environmental differences in these factors and phenology can affect surface energy and carbon balance and reflectance. Therefore improved scaling and extrapolation of phenological dynamics from the plot level to the landscape level is key to further understanding the impact of climate and other environmental change in arctic terrestrial ecosystems. This study contributes to the US Arctic Observing Network and focuses on a range of remotely sensed spectral indices derived from ground-based hyperspectral reflectance, time-lapse photography, kite aerial photography (KAP), and satellite imagery during the 2010-2012 snow free periods for the Networked Info-Mechanical Systems (NIMS) grids (2 x 50 meters) located in Barrow and Atqasuk, Alaska. Range of greenness indices have been calculated for different vegetation types (i.e. dry, moist, wet, aquatic) within each site. Preliminary results show that NDVI values acquired from ground based hyperspectral reflectance show similar seasonal and interannual trends as the 2G-RB index values derived for both the KAP and time-lapse time series photography for both study locations. An increase in peak season NDVI and 2G-RB values for dry, moist, and wet vegetation types were seen between the years of 2011 and 2012 for ground reflectance and KAP platforms in Barrow. While peak season 2G-RB values for dry, moist, and wet vegetation types increased using the time-lapse images between the years of 2011 and 2012 in Atqasuk. Intercomparison with high spatial resolution satellite imagery is on going. Plot level measurements have provided detailed insight into a range of ecosystem

  9. Mapping of Moho and Moho Transition Zone (MTZ) in Samail ophiolites of Sultanate of Oman using remote sensing technique

    NASA Astrophysics Data System (ADS)

    Rajendran, Sankaran; Nasir, Sobhi

    2015-08-01

    Moho and Moho Transition Zone (MTZ) of the Samail ophiolite of Sultanate of Oman are characteristic to potential occurrences of chromite deposit, hydrothermal mineralization and serpentinization. Mapping of Moho and MTZ, and discriminating them in between the mafic and ultramafic rocks in ophiolite sequence are more significant and important. The present study describes the remote sensing spectral characters of minerals and rocks of the Moho and MTZ and discriminates the Moho of Wadi Al Abyad of Nakhl massif, and Wadi Nidab and Wadi Abda regions of Sumail massif in the visible and near infrared (VNIR), and short wavelength infrared (SWIR) spectral regions using low-cost multispectral satellite data of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Results of this study show that the red-green-blue (RGB) color composite images of ASTER spectral bands 8, 3 and 1, and 8, 7 and 4 are able to delineate the Moho and MTZ of the regions. The RGB images of ASTER band ratios (4/8, 4/1, 3/2 * 4/3 and (1 + 3)/2, (4 + 6)/5, (7 + 9)/8) are capable to discriminate the mantle material (ultramafic harzburgites) and crustal rocks (mafic gabbros). The occurrence of such rock types is demonstrated by detection of their minerals using Spectral Angle Mapper (SAM) image processing method. The presence of Moho and MTZ, and associated lithologies are verified in field at Wadi Al Abyad, Wadi Nidab, Wadi Abda, Wadi Tayin, Wadi Fizh and several locations of Nakhl regions of Samail ophiolites. The laboratory study shows the occurrence of typical minerals namely olivine, orthopyroxene and clinopyroxene in the harzburgite and the minerals such as plagioclase, clinopyroxene, hornblende, orthopyroxene and olivine in the layered gabbro. The spectral properties of the rocks are studied using Portable Infrared Mineral Analyzer (PIMA) spectrometer and the occurrences of minerals are confirmed by X-ray diffraction (XRD) analyses. This study demonstrates the sensor

  10. Remote sensing of earth terrain

    NASA Technical Reports Server (NTRS)

    Yueh, Herng-Aung; Kong, Jin AU

    1991-01-01

    the radar response is most sensitive to the parameters of interest; theoretically simulated data will be used to generate simple invertible models over the region. For applications to the remote sensing of sea ice, the developed theoretical models need to be tested with experimental measurements. With measured ground truth such as ice thickness, temperature, salinity, and structure, input parameters to the theoretical models can be obtained to calculate the polarimetric scattering coefficients for radars or brightness temperature for radiometers and then compare theoretical results with experimental data. Validated models will play an important role in the interpretation and classification of ice in monitoring global ice cover from space borne remote sensors in the future. We present an inversion algorithm based on a recently developed inversion method referred to as the Renormalized Source-Type Integral Equation approach. The objective of this method is to overcome some of the limitations and difficulties of the iterative Born technique. It recasts the inversion, which is nonlinear in nature, in terms of the solution of a set of linear equations; however, the final inversion equation is still nonlinear. The derived inversion equation is an exact equation which sums up the iterative Neuman (or Born) series in a closed form and, thus, is a valid representation even in the case when the Born series diverges; hence, the name Renormalized Source-Type Integral Equation Approach.

  11. Multisensor image fusion guidelines in remote sensing

    NASA Astrophysics Data System (ADS)

    Pohl, C.

    2016-04-01

    Remote sensing delivers multimodal and -temporal data from the Earth's surface. In order to cope with these multidimensional data sources and to make the most of them, image fusion is a valuable tool. It has developed over the past few decades into a usable image processing technique for extracting information of higher quality and reliability. As more sensors and advanced image fusion techniques have become available, researchers have conducted a vast amount of successful studies using image fusion. However, the definition of an appropriate workflow prior to processing the imagery requires knowledge in all related fields - i.e. remote sensing, image fusion and the desired image exploitation processing. From the findings of this research it can be seen that the choice of the appropriate technique, as well as the fine-tuning of the individual parameters of this technique, is crucial. There is still a lack of strategic guidelines due to the complexity and variability of data selection, processing techniques and applications. This paper gives an overview on the state-of-the-art in remote sensing image fusion including sensors and applications. Putting research results in image fusion from the past 15 years into a context provides a new view on the subject and helps other researchers to build their innovation on these findings. Recommendations of experts help to understand further needs to achieve feasible strategies in remote sensing image fusion.

  12. Remote sensing of the biosphere

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.

  13. Remote Sensing of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    2001-01-01

    Our efforts have been focused on understanding the physical properties of planetary surfaces using remote sensing techniques. Specific application has been to the surfaces of the Moon and Mars. Our approach has been to use thermal-infrared emission and radar reflectance and scattering as a way of exploring the decimeter-scale structure of these surfaces. At this scale, the techniques are sensitive to physical parameters such as the average or effective particle size of surface materials, the degree of induration or physical bonding between individual regolith grains, and the abundance of rocks of different sizes resting on or admixed in to the surface. The results are relevant to understanding the geological processes that have affected the surface and, in the case of Mars, determining site safety and scientific relevance for planning upcoming lander, rover, and sample-return spacecraft missions. Specific results are discussed below, and publications that have resulted are listed at the end.

  14. Three examples of applied remote sensing of vegetation

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr.; Benton, A. R., Jr.; Toler, R. W.; Haas, R. H.

    1975-01-01

    Cause studies in which remote sensing techniques were adapted to assist in the solution of particular problem situations in Texas involving vegetation are described. In each case, the final sensing technique developed for operational use by the concerned organizations employed photographic sensors which were optimized through studies of the spectral reflectance characteristics of the vegetation species and background conditions unique to the problem being considered. The three examples described are: (1) Assisting Aquatic Plant Monitoring and Control; (2) Improving Vegetation Utilization in Urban Planning; and (3) Enforcing the Quarantine of Diseased Crops.

  15. Background and principle applications of remote sensing in Mexico

    NASA Technical Reports Server (NTRS)

    Perez, J. A. D.

    1978-01-01

    Remote sensing, or the collection of information from objectives at a distance, crystallizes the interest in implementing techniques which assist in the search for solutions to the problems raised by the detection, exploitation, and conservation of the natural resources of the earth. An attempt is made to present an overview of the studies and achievements which have been obtained with remote sensing in Mexico.

  16. Application of remote sensing to solution of ecological problems

    NASA Technical Reports Server (NTRS)

    Adelman, A.

    1972-01-01

    The application of remote sensing techniques to solving ecological problems is discussed. The three phases of environmental ecological management are examined. The differences between discovery and exploitation of natural resources and their ecological management are described. The specific application of remote sensing to water management is developed.

  17. Bringing remote sensing technology to the user community

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Davis, S. M.; Morrison, D. B.

    1975-01-01

    The procedures and services available for educating and training potential users of remote sensing technology are discussed along with approaches for achieving an in-house capability for the analysis of remotely sensed data using numerical techniques based on pattern recognition principles. Cost estimates are provided where appropriate.

  18. [A review of classification methods of remote sensing imagery].

    PubMed

    Jia, Kun; Li, Qiang-Zi; Tian, Yi-Chen; Wu, Bing-Fang

    2011-10-01

    Remote sensing data classification is an important way of information extraction and a hot research topic of remote sensing technique. Classification method of remote sensing data is an important issue, and effective selection of appropriate classifier is especially significant for improving classification accuracy. Along with the development of remote sensing technique, traditional parametric classifier is difficult to meet accuracy requirement, leading to the rapid development of intelligent algorithm based non-parametric classifiers. Recently, combined classifiers become a new hot topic for its ability of utilizing complement information of single classifier. In the present paper, characters and advantages of different classifiers as well as the research prospect are analyzed. The paper provides a scientific reference for the development of remote sensing data classification technique.

  19. Remote Sensing Via Satellite: The Canadian Experience

    ERIC Educational Resources Information Center

    Classen, Hans George

    1974-01-01

    Describes the joint effort of Canada and NASA in monitoring the Canadian environment using remote-sensing techniques. The project involves the Earth Resources Technology Satellite and has been used to observe seasonal changes, extent of snow cover, crop growth, sea ice, and land use patterns. (GS)

  20. Data compression in remote sensing applications

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid

    1992-01-01

    A survey of current data compression techniques which are being used to reduce the amount of data in remote sensing applications is provided. The survey aspect is far from complete, reflecting the substantial activity in this area. The purpose of the survey is more to exemplify the different approaches being taken rather than to provide an exhaustive list of the various proposed approaches.

  1. Use of remote sensing in facility siting

    NASA Technical Reports Server (NTRS)

    Moon, M. L.; Hunt, R. F.; Mcfall, J., Jr.; Pijanowski, J. A.; Price, R. D.

    1978-01-01

    Environmental parameters important to, and necessary for, an environment impact assessment in terms of site selection for an electric power plant are defined. Remote sensing techniques and/or instrumentation applicable to site evaluation are described. Problem areas are discussed and recommendations given.

  2. Summary of 1971 land remote sensing investigations

    NASA Technical Reports Server (NTRS)

    Mooneyhan, D. W.

    1972-01-01

    Techniques to provide land use up-date information using remotely sensed data and automatic data processing technology are being developed. The approach utilizes multispectral scanners, the associated data analysis station, and the pattern recognition programs to identify and classify land surface characteristics, including wetlands, and to convert these data to demonstration type experiments in the various disciplines.

  3. Polarization in remote sensing

    NASA Astrophysics Data System (ADS)

    Egan, Walter G.

    1992-12-01

    A review of the experimental and theoretical aspects of optical polarization is presented with definitions of the observed polarization characteristics and relationship to the Stokes parameters. A typical terrestrial soil polarization curve is characterized and related to the current theoretical knowledge. This polarization relationship is extended to cover planetary surfaces, such as the Moon, and Mars and terrestrial surfaces composed of farm areas and water surfaces. Instrumentation for imaging and non-imaging polarimetry are described including the use of focal plane arrays. Recent Space Shuttle polarimetric observations of the region around the Island of Hawaii and New Madrid, Missouri are described, as well as concurrent cloud and haze observations. Polarization is a sensitive indicator of cloud particle size distributions, soil texture, farm crops, sea state and atmospheric aerosols and haze. Cloud particle size distributions are uniquely characterized by polarization, and this cannot be achieved with photometry. An extensive bibliography of polarization in remote sensing is appended.

  4. Remote Sensing and the Environment.

    ERIC Educational Resources Information Center

    Osmers, Karl

    1991-01-01

    Suggests using remote sensing technology to help students make sense of the natural world. Explains that satellite information allows observation of environmental changes over time. Identifies possible student projects based on remotely sensed data. Recommends obtaining the assistance of experts and seeking funding through effective project…

  5. Remote Sensing: A Film Review.

    ERIC Educational Resources Information Center

    Carter, David J.

    1986-01-01

    Reviews the content of 19 films on remote sensing published between 1973 and 1980. Concludes that they are overly simplistic, notably outdated, and generally too optimistic about the potential of remote sensing from space for resource exploration and environmental problem-solving. Provides names and addresses of more current remote sensing…

  6. Remote sensing for cotton farming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of remote sensing technologies in agriculture began with the use of aerial photography to identify cotton root rot in the late 1920s. From then on, agricultural remote sensing has developed gradually until the introduction of precision farming technologies in the late 1980s and biotechno...

  7. A Remote-Sensing Mission

    ERIC Educational Resources Information Center

    Hotchkiss, Rose; Dickerson, Daniel

    2008-01-01

    Sponsored by NASA and the JASON Education Foundation, the remote Sensing Earth Science Teacher Education Program (RSESTeP) trains teachers to use state-of-the art remote-sensing technology with the idea that participants bring back what they learn and incorporate it into Earth science lessons using technology. The author's participation in the…

  8. THE REMOTE SENSING DATA GATEWAY

    EPA Science Inventory

    The EPA Remote Sensing Data Gateway (RSDG) is a pilot project in the National Exposure Research Laboratory (NERL) to develop a comprehensive data search, acquisition, delivery and archive mechanism for internal, national and international sources of remote sensing data for the co...

  9. Remote sensing of earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU; Yueh, Herng-Aung; Shin, Robert T.

    1991-01-01

    Abstracts from 46 refereed journal and conference papers are presented for research on remote sensing of earth terrain. The topics covered related to remote sensing include the following: mathematical models, vegetation cover, sea ice, finite difference theory, electromagnetic waves, polarimetry, neural networks, random media, synthetic aperture radar, electromagnetic bias, and others.

  10. Comparison of the resulting error in data fusion techniques when used with remote sensing, earth observation, and in-situ data sets for water quality applications

    NASA Astrophysics Data System (ADS)

    Ziemba, Alexander; El Serafy, Ghada

    2016-04-01

    Ecological modeling and water quality investigations are complex processes which can require a high level of parameterization and a multitude of varying data sets in order to properly execute the model in question. Since models are generally complex, their calibration and validation can benefit from the application of data and information fusion techniques. The data applied to ecological models comes from a wide range of sources such as remote sensing, earth observation, and in-situ measurements, resulting in a high variability in the temporal and spatial resolution of the various data sets available to water quality investigators. It is proposed that effective fusion into a comprehensive singular set will provide a more complete and robust data resource with which models can be calibrated, validated, and driven by. Each individual product contains a unique valuation of error resulting from the method of measurement and application of pre-processing techniques. The uncertainty and error is further compounded when the data being fused is of varying temporal and spatial resolution. In order to have a reliable fusion based model and data set, the uncertainty of the results and confidence interval of the data being reported must be effectively communicated to those who would utilize the data product or model outputs in a decision making process[2]. Here we review an array of data fusion techniques applied to various remote sensing, earth observation, and in-situ data sets whose domains' are varied in spatial and temporal resolution. The data sets examined are combined in a manner so that the various classifications, complementary, redundant, and cooperative, of data are all assessed to determine classification's impact on the propagation and compounding of error. In order to assess the error of the fused data products, a comparison is conducted with data sets containing a known confidence interval and quality rating. We conclude with a quantification of the performance

  11. Field Data Collection: an Essential Element in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Pettinger, L. R.

    1971-01-01

    Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.

  12. Commerical Remote Sensing Data Contract

    USGS Publications Warehouse

    ,

    2005-01-01

    The U. S. Geological Survey's (USGS) Commercial Remote Sensing Data Contracts (CRSDCs) provide government agencies with access to a broad range of commercially available remotely sensed airborne and satellite data. These contracts were established to support The National Map partners, other Federal Civilian agency programs, and Department of Defense programs that require data for the United States and its territories. Experience shows that centralized procurement of remotely sensed data leads to considerable cost savings to the Federal government through volume discounts, reduction of redundant contract administrative costs, and avoidance of duplicate purchases. These contracts directly support the President's Commercial Remote Sensing Space Policy, signed in 2003, by providing a centralized mechanism for civil agencies to acquire commercial remote sensing products to support their mission needs in an efficient and coordinated way. CRSDC administration is provided by the USGS Mid-Continent Mapping Center in Rolla, Missouri.

