Science.gov

Sample records for adaptive robust motion

  1. Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal.

    PubMed

    Wang, Yuewen; Wang, Yahui; Akansu, Ali; Belfield, Kevin D; Hubbi, Basil; Liu, Xuan

    2015-11-01

    Speckle decorrelation analysis of optical coherence tomography (OCT) signal has been used in motion tracking. In our previous study, we demonstrated that cross-correlation coefficient (XCC) between Ascans had an explicit functional dependency on the magnitude of lateral displacement (δx). In this study, we evaluated the sensitivity of speckle motion tracking using the derivative of function XCC(δx) on variable δx. We demonstrated the magnitude of the derivative can be maximized. In other words, the sensitivity of OCT speckle tracking can be optimized by using signals with appropriate amount of decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle decorrelation analysis strategy to achieve motion tracking with optimized sensitivity. Briefly, we used subsequently acquired Ascans and Ascans obtained with larger time intervals to obtain multiple values of XCC and chose the XCC value that maximized motion tracking sensitivity for displacement calculation. Instantaneous motion speed can be calculated by dividing the obtained displacement with time interval between Ascans involved in XCC calculation. We implemented the above-described algorithm in real-time using graphic processing unit (GPU) and demonstrated its effectiveness in reconstructing distortion-free OCT images using data obtained from a manually scanned OCT probe. The adaptive speckle tracking method was validated in manually scanned OCT imaging, on phantom as well as in vivo skin tissue. PMID:26600996

  2. Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal

    PubMed Central

    Wang, Yuewen; Wang, Yahui; Akansu, Ali; Belfield, Kevin D.; Hubbi, Basil; Liu, Xuan

    2015-01-01

    Speckle decorrelation analysis of optical coherence tomography (OCT) signal has been used in motion tracking. In our previous study, we demonstrated that cross-correlation coefficient (XCC) between Ascans had an explicit functional dependency on the magnitude of lateral displacement (δx). In this study, we evaluated the sensitivity of speckle motion tracking using the derivative of function XCC(δx) on variable δx. We demonstrated the magnitude of the derivative can be maximized. In other words, the sensitivity of OCT speckle tracking can be optimized by using signals with appropriate amount of decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle decorrelation analysis strategy to achieve motion tracking with optimized sensitivity. Briefly, we used subsequently acquired Ascans and Ascans obtained with larger time intervals to obtain multiple values of XCC and chose the XCC value that maximized motion tracking sensitivity for displacement calculation. Instantaneous motion speed can be calculated by dividing the obtained displacement with time interval between Ascans involved in XCC calculation. We implemented the above-described algorithm in real-time using graphic processing unit (GPU) and demonstrated its effectiveness in reconstructing distortion-free OCT images using data obtained from a manually scanned OCT probe. The adaptive speckle tracking method was validated in manually scanned OCT imaging, on phantom as well as in vivo skin tissue. PMID:26600996

  3. Robust Adaptive Control

    NASA Technical Reports Server (NTRS)

    Narendra, K. S.; Annaswamy, A. M.

    1985-01-01

    Several concepts and results in robust adaptive control are are discussed and is organized in three parts. The first part surveys existing algorithms. Different formulations of the problem and theoretical solutions that have been suggested are reviewed here. The second part contains new results related to the role of persistent excitation in robust adaptive systems and the use of hybrid control to improve robustness. In the third part promising new areas for future research are suggested which combine different approaches currently known.

  4. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This

  5. Adaptive vehicle motion estimation and prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  6. Retinal Adaptation to Object Motion

    PubMed Central

    Ölveczky, Bence P.; Baccus, Stephen A.; Meister, Markus

    2007-01-01

    Summary Due to fixational eye movements, the image on the retina is always in motion, even when one views a stationary scene. When an object moves within the scene, the corresponding patch of retina experiences a different motion trajectory than the surrounding region. Certain retinal ganglion cells respond selectively to this condition, when the motion in the cell’s receptive field center is different from that in the surround. Here we show that this response is strongest at the very onset of differential motion, followed by gradual adaptation with a time course of several seconds. Different subregions of a ganglion cell’s receptive field can adapt independently. The circuitry responsible for differential motion adaptation lies in the inner retina. Several candidate mechanisms were tested, and the adaptation most likely results from synaptic depression at the synapse from bipolar to ganglion cell. Similar circuit mechanisms may act more generally to emphasize novel features of a visual stimulus. PMID:18031685

  7. Environmentally robust motion detection for video surveillance.

    PubMed

    Woo, Hyenkyun; Jung, Yoon Mo; Kim, Jeong-Gyoo; Seo, Jin Keun

    2010-11-01

    Most video surveillance systems require to manually set a motion detection sensitivity level to generate motion alarms. The performance of motion detection algorithms, embedded in closed circuit television (CCTV) camera and digital video recorder (DVR), usually depends upon the preselected motion sensitivity level, which is expected to work in all environmental conditions. Due to the preselected sensitivity level, false alarms and detection failures usually exist in video surveillance systems. The proposed motion detection model based upon variational energy provides a robust detection method at various illumination changes and noise levels of image sequences without tuning any parameter manually. We analyze the structure mathematically and demonstrate the effectiveness of the proposed model with numerous experiments in various environmental conditions. Due to the compact structure and efficiency of the proposed model, it could be implemented in a small embedded system. PMID:20952320

  8. Motion Robust Remote-PPG in Infrared.

    PubMed

    van Gastel, Mark; Stuijk, Sander; de Haan, Gerard

    2015-05-01

    Current state-of-the-art remote photoplethysmography (rPPG) algorithms are capable of extracting a clean pulse signal in ambient light conditions using a regular color camera, even when subjects move significantly. In this study, we investigate the feasibility of rPPG in the (near)-infrared spectrum, which broadens the scope of applications for rPPG. Two camera setups are investigated: one setup consisting of three monochrome cameras with different optical filters, and one setup consisting of a single RGB camera with a visible light blocking filter. Simulation results predict the monochrome setup to be more motion robust, but this simulation neglects parallax. To verify this, a challenging benchmark dataset consisting of 30 videos is created with various motion scenarios and skin tones. Experiments show that both camera setups are capable of accurate pulse extraction in all motion scenarios, with an average SNR of +6.45 and +7.26 dB, respectively. The single camera setup proves to be superior in scenarios involving scaling, likely due to parallax of the multicamera setup. To further improve motion robustness of the RGB camera, dedicated LED illumination with two distinct wavelengths is proposed and verified. This paper demonstrates that accurate rPPG measurements in infrared are feasible, even with severe subject motion. PMID:25585411

  9. Robust Sparse Matching and Motion Estimation Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Shahbazi, M.; Sohn, G.; Théau, J.; Ménard, P.

    2015-03-01

    In this paper, we propose a robust technique using genetic algorithm for detecting inliers and estimating accurate motion parameters from putative correspondences containing any percentage of outliers. The proposed technique aims to increase computational efficiency and modelling accuracy in comparison with the state-of-the-art via the following contributions: i) guided generation of initial populations for both avoiding degenerate solutions and increasing the rate of useful hypotheses, ii) replacing random search with evolutionary search, iii) possibility of evaluating the individuals of every population by parallel computation, iv) being performable on images with unknown internal orientation parameters, iv) estimating the motion model via detecting a minimum, however more than enough, set of inliers, v) ensuring the robustness of the motion model against outliers, degeneracy and poorperspective camera models, vi) making no assumptions about the probability distribution of inliers and/or outliers residuals from the estimated motion model, vii) detecting all the inliers by setting the threshold on their residuals adaptively with regard to the uncertainty of the estimated motion model and the position of the matches. The proposed method was evaluated both on synthetic data and real images. The results were compared with the most popular techniques from the state-of-the-art, including RANSAC, MSAC, MLESAC, Least Trimmed Squares and Least Median of Squares. Experimental results proved that the proposed approach perform better than others in terms of accuracy of motion estimation, accuracy of inlier detection and the computational efficiency.

  10. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  11. Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution

    SciTech Connect

    Delzanno, G L; Finn, J M

    2009-01-01

    Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.

  12. Motion-adaptive compressive coded apertures

    NASA Astrophysics Data System (ADS)

    Harmany, Zachary T.; Oh, Albert; Marcia, Roummel; Willett, Rebecca

    2011-09-01

    This paper describes an adaptive compressive coded aperture imaging system for video based on motion-compensated video sparsity models. In particular, motion models based on optical flow and sparse deviations from optical flow (i.e. salient motion) can be used to (a) predict future video frames from previous compressive measurements, (b) perform reconstruction using efficient online convex programming techniques, and (c) adapt the coded aperture to yield higher reconstruction fidelity in the vicinity of this salient motion.

  13. Robust adaptive control of HVDC systems

    SciTech Connect

    Reeve, J.; Sultan, M. )

    1994-07-01

    The transient performance of an HVDC power system is highly dependent on the parameters of the current/voltage regulators of the converter controls. In order to better accommodate changes in system structure or dc operating conditions, this paper introduces a new adaptive control strategy. The advantages of automatic tuning for continuous fine tuning are combined with predetermined gain scheduling in order to achieve robustness for large disturbances. Examples are provided for a digitally simulated back-to-back dc system.

  14. Adaptive control: Stability, convergence, and robustness

    NASA Technical Reports Server (NTRS)

    Sastry, Shankar; Bodson, Marc

    1989-01-01

    The deterministic theory of adaptive control (AC) is presented in an introduction for graduate students and practicing engineers. Chapters are devoted to basic AC approaches, notation and fundamental theorems, the identification problem, model-reference AC, parameter convergence using averaging techniques, and AC robustness. Consideration is given to the use of prior information, the global stability of indirect AC schemes, multivariable AC, linearizing AC for a class of nonlinear systems, AC of linearizable minimum-phase systems, and MIMO systems decouplable by static state feedback.

  15. Robust Image Restoration for Motion Blur of Image Sensors

    PubMed Central

    Yang, Fasheng; Huang, Yongmei; Luo, Yihan; Li, Lixing; Li, Hongwei

    2016-01-01

    Blind image restoration algorithms for motion blur have been deeply researched in the past years. Although great progress has been made, blurred images containing large blur and rich, small details still cannot be restored perfectly. To deal with these problems, we present a robust image restoration algorithm for motion blur of general image sensors in this paper. Firstly, we propose a self-adaptive structure extraction method based on the total variation (TV) to separate the reliable structures from textures and small details of a blurred image which may damage the kernel estimation and interim latent image restoration. Secondly, we combine the reliable structures with priors of the blur kernel, such as sparsity and continuity, by a two-step method with which noise can be removed during iterations of the estimation to improve the precision of the estimated blur kernel. Finally, we use a MR-based Wiener filter as the non-blind deconvolution algorithm to restore the final latent image. Experimental results demonstrate that our algorithm can restore large blur images with rich, small details effectively. PMID:27294926

  16. Robust Image Restoration for Motion Blur of Image Sensors.

    PubMed

    Yang, Fasheng; Huang, Yongmei; Luo, Yihan; Li, Lixing; Li, Hongwei

    2016-01-01

    Blind image restoration algorithms for motion blur have been deeply researched in the past years. Although great progress has been made, blurred images containing large blur and rich, small details still cannot be restored perfectly. To deal with these problems, we present a robust image restoration algorithm for motion blur of general image sensors in this paper. Firstly, we propose a self-adaptive structure extraction method based on the total variation (TV) to separate the reliable structures from textures and small details of a blurred image which may damage the kernel estimation and interim latent image restoration. Secondly, we combine the reliable structures with priors of the blur kernel, such as sparsity and continuity, by a two-step method with which noise can be removed during iterations of the estimation to improve the precision of the estimated blur kernel. Finally, we use a MR-based Wiener filter as the non-blind deconvolution algorithm to restore the final latent image. Experimental results demonstrate that our algorithm can restore large blur images with rich, small details effectively. PMID:27294926

  17. Color demosaicking via robust adaptive sparse representation

    NASA Astrophysics Data System (ADS)

    Huang, Lili; Xiao, Liang; Chen, Qinghua; Wang, Kai

    2015-09-01

    A single sensor camera can capture scenes by means of a color filter array. Each pixel samples only one of the three primary colors. We use a color demosaicking (CDM) technique to produce full color images and propose a robust adaptive sparse representation model for high quality CDM. The data fidelity term is characterized by l1 norm to suppress the heavy-tailed visual artifacts with an adaptively learned dictionary, while the regularization term is encouraged to seek sparsity by forcing sparse coding close to its nonlocal means to reduce coding errors. Based on the classical quadratic penalty function technique in optimization and an operator splitting method in convex analysis, we further present an effective iterative algorithm to solve the variational problem. The efficiency of the proposed method is demonstrated by experimental results with simulated and real camera data.

  18. Adaptive Force Control in Compliant Motion

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1994-01-01

    This paper addresses the problem of controlling a manipulator in compliant motion while in contact with an environment having an unknown stiffness. Two classes of solutions are discussed: adaptive admittance control and adaptive compliance control. In both admittance and compliance control schemes, compensator adaptation is used to ensure a stable and uniform system performance.

  19. Robust, Practical Adaptive Control for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Orr, Jeb. S.; VanZwieten, Tannen S.

    2012-01-01

    A modern mechanization of a classical adaptive control concept is presented with an application to launch vehicle attitude control systems. Due to a rigorous flight certification environment, many adaptive control concepts are infeasible when applied to high-risk aerospace systems; methods of stability analysis are either intractable for high complexity models or cannot be reconciled in light of classical requirements. Furthermore, many adaptive techniques appearing in the literature are not suitable for application to conditionally stable systems with complex flexible-body dynamics, as is often the case with launch vehicles. The present technique is a multiplicative forward loop gain adaptive law similar to that used for the NASA X-15 flight research vehicle. In digital implementation with several novel features, it is well-suited to application on aerodynamically unstable launch vehicles with thrust vector control via augmentation of the baseline attitude/attitude-rate feedback control scheme. The approach is compatible with standard design features of autopilots for launch vehicles, including phase stabilization of lateral bending and slosh via linear filters. In addition, the method of assessing flight control stability via classical gain and phase margins is not affected under reasonable assumptions. The algorithm s ability to recover from certain unstable operating regimes can in fact be understood in terms of frequency-domain criteria. Finally, simulation results are presented that confirm the ability of the algorithm to improve performance and robustness in realistic failure scenarios.

  20. Robustness of muscle synergies during visuomotor adaptation

    PubMed Central

    Gentner, Reinhard; Edmunds, Timothy; Pai, Dinesh K.; d'Avella, Andrea

    2013-01-01

    During visuomotor adaptation a novel mapping between visual targets and motor commands is gradually acquired. How muscle activation patterns are affected by this process is an open question. We tested whether the structure of muscle synergies is preserved during adaptation to a visuomotor rotation. Eight subjects applied targeted isometric forces on a handle instrumented with a force transducer while electromyographic (EMG) activity was recorded from 13 shoulder and elbow muscles. The recorded forces were mapped into horizontal displacements of a virtual sphere with simulated mass, elasticity, and damping. The task consisted of moving the sphere to a target at one of eight equally spaced directions. Subjects performed three baseline blocks of 32 trials, followed by six blocks with a 45° CW rotation applied to the planar force, and finally three wash-out blocks without the perturbation. The sphere position at 100 ms after movement onset revealed significant directional error at the beginning of the rotation, a gradual learning in subsequent blocks, and aftereffects at the beginning of the wash-out. The change in initial force direction was closely related to the change in directional tuning of the initial EMG activity of most muscles. Throughout the experiment muscle synergies extracted using a non-negative matrix factorization algorithm from the muscle patterns recorded during the baseline blocks could reconstruct the muscle patterns of all other blocks with an accuracy significantly higher than chance indicating structural robustness. In addition, the synergies extracted from individual blocks remained similar to the baseline synergies throughout the experiment. Thus synergy structure is robust during visuomotor adaptation suggesting that changes in muscle patterns are obtained by rotating the directional tuning of the synergy recruitment. PMID:24027524

  1. Complex Principal Components for Robust Motion Estimation

    PubMed Central

    Mauldin, F. William; Viola, Francesco; Walker, William F.

    2010-01-01

    Bias and variance errors in motion estimation result from electronic noise, decorrelation, aliasing, and inherent algorithm limitations. Unlike most error sources, decorrelation is coherent over time and has the same power spectrum as the signal. Thus, reducing decorrelation is impossible through frequency domain filtering or simple averaging and must be achieved through other methods. In this paper, we present a novel motion estimator, termed the principal component displacement estimator (PCDE), which takes advantage of the signal separation capabilities of principal component analysis (PCA) to reject decorrelation and noise. Furthermore, PCDE only requires the computation of a single principal component, enabling computational speed that is on the same order of magnitude or faster than the commonly used Loupas algorithm. Unlike prior PCA strategies, PCDE uses complex data to generate motion estimates using only a single principal component. The use of complex echo data is critical because it allows for separation of signal components based on motion, which is revealed through phase changes of the complex principal components. PCDE operates on the assumption that the signal component of interest is also the most energetic component in an ensemble of echo data. This assumption holds in most clinical ultrasound environments. However, in environments where electronic noise SNR is less than 0 dB or in blood flow data for which the wall signal dominates the signal from blood flow, the calculation of more than one PC is required to obtain the signal of interest. We simulated synthetic ultrasound data to assess the performance of PCDE over a wide range of imaging conditions and in the presence of decorrelation and additive noise. Under typical ultrasonic elasticity imaging conditions (0.98 signal correlation, 25 dB SNR, 1 sample shift), PCDE decreased estimation bias by more than 10% and standard deviation by more than 30% compared with the Loupas method and normalized

  2. Characterizing the effects of multidirectional motion adaptation

    PubMed Central

    McGovern, David P.; Roach, Neil W.; Webb, Ben S.

    2014-01-01

    Recent sensory experience can alter our perception and change the response characteristics of sensory neurons. These effects of sensory adaptation are a ubiquitous property of perceptual systems and are believed to be of fundamental importance to sensory coding. Yet we know little about how adaptation to stimulus ensembles affects our perception of the environment as most psychophysical experiments employ adaptation protocols that focus on prolonged exposure to a single visual attribute. Here, we investigate how concurrent adaptation to multiple directions of motion affects perception of subsequently presented motion using the direction aftereffect. In different conditions, observers adapted to a stimulus ensemble comprised of dot directions sampled from different distributions or to bidirectional motion. Increasing the variance of normally distributed directions reduced the magnitude of the peak direction aftereffect and broadened its tuning profile. Sampling of asymmetric Gaussian and uniform distributions resulted in shifts of direction aftereffect tuning profiles consistent with changes in the perceived global direction of the adapting stimulus. Adding dots in a direction opposite or orthogonal to a unidirectional adapting stimulus led to a pronounced reduction in the direction aftereffect. A simple population-coding model, in which adaptation selectively alters the responsivity of direction-selective neurons, can accommodate the effects of multidirectional adaptation on the perceived direction of motion. PMID:25368339

  3. Robust adaptive control for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Kahveci, Nazli E.

    anti-windup compensation. Our analysis on the indirect adaptive scheme reveals that the perturbation terms due to parameter errors do not cause any unbounded signals in the closed-loop. The stability of the adaptive system is established, and the properties of the proposed control scheme are demonstrated through simulations on a UAV model with input magnitude saturation constraints. The robust adaptive control design is further developed to extend our results to rate-saturated systems.

  4. On adaptive robustness approach to Anti-Jam signal processing

    NASA Astrophysics Data System (ADS)

    Poberezhskiy, Y. S.; Poberezhskiy, G. Y.

    An effective approach to exploiting statistical differences between desired and jamming signals named adaptive robustness is proposed and analyzed in this paper. It combines conventional Bayesian, adaptive, and robust approaches that are complementary to each other. This combining strengthens the advantages and mitigates the drawbacks of the conventional approaches. Adaptive robustness is equally applicable to both jammers and their victim systems. The capabilities required for realization of adaptive robustness in jammers and victim systems are determined. The employment of a specific nonlinear robust algorithm for anti-jam (AJ) processing is described and analyzed. Its effectiveness in practical situations has been proven analytically and confirmed by simulation. Since adaptive robustness can be used by both sides in electronic warfare, it is more advantageous for the fastest and most intelligent side. Many results obtained and discussed in this paper are also applicable to commercial applications such as communications in unregulated or poorly regulated frequency ranges and systems with cognitive capabilities.

  5. Decision-level adaptation in motion perception.

    PubMed

    Mather, George; Sharman, Rebecca J

    2015-12-01

    Prolonged exposure to visual stimuli causes a bias in observers' responses to subsequent stimuli. Such adaptation-induced biases are usually explained in terms of changes in the relative activity of sensory neurons in the visual system which respond selectively to the properties of visual stimuli. However, the bias could also be due to a shift in the observer's criterion for selecting one response rather than the alternative; adaptation at the decision level of processing rather than the sensory level. We investigated whether adaptation to implied motion is best attributed to sensory-level or decision-level bias. Three experiments sought to isolate decision factors by changing the nature of the participants' task while keeping the sensory stimulus unchanged. Results showed that adaptation-induced bias in reported stimulus direction only occurred when the participants' task involved a directional judgement, and disappeared when adaptation was measured using a non-directional task (reporting where motion was present in the display, regardless of its direction). We conclude that adaptation to implied motion is due to decision-level bias, and that a propensity towards such biases may be widespread in sensory decision-making. PMID:27019726

  6. Decision-level adaptation in motion perception

    PubMed Central

    2015-01-01

    Prolonged exposure to visual stimuli causes a bias in observers' responses to subsequent stimuli. Such adaptation-induced biases are usually explained in terms of changes in the relative activity of sensory neurons in the visual system which respond selectively to the properties of visual stimuli. However, the bias could also be due to a shift in the observer's criterion for selecting one response rather than the alternative; adaptation at the decision level of processing rather than the sensory level. We investigated whether adaptation to implied motion is best attributed to sensory-level or decision-level bias. Three experiments sought to isolate decision factors by changing the nature of the participants' task while keeping the sensory stimulus unchanged. Results showed that adaptation-induced bias in reported stimulus direction only occurred when the participants' task involved a directional judgement, and disappeared when adaptation was measured using a non-directional task (reporting where motion was present in the display, regardless of its direction). We conclude that adaptation to implied motion is due to decision-level bias, and that a propensity towards such biases may be widespread in sensory decision-making. PMID:27019726

  7. A robust motion estimation system for minimal invasive laparoscopy

    NASA Astrophysics Data System (ADS)

    Marcinczak, Jan Marek; von Öhsen, Udo; Grigat, Rolf-Rainer

    2012-02-01

    Laparoscopy is a reliable imaging method to examine the liver. However, due to the limited field of view, a lot of experience is required from the surgeon to interpret the observed anatomy. Reconstruction of organ surfaces provide valuable additional information to the surgeon for a reliable diagnosis. Without an additional external tracking system the structure can be recovered from feature correspondences between different frames. In laparoscopic images blurred frames, specular reflections and inhomogeneous illumination make feature tracking a challenging task. We propose an ego-motion estimation system for minimal invasive laparoscopy that can cope with specular reflection, inhomogeneous illumination and blurred frames. To obtain robust feature correspondence, the approach combines SIFT and specular reflection segmentation with a multi-frame tracking scheme. The calibrated five-point algorithm is used with the MSAC robust estimator to compute the motion of the endoscope from multi-frame correspondence. The algorithm is evaluated using endoscopic videos of a phantom. The small incisions and the rigid endoscope limit the motion in minimal invasive laparoscopy. These limitations are considered in our evaluation and are used to analyze the accuracy of pose estimation that can be achieved by our approach. The endoscope is moved by a robotic system and the ground truth motion is recorded. The evaluation on typical endoscopic motion gives precise results and demonstrates the practicability of the proposed pose estimation system.