  13. Study of 3D remote sensing system based on optical scanning holography

    NASA Astrophysics Data System (ADS)

    Zhao, Shihu; Yan, Lei

    2009-06-01

    High-precision and real-time remote sensing imaging system is an important part of remote sensing development. Holography is a method of wave front record and recovery which was presented by Dennis Gabor. As a new kind of holography techniques, Optical scanning holography (OSH) and remote sensing imaging are intended to be combined together and applied in acquisition and interference measurement of remote sensing. The key principles and applicability of OSH are studied and the mathematic relation between Fresnel Zone Plate number, numerical aperture and object distance was deduced, which are proved to be feasible for OSH to apply in large scale remote sensing. At last, a new three-dimensional reflected OSH remote sensing imaging system is designed with the combination of scanning technique to record hologram patterns of large scale remote sensing scenes. This scheme is helpful for expanding OSH technique to remote sensing in future.

  14. Analysis of anthropogenic impacts on the hydrological state of a Pleistocene catchment area using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Leuschner, Annette; Merz, Christoph; Steidl, Jörg; van Gasselt, Stephan

    2016-04-01

    The water budget of a catchment area can be depicted by the complex interaction between topography and discharge as well as anthropogenic and climatic impacts. Over the last decades, the Pleistocene lowlands of North-Eastern Germany have experienced extensive anthropogenic modifications. The hydrological system has been significantly altered by the installation of artificial drainage, such as surface ditches and subsurface tile drains. It has been shown, that artificial drainage systems provide pathways for diffuse nutrients and pollutants leaching into surface and also subsurface water bodies, which is especially pronounced in lowland areas. The detection of these transport paths is important for obtaining an understanding of the regional water and substance balance and the development of strategies to improve hydrological conditions. Unfortunately, detailed data about locations of historic artificial drainage are rare or not available at all. The aim of this study was to identify the extensive anthropogenic modifications, like artificial drainage networks and land use changes, over the last decades with the aid of photogrammetric data and multispectral imagery. The detection of anthropogenic modifications is based on the method of Tetzlaff, et al. (2009), who developed an approach by interpreting aerial photographs for drained areas. We used color-infrared (CIR) aerial photographs, in order to apply different spectral techniques for obtaining information about water content and vitality status of plant cover. Although this method is sensitive to daily variations of soil moisture and plant growth as response to climate conditions, and the type of drainage pipe installation technique, we were able to identify different locations of artificial drainage. Complementary to this approach we utilized spectral classification methods for land cover in order to extract different land cover categories, and evaporation rates, depending on the land cover and surface

  15. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques

    NASA Astrophysics Data System (ADS)

    Jha, Madan K.; Chowdary, V. M.; Chowdhury, Alivia

    2010-11-01

    An approach is presented for the evaluation of groundwater potential using remote sensing, geographic information system, geoelectrical, and multi-criteria decision analysis techniques. The approach divides the available hydrologic and hydrogeologic data into two groups, exogenous (hydrologic) and endogenous (subsurface). A case study in Salboni Block, West Bengal (India), uses six thematic layers of exogenous parameters and four thematic layers of endogenous parameters. These thematic layers and their features were assigned suitable weights which were normalized by analytic hierarchy process and eigenvector techniques. The layers were then integrated using ArcGIS software to generate two groundwater potential maps. The hydrologic parameters-based groundwater potential zone map indicated that the `good' groundwater potential zone covers 27.14% of the area, the `moderate' zone 45.33%, and the `poor' zone 27.53%. A comparison of this map with the groundwater potential map based on subsurface parameters revealed that the hydrologic parameters-based map accurately delineates groundwater potential zones in about 59% of the area, and hence it is dependable to a certain extent. More than 80% of the study area has moderate-to-poor groundwater potential, which necessitates efficient groundwater management for long-term water security. Overall, the integrated technique is useful for the assessment of groundwater resources at a basin or sub-basin scale.

  16. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Sattinger, I. J.; Sellman, A. N.; Istvan, L. B.; Cook, J. J.

    1973-01-01

    During the period from June 1972 to June 1973, remote sensing techniques were applied to the following tasks: (1) mapping Michigan's land resources, (2) waterfowl habitat management at Point Mouillee, (3) mapping of Lake Erie shoreline flooding, (4) highway impact assessment, (5) applications of the Earth Resources Technology Satellite, ERTS-1, (6) investigation of natural gas eruptions near Williamsburg, and (7) commercial site selection. The goal of the program was the large scale adaption, by both public agencies and private interests in Michigan, of earth-resource survey technology as an important aid in the solution of current problems in resources management and environmental protection.

  17. Methodology of remote sensing data interpretation and geological applications. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.

    1982-01-01

    Elements of photointerpretation discussed include the analysis of photographic texture and structure as well as film tonality. The method used is based on conventional techniques developed for interpreting aerial black and white photographs. By defining the properties which characterize the form and individuality of dual images, homologous zones can be identified. Guy's logic method (1966) was adapted and used on functions of resolution, scale, and spectral characteristics of remotely sensed products. Applications of LANDSAT imagery are discussed for regional geological mapping, mineral exploration, hydrogeology, and geotechnical engineering in Brazil.

  18. Assessment of the vegetation cover in a burned area 22-years ago using remote sensing techniques and GIS analysis (Sierra de las Nieves, South of Spain).

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2015-04-01

    The study aim was to characterize the vegetation cover in a burned area 22-years ago considering the previous situation to wildfire in 1991 and the current one in 2013. The objectives were to: (i) compare the current and previous vegetation cover to widlfire; (ii) evaluate whether the current vegetation has recovered the previous cover to wildfire; and (iii) determine the spatial variability of vegetation recovery after 22-years since the wildfire. The study area is located in Sierra de las Nieves, South of Spain. It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1500 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. Likewise, the Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover map were obtained by means of object-oriented classifications. Also, NDVI and PVI1 vegetation indexes were calculated and mapped for both years. Finally, some images transformations and kernel density images were applied to determine the most recovered areas and to map the spatial concentration of bare soil and pine cover areas in 1991 and 2013, respectively. According to the results, the combination of remote sensing and GIS analysis let

  19. Laser remote sensing of the atmosphere

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1986-01-01

    A guide to the extant literature concerning remote sensing of the atmosphere by laser-based devices is presented, with emphasis on surveys of the field as well as the most important recent results. Topics surveyed include measurements of aerosol constituents using lidar, the differential absorption lidar technique, the use of laser long-path differential absorption, Raman scattering techniques, and fluorescence lidar techniques. Special attention is given to measuring wind velocity using CO2 heterodyne lidar systems.

  20. International Geoscience and Remote Sensing Symposium, Washington, DC, June 8-10, 1981, Digest. Volumes 1 & 2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Sensors used for the geophysical and remote sensing studies are reviewed; in particular, NIMBUS-7 Scanning Multichannel Microwave Radiometer results are given. Remote sensing analyses consider such areas as hydrology, soil moisture, and planetary surfaces. In addition, Shuttle remote sensing experiments and SAR systems, remote sensing in the thermal infrared, and microwave remote sensing of the earth are considered. Finally, attention is given to lithologic and geobotanical studies, and geophysical sensing techniques and inversion theory.

  1. Assessment of the Accuracy of the Conventional Ray-Tracing Technique: Implications in Remote Sensing and Radiative Transfer Involving Ice Clouds.

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Van Diedenhoven, Bastiaan; Iwabuchi, Hironobu

    2014-01-01

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TMþIGOM are considered as a benchmark because the IITM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TMþIGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 micrometers) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical

  2. Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique

    NASA Astrophysics Data System (ADS)

    Pinto, Domingos; Shrestha, Sangam; Babel, Mukand S.; Ninsawat, Sarawut

    2015-02-01

    Groundwater plays an important role for socio-economic development of Comoro watershed in Timor Leste. Despite the significance of groundwater for sustainable development, it has not always been properly managed in the watershed. Therefore, this study seeks to identify groundwater potential zones in the Comoro watershed, using geographical information systems and remote sensing and analytic hierarchy process technique. The groundwater potential zones thus obtained were divided into five classes and validated with the recorded bore well yield data. It was found that the alluvial plain in the northwest along the Comoro River has very high groundwater potential zone which covers about 5.4 % (13.5 km2) area of the watershed. The high groundwater potential zone was found in the eastern part and along the foothills and covers about 4.8 % (12 km2) of the area; moderate zone covers about 2.0 % (5 km2) of the area and found in the higher elevation of the alluvial plain. The poor and very poor groundwater potential zone covers about 87.8 % (219.5 km2) of the watershed. The hilly terrain located in the southern and central parts of the study area has a poor groundwater potential zone due to higher degree of slope and low permeability of conglomerate soil type. The demarcation of groundwater potential zones in the Comoro watershed will be helpful for future planning, development and management of the groundwater resources.

  3. Using Remote Sensing and GIS Techniques to Detect Changes to the Prince Alfred Hamlet Conservation Area in the Western Cape, South Africa

    NASA Astrophysics Data System (ADS)

    Duncan, P.; Lewarne, M.

    2016-06-01

    Understanding and identifying the spatial-temporal changes in the natural environment is crucial for monitoring and evaluating conservation efforts, as well as understanding the impact of human activities on natural resources, informing responsible land management, and promoting better decision-making. Conservation areas are often under pressure from expanding farming and related industry, invasive alien vegetation, and an ever-increasing human settlement footprint. This study focuses on detecting changes to the Prince Alfred Hamlet commonage, near Ceres in the Cape Floral Kingdom. It was chosen for its high conservation value and significance as a critical water source area. The study area includes a fast-growing human settlement footprint in a highly productive farming landscape. There are conflicting development needs as well as risks to agricultural production, and both of these threaten the integrity of the ecosystems which supply underlying services to both demands on the land. Using a multi-disciplinary approach and high-resolution satellite imagery, land use and land cover changes can be detected and classified, and the results used to support the conservation of biodiversity and wildlife, and protect our natural resources. The aim of this research is to study the efficacy of using remote sensing and GIS techniques to detect changes to critical conservation areas where disturbances can be understood, and therefore better managed and mitigated before these areas are degraded beyond repair.

  4. Structural analysis techniqes for remote sensing

    NASA Technical Reports Server (NTRS)

    Shapiro, L. G.

    1982-01-01

    The structural analysis of remotely sensed imagery is defined and basic techniques for implementing the process are described. Structural analysis uses knowledge of the properties of an entity, its parts and their relationships, and the relationships in which it participates at a higher level to locate and recognize objects in a visual scene. The representation of structural knowledge, the development of algorithms for using the knowledge to help analyze an image, and techniques for storage and retrieval of relational models are addressed.

  5. Theory of microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.; Shin, R. T.

    1985-01-01

    Active and passive microwave remote sensing of earth terrains is studied. Electromagnetic wave scattering and emission from stratified media and rough surfaces are considered with particular application to the remote sensing of soil moisture. Radiative transfer theory for both the random and discrete scatterer models is examined. Vector radiative transfer equations for nonspherical particles are developed for both active and passive remote sensing. Single and multiple scattering solutions are illustrated with applications to remote sensing problems. Analytical wave theory using the Dyson and Bethe-Salpeter equations is employed to treat scattering by random media. The backscattering enhancement effects, strong permittivity fluctuation theory, and modified radiative transfer equations are addressed. The electromagnetic wave scattering from a dense distribution of discrete scatterers is studied. The effective propagation constants and backscattering coefficients are calculated and illustrated for dense media.

  6. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1992-01-01

    Research findings are summarized for projects dealing with the following: application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; theoretical modeling for passive microwave remote sensing of earth terrain; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  7. Remote sensing at Savannah River

    SciTech Connect

    Corey, J.C.

    1986-01-01

    The paper discusses remote sensing systems used at the Savannah River Plant. They include three ground-based systems: ground penetrating radar, sniffers, and lasers; and four airborne systems: multispectral photography, lasers, thermal imaging, and radar systems. (ACR)

  8. Additional development of remote sensing techniques for observing morphology, microphysics, and radiative properties of clouds and tests using a new, robust CO{sub 2} lidar. Annual progress report, August 15, 1994--August 30, 1995

    SciTech Connect

    Eberhard, W.L.; Intrieri, J.M.; Brewer, W.A.

    1996-04-01

    The bulk morphology and microphysical characteristics of a cloud are both important in determining the cloud`s effect on radiative transfer. A better understanding of all these properties, and the links among them, are needed for developing adequate parameterizations of these components in climate models. The objective of this project is to develop remote sensing techniques for observing key cloud properties, including the linkages. The research has technique development and instrument development prongs.

  9. Using remote sensing and GIS techniques to estimate discharge and recharge fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.; ,

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter

  10. Notes for the improvement of a remote sensing multispectral data non-supervised classification and mapping technique

    NASA Technical Reports Server (NTRS)

    Dalton, C. C.

    1973-01-01

    Examined are: (1) the sequential clustering technique for the unsupervised automatic classification and mapping of earth resources satellite data, (2) theoretical analysis of the tests which were used, and (3) derivation of an alternative set of tests and their necessary algorithm.

  11. Optically based technique for producing merged spectra of water-leaving radiances from ocean color remote sensing.

    PubMed

    Mélin, Frédéric; Zibordi, Giuseppe

    2007-06-20

    An optically based technique is presented that produces merged spectra of normalized water-leaving radiances L(WN) by combining spectral data provided by independent satellite ocean color missions. The assessment of the merging technique is based on a four-year field data series collected by an autonomous above-water radiometer located on the Acqua Alta Oceanographic Tower in the Adriatic Sea. The uncertainties associated with the merged L(WN) obtained from the Sea-viewing Wide Field-of-view Sensor and the Moderate Resolution Imaging Spectroradiometer are consistent with the validation statistics of the individual sensor products. The merging including the third mission Medium Resolution Imaging Spectrometer is also addressed for a reduced ensemble of matchups.

  12. Application of remote sensing to state and regional problems

    NASA Technical Reports Server (NTRS)

    Bouchillon, C. W.; Miller, W. F.; Landphair, H.; Zitta, V. L.

    1974-01-01

    The use of remote sensing techniques to help the state of Mississippi recognize and solve its environmental, resource, and socio-economic problems through inventory, analysis, and monitoring is suggested.

  13. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY

    EPA Science Inventory

    The integration of IKONOS satellite data, airborne color infrared remote sensing, visualization, and decision support tools is discussed, within the contexts of management techniques for minimizing non-point source pollution in inland waterways, such s riparian buffer restoration...

  14. 1984 World Conference on remote sensing technical papers

    SciTech Connect

    Morgan, K.M.

    1984-01-01

    These eleven papers were given at a conference on remote sensing of geographical data. Subjects include fingerprinting of oil spills using fluorescence spectroscopy, satellites, air pollution monitoring, uranium exploration, geomorphology, water pollution, forest diseases and ecology, plumes, and optical techniques.

  15. A New Computational Framework for Atmospheric and Surface Remote Sensing

    NASA Technical Reports Server (NTRS)

    Timucin, Dogan A.

    2004-01-01

    A Bayesian data-analysis framework is described for atmospheric and surface retrievals from remotely-sensed hyper-spectral data. Some computational techniques are high- lighted for improved accuracy in the forward physics model.

  16. Techniques for the remote sensing of space plasma in the heliosphere via energetic neutral atoms - A review

    NASA Technical Reports Server (NTRS)

    Hsieh, K. C.; Curtis, C. C.; Fan, C. Y.; Gruntman, M. A.

    1992-01-01

    A survey is conducted for state-of-the-art techniques for detecting energetic neutral atoms (ENAs) in the 100-300 keV range, in regions from the heliospheric boundary to the auroral zones where the solar wind plays a crucial role. While ENA spectrometry allows sampling of the mass and energy distributions of a distant plasma, ENA imaging gives a global view of the structures and dynamics of an extended plasma. The ENA instrument designs discussed share many components which exhibit excellent flight performance as elements in charged-particle analyzers for space missions.

  17. New techniques for the quantification and modeling of remotely sensed alteration and linear features in mineral resource assessment studies

    USGS Publications Warehouse

    Trautwein, C.M.; Rowan, L.C.

    1987-01-01

    Linear structural features and hydrothermally altered rocks that were interpreted from Landsat data have been used by the U.S. Geological Survey (USGS) in regional mineral resource appraisals for more than a decade. In the past, linear features and alterations have been incorporated into models for assessing mineral resources potential by manually overlaying these and other data sets. Recently, USGS research into computer-based geographic information systems (GIS) for mineral resources assessment programs has produced several new techniques for data analysis, quantification, and integration to meet assessment objectives.

  18. Optical property dimensionality reduction techniques for accelerated radiative transfer performance: Application to remote sensing total ozone retrievals

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego; Trautmann, Thomas

    2014-01-01

    In this paper, we introduce several dimensionality reduction techniques for optical parameters. We consider the principal component analysis, the local linear embedding methods (locality pursuit embedding, locality preserving projection, locally embedded analysis), and discrete orthogonal transforms (cosine, Legendre, wavelet). The principle component analysis has already been shown to be an effective and accurate method of enhancing radiative transfer performance for simulations in an absorbing and a scattering atmosphere. By linearizing the corresponding radiative transfer model, we analyze the applicability of the proposed methods to a practical problem of total ozone column retrieval from UV-backscatter measurements.

  19. A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Chatterjee, Abhishek; Michalak, Anna M.; Kahn, Ralph A.; Paradise, Susan R.; Braverman, Amy J.; Miller, Charles E.

    2010-01-01

    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling

  20. Earth view: A business guide to orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1990-01-01

    The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.

  1. A practical method of determining water current velocities and diffusion coefficients in coastal waters by remote sensing techniques

    NASA Technical Reports Server (NTRS)

    James, W. P.

    1971-01-01

    A simplified procedure is presented for determining water current velocities and diffusion coefficients. Dye drops which form dye patches in the receiving water are made from an aircraft. The changes in position and size of the patches are recorded from two flights over the area. The simplified data processing procedure requires only that the ground coordinates about the dye patches be determined at the time of each flight. With an automatic recording coordinatograph for measuring coordinates and a computer for processing the data, this technique provides a practical method of determining circulation patterns and mixing characteristics of large aquatic systems. This information is useful in assessing the environmental impact of waste water discharges and for industrial plant siting.

  2. Uncertainties associated with the use of optical remote sensing technique to estimate surface emissions in landfill applications.

    PubMed

    Abichou, Tarek; Clark, Jeremy; Tan, Sze; Chanton, Jeffery; Hater, Gary; Green, Roger; Goldsmith, Doug; Barlaz, Morton A; Swan, Nathan

    2010-04-01

    Landfills represent a source of distributed emissions source over an irregular and heterogeneous surface. In the method termed "Other Test Method-10" (OTM-10), the U.S. Environmental Protection Agency (EPA) has proposed a method to quantify emissions from such sources by the use of vertical radial plume mapping (VRPM) techniques combined with measurement of wind speed to determine the average emission flux per unit area per time from nonpoint sources. In such application, the VRPM is used as a tool to estimate the mass of the gas of interest crossing a vertical plane. This estimation is done by fitting the field-measured concentration spatial data to a Gaussian or some other distribution to define a plume crossing the vertical plane. When this technique is applied to landfill surfaces, the VRPM plane may be within the emitting source area itself. The objective of this study was to investigate uncertainties associated with using OTM-10 for landfills. The spatial variability of emission in the emitting domain can lead to uncertainties of -34 to 190% in the measured flux value when idealistic scenarios were simulated. The level of uncertainty might be higher when the number and locations of emitting sources are not known (typical field conditions). The level of uncertainty can be reduced by improving the layout of the VRPM plane in the field in accordance with an initial survey of the emission patterns. The change in wind direction during an OTM-10 testing setup can introduce an uncertainty of 20% of the measured flux value. This study also provides estimates of the area contributing to flux (ACF) to be used in conjunction with OTM-10 procedures. The estimate of ACF is a function of the atmospheric stability class and has an uncertainty of 10-30%. PMID:20437781

  3. Microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Wang, J. R.

    1988-01-01

    Knowledge of soil moisture is important to many disciplines, such as agriculture, hydrology, and meteorology. Soil moisture distribution of vast regions can be measured efficiently only with remote sensing techniques from airborne or satellite platforms. At low microwave frequencies, water has a much larger dielectric constant than dry soil. This difference manifests itself in surface emissivity (or reflectivity) change between dry and wet soils, and can be measured by a microwave radiometer or radar. The Microwave Sensors and Data Communications Branch is developing microwave remote sensing techniques using both radar and radiometry, but primarily with microwave radiometry. The efforts in these areas range from developing algorithms for data interpretation to conducting feasibility studies for space systems, with a primary goal of developing a microwave radiometer for soil moisture measurement from satellites, such as EOS or the Space Station. These efforts are listed.

  4. Measurement Strategies for Remote Sensing Applications

    SciTech Connect

    Weber, P.G.; Theiler, J.; Smith, B.; Love, S.P.; LaDelfe, P.C.; Cooke, B.J.; Clodius, W.B.; Borel, C.C.; Bender, S.C.

    1999-03-06

    Remote sensing has grown to encompass many instruments and observations, with concomitant data from a huge number of targets. As evidenced by the impressive growth in the number of published papers and presentations in this field, there is a great deal of interest in applying these capabilities. The true challenge is to transition from directly observed data sets to obtaining meaningful and robust information about remotely sensed targets. We use physics-based end-to-end modeling and analysis techniques as a framework for such a transition. Our technique starts with quantified observables and signatures of a target. The signatures are propagated through representative atmospheres to realistically modeled sensors. Simulated data are then propagated through analysis routines, yielding measurements that are directly compared to the original target attributes. We use this approach to develop measurement strategies which ensure that our efforts provide a balanced approach to obtaining substantive information on our targets.

  5. Remote sensing impact on corridor selection and placement

    NASA Technical Reports Server (NTRS)

    Thomson, F. J.; Sellman, A. N.

    1975-01-01

    Computer-aided corridor selection techniques, utilizing digitized data bases of socio-economic, census, and cadastral data, and developed for highway corridor routing are considered. Land resource data generated from various remote sensing data sources were successfully merged with the ancillary data files of a corridor selection model and prototype highway corridors were designed using the combined data set. Remote sensing derived information considered useful for highway corridor location, special considerations in geometric correction of remote sensing data to facilitate merging it with ancillary data files, and special interface requirements are briefly discussed.

  6. Remote sensing of subsurface water temperature by Raman scattering

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.; Caputo, B.; Hoge, F. E.

    1979-01-01

    The application of Raman scattering to remote sensing of subsurface water temperature and salinity is considered, and both theoretical and experimental aspects of the technique are discussed. Recent experimental field measurements obtained in coastal waters and on a trans-Atlantic/Mediterranean research cruise are correlated with theoretical expectations. It is concluded that the Raman technique for remote sensing of subsurface water temperature has been brought from theoretical and laboratory stages to the point where practical utilization can now be developed.

  7. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  8. Remote sensing of submerged habitats in the Dry Tortugas: A comparison of multiple sensors and classification techniques

    NASA Astrophysics Data System (ADS)

    Field, Donald William

    The advent of high resolution satellite imagery from platforms such as IKONOS, QuickBird, and OrbView, as well as host of new suborbital sensors has opened up new possibilities for mapping submerged coral, seagrass and algal communities. The research presented here examined the use of two of these platforms, IKONOS and QuickBird, as well as scanned aerial photographs, to map submerged habitats in the Dry Tortugas. Of the two satellite imagery sources, only QuickBird was tasked and imagery obtained specifically for this research. Upon examination and initial processing of the QuickBird imagery, it was discovered that an image anomaly, that will be referred to in this document as the green band miscalibration, had significant effects on some aspects of the image processing. To date, this anomaly has received no attention in the literature. Based mostly on issues associated with the green band miscalibration and the steps taken in this project to address them, the following document has two major areas of focus. After a brief introduction in Chapter one, Chapter 2 examines the use of the IKONOS and QuickBird imagery to obtain bathymetry information for the study area. Chapter 3 examines the use of the three image processing techniques on IKONOS and QuickBird imagery and manual interpretation of 1:24,000 nominal scale color aerial photography to classify submerged coral, seagrass, and algal habitats in the Dry Tortugas study area.

  9. Evaluation of remote-sensing techniques to measure decadal-scale changes of Hofsjokull ice cap, Iceland

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Barton, J.S.; Sigurdsson, O.; Smith, L.C.; Garvin, J.B.

    2000-01-01

    Dynamic surficial changes and changes in the position of the firn line and the areal extent of Hofsjökull ice cap, Iceland, were studied through analysis of a time series (1973–98) of synthetic-aperture radar (SAR) and Landsat data. A digital elevation model of Hofsjökull, which was constructed using SAR interferometry, was used to plot the SAR backscatter coefficient (σ°) vs elevation and air temperature along transects across the ice cap. Seasonal and daily σ° patterns are caused by freezing or thawing of the ice-cap surface, and abrupt changes in σ° are noted when the air temperature ranges from ∼−5° to 0°C. Late-summer 1997 σ° (SAR) and reflectance (Landsat) boundaries agree and appear to be coincident with the firn line and a SAR σ° boundary that can be seen in the January 1998 SAR image. In January 1994 through 1998, the elevation of this σ° boundary on the ice capwas quite stable, ranging from 1000 to 1300 m, while the equilibrium-line altitude, as measured on the ground, varied considerably. Thus the equilibrium line may be obscured by firn from previous years. Techniques are established to measure long-term changes in the elevation of the firn line and changes in the position of the ice margin.

  10. NASA Remote Sensing Applications for Archaeology and Cultural Resources Management

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.

    2008-01-01

    NASA's Earth Science Mission Directorate recently completed the deployment of the Earth Observation System (EOS) which is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. One of the many applications derived from EOS is the advancement of archaeological research and applications. Using satellites, manned and unmanned airborne platform, NASA scientists and their partners have conducted archaeological research using both active and passive sensors. The NASA Stennis Space Center (SSC) located in south Mississippi, near New Orleans, has been a leader in space archaeology since the mid-1970s. Remote sensing is useful in a wide range of archaeological research applications from landscape classification and predictive modeling to site discovery and mapping. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, including commercial instruments, offer significantly improved spatial and spectral resolutions. Paired with new techniques of image analysis, this technology provides for the direct detection of archaeological sites. As in all archaeological research, the application of remote sensing to archaeology requires a priori development of specific research designs and objectives. Initially targeted at broad archaeological issues, NASA space archaeology has progressed toward developing practical applications for cultural resources management (CRM). These efforts culminated with the Biloxi Workshop held by NASA and the University of Mississippi in 2002. The workshop and resulting publication specifically address the requirements of cultural resource managers through

  11. Remote sensing on Indian and public lands

    NASA Technical Reports Server (NTRS)

    Torbert, G. B.; Woll, A. M.

    1972-01-01

    The use of remote sensing techniques by the Bureaus of Indian Affairs and Land Management in planning resource problems, making decisions, writing environmental impact statements, and monitoring their respective programs is investigated. For Indian affairs, data cover the Papago, Fort Apache, San Carlos, and South Dakota Reservations. For the Land Management Office, data cover cadastral surveys, California desert study, range watersheds, and efforts to establish a natural resources information system.

  12. Modified Conditional Merging technique: a new method to estimate a rainfall field combining remote sensed data and raingauge observations

    NASA Astrophysics Data System (ADS)

    Pignone, Flavio; Rebora, Nicola; Silvestro, Francesco

    2015-04-01

    The estimation of the rainfall field, especially its spatial distribution and position, is a crucial task both for rainfall nowcasting and for modeling catchment response to rainfall. Some studies of literature about multisensor datafusion prove that combining data from different sensors (especially raingauges and radar) represents the best way to obtain an enhanced ad more reliable estimation of QPE and of the associated river discharge. Sinclair and Peagram (2004) have proposed the Conditional Merging (CM) technique, a merging algorithm which extract the information content from the observed data and use it within an interpolation method to obtain the rainfall maps. The raingauges provide a punctual measure of the observed "real" rainfall while the remote sensors (radar network or satellite constellation) supply rainfall estimation maps which give an idea of the spatial correlation structure of the observed field. In this work is studied an enhanced algorithm based on CM, called Modified Conditional Merging, which can be used in real-time to produce the optimal rainfall maps. The area of interest, where the CM has been applied, is Italy, where are both available a dense network of raingauge measurements (about 3000 stations) and a QPE estimated by the Italian Radar composite. The main innovation respect to classical CM is to estimate the structure of covariance and the length of spatial correlation λ, for every raingauge, directly from the cumulated radar rainfall fields. The advantages of this method is to estimate the local characteristic of the domain to obtain information at smaller scale, very useful for convective events. A cross-validation of the new method was done and several statistical scores were applied on the results. The validation on a large number of Italian past event along with its operational use are presented and discussed.

  13. Diachronic analysis of salt-affected areas using remote sensing techniques: the case study of Biskra area, Algeria

    NASA Astrophysics Data System (ADS)

    Afrasinei, Gabriela M.; Melis, Maria T.; Buttau, Cristina; Bradd, John M.; Arras, Claudio; Ghiglieri, Giorgio

    2015-10-01

    In the Wadi Biskra arid and semi-arid area, sustainable development is limited by land degradation, such as secondary salinization of soils. As an important high quality date production region of Algeria, it needs continuous monitoring of desertification indicators, since the bio-physical setting defines it as highly exposed to climate-related risks. For this particular study, for which little ground truth data was possible to acquire, we set up an assessment of appropriate methods for the identification and change detection of salt-affected areas, involving image interpretation and processing techniques employing Landsat imagery. After a first phase consisting of a visual interpretation study of the land cover types, two automated classification approaches were proposed and applied for this specific study: decision tree classification and principal components analysis (PCA) of Knepper ratios. Five of the indices employed in the Decision Tree construction were set up within the current study, among which we propose a salinity index (SMI) for the extraction of highly saline areas. The results of the 1984 to 2014 diachronic analysis of salt - affected areas variation were supported by the interpreted land cover map for accuracy estimation. Connecting the outputs with auxiliary bio-physical and socio-economic data, comprehensive results are discussed, which were indispensable for the understanding of land degradation dynamics and vulnerability to desertification. One aspect that emerged was the fact that the expansion of agricultural land in the last three decades may have led and continue to contribute to a secondary salinization of soils. This study is part of the WADIS-MAR Demonstration Project, funded by the European Commission through the Sustainable Water Integrated Management (SWIM) Program (www.wadismar.eu).

  14. NASA Remote Sensing Research as Applied to Archaeology

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.; Thomas, Michael R.

    2002-01-01

    The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.

  15. Remote sensing of hydrological fluxes

    NASA Astrophysics Data System (ADS)

    Gurney, R. J.

    Remote sensing is developing as a measurement technique to the point where data are starting to be used operationally in a quantitative way other than just in weather forecasting. In addition, many other uses of the data are being developed because of the sparseness of conventional data in many parts of the world. A recent session of AGU's Hydrology Section at the Spring Meeting in Baltimore, Md., featured discussions of some of the recent advances in the use of remotely sensed data to estimate hydrological fluxes.Several papers dealt with remote sensing aspects of the First ISLSCP Field Experiment (FIFE), following another session of the Hydrology Section, which discussed nonremote sensing results from FIFE. S. N. Goward (University of Maryland, College Park) presented a review of empirical results from time series of Advanced Very High Resolution Radiometer at the FIFE site and their relationship to some conventional observations. He showed strong relationships between spectral vegetation indices and surface temperature with scatter being at least partly caused by surface moisture variations. Unraveling the relationships from a physical point of view will involve a greater understanding of atmospheric effects and surface properties from other concurrent measurements during FIFE. Similar relationships between spectral vegetation indices and surface temperature were observed and reported by C. L. Walthall (University of Maryland, College Park), who used a radiometer mounted on a helicopter to collect data at the FIFE site. This indicates that the relationships are not entirely due to atmospheric effects. M. F. Jasinski and P. S. Eagleson (Massachusetts Institute of Technology, Cambridge) described a theoretical reflectance model for spectral vegetation indices in terms of ground cover that will be extremely useful in interpreting these experimental results. R. N. Halthore (Applied Research Corp., Landover, Md.) described some of the measurements of aerosols during

  16. Boundary Layer Remote Sensing with Combined Active and Passive Techniques: GPS Radio Occultation and High-Resolution Stereo Imaging (WindCam) Small Satellite Concept

    NASA Technical Reports Server (NTRS)

    Mannucci, A.J.; Wu, D.L.; Teixeira, J.; Ao, C.O.; Xie, F.; Diner, D.J.; Wood, R.; Turk, Joe

    2012-01-01

    Objective: significant progress in understanding low-cloud boundary layer processes. This is the Single largest uncertainty in climate projections. Radio occultation has unique features suited to boundary layer remote sensing (1) Cloud penetrating (2) Very high vertical resolution (approximately 50m-100m) (3) Sensitivity to thermodynamic variables

  17. Satellite based remote sensing technique as a tool for real time monitoring of leaf retention in natural rubber plantations affected by abnormal leaf fall disease

    NASA Astrophysics Data System (ADS)

    Pradeep, B.; Meti, S.; James, J.

    2014-11-01

    Most parts of the traditional natural rubber growing regions of India, extending from Kanyakumari district of Tamil Nadu in the South to Kasaragod district of Kerala in the North received excess and prolonged rains during 2013. This led to severe incidence of Abnormal Leaf Fall (ALF) disease caused by the fungus, Phytophthora sp. The present study demonstrated the first time use of satellite remote sensing technique to monitor ALF disease by estimating Leaf Area Index (LAI) in natural rubber holdings in near real time. Leaf retention was monitored in between April and December 2012 and 2013 by estimating LAI using MODIS 15A2 product covering rubber holdings spread across all districts in the traditional rubber growing region of the country that was mapped using Resourcesat LISS III 2012 and 2013 data. It was found that as the monsoon advanced, LAI decreased substantially in both years, but the reduction was much more substantial and prolonged in many districts during 2013 than 2012 reflecting increased leaf fall due to ALF disease in 2013. The decline was more pronounced in central and northern Kerala than in the South. Kanyakumari district of Tamil Nadu is generally known to be free from ALF disease, but there was considerable leaf loss due to ALF in June 2012 and June and July 2013 even as the monsoon was unusually severe in 2013. Weighted mean LAI during for the entire period of April to December was estimated as a weighted average of LAI and per cent of total area under rubber in each district in the study area for the two years. This was markedly less in 2013 than 2012. The implications of poor leaf retention for biomass production (net primary productivity), carbon sequestration and rubber yield are discussed.