  8. Robust adaptive vibration control of a flexible structure.

    PubMed

    Khoshnood, A M; Moradi, H M

    2014-07-01

    Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system. PMID:24703188

  9. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  10. Decentralized digital adaptive control of robot motion

    NASA Technical Reports Server (NTRS)

    Tarokh, M.

    1990-01-01

    A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.

  11. Robust, Flexible Motion Control for the Mars Explorer Rovers

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Biesiadecki, Jeffrey

    2007-01-01

    The Mobility Flight Software, running on computers aboard the Mars Explorer Rover (MER) robotic vehicles Spirit and Opportunity, affords the robustness and flexibility of control to enable safe and effective operation of these vehicles in traversing natural terrain. It can make the vehicles perform specific maneuvers commanded from Earth, and/or can autonomously administer multiple aspects of mobility, including choice of motion, measurement of actual motion, and even selection of targets to be approached. Motion of a vehicle can be commanded by use of multiple layers of control, ranging from motor control at a low level, direct drive operations (e.g., motion along a circular arc, motion along a straight line, or turn in place) at an intermediate level to goal-position driving (that is, driving to a specified location) at a high level. The software can also perform high-level assessment of terrain and selection of safe paths across the terrain: this involves processing of the digital equivalent of a local traversability map generated from images acquired by stereoscopic pairs of cameras aboard the vehicles. Other functions of the software include interacting with the rest of the MER flight software and performing safety checks.

  12. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.

    PubMed

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-01-01

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046

  13. Robust adaptive transient damping in power systems

    SciTech Connect

    Pierre, D.A.; Sadighi, I.; Trudnowski, D.J.; Smith, J.R.; Nehrir, M.H. . Dept. of Electrical Engineering)

    1992-09-01

    This Volume 1 of the final report on RP2665-1 contains two parts. part 1 consists of the following: (1) a literature review of real-time parameter identification algorithms which may be used in self-tuning adaptive control; (2) a description of mathematical discrete-time models that are linear in the parameters and that are useful for self-tuning adaptive control; (3) detailed descriptions of several variations of recursive-least-squares algorithms (RLS algorithms) and a unified representation of some of these algorithms; (4) a new variation of RLS called Corrector Least Squares (CLS); (5) a set of practical issues that need to be addressed in the implementation of RLS-based algorithms; (6) a set of simulation examples that illustrate properties of the identification methods; and (7) appendices With FORTRAN listings of several identification codes. Part 2 of this volume addresses the problem of damping electromechanical oscillations in power systems using advanced control theory. Two control strategies are developed. Controllers are then applied to a power system as power system stabilizer (PSS) units. The primary strategy is a decentralized indirect adaptive control scheme where multiple self-tuning adaptive controllers are coordinated. This adaptive scheme is presented in a general format and the stabilizing properties are demonstrated using examples. Both the adaptive and the conventional strategies are applied to a 17-machine computer-simulated power system. PSS units are applied to four generators in the system. Detailed simulation results are presented that show the feasibility and properties of both control schemes. FORTRAN codes for the control simulations are given in appendices of Part 2, as also are FORTRAN codes for the Prony identification method.

  14. Adaptive motion artifact reducing algorithm for wrist photoplethysmography application

    NASA Astrophysics Data System (ADS)

    Zhao, Jingwei; Wang, Guijin; Shi, Chenbo

    2016-04-01

    Photoplethysmography (PPG) technology is widely used in wearable heart pulse rate monitoring. It might reveal the potential risks of heart condition and cardiopulmonary function by detecting the cardiac rhythms in physical exercise. However the quality of wrist photoelectric signal is very sensitive to motion artifact since the thicker tissues and the fewer amount of capillaries. Therefore, motion artifact is the major factor that impede the heart rate measurement in the high intensity exercising. One accelerometer and three channels of light with different wavelengths are used in this research to analyze the coupled form of motion artifact. A novel approach is proposed to separate the pulse signal from motion artifact by exploiting their mixing ratio in different optical paths. There are four major steps of our method: preprocessing, motion artifact estimation, adaptive filtering and heart rate calculation. Five healthy young men are participated in the experiment. The speeder in the treadmill is configured as 12km/h, and all subjects would run for 3-10 minutes by swinging the arms naturally. The final result is compared with chest strap. The average of mean square error (MSE) is less than 3 beats per minute (BPM/min). Proposed method performed well in intense physical exercise and shows the great robustness to individuals with different running style and posture.

  15. Inherent robustness of discrete-time adaptive control systems

    NASA Technical Reports Server (NTRS)

    Ma, C. C. H.

    1986-01-01

    Global stability robustness with respect to unmodeled dynamics, arbitrary bounded internal noise, as well as external disturbance is shown to exist for a class of discrete-time adaptive control systems when the regressor vectors of these systems are persistently exciting. Although fast adaptation is definitely undesirable, so far as attaining the greatest amount of global stability robustness is concerned, slow adaptation is shown to be not necessarily beneficial. The entire analysis in this paper holds for systems with slowly varying return difference matrices; the plants in these systems need not be slowly varying.

  16. Robust adaptive regulation without persistent excitation

    NASA Technical Reports Server (NTRS)

    Lozano-Leal, Rogelio

    1988-01-01

    A globally convergent adaptive regulator for minimum or nonminimum phase systems subject to bounded distrubances and unmodeled dynamics is presented. The control strategy is designed for a particular input-output representation obtained from the state space representation of the system. The leading coefficient of the new representation is the product of the observability and controllability matrices of the system. The controller scheme uses a Least Squares identification algorithm with a dead zone. The dead zone is chosen to obtain convergence properties on the estimates and on the covariance matrix as well. This allows the definition of modified estimates which secure well-conditioned matrices in the adaptive control law. Explicit bounds on the plant output are given.

  17. Robust Wiener filtering for Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2004-06-17

    In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.

  18. Robust Adaptive Control In Hilbert Space

    NASA Technical Reports Server (NTRS)

    Wen, John Ting-Yung; Balas, Mark J.

    1990-01-01

    Paper discusses generalization of scheme for adaptive control of finite-dimensional system to infinite-dimensional Hilbert space. Approach involves generalization of command-generator tracker (CGT) theory. Does not require reference model to be same order as that of plant, and knowledge of order of plant not needed. Suitable for application to high-order systems, main emphasis on adjustment of low-order feedback-gain matrix. Analysis particularly relevant to control of large, flexible structures.

  19. Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.

    PubMed

    Peng, Jinzhu; Yu, Jie; Wang, Jie

    2014-07-01

    In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity. PMID:24917071

  20. Robust Adaptive Data Encoding and Restoration

    NASA Technical Reports Server (NTRS)

    Park, Stephen K.; Rahman, Zia-ur; Halyo, Nesim

    2000-01-01

    This is the final report for NASA cooperative agreement and covers the period from 01 October, 1997 to 11 April, 2000. The research during this period was performed in three primary, but related, areas. 1. Evaluation of integrated information adaptive imaging. 2. Improvements in memory utilization and performance of the multiscale retinex with color restoration (MSRCR). 3. Commencement of a theoretical study to evaluate the non-linear retinex image enhancement technique. The research resulted in several publications, and an intellectual property disclosure to the NASA patent council in May, 1999.

  1. Estimating nonrigid motion from inconsistent intensity with robust shape features

    SciTech Connect

    Liu, Wenyang; Ruan, Dan

    2013-12-15

    Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided

  2. Adaptive robust control of the EBR-II reactor

    SciTech Connect

    Power, M.A.; Edwards, R.M.

    1996-05-01

    Simulation results are presented for an adaptive H{sub {infinity}} controller, a fixed H{sub {infinity}} controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H{sub {infinity}} controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H{sub {infinity}} and classical controllers. This makes for a superior and more robust controller.

  3. Variable neural adaptive robust control: a switched system approach.

    PubMed

    Lian, Jianming; Hu, Jianghai; Żak, Stanislaw H

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multiinput multioutput uncertain systems. The controllers incorporate a novel variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. It can determine the network structure online dynamically by adding or removing RBFs according to the tracking performance. The structure variation is systematically considered in the stability analysis of the closed-loop system using a switched system approach with the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations. PMID:25881366

  4. Robust design of configurations and parameters of adaptable products

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chen, Yongliang; Xue, Deyi; Gu, Peihua

    2014-03-01

    An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architecture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertainties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candidates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.

  5. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  6. Robust adaptive dynamic programming and feedback stabilization of nonlinear systems.

    PubMed

    Jiang, Yu; Jiang, Zhong-Ping

    2014-05-01

    This paper studies the robust optimal control design for a class of uncertain nonlinear systems from a perspective of robust adaptive dynamic programming (RADP). The objective is to fill up a gap in the past literature of adaptive dynamic programming (ADP) where dynamic uncertainties or unmodeled dynamics are not addressed. A key strategy is to integrate tools from modern nonlinear control theory, such as the robust redesign and the backstepping techniques as well as the nonlinear small-gain theorem, with the theory of ADP. The proposed RADP methodology can be viewed as an extension of ADP to uncertain nonlinear systems. Practical learning algorithms are developed in this paper, and have been applied to the controller design problems for a jet engine and a one-machine power system. PMID:24808035

  7. Robust cascade control for the horizontal motion of a vehicle with single-wheel actuators

    NASA Astrophysics Data System (ADS)

    Moseberg, Jan-Erik; Roppenecker, Günter

    2015-12-01

    The article presents a cascade control for the horizontal motion of a vehicle with single-wheel actuators. The outer control loop for the longitudinal and lateral accelerations and the yaw rate ensures a desired vehicle motion. By a combination of state feedback control and observer-based disturbance feedforward the inner control loop robustly stabilises the rotating and steering motions of the wheels in spite of unknown frictions between tyres and ground. Since the three degrees of freedom of the horizontal motion are affected by eight tyre forces, the vehicle considered is an over-actuated system. Thus additional control objectives can be realised besides the desired motion trajectory as, for example, a maximum in driving safety. The corresponding analytical tyre force allocation also guarantees real-time capability because of its relatively low computational effort. Provided suitable fault detection and isolation are available, the proposed cascade control has the potential of fault-tolerance, because the force allocation is adaptable. Another benefit results from the modular control structure, because it allows a stepwise implementation. Besides, it only requires a small number of measurements for control purposes. These measurements are the rotational speeds and steering angles of the wheels, the longitudinal and lateral acceleration and the yaw rate of the vehicle.

  8. Robust local search for spacecraft operations using adaptive noise

    NASA Technical Reports Server (NTRS)

    Fukunaga, Alex S.; Rabideau, Gregg; Chien, Steve

    2004-01-01

    Randomization is a standard technique for improving the performance of local search algorithms for constraint satisfaction. However, it is well-known that local search algorithms are constraints satisfaction. However, it is well-known that local search algorithms are to the noise values selected. We investigate the use of an adaptive noise mechanism in an iterative repair-based planner/scheduler for spacecraft operations. Preliminary results indicate that adaptive noise makes the use of randomized repair moves safe and robust; that is, using adaptive noise makes it possible to consistently achieve, performance comparable with the best tuned noise setting without the need for manually tuning the noise parameter.

  9. Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding

    PubMed Central

    Resnik, Andrey; Celikel, Tansu; Englitz, Bernhard

    2016-01-01

    Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information. PMID:27304526

  10. Robust adaptive dynamic programming with an application to power systems.

    PubMed

    Jiang, Yu; Jiang, Zhong-Ping

    2013-07-01

    This brief presents a novel framework of robust adaptive dynamic programming (robust-ADP) aimed at computing globally stabilizing and suboptimal control policies in the presence of dynamic uncertainties. A key strategy is to integrate ADP theory with techniques in modern nonlinear control with a unique objective of filling up a gap in the past literature of ADP without taking into account dynamic uncertainties. Neither the system dynamics nor the system order are required to be precisely known. As an illustrative example, the computational algorithm is applied to the controller design of a two-machine power system. PMID:24808528

  11. Variable Neural Adaptive Robust Control: A Switched System Approach

    SciTech Connect

    Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.

  12. Decentralized adaptive control of robot manipulators with robust stabilization design

    NASA Technical Reports Server (NTRS)

    Yuan, Bau-San; Book, Wayne J.

    1988-01-01

    Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.

  13. An adaptive robust controller for time delay maglev transportation systems

    NASA Astrophysics Data System (ADS)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  14. Robust flicker evaluation method for low power adaptive dimming LCDs

    NASA Astrophysics Data System (ADS)

    Kim, Seul-Ki; Song, Seok-Jeong; Nam, Hyoungsik

    2015-05-01

    This paper describes a robust dimming flicker evaluation method of adaptive dimming algorithms for low power liquid crystal displays (LCDs). While the previous methods use sum of square difference (SSD) values without excluding the image sequence information, the proposed modified SSD (mSSD) values are obtained only with the dimming flicker effects by making use of differential images. The proposed scheme is verified for eight dimming configurations of two dimming level selection methods and four temporal filters over three test videos. Furthermore, a new figure of merit is introduced to cover the dimming flicker as well as image qualities and power consumption.

  15. A Comprehensive Robust Adaptive Controller for Gust Load Alleviation

    PubMed Central

    Quagliotti, Fulvia

    2014-01-01

    The objective of this paper is the implementation and validation of an adaptive controller for aircraft gust load alleviation. The contribution of this paper is the design of a robust controller that guarantees the reduction of the gust loads, even when the nominal conditions change. Some preliminary results are presented, considering the symmetric aileron deflection as control device. The proposed approach is validated on subsonic transport aircraft for different mass and flight conditions. Moreover, if the controller parameters are tuned for a specific gust model, even if the gust frequency changes, no parameter retuning is required. PMID:24688411

  16. 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying

    NASA Astrophysics Data System (ADS)

    Wang, Jianying; Sun, Zhaowei

    2012-04-01

    This paper addresses the tracking control problem of the leader-follower spacecraft formation, by which we mean that the relative motion between the leader and the follower is required to track a desired time-varying trajectory given in advance. Using dual number, the six-degree-of-freedom motion of the follower spacecraft relative to the leader spacecraft is modeled, where the coupling effect between the translational motion and the rotational one is accounted. A robust adaptive terminal sliding mode control law, including the adaptive algorithms, is proposed to ensure the finite time convergence of the relative motion tracking errors despite the presence of model uncertainties and external disturbances, based on which a modified controller is furthermore developed to solve the dual-equilibrium problem caused by dual quaternion representation. In addition, to alleviate the chattering, hyperbolic tangent function is adopted to substitute for the sign function. And by theoretical analysis, it is proved that the tracking error in such case will converge to a neighborhood of the origin in finite time. Finally, numerical simulations are performed to demonstrate the validity of the proposed approaches.

  17. Robust adaptive backstepping control for reentry reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wu, Zhong; Du, Yijiang

    2016-09-01

    During the reentry process of reusable launch vehicles (RLVs), the large range of flight envelope will not only result in high nonlinearities, strong coupling and fast time-varying characteristics of the attitude dynamics, but also result in great uncertainties in the atmospheric density, aerodynamic coefficients and environmental disturbances, etc. In order to attenuate the effects of these problems on the control performance of the reentry process, a robust adaptive backstepping control (RABC) strategy is proposed for RLV in this paper. This strategy consists of two-loop controllers designed via backstepping method. Both the outer and the inner loop adopt a robust adaptive controller, which can deal with the disturbances and uncertainties by the variable-structure term with the estimation of their bounds. The outer loop can track the desired attitude by the design of virtual control-the desired angular velocity, while the inner one can track the desired angular velocity by the design of control torque. Theoretical analysis indicates that the closed-loop system under the proposed control strategy is globally asymptotically stable. Even if the boundaries of the disturbances and uncertainties are unknown, the attitude can track the desired value accurately. Simulation results of a certain RLV demonstrate the effectiveness of the control strategy.

  18. Robust, Adaptive Functional Regression in Functional Mixed Model Framework

    PubMed Central

    Zhu, Hongxiao; Brown, Philip J.; Morris, Jeffrey S.

    2012-01-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient

  19. Effects of Crowding and Attention on High-Levels of Motion Processing and Motion Adaptation

    PubMed Central

    Pavan, Andrea; Greenlee, Mark W.

    2015-01-01

    The motion after-effect (MAE) persists in crowding conditions, i.e., when the adaptation direction cannot be reliably perceived. The MAE originating from complex moving patterns spreads into non-adapted sectors of a multi-sector adapting display (i.e., phantom MAE). In the present study we used global rotating patterns to measure the strength of the conventional and phantom MAEs in crowded and non-crowded conditions, and when attention was directed to the adapting stimulus and when it was diverted away from the adapting stimulus. The results show that: (i) the phantom MAE is weaker than the conventional MAE, for both non-crowded and crowded conditions, and when attention was focused on the adapting stimulus and when it was diverted from it, (ii) conventional and phantom MAEs in the crowded condition are weaker than in the non-crowded condition. Analysis conducted to assess the effect of crowding on high-level of motion adaptation suggests that crowding is likely to affect the awareness of the adapting stimulus rather than degrading its sensory representation, (iii) for high-level of motion processing the attentional manipulation does not affect the strength of either conventional or phantom MAEs, neither in the non-crowded nor in the crowded conditions. These results suggest that high-level MAEs do not depend on attention and that at high-level of motion adaptation the effects of crowding are not modulated by attention. PMID:25615577

  20. Adaptive motion mapping in pancreatic SBRT patients using Fourier transforms

    PubMed Central

    Jones, Bernard L.; Schefter, Tracey; Miften, Moyed

    2015-01-01

    Background and Purpose Recent studies suggest that 4DCT is unable to accurately measure respiratory-induced pancreatic tumor motion. In this work, we assessed the daily motion of pancreatic tumors treated with SBRT, and developed adaptive strategies to predict and account for this motion. Materials and Methods The daily motion trajectory of pancreatic tumors during CBCT acquisition was calculated using a model which reconstructs the instantaneous 3D position in each 2D CBCT projection image. We developed a metric (termed “Spectral Coherence,” SC) based on the Fourier frequency spectrum of motion in the SI direction, and analyzed the ability of SC to predict motion-based errors and classify patients according to motion characteristics. Results The amplitude of daily motion exceeded the predictions of pre-treatment 4DCT imaging by an average of 3.0 mm, 2.3 mm, and 3.5 mm in the AP/LR/SI directions. SC was correlated with daily motion differences and tumor dose coverage. In a simulated adaptive protocol, target margins were adjusted based on SC, resulting in significant increases in mean target D95, D99, and minimum dose. Conclusions Our Fourier-based approach differentiates between consistent and inconsistent motion characteristics of respiration and correlates with daily motion deviations from pre-treatment 4DCT. The feasibility of an SC-based adaptive protocol was demonstrated, and this patient-specific respiratory information was used to improve target dosimetry by expanding coverage in inconsistent breathers while shrinking treatment volumes in consistent breathers. PMID:25890573

  1. Unbiased measures of interocular transfer of motion adaptation.

    PubMed

    Vilidaité, Greta; Baker, Daniel H

    2015-01-01

    Numerous studies have measured the extent to which motion aftereffects transfer interocularly. However, many have done so using bias-prone methods, and studies rarely compare different types of motion directly. Here, we use a technique designed to reduce bias (Morgan, 2013, Journal of Vision, 13(8):26, 1-11) to estimate interocular transfer (IOT) for five types of motion: simple translational motion, expansion/contraction, rotation, spiral, and complex translational motion. We used both static and dynamic targets with subjects making binary judgments of perceived speed. Overall, the average IOT was 65%, consistent with previous studies (mean over 17 studies of 67% transfer). There was a main effect of motion type, with translational motion producing stronger IOT (mean: 86%) overall than any of the more complex varieties of motion (mean: 51%). This is inconsistent with the notion that IOT should be strongest for motion processed in extrastriate regions that are fully binocular. We conclude that adaptation is a complex phenomenon too poorly understood to make firm inferences about the binocular structure of motion systems. PMID:26422902

  2. Human motor adaptation in whole body motion

    PubMed Central

    Babič, Jan; Oztop, Erhan; Kawato, Mitsuo

    2016-01-01

    The main role of the sensorimotor system of an organism is to increase the survival of the species. Therefore, to understand the adaptation and optimality mechanisms of motor control, it is necessary to study the sensorimotor system in terms of ecological fitness. We designed an experimental paradigm that exposed sensorimotor system to risk of injury. We studied human subjects performing uncon- strained squat-to-stand movements that were systematically subjected to non-trivial perturbation. We found that subjects adapted by actively compensating the perturbations, converging to movements that were different from their normal unperturbed squat-to-stand movements. Furthermore, the adapted movements had clear intrinsic inter-subject differences which could be explained by different adapta- tion strategies employed by the subjects. These results suggest that classical optimality measures of physical energy and task satisfaction should be seen as part of a hierarchical organization of optimality with safety being at the highest level. Therefore, in addition to physical energy and task fulfillment, the risk of injury and other possible costs such as neural computational overhead have to be considered when analyzing human movement. PMID:27608652

  3. Human motor adaptation in whole body motion.

    PubMed

    Babič, Jan; Oztop, Erhan; Kawato, Mitsuo

    2016-01-01

    The main role of the sensorimotor system of an organism is to increase the survival of the species. Therefore, to understand the adaptation and optimality mechanisms of motor control, it is necessary to study the sensorimotor system in terms of ecological fitness. We designed an experimental paradigm that exposed sensorimotor system to risk of injury. We studied human subjects performing uncon- strained squat-to-stand movements that were systematically subjected to non-trivial perturbation. We found that subjects adapted by actively compensating the perturbations, converging to movements that were different from their normal unperturbed squat-to-stand movements. Furthermore, the adapted movements had clear intrinsic inter-subject differences which could be explained by different adapta- tion strategies employed by the subjects. These results suggest that classical optimality measures of physical energy and task satisfaction should be seen as part of a hierarchical organization of optimality with safety being at the highest level. Therefore, in addition to physical energy and task fulfillment, the risk of injury and other possible costs such as neural computational overhead have to be considered when analyzing human movement. PMID:27608652

  4. Robust observer-based adaptive fuzzy sliding mode controller

    NASA Astrophysics Data System (ADS)

    Oveisi, Atta; Nestorović, Tamara

    2016-08-01

    In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.

  5. Robustness via Run-Time Adaptation of Contingent Plans

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Washington, Richard; Norvig, Peter (Technical Monitor)

    2000-01-01

    In this paper, we discuss our approach to making the behavior of planetary rovers more robust for the purpose of increased productivity. Due to the inherent uncertainty in rover exploration, the traditional approach to rover control is conservative, limiting the autonomous operation of the rover and sacrificing performance for safety. Our objective is to increase the science productivity possible within a single uplink by allowing the rover's behavior to be specified with flexible, contingent plans and by employing dynamic plan adaptation during execution. We have deployed a system exhibiting flexible, contingent execution; this paper concentrates on our ongoing efforts on plan adaptation, Plans can be revised in two ways: plan steps may be deleted, with execution continuing with the plan suffix; and the current plan may be merged with an "alternate plan" from an on-board library. The plan revision action is chosen to maximize the expected utility of the plan. Plan merging and action deletion constitute a more conservative general-purpose planning system; in return, our approach is more efficient and more easily verified, two important criteria for deployed rovers.