  18. Floods and wetlands: combining a water-balance model and remote-sensing techniques to characterize hydrological processes of ecological importance in the Tana River Delta (Kenya)

    NASA Astrophysics Data System (ADS)

    Leauthaud, C.; Duvail, S.; Belaud, G.; Moussa, R.; Grünberger, O.; Albergel, J.

    2012-10-01

    The Tana River Delta (TRD) provides a multitude of ecosystem services for the local communities including fishing, farming and livestock keeping. The hydrological regime of its river determines for a large part the environmental health of the delta. The development of upstream irrigation schemes and hydroelectric infrastructure can seriously impact the ecological status of the TRD. The Tana Inundation Model (TIM) presented here is the first known hydrological model of the TRD. Using it, we quantify essential hydrological variables of ecological importance for 2002-2011 such as flood extent and duration, flood timing and frequency, flood peaks and water height. TIM also provides an annual water balance. The model simulates river inflows and outflows, precipitation, overland flow, evapotranspiration and infiltration. The TRD is characterized by scarce hydrological data and a high cloud cover limiting the use of many remote sensing techniques. The methodology therefore combined a conventional water-balance analysis with the extraction of inundation extents from MODIS satellite imagery at a medium spatial and temporal resolution. In non extreme years and for the actual configuration of the Tana River, the flooded area exceeds 560 km2. Floods over 200 km2 occur approximately every two years, with a mean duration of less than 25 days. River discharge from the upper catchment counts for over 96% of the total water inflow. This study provides the first known estimates of these variables for the Tana River Delta and is therefore primordial for the management of the water and other natural resources of the zone. The hydrological model based on the Generalized Likelihood Uncertainty Estimation (GLUE) is generic enough to be applied to other catchments with scarce hydrological data.

  19. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  20. Holographic enhanced remote sensing system

    NASA Technical Reports Server (NTRS)

    Iavecchia, Helene P.; Gaynor, Edwin S.; Huff, Lloyd; Rhodes, William T.; Rothenheber, Edward H.

    1990-01-01

    The Holographic Enhanced Remote Sensing System (HERSS) consists of three primary subsystems: (1) an Image Acquisition System (IAS); (2) a Digital Image Processing System (DIPS); and (3) a Holographic Generation System (HGS) which multiply exposes a thermoplastic recording medium with sequential 2-D depth slices that are displayed on a Spatial Light Modulator (SLM). Full-parallax holograms were successfully generated by superimposing SLM images onto the thermoplastic and photopolymer. An improved HGS configuration utilizes the phase conjugate recording configuration, the 3-SLM-stacking technique, and the photopolymer. The holographic volume size is currently limited to the physical size of the SLM. A larger-format SLM is necessary to meet the desired 6 inch holographic volume. A photopolymer with an increased photospeed is required to ultimately meet a display update rate of less than 30 seconds. It is projected that the latter two technology developments will occur in the near future. While the IAS and DIPS subsystems were unable to meet NASA goals, an alternative technology is now available to perform the IAS/DIPS functions. Specifically, a laser range scanner can be utilized to build the HGS numerical database of the objects at the remote work site.

  1. Satellite remote sensing of vegetation

    NASA Astrophysics Data System (ADS)

    Mahr, Tobias; Peper, Eva; Schubert, Alexander; Warnach, Simon; Pöhler, Denis; Horbanski, Martin; Beirle, Steffen; Mies, Kornelia; Platt, Ulrich; Wagner, Thomas

    2013-04-01

    DOAS (Differential Optical Absorption Spectroscopy) allows to determine the concentration of trace gases based on their specific absorptions cross-sections along a light path. Since 1995, this principle is employed successfully on satellite-based instruments like GOME, GOME-2 and SCIAMACHY for the global measurement of stratospheric and tropospheric trace gases like ozone and nitrogen oxides. Usually, spectral signatures from the ground, where a big part of the sunlight is reflected, are neglected in the evaluation. This can lead to errors in the trace gas determination. However, these structures offer the opportunity to identify surface properties of the earth and different types of vegetation. To analyse spectral reflectance properties, high resolved reflection spectra (FWHM 0.29 nm) from 95 plants were measured between 350 and 1050 nm. They can serve as a basis for the analysis of satellite data. Including different vegetation reference spectra, it is possible to determine groups of plants with similar optical properties. This allows to derive global maps of the spatio-temporal variation of plant distribution by satellite remote sensing. We present first results of this technique based on SCIAMACHY observations.

  2. Remote sensing of earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1985-01-01

    Progress on the investigation of the anisotropy of the terrain media, such as vegetation canopy and sea ice, and the study of the fluctuation-dissipation theorem in conjunction with the application of strong fluctuation theory for passive remote sensing of snowpacks is reported. The Feynman diagrammatic technique is used to derive the Dyson equation for the mean field and the Bethe-Salpeter equation for the correlation or the covariance of the field for electromagnetic wave propagation and scattering in an anisotropic random medium. With the random permittivity expressed in a general form, the bilocal and the nonlinear approximations are employed to solve the Dyson equation and the ladder approximation to the Bethe-Salpeter equation. The mean dyadic Green's function for a two layer anisotropic random medium with arbitrary three dimensional correlation function was investigated with the zeroth-order solutions to the Dyson equation under the four characteristic waves associated with the coherent vector fields propagating in an anisotropic random medium layer, which are the ordinary and extraordinary waves with upward and downward propagating vectors.

  3. Passive Remote Sensing of Aerosols

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    Remote sensing of aerosol optical and microphysical properties got a resurgence in the 1970s when John Reagan and Ben Herman initiated a program to develop and implement a surface-based sunphotometer system to monitor spectral aerosol optical thickness at the University of Arizona. In this presentation I will review the state of the technology used to monitor aerosol optical and microphysical properties, including the determination of spectral aerosol optical thickness and total ozone content. This work continued with John Reagan developed a surface-based spectral flux radiometer to implement Ben Herman's idea to determine the imaginary part of the complex refractive index of aerosols using the recently developed diffuse-direct technique. Progress made both in surface-based instrumentation, inversion theory for analyzing such data, and in satellite observations of aerosol optical and microphysical properties will be reviewed to highlight the state of knowledge after 30 years of expanded capability and introduction of novel new capabilities, both from the ground and from spacecraft.

  4. Review of Remote Sensing Needs and Applications in Africa

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.

    2007-01-01

    Remote sensing data has had an important role in identifying and responding to inter-annual variations in the African environment during the past three decades. As a largely agricultural region with diverse but generally limited government capacity to acquire and distribute ground observations of rainfall, temperature and other parameters, remote sensing is sometimes the only reliable measure of crop growing conditions in Africa. Thus, developing and maintaining the technical and scientific capacity to analyze and utilize satellite remote sensing data in Africa is critical to augmenting the continent's local weather/climate observation networks as well as its agricultural and natural resource development and management. The report Review of Remote Sensing Needs and Applications in Africa' has as its central goal to recommend to the US Agency for International Development an appropriate approach to support sustainable remote sensing applications at African regional remote sensing centers. The report focuses on "RS applications" to refer to the acquisition, maintenance and archiving, dissemination, distribution, analysis, and interpretation of remote sensing data, as well as the integration of interpreted data with other spatial data products. The report focuses on three primary remote sensing centers: (1) The AGRHYMET Regional Center in Niamey, Niger, created in 1974, is a specialized institute of the Permanent Interstate Committee for Drought Control in the Sahel (CILSS), with particular specialization in science and techniques applied to agricultural development, rural development, and natural resource management. (2) The Regional Centre for Maiming of Resources for Development (RCMRD) in Nairobi, Kenya, established in 1975 under the auspices of the United Nations Economic Commission for Africa and the Organization of African Unity (now the African Union), is an intergovernmental organization, with 15 member states from eastern and southern Africa. (3) The

  5. Review of oil spill remote sensing.

    PubMed

    Fingas, Merv; Brown, Carl

    2014-06-15

    Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing.

  6. Computer applications in remote sensing education

    NASA Technical Reports Server (NTRS)

    Danielson, R. L.

    1980-01-01

    Computer applications to instruction in any field may be divided into two broad generic classes: computer-managed instruction and computer-assisted instruction. The division is based on how frequently the computer affects the instructional process and how active a role the computer affects the instructional process and how active a role the computer takes in actually providing instruction. There are no inherent characteristics of remote sensing education to preclude the use of one or both of these techniques, depending on the computer facilities available to the instructor. The characteristics of the two classes are summarized, potential applications to remote sensing education are discussed, and the advantages and disadvantages of computer applications to the instructional process are considered.

  7. Earth remote sensing - 1970-1995

    NASA Technical Reports Server (NTRS)

    Thome, P. G.

    1984-01-01

    The past-achievements, current status, and future prospects of the Landsat terrestrial-remote-sensing satellite program are surveyed. Topics examined include the early history of space flight; the development of analysis techniques to interpret the multispectral images obtained by Landsats 1, 2, and 3; the characteristics of the advanced Landsat-4 Thematic Mapper; microwave scanning by Seasat and the Shuttle Imaging Radar; the usefulness of low-resolution AVHRR data from the NOAA satellites; improvements in Landsats 4 and 5 to permit tailoring of information to user needs; expansion and internationalization of the remote-sensing market in the late 1980s; and technological advances in both instrumentation and data-processing predicted by the 1990s.

  8. Land cover mapping from remote sensing data

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Saleh, N. M.; Wong, C. J.; AlSultan, Sultan

    2006-04-01

    Remote sensing data have been widely used for land cover mapping using supervised and unsupervised methods. The produced land cover maps are useful for various applications. This paper examines the use of remote sensing data for land cover mapping over Saudi Arabia. Three supervised classification techniques Maximum Likelihood, ML, Minimum Distance-to-Mean, MDM, and Parallelepiped, P were applied to the imageries to extract the thematic information from the acquired scene by using PCI Geomatica software. Training sites were selected within each scene. This study shows that the ML classifier was the best classifier and produced superior results and achieved a high degree of accuracy. The preliminary analysis gave promising results of land cover mapping over Saudi Arabia by using Landsat TM imageries.

  9. NORSEX 1979 microwave remote sensing data report

    NASA Technical Reports Server (NTRS)

    Hennigar, H. F.; Schaffner, S. K.

    1982-01-01

    Airborne microwave remote sensing measurements obtained by NASA Langley Research Center in support of the 1979 Norwegian Remote Sensing Experiment (NORSEX) are summarized. The objectives of NORSEX were to investigate the capabilities of an active/passive microwave system to measure ice concentration and type in the vicinity of the marginal ice zone near Svalbard, Norway and to apply microwave techniques to the investigation of a thermal oceanic front near Bear Island, Norway. The instruments used during NORSEX include the stepped frequency microwave radiometer, airborne microwave scatterometer, precision radiation thermometer and metric aerial photography. The data are inventoried, summarized, and presented in a user-friendly format. Data summaries are presented as time-history plots which indicate when and where data were obtained as well as the sensor configuration. All data are available on nine-track computer tapes in card-image format upon request to the NASA Langley Technical Library.

  10. Photogrammetry - Remote Sensing and Geoinformation

    NASA Astrophysics Data System (ADS)

    Lazaridou, M. A.; Patmio, E. N.

    2012-07-01

    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  11. Remote Sensing of Global Wetland Dynamics

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine; Prigent, Catherine; Birkett, Charon; Coe, Mike; Hasen, James E. (Technical Monitor)

    2000-01-01

    Although natural wetlands only cover about 4% of the earth's ice-free land surface, they are the world's largest methane (CH4) source and the only one dominated by climate. In addition, wetlands affect climate by modulating temperatures and heat fluxes, storing water, increasing evaporation, and altering the seasonality of runoff and river discharge to the oceans. Current CH4 emissions from wetlands are relatively well understood but the sensitivity of wetlands and their emissions to climate variations remains the largest uncertainty in the global CH4 cycle and could strongly influence predictions of future climate. Therefore, characterizing climate-sensitive processes prevailing in the world's wetlands is crucial to understanding and predicting physical and biogeochemical responses of wetlands to interannual and longer-term climate variations. Recent research has resulted in the first generation of models to predict methane emissions from wetlands but the models must still be applied to static data on wetland distributions. Moreover, no models currently exist to realistically predict the distribution and dynamics of wetlands themselves for the current, or any other, climate. The dominant obstacle to modeling wetland dynamics has been lack of remote sensing techniques and data useful for characterizing quantitatively the seasonal and interannual variations of wetlands. We report on initial remote sensing studies undertaken to validate a global hydrological model linking rivers, takes and wetlands. Using a combination of SSM/I microwave and TOPEX Poseidon altimetry data sets, we developed and applied techniques to quantify inundation extent and duration for several large wetlands in tropical Africa and South America. Our initial results indicate that seasonally-inundated wetlands can be well characterized over large spatial scales and at monthly time scales using these remote sensing data. The results also confirm that currently available remote sensing products can

  12. Editorial: Special issue on remote sensing of light pollution

    NASA Astrophysics Data System (ADS)

    Aubé, Martin; Kocifaj, Miroslav

    2016-09-01

    This special issue contains papers related to the measurement, prediction, consequences and control of light pollution. The main underlying question of the special issue is: How remote sensing and field experiments can help us to understand and monitor light pollution? Through the papers published herein, you will find answers related to the use of remote sensing techniques as diverse as hyperspectral measurements, broadband photometry, along with DSLR color cameras image analysis.

  13. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  14. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Lowe, D. S.; Istvan, L. B.; Roller, N. E.; Sattinger, I. J.; Sellman, A. N.; Wagner, T. W.

    1974-01-01

    The application of NASA earth resource survey technology to resource management and environmental protection in Michigan was investigated. Remote sensing techniques to aid Michigan government agencies were applied in the following activities: (1) land use inventory and management, (2) great lakes shorelands protection and management, (3) wetlands protection and management, and (4) soil survey. In addition, information was disseminated on remote sensing technology, and advice and assistance was provided to a number of users.

  15. The Remote Sensing and GIS Software Library (RSGISLib)

    NASA Astrophysics Data System (ADS)

    Bunting, Peter; Clewley, Daniel; Lucas, Richard M.; Gillingham, Sam

    2014-01-01

    Key to the successful application of remotely sensed data to real world problems is software that is capable of performing commonly used functions efficiently over large datasets, whilst being adaptable to new techniques. This paper presents an open source software library that was developed through research undertaken at Aberystwyth University for environmental remote sensing, particularly in relation to vegetation science. The software was designed to fill the gaps within existing software packages and to provide a platform to ease the implementation of new and innovative algorithms and data processing techniques. Users interact with the software through an XML script, where XML tags and attributes are used to parameterise the available commands, which have now grown to more than 300. A key feature of the XML interface is that command options are easily recognisable to the user because of their logical and descriptive names. Through the XML interface, processing chains and batch processing are supported. More recently a Python binding has been added to RSGISLib allowing individual XML commands to be called as Python functions. To date the Python binding has over 100 available functions, mainly concentrating on image utilities, segmentation, calibration and raster GIS. The software has been released under a GPL3 license and makes use of a number of other open source software libraries (e.g., GDAL/OGR), a user guide and the source code are available at http://www.rsgislib.org.

  16. Remote sensing of the asteroids

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.

    1981-01-01

    Knowledge of the compositions of the asteroids is obtained by the remote sensing of reflected and emitted radiation from what are essentially star-like points of light. Since asteroids are a remnant population of planetesimals that were never accreted into the larger planets, their compositions and properties can provide insight into the nature of planetary matter in early epochs, before most of it was physically and chemically modified by geological processes within the planets. The progress made during the past decade in learning about asteroids through remote sensing is reviewed.

  17. Remote sensing and global competitiveness

    NASA Astrophysics Data System (ADS)

    Pace, Scott

    1994-03-01

    These remarks were given at the First Annual Symposium on Coupling Technology to National Needs as part of a panel on `Visualization and Communication: Overhead Imagery.' Based on the author's involvement with remote sensing policy while at the Department of Commerce from 1990 to 1993, the paper provides a brief overview of U.S. policy and legislation affecting remote sensing, discusses recent developments, and identifies continuing issues for commercial ventures. Example issues include operating licenses, export controls, government as a customer, and strategic partnerships.