  6. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download. PMID:26465549

  7. Adaptation to vection-induced symptoms of motion sickness

    NASA Technical Reports Server (NTRS)

    Stern, Robert M.; Hu, Senqi; Vasey, Michael W.; Koch, Kenneth L.

    1989-01-01

    The effects of repeated exposures to a rotating circular vection drum on the symptoms of motion sickness and tachygastria in humans were investigated. Subjects were sitting in a drum and were exposed to 15 min baseline (no rotation), followed by 15 min drum rotation at 60 deg/s, and, then, by 15 min recovery. Gastric myoelectric activity was continuously recorded with the electrogastrogram. Subjects who were exposed to the drum three times with intervals of 4-24 days all showed symptoms of tachygastria and failed to show an amelioration of motion sickness symptoms. On the other hand subjects who had only 48 h between the three sessions of drum exposure, experienced a reduction in motion-sickness symptoms and in tachygastsria upon repeated exposure to the drum, indicating that training effected a symptomatic and physiological adaptation. It is suggested that preflight adaptation to visual-vestibular sensory mismatch may reduce motion sickness in astronauts.

  8. Fast-coding robust motion estimation model in a GPU

    NASA Astrophysics Data System (ADS)

    García, Carlos; Botella, Guillermo; de Sande, Francisco; Prieto-Matias, Manuel

    2015-02-01

    Nowadays vision systems are used with countless purposes. Moreover, the motion estimation is a discipline that allow to extract relevant information as pattern segmentation, 3D structure or tracking objects. However, the real-time requirements in most applications has limited its consolidation, considering the adoption of high performance systems to meet response times. With the emergence of so-called highly parallel devices known as accelerators this gap has narrowed. Two extreme endpoints in the spectrum of most common accelerators are Field Programmable Gate Array (FPGA) and Graphics Processing Systems (GPU), which usually offer higher performance rates than general propose processors. Moreover, the use of GPUs as accelerators involves the efficient exploitation of any parallelism in the target application. This task is not easy because performance rates are affected by many aspects that programmers should overcome. In this paper, we evaluate OpenACC standard, a programming model with directives which favors porting any code to a GPU in the context of motion estimation application. The results confirm that this programming paradigm is suitable for this image processing applications achieving a very satisfactory acceleration in convolution based problems as in the well-known Lucas & Kanade method.

  9. An adaptive algorithm for motion compensated color image coding

    NASA Technical Reports Server (NTRS)

    Kwatra, Subhash C.; Whyte, Wayne A.; Lin, Chow-Ming

    1987-01-01

    This paper presents an adaptive algorithm for motion compensated color image coding. The algorithm can be used for video teleconferencing or broadcast signals. Activity segmentation is used to reduce the bit rate and a variable stage search is conducted to save computations. The adaptive algorithm is compared with the nonadaptive algorithm and it is shown that with approximately 60 percent savings in computing the motion vector and 33 percent additional compression, the performance of the adaptive algorithm is similar to the nonadaptive algorithm. The adaptive algorithm results also show improvement of up to 1 bit/pel over interframe DPCM coding with nonuniform quantization. The test pictures used for this study were recorded directly from broadcast video in color.

  10. Robust stochastic resonance: Signal detection and adaptation in impulsive noise

    NASA Astrophysics Data System (ADS)

    Kosko, Bart; Mitaim, Sanya

    2001-11-01

    Stochastic resonance (SR) occurs when noise improves a system performance measure such as a spectral signal-to-noise ratio or a cross-correlation measure. All SR studies have assumed that the forcing noise has finite variance. Most have further assumed that the noise is Gaussian. We show that SR still occurs for the more general case of impulsive or infinite-variance noise. The SR effect fades as the noise grows more impulsive. We study this fading effect on the family of symmetric α-stable bell curves that includes the Gaussian bell curve as a special case. These bell curves have thicker tails as the parameter α falls from 2 (the Gaussian case) to 1 (the Cauchy case) to even lower values. Thicker tails create more frequent and more violent noise impulses. The main feedback and feedforward models in the SR literature show this fading SR effect for periodic forcing signals when we plot either the signal-to-noise ratio or a signal correlation measure against the dispersion of the α-stable noise. Linear regression shows that an exponential law γopt(α)=cAα describes this relation between the impulsive index α and the SR-optimal noise dispersion γopt. The results show that SR is robust against noise ``outliers.'' So SR may be more widespread in nature than previously believed. Such robustness also favors the use of SR in engineering systems. We further show that an adaptive system can learn the optimal noise dispersion for two standard SR models (the quartic bistable model and the FitzHugh-Nagumo neuron model) for the signal-to-noise ratio performance measure. This also favors practical applications of SR and suggests that evolution may have tuned the noise-sensitive parameters of biological systems.

  11. Investigation of the robustness of adaptive neuro-fuzzy inference system for tracking moving tumors in external radiotherapy.

    PubMed

    Torshabi, Ahmad Esmaili

    2014-12-01

    In external radiotherapy of dynamic targets such as lung and breast cancers, accurate correlation models are utilized to extract real time tumor position by means of external surrogates in correlation with the internal motion of tumors. In this study, a correlation method based on the neuro-fuzzy model is proposed to correlate the input external motion data with internal tumor motion estimation in real-time mode, due to its robustness in motion tracking. An initial test of the performance of this model was reported in our previous studies. In this work by implementing some modifications it is resulted that ANFIS is still robust to track tumor motion more reliably by reducing the motion estimation error remarkably. After configuring new version of our ANFIS model, its performance was retrospectively tested over ten patients treated with Synchrony Cyberknife system. In order to assess the performance of our model, the predicted tumor motion as model output was compared with respect to the state of the art model. Final analyzed results show that our adaptive neuro-fuzzy model can reduce tumor tracking errors more significantly, as compared with ground truth database and even tumor tracking methods presented in our previous works. PMID:25412886

  12. Towards robust 3D visual tracking for motion compensation in beating heart surgery.

    PubMed

    Richa, Rogério; Bó, Antônio P L; Poignet, Philippe

    2011-06-01

    In the context of minimally invasive cardiac surgery, active vision-based motion compensation schemes have been proposed for mitigating problems related to physiological motion. However, robust and accurate visual tracking remains a difficult task. The purpose of this paper is to present a robust visual tracking method that estimates the 3D temporal and spatial deformation of the heart surface using stereo endoscopic images. The novelty is the combination of a visual tracking method based on a Thin-Plate Spline (TPS) model for representing the heart surface deformations with a temporal heart motion model based on a time-varying dual Fourier series for overcoming tracking disturbances or failures. The considerable improvements in tracking robustness facing specular reflections and occlusions are demonstrated through experiments using images of in vivo porcine and human beating hearts. PMID:21277821

  13. Adaptive Force Control For Compliant Motion Of A Robot

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1995-01-01

    Two adaptive control schemes offer robust solutions to problem of stable control of forces of contact between robotic manipulator and objects in its environment. They are called "adaptive admittance control" and "adaptive compliance control." Both schemes involve use of force-and torque sensors that indicate contact forces. These schemes performed well when tested in computational simulations in which they were used to control seven-degree-of-freedom robot arm in executing contact tasks. Choice between admittance or compliance control is dictated by requirements of the application at hand.

  14. Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate

    NASA Astrophysics Data System (ADS)

    Samaras, C.; Cook, L.

    2015-12-01

    Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.

  15. Smart Rehabilitation Devices: Part II – Adaptive Motion Control

    PubMed Central

    Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine

    2008-01-01

    This article presents a study of adaptive motion control of smart versatile rehabilitation devices using MR fluids. The device provides both isometric and isokinetic strength training and is reconfigurable for several human joints. Adaptive controls are developed to regulate resistance force based on the prescription of the therapist. Special consideration has been given to the human–machine interaction in the adaptive control that can modify the behavior of the device to account for strength gains or muscle fatigue of the human subject. PMID:18548131

  16. Robust image registration using adaptive coherent point drift method

    NASA Astrophysics Data System (ADS)

    Yang, Lijuan; Tian, Zheng; Zhao, Wei; Wen, Jinhuan; Yan, Weidong

    2016-04-01

    Coherent point drift (CPD) method is a powerful registration tool under the framework of the Gaussian mixture model (GMM). However, the global spatial structure of point sets is considered only without other forms of additional attribute information. The equivalent simplification of mixing parameters and the manual setting of the weight parameter in GMM make the CPD method less robust to outlier and have less flexibility. An adaptive CPD method is proposed to automatically determine the mixing parameters by embedding the local attribute information of features into the construction of GMM. In addition, the weight parameter is treated as an unknown parameter and automatically determined in the expectation-maximization algorithm. In image registration applications, the block-divided salient image disk extraction method is designed to detect sparse salient image features and local self-similarity is used as attribute information to describe the local neighborhood structure of each feature. The experimental results on optical images and remote sensing images show that the proposed method can significantly improve the matching performance.

  17. Distributed reinforcement learning for adaptive and robust network intrusion response

    NASA Astrophysics Data System (ADS)

    Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel

    2015-07-01

    Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.

  18. Robust adaptive control of spacecraft proximity maneuvers under dynamic coupling and uncertainty

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Huo, Wei

    2015-11-01

    This paper provides a solution for the position tracking and attitude synchronization problem of the close proximity phase in spacecraft rendezvous and docking. The chaser spacecraft must be driven to a certain fixed position along the docking port direction of the target spacecraft, while the attitude of the two spacecraft must be synchronized for subsequent docking operations. The kinematics and dynamics for relative position and relative attitude are modeled considering dynamic coupling, parametric uncertainties and external disturbances. The relative motion model has a new form with a novel definition of the unknown parameters. An original robust adaptive control method is developed for the concerned problem, and a proof of the asymptotic stability is given for the six degrees of freedom closed-loop system. A numerical example is displayed in simulation to verify the theoretical results.

  19. Robust adaptive relative position and attitude control for spacecraft autonomous proximity.

    PubMed

    Sun, Liang; Huo, Wei; Jiao, Zongxia

    2016-07-01

    This paper provides new results of the dynamical modeling and controller designing for autonomous close proximity phase during rendezvous and docking in the presence of kinematic couplings and model uncertainties. A globally defined relative motion mechanical model for close proximity operations is introduced firstly. Then, in spite of the kinematic couplings and thrust misalignment between relative rotation and relative translation, robust adaptive relative position and relative attitude controllers are designed successively. Finally, stability of the overall system is proved that the relative position and relative attitude are uniformly ultimately bounded, and the size of the ultimate bound can be regulated small enough by control system parameters. Performance of the controlled overall system is demonstrated via a representative numerical example. PMID:26993103

  20. Adaptive motion artefact reduction in respiration and ECG signals for wearable healthcare monitoring systems.

    PubMed

    Zhang, Zhengbo; Silva, Ikaro; Wu, Dalei; Zheng, Jiewen; Wu, Hao; Wang, Weidong

    2014-12-01

    Wearable healthcare monitoring systems (WHMSs) have received significant interest from both academia and industry with the advantage of non-intrusive and ambulatory monitoring. The aim of this paper is to investigate the use of an adaptive filter to reduce motion artefact (MA) in physiological signals acquired by WHMSs. In our study, a WHMS is used to acquire ECG, respiration and triaxial accelerometer (ACC) signals during incremental treadmill and cycle ergometry exercises. With these signals, performances of adaptive MA cancellation are evaluated in both respiration and ECG signals. To achieve effective and robust MA cancellation, three axial outputs of the ACC are employed to estimate the MA by a bank of gradient adaptive Laguerre lattice (GALL) filter, and the outputs of the GALL filters are further combined with time-varying weights determined by a Kalman filter. The results show that for the respiratory signals, MA component can be reduced and signal quality can be improved effectively (the power ratio between the MA-corrupted respiratory signal and the adaptive filtered signal was 1.31 in running condition, and the corresponding signal quality was improved from 0.77 to 0.96). Combination of the GALL and Kalman filters can achieve robust MA cancellation without supervised selection of the reference axis from the ACC. For ECG, the MA component can also be reduced by adaptive filtering. The signal quality, however, could not be improved substantially just by the adaptive filter with the ACC outputs as the reference signals. PMID:25273839

  1. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    SciTech Connect

    Paganelli, Chiara; Peroni, Marta

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT

  2. Use of promethazine to hasten adaptation to provocative motion

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1994-01-01

    In an earlier study, the authors found that severely motion sick individuals could be greatly relieved of their symptoms by intramuscular injections of promethazine (50 mg) or scopolamine (.5 mg). Comparable 50-mg injections of promethazine also have been found effective in alleviating symptoms of space motion sickness. The concern has risen, however, that such drugs may delay or retard the acquisition of adaptation to stressful environments. In the current study, we controlled arousal using a mental arithmetic task and precisely equated the exposure history (number of head movements during rotation) of a placebo, control group and an experimental group who had received promethazine. No differences in total adaptation or in rates of adaptation were present between the two groups. Another experimental group also received promethazine and was allowed to make as many head movements as they could, before reaching nausea, up to 800. This group showed a greater level of adaptation than the placebo group. These results suggest a strategy for dealing with space motion sickness that is described.

  3. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Rupert, A. H.; Reschke, M. F.; Harm, D. L.; Guedry, F. E.

    2007-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  4. Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Li, Zhengning; Zhou, Yuan

    2016-06-01

    Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.

  5. Adapting to Adaptations: Behavioural Strategies that are Robust to Mutations and Other Organisational-Transformations.

    PubMed

    Egbert, Matthew D; Pérez-Mercader, Juan

    2016-01-01

    Genetic mutations, infection by parasites or symbionts, and other events can transform the way that an organism's internal state changes in response to a given environment. We use a minimalistic computational model to support an argument that by behaving "interoceptively," i.e. responding to internal state rather than to the environment, organisms can be robust to these organisational-transformations. We suggest that the robustness of interoceptive behaviour is due, in part, to the asymmetrical relationship between an organism and its environment, where the latter more substantially influences the former than vice versa. This relationship means that interoceptive behaviour can respond to the environment, the internal state and the interaction between the two, while exteroceptive behaviour can only respond to the environment. We discuss the possibilities that (i) interoceptive behaviour may play an important role of facilitating adaptive evolution (especially in the early evolution of primitive life) and (ii) interoceptive mechanisms could prove useful in efforts to create more robust synthetic life-forms. PMID:26743579

  6. Adapting to Adaptations: Behavioural Strategies that are Robust to Mutations and Other Organisational-Transformations

    PubMed Central

    Egbert, Matthew D.; Pérez-Mercader, Juan

    2016-01-01

    Genetic mutations, infection by parasites or symbionts, and other events can transform the way that an organism’s internal state changes in response to a given environment. We use a minimalistic computational model to support an argument that by behaving “interoceptively,” i.e. responding to internal state rather than to the environment, organisms can be robust to these organisational-transformations. We suggest that the robustness of interoceptive behaviour is due, in part, to the asymmetrical relationship between an organism and its environment, where the latter more substantially influences the former than vice versa. This relationship means that interoceptive behaviour can respond to the environment, the internal state and the interaction between the two, while exteroceptive behaviour can only respond to the environment. We discuss the possibilities that (i) interoceptive behaviour may play an important role of facilitating adaptive evolution (especially in the early evolution of primitive life) and (ii) interoceptive mechanisms could prove useful in efforts to create more robust synthetic life-forms. PMID:26743579

  7. An Adaptive Motion Estimation Scheme for Video Coding

    PubMed Central

    Gao, Yuan; Jia, Kebin

    2014-01-01

    The unsymmetrical-cross multihexagon-grid search (UMHexagonS) is one of the best fast Motion Estimation (ME) algorithms in video encoding software. It achieves an excellent coding performance by using hybrid block matching search pattern and multiple initial search point predictors at the cost of the computational complexity of ME increased. Reducing time consuming of ME is one of the key factors to improve video coding efficiency. In this paper, we propose an adaptive motion estimation scheme to further reduce the calculation redundancy of UMHexagonS. Firstly, new motion estimation search patterns have been designed according to the statistical results of motion vector (MV) distribution information. Then, design a MV distribution prediction method, including prediction of the size of MV and the direction of MV. At last, according to the MV distribution prediction results, achieve self-adaptive subregional searching by the new estimation search patterns. Experimental results show that more than 50% of total search points are dramatically reduced compared to the UMHexagonS algorithm in JM 18.4 of H.264/AVC. As a result, the proposed algorithm scheme can save the ME time up to 20.86% while the rate-distortion performance is not compromised. PMID:24672313

  8. Robust Adaptive Principal Component Analysis Based on Intergraph Matrix for Medical Image Registration

    PubMed Central

    Xiao, Jinjun; Li, Min; Zhang, Haipeng

    2015-01-01

    This paper proposes a novel robust adaptive principal component analysis (RAPCA) method based on intergraph matrix for image registration in order to improve robustness and real-time performance. The contributions can be divided into three parts. Firstly, a novel RAPCA method is developed to capture the common structure patterns based on intergraph matrix of the objects. Secondly, the robust similarity measure is proposed based on adaptive principal component. Finally, the robust registration algorithm is derived based on the RAPCA. The experimental results show that the proposed method is very effective in capturing the common structure patterns for image registration on real-world images. PMID:25960739

  9. Preflight Adaptation Training for Spatial Orientation and Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Harm, Deborah L.; Parker, Donald E.

    1994-01-01

    Two part-task preflight adaptation trainers (PATs) are being developed at the NASA Johnson Space Center to preadapt astronauts to novel sensory stimulus conditions similar to those present in microgravity to facilitate adaptation to microgravity and readaptation to Earth. This activity is a major component of a general effort to develop countermeasures aimed at minimizing sensory and sensorimotor disturbances and Space Motion Sickness (SMS) associated with adaptation to microgravity and readaptation to Earth. Design principles for the development of the two trainers are discussed, along with a detailed description of both devices. In addition, a summary of four ground-based investigations using one of the trainers to determine the extent to which various novel sensory stimulus conditions produce changes in compensatory eye movement responses, postural equilibrium, motion sickness symptoms, and electrogastric responses are presented. Finally, a brief description of the general concept of dual-adopted states that underly the development of the PATs, and ongoing and future operational and basic research activities are presented.

  10. Space motion sickness and vestibular adaptation to weightlessness

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1983-01-01

    Theories of space motion sickness are discussed together with near future vestibular experiments for three Spacelab missions. The sensory conflict theory is covered, as well as theories involving unequal otolith masses, semicircular canals, cardiovascular adaptation and fluid shift toward the head, and extra-labyrinthine effects. Experiments will test the hypothesis that the sensitivity of the otolith organ response is shifted during weightlessness and that this shift carries over to the post-flight experience. Visual-vestibular-tactile interaction, vestibulo-ocular reflexes, ocular counterrolling, awareness of body position, otolith-spinal reflexes, and motion sickness susceptibility are among the parameters to be studied. Preflight and postflight tests will emphasize evaluation of any residual effects of the seven day weightless exposure on vestibulo-spinal and vestibulo-ocular pathways.

  11. Experimental study of robustness in adaptive control for large flexible structures

    NASA Technical Reports Server (NTRS)

    Ih, Che-Hang Charles; Bayard, David S.; Ahmed, Asif; Wang, Shyh Jong

    1990-01-01

    An experimental study is performed to investigate the robustness of model reference adaptive control for the large flexible structures control application. The main nonidealities of concern are unmodeled dynamics, input saturation, and time delay effects (here, actuator and sensor dynamics are lumped into the last item for convenience). This study focuses on the robustness with respect to input saturation and time delay effects, since robustness to unmodeled dynamics is inherent to the basic algorithm and has been demonstrated experimentally elsewhere.

  12. Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs

    NASA Astrophysics Data System (ADS)

    Xu, Feng-Dan; Liu, Zeng-Rong; Zhang, Zhi-Yong; Shen, Jian-Wei

    2009-02-01

    We integrate transcriptional and post-transcriptional regulation into microRNA-mediated incoherent feedforward motifs and analyse their dynamical behaviour and functions. The analysis show that the behaviour of the system is almost uninfluenced by the varying input in certain ranges and by introducing of delay and noise. The results indicate that microRNA-mediated incoherent feedforward motifs greatly enhance the robustness of gene regulation.

  13. Adaptive robust control of longitudinal and transverse electron beam profiles

    NASA Astrophysics Data System (ADS)

    Rezaeizadeh, Amin; Schilcher, Thomas; Smith, Roy S.

    2016-05-01

    Feedback control of the longitudinal and transverse electron beam profiles are considered to be critical for beam control in accelerators. In the feedback scheme, the longitudinal or transverse beam profile is measured and compared to a desired profile to give an error estimate. The error is then used to act on the appropriate actuators to correct the profile. The role of the transverse feedback is to steer the beam in a particular trajectory, known as the "orbit." The common approach for orbit correction is based on approximately inverting the response matrix, and in the best case, involves regulating or filtering the singular values. In the current contribution, a more systematic and structured way of handling orbit correction is introduced giving robustness against uncertainties in the response matrix. Moreover, the input bounds are treated to avoid violating the limits of the corrector currents. The concept of the robust orbit correction has been successfully tested at the SwissFEL injector test facility. In the SwissFEL machine, a photo-injector laser system extracts electrons from a cathode and a similar robust control method is developed for the longitudinal feedback control of the current profile of the electron bunch. The method manipulates the angles of the crystals in the laser system to produce a desired charge distribution over the electron bunch length. This approach paves the way towards automation of laser pulse stacking.

  14. BOLD Subjective Value Signals Exhibit Robust Range Adaptation

    PubMed Central

    Cox, Karin M.

    2014-01-01

    Many theories of decision making assume that choice options are assessed along a common subjective value (SV) scale. The neural correlates of SV are widespread and reliable, despite the wide variation in the range of values over which decisions are made (e.g., between goods worth a few dollars, in some cases, or hundreds of dollars, in others). According to adaptive coding theories (Barlow, 1961), an efficient value signal should exhibit range adaptation, such that neural activity maintains a fixed dynamic range, and the slope of the value response varies inversely with the range of values within the local context. Although monkey data have demonstrated range adaptation in single-unit correlates of value (Padoa-Schioppa, 2009; Kobayashi et al., 2010), whether BOLD value signals exhibit similar range adaptation is unknown. To test for this possibility, we presented human participants with choices between a fixed immediate and variable delayed payment options. Across two conditions, the delayed options' SVs spanned either a narrow or wide range. SV-tracking activity emerged in the posterior cingulate, ventral striatum, anterior cingulate, and ventromedial prefrontal cortex. Throughout this network, we observed evidence consistent with the predictions of range adaptation: the SV response slope increased in the narrow versus wide range, with statistically significant slope changes confirmed for the posterior cingulate and ventral striatum. No regions exhibited a reliably increased BOLD activity range in the wide versus narrow condition. Our observations of range adaptation present implications for the interpretation of BOLD SV responses that are measured across different contexts or individuals. PMID:25471589

  15. Coronary DSA: enhancing coronary tree visibility through discriminative learning and robust motion estimation

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Prummer, Simone; Chen, Terrence; Ostermeier, Martin; Comaniciu, Dorin

    2009-02-01

    Digital subtraction angiography (DSA) is a well-known technique for improving the visibility and perceptibility of blood vessels in the human body. Coronary DSA extends conventional DSA to dynamic 2D fluoroscopic sequences of coronary arteries which are subject to respiratory and cardiac motion. Effective motion compensation is the main challenge for coronary DSA. Without a proper treatment, both breathing and heart motion can cause unpleasant artifacts in coronary subtraction images, jeopardizing the clinical value of coronary DSA. In this paper, we present an effective method to separate the dynamic layer of background structures from a fluoroscopic sequence of the heart, leaving a clean layer of moving coronary arteries. Our method combines the techniques of learning-based vessel detection and robust motion estimation to achieve reliable motion compensation for coronary sequences. Encouraging results have been achieved on clinically acquired coronary sequences, where the proposed method considerably improves the visibility and perceptibility of coronary arteries undergoing breathing and cardiac movement. Perceptibility improvement is significant especially for very thin vessels. The potential clinical benefit is expected in the context of obese patients and deep angulation, as well as in the reduction of contrast dose in normal size patients.

  16. Motion compensation for adaptive horizontal line array processing

    NASA Astrophysics Data System (ADS)

    Yang, T. C.

    2003-01-01

    Large aperture horizontal line arrays have small resolution cells and can be used to separate a target signal from an interference signal by array beamforming. High-resolution adaptive array processing can be used to place a null at the interference signal so that the array gain can be much higher than that of conventional beamforming. But these nice features are significantly degraded by the source motion, which reduces the time period under which the environment can be considered stationary from the array processing point of view. For adaptive array processing, a large number of data samples are generally required to minimize the variance of the cross-spectral density, or the covariance matrix, between the array elements. For a moving source and interference, the penalty of integrating over a large number of samples is the spread of signal and interference energy to more than one or two eigenvalues. The signal and interference are no longer clearly identified by the eigenvectors and, consequently, the ability to suppress the interference suffers. We show in this paper that the effect of source motion can be compensated for the (signal) beam covariance matrix, thus allowing integration over a large number of data samples without loss in the signal beam power. We employ an equivalent of a rotating coordinate frame to track the signal bearing change and use the waveguide invariant theory to compensate the signal range change by frequency shifting.

  17. Optimal Control Modification for Robust Adaptation of Singularly Perturbed Systems with Slow Actuators

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham; Stepanyan, Vahram; Boskovic, Jovan

    2009-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. The model matching conditions in the transformed time coordinate results in increase in the feedback gain and modification of the adaptive law.

  18. Adaptation-Induced Compression of Event Time Occurs Only for Translational Motion

    PubMed Central

    Fornaciai, Michele; Arrighi, Roberto; Burr, David C.

    2016-01-01

    Adaptation to fast motion reduces the perceived duration of stimuli displayed at the same location as the adapting stimuli. Here we show that the adaptation-induced compression of time is specific for translational motion. Adaptation to complex motion, either circular or radial, did not affect perceived duration of subsequently viewed stimuli. Adaptation with multiple patches of translating motion caused compression of duration only when the motion of all patches was in the same direction. These results show that adaptation-induced compression of event-time occurs only for uni-directional translational motion, ruling out the possibility that the neural mechanisms of the adaptation occur at early levels of visual processing. PMID:27003445

  19. Shape Adaptive, Robust Iris Feature Extraction from Noisy Iris Images

    PubMed Central

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-01-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801

  20. Shape adaptive, robust iris feature extraction from noisy iris images.

    PubMed

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-10-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801

  1. A robust real-time structure from motion for situational awareness and RSTA

    NASA Astrophysics Data System (ADS)

    Shim, M.; Yilma, S.; Bonner, K.

    2008-04-01

    Maintaining real-time situational awareness of military combat vehicles (manned/unmanned) with onboard vision sensors for either autonomous mobility or reconnaissance missions such as moving target indication (MTI) and automatic target recognition (ATR) while the vehicle is on the move has been technically and operationally challenging. In this paper, we investigate and present a practical implementation of a robust real-time structure from motion technique that allows moving robotic vehicles to be able to reconstruct 3D models from observed 2D features with dynamically adjusting motion parameters. We also demonstrate applications that locate and track moving targets within the structured environment built by the SFM and recognize the targets such as vehicles and humans through a hierarchical shape model.

  2. Robust speech perception: recognize the familiar, generalize to the similar, and adapt to the novel.

    PubMed

    Kleinschmidt, Dave F; Jaeger, T Florian

    2015-04-01

    Successful speech perception requires that listeners map the acoustic signal to linguistic categories. These mappings are not only probabilistic, but change depending on the situation. For example, one talker's /p/ might be physically indistinguishable from another talker's /b/ (cf. lack of invariance). We characterize the computational problem posed by such a subjectively nonstationary world and propose that the speech perception system overcomes this challenge by (a) recognizing previously encountered situations, (b) generalizing to other situations based on previous similar experience, and (c) adapting to novel situations. We formalize this proposal in the ideal adapter framework: (a) to (c) can be understood as inference under uncertainty about the appropriate generative model for the current talker, thereby facilitating robust speech perception despite the lack of invariance. We focus on 2 critical aspects of the ideal adapter. First, in situations that clearly deviate from previous experience, listeners need to adapt. We develop a distributional (belief-updating) learning model of incremental adaptation. The model provides a good fit against known and novel phonetic adaptation data, including perceptual recalibration and selective adaptation. Second, robust speech recognition requires that listeners learn to represent the structured component of cross-situation variability in the speech signal. We discuss how these 2 aspects of the ideal adapter provide a unifying explanation for adaptation, talker-specificity, and generalization across talkers and groups of talkers (e.g., accents and dialects). The ideal adapter provides a guiding framework for future investigations into speech perception and adaptation, and more broadly language comprehension. PMID:25844873

  3. Robustness of an adaptive beamforming method for hearing aids.

    PubMed

    Peterson, P M; Wei, S M; Rabinowitz, W M; Zurek, P M

    1990-01-01

    We describe the results of computer simulations of a multimicrophone adaptive-beamforming system as a noise reduction device for hearing aids. Of particular concern was the system's sensitivity to violations of the underlying assumption that the target signal is identical at the microphones. Two- and four-microphone versions of the system were tested in simulated anechoic and modestly-reverberant environments with one and two jammers, and with deviations from the assumed straight-ahead target direction. Also examined were the effects of input target-to-jammer ratio and adaptive-filter length. Generally, although the noise-reduction performance of the system is degraded by target misalignment and modest reverberation, the system still provides positive advantage at input target-to-jammer ratios up to about 0 dB. This is in contrast to the degrading target-cancellation effect that the system can have when the equal-target assumption is violated and the input target-to-jammer ratio is greater than zero. PMID:2356741

  4. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method

    NASA Astrophysics Data System (ADS)

    Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  5. Sensorimotor Adaptations Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Harm, D. L.; Reschke, M. F.; Rupert, A. H.; Clement, G. R.

    2009-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. We hypothesize that multi-sensory integration will be adaptively optimized in altered gravity environments based on the dynamics of other sensory information available, with greater changes in otolith-mediated responses in the mid-frequency range where there is a crossover of tilt and translation responses. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation.

  6. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Harm, D L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.

    2005-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  7. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Harm, D. L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.

    2005-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth's gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  8. A methodology for adaptable and robust ecosystem services assessment.

    PubMed

    Villa, Ferdinando; Bagstad, Kenneth J; Voigt, Brian; Johnson, Gary W; Portela, Rosimeiry; Honzák, Miroslav; Batker, David

    2014-01-01

    Ecosystem Services (ES) are an established conceptual framework for attributing value to the benefits that nature provides to humans. As the promise of robust ES-driven management is put to the test, shortcomings in our ability to accurately measure, map, and value ES have surfaced. On the research side, mainstream methods for ES assessment still fall short of addressing the complex, multi-scale biophysical and socioeconomic dynamics inherent in ES provision, flow, and use. On the practitioner side, application of methods remains onerous due to data and model parameterization requirements. Further, it is increasingly clear that the dominant "one model fits all" paradigm is often ill-suited to address the diversity of real-world management situations that exist across the broad spectrum of coupled human-natural systems. This article introduces an integrated ES modeling methodology, named ARIES (ARtificial Intelligence for Ecosystem Services), which aims to introduce improvements on these fronts. To improve conceptual detail and representation of ES dynamics, it adopts a uniform conceptualization of ES that gives equal emphasis to their production, flow and use by society, while keeping model complexity low enough to enable rapid and inexpensive assessment in many contexts and for multiple services. To improve fit to diverse application contexts, the methodology is assisted by model integration technologies that allow assembly of customized models from a growing model base. By using computer learning and reasoning, model structure may be specialized for each application context without requiring costly expertise. In this article we discuss the founding principles of ARIES--both its innovative aspects for ES science and as an example of a new strategy to support more accurate decision making in diverse application contexts. PMID:24625496

  9. A Methodology for Adaptable and Robust Ecosystem Services Assessment

    PubMed Central

    Villa, Ferdinando; Bagstad, Kenneth J.; Voigt, Brian; Johnson, Gary W.; Portela, Rosimeiry; Honzák, Miroslav; Batker, David

    2014-01-01

    Ecosystem Services (ES) are an established conceptual framework for attributing value to the benefits that nature provides to humans. As the promise of robust ES-driven management is put to the test, shortcomings in our ability to accurately measure, map, and value ES have surfaced. On the research side, mainstream methods for ES assessment still fall short of addressing the complex, multi-scale biophysical and socioeconomic dynamics inherent in ES provision, flow, and use. On the practitioner side, application of methods remains onerous due to data and model parameterization requirements. Further, it is increasingly clear that the dominant “one model fits all” paradigm is often ill-suited to address the diversity of real-world management situations that exist across the broad spectrum of coupled human-natural systems. This article introduces an integrated ES modeling methodology, named ARIES (ARtificial Intelligence for Ecosystem Services), which aims to introduce improvements on these fronts. To improve conceptual detail and representation of ES dynamics, it adopts a uniform conceptualization of ES that gives equal emphasis to their production, flow and use by society, while keeping model complexity low enough to enable rapid and inexpensive assessment in many contexts and for multiple services. To improve fit to diverse application contexts, the methodology is assisted by model integration technologies that allow assembly of customized models from a growing model base. By using computer learning and reasoning, model structure may be specialized for each application context without requiring costly expertise. In this article we discuss the founding principles of ARIES - both its innovative aspects for ES science and as an example of a new strategy to support more accurate decision making in diverse application contexts. PMID:24625496

  10. A methodology for adaptable and robust ecosystem services assessment

    USGS Publications Warehouse

    Villa, Ferdinando; Bagstad, Kenneth J.; Voigt, Brian; Johnson, Gary W.; Portela, Rosimeiry; Honzák, Miroslav; Batker, David

    2014-01-01

    Ecosystem Services (ES) are an established conceptual framework for attributing value to the benefits that nature provides to humans. As the promise of robust ES-driven management is put to the test, shortcomings in our ability to accurately measure, map, and value ES have surfaced. On the research side, mainstream methods for ES assessment still fall short of addressing the complex, multi-scale biophysical and socioeconomic dynamics inherent in ES provision, flow, and use. On the practitioner side, application of methods remains onerous due to data and model parameterization requirements. Further, it is increasingly clear that the dominant “one model fits all” paradigm is often ill-suited to address the diversity of real-world management situations that exist across the broad spectrum of coupled human-natural systems. This article introduces an integrated ES modeling methodology, named ARIES (ARtificial Intelligence for Ecosystem Services), which aims to introduce improvements on these fronts. To improve conceptual detail and representation of ES dynamics, it adopts a uniform conceptualization of ES that gives equal emphasis to their production, flow and use by society, while keeping model complexity low enough to enable rapid and inexpensive assessment in many contexts and for multiple services. To improve fit to diverse application contexts, the methodology is assisted by model integration technologies that allow assembly of customized models from a growing model base. By using computer learning and reasoning, model structure may be specialized for each application context without requiring costly expertise. In this article we discuss the founding principles of ARIES - both its innovative aspects for ES science and as an example of a new strategy to support more accurate decision making in diverse application contexts.

  11. Robustness

    NASA Technical Reports Server (NTRS)

    Ryan, R.

    1993-01-01

    Robustness is a buzz word common to all newly proposed space systems design as well as many new commercial products. The image that one conjures up when the word appears is a 'Paul Bunyon' (lumberjack design), strong and hearty; healthy with margins in all aspects of the design. In actuality, robustness is much broader in scope than margins, including such factors as simplicity, redundancy, desensitization to parameter variations, control of parameter variations (environments flucation), and operational approaches. These must be traded with concepts, materials, and fabrication approaches against the criteria of performance, cost, and reliability. This includes manufacturing, assembly, processing, checkout, and operations. The design engineer or project chief is faced with finding ways and means to inculcate robustness into an operational design. First, however, be sure he understands the definition and goals of robustness. This paper will deal with these issues as well as the need for the requirement for robustness.

  12. Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy.

    PubMed

    Vercauteren, Tom; Perchant, Aymeric; Malandain, Grégoire; Pennec, Xavier; Ayache, Nicholas

    2006-10-01

    Real-time in vivo and in situ imaging at the cellular level can be achieved with fibered confocal microscopy. As interesting as dynamic sequences may be, there is a need for the biologist or physician to get an efficient and complete representation of the entire imaged region. For this demand, the potential of this imaging modality is enhanced by using video mosaicing techniques. Classical mosaicing algorithms do not take into account the characteristics of fibered confocal microscopy, namely motion distortions, irregularly sampled frames and non-rigid deformations of the imaged tissue. Our approach is based on a hierarchical framework that is able to recover a globally consistent alignment of the input frames, to compensate for the motion distortions and to capture the non-rigid deformations. The proposed global alignment scheme is seen as an estimation problem on a Lie group. We model the relationship between the motion and the motion distortions to correct for these distortions. An efficient scattered data approximation scheme is proposed both for the construction of the mosaic and to adapt the demons registration algorithm to our irregularly sampled inputs. Controlled experiments have been conducted to evaluate the performance of our algorithm. Results on several sequences acquired in vivo on both human and mouse tissue also demonstrate the relevance of our approach. PMID:16887375

  13. Robust motion filtering as an enabler to video stabilization for a tele-operated mobile robot

    NASA Astrophysics Data System (ADS)

    Chereau, Romain; Breckon, Toby P.

    2013-10-01

    An increasing number of inspection and hazardous environment tasks use mobile robotic vehicles manually tele-operated via a live video feed from an on-board camera. The resulting video imagery frequently suffers from vibration artefacts compromising the accuracy and security of operation in addition to the viable duration for human tele-operation. Here we aim to automatically remove these unwanted visual effects using a novel real-time video stabilization approach. Prior work for hand-held and vehicle mounted cameras is ill-suited to the high-frequency, large magnitude (10-15% of image size) vibration encountered on the short wheelbase, non-suspended robotic platforms typically deployed for such tasks. Without prior knowledge of the robot ego-motion (or vibration characteristics) we develop a novel four stage filtering approach to identify robust Local Motion Vectors (LMV) for Global Motion Vector (GMV) estimation in successive video frames whilst preserving the required real-time responsiveness for tele-operation. Experimental results over a range of tele-operation scenarios show that the method provides both significant qualitative visual improvement and a quantitative reduction in measurable video image displacement (caused by vibration).

  14. Automated 3D Motion Tracking using Gabor Filter Bank, Robust Point Matching, and Deformable Models

    PubMed Central

    Wang, Xiaoxu; Chung, Sohae; Metaxas, Dimitris; Axel, Leon

    2013-01-01

    Tagged Magnetic Resonance Imaging (tagged MRI or tMRI) provides a means of directly and noninvasively displaying the internal motion of the myocardium. Reconstruction of the motion field is needed to quantify important clinical information, e.g., the myocardial strain, and detect regional heart functional loss. In this paper, we present a three-step method for this task. First, we use a Gabor filter bank to detect and locate tag intersections in the image frames, based on local phase analysis. Next, we use an improved version of the Robust Point Matching (RPM) method to sparsely track the motion of the myocardium, by establishing a transformation function and a one-to-one correspondence between grid tag intersections in different image frames. In particular, the RPM helps to minimize the impact on the motion tracking result of: 1) through-plane motion, and 2) relatively large deformation and/or relatively small tag spacing. In the final step, a meshless deformable model is initialized using the transformation function computed by RPM. The model refines the motion tracking and generates a dense displacement map, by deforming under the influence of image information, and is constrained by the displacement magnitude to retain its geometric structure. The 2D displacement maps in short and long axis image planes can be combined to drive a 3D deformable model, using the Moving Least Square method, constrained by the minimization of the residual error at tag intersections. The method has been tested on a numerical phantom, as well as on in vivo heart data from normal volunteers and heart disease patients. The experimental results show that the new method has a good performance on both synthetic and real data. Furthermore, the method has been used in an initial clinical study to assess the differences in myocardial strain distributions between heart disease (left ventricular hypertrophy) patients and the normal control group. The final results show that the proposed method

  15. A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements

    NASA Astrophysics Data System (ADS)

    Kilicarslan, Atilla; Grossman, Robert G.; Contreras-Vidal, Jose Luis

    2016-04-01

    Objective. Non-invasive measurement of human neural activity based on the scalp electroencephalogram (EEG) allows for the development of biomedical devices that interface with the nervous system for scientific, diagnostic, therapeutic, or restorative purposes. However, EEG recordings are often considered as prone to physiological and non-physiological artifacts of different types and frequency characteristics. Among them, ocular artifacts and signal drifts represent major sources of EEG contamination, particularly in real-time closed-loop brain-machine interface (BMI) applications, which require effective handling of these artifacts across sessions and in natural settings. Approach. We extend the usage of a robust adaptive noise cancelling (ANC) scheme ({H}∞ filtering) for removal of eye blinks, eye motions, amplitude drifts and recording biases simultaneously. We also characterize the volume conduction, by estimating the signal propagation levels across all EEG scalp recording areas due to ocular artifact generators. We find that the amplitude and spatial distribution of ocular artifacts vary greatly depending on the electrode location. Therefore, fixed filtering parameters for all recording areas would naturally hinder the true overall performance of an ANC scheme for artifact removal. We treat each electrode as a separate sub-system to be filtered, and without the loss of generality, they are assumed to be uncorrelated and uncoupled. Main results. Our results show over 95-99.9% correlation between the raw and processed signals at non-ocular artifact regions, and depending on the contamination profile, 40-70% correlation when ocular artifacts are dominant. We also compare our results with the offline independent component analysis and artifact subspace reconstruction methods, and show that some local quantities are handled better by our sample-adaptive real-time framework. Decoding performance is also compared with multi-day experimental data from 2 subjects

  16. Transient scenarios for robust climate change adaptation illustrated for water management in The Netherlands

    NASA Astrophysics Data System (ADS)

    Haasnoot, M.; Schellekens, J.; Beersma, J. J.; Middelkoop, H.; Kwadijk, J. C. J.

    2015-10-01

    Climate scenarios are used to explore impacts of possible future climates and to assess the robustness of adaptation actions across a range of futures. Time-dependent climate scenarios are commonly used in mitigation studies. However, despite the dynamic nature of adaptation, most scenarios for local or regional decision making on climate adaptation are static ‘endpoint’ projections. This paper describes the development and use of transient (time-dependent) scenarios by means of a case on water management in the Netherlands. Relevant boundary conditions (sea level, precipitation and evaporation) were constructed by generating an ensemble of synthetic time-series with a rainfall generator and a transient delta change method. Climate change impacted river flows were then generated with a hydrological simulation model for the Rhine basin. The transient scenarios were applied in model simulations and game experiments. We argue that there are at least three important assets of using transient scenarios for supporting robust climate adaptation: (1) raise awareness about (a) the implications of climate variability and climate change for decision making and (b) the difficulty of finding proof of climate change in relevant variables for water management; (2) assessment of when to adapt by identifying adaptation tipping points which can then be used to explore adaptation pathways, and (3) identification of triggers for climate adaptation.

  17. Noise-robust recognition of wide-field motion direction and the underlying neural mechanisms in Drosophila melanogaster.

    PubMed

    Suzuki, Yoshinori; Ikeda, Hideaki; Miyamoto, Takuya; Miyakawa, Hiroyoshi; Seki, Yoichi; Aonishi, Toru; Morimoto, Takako

    2015-01-01

    Appropriate and robust behavioral control in a noisy environment is important for the survival of most organisms. Understanding such robust behavioral control has been an attractive subject in neuroscience research. Here, we investigated the processing of wide-field motion with random dot noise at both the behavioral and neuronal level in Drosophila melanogaster. We measured the head yaw optomotor response (OMR) and the activity of motion-sensitive neurons, horizontal system (HS) cells, with in vivo whole-cell patch clamp recordings at various levels of noise intensity. We found that flies had a robust sensation of motion direction under noisy conditions, while membrane potential changes of HS cells were not correlated with behavioral responses. By applying signal classification theory to the distributions of HS cell responses, however, we found that motion direction under noise can be clearly discriminated by HS cells, and that this discrimination performance was quantitatively similar to that of OMR. Furthermore, we successfully reproduced HS cell activity in response to noisy motion stimuli with a local motion detector model including a spatial filter and threshold function. This study provides evidence for the physiological basis of noise-robust behavior in a tiny insect brain. PMID:25974721

  18. Identification of robust adaptation gene regulatory network parameters using an improved particle swarm optimization algorithm.

    PubMed

    Huang, X N; Ren, H P

    2016-01-01

    Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation. PMID:27323043

  19. Multivariable output feedback robust adaptive tracking control design for a class of delayed systems

    NASA Astrophysics Data System (ADS)

    Mirkin, Boris; Gutman, Per-Olof

    2015-02-01

    In this paper, we develop a model reference adaptive control scheme for a class of multi-input multi-output nonlinearly perturbed dynamic systems with unknown time-varying state delays which is also robust with respect to an external disturbance with unknown bounds. The output feedback adaptive control scheme uses feedback actions only, and thus does not require a direct measurement of the command or disturbance signals. A suitable Lyapunov-Krasovskii type functional is introduced to design the adaptation algorithms and to prove stability.