  18. Remote sensing procurement package: Remote Sensing Industry Directory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A directory of over 140 firms and organizations which contains detailed information in the types of products, services and equipment which they offer is presented. Also included for each firm or organization are addresses, phone numbers, contact person(s), and experience in the remote sensing field.

  19. Autofocus method for scanning remote sensing cameras.

    PubMed

    Lv, Hengyi; Han, Chengshan; Xue, Xucheng; Hu, Changhong; Yao, Cheng

    2015-07-10

    Autofocus methods are conventionally based on capturing the same scene from a series of positions of the focal plane. As a result, it has been difficult to apply this technique to scanning remote sensing cameras where the scenes change continuously. In order to realize autofocus in scanning remote sensing cameras, a novel autofocus method is investigated in this paper. Instead of introducing additional mechanisms or optics, the overlapped pixels of the adjacent CCD sensors on the focal plane are employed. Two images, corresponding to the same scene on the ground, can be captured at different times. Further, one step of focusing is done during the time interval, so that the two images can be obtained at different focal plane positions. Subsequently, the direction of the next step of focusing is calculated based on the two images. The analysis shows that the method investigated operates without restriction of the time consumption of the algorithm and realizes a total projection for general focus measures and algorithms from digital still cameras to scanning remote sensing cameras. The experiment results show that the proposed method is applicable to the entire focus measure family, and the error ratio is, on average, no more than 0.2% and drops to 0% by reliability improvement, which is lower than that of prevalent approaches (12%). The proposed method is demonstrated to be effective and has potential in other scanning imaging applications.

  20. The NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.; Ryerson, Charles C.; Koenig, George G.

    2005-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data are post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Although the comparison data set is quite small, the cases examined indicate that the remote sensing technique appears to be an acceptable approach.

  1. International workshop on remote-sensing applications to fisheries

    NASA Astrophysics Data System (ADS)

    Forget, Marie-Hélène; Petit, Michel A.; Ramos, Antonio Gonzalez; Andrefouet, Serge; Dupouy, Cécile; Lotlikar, Aneesh; Hampton, John

    2009-01-01

    A workshop on fisheries was held in Noumea on November 21, 2008 to address remote-sensing applications to fisheries adapted to the particular needs and problems of Western and Central Pacific Island countries. During the workshop, presentations and discussions covered various topics related to remote sensing of coastal and open ocean waters and its applications to fisheries. Participants were introduced to remote sensing of ocean colour and its significance vis-à-vis the marine food web. Applications to fisheries included improvements of fisheries operations to increase efficiency of fishing effort, assessment of fish stocks health, growth and recruitment, and ecosystem dynamics. A project on the Societal Applications in Fisheries & Aquaculture using Remote Sensing Imagery (SAFARI) and a global Network for marine ecosystem management (ChloroGIN) were also presented. The particular issues arising in the use of remote sensing for fisheries in the tropical island regimes were reviewed and recommendations on the use of remote sensing in the context of fisheries were presented.

  2. Monitoring urban land cover with the use of satellite remote sensing techniques as a means of flood risk assessment in Cyprus

    NASA Astrophysics Data System (ADS)

    Alexakis, Dimitris; Hadjimitsis, Diofantos; Agapiou, Athos; Themistocleous, Kyriacos; Retalis, Adrianos

    2011-11-01

    The increase of flood inundation occuring in different regions all over the world have enhanced the need for effective flood risk management. As floods frequency is increasing with a steady rate due to ever increasing human activities on physical floodplains there is a respectively increasing of financial destructive impact of floods. A flood can be determined as a mass of water that produces runoff on land that is not normally covered by water. However, earth observation techniques such as satellite remote sensing can contribute toward a more efficient flood risk mapping according to EU Directives of 2007/60. This study strives to highlight the need of digital mapping of urban sprawl in a catchment area in Cyprus and the assessment of its contribution to flood risk. The Yialias river (Nicosia, Cyprus) was selected as case study where devastating flash floods events took place at 2003 and 2009. In order to search the diachronic land cover regime of the study area multi-temporal satellite imagery was processed and analyzed (e.g Landsat TMETM+, Aster). The land cover regime was examined in detail by using sophisticated post-processing classification algorithms such as Maximum Likelihood, Parallelepiped Algorithm, Minimum Distance, Spectral Angle and Isodata. Texture features were calculated using the Grey Level Co-Occurence Matrix. In addition three classification techniques were compared : multispectral classification, texture based classification and a combination of both. The classification products were compared and evaluated for their accuracy. Moreover, a knowledge-rule method is proposed based on spectral, texture and shape features in order to create efficient land use and land cover maps of the study area. Morphometric parameters such as stream frequency, drainage density and elongation ratio were calculated in order to extract the basic watershed characteristics. In terms of the impacts of land use/cover on flooding, GIS and Fragstats tool were used to

  3. Monitoring land use changes in the Upper Ganga Basin, India by using Remote Sensing and GIS techniques on Landsat 5 TM data

    NASA Astrophysics Data System (ADS)

    Tsarouchi, Georgia-Marina; Buytaert, Wouter

    2013-04-01

    The Green Revolution represents one of the largest environmental changes in India over the last century. The Upper Ganga basin is experiencing rapid rates of change of land use and irrigation practices. In combination with exploitation of groundwater resources in the northern Indian plains, this causes variations in recharge and fundamentally affects surface and groundwater resources, threatening India's water supplies. In this study, we have developed a methodology to map and investigate land-use change by applying Remote Sensing and Geographic Information Systems (GIS) techniques on 30m resolution multi-temporal Landsat 5 Thematic Mapper (TM) data for 1984, 1998 and 2010. Firstly, an automated protocol was applied to effectively correct the images for radiometric effects and remove atmospheric interference during the pre-processing analysis of satellite images. Afterwards, maximum likelihood supervised classifications were carried out on Landsat 5 TM colour composites of 1984, 1998 and 2010 with the aid of ground truth data. Post-classification change detection techniques were applied to Landsat images in order to map land cover changes in the Upper Ganga basin. Change vectors of NDVI and Tasseled Cap brightness, greenness and wetness of Landsat Thematic Mapper (TM) images are compared with those values from the initial date of imagery to detect change from no change. Ground truth information and historic images were used to assess the accuracy of the classification results. We find that most of the land-use change is conversion from forest and barren land to agricultural areas. Results indicate that between 1984 and 2010 agricultural areas have increased by more than 150% while forest areas decreased by 28%. The classification accuracy is also examined. Results confirm the importance of field-based accuracy assessment to identify problems in a land-use map and to improve area estimates for each class. The results quantify the land cover change patterns in the

  4. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  5. Remote sensing and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the increasing need for global food production in the presence of dwindling productive acres, the business of modern agriculture needs to use all possible information available to maximize production. One tool that is being used to obtain this information is remote sensing. Any crop disease o...

  6. Remote sensing of environmental disturbance

    NASA Technical Reports Server (NTRS)

    Latham, J. P.

    1972-01-01

    Color, color infrared, and minus-blue films obtained by RB-57 remote sensing aircraft at an altitude of 60,000 feet over Boca Raton and Southeast Florida Earth Resources Test Site were analyzed for nine different types of photographic images of the geographic patterns of the surface. Results of these analyses are briefly described.

  7. Remote sensing for site characterization

    USGS Publications Warehouse

    Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.; Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.

    2000-01-01

    This volume, Remote Sensing for Site Characterization, describes the feasibility of aircraft- and satellite-based methods of revealing environmental-geological problems. A balanced ratio between explanations of the methodological/technical side and presentations of case studies is maintained. The comparison of case studies from North America and Germany show how the respective territorial conditions lead to distinct methodological approaches.

  8. Remote Sensing of Water Pollution

    NASA Technical Reports Server (NTRS)

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  9. Optimizing nitrogen management for soft red winter wheat yield, grain protein, and grain quality using precision agriculture and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Farrer, Dianne Carter

    The purpose of this research was to improve the management of soft red winter wheat (Triticum aestivum L.) in North Carolina. There were three issues addressed; the quality of the grain as affected by delayed harvest, explaining grain protein variability through nitrogen (N) management, and developing N recommendations at growth stage (GS) 30 using aerial color infrared (CIR) photography. The impact of delayed harvest on grain yield, test weight, grain protein, and 20 milling and baking quality parameters was studied in three trials in 2002 and three trials in 2003. Yield was significantly reduced in three out of five trials due to dry, warm environments, possibly indicating shattering. Test weights were significantly reduced in five out of six trials and were positively correlated to the number of precipitation events and to the number of days between harvests, indicating the negative effects of wetting and drying cycles. Grain protein was not affected by delayed harvest. Of the 20 quality parameters investigated, flour falling number, clear flour, and farinograph breakdown times were significantly reduced due to delayed harvest, while grain deoxynivalenol (DON) levels increased with a delayed harvest. Grain protein content in soft red winter wheat is highly variable across years and environments. A second study examined the effects of different nitrogen (N) fertilizer rates and times of application on grain protein variability. Seven different environments were utilized in this study. Though environment contributed about 23% of grain protein variability, the majority of that variability (52%) was attributed to N management. It was found that as grain protein levels increased at higher N rates, so did overall protein variability as indicated by the three stability indexes employed. In addition, applying the majority of total N at growth stage (GS) 30 decreased grain protein stability. Site-specific N management systems using remote sensing techniques can

  10. What is a picture worth? A history of remote sensing

    USGS Publications Warehouse

    Moore, Gerald K.

    1979-01-01

    Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.

  11. Operational Use of Remote Sensing within USDA

    NASA Technical Reports Server (NTRS)

    Bethel, Glenn R.

    2007-01-01

    A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.

  12. Microwave remote sensing of snowpack properties

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor)

    1980-01-01

    Topic concerning remote sensing capabilities for providing reliable snow cover data and measurement of snow water equivalents are discussed. Specific remote sensing technqiues discussed include those in the microwave region of the electromagnetic spectrum.

  13. Identification of Terrestrial Reflectance From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Nolf, Scott R.; Stacy, Kathryn (Technical Monitor)

    2000-01-01

    Correcting for atmospheric effects is an essential part of surface-reflectance recovery from radiance measurements. Model-based atmospheric correction techniques enable an accurate identification and classification of terrestrial reflectances from multi-spectral imagery. Successful and efficient removal of atmospheric effects from remote-sensing data is a key factor in the success of Earth observation missions. This report assesses the performance, robustness and sensitivity of two atmospheric-correction and reflectance-recovery techniques as part of an end-to-end simulation of hyper-spectral acquisition, identification and classification.

  14. Oil pollution signatures by remote sensing.

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.; Mclean, J. T.

    1972-01-01

    Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.

  15. Get a fresh look with remote sensing - remote sensing

    SciTech Connect

    Koger, D.

    1997-04-01

    The ideal exploration approach finds structures and points out where hydrocarbons are buried. It operates to reduce risk, is cost-effective and feeds creativity. Exploration tools fall into two categories: (1) Those which detect structure (seismic, gravity, remote sensing). (2) Those that detect hydrocarbons (geochemistry, well logs, the drill bit, and remote sensing). All exploration takes place in this sometimes-forgotten context: The crust of Earth is not thick. In proportion, it is as thin as tomato skin. Unlike tomato skin, our crust floats on liquid and is unstable. We seek structure because that`s where hydrocarbons can become trapped. Satellite data-and before them airphotos-find structure efficiently. The methodology is well tested. Positive structures and lineaments find surface expression in many ways.

  16. Chemical contamination remote sensing

    NASA Technical Reports Server (NTRS)

    Carrico, J. P.; Phelps, K. R.; Webb, E. N.; Mackay, R. A.; Murray, E. R.

    1986-01-01

    A ground mobile laser test bed system was assembled to assess the feasibility of detection of various types of chemical contamination using Differential Scattering (DISC) and Differential Absorption (DIAL) Lidar techniques. Field experiments with the test bed system using chemical simulants were performed. Topographic reflection and range resolved DIAL detection of vapors as well as DISC detection of aerosols and surface contamination were achieved. Review of detection principles, design of the test bed system, and results of the experiments are discussed.

  17. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Liang, T.

    1973-01-01

    Research projects concerning the development and application of remote sensors are discussed. Some of the research projects conducted are as follows: (1) aerial photographic inventory of natural resources, (2) detection of buried river channels, (3) delineation of interconnected waterways, (4) plant indicators of atmospheric pollution, and (5) techniques for data transfer from photographs to base maps. On-going projects involving earth resources analyses are described.

  18. EPA Remote Sensing Information Gateway

    NASA Astrophysics Data System (ADS)

    Paulsen, H. K.; Szykman, J. J.; Plessel, T.; Freeman, M.; Dimmick, F.

    2009-12-01

    The Remote Sensing Information Gateway was developed by the U.S. Environmental Protection Agency (EPA) to assist researchers in easily obtaining and combining a variety of environmental datasets related to air quality research. Current datasets available include, but are not limited to surface PM2.5 and O3 data, satellite derived aerosol optical depth , and 3-dimensional output from U.S. EPA's Models 3/Community Multi-scale Air Quality (CMAQ) modeling system. The presentation will include a demonstration that illustrates several scenarios of how researchers use the tool to help them visualize and obtain data for their work; with a particular focus on episode analysis related to biomass burning impacts on air quality. The presentation will provide an overview on how RSIG works and how the code has been—and can be—adapted for other projects. One example is the Virtual Estuary, which focuses on automating the retrieval and pre-processing of a variety of data needed for estuarine research. RSIG’s source codes are freely available to researchers with permission from the EPA principal investigator, Dr. Jim Szykman. RSIG is available to the community and can be accessed online at http://www.epa.gov/rsig. Once the JAVA policy file is configured on your computer you can run the RSIG applet on your computer and connect to the RSIG server to visualize and retrieve available data sets. The applet allows the user to specify the temporal/spatial areas of interest, and the types of data to retrieve. The applet then communicates with RSIG subsetter codes located on the data owners’ remote servers; the subsetter codes assemble and transfer via ordinary Internet protocols only the specified data to the researcher’s computer. This is much faster than the usual method of transferring large files via FTP and greatly reduces network traffic. The RSIG applet then visualizes the transferred data on a latitude-longitude map, automatically locating the data in the correct

  19. The Role of Combination Techniques in Maximizing the Utility of Precipitation Estimates from Several Multi-Purpose Remote-Sensing Systems

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.; Curtis, Scott; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Multi-purpose remote-sensing products from various satellites have proved crucial in developing global estimates of precipitation. Examples of these products include low-earth-orbit and geosynchronous-orbit infrared (leo- and geo-IR), Outgoing Longwave Radiation (OLR), Television Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS) data, and passive microwave data such as that from the Special Sensor Microwave/ Imager (SSM/I). Each of these datasets has served as the basis for at least one useful quasi-global precipitation estimation algorithm; however, the quality of estimates varies tremendously among the algorithms for the different climatic regions around the globe.

  20. Remote Sensing of Earth Terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A. (Principal Investigator)

    1985-01-01

    The objective of this research is to develop theoretical models that are useful and practical in the remote sensing of the Earth environment including the Earth terrain, the lower and the upper atmospheres. Various models applicable to the microwave remote sensing of vegetation, snow-ice, and atmospheric precipitation have been developed. Such studies shall be extended to the higher frequency range to unify the optical band and the microwave theoretical foundations. The study, which had an emphasis on vegetation canopy to include all terrain media, and the whole Earth environment will be extended. A data base will be developed to generate scene radiation characteristics which will benefit the studies of global inhabitability, meteorological applications, and crop yield.

  1. Remote sensing of the nearshore.

    PubMed

    Holman, Rob; Haller, Merrick C

    2013-01-01

    The shallow waters of the nearshore ocean are popular, dynamic, and often hostile. Prediction in this domain is usually limited less by our understanding of the physics or by the power of our models than by the availability of input data, such as bathymetry and wave conditions. It is a challenge for traditional in situ instruments to provide these inputs with the appropriate temporal or spatial density or at reasonable logistical or financial costs. Remote sensing provides an attractive alternative. We discuss the range of different sensors that are available and the differing physical manifestations of their interactions with the ocean surface. We then present existing algorithms by which the most important geophysical variables can be estimated from remote sensing measurements. Future directions and opportunities will depend on expected developments in sensors and platforms and on improving processing algorithms, including data assimilation formalisms.

  2. Geophysical aspects of remote sensing

    NASA Technical Reports Server (NTRS)

    Watson, K.

    1971-01-01

    Results obtained through the NASA Earth Resources Aircraft Program at Mill Creek, Oklahoma, provide a case history example of the application of remote sensing to the identification of geologic rock units. Thermal infrared images are interpreted by means of a sequence of models of increasing complexity. The roles of various parameters are examined: rock properties (thermal inertia, albedo, emissivity), site location (latitude), season (sun's declination), atmospheric effects (cloud cover, transmission, air temperature), and topographic orientation (slope, azimuth). The results obtained at this site also illustrate the development of an important application of remote sensing in geologic identification. Relatively pure limestones and dolomites of the Mill Creek test area can be differentiated in nighttime infrared images, and facies changes between them can be detected along and across strike. The predominance on the earth's surface of sedimentary rocks, of which limestone and dolomite are major members, indicates the importance of this discrimination.

  3. Biogeochemical cycling and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Mouat, D. A.

    1984-01-01

    The present investigation is concerned with the role of remote sensing in the analysis of biochemical cycling. A general review is provided of the interest of NASA in biochemical cycling, taking into account an assessment of the state and dynamics of the pools and fluxes of four major elements (carbon, nitrogen, phosphorus, sulfur), an understanding of the coupling and interaction of the biosphere and the atmosphere, and an understanding of the biosphere and the oceans. Attention is given to biogeochemical cycling science issues, the potential remote sensing role, the vegetation type, aspects of vegetation structure, the leaf area index, the canopy height, functional relationships, environmental and soil variables, questions of experimental design, sampling sites and ground data, and radiometric data and analysis.

  4. Remote sensing for control of tsetse flies

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.

    1976-01-01

    Remotely sensed information is discussed which has potential for aiding in the control or eradication of tsetse flies. Data are available from earth resources meteorological, and manned satellites, from airborne sensors, and possibly from data collection platforms. A new zone discrimination technique, based on data from meteorological satellites may also allow the identification of zones hospitable to one or another species of tsetse. For background, a review is presented of the vegetation of Tanzania and Zanzibar, and illustrations presented of automatic processing of data from these areas. In addition, a review is presented of the applicability of temperature data to tsetse areas.

  5. Technology Trends and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The science and application of remote sensing is flourishing in the digital age. Geographical information systems can provide a broad range of information tailored to the specific needs of disaster managers. Recent advances in airborne platforms, sensors and information technologies have come together provide the ability to put geo-registered, multispectral imagery on the web in near real-time. Highlights of a demonstration of NASA's First Response Experiment (FiRE) will be presented.

  6. Remote Sensing Information Science Research

    NASA Technical Reports Server (NTRS)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  7. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    NASA Astrophysics Data System (ADS)

    Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.

    2012-12-01

    DARLA is 5-year collaborative project that couples state-of-the-art remote sensing and in situ measurements with advanced data assimilation (DA) modeling to (a) evaluate and improve remote sensing retrieval algorithms for environmental parameters, (b) determine the extent to which remote sensing data can be used in place of in situ data in models, and (c) infer bathymetry for littoral environments by combining remotely-sensed parameters and data assimilation models. The project uses microwave, electro-optical, and infrared techniques to characterize the littoral ocean with a focus on wave and current parameters required for DA modeling. In conjunction with the RIVET (River and Inlets) Project, extensive in situ measurements provide ground truth for both the remote sensing retrieval algorithms and the DA modeling. Our goal is to use remote sensing to constrain data assimilation models of wave and circulation dynamics in a tidal inlet and surrounding beaches. We seek to improve environmental parameter estimation via remote sensing fusion, determine the success of using remote sensing data to drive DA models, and produce a dynamically consistent representation of the wave, circulation, and bathymetry fields in complex environments. The objectives are to test the following three hypotheses: 1. Environmental parameter estimation using remote sensing techniques can be significantly improved by fusion of multiple sensor products. 2. Data assimilation models can be adequately constrained (i.e., forced or guided) with environmental parameters derived from remote sensing measurements. 3. Bathymetry on open beaches, river mouths, and at tidal inlets can be inferred from a combination of remotely-sensed parameters and data assimilation models. Our approach is to conduct a series of field experiments combining remote sensing and in situ measurements to investigate signature physics and to gather data for developing and testing DA models. A preliminary experiment conducted at

  8. Multi- and hyperspectral geologic remote sensing: A review

    NASA Astrophysics Data System (ADS)

    van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie

    2012-02-01

    Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly

  9. Utilization of remote sensing observations in hydrologic models

    NASA Technical Reports Server (NTRS)

    Ragan, R. M.

    1977-01-01

    Most of the remote sensing related work in hydrologic modeling has centered on modifying existing models to take advantage of the capabilities of new sensor techniques. There has been enough success with this approach to insure that remote sensing is a powerful tool in modeling the watershed processes. Unfortunately, many of the models in use were designed without recognizing the growth of remote sensing technology. Thus, their parameters were selected to be map or field crew definable. It is believed that the real benefits will come through the evolution of new models having new parameters that are developed specifically to take advantage of our capabilities in remote sensing. The ability to define hydrologically active areas could have a significant impact. The ability to define soil moisture and the evolution of new techniques to estimate evoportransportation could significantly modify our approach to hydrologic modeling. Still, without a major educational effort to develop an understanding of the techniques used to extract parameter estimates from remote sensing data, the potential offered by this new technology will not be achieved.

  10. Remote sensing of ocean pollution. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning the use of remote sensing for the control and monitoring of ocean pollution. Citations discuss remote sensing techniques and instrumentations, including airborne and satellite-borne photography, microwave radiometry, laser fluorescence, and radar imagery. Topics include oil spills, marine ecosystems, land-based pollutants, ocean dumping, remote sensing capability and reliability, and pollution transport. (Contains a minimum of 109 citations and includes a subject term index and title list.)

  11. Characrterizing frozen ground with multisensor remote sensing

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Ping, C.; Everett, L. R.; Kimble, J. M.; Michaelson, G.; Tremper, C.

    2006-12-01

    We have a physically based, conceptual understanding of many of the significant interactions that impact permafrost-affected soils. Our observationally based knowledge, however, is inadequate in many cases to quantify these interactions or to predict their net impact. To pursue key goals, such as understanding the response of permafrost-affected soil systems to global environmental changes and their role in the carbon balance, and to transform our conceptual understanding of these processes into quantitative knowledge, it is necessary to acquire geographically diverse sets of fundamental observations at high spatial and often temporal resolution. The main goals of the research presented here are developing methods for mapping soil and permafrost distributions in polar environment as well as characterizing glacial and perglacial geomorphology from multisensor, multiresolution remotely sensed data. The sheer amount of data and the disparate data sets (e.g., LIDAR, stereo imagery, multi- hyperspectral, and SAR imagery) make the joint interpretation (fusion) a daunting task. We combine remote sensing, pattern recognition and landscape analysis techniques for the delineation of soil landscape units and other geomorphic features, for inferring the physical properties and composition of the surface, and for generating numerical measurements of geomorphic features from remotely sensed data. Examples illustrating the concept are presented from the North Slope of Alaska and from the McMurdo Sound region in Antarctica. (1) On the North Slope, Alaska we separated different vegetative, soil and landscape units along the Haul Road. Point-source soils (pedon) data and field spectrometry data have been acquired at different units to provide ground-truth for the satellite image interpretation. (2) A vast amount of remote sensing data, such as multi- and hyperspectral (Landsat, SPOT, ASTER, HYPERION) and SAR satellite imagery (ERS, RADARSAT and JERS), high resolution topographic

  12. Hyperspectral remote sensing of wild oyster reefs

    NASA Astrophysics Data System (ADS)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal

  13. Remote sensing strategies for global resource exploration and environmental management

    NASA Astrophysics Data System (ADS)

    Henderson, Frederick B.

    Since 1972, satellite remote sensing, when integrated with other exploration techniques, has demonstrated operational exploration and engineering cost savings and reduced exploration risks through improved geological mapping. Land and ocean remote sensing satellite systems under development for the 1990's by the United States, France, Japan, Canada, ESA, Russia, China, and others, will significantly increase our ability to explore for, develop, and manage energy and mineral resources worldwide. A major difference between these systems is the "Open Skies" and "Non-Discriminatory Access to Data" policies as have been practiced by the U.S. and France and the restrictive nationalistic data policies as have been practiced by Russia and India. Global exploration will use satellite remote sensing to better map regional structural and basin-like features that control the distribution of energy and mineral resources. Improved sensors will better map lithologic and stratigraphic units and identify alteration effects in rocks, soils, and vegetation cover indicative of undiscovered subsurface resources. These same sensors will also map and monitor resource development. The use of satellite remote sensing data will grow substantially through increasing integration with other geophysical, geochemical, and geologic data using improved geographic information systems (GIS). International exploration will focus on underdeveloped countries rather than on mature exploration areas such as the United States, Europe, and Japan. Energy and mineral companies and government agencies in these countries and others will utilize available remote sensing data to acquire economic intelligence on global resources. If the "Non-Discriminatory Access to Data" principle is observed by satellite producing countries, exploration will remain competitive "on the ground". In this manner, remote sensing technology will continue to be developed to better explore for and manage the world's needed resources

  14. Military reconnaissance application of high-resolution optical satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-gang; Kang, Qing; Xun, Yi-jia; Shen, Zhi-qiang; Cui, Chang-bin

    2014-11-01

    As the remote sensing technology transformation from military use to civil use becomes deeper and faster, the resolution is better and better, and the relative techniques of the civil optical remote sensing satellite are richer and richer. So, modes such as civil use replacing military use, civil use covering military use, and civil use supporting military use are the real portraiture of high-resolution optical satellite remote sensing development currently. Taking the situations of the Taiwan authorities buying commercial remote sensing image to military reconnaissance, and the so-called military establishments exposed by media using satellite image as an example, the military reconnaissance application of civil high-resolution optical satellite remote sensing is discussed. Then, the actuality and reasons of huge measure engineering and ruled configuring, environment and signs of military area, equipment and exercitation establishments and three-dimension information of engineering and equipment which can be detected easily by remote sensing are analyzed.

  15. Combining interior and exterior characteristics for remote sensing image denoising

    NASA Astrophysics Data System (ADS)

    Peng, Ni; Sun, Shujin; Wang, Runsheng; Zhong, Ping

    2016-04-01

    Remote sensing image denoising faces many challenges since a remote sensing image usually covers a wide area and thus contains complex contents. Using the patch-based statistical characteristics is a flexible method to improve the denoising performance. There are usually two kinds of statistical characteristics available: interior and exterior characteristics. Different statistical characteristics have their own strengths to restore specific image contents. Combining different statistical characteristics to use their strengths together may have the potential to improve denoising results. This work proposes a method combining statistical characteristics to adaptively select statistical characteristics for different image contents. The proposed approach is implemented through a new characteristics selection criterion learned over training data. Moreover, with the proposed combination method, this work develops a denoising algorithm for remote sensing images. Experimental results show that our method can make full use of the advantages of interior and exterior characteristics for different image contents and thus improve the denoising performance.

  16. COMET: a planned airborne mission to simultaneously measure CO2 and CH4 columns using airborne remote sensing and in-situ techniques

    NASA Astrophysics Data System (ADS)

    Fix, A.; Amediek, A.; Büdenbender, C.; Ehret, G.; Wirth, M.; Quatrevalet, M.; Rapp, M.; Gerilowski, K.; Bovensmann, H.; Gerbig, C.; Pfeilsticker, K.; Zöger, M.; Giez, A.

    2013-12-01

    To better predict future trends in the cycles of the most important anthropogenic greenhouse gases, CO2 and CH4, there is a need to measure and understand their distribution and variation on various scales. To address these requirements it is envisaged to deploy a suite of state-of-the-art airborne instruments that will be capable to simultaneously measure the column averaged dry-air mixing ratios (XGHG) of both greenhouse gases along the flight path. As the measurement platform serves the research aircraft HALO, a modified Gulfstream G550, operated by DLR. This activity is dubbed CoMet (CO2 and Methane Mission). The instrument package of CoMet will consist of active and passive remote sensors as well as in-situ instruments to complement the column measurements by highly-resolved profile information. As an active remote sensing instrument CHARM-F, the integrated-path differential absorption lidar currently under development at DLR, will provide both, XCO2 and XCH4, below flight altitude. The lidar instrument will be complemented by MAMAP which is a NIR/SWIR absorption spectrometer developed by University of Bremen and which is also capable to derive XCH4 and XCO2. As an additional passive instrument, mini-DOAS operated by University of Heidelberg will contribute with additional context information about the investigated air masses. In order to compare the remote sensing instruments with integrated profile information, in-situ instrumentation is indispensable. The in-situ package will therefore comprise wavelength-scanned Cavity-Ring-Down Spectroscopy (CRDS) for the detection of CO2, CH4, CO and H2O and a flask sampler for collection of atmospheric samples and subsequent laboratory analysis. Furthermore, the BAsic HALO Measurement And Sensor System (BAHAMAS) will provide an accurate set of meteorological and aircraft state parameters for each scientific flight. Within the frame of the first CoMet mission scheduled for the 2015 timeframe it is planned to concentrate

  17. Water area variations in seasonal lagoons from the Biosphere Reserve of "La Mancha Húmeda" (Spain) determined by remote sensing classification methods and data mining techniques

    NASA Astrophysics Data System (ADS)

    Dona, Carolina; Niclòs, Raquel; Chang, Ni-Bin; Caselles, Vicente; Sánchez, Juan Manuel; Camacho, Antonio

    2015-04-01

    La Mancha Húmeda is a wetland-rich area located in central Spain that was designated as a Biosphere reserve in 1980. This area includes several dozens of temporal lagoons, mostly saline, whose water level fluctuates and usually become dry during the warmest season. Water inflows into these lagoons come from both runoff of very small catchment and, in some cases, from groundwater although some of them also receive wastewater from nearby towns. Most lack surface outlets and they behave as endorheic systems, with the main water withdrawal due to evaporation causing salt accumulation in the lake beds. Under several law protection coverage additional to that of Biosphere Reserve, including Ramsar and Natura 2000 sites, management plans are being developed in order to accomplish the goals enforced by the European Water Framework Directive and the Habitats Directive, which establish that all EU countries have to achieve a good ecological status and a favorable conservation status of these sites, and especially of their water bodies. A core task to carry out the management plans is the understanding of the hydrological trend of these lagoons with a sound monitoring scheme. To do so, an estimation of the temporal evolution of the flooded area for each lagoon, and its relationship with meteorological patterns, which can be achieved using remote sensing technologies, is a key procedure. The current study aims to develop a remote sensing methodology capable of estimating the changing water coverage areas in each lagoon with satellite remote sensing images and ground truth data sets. ETM+ images onboard Landsat-7 were used to fulfill this goal. These images are useful to monitor small-to-medium size water bodies due to its 30-m spatial resolution. In this work several methods were applied to estimate the wet and dry pixels, such as water and vegetation indexes, single bands, supervised classification methods and genetic programming. All of the results were compared with ground

  18. Nasa's Land Remote Sensing Plans for the 1980's

    NASA Technical Reports Server (NTRS)

    Higg, H. C.; Butera, K. M.; Settle, M.

    1985-01-01

    Research since the launch of LANDSAT-1 has been primarily directed to the development of analysis techniques and to the conduct of applications studies designed to address resource information needs in the United States and in many other countries. The current measurement capabilities represented by MSS, TM, and SIR-A and B, coupled with the present level of remote sensing understanding and the state of knowledge in the discipline earth sciences, form the foundation for NASA's Land Processes Program. Science issues to be systematically addressed include: energy balance, hydrologic cycle, biogeochemical cycles, biological productivity, rock cycle, landscape development, geological and botanical associations, and land surface inventory, monitoring, and modeling. A global perspective is required for using remote sensing technology for problem solving or applications context. A successful model for this kind of activity involves joint research with a user entity where the user provides a test site and ground truth and NASA provides the remote sensing techniques to be tested.

  19. Dynamic Monitoring of Soil and Water Losses Using Remote Sensing and GIS Techniques: a Case Study of Jialing River, Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhu, Y. J.; Li, G. E.; Zhu, Y. Q.; Li, R. H.; Wang, L.; Wu, Y. J.

    2016-06-01

    Water and soil loss problems are serious in China, especially in the upper and middle reaches of big rivers. This paper dynamically observed water and soil loss in key control regions in Jialing River Basin. Based on remotely sensed images, the method used in this paper is a combination of field investigation and indoor artificial interpretation under the technologies of RS and GIS. The method was proven to be effective of improving the accuracy of interpreting. The result shows the land use types of the researched regions and how they changed among the previous years. Evaluation of water and soil conservation was made. This result can provide references for further policy-making and water and soil loss controlling.

  20. Using remote sensing technique for analyzing temporal changes of seagrass beds by human impacts in waters of Cam Ranh Bay, Vietnam

    NASA Astrophysics Data System (ADS)

    Minh Thu, Phan; Hoang Son, Tong Phuoc; Komatsu, Teruhisa

    2012-10-01

    Seagrass beds/meadows are very productive ecosystems with high biodiversities. However, they have been degraded under high pressures of human activities. Combining depth-invariance index and ground-truthing, distribution of seagrass beds in Cam Ranh Bay was identified by analyses of multi-remote sensing images such as LANDSAT, SPOT and ALOS AVNIR-2. Although coverage of seagrass meadows was1178 ha, the seagrass meadows were being degraded by illegal fishing methods, aquaculture and discharges from industries and living domestics. The reducing ratio of seagrass coverage has been increased in recent years. While the depth-invariance index method would help to detect the areas of seagrass beds, this method requires combination of field trip and absorption library methods to increase classification accuracy. Final maps of the status and changes of seagrass beds could help to integrate the sustainable development of economy with protection of natural resources.