  20. Robust speech perception: Recognize the familiar, generalize to the similar, and adapt to the novel

    PubMed Central

    Kleinschmidt, Dave F.; Jaeger, T. Florian

    2016-01-01

    Successful speech perception requires that listeners map the acoustic signal to linguistic categories. These mappings are not only probabilistic, but change depending on the situation. For example, one talker’s /p/ might be physically indistinguishable from another talker’s /b/ (cf. lack of invariance). We characterize the computational problem posed by such a subjectively non-stationary world and propose that the speech perception system overcomes this challenge by (1) recognizing previously encountered situations, (2) generalizing to other situations based on previous similar experience, and (3) adapting to novel situations. We formalize this proposal in the ideal adapter framework: (1) to (3) can be understood as inference under uncertainty about the appropriate generative model for the current talker, thereby facilitating robust speech perception despite the lack of invariance. We focus on two critical aspects of the ideal adapter. First, in situations that clearly deviate from previous experience, listeners need to adapt. We develop a distributional (belief-updating) learning model of incremental adaptation. The model provides a good fit against known and novel phonetic adaptation data, including perceptual recalibration and selective adaptation. Second, robust speech recognition requires listeners learn to represent the structured component of cross-situation variability in the speech signal. We discuss how these two aspects of the ideal adapter provide a unifying explanation for adaptation, talker-specificity, and generalization across talkers and groups of talkers (e.g., accents and dialects). The ideal adapter provides a guiding framework for future investigations into speech perception and adaptation, and more broadly language comprehension. PMID:25844873

  1. Adaptive Robust Online Constructive Fuzzy Control of a Complex Surface Vehicle System.

    PubMed

    Wang, Ning; Er, Meng Joo; Sun, Jing-Chao; Liu, Yan-Cheng

    2016-07-01

    In this paper, a novel adaptive robust online constructive fuzzy control (AR-OCFC) scheme, employing an online constructive fuzzy approximator (OCFA), to deal with tracking surface vehicles with uncertainties and unknown disturbances is proposed. Significant contributions of this paper are as follows: 1) unlike previous self-organizing fuzzy neural networks, the OCFA employs decoupled distance measure to dynamically allocate discriminable and sparse fuzzy sets in each dimension and is able to parsimoniously self-construct high interpretable T-S fuzzy rules; 2) an OCFA-based dominant adaptive controller (DAC) is designed by employing the improved projection-based adaptive laws derived from the Lyapunov synthesis which can guarantee reasonable fuzzy partitions; 3) closed-loop system stability and robustness are ensured by stable cancelation and decoupled adaptive compensation, respectively, thereby contributing to an auxiliary robust controller (ARC); and 4) global asymptotic closed-loop system can be guaranteed by AR-OCFC consisting of DAC and ARC and all signals are bounded. Simulation studies and comprehensive comparisons with state-of-the-arts fixed- and dynamic-structure adaptive control schemes demonstrate superior performance of the AR-OCFC in terms of tracking and approximation accuracy. PMID:26219099

  2. Adaptive SVM fusion for robust multi-biometrics verification with missing data

    NASA Astrophysics Data System (ADS)

    Zhai, Xiuna; Zhao, Yan; Wang, Jingyan; Li, Yongping

    2013-03-01

    Conventional multimodal biometrics systems usually do not account for missing data (missing modalities or incomplete score lists) that is commonly encountered in real applications. The presence of missing data in multimodal biometric systems can be inconvenient to the client, as the system will reject the submitted biometric data and request for another trial. In such cases, robust multimodal biometric verification is needed. In this paper, we present the criteria, fusion method and performance metrics of a robust multimodal biometrics verification system that verifies the client's identity at any condition of data missing. A novel adaptive SVM classification method is proposed for missing dimensional values, which can handle the missing data in multimodal biometrics. We show that robust multibiometrics imposes additional requirements on multimodal fusion when compared to conventional multibiometrics. We also argue that the usual performance metrics of false accept and false reject rates are insufficient yardsticks for robust verification and propose new metrics against which we benchmark our system.

  3. A robust expansion proper motion distance to the extraordinary planetary nebula KjPn 8

    NASA Astrophysics Data System (ADS)

    Boumis, P.; Meaburn, J.

    2014-04-01

    Since the discovery by Lopez, Vasquez and Rodriguez of the giant lobes projecting from the otherwise innocuous planetary nebula, KjPn 8, it has been imperative to obtain a robust distance (D) determination. This has now been achieved by comparing an image of the lobes taken in 2011 with the Greek Aristarchos telescope with that (POSSI-R) obtained in 1954: the baseline for expansive proper motions has therefore being extended to 57 yr. These proper motions, combined with previous radial velocity measurements and tilt of the most energetic outflow with respect to the sight line, as determined from HST imagery of the nebular core, give D = 1.8 ± 0.3 kpc. This value then lets the kinetic energy (approx 1047 erg) of the most recent and energetic outflow to be determined. It could be significant that this energy is consistent with an Intermediate Luminosity Optical Transient (ILOT) origin of the latest ejection as proposed for other similar objects by Soker and Kashi.

  4. Iterative Robust Capon Beamforming with Adaptively Updated Array Steering Vector Mismatch Levels

    PubMed Central

    Sun, Liguo

    2014-01-01

    The performance of the conventional adaptive beamformer is sensitive to the array steering vector (ASV) mismatch. And the output signal-to interference and noise ratio (SINR) suffers deterioration, especially in the presence of large direction of arrival (DOA) error. To improve the robustness of traditional approach, we propose a new approach to iteratively search the ASV of the desired signal based on the robust capon beamformer (RCB) with adaptively updated uncertainty levels, which are derived in the form of quadratically constrained quadratic programming (QCQP) problem based on the subspace projection theory. The estimated levels in this iterative beamformer present the trend of decreasing. Additionally, other array imperfections also degrade the performance of beamformer in practice. To cover several kinds of mismatches together, the adaptive flat ellipsoid models are introduced in our method as tight as possible. In the simulations, our beamformer is compared with other methods and its excellent performance is demonstrated via the numerical examples. PMID:27355008

  5. Spatial orientation, adaptation, and motion sickness in real and virtual environments

    NASA Technical Reports Server (NTRS)

    Dizio, Paul; Lackner, James R.

    1992-01-01

    Reason and Brand (1975) noted that motion sickness occurs in many situations involving either passive body motion or active interaction with the world via indirect sensorimotor interfaces (e.g., prism spectacles). As might be expected, motion sickness is being reported in VEs that involve apparent self-motion through space, the best known examples being flight simulators (Kennedy et al., 1990). The goals of this paper are to introduce the motion-sickness symptomatology; to outline some concepts that are central to theories of motion sickness, spatial orientation, and adaptation; and to discuss the implications of some trends in VE research and development.

  6. A self-adaptive memeplexes robust search scheme for solving stochastic demands vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Chen, Xianshun; Feng, Liang; Ong, Yew Soon

    2012-07-01

    In this article, we proposed a self-adaptive memeplex robust search (SAMRS) for finding robust and reliable solutions that are less sensitive to stochastic behaviours of customer demands and have low probability of route failures, respectively, in vehicle routing problem with stochastic demands (VRPSD). In particular, the contribution of this article is three-fold. First, the proposed SAMRS employs the robust solution search scheme (RS 3) as an approximation of the computationally intensive Monte Carlo simulation, thus reducing the computation cost of fitness evaluation in VRPSD, while directing the search towards robust and reliable solutions. Furthermore, a self-adaptive individual learning based on the conceptual modelling of memeplex is introduced in the SAMRS. Finally, SAMRS incorporates a gene-meme co-evolution model with genetic and memetic representation to effectively manage the search for solutions in VRPSD. Extensive experimental results are then presented for benchmark problems to demonstrate that the proposed SAMRS serves as an efficable means of generating high-quality robust and reliable solutions in VRPSD.

  7. Effects of proposed preflight adaptation training on eye movements, self-motion perception, and motion sickness - A progress report

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Reschke, M. F.; Von Gierke, H. E.; Lessard, C. S.

    1987-01-01

    The preflight adaptation trainer (PAT) was designed to produce rearranged relationships between visual and otolith signals analogous to those experienced in space. Investigations have been undertaken with three prototype trainers. The results indicated that exposure to the PAT sensory rearrangement altered self-motion perception, induced motion sickness, and changed the amplitude and phase of the horizontal eye movements evoked by roll stimulation. However, the changes were inconsistent.

  8. Fibre-coupled multiphoton microscope with adaptive motion compensation

    PubMed Central

    Sherlock, Ben; Warren, Sean; Stone, James; Neil, Mark; Paterson, Carl; Knight, Jonathan; French, Paul; Dunsby, Chris

    2015-01-01

    To address the challenge of sample motion during in vivo imaging, we present a fibre-coupled multiphoton microscope with active axial motion compensation. The position of the sample surface is measured using optical coherence tomography and fed back to a piezo actuator that adjusts the axial location of the objective to compensate for sample motion. We characterise the system’s performance and demonstrate that it can compensate for axial sample velocities up to 700 µm/s. Finally we illustrate the impact of motion compensation when imaging multiphoton excited autofluorescence in ex vivo mouse skin. PMID:26137387

  9. Using unknown input observers for robust adaptive fault detection in vector second-order systems

    NASA Astrophysics Data System (ADS)

    Demetriou, Michael A.

    2005-03-01

    The purpose of this manuscript is to construct natural observers for vector second-order systems by utilising unknown input observer (UIO) methods. This observer is subsequently used for a robust fault detection scheme and also as an adaptive detection scheme for a certain class of actuator faults wherein the time instance and characteristics of an incipient actuator fault are detected. Stability of the adaptive scheme is provided by a parameter-dependent Lyapunov function for second-order systems. Numerical example on a mechanical system describing an automobile suspension system is used to illustrate the theoretical results.

  10. Real-Time Robust Adaptive Modeling and Scheduling for an Electronic Commerce Server

    NASA Astrophysics Data System (ADS)

    Du, Bing; Ruan, Chun

    With the increasing importance and pervasiveness of Internet services, it is becoming a challenge for the proliferation of electronic commerce services to provide performance guarantees under extreme overload. This paper describes a real-time optimization modeling and scheduling approach for performance guarantee of electronic commerce servers. We show that an electronic commerce server may be simulated as a multi-tank system. A robust adaptive server model is subject to unknown additive load disturbances and uncertain model matching. Overload control techniques are based on adaptive admission control to achieve timing guarantees. We evaluate the performance of the model using a complex simulation that is subjected to varying model parameters and massive overload.

  11. Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with input saturation.

    PubMed

    Xia, Kewei; Huo, Wei

    2016-05-01

    This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme. PMID:26892402

  12. Adaptive Animation of Human Motion for E-Learning Applications

    ERIC Educational Resources Information Center

    Li, Frederick W. B.; Lau, Rynson W. H.; Komura, Taku; Wang, Meng; Siu, Becky

    2007-01-01

    Human motion animation has been one of the major research topics in the field of computer graphics for decades. Techniques developed in this area help present human motions in various applications. This is crucial for enhancing the realism as well as promoting the user interest in the applications. To carry this merit to e-learning applications,…

  13. Independent motion detection with a rival penalized adaptive particle filter

    NASA Astrophysics Data System (ADS)

    Becker, Stefan; Hübner, Wolfgang; Arens, Michael

    2014-10-01

    Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic

  14. Semi-decentralized adaptive fuzzy control for cooperative multirobot systems with H(infinity) motion/internal force tracking performance.

    PubMed

    Lian, Kuang-Yow; Chiu, Chian-Song; Liu, P

    2002-01-01

    We present a semi-decentralized adaptive fuzzy control scheme for cooperative multirobot systems to achieve H(infinity) performance in motion and internal force tracking. First, we reformulate the overall system dynamics into a fully actuated system with constraints. To cope with both parametric and nonparametric uncertainties, the controller for each robot consists of two parts: 1) model-based adaptive controller; and 2) adaptive fuzzy logic controller (FLC). The model-based adaptive controller handles the nominal dynamics which results in both zero motion and internal force errors for a pure parametric uncertain system. The FLC part handles the unstructured dynamics and external disturbances. An H(infinity) tracking problem defined by a novel performance criterion is given and solved in the sequel. Hence, a robust controller satisfying the disturbance attenuation is derived being simple and singularity-free. Asymptotic convergence is obtained when the fuzzy approximation error is bounded with finite energy. Maintaining the same results, the proposed controller is further simplified for easier implementation. Finally, the numerical simulation results for two cooperative planar robots transporting an object illustrate the expected performance. PMID:18238126

  15. The impact of head movements on EEG and contact impedance: an adaptive filtering solution for motion artifact reduction.

    PubMed

    Mihajlovic, Vojkan; Patki, Shrishail; Grundlehner, Bernard

    2014-01-01

    Designing and developing a comfortable and convenient EEG system for daily usage that can provide reliable and robust EEG signal, encompasses a number of challenges. Among them, the most ambitious is the reduction of artifacts due to body movements. This paper studies the effect of head movement artifacts on the EEG signal and on the dry electrode-tissue impedance (ETI), monitored continuously using the imec's wireless EEG headset. We have shown that motion artifacts have huge impact on the EEG spectral content in the frequency range lower than 20 Hz. Coherence and spectral analysis revealed that ETI is not capable of describing disturbances at very low frequencies (below 2 Hz). Therefore, we devised a motion artifact reduction (MAR) method that uses a combination of a band-pass filtering and multi-channel adaptive filtering (AF), suitable for real-time MAR. This method was capable of substantially reducing artifacts produced by head movements. PMID:25571131

  16. A robust adaptive autopilot design for decomposed bank to turn missiles

    NASA Astrophysics Data System (ADS)

    Song, Kwang Sub

    2001-07-01

    A decomposed robust adaptive controller design procedure is developed for 3-channel BTT missile systems. Three decomposed subsystems are constructed for highly nonlinear and coupled dynamic systems after parameter analysis is carried out. Appropriate adaptive optimal inner loop controllers are designed for accurate tracking performance to the reference command inputs of the respective subsystems. For robustness of systems, decomposed outer loop structures are introduced to minimize system coupling and to reduce nonlinear effects of BTT missile dynamic systems. The overall outer loop robust controller is designed to accommodate parameter variations and uncertainties with referenced model systems. The robust outer loop controller is designed by constructing decomposed stabilizing controllers in the form of the Youla parameterization. The results can be readily generalized to N-channel systems. The design procedure is built upon the J-spectral factorization approach to Hinfinity control. Instead of the centralized control, we employed decentralized controllers for reduced complexity in control implementations. In this research, a new concept for system modeling and decomposition, which uses the rate of system dynamics or the sensitivity of system parameter. After exhaustive classification and investigations of system characteristics, we can categorize several subsystems from overall system dynamic models. Subsystems are characterized by system dynamics with similar rates of changes. Once we get relatively small sized and homogeneous parameter groups, it is easier to design respective controllers. Otherwise, difficult trade offs must be made on control objectives for different kinds of dynamic characteristics of the whole system. The new idea is applied to a typical BTT missile system. Simulations results demonstrate that decomposed controller design is satisfactory for the BTT missile autopilot systems with good robustness and dynamic performances.

  17. Robust background subtraction for automated detection and tracking of targets in wide area motion imagery

    NASA Astrophysics Data System (ADS)

    Kent, Phil; Maskell, Simon; Payne, Oliver; Richardson, Sean; Scarff, Larry

    2012-10-01

    Performing persistent surveillance of large populations of targets is increasingly important in both the defence and security domains. In response to this, Wide Area Motion Imagery (WAMI) sensors with Wide FoVs are growing in popularity. Such WAMI sensors simultaneously provide high spatial and temporal resolutions, giving extreme pixel counts over large geographical areas. The ensuing data rates are such that either very bandwidth data links are required (e.g. for human interpretation) or close-to-sensor automation is required to down-select salient information. For the latter case, we use an iterative quad-tree optical-flow algorithm to efficiently estimate the parameters of a perspective deformation of the background. We then use a robust estimator to simultaneously detect foreground pixels and infer the parameters of each background pixel in the current image. The resulting detections are referenced to the coordinates of the first frame and passed to a multi-target tracker. The multi-target tracker uses a Kalman filter per target and a Global Nearest Neighbour approach to multi-target data association, thereby including statistical models for missed detections and false alarms. We use spatial data structures to ensure that the tracker can scale to analysing thousands of targets. We demonstrate that real-time processing (on modest hardware) is feasible on an unclassified WAMI infra-red dataset consisting of 4096 by 4096 pixels at 1Hz simulating data taken from a Wide FoV sensor on a UAV. With low latency and despite intermittent obscuration and false alarms, we demonstrate persistent tracking of all but one (low-contrast) vehicular target, with no false tracks.

  18. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to

  19. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.

    PubMed

    Shanechi, Maryam M; Orsborn, Amy L; Carmena, Jose M

    2016-04-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain's behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user's motor intention during CLDA-a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter

  20. Detection of respiratory motion in fluoroscopic images for adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Moser, T.; Biederer, J.; Nill, S.; Remmert, G.; Bendl, R.

    2008-06-01

    Respiratory motion limits the potential of modern high-precision radiotherapy techniques such as IMRT and particle therapy. Due to the uncertainty of tumour localization, the ability of achieving dose conformation often cannot be exploited sufficiently, especially in the case of lung tumours. Various methods have been proposed to track the position of tumours using external signals, e.g. with the help of a respiratory belt or by observing external markers. Retrospectively gated time-resolved x-ray computed tomography (4D CT) studies prior to therapy can be used to register the external signals with the tumour motion. However, during treatment the actual motion of internal structures may be different. Direct control of tissue motion by online imaging during treatment promises more precise information. On the other hand, it is more complex, since a larger amount of data must be processed in order to determine the motion. Three major questions arise from this issue. Firstly, can the motion that has occurred be precisely determined in the images? Secondly, how large must, respectively how small can, the observed region be chosen to get a reliable signal? Finally, is it possible to predict the proximate tumour location within sufficiently short acquisition times to make this information available for gating irradiation? Based on multiple studies on a porcine lung phantom, we have tried to examine these questions carefully. We found a basic characteristic of the breathing cycle in images using the image similarity method normalized mutual information. Moreover, we examined the performance of the calculations and proposed an image-based gating technique. In this paper, we present the results and validation performed with a real patient data set. This allows for the conclusion that it is possible to build up a gating system based on image data, solely, or (at least in avoidance of an exceeding exposure dose) to verify gates proposed by the various external systems.

  1. Space motion sickness preflight adaptation training: preliminary studies with prototype trainers

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Rock, J. C.; von Gierke, H. E.; Ouyang, L.; Reschke, M. F.; Arrott, A. P.

    1987-01-01

    Preflight training frequently has been proposed as a potential solution to the problem of space motion sickness. The paper considers successively the otolith reinterpretation, the concept for a preflight adaptation trainer and the research with the Miami University Seesaw, the Wright Patterson Air-Force Base Dynamic Environment Simulator and the Visually Coupled Airborne Systems Simulator prototype adaptation trainers.

  2. Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster

    PubMed Central

    Williams, CM; Watanabe, M; Guarracino, MR; Ferraro, MB; Edison, AS; Morgan, TJ; Boroujerdi, AFB; Hahn, DA

    2015-01-01

    When ectotherms are exposed to low temperatures, they enter a cold-induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill-coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using NMR spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold-induced perturbations. The metabolites of cold-hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations. PMID:25308124

  3. Robustly stable pole-placement based adaptive control of continuous linear systems with multiestimation

    NASA Astrophysics Data System (ADS)

    De la sen, M.

    2006-03-01

    This paper deals with the pole-placement type robust adaptive control of continuous linear systems in the presence of bounded noise and a common class of unmodeled dynamics with the use of multiple estimation schemes working in parallel. The multiestimation scheme consisting of the above set of various single estimation schemes is a tool used to minimize the plant identification error by building an estimate which is a convex combination of the estimates at all time. The weighting functions of the individual estimates are provided at each time by a suboptimization scheme for a quadratic loss function of a possibly filtered tracking error and/or control input. The robust stability of the overall adaptive scheme is ensured by an adaptation relative dead zone which takes into account the contribution of the unmodeled dynamics and bounded noise. The basic results are derived for two different estimation strategies which have either a shared regressor with the plant or individual regressors for the input contribution and its relevant time-derivatives. In this second case, the plant input is obtained through a similar convex combination rule as the one used for the estimators in the first approach. An extension of the basic strategies is also pointed out including a combined use of the suboptimization scheme with a supervisor of past measures for the on-line calculation of the estimator weights in the convex combination.

  4. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  5. Dense and accurate motion and strain estimation in high resolution speckle images using an image-adaptive approach

    NASA Astrophysics Data System (ADS)

    Cofaru, Corneliu; Philips, Wilfried; Van Paepegem, Wim

    2011-09-01

    Digital image processing methods represent a viable and well acknowledged alternative to strain gauges and interferometric techniques for determining full-field displacements and strains in materials under stress. This paper presents an image adaptive technique for dense motion and strain estimation using high-resolution speckle images that show the analyzed material in its original and deformed states. The algorithm starts by dividing the speckle image showing the original state into irregular cells taking into consideration both spatial and gradient image information present. Subsequently the Newton-Raphson digital image correlation technique is applied to calculate the corresponding motion for each cell. Adaptive spatial regularization in the form of the Geman- McClure robust spatial estimator is employed to increase the spatial consistency of the motion components of a cell with respect to the components of neighbouring cells. To obtain the final strain information, local least-squares fitting using a linear displacement model is performed on the horizontal and vertical displacement fields. To evaluate the presented image partitioning and strain estimation techniques two numerical and two real experiments are employed. The numerical experiments simulate the deformation of a specimen with constant strain across the surface as well as small rigid-body rotations present while real experiments consist specimens that undergo uniaxial stress. The results indicate very good accuracy of the recovered strains as well as better rotation insensitivity compared to classical techniques.

  6. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework

    NASA Astrophysics Data System (ADS)

    Brüggemann, Matthias; Kays, Rüdiger; Springer, Paul; Erdler, Oliver

    2015-03-01

    In this paper we present a combination of block-matching and differential motion field estimation. We initialize the motion field using a predictive hierarchical block-matching approach. This vector field is refined by a pixel-recursive differential motion estimation method. We integrate image warping and adaptive filter kernels into the Horn and Schunck differential optical flow estimation approach to break the block structure of the initial correspondence vector fields and compute motion field updates to fulfill the smoothness constraint inside motion boundaries. The influence of occlusion areas is reduced by integrating an in-the-loop occlusion detection and adjusting the adaptive filter weights in the iteration process. We integrate the combined estimation into a hierarchical multi-scale framework. The refined motion on the current scale is upscaled and used as prediction for block-matching motion estimation on the next scale. With the proposed system we are able to combine the advantages of block-matching and differential motion estimation and achieve a dense vector field with floating point precision even for large motion.

  7. Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular Networks.

    PubMed

    Briat, Corentin; Gupta, Ankit; Khammash, Mustafa

    2016-01-27

    The ability to adapt to stimuli is a defining feature of many biological systems and critical to maintaining homeostasis. While it is well appreciated that negative feedback can be used to achieve homeostasis when networks behave deterministically, the effect of noise on their regulatory function is not understood. Here, we combine probability and control theory to develop a theory of biological regulation that explicitly takes into account the noisy nature of biochemical reactions. We introduce tools for the analysis and design of robust homeostatic circuits and propose a new regulation motif, which we call antithetic integral feedback. This motif exploits stochastic noise, allowing it to achieve precise regulation in scenarios where similar deterministic regulation fails. Specifically, antithetic integral feedback preserves the stability of the overall network, steers the population of any regulated species to a desired set point, and adapts perfectly. We suggest that this motif may be prevalent in endogenous biological circuits and useful when creating synthetic circuits. PMID:27136686

  8. Robust adaptive tracking control of MIMO nonlinear systems in the presence of actuator hysteresis

    NASA Astrophysics Data System (ADS)

    Fu, Guiyuan; Ou, Linlin; Zhang, Weidong

    2016-07-01

    Adaptive tracking control of a class of MIMO nonlinear system preceded by unknown hysteresis is investigated. Based on dynamic surface control, an adaptive robust control law is developed and compensators are designed to mitigate the influences of both the unknown bounded external uncertainties and the unknown Prandtl-Islinskii hysteresis. By adopting the low-pass filters, the explosion of complexity caused by tedious computation of the time derivatives of the virtual control laws is overcome. With the proposed control scheme, the closed-loop system is proved to be semi-globally ultimately bounded by the Lyapunov stability theory, and the output of the controlled system can track the desired trajectories with an arbitrarily small error. Finally, numerical simulations are given to verify the effectiveness of the proposed approach.

  9. Identifying core features of adaptive metabolic mechanisms for chronic heat stress attenuation contributing to systems robustness.

    PubMed

    Gu, Jenny; Weber, Katrin; Klemp, Elisabeth; Winters, Gidon; Franssen, Susanne U; Wienpahl, Isabell; Huylmans, Ann-Kathrin; Zecher, Karsten; Reusch, Thorsten B H; Bornberg-Bauer, Erich; Weber, Andreas P M

    2012-05-01

    The contribution of metabolism to heat stress may play a significant role in defining robustness and recovery of systems; either by providing the energy and metabolites required for cellular homeostasis, or through the generation of protective osmolytes. However, the mechanisms by which heat stress attenuation could be adapted through metabolic processes as a stabilizing strategy against thermal stress are still largely unclear. We address this issue through metabolomic and transcriptomic profiles for populations along a thermal cline where two seagrass species, Zostera marina and Zostera noltii, were found in close proximity. Significant changes captured by these profile comparisons could be detected, with a larger response magnitude observed in northern populations to heat stress. Sucrose, fructose, and myo-inositol were identified to be the most responsive of the 29 analyzed organic metabolites. Many key enzymes in the Calvin cycle, glycolysis and pentose phosphate pathways also showed significant differential expression. The reported comparison suggests that adaptive mechanisms are involved through metabolic pathways to dampen the impacts of heat stress, and interactions between the metabolome and proteome should be further investigated in systems biology to understand robust design features against abiotic stress. PMID:22402787

  10. Design of Robust Adaptive Unbalance Response Controllers for Rotors with Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Knospe, Carl R.; Tamer, Samir M.; Fedigan, Stephen J.

    1996-01-01

    Experimental results have recently demonstrated that an adaptive open loop control strategy can be highly effective in the suppression of unbalance induced vibration on rotors supported in active magnetic bearings. This algorithm, however, relies upon a predetermined gain matrix. Typically, this matrix is determined by an optimal control formulation resulting in the choice of the pseudo-inverse of the nominal influence coefficient matrix as the gain matrix. This solution may result in problems with stability and performance robustness since the estimated influence coefficient matrix is not equal to the actual influence coefficient matrix. Recently, analysis tools have been developed to examine the robustness of this control algorithm with respect to structured uncertainty. Herein, these tools are extended to produce a design procedure for determining the adaptive law's gain matrix. The resulting control algorithm has a guaranteed convergence rate and steady state performance in spite of the uncertainty in the rotor system. Several examples are presented which demonstrate the effectiveness of this approach and its advantages over the standard optimal control formulation.

  11. Simple robust control laws for robot manipulators. Part 1: Non-adaptive case

    NASA Technical Reports Server (NTRS)

    Wen, J. T.; Bayard, D. S.

    1987-01-01

    A new class of exponentially stabilizing control laws for joint level control of robot arms is introduced. It has been recently recognized that the nonlinear dynamics associated with robotic manipulators have certain inherent passivity properties. More specifically, the derivation of the robotic dynamic equations from the Hamilton's principle gives rise to natural Lyapunov functions for control design based on total energy considerations. Through a slight modification of the energy Lyapunov function and the use of a convenient lemma to handle third order terms in the Lyapunov function derivatives, closed loop exponential stability for both the set point and tracking control problem is demonstrated. The exponential convergence property also leads to robustness with respect to frictions, bounded modeling errors and instrument noise. In one new design, the nonlinear terms are decoupled from real-time measurements which completely removes the requirement for on-line computation of nonlinear terms in the controller implementation. In general, the new class of control laws offers alternatives to the more conventional computed torque method, providing tradeoffs between robustness, computation and convergence properties. Furthermore, these control laws have the unique feature that they can be adapted in a very simple fashion to achieve asymptotically stable adaptive control.

  12. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images

    PubMed Central

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  13. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images.

    PubMed

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  14. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution

    NASA Astrophysics Data System (ADS)

    Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping; Zheng, Yixin; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Cheng, Yuan-Chung; Chen, Hao Ming

    2015-08-01

    Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer.

  15. Compromise-based Robust Prioritization of Climate Change Adaptation Strategies for Watershed Management

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Chung, E. S.

    2014-12-01

    This study suggests a robust prioritization framework for climate change adaptation strategies under multiple climate change scenarios with a case study of selecting sites for reusing treated wastewater (TWW) in a Korean urban watershed. The framework utilizes various multi-criteria decision making techniques, including the VIKOR method and the Shannon entropy-based weights. In this case study, the sustainability of TWW use is quantified with indicator-based approaches with the DPSIR framework, which considers both hydro-environmental and socio-economic aspects of the watershed management. Under the various climate change scenarios, the hydro-environmental responses to reusing TWW in potential alternative sub-watersheds are determined using the Hydrologic Simulation Program in Fortran (HSPF). The socio-economic indicators are obtained from the statistical databases. Sustainability scores for multiple scenarios are estimated individually and then integrated with the proposed approach. At last, the suggested framework allows us to prioritize adaptation strategies in a robust manner with varying levels of compromise between utility-based and regret-based strategies.

  16. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution

    PubMed Central

    Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping; Zheng, Yixin; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Cheng, Yuan-Chung; Chen, Hao Ming

    2015-01-01

    Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer. PMID:26315066

  17. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy.

    PubMed

    Zuo, Chao; Sun, Jiasong; Chen, Qian

    2016-09-01

    The incremental gradient approaches, such as PIE and ePIE, are widely used in the field of ptychographic imaging due to their great flexibility and computational efficiency. Nevertheless, their stability and reconstruction quality may be significantly degraded when non-negligible noise is present in the image. Though this problem is often attributed to the non-convex nature of phase retrieval, we found the reason for this is more closely related to the choice of the step-size, which needs to be gradually diminishing for convergence even in the convex case. To this end, we introduce an adaptive step-size strategy that decreases the step-size whenever sufficient progress is not made. The synthetic and real experiments on Fourier ptychographic microscopy show that the adaptive step-size strategy significantly improves the stability and robustness of the reconstruction towards noise yet retains the fast initial convergence speed of PIE and ePIE. More importantly, the proposed approach is simple, nonparametric, and does not require any preknowledge about the noise statistics. The great performance and limited computational complexity make it a very attractive and promising technique for robust Fourier ptychographic microscopy under noisy conditions. PMID:27607676

  18. Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system.

    PubMed

    Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai

    2009-06-01

    In this paper, a robust dynamic sliding mode control system (RDSMC) using a recurrent Elman neural network (RENN) is proposed to control the position of a levitated object of a magnetic levitation system considering the uncertainties. First, a dynamic model of the magnetic levitation system is derived. Then, a proportional-integral-derivative (PID)-type sliding-mode control system (SMC) is adopted for tracking of the reference trajectories. Moreover, a new PID-type dynamic sliding-mode control system (DSMC) is proposed to reduce the chattering phenomenon. However, due to the hardware being limited and the uncertainty bound being unknown of the switching function for the DSMC, an RDSMC is proposed to improve the control performance and further increase the robustness of the magnetic levitation system. In the RDSMC, an RENN estimator is used to estimate an unknown nonlinear function of lumped uncertainty online and replace the switching function in the hitting control of the DSMC directly. The adaptive learning algorithms that trained the parameters of the RENN online are derived using Lyapunov stability theorem. Furthermore, a robust compensator is proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher order terms in Taylor series. Finally, some experimental results of tracking the various periodic trajectories demonstrate the validity of the proposed RDSMC for practical applications. PMID:19423437

  19. Low bit rate video coding using robust motion vector regeneration in the decoder.

    PubMed

    Banham, M R; Brailean, J C; Chan, C L; Katsaggelos, A K

    1994-01-01

    In this paper, we present a novel coding technique that makes use of the nonstationary characteristics of an image sequence displacement field to estimate and encode motion information. We utilize an MPEG style codec in which the anchor frames in a sequence are encoded with a hybrid approach using quadtree, DCT, and wavelet-based coding techniques. A quadtree structured approach is also utilized for the interframe information. The main objective of the overall design is to demonstrate the coding potential of a newly developed motion estimator called the coupled linearized MAP (CLMAP) estimator. This estimator can be used as a means for producing motion vectors that may be regenerated at the decoder with a coarsely quantized error term created in the encoder. The motion estimator generates highly accurate motion estimates from this coarsely quantized data. This permits the elimination of a separately coded displaced frame difference (DFD) and coded motion vectors. For low bit rate applications, this is especially important because the overhead associated with the transmission of motion vectors may become prohibitive. We exploit both the advantages of the nonstationary motion estimator and the effective compression of the anchor frame coder to improve the visual quality of reconstructed QCIF format color image sequences at low bit rates. Comparisons are made with other video coding methods, including the H.261 and MPEG standards and a pel-recursive-based codec. PMID:18291958

  20. Robust velocity computation from a biologically motivated model of motion perception

    PubMed Central

    Johnston, A.; McOwan, P. W.; Benton, C. P.

    1999-01-01

    Current computational models of motion processing in the primate motion pathway do not cope well with image sequences in which a moving pattern is superimposed upon a static texture. The use of non-linear operations and the need for contrast normalization in motion models mean that the separation of the influences of moving and static patterns on the motion computation is not trivial. Therefore, the response to the superposition of static and moving patterns provides an important means of testing various computational strategies. Here we describe a computational model of motion processing in the visual cortex, one of the advantages of which is that it is highly resistant to interference from static patterns.

  1. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    NASA Astrophysics Data System (ADS)

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  2. Adapting full motion video data for the real world

    NASA Astrophysics Data System (ADS)

    Macior, Robert E.; Bright, Gerald A.; Walter, Sharon M.

    2008-10-01

    Future Intelligence, Surveillance and Reconnaissance (ISR) tasking and exploitation will be based on a "system of systems" that carries out tasking, collection, integration, interpretation, and exploitation. The vision is of a closedloop tasking-exploitation-tasking ISR information system that learns from its continuous data accumulation over multiple observations, accruing and assessing evidence to determine if further tasking is needed to resolve residual target ambiguities. That closed-loop collection of systems would provide a better ability to direct ISR sensors and fuse multisource data. Such a system, with the enormous amounts of data involved and the requirement for timeliness, will require the use of automated systems that work together efficiently under real-world conditions. This paper reviews issues that are relevant to ISR tasking, coordination, and data formatting. Procedural solutions that were developed and implemented during experimental operations to correlate and fuse full motion video with ground moving target information forming real-time, actionable, coalition intelligence, are presented.

  3. A Decentralized Multivariable Robust Adaptive Voltage and Speed Regulator for Large-Scale Power Systems

    NASA Astrophysics Data System (ADS)

    Okou, Francis A.; Akhrif, Ouassima; Dessaint, Louis A.; Bouchard, Derrick

    2013-05-01

    This papter introduces a decentralized multivariable robust adaptive voltage and frequency regulator to ensure the stability of large-scale interconnnected generators. Interconnection parameters (i.e. load, line and transormer parameters) are assumed to be unknown. The proposed design approach requires the reformulation of conventiaonal power system models into a multivariable model with generator terminal voltages as state variables, and excitation and turbine valve inputs as control signals. This model, while suitable for the application of modern control methods, introduces problems with regards to current design techniques for large-scale systems. Interconnection terms, which are treated as perturbations, do not meet the common matching condition assumption. A new adaptive method for a certain class of large-scale systems is therefore introduces that does not require the matching condition. The proposed controller consists of nonlinear inputs that cancel some nonlinearities of the model. Auxiliary controls with linear and nonlinear components are used to stabilize the system. They compensate unknown parametes of the model by updating both the nonlinear component gains and excitation parameters. The adaptation algorithms involve the sigma-modification approach for auxiliary control gains, and the projection approach for excitation parameters to prevent estimation drift. The computation of the matrix-gain of the controller linear component requires the resolution of an algebraic Riccati equation and helps to solve the perturbation-mismatching problem. A realistic power system is used to assess the proposed controller performance. The results show that both stability and transient performance are considerably improved following a severe contingency.

  4. Design of a motion JPEG (M/JPEG) adapter card

    NASA Astrophysics Data System (ADS)

    Lee, D. H.; Sudharsanan, Subramania I.

    1994-05-01

    In this paper we describe a design of a high performance JPEG (Joint Photographic Experts Group) Micro Channel adapter card. The card, tested on a range of PS/2 platforms (models 50 to 95), can complete JPEG operations on a 640 by 240 pixel image within 1/60 of a second, thus enabling real-time capture and display of high quality digital video. The card accepts digital pixels for either a YUV 4:2:2 or an RGB 4:4:4 pixel bus and has been shown to handle up to 2.05 MBytes/second of compressed data. The compressed data is transmitted to a host memory area by Direct Memory Access operations. The card uses a single C-Cube's CL550 JPEG processor that complies with the baseline JPEG. We give broad descriptions of the hardware that controls the video interface, CL550, and the system interface. Some critical design points that enhance the overall performance of the M/JPEG systems are pointed out. The control of the adapter card is achieved by an interrupt driven software that runs under DOS. The software performs a variety of tasks that include change of color space (RGB or YUV), change of quantization and Huffman tables, odd and even field control and some diagnostic operations.

  5. Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Kleijnen, Jean-Paul J. E.; van Asselen, Bram; Burbach, Johannes P. M.; Intven, Martijn; Philippens, Marielle E. P.; Reerink, Onne; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2016-01-01

    Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.

  6. Robust adaptive neural control for a class of uncertain MIMO nonlinear systems

    NASA Astrophysics Data System (ADS)

    Wang, Chenliang; Lin, Yan

    2015-08-01

    In this paper, a novel robust adaptive neural control scheme is proposed for a class of uncertain multi-input multi-output nonlinear systems. The proposed scheme has the following main features: (1) a kind of Hurwitz condition is introduced to handle the state-dependent control gain matrix and some assumptions in existing schemes are relaxed; (2) by introducing a novel matrix normalisation technique, it is shown that all bound restrictions imposed on the control gain matrix in existing schemes can be removed; (3) the singularity problem is avoided without any extra effort, which makes the control law quite simple. Besides, with the aid of the minimal learning parameter technique, only one parameter needs to be updated online regardless of the system input-output dimension and the number of neural network nodes. Simulation results are presented to illustrate the effectiveness of the proposed scheme.

  7. On Building Immersive Audio Applications Using Robust Adaptive Beamforming and Joint Audio-Video Source Localization

    NASA Astrophysics Data System (ADS)

    Beracoechea, J. A.; Torres-Guijarro, S.; García, L.; Casajús-Quirós, F. J.

    2006-12-01

    This paper deals with some of the different problems, strategies, and solutions of building true immersive audio systems oriented to future communication applications. The aim is to build a system where the acoustic field of a chamber is recorded using a microphone array and then is reconstructed or rendered again, in a different chamber using loudspeaker array-based techniques. Our proposal explores the possibility of using recent robust adaptive beamforming techniques for effectively estimating the original sources of the emitting room. A joint audio-video localization method needed in the estimation process as well as in the rendering engine is also presented. The estimated source signal and the source localization information drive a wave field synthesis engine that renders the acoustic field again at the receiving chamber. The system performance is tested using MUSHRA-based subjective tests.

  8. Robust adaptive spin-axis stabilization of a symmetric spacecraft using two bounded torques

    NASA Astrophysics Data System (ADS)

    Gui, Haichao; Vukovich, George

    2015-12-01

    The spin-axis stabilization of an axisymmetric spacecraft by two control torques perpendicular to the symmetry axis is addressed. Two control laws are designed to align the symmetry axis along a desired inertial direction despite the revolution around the symmetry axis. The first controller takes a saturated proportional-derivative form and can stabilize the spin-axis to the desired direction with a priori bounded torques in the absence of modeling uncertainties. In order to achieve better robustness, an adaptive controller is then designed to account for the inertia uncertainties and disturbances, in addition to actuator saturation. Numerical examples are presented to demonstrate the advantageous features of the proposed algorithm compared with conventional spin-axis stabilization methods.

  9. Pressure regulation for earth pressure balance control on shield tunneling machine by using adaptive robust control

    NASA Astrophysics Data System (ADS)

    Xie, Haibo; Liu, Zhibin; Yang, Huayong

    2016-05-01

    Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control (ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation.

  10. Pressure regulation for earth pressure balance control on shield tunneling machine by using adaptive robust control

    NASA Astrophysics Data System (ADS)

    Xie, Haibo; Liu, Zhibin; Yang, Huayong

    2016-04-01

    Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control (ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation.

  11. Adaptive and robust statistical methods for processing near-field scanning microwave microscopy images.

    PubMed

    Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P

    2015-03-01

    Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. PMID:25463325

  12. Robust sensorimotor representation to physical interaction changes in humanoid motion learning.

    PubMed

    Shimizu, Toshihiko; Saegusa, Ryo; Ikemoto, Shuhei; Ishiguro, Hiroshi; Metta, Giorgio

    2015-05-01

    This paper proposes a learning from demonstration system based on a motion feature, called phase transfer sequence. The system aims to synthesize the knowledge on humanoid whole body motions learned during teacher-supported interactions, and apply this knowledge during different physical interactions between a robot and its surroundings. The phase transfer sequence represents the temporal order of the changing points in multiple time sequences. It encodes the dynamical aspects of the sequences so as to absorb the gaps in timing and amplitude derived from interaction changes. The phase transfer sequence was evaluated in reinforcement learning of sitting-up and walking motions conducted by a real humanoid robot and compatible simulator. In both tasks, the robotic motions were less dependent on physical interactions when learned by the proposed feature than by conventional similarity measurements. Phase transfer sequence also enhanced the convergence speed of motion learning. Our proposed feature is original primarily because it absorbs the gaps caused by changes of the originally acquired physical interactions, thereby enhancing the learning speed in subsequent interactions. PMID:25029488

  13. Robust adaptive control modeling of human arm movements subject to altered gravity and mechanical loads

    NASA Astrophysics Data System (ADS)

    Tryfonidis, Michail

    It has been observed that during orbital spaceflight the absence of gravitation related sensory inputs causes incongruence between the expected and the actual sensory feedback resulting from voluntary movements. This incongruence results in a reinterpretation or neglect of gravity-induced sensory input signals. Over time, new internal models develop, gradually compensating for the loss of spatial reference. The study of adaptation of goal-directed movements is the main focus of this thesis. The hypothesis is that during the adaptive learning process the neural connections behave in ways that can be described by an adaptive control method. The investigation presented in this thesis includes two different sets of experiments. A series of dart throwing experiments took place onboard the space station Mir. Experiments also took place at the Biomechanics lab at MIT, where the subjects performed a series of continuous trajectory tracking movements while a planar robotic manipulandum exerted external torques on the subjects' moving arms. The experimental hypothesis for both experiments is that during the first few trials the subjects will perform poorly trying to follow a prescribed trajectory, or trying to hit a target. A theoretical framework is developed that is a modification of the sliding control method used in robotics. The new control framework is an attempt to explain the adaptive behavior of the subjects. Numerical simulations of the proposed framework are compared with experimental results and predictions from competitive models. The proposed control methodology extends the results of the sliding mode theory to human motor control. The resulting adaptive control model of the motor system is robust to external dynamics, even those of negative gain, uses only position and velocity feedback, and achieves bounded steady-state error without explicit knowledge of the system's nonlinearities. In addition, the experimental and modeling results demonstrate that

  14. Dynamic recurrent neural networks for stable adaptive control of wing rock motion

    NASA Astrophysics Data System (ADS)

    Kooi, Steven Boon-Lam

    Wing rock is a self-sustaining limit cycle oscillation (LCO) which occurs as the result of nonlinear coupling between the dynamic response of the aircraft and the unsteady aerodynamic forces. In this thesis, dynamic recurrent RBF (Radial Basis Function) network control methodology is proposed to control the wing rock motion. The concept based on the properties of the Presiach hysteresis model is used in the design of dynamic neural networks. The structure and memory mechanism in the Preisach model is analogous to the parallel connectivity and memory formation in the RBF neural networks. The proposed dynamic recurrent neural network has a feature for adding or pruning the neurons in the hidden layer according to the growth criteria based on the properties of ensemble average memory formation of the Preisach model. The recurrent feature of the RBF network deals with the dynamic nonlinearities and endowed temporal memories of the hysteresis model. The control of wing rock is a tracking problem, the trajectory starts from non-zero initial conditions and it tends to zero as time goes to infinity. In the proposed neural control structure, the recurrent dynamic RBF network performs identification process in order to approximate the unknown non-linearities of the physical system based on the input-output data obtained from the wing rock phenomenon. The design of the RBF networks together with the network controllers are carried out in discrete time domain. The recurrent RBF networks employ two separate adaptation schemes where the RBF's centre and width are adjusted by the Extended Kalman Filter in order to give a minimum networks size, while the outer networks layer weights are updated using the algorithm derived from Lyapunov stability analysis for the stable closed loop control. The issue of the robustness of the recurrent RBF networks is also addressed. The effectiveness of the proposed dynamic recurrent neural control methodology is demonstrated through simulations to

  15. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    PubMed Central

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-01-01

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction. PMID:23673678

  16. Lightweight wrist photoplethysmography for heavy exercise: motion robust heart rate monitoring algorithm.

    PubMed

    Lai, Po-Hsiang; Kim, Insoo

    2015-02-01

    The challenge of heart rate monitoring based on wrist photoplethysmography (PPG) during heavy exercise is addressed. PPG is susceptible to motion artefacts, which have to be mitigated for accurate heart rate estimation. Motion artefacts are particularly apparent for wrist devices, for example, a smart watch, because of the high mobility of the arms. Proposed is a low complexity highly accurate heart rate estimation method for continuous heart rate monitoring using wrist PPG. The proposed method achieved 2.57% mean absolute error in a test data set where subjects ran for a maximum speed of 17 km/h. PMID:26609397

  17. Flight control design using a blend of modern nonlinear adaptive and robust techniques

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolong

    In this dissertation, the modern control techniques of feedback linearization, mu synthesis, and neural network based adaptation are used to design novel control laws for two specific applications: F/A-18 flight control and reusable launch vehicle (an X-33 derivative) entry guidance. For both applications, the performance of the controllers is assessed. As a part of a NASA Dryden program to develop and flight test experimental controllers for an F/A-18 aircraft, a novel method of combining mu synthesis and feedback linearization is developed to design longitudinal and lateral-directional controllers. First of all, the open-loop and closed-loop dynamics of F/A-18 are investigated. The production F/A-18 controller as well as the control distribution mechanism are studied. The open-loop and closed-loop handling qualities of the F/A-18 are evaluated using low order transfer functions. Based on this information, a blend of robust mu synthesis and feedback linearization is used to design controllers for a low dynamic pressure envelope of flight conditions. For both the longitudinal and the lateral-directional axes, a robust linear controller is designed for a trim point in the center of the envelope. Then by including terms to cancel kinematic nonlinearities and variations in the aerodynamic forces and moments over the flight envelope, a complete nonlinear controller is developed. In addition, to compensate for the model uncertainty, linearization error and variations between operating points, neural network based adaptation is added to the designed longitudinal controller. The nonlinear simulations, robustness and handling qualities analysis indicate that the performance is similar to or better than that for the production F/A-18 controllers. When the dynamic pressure is very low, the performance of both the experimental and the production flight controllers is degraded, but Level I handling qualities are still achieved. A new generation of Reusable Launch Vehicles

  18. Robust Cell Detection of Histopathological Brain Tumor Images Using Sparse Reconstruction and Adaptive Dictionary Selection.