  1. Biogeochemical cycling and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.

    1985-01-01

    Research is underway at the NASA Ames Research Center that is concerned with aspects of the nitrogen cycle in terrestrial ecosystems. An interdisciplinary research group is attempting to correlate nitrogen transformations, processes, and productivity with variables that can be remotely sensed. Recent NASA and other publications concerning biogeochemical cycling at global scales identify attributes of vegetation that could be related or explain the spatial variation in biologically functional variables. These functional variables include net primary productivity, annual nitrogen mineralization, and possibly the emission rate of nitrous oxide from soils.

  2. Future remote-sensing programs

    NASA Technical Reports Server (NTRS)

    Schweickart, R. L.

    1975-01-01

    User requirements and methods developed to fulfill them are discussed. Quick-look data, data storage on computer-compatible tape, and an integrated capability for production of images from the whole class of earth-viewing satellites are among the new developments briefly described. The increased capability of LANDSAT-C and Nimbus G and the needs of specialized applications such as, urban land use planning, cartography, accurate measurement of small agricultural fields, thermal mapping and coastal zone management are examined. The affect of the space shuttle on remote sensing technology through increased capability is considered.

  3. Support for global science: Remote sensing's challenge

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Star, J. L.

    1986-01-01

    Remote sensing uses a wide variety of techniques and methods. Resulting data are analyzed by man and machine, using both analog and digital technology. The newest and most important initiatives in the U. S. civilian space program currently revolve around the space station complex, which includes the core station as well as co-orbiting and polar satellite platforms. This proposed suite of platforms and support systems offers a unique potential for facilitating long term, multidisciplinary scientific investigations on a truly global scale. Unlike previous generations of satellites, designed for relatively limited constituencies, the space station offers the potential to provide an integrated source of information which recognizes the scientific interest in investigating the dynamic coupling between the oceans, land surface, and atmosphere. Earth scientist already face problems that are truly global in extent. Problems such as the global carbon balance, regional deforestation, and desertification require new approaches, which combine multidisciplinary, multinational research teams, employing advanced technologies to produce a type, quantity, and quality of data not previously available. The challenge before the international scientific community is to continue to develop both the infrastructure and expertise to, on the one hand, develop the science and technology of remote sensing, while on the other hand, develop an integrated understanding of global life support systems, and work toward a quantiative science of the biosphere.

  4. Benthic habitat mapping using hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Vélez-Reyes, Miguel; Goodman, James A.; Castrodad-Carrau, Alexey; Jiménez-Rodriguez, Luis O.; Hunt, Shawn D.; Armstrong, Roy

    2006-09-01

    Benthic habitats are the different bottom environments as defined by distinct physical, geochemical, and biological characteristics. Remote sensing is increasingly being used to map and monitor the complex dynamics associated with estuarine and nearshore benthic habitats. Advantages of remote sensing technology include both the qualitative benefits derived from a visual overview, and more importantly, the quantitative abilities for systematic assessment and monitoring. Advancements in instrument capabilities and analysis methods are continuing to expand the accuracy and level of effectiveness of the resulting data products. Hyperspectral sensors in particular are rapidly emerging as a more complete solution, especially for the analysis of subsurface shallow aquatic systems. The spectral detail offered by hyperspectral instruments facilitates significant improvements in the capacity to differentiate and classify benthic habitats. This paper reviews two techniques for mapping shallow coastal ecosystems that both combine the retrieval of water optical properties with a linear unmixing model to obtain classifications of the seafloor. Example output using AVIRIS hyperspectral imagery of Kaneohe Bay, Hawaii is employed to demonstrate the application potential of the two approaches and compare their respective results.

  5. Remote sensing inputs to water demand modeling

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  6. Remote Sensing and Reflectance Profiling in Entomology.

    PubMed

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  7. Remote Sensing and Reflectance Profiling in Entomology.

    PubMed

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering. PMID:26982438

  8. Remote sensing using GNSS signals: Current status and future directions

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen; Feng, G. P.; Gleason, S.

    2011-05-01

    The refracted, reflected and scattered signals of global navigation satellite systems (GNSS) have been successfully used to remotely sense the Earth's surface and atmosphere. It has demonstrated its potential to sense the atmosphere and ionosphere, ocean, land surfaces (including soil moisture) and the cryosphere. These new measurements, although in need of refinement and further validation in many cases, can be used to complement existing techniques and sensors, e.g., radiosonde, ionosonde, radar altimetry and synthetic aperture radar (SAR). This paper presents the current status and new developments of remote sensing using GNSS signals as well as its future directions and applications. Some notable emerging applications include monitoring sea ice, dangerous sea states, ocean eddy and storm surges. With the further improvement of the next generation multi -frequency GNSS systems and receivers and new space-based instruments utilizing GNSS reflections and refractions, new scientific applications of GNSS are expected in various environment remote sensing fields in the near future.

  9. The reduction of remote sensing data by visual means. [education

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.; Poulton, C. E.; Schrumpf, B. J.

    1980-01-01

    Issues likely to be of concern to educators called upon to teach courses involving the reduction (interpretation) of remotely sensed data by visual means are considered. Topics covered include: (1) information requirements of those using remotely-sensed data; (2) educational concepts involved in teaching students how to generate the desired information from a visual analysis of the data; (3) principles and techniques specific to the photointerpretation process; (4) concepts involved in the making of photographic measurements, as dictated by the geometry of remote sensing imagery; (5) the nature of the various kinds of mapping, plotting, and photointerpretation equipment; and (6) some special considerations with respect to the convergence of evidence and other principles involved in the interpretation of photographs. A recommended procedure for determining the usefulness of any given type of aerial or space photography in relation to the inventory of natural resources is included.

  10. Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, Apr. 29-May 2, 1991, Proceedings. Vols. 1 2

    SciTech Connect

    Not Available

    1991-01-01

    The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, US and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.

  11. Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, Apr. 29-May 2, 1991, Proceedings. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.

  12. Remote sensing for chemical monitoring

    SciTech Connect

    Jago, R.A.; Curran, P.J.

    1996-11-01

    Imaging spectrometry offers the potential of estimating the biochemical content of vegetation canopies, which is likely to provide a more powerful discriminant of land contamination than remotely sensed estimates of vegetation cover. A red edge/chlorophyll concentration/land contamination relationship provides a novel link between reflectance and the biochemical results of contamination. Canopy reflectance data were collected using a field spectrometer in conjunction with substantial ground-based measurements of chlorophyll concentration and leaf area index (LAI) across a contaminated site. There was a strong red edge/chlorophyll concentration/land contamination relationship across the study site and the correlation between red edge position and chlorophyll concentration was r = 0.86. Spectral mixture modelling demonstrated the effects of variable canopy cover and land contamination on the position of the red edge and provided an understanding of a double-peaked maxima present in derivative spectra. Strong red edge/chlorophyll concentration/land contamination relationships at this study site highlighted the potential use of the CASI to estimate depleted canopy chlorophyll concentration and evaluate further the utility of imaging spectrometers for the remote sensing of contaminated land. 30 refs., 5 figs., 2 tabs.

  13. Analysis of Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Guiness, E. A.; Sultan, M.; Arvidson, R. E.

    1985-01-01

    A brief assessment of remote sensing applied to geological studies is given. An analysis of thematic mapping data on oak-hickory forests in southern Missouri is discussed. It was found that there is a control on the infrared reflectance (bands 4, 5, and 7 of the Thematic Mapper (TM) of the forests that correlates with rock and soil types. During the growing season, soils with low water retention capacities correlate with high infrared (band 4, lesser with band 5 and 7) signatures. A metamorphic core complex called the Meatiq located in the Eastern Desert of Egypt was studied. The dome provides exposure of most of the rock units of the Arabian-Nubian Precambrian Shield. The dome bears many resemblances to Cordilleran metamorphic complexes. LANDSAT TM data was used to improve on reconnaissance maps of the dome. The remote sensing data was interpreted in the context of field observations, petrographic, and chemical analysis of rock units in the dome, in order to map similar domes in the Eastern Desert from TM data. Mapping projects such as the one just described will help constrain the geologic evolution of the Arabian-Nubian Shield. Two particular hypotheses that researchers hope to test for the development of the shield are: (1) closure of a proto-Red Sea; and (2) accretion of a primitive island arc system onto the shield.

  14. Levee Health Monitoring With Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers

  15. Risk management support through India Remote Sensing Satellites

    NASA Astrophysics Data System (ADS)

    Aparna, N.; Ramani, A. V.; Nagaraja, R.

    2014-11-01

    Remote Sensing along with Geographical Information System (GIS) has been proven as a very important tools for the monitoring of the Earth resources and the detection of its temporal variations. A variety of operational National applications in the fields of Crop yield estimation , flood monitoring, forest fire detection, landslide and land cover variations were shown in the last 25 years using the Remote Sensing data. The technology has proven very useful for risk management like by mapping of flood inundated areas identifying of escape routes and for identifying the locations of temporary housing or a-posteriori evaluation of damaged areas etc. The demand and need for Remote Sensing satellite data for such applications has increased tremendously. This can be attributed to the technology adaptation and also the happening of disasters due to the global climate changes or the urbanization. However, the real-time utilization of remote sensing data for emergency situations is still a difficult task because of the lack of a dedicated system (constellation) of satellites providing a day-to-day revisit of any area on the globe. The need of the day is to provide satellite data with the shortest delay. Tasking the satellite to product dissemination to the user is to be done in few hours. Indian Remote Sensing satellites with a range of resolutions from 1 km to 1 m has been supporting disasters both National & International. In this paper, an attempt has been made to describe the expected performance and limitations of the Indian Remote Sensing Satellites available for risk management applications, as well as an analysis of future systems Cartosat-2D, 2E ,Resourcesat-2R &RISAT-1A. This paper also attempts to describe the criteria of satellite selection for programming for the purpose of risk management with a special emphasis on planning RISAT-1(SAR sensor).

  16. Quarterly literature review of the remote sensing of natural resources

    NASA Technical Reports Server (NTRS)

    Fears, C. B. (Editor); Inglis, M. H. (Editor)

    1977-01-01

    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports.

  17. Design and construction of a remote sensing apparatus

    NASA Technical Reports Server (NTRS)

    Maples, D.; Hagewood, J. F.

    1973-01-01

    The methods of identifying plant and soil types using remote sensing techniques are described. The equipment employed consists of a balloon system and a mobile remote sensing laboratory housing a radiometer which is mounted on a turret mechanism. The radiometer is made up of a telescope whose lenses are replaced by mirrors which channel received radiation into a monochromator. The radiation is then focused onto detectors for measurement of the intensity of the electromagnetic energy as a function of wavelength. Measurements from a wavelength of 0.2 microns to 15 microns are obtained with the system. diagrams are provided.

  18. Energy and remote sensing. [satellite exploration, monitoring, siting

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1977-01-01

    Exploration for uranium, thorium, oil, gas and geothermal activity through remote sensing techniques is considered; satellite monitoring of coal-derived CO2 in the atmosphere, and the remote assessment of strip mining and land restoration are also mentioned. Reference is made to color ratio composites based on Landsat data, which may aid in the detection of uranium deposits, and to computer-enhanced black and white airborne scanning imagery, which may locate geothermal anomalies. Other applications of remote sensing to energy resources management, including mapping of transportation networks and power plant siting, are discussed.

  19. The global troposphere - Biogeochemical cycles, chemistry, and remote sensing

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Allario, F.

    1982-01-01

    The chemical composition of the troposphere is controlled by various biogeochemical cycles that couple the atmosphere with the oceans, the solid earth and the biosphere, and by atmospheric photochemical/chemical reactions. These cycles and reactions are discussed and a number of key questions concerning tropospheric composition and chemistry for the carbon, nitrogen, oxygen and sulfur species are identified. Next, various remote sensing techniques and instruments capable of measuring and monitoring tropospheric species from the ground, aircraft and space to address some of these key questions are reviewed. Future thrusts in remote sensing of the troposphere are also considered.

  20. The design of optimum remote-sensing instruments

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Flower, D. A.

    1983-01-01

    Remote-sensing instruments allow values for certain properties of a target to be retrieved from measurements of radiation emitted, reflected or transmitted by the target. The retrieval accuracy is affected by random variations in the many target properties which affect the measurements. A method is described, by which statistical properties of the target and theoretical models of its electromagnetic behavior can be used to choose values for the instrument parameters which maximize the retrieval accuracy. The technique is applicable to a wide range of remote-sensing instruments.

  1. Brazil's remote sensing activities in the Eighties

    NASA Technical Reports Server (NTRS)

    Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.

    1985-01-01

    Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.

  2. Microwave remote sensing: Active and passive. Volume 1 - Microwave remote sensing fundamentals and radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1981-01-01

    The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.

  3. Toward interactive search in remote sensing imagery

    SciTech Connect

    Porter, Reid B; Hush, Do; Harvey, Neal; Theile, James

    2010-01-01

    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new design criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.

  4. Remote sensing of snow and ice

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1979-01-01

    This paper reviews remote sensing of snow and ice, techniques for improved monitoring, and incorporation of the new data into forecasting and management systems. The snowcover interpretation of visible and infrared data from satellites, automated digital methods, radiative transfer modeling to calculate the solar reflectance of snow, and models using snowcover input data and elevation zones for calculating snowmelt are discussed. The use of visible and near infrared techniques for inferring snow properties, microwave monitoring of snowpack characteristics, use of Landsat images for collecting glacier data, monitoring of river ice with visible imagery from NOAA satellites, use of sequential imagery for tracking ice flow movement, and microwave studies of sea ice are described. Applications of snow and ice research to commercial use are examined, and it is concluded that a major problem to be solved is characterization of snow and ice in nature, since assigning of the correct properties to a real system to be modeled has been difficult.

  5. Remote sensing and characterization of anomalous debris

    NASA Technical Reports Server (NTRS)

    Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.

    1997-01-01

    The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.

  6. Remote sensing procurement package: A technical guide for state and local governments

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The guide provides the tools and techniques for procuring remote sensing products and services. It is written for administrators, procurement officials and line agency staff who are directly involved in identifying information needs; defining remote sensing project requirements; soliciting and evaluating contract responses and negotiating, awarding, and administering contracts.

  7. Quarterly literature review of the remote sensing of natural resources, third quarter 1976. [bibliography

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Abstracts related to remote sensing instrumentation and techniques, and to the remote sensing of natural resources are presented by the Technology Application Center at the University of New Mexico. Areas of interest included theory, general surveys, and miscellaneous studies; geology and hydrology; agriculture and forestry; marine sciences; and urban and land use. An alphabetically arranged Author/Key Word index is provided.

  8. Tools and Methods for the Registration and Fusion of Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Goshtasby, Arthur Ardeshir; LeMoigne, Jacqueline

    2010-01-01

    Tools and methods for image registration were reviewed. Methods for the registration of remotely sensed data at NASA were discussed. Image fusion techniques were reviewed. Challenges in registration of remotely sensed data were discussed. Examples of image registration and image fusion were given.

  9. The use of remote sensing for landslide studies in Europe

    NASA Astrophysics Data System (ADS)

    Tofani, Veronica; Agostini, Andrea; Segoni, Samuele; Catani, Filippo; Casagli, Nicola

    2013-04-01

    The existing remote sensing techniques and their actual application in Europe for landslide detection, mapping and monitoring have been investigated. Data and information necessary to evaluate the subjects have been collected through a questionnaire, designed using a Google form, which was disseminated among end-users and researchers involved in landslide. In total, 49 answers were collected, coming from 17 European countries and from different kinds of institutions (universities, research institutes, public institutes and private companies). The spatial distribution of the answers is consistent with the distribution of landslides in Europe, the significance of landslides impact on society and the estimated landslide susceptibility in the various countries. The outcomes showed that landslide detection and mapping is mainly performed with aerial photos, often associated with optical and radar imagery. Concerning landslide monitoring, satellite radars prevail over the other types of data followed by aerial photos and meteorological sensors. Since subsampling the answers according to the different typology of institutions it is not noticeable a clear gap between research institutes and end users, it is possible to infer that in landslide remote sensing the research is advancing at the same pace as its day-to-day application. Apart from optical and radar imagery, other techniques are less widespread and some of them are not so well established, notwithstanding their performances are increasing at a fast rate as scientific and technological improvements are accomplished. Remote sensing is mainly used for detection/mapping and monitoring of slides, flows and lateral spreads with a preferably large scale of analysis (1:5000 - 1:25000). All the compilers integrate remote sensing data with other thematic data, mainly geological maps, landslide inventory maps and DTMs and derived maps. Concerning landslide monitoring, the results of the questionnaire stressed that the best

  10. Symmetry in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.

    1993-01-01

    Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is

  11. Local bleaching thresholds established by remote sensing techniques vary among reefs with deviating bleaching patterns during the 2012 event in the Arabian/Persian Gulf.