    PubMed

    Su, Hai; Xing, Fuyong; Yang, Lin

    2016-06-01

    Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96. PMID:26812706

  19. Structural and functional robustness of the adaptive-sorting signaling network

    NASA Astrophysics Data System (ADS)

    Pang, Ning-Ning

    2016-06-01

    A major task of study on ligand discrimination by T cells is the construction of a mechanistic model to account for threshold setting in response to variant ligands interacting with the same T-cell receptors. Recently, Lalanne and Francois in a seminal paper (2013 Phys. Rev. Lett. 110 218102) have addressed this question by constructing minimal core circuits such that the biological outputs can satisfy the essential properties of early T-cell activation. To make this core set of network topology a valuable tool for synthetic biologists to robustly engineer biological circuits, we are motivated to ask a general question: is adaptive response encoded by the proposed circuit topology structurally stable, regardless of the values of the kinetic parameters? This has particularly relevant effects for the network reliability, since failures in ligand discrimination result in either infection or autoimmune diseases. To the best of our knowledge, a rigorous and complete mathematical proof of this issue is still lacking in the literature. In this paper, by giving a rigorous mathematical proof, we have shown that this regulatory circuitry is appropriately designed and the existence, uniqueness, and globally asymptotic attractiveness of the steady state are preserved. Moreover, we further generalize the adaptive sorting module and undertake an extensive analysis on the trade-off between antagonism and sensitivity of T-cell ligand discrimination in various cellular conditions. Notably, the optimal phosphorylation step in which to place the regulatory motif is analytically obtained and numerically confirmed. Finally, relevant experimental facts and biological implications are discussed.

  20. An SRWNN-based approach on developing a self-learning and self-evolving adaptive control system for motion platforms

    NASA Astrophysics Data System (ADS)

    Onur Ari, Evrim; Kocaoglan, Erol

    2016-02-01

    In this paper, a self-recurrent wavelet neural network (SRWNN)-based indirect adaptive control architecture is modified for performing speed control of a motion platform. The transient behaviour of the original learning algorithm has been improved by modifying the learning rate updates. The contribution of the proposed modification has been verified via both simulations and experiments. Moreover, the performance of the proposed architecture is compared with robust RST designs performed on a similar benchmark system, to show that via adaptive nonlinear control, it is possible to obtain a fast step response without degrading the robustness of a multi-body mechanical system. Finally, the architecture is further improved so as to possess structural learning for populating the SRWNNs automatically, rather than employing static network structures, and simulation results are provided to show the performance of the proposed structural learning algorithm.

  1. Lung motion estimation using dynamic point shifting: An innovative model based on a robust point matching algorithm

    SciTech Connect

    Yi, Jianbing; Yang, Xuan Li, Yan-Ran; Chen, Guoliang

    2015-10-15

    Purpose: Image-guided radiotherapy is an advanced 4D radiotherapy technique that has been developed in recent years. However, respiratory motion causes significant uncertainties in image-guided radiotherapy procedures. To address these issues, an innovative lung motion estimation model based on a robust point matching is proposed in this paper. Methods: An innovative robust point matching algorithm using dynamic point shifting is proposed to estimate patient-specific lung motion during free breathing from 4D computed tomography data. The correspondence of the landmark points is determined from the Euclidean distance between the landmark points and the similarity between the local images that are centered at points at the same time. To ensure that the points in the source image correspond to the points in the target image during other phases, the virtual target points are first created and shifted based on the similarity between the local image centered at the source point and the local image centered at the virtual target point. Second, the target points are shifted by the constrained inverse function mapping the target points to the virtual target points. The source point set and shifted target point set are used to estimate the transformation function between the source image and target image. Results: The performances of the authors’ method are evaluated on two publicly available DIR-lab and POPI-model lung datasets. For computing target registration errors on 750 landmark points in six phases of the DIR-lab dataset and 37 landmark points in ten phases of the POPI-model dataset, the mean and standard deviation by the authors’ method are 1.11 and 1.11 mm, but they are 2.33 and 2.32 mm without considering image intensity, and 1.17 and 1.19 mm with sliding conditions. For the two phases of maximum inhalation and maximum exhalation in the DIR-lab dataset with 300 landmark points of each case, the mean and standard deviation of target registration errors on the

  2. Robust motion tracking control of robotic arms based on the generalized energy accumulation principle

    NASA Technical Reports Server (NTRS)

    Song, Y. D.; Anderson, J. N.; Homaifar, A.; Lai, H. Y.

    1992-01-01

    Consider a rigid-link robot with the dynamic model tau = H(q;p)q''+C(q,q',p)q'+G(q;p)+Nu(t) where Nu(.) denotes a bounded external disturbance. The objective addressed herein is to find a control strategy that exhibits the following features: (1) simple to implement, (2) easy to code for program, and (3) robust to possible time-varying uncertainties.

  3. Robust Spectral Analysis of Thoraco-Abdominal Motion and Oxymetry in Obstructive Sleep Apnea

    PubMed Central

    Nino, Cesar L.; Rodriguez-Martinez, Carlos E.; Gutierrez, Maria J.; Singareddi, Ravi; Nino, Gustavo

    2014-01-01

    Standard PSG montage involves the use of nasal-oral airflow sensors to visualize cyclic episodes of upper airflow interruption, which are considered diagnostic of sleep apnea. Given the high-cost and discomfort associated with in-laboratory PSG, there is an emergent need for novel technology that simplifies OSA screening and diagnosis with less expensive methods. The main goal of this project was to identify novel OSA signatures based on the spectral analysis of thoraco-abdominal motion channels. Our main hypothesis was that proper spectral analysis can detect OSA cycles in adults using simultaneous recording of SaO2 and either, chest or abdominal motion. The impact of this new approach is that it may allow the design of more comfortable and reliable portable devices for screening, diagnosis and monitoring of OSA, functioning only with oximetry and airflow-independent (abdominal or chest) breathing sensors. PMID:24110335

  4. Use of power-line interference for adaptive motion artifact removal in biopotential measurements.

    PubMed

    Xu, Lin; Rooijakkers, Michael J; Rabotti, Chiara; Peuscher, Jan; Mischi, Massimo

    2016-01-01

    Motion artifacts (MA) have long been a problem in biopotential measurements. Adaptive filtering is widely used for optimal noise removal in many biomedical applications. However, the existing adaptive filtering methods involve the use of additional sensors, limiting the applicability of adaptive filtering for MA reduction. In the present study, a novel adaptive filtering method without need for additional sensors is proposed. In biopotential measurements, movement of the electrodes and their leads may cause variations not only in the skin and half-cell potential (motion artifacts), but also in the electrode-skin impedance. Such impedance variations may also cause power-line interference modulation (PLIM), resulting in additional spectral components around the power-line interference (PLI) in the frequency domain. Demodulation of the PLI may reflect the movement-induced electrode-skin impedance variation, and can therefore represent a reference signal for the adaptive filter. Preliminary validation on ECG measurements with seven volunteers showed a high correlation coefficient (R  =  0.97) between MA and PLIM, and excellent MA removal by the proposed adaptive filter, possibly leading to improved analysis of biopotential signals. PMID:26641265

  5. The adaptation of GDL motion recognition system to sport and rehabilitation techniques analysis.

    PubMed

    Hachaj, Tomasz; Ogiela, Marek R

    2016-06-01

    The main novelty of this paper is presenting the adaptation of Gesture Description Language (GDL) methodology to sport and rehabilitation data analysis and classification. In this paper we showed that Lua language can be successfully used for adaptation of the GDL classifier to those tasks. The newly applied scripting language allows easily extension and integration of classifier with other software technologies and applications. The obtained execution speed allows using the methodology in the real-time motion capture data processing where capturing frequency differs from 100 Hz to even 500 Hz depending on number of features or classes to be calculated and recognized. Due to this fact the proposed methodology can be used to the high-end motion capture system. We anticipate that using novel, efficient and effective method will highly help both sport trainers and physiotherapist in they practice. The proposed approach can be directly applied to motion capture data kinematics analysis (evaluation of motion without regard to the forces that cause that motion). The ability to apply pattern recognition methods for GDL description can be utilized in virtual reality environment and used for sport training or rehabilitation treatment. PMID:27106581

  6. Robustness of one-dimensional viscous fluid motion under multidimensional perturbations

    NASA Astrophysics Data System (ADS)

    Feireisl, Eduard; Sun, Yongzhong

    2015-12-01

    We adapt the relative energy functional associated to the compressible Navier-Stokes system to show stability of solutions emanating from 1-D initial data with respect to multidimensional N = 2, 3 perturbations. Besides the application of the relative energy inequality as a suitable "distance" between two solutions, refined regularity estimates in Lp based Sobolev spaces are used.

  7. Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex

    PubMed Central

    Baker, Pamela M.; Ahmed, Bashir; Kohn, Adam; Bair, Wyeth

    2015-01-01

    A key feature of neural networks is their ability to rapidly adjust their function, including signal gain and temporal dynamics, in response to changes in sensory inputs. These adjustments are thought to be important for optimizing the sensitivity of the system, yet their mechanisms remain poorly understood. We studied adaptive changes in temporal integration in direction-selective cells in macaque primary visual cortex, where specific hypotheses have been proposed to account for rapid adaptation. By independently stimulating direction-specific channels, we found that the control of temporal integration of motion at one direction was independent of motion signals driven at the orthogonal direction. We also found that individual neurons can simultaneously support two different profiles of temporal integration for motion in orthogonal directions. These findings rule out a broad range of adaptive mechanisms as being key to the control of temporal integration, including untuned normalization and nonlinearities of spike generation and somatic adaptation in the recorded direction-selective cells. Such mechanisms are too broadly tuned, or occur too far downstream, to explain the channel-specific and multiplexed temporal integration that we observe in single neurons. Instead, we are compelled to conclude that parallel processing pathways are involved, and we demonstrate one such circuit using a computer model. This solution allows processing in different direction/orientation channels to be separately optimized and is sensible given that, under typical motion conditions (e.g., translation or looming), speed on the retina is a function of the orientation of image components. SIGNIFICANCE STATEMENT Many neurons in visual cortex are understood in terms of their spatial and temporal receptive fields. It is now known that the spatiotemporal integration underlying visual responses is not fixed but depends on the visual input. For example, neurons that respond selectively to

  8. Real-time motion-adaptive-optimization (MAO) in TomoTherapy

    NASA Astrophysics Data System (ADS)

    Lu, Weiguo; Chen, Mingli; Ruchala, Kenneth J.; Chen, Quan; Langen, Katja M.; Kupelian, Patrick A.; Olivera, Gustavo H.

    2009-07-01

    IMRT delivery follows a planned leaf sequence, which is optimized before treatment delivery. However, it is hard to model real-time variations, such as respiration, in the planning procedure. In this paper, we propose a negative feedback system of IMRT delivery that incorporates real-time optimization to account for intra-fraction motion. Specifically, we developed a feasible workflow of real-time motion-adaptive-optimization (MAO) for TomoTherapy delivery. TomoTherapy delivery is characterized by thousands of projections with a fast projection rate and ultra-fast binary leaf motion. The technique of MAO-guided delivery calculates (i) the motion-encoded dose that has been delivered up to any given projection during the delivery and (ii) the future dose that will be delivered based on the estimated motion probability and future fluence map. These two pieces of information are then used to optimize the leaf open time of the upcoming projection right before its delivery. It consists of several real-time procedures, including 'motion detection and prediction', 'delivered dose accumulation', 'future dose estimation' and 'projection optimization'. Real-time MAO requires that all procedures are executed in time less than the duration of a projection. We implemented and tested this technique using a TomoTherapy® research system. The MAO calculation took about 100 ms per projection. We calculated and compared MAO-guided delivery with two other types of delivery, motion-without-compensation delivery (MD) and static delivery (SD), using simulated 1D cases, real TomoTherapy plans and the motion traces from clinical lung and prostate patients. The results showed that the proposed technique effectively compensated for motion errors of all test cases. Dose distributions and DVHs of MAO-guided delivery approached those of SD, for regular and irregular respiration with a peak-to-peak amplitude of 3 cm, and for medium and large prostate motions. The results conceptually proved that

  9. Motion adaptive signal integration-high dynamic range (MASI-HDR) video processing for dynamic platforms

    NASA Astrophysics Data System (ADS)

    Piacentino, Michael R.; Berends, David C.; Zhang, David C.; Gudis, Eduardo

    2013-05-01

    Two of the biggest challenges in designing U×V vision systems are properly representing high dynamic range scene content using low dynamic range components and reducing camera motion blur. SRI's MASI-HDR (Motion Adaptive Signal Integration-High Dynamic Range) is a novel technique for generating blur-reduced video using multiple captures for each displayed frame while increasing the effective camera dynamic range by four bits or more. MASI-HDR processing thus provides high performance video from rapidly moving platforms in real-world conditions in low latency real time, enabling even the most demanding applications on air, ground and water.

  10. Motion Analysis of 100 Mediastinal Lymph Nodes: Potential Pitfalls in Treatment Planning and Adaptive Strategies

    SciTech Connect

    Pantarotto, Jason R.; Piet, Anna H.M.; Vincent, Andrew; Soernsen de Koste, John R. van; Senan, Suresh

    2009-07-15

    Purpose: The motion of mediastinal lymph nodes may undermine local control with involved-field radiotherapy. We studied patterns of nodal and tumor motion in 41 patients with lung cancer. Methods and Materials: Four-dimensional (4D) computed tomography planning scans were retrospectively evaluated to identify patients with clearly visible mediastinal lymph nodes. One hundred nodes from 14 patients with Stage I and 27 patients with Stage III were manually contoured in all 4D computed tomography respiratory phases. Motion was derived from changes in the nodal center-of-mass position. Primary tumors were also delineated in all phases for 16 patients with Stage III disease. Statistical analysis included a multivariate mixed-effects model of grouped data. Results: Average 3D nodal motion during quiet breathing was 0.68 cm (range, 0.17-1.64 cm); 77% moved greater than 0.5 cm, and 10% moved greater than 1.0 cm. Motion was greatest in the lower mediastinum (p = 0.002), and nodes measuring 2 cm or greater in diameter showed motion similar to that in smaller nodes. In 11 of 16 patients studied, at least one node moved more than the corresponding primary tumor. No association between 3D primary tumor motion and nodal motion was observed. For mobile primary tumors, phase offsets between the primary tumor and nodes of two or more and three or more phases were observed for 33% and 12% of nodes, respectively. Conclusions: Mediastinal nodal motion is common, with phase offsets seen between the primary tumor and different nodes in the same patient. Patient-specific information is needed to ensure geometric coverage, and adaptive strategies based solely on the primary tumor may be misleading.

  11. A multi-layer robust adaptive fault tolerant control system for high performance aircraft

    NASA Astrophysics Data System (ADS)

    Huo, Ying

    Modern high-performance aircraft demand advanced fault-tolerant flight control strategies. Not only the control effector failures, but the aerodynamic type failures like wing-body damages often result in substantially deteriorate performance because of low available redundancy. As a result the remaining control actuators may yield substantially lower maneuvering capabilities which do not authorize the accomplishment of the air-craft's original specified mission. The problem is to solve the control reconfiguration on available control redundancies when the mission modification is urged to save the aircraft. The proposed robust adaptive fault-tolerant control (RAFTC) system consists of a multi-layer reconfigurable flight controller architecture. It contains three layers accounting for different types and levels of failures including sensor, actuator, and fuselage damages. In case of the nominal operation with possible minor failure(s) a standard adaptive controller stands to achieve the control allocation. This is referred to as the first layer, the controller layer. The performance adjustment is accounted for in the second layer, the reference layer, whose role is to adjust the reference model in the controller design with a degraded transit performance. The upmost mission adjust is in the third layer, the mission layer, when the original mission is not feasible with greatly restricted control capabilities. The modified mission is achieved through the optimization of the command signal which guarantees the boundedness of the closed-loop signals. The main distinguishing feature of this layer is the the mission decision property based on the current available resources. The contribution of the research is the multi-layer fault-tolerant architecture that can address the complete failure scenarios and their accommodations in realities. Moreover, the emphasis is on the mission design capabilities which may guarantee the stability of the aircraft with restricted post

  12. Adaptive tuning of a 2DOF controller for robust cell manipulation using IPMC actuators

    NASA Astrophysics Data System (ADS)

    McDaid, A. J.; Aw, K. C.; Haemmerle, E.; Shahinpoor, M.; Xie, S. Q.

    2011-12-01

    Rapid advancement in medicine and bioscience is causing demand for faster, more accurate and dexterous as well as safer and more reliable micro-manipulators capable of handling biological cells. Current micro-manipulation techniques commonly damage cell walls and membranes due to their stiffness and rigidity. Ionic polymer-metal composite (IPMC) actuators have inherent compliance and with their ability to operate well in fluid and cellular environments they present a unique solution for safe cell manipulation. The reason for the downfall of IPMCs is that their complex behaviour makes them hard to control precisely in unknown environments and in the presence of sizeable external disturbances. This paper presents a novel scheme for adaptively tuning IPMC actuators for precise and robust micro-manipulation of biological cells. A two-degree-of-freedom (2DOF) controller is developed to allow optimal performance for both disturbance rejection (DR) and set point (SP) tracking. These criteria are optimized using a proposed IFT algorithm which adaptively updates the controller parameters, with no model or prior knowledge of the operating conditions, to achieve a compliant manipulation system which can precisely track targets in the presence of large external disturbances, as will be encountered in real biological environments. Experiments are presented showing the performance optimization of an IPMC actuator in the presence of external mechanical disturbances as well as the optimization of the SP tracking. The IFT algorithm successfully tunes the DR and SP to an 85% and 69% improvement, respectively. Results are also presented for a one-degree-of-freedom (1DOF) controller tuned first for DR and then for SP, for a comparison with the 2DOF controller. Validation has been undertaken to verify that the 2DOF controller does indeed outperform both 1DOF controllers over a variety of operating conditions.

  13. Robust adaptive control for a class of uncertain non-affine nonlinear systems using affine-type neural networks

    NASA Astrophysics Data System (ADS)

    Zhao, Shitie; Gao, Xianwen

    2016-08-01

    A robust adaptive control is proposed for a class of single-input single-output non-affine nonlinear systems. In order to approximate the unknown nonlinear function, a novel affine-type neural network is used, and then to compensate the approximation error and external disturbance a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proved that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given out based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method.

  14. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors

    NASA Astrophysics Data System (ADS)

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ({{\\overline{V}}95} was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  15. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors.

    PubMed

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-21

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ([Formula: see text] was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems. PMID:25650520

  16. Robustness of Target Dose Coverage to Motion Uncertainties for Scanned Carbon Ion Beam Tracking Therapy of Moving Tumors

    PubMed Central

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-01-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from 6 lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high (V̄95 was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15 degree delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems. PMID:25650520

  17. Ensemble framework based real-time respiratory motion prediction for adaptive radiotherapy applications.

    PubMed

    Tatinati, Sivanagaraja; Nazarpour, Kianoush; Tech Ang, Wei; Veluvolu, Kalyana C

    2016-08-01

    Successful treatment of tumors with motion-adaptive radiotherapy requires accurate prediction of respiratory motion, ideally with a prediction horizon larger than the latency in radiotherapy system. Accurate prediction of respiratory motion is however a non-trivial task due to the presence of irregularities and intra-trace variabilities, such as baseline drift and temporal changes in fundamental frequency pattern. In this paper, to enhance the accuracy of the respiratory motion prediction, we propose a stacked regression ensemble framework that integrates heterogeneous respiratory motion prediction algorithms. We further address two crucial issues for developing a successful ensemble framework: (1) selection of appropriate prediction methods to ensemble (level-0 methods) among the best existing prediction methods; and (2) finding a suitable generalization approach that can successfully exploit the relative advantages of the chosen level-0 methods. The efficacy of the developed ensemble framework is assessed with real respiratory motion traces acquired from 31 patients undergoing treatment. Results show that the developed ensemble framework improves the prediction performance significantly compared to the best existing methods. PMID:27238760

  18. Local stimulus disambiguation with global motion filters predicts adaptive surround modulation.

    PubMed

    Dellen, Babette; Torras, Carme

    2013-10-01

    Humans have no problem segmenting different motion stimuli despite the ambiguity of local motion signals. Adaptive surround modulation, i.e., the apparent switching between integrative and antagonistic modes, is assumed to play a crucial role in this process. However, so far motion processing models based on local integration have not been able to provide a unifying explanation for this phenomenon. This motivated us to investigate the problem of local stimulus disambiguation in an alternative and fundamentally distinct motion-processing model which uses global motion filters for velocity computation. Local information is reconstructed at the end of the processing stream through the constructive interference of global signals, i.e., inverse transformations. We show that in this model local stimulus disambiguation can be achieved by means of a novel filter embedded in this architecture. This gives rise to both integrative and antagonistic effects which are in agreement with those observed in psychophysical experiments with humans, providing a functional explanation for effects of motion repulsion. PMID:23685285

  19. Region of interest based robust watermarking scheme for adaptation in small displays

    NASA Astrophysics Data System (ADS)

    Vivekanandhan, Sapthagirivasan; K. B., Kishore Mohan; Vemula, Krishna Manohar

    2010-02-01

    Now-a-days Multimedia data can be easily replicated and the copyright is not legally protected. Cryptography does not allow the use of digital data in its original form and once the data is decrypted, it is no longer protected. Here we have proposed a new double protected digital image watermarking algorithm, which can embed the watermark image blocks into the adjacent regions of the host image itself based on their blocks similarity coefficient which is robust to various noise effects like Poisson noise, Gaussian noise, Random noise and thereby provide double security from various noises and hackers. As instrumentation application requires a much accurate data, the watermark image which is to be extracted back from the watermarked image must be immune to various noise effects. Our results provide better extracted image compared to the present/existing techniques and in addition we have done resizing the same for various displays. Adaptive resizing for various size displays is being experimented wherein we crop the required information in a frame, zoom it for a large display or resize for a small display using a threshold value and in either cases background is not given much importance but it is only the fore-sight object which gains importance which will surely be helpful in performing surgeries.

  20. Robust dynamic myocardial perfusion CT deconvolution using adaptive-weighted tensor total variation regularization

    NASA Astrophysics Data System (ADS)

    Gong, Changfei; Zeng, Dong; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Feng, Qianjin; Liang, Zhengrong; Ma, Jianhua

    2016-03-01

    Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for diagnosis and risk stratification of coronary artery disease by assessing the myocardial perfusion hemodynamic maps (MPHM). Meanwhile, the repeated scanning of the same region results in a relatively large radiation dose to patients potentially. In this work, we present a robust MPCT deconvolution algorithm with adaptive-weighted tensor total variation regularization to estimate residue function accurately under the low-dose context, which is termed `MPD-AwTTV'. More specifically, the AwTTV regularization takes into account the anisotropic edge property of the MPCT images compared with the conventional total variation (TV) regularization, which can mitigate the drawbacks of TV regularization. Subsequently, an effective iterative algorithm was adopted to minimize the associative objective function. Experimental results on a modified XCAT phantom demonstrated that the present MPD-AwTTV algorithm outperforms and is superior to other existing deconvolution algorithms in terms of noise-induced artifacts suppression, edge details preservation and accurate MPHM estimation.

  1. Improving Robustness of Deep Neural Network Acoustic Models via Speech Separation and Joint Adaptive Training

    PubMed Central

    Narayanan, Arun; Wang, DeLiang

    2015-01-01

    Although deep neural network (DNN) acoustic models are known to be inherently noise robust, especially with matched training and testing data, the use of speech separation as a frontend and for deriving alternative feature representations has been shown to improve performance in challenging environments. We first present a supervised speech separation system that significantly improves automatic speech recognition (ASR) performance in realistic noise conditions. The system performs separation via ratio time-frequency masking; the ideal ratio mask (IRM) is estimated using DNNs. We then propose a framework that unifies separation and acoustic modeling via joint adaptive training. Since the modules for acoustic modeling and speech separation are implemented using DNNs, unification is done by introducing additional hidden layers with fixed weights and appropriate network architecture. On the CHiME-2 medium-large vocabulary ASR task, and with log mel spectral features as input to the acoustic model, an independently trained ratio masking frontend improves word error rates by 10.9% (relative) compared to the noisy baseline. In comparison, the jointly trained system improves performance by 14.4%. We also experiment with alternative feature representations to augment the standard log mel features, like the noise and speech estimates obtained from the separation module, and the standard feature set used for IRM estimation. Our best system obtains a word error rate of 15.4% (absolute), an improvement of 4.6 percentage points over the next best result on this corpus. PMID:26973851

  2. SU-E-T-452: Impact of Respiratory Motion On Robustly-Optimized Intensity-Modulated Proton Therapy to Treat Lung Cancers

    SciTech Connect

    Liu, W; Schild, S; Bues, M; Liao, Z; Sahoo, N; Park, P; Li, H; Li, Y; Li, X; Shen, J; Anand, A; Dong, L; Zhu, X; Mohan, R

    2014-06-01

    Purpose: We compared conventionally optimized intensity-modulated proton therapy (IMPT) treatment plans against the worst-case robustly optimized treatment plans for lung cancer. The comparison of the two IMPT optimization strategies focused on the resulting plans' ability to retain dose objectives under the influence of patient set-up, inherent proton range uncertainty, and dose perturbation caused by respiratory motion. Methods: For each of the 9 lung cancer cases two treatment plans were created accounting for treatment uncertainties in two different ways: the first used the conventional Method: delivery of prescribed dose to the planning target volume (PTV) that is geometrically expanded from the internal target volume (ITV). The second employed the worst-case robust optimization scheme that addressed set-up and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of the changes in patient anatomy due to respiratory motion was investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the two groups were compared using two-sided paired t-tests. Results: Without respiratory motion considered, we affirmed that worst-case robust optimization is superior to PTV-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, robust optimization still leads to more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality [D95% ITV: 96.6% versus 96.1% (p=0.26), D5% - D95% ITV: 10.0% versus 12.3% (p=0.082), D1% spinal cord: 31.8% versus 36.5% (p =0.035)]. Conclusion: Worst-case robust optimization led to superior solutions for lung IMPT. Despite of the fact that robust optimization did not explicitly

  3. Linear matrix inequality-based nonlinear adaptive robust control with application to unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Kun, David William

    Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known dynamic equations. Second, the final control law is valid in a larger region of operation, including far from the equilibrium states. And third, the procedure is largely methodical, requiring less expertise with gain tuning, which can be arduous for a novice engineer. Considering these facts, this thesis proposes a nonlinear controller design method that combines the advantages of adaptive robust control (ARC) with the powerful design tools of linear matrix inequalities (LMI). The ARC-LMI controller is designed with a discontinuous projection-based adaptation law, and guarantees a prescribed transient and steady state tracking performance for uncertain systems in the presence of matched disturbances. The norm of the tracking error is bounded by a known function that depends on the controller design parameters in a known form. Furthermore, the LMI-based part of the controller ensures the stability of the system while overcoming polytopic uncertainties, and minimizes the control effort. This can reduce the number of parameters that require adaptation, and helps to avoid control input saturation. These desirable characteristics make the ARC-LMI control algorithm well suited for the quadrotor UAS, which may have unknown parameters and may encounter external

  4. Adaptation to visual or auditory time intervals modulates the perception of visual apparent motion

    PubMed Central

    Zhang, Huihui; Chen, Lihan; Zhou, Xiaolin

    2012-01-01

    It is debated whether sub-second timing is subserved by a centralized mechanism or by the intrinsic properties of task-related neural activity in specific modalities (Ivry and Schlerf, 2008). By using a temporal adaptation task, we investigated whether adapting to different time intervals conveyed through stimuli in different modalities (i.e., frames of a visual Ternus display, visual blinking discs, or auditory beeps) would affect the subsequent implicit perception of visual timing, i.e., inter-stimulus interval (ISI) between two frames in a Ternus display. The Ternus display can induce two percepts of apparent motion (AM), depending on the ISI between the two frames: “element motion” for short ISIs, in which the endmost disc is seen as moving back and forth while the middle disc at the overlapping or central position remains stationary; “group motion” for longer ISIs, in which both discs appear to move in a manner of lateral displacement as a whole. In Experiment 1, participants adapted to either the typical “element motion” (ISI = 50 ms) or the typical “group motion” (ISI = 200 ms). In Experiments 2 and 3, participants adapted to a time interval of 50 or 200 ms through observing a series of two paired blinking discs at the center of the screen (Experiment 2) or hearing a sequence of two paired beeps (with pitch 1000 Hz). In Experiment 4, participants adapted to sequences of paired beeps with either low pitches (500 Hz) or high pitches (5000 Hz). After adaptation in each trial, participants were presented with a Ternus probe in which the ISI between the two frames was equal to the transitional threshold of the two types of motions, as determined by a pretest. Results showed that adapting to the short time interval in all the situations led to more reports of “group motion” in the subsequent Ternus probes; adapting to the long time interval, however, caused no aftereffect for visual adaptation but significantly more reports of group motion for

  5. Robust motion estimation on a low-power multi-core DSP

    NASA Astrophysics Data System (ADS)

    Igual, Francisco D.; Botella, Guillermo; García, Carlos; Prieto, Manuel; Tirado, Francisco

    2013-12-01

    This paper addresses the efficient implementation of a robust gradient-based optical flow model in a low-power platform based on a multi-core digital signal processor (DSP). The aim of this work was to carry out a feasibility study on the use of these devices in autonomous systems such as robot navigation, biomedical assistance, or tracking, with not only power restrictions but also real-time requirements. We consider the C6678 DSP from Texas Instruments (Dallas, TX, USA) as the target platform of our implementation. The interest of this research is particularly relevant in optical flow scope because this system can be considered as an alternative solution for mid-range video resolutions when a combination of in-processor parallelism with optimizations such as efficient memory-hierarchy exploitation and multi-processor parallelization are applied.

  6. Effects of pre-exposures to a rotating optokinetic drum on adaptation to motion sickness

    NASA Technical Reports Server (NTRS)

    Hu, Senqi; Stern, Robert M.; Koch, Kenneth L.

    1991-01-01

    The effects of two different preexposure procedures on the adaptation to motion-sickness-causing rotation motion in a rotating optokinetic drum were investigated in three groups of human subjects. The first (control) group had a standard 16-min exposure in a drum rotating at 60 deg/sec, with no preexposure. The second (incremental exposure) group had two separated 4-min preexposure periods, at 15 deg/min and 30 deg/min, immediately prior to the standard 16-min exposure. The third (abrupt exposure) group had the same preexposure but with the second rotation at 60 deg/min, followed by the standard exposure. It was found that subjects in the incremental exposure group had significantly fewer motion sickness symptoms during the standard rotation period than did the subjects in the other two groups.

  7. Motion Estimation Based on Mutual Information and Adaptive Multi-Scale Thresholding.

    PubMed

    Xu, Rui; Taubman, David; Naman, Aous Thabit

    2016-03-01

    This paper proposes a new method of calculating a matching metric for motion estimation. The proposed method splits the information in the source images into multiple scale and orientation subbands, reduces the subband values to a binary representation via an adaptive thresholding algorithm, and uses mutual information to model the similarity of corresponding square windows in each image. A moving window strategy is applied to recover a dense estimated motion field whose properties are explored. The proposed matching metric is a sum of mutual information scores across space, scale, and orientation. This facilitates the exploitation of information diversity in the source images. Experimental comparisons are performed amongst several related approaches, revealing that the proposed matching metric is better able to exploit information diversity, generating more accurate motion fields. PMID:26742132

  8. Flying triangulation - A motion-robust optical 3D sensor for the real-time shape acquisition of complex objects

    NASA Astrophysics Data System (ADS)

    Willomitzer, Florian; Ettl, Svenja; Arold, Oliver; Häusler, Gerd

    2013-05-01

    The three-dimensional shape acquisition of objects has become more and more important in the last years. Up to now, there are several well-established methods which already yield impressive results. However, even under quite common conditions like object movement or a complex shaping, most methods become unsatisfying. Thus, the 3D shape acquisition is still a difficult and non-trivial task. We present our measurement principle "Flying Triangulation" which enables a motion-robust 3D acquisition of complex-shaped object surfaces by a freely movable handheld sensor. Since "Flying Triangulation" is scalable, a whole sensor-zoo for different object sizes is presented. Concluding, an overview of current and future fields of investigation is given.

  9. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)

    NASA Astrophysics Data System (ADS)

    Kakar, Manish; Nyström, Håkan; Rye Aarup, Lasse; Jakobi Nøttrup, Trine; Rune Olsen, Dag

    2005-10-01

    The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude.

  10. Design and Experimental Evaluation of a Robust Position Controller for an Electrohydrostatic Actuator Using Adaptive Antiwindup Sliding Mode Scheme

    PubMed Central

    Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik

    2013-01-01

    A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. PMID:23983640

  11. Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness.

    PubMed

    Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan

    2014-11-01

    This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system. PMID:25330468

  12. Interindividual Variation in Functionally Adapted Trait Sets Is Established During Postnatal Growth and Predictable Based on Bone Robustness

    PubMed Central

    Pandey, Nirnimesh; Bhola, Siddharth; Goldstone, Andrew; Chen, Fred; Chrzanowski, Jessica; Terranova, Carl J.; Ghillani, Richard

    2009-01-01

    Adults acquire unique sets of morphological and tissue-quality bone traits that are predictable based on robustness and deterministic of strength and fragility. How and when individual trait sets arise during growth has not been established. Longitudinal structural changes of the metacarpal diaphysis were measured for boys and girls from 3 mo to 8 yr of age using hand radiographs obtained from the Bolton-Brush collection. Robustness varied ∼2-fold among boys and girls, and individual values were established by 2 yr of age, indicating that genetic and environmental factors controlling the relationship between growth in width and growth in length were established early during postnatal growth. Significant negative correlations between robustness and relative cortical area and a significant positive correlation between robustness and a novel measure capturing the efficiency of growth indicated that coordination of the subperiosteal and endocortical surfaces was responsible for this population acquiring a narrow range of trait sets that was predictable based on robustness. Boys and girls with robust diaphyses had proportionally thinner cortices to minimize mass, whereas children with slender diaphyses had proportionally thicker cortices to maximize stiffness. Girls had more slender metacarpals with proportionally thicker cortices compared with boys at all prepubertal ages. Although postnatal growth patterns varied in fundamentally different ways with sex and robustness, the dependence of trait sets on robustness indicated that children sustained variants affecting subperiosteal growth because they shared a common biological factor regulating functional adaptation. Considering the natural variation in acquired trait sets may help identify determinants of fracture risk, because age-related bone loss and gain will affect slender and robust structures differently. PMID:20001599

  13. Denoising the Speaking Brain: Toward a Robust Technique for Correcting Artifact-Contaminated fMRI Data under Severe Motion

    PubMed Central

    Xu, Yisheng; Tong, Yunxia; Liu, Siyuan; Chow, Ho Ming; AbdulSabur, Nuria Y.; Mattay, Govind S.; Braun, Allen R.

    2014-01-01

    A comprehensive set of methods based on spatial independent component analysis (sICA) is presented as a robust technique for artifact removal, applicable to a broad range of functional magnetic resonance imaging (fMRI) experiments that have been plagued by motion-related artifacts. Although the applications of sICA for fMRI denoising have been studied previously, three fundamental elements of this approach have not been established as follows: 1) a mechanistically-based ground truth for component classification; 2) a general framework for evaluating the performance and generalizability of automated classifiers; 3) a reliable method for validating the effectiveness of denoising. Here we perform a thorough investigation of these issues and demonstrate the power of our technique by resolving the problem of severe imaging artifacts associated with continuous overt speech production. As a key methodological feature, a dual-mask sICA method is proposed to isolate a variety of imaging artifacts by directly revealing their extracerebral spatial origins. It also plays an important role for understanding the mechanistic properties of noise components in conjunction with temporal measures of physical or physiological motion. The potentials of a spatially-based machine learning classifier and the general criteria for feature selection have both been examined, in order to maximize the performance and generalizability of automated component classification. The effectiveness of denoising is quantitatively validated by comparing the activation maps of fMRI with those of positron emission tomography acquired under the same task conditions. The general applicability of this technique is further demonstrated by the successful reduction of distance-dependent effect of head motion on resting-state functional connectivity. PMID:25225001

  14. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques.

    PubMed

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi

    2016-04-21

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients. PMID:27008349

  15. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    NASA Astrophysics Data System (ADS)

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E.; Lo, Yeh-Chi

    2016-04-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients.

  16. On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications

    SciTech Connect

    Isaksson, Marcus; Jalden, Joakim; Murphy, Martin J.

    2005-12-15

    In this study we address the problem of predicting the position of a moving lung tumor during respiration on the basis of external breathing signals--a technique used for beam gating, tracking, and other dynamic motion management techniques in radiation therapy. We demonstrate the use of neural network filters to correlate tumor position with external surrogate markers while simultaneously predicting the motion ahead in time, for situations in which neither the breathing pattern nor the correlation between moving anatomical elements is constant in time. One pancreatic cancer patient and two lung cancer patients with mid/upper lobe tumors were fluoroscopically imaged to observe tumor motion synchronously with the movement of external chest markers during free breathing. The external marker position was provided as input to a feed-forward neural network that correlated the marker and tumor movement to predict the tumor position up to 800 ms in advance. The predicted tumor position was compared to its observed position to establish the accuracy with which the filter could dynamically track tumor motion under nonstationary conditions. These results were compared to simplified linear versions of the filter. The two lung cancer patients exhibited complex respiratory behavior in which the correlation between surrogate marker and tumor position changed with each cycle of breathing. By automatically and continuously adjusting its parameters to the observations, the neural network achieved better tracking accuracy than the fixed and adaptive linear filters. Variability and instability in human respiration complicate the task of predicting tumor position from surrogate breathing signals. Our results show that adaptive signal-processing filters can provide more accurate tumor position estimates than simpler stationary filters when presented with nonstationary breathing motion.

  17. Towards a robust methodology to assess coastal impacts and adaptation policies for Europe

    NASA Astrophysics Data System (ADS)

    Vousdoukas, Michalis; Voukouvalas, Evangelos; Mentaschi, Lorenzo; Feyen, Luc

    2016-04-01

    The present contribution aims to present preliminary results from efforts towards (i) the development of the integrated risk assessment tool LISCoAsT for Europe (Large scale Integrated Sea-level and Coastal Assessment Tool); (ii) the assessment of coastal risk along the European coastline in view of climate change; and (iii) the development and application of a robust methodology to evaluate adaptation options for the European coastline under climate change scenarios. The overall approach builds on the disaster risk methodology proposed by the IPCC SREX (2012) report, defining risk as the combination of hazard, exposure and vulnerability. Substantial effort has been put in all the individual components of the risk assessment chain, including: (1) the development of dynamic scenarios of catastrophic coastal hazards (e.g., storm surges, sea-level rise) in view of climate change; (2) quantification, mapping and forecasting exposure and vulnerability in coastal areas; (3) carrying out a bottom-up, highly disaggregated assessment of climate impacts on coastal areas in Europe in view of global warming; (4) estimating the costs and assessing the effectiveness of different adaptation options. Projections indicate that, by the end of this century, sea levels in Europe will rise on average between 45 and 70 cm; while projections of coastal hazard showed that for some European regions, the increased storminess can be an additional significant driver of further risk. Projections of increasing extreme storm surge levels (SSL) were even more pronounced under the business-as-usual RCP8.5 concentration pathway, in particular along the Northern Europe coastline. The above are also reflected in the coastal impact projections, which show a significant increase in the expected annual damage (EAD) from coastal flooding. The present EAD for Europe of 800 million €/year is projected to increase up to 2.4 and 3.2 billion €/year by 2040 under RCP 4.5 and 8.5, respectively, and to 11

  18. A Robust Cooperated Control Method with Reinforcement Learning and Adaptive H∞ Control

    NASA Astrophysics Data System (ADS)

    Obayashi, Masanao; Uchiyama, Shogo; Kuremoto, Takashi; Kobayashi, Kunikazu

    This study proposes a robust cooperated control method combining reinforcement learning with robust control to control the system. A remarkable characteristic of the reinforcement learning is that it doesn't require model formula, however, it doesn't guarantee the stability of the system. On the other hand, robust control system guarantees stability and robustness, however, it requires model formula. We employ both the actor-critic method which is a kind of reinforcement learning with minimal amount of computation to control continuous valued actions and the traditional robust control, that is, H∞ control. The proposed system was compared method with the conventional control method, that is, the actor-critic only used, through the computer simulation of controlling the angle and the position of a crane system, and the simulation result showed the effectiveness of the proposed method.

  19. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    PubMed

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-01-01

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835

  20. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation

    PubMed Central

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-01-01

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix ‘R’ and the system noise V-C matrix ‘Q’. Then, the global filter uses R to calculate the information allocation factor ‘β’ for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835

  1. ISAARE: Information System for Adaptive, Assistive and Recreational Equipment: Volume III, Insitu Motion; Volume IV, Travel; Volume VI, Rehabilitation.

    ERIC Educational Resources Information Center

    Melichar, Joseph F.

    In a continuation of the Information System for Adaptive, Assistive and Recreational Equipment, described are aids for physically handicapped pupils in the functional areas of insitu motion, travel, and rehabilitation. Insitu motion equipment items are seen to include static positioning devices (such as tilt tables, stand-in tables, and protective…

  2. Finite time-Lyapunov based approach for robust adaptive control of wind-induced oscillations in power transmission lines

    NASA Astrophysics Data System (ADS)

    Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza

    2016-06-01

    Large amplitude oscillation of the power transmission lines, which is also known as galloping phenomenon, has hazardous consequences such as short circuiting and failure of transmission line. In this article, to suppress the undesirable vibrations of the transmission lines, first the governing equations of transmission line are derived via mode summation technique. Then, due to the occurrence of large amplitude vibrations, nonlinear quadratic and cubic terms are included in the derived linear equations. To suppress the vibrations, arbitrary number of the piezoelectric actuators is assumed to exert the actuation forces. Afterwards, a Lyapunov based approach is proposed for the robust adaptive suppression of the undesirable vibrations in the finite time. To compensate the supposed parametric uncertainties with unknown bands, proper adaption laws are introduced. To avoid the vibration devastating consequences as quickly as possible, appropriate control laws are designed. The vibration suppression in the finite time with supposed adaption and control laws is mathematically proved via Lyapunov finite time stability theory. Finally, to illustrate and validate the efficiency and robustness of the proposed finite time control scheme, a parametric case study with three piezoelectric actuators is performed. It is observed that the proposed active control strategy is more efficient and robust than the passive control methods.

  3. Motion-adapted catheter navigation with real-time instantiation and improved visualisation

    PubMed Central

    Kwok, Ka-Wai; Wang, Lichao; Riga, Celia; Bicknell, Colin; Cheshire, Nicholas; Yang, Guang-Zhong

    2014-01-01

    The improvements to catheter manipulation by the use of robot-assisted catheter navigation for endovascular procedures include increased precision, stability of motion and operator comfort. However, navigation through the vasculature under fluoroscopic guidance is still challenging, mostly due to physiological motion and when tortuous vessels are involved. In this paper, we propose a motion-adaptive catheter navigation scheme based on shape modelling to compensate for these dynamic effects, permitting predictive and dynamic navigations. This allows for timed manipulations synchronised with the vascular motion. The technical contribution of the paper includes the following two aspects. Firstly, a dynamic shape modelling and real-time instantiation scheme based on sparse data obtained intra-operatively is proposed for improved visualisation of the 3D vasculature during endovascular intervention. Secondly, a reconstructed frontal view from the catheter tip using the derived dynamic model is used as an interventional aid to user guidance. To demonstrate the practical value of the proposed framework, a simulated aortic branch cannulation procedure is used with detailed user validation to demonstrate the improvement in navigation quality and efficiency. PMID:24744817

  4. A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.

    PubMed

    Boschitsch, Alexander H; Fenley, Marcia O

    2011-05-10

    An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous

  5. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.

    PubMed

    Huang, Jiun-Yan; Huang, Chi-Wei; Kao, Kuo-Ching; Lai, Pik-Yin

    2013-04-10

    Biological systems are often organized spatially and temporally by multi-scale functional subsystems (modules). A specific subcellular process often corresponds to a subsystem composed of some of these interconnected modules. Accurate identification of system-level modularity organization from the large scale networks can provide valuable information on subsystem models of subcellular processes or physiological phenomena. Computational identification of functional modules from the large scale network is the key approach to solve the complexity of modularity in the past decade, but the overlapping and multi-scale nature of modules often renders unsatisfactory results in these methods. Most current methods for modularity detection are optimization-based and suffered from the drawback of size resolution limit. It is difficult to trace the origin of the unsatisfactory results, which may be due to poor data, inappropriate objective function selection or simply resulted from natural evolution, and hence no system-level accurate modular models for subcellular processes can be offered. Motivated by the idea of evolution with robustness and adaption as guiding principles, we propose a novel approach that can identify significant multi-scale overlapping modules that are sufficiently accurate at the system and subsystem levels, giving biological insights for subcellular processes. The success of our evolution strategy method is demonstrated by applying to the yeast protein-protein interaction network. Functional subsystems of important physiological phenomena can be revealed. In particular, the cell cycle controlling network is selected for detailed discussion. The cell cycle subcellular processes in yeast can be successfully dissected into functional modules of cell cycle control, cell size check point, spindle assembly checkpoint, and DNA damage check point in G2/M and S phases. The interconnections between check points and cell cycle control modules provide clues on the

  6. Motion artifact reduction in electrocardiogram using adaptive filtering