    PubMed

    Shuail, Dawood; Wiedenmann, Jörg; D'Angelo, Cecilia; Baird, Andrew H; Pratchett, Morgan S; Riegl, Bernhard; Burt, John A; Petrov, Peter; Amos, Carl

    2016-04-30

    A severe bleaching event affected coral communities off the coast of Abu Dhabi, UAE in August/September, 2012. In Saadiyat and Ras Ghanada reefs ~40% of the corals showed signs of bleaching. In contrast, only 15% of the corals were affected on Delma reef. Bleaching threshold temperatures for these sites were established using remotely sensed sea surface temperature (SST) data recorded by MODIS-Aqua. The calculated threshold temperatures varied between locations (34.48 °C, 34.55 °C, 35.05 °C), resulting in site-specific deviations in the numbers of days during which these thresholds were exceeded. Hence, the less severe bleaching of Delma reef might be explained by the lower relative heat stress experienced by this coral community. However, the dominance of Porites spp. that is associated with the long-term exposure of Delma reef to elevated temperatures, as well as the more pristine setting may have additionally contributed to the higher coral bleaching threshold for this site.

  12. Local bleaching thresholds established by remote sensing techniques vary among reefs with deviating bleaching patterns during the 2012 event in the Arabian/Persian Gulf.

    PubMed

    Shuail, Dawood; Wiedenmann, Jörg; D'Angelo, Cecilia; Baird, Andrew H; Pratchett, Morgan S; Riegl, Bernhard; Burt, John A; Petrov, Peter; Amos, Carl

    2016-04-30

    A severe bleaching event affected coral communities off the coast of Abu Dhabi, UAE in August/September, 2012. In Saadiyat and Ras Ghanada reefs ~40% of the corals showed signs of bleaching. In contrast, only 15% of the corals were affected on Delma reef. Bleaching threshold temperatures for these sites were established using remotely sensed sea surface temperature (SST) data recorded by MODIS-Aqua. The calculated threshold temperatures varied between locations (34.48 °C, 34.55 °C, 35.05 °C), resulting in site-specific deviations in the numbers of days during which these thresholds were exceeded. Hence, the less severe bleaching of Delma reef might be explained by the lower relative heat stress experienced by this coral community. However, the dominance of Porites spp. that is associated with the long-term exposure of Delma reef to elevated temperatures, as well as the more pristine setting may have additionally contributed to the higher coral bleaching threshold for this site. PMID:26971815

  13. Modeling tropical land-use and land-cover change related to sugarcane crops using remote sensing and soft computing techniques

    NASA Astrophysics Data System (ADS)

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Zullo, J.; Victoria, D.; Gomes, D.; Bayma, G.

    2013-12-01

    Agriculture is closely related to land-use/cover changes (LUCC). The increase in demand for ethanol necessitates the expansion of areas occupied by corn and sugar cane. In São Paulo state, the conversion of this land raises concern for impacts on food security, such as the decrease in traditional food crop production areas. We used remote sensing data to train and evaluate future land-cover scenarios using a machine-learning algorithm. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey, covering three time periods over twenty years (1990 - 2010). Landsat images were segmented into homogeneous objects, which represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. Based on the object shape, texture and spectral characteristics, land use/cover was visually identified, considering the following classes: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. Results for the western regions of São Paulo state indicate that sugarcane crop area advanced mostly upon pasture areas with few areas of food crops being replaced by sugarcane.

  14. Remote sensing for wind power potential: a prospector's handbook

    SciTech Connect

    Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.

    1983-02-01

    Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

  15. 1983 International Geoscience and Remote Sensing Symposium (IGARSS '83), San Francisco, CA, August 31-September 2, 1983, Digest. Volumes 1 & 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Various papers on remote sensing are presented. The general topics addressed include: remote sensing of the biosphere, geophysical inversion, science and archaeology, image processing, sensing the atmosphere with microwaves, analysis of scattering for remote sensing, advanced sensors and technology, archaeology, data processing, fiber optics, Landsat-4 and TM. Also discussed are: remote sensing and microwave instrumentation, soil moisture and hydrology, measurement techniques for ocean surface waves, geological remote sensing, radar millimeter wave propagation through the atmosphere, and remote sensing in planetary science, geophysics, hydrology, oceanography, and surface vegetation.

  16. Remote Sensing of Earth--A New Perspective

    ERIC Educational Resources Information Center

    Boyer, Robert E.

    1973-01-01

    Photographs of the earth taken from space are used to illustrate the advantages and application of remote sensing. This technique may be used in such areas as the immediate appraisal of disasters, surveillance of the oceans, monitoring of land, food and water resources, detection of natural resources, and identification of pollution. (JR)

  17. A selected bibliography: Remote sensing applications in geography

    USGS Publications Warehouse

    Ripple, W.J.

    1977-01-01

    The bibliography contains 82 citations of selected publications and technical reports.  The references deal with the application of remote sensing techniques to the collection and analysis of geographic data.  All of the citations were published between January 1968 and July 1977.

  18. A selected bibliography: Remote sensing applications in agriculture

    USGS Publications Warehouse

    Draeger, William C.; McClelland, David T.

    1977-01-01

    The bibliography contains nearly 300 citations of selected publications and technical reports dealing with the application of remote-sensing techniques to the collection and analysis of agricultural information. Most of the items included were published between January 1968 and December 1975, although some earlier works of continuing interest are included.

  19. Application of remote sensing to hydrological problems and floods

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.

    1983-01-01

    The main applications of remote sensors to hydrology are identified as well as the principal spectral bands and their advantages and disadvantages. Some examples of LANDSAT data applications to flooding-risk evaluation are cited. Because hydrology studies the amount of moisture and water involved in each phase of hydrological cycle, remote sensing must be emphasized as a technique for hydrological data acquisition.

  20. Remote sensing by plasmonic transport.

    PubMed

    Lee, Seung Joon; Moskovits, Martin

    2012-07-18

    Arrays of periodically disposed silver nanowires embedded in alumina were shown to be capable of conducting plasmons excited by laser illuminating one end of the array to its opposite end where surface-enhanced Raman of molecules resident among the tips of the nanowires was excited. The SERS signals, in turn, excited plasmons which propagated back to the originally illuminated ends of the nanowires where they emitted light signals that were collected and spectroscopically dispersed, in essence creating a sensor capable of exciting and collecting SERS remotely. For nanowire arrays with interwire gaps of ~11 nm and lengths of ~3.3 μm (i.e., after a ~6.6 μm round trip) the SERS signals obtained by remote sensing were rather strong, ~5% the intensity of those obtained by exciting the molecules resident among the nanowire tips directly. PMID:22747443

  1. Energy and remote sensing applications

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1978-01-01

    The nature of the U.S. energy problem is examined. Based upon the best available estimates, it appears that demand for OPEC oil will exceed OPEC productive capacity in the early to mid-eighties. The upward pressure on world oil prices resulting from this supply/demand gap could have serious international consequences, both financial and in terms of foreign policy implementation. National Energy Plan objectives in response to this situation are discussed. Major strategies for achieving these objectives include a conversion of industry and utilities from oil and gas to coal and other abundant fuels. Remote sensing from aircraft and spacecraft could make significant contributions to the solution of energy problems in a number of ways, related to exploration of energy-related resources, the efficiency and safety of exploitation procedures, power plant siting, environmental monitoring and assessment, and the transportation infrastructure.

  2. Lunar remote sensing and measurements

    USGS Publications Warehouse

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  3. Remotely Sensed Ground Control Points

    NASA Astrophysics Data System (ADS)

    Hummel, P.

    2016-06-01

    Accurate ground control is required to georeferenced airborne and spaceborne images. The production of ortho-photogrammetric data requires ground control that is traditionally provided as Ground Control Points (GCPs) by GNSS measurements in the field. However, it can be difficult to acquire accurate ground control points due to required turn-around time, high costs or impossible access. CompassData, Inc. a specialist in ground control, has expanded its service to deliver Remotely Sensed Ground Control Points (RSGCPs®). TerraSAR-X and TanDEM-X are two satellites with such high accuracy of their orbital positions and SAR data that RSGCPs® can be produced to a sub-meter quality depending on certain parameters and circumstances. The technology and required parameters are discussed in this paper as well as the resulting accuracies.

  4. NASA remote sensing programs: Overview

    NASA Technical Reports Server (NTRS)

    Raney, W. P.

    1981-01-01

    In the Earth remote sensing area, NASA's three functions are to understand the basic mechanics and behavior of the Earth, evaluate what resources are available (in the way of minerals, and hydrocarbons on a general scale), and to arrange a scheme for managing our national assets. The capabilities offered by LANDSAT D and technology improvements needed are discussed. The French SPOT system, its orbits, possibilities for stereo imagery, and levels of preprocessing and processing with several degrees of radiometric and geometric corrections are examined. Progress in the AgRISTARS project is mentioned as well as future R & D programs in the use of fluorescence, microwave measurements, and synthetic aperture radar. Other areas of endeaver include studying man environment interactions and Earth radiation budgets, and the establishment of data systems programs.

  5. Remote sensing in West Virginia

    NASA Technical Reports Server (NTRS)

    Lessing, P.

    1981-01-01

    Low altitude black and white aerial photography is the prinicipal remote sensing tool for geologic investigations in West Virginia, although side looking radar and color infrared photography are also used. The first land use/cover map for the state was produced in color infrared and is being digitized. Linear features in Cabell and Wayne Counties, as revealed by LANDSAT, were evaluated to test the possible correlations with rock fractures and gas production from shales. A LANDSAT linear features map (1:250,000) was prepared for the entire state, also. Presently investigations are being made to understand karst and to predict areas that should not be used for development. Aerial photography and field mapping is being conducted to detect the location and causes of landslides.

  6. Survey of remote sensing applications

    USGS Publications Warehouse

    Deutsch, Morris

    1974-01-01

    Data from the first earth resources technology satellite (ERTS) as well as from NASA and other aircraft, contain much of the information indicative of the distribution of groundwater and the extent of its utilization. Thermal infrared imagery from aircraft is particularly valuable in studying groundwater discharge to the sea and other surface water bodies. Color infrared photography from aircraft and space is also used to locate areas of potential groundwater development. Anomalies in vegetation, soils, moisture, and their pattern of distribution may be indicative of underlying groundwater conditions. Remote sensing may be used directly or indirectly to identify stream reaches for test holes or production wells. Similarly, location of submarine springs increase effectiveness of groundwater exploration in the coastal zone.

  7. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  8. Mojave remote sensing field experiment

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.; Petroy, S. B.; Plaut, J. J.; Shepard, Michael K.; Evans, D.; Farr, T.; Greeley, Ronald; Gaddis, L.; Lancaster, N.

    1991-01-01

    The Mojave Remote Sensing Field Experiment (MFE), conducted in June 1988, involved acquisition of Thermal Infrared Multispectral Scanner (TIMS); C, L, and P-band polarimetric radar (AIRSAR) data; and simultaneous field observations at the Pisgah and Cima volcanic fields, and Lavic and Silver Lake Playas, Mojave Desert, California. A LANDSAT Thematic Mapper (TM) scene is also included in the MFE archive. TM-based reflectance and TIMS-based emissivity surface spectra were extracted for selected surfaces. Radiative transfer procedures were used to model the atmosphere and surface simultaneously, with the constraint that the spectra must be consistent with field-based spectral observations. AIRSAR data were calibrated to backscatter cross sections using corner reflectors deployed at target sites. Analyses of MFE data focus on extraction of reflectance, emissivity, and cross section for lava flows of various ages and degradation states. Results have relevance for the evolution of volcanic plains on Venus and Mars.

  9. The remote sensing of algae

    NASA Technical Reports Server (NTRS)

    Thorne, J. F.

    1977-01-01

    State agencies need rapid, synoptic and inexpensive methods for lake assessment to comply with the 1972 Amendments to the Federal Water Pollution Control Act. Low altitude aerial photography may be useful in providing information on algal type and quantity. Photography must be calibrated properly to remove sources of error including airlight, surface reflectance and scene-to-scene illumination differences. A 550-nm narrow wavelength band black and white photographic exposure provided a better correlation to algal biomass than either red or infrared photographic exposure. Of all the biomass parameters tested, depth-integrated chlorophyll a concentration correlated best to remote sensing data. Laboratory-measured reflectance of selected algae indicate that different taxonomic classes of algae may be discriminated on the basis of their reflectance spectra.

  10. Remote Sensing of Ocean Color

    NASA Astrophysics Data System (ADS)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  11. Natural Resource Information System. Remote Sensing Studies.

    ERIC Educational Resources Information Center

    Leachtenauer, J.; And Others

    A major design objective of the Natural Resource Information System entailed the use of remote sensing data as an input to the system. Potential applications of remote sensing data were therefore reviewed and available imagery interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and…

  12. Accommodating Student Diversity in Remote Sensing Instruction.

    ERIC Educational Resources Information Center

    Hammen, John L., III.

    1992-01-01

    Discusses the difficulty of teaching computer-based remote sensing to students of varying levels of computer literacy. Suggests an instructional method that accommodates all levels of technical expertise through the use of microcomputers. Presents a curriculum that includes an introduction to remote sensing, digital image processing, and…

  13. Conference of Remote Sensing Educators (CORSE-78)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Ways of improving the teaching of remote sensing students at colleges and universities are discussed. Formal papers and workshops on various Earth resources disciplines, image interpretation, and data processing concepts are presented. An inventory of existing remote sensing and related subject courses being given in western regional universities is included.

  14. What does remote sensing do for ecology?

    NASA Technical Reports Server (NTRS)

    Roughgarden, J.; Running, S. W.; Matson, P. A.

    1991-01-01

    The application of remote sensing to ecological investigations is briefly discussed. Emphasis is given to the recruitment problem in marine population dynamics, the regional analysis of terrestrial ecosystems, and the monitoring of ecological changes. Impediments to the use of remote sensing data in ecology are addressed.

  15. Sandia multispectral analyst remote sensing toolkit (SMART).

    SciTech Connect

    Post, Brian Nelson; Smith, Jody Lynn; Geib, Peter L.; Nandy, Prabal; Wang, Nancy Nairong

    2003-03-01

    This remote sensing science and exploitation work focused on exploitation algorithms and methods targeted at the analyst. SMART is a 'plug-in' to commercial remote sensing software that provides algorithms to enhance the utility of the Multispectral Thermal Imager (MTI) and other multispectral satellite data. This toolkit has been licensed to 22 government organizations.

  16. Remote sensing and reflectance profiling in entomology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing is about characterizing the status of objects and/or classifies their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be ground-based, and therefore acquired at a high spatial resolutio...

  17. Western Regional Remote Sensing Conference Proceedings, 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Diverse applications of LANDSAT data, problem solutions, and operational goals are described by remote sensing users from 14 western states. The proposed FY82 federal budget reductions for technology transfer activities and the planned transition of the operational remote sensing system to NOAA's supervision are also considered.

  18. Some guidelines for remote sensing in hydrology

    USGS Publications Warehouse

    Robinove, Charles J.; Anderson, Daniel G.

    1969-01-01

    Remote sensing in the field of hydrology is beginning to be applied to significant problems, such as thermal pollution, in many programs of the Federal and State Governments as well as in operation of many private organizations. The purpose of this paper is to guide the hydrologist to a better understanding of how he may collect, synthesize, and interpret remote sensing data.

  19. Remote sensing of vegetation structure using computer vision

    NASA Astrophysics Data System (ADS)

    Dandois, Jonathan P.

    High-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology---allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal

  20. Remote sensing of balsam fir forest vigor

    NASA Astrophysics Data System (ADS)

    Luther, Joan E.; Carroll, Allen L.

    1997-12-01

    The potential of remote sensing to monitor indices of forest health was tested by examining the spectral separability of plots with different balsam fir, Abies balsamea (L.) Mill, vigor. Four levels of vigor were achieved with controlled experimental manipulations of forest stands. In order of increasing vigor, the treatments were root pruning, control, thinning and thinning in combination with fertilization. Spectral reflectance of branchlets from each plot were measured under laboratory conditions using a field portable spectroradiometer with a spectral range from 350 - 2500 nm. Branchlets were discriminated using combinations of factor and discriminant analyses techniques with classification accuracies of 91% and 83% for early and late season analyses, respectively. Relationships between spectral reflectance measurements at canopy levels, stand vigor, and foliage quality for an insect herbivore will be analyzed further in support of future large scale monitoring of balsam fir vulnerability to insect disturbance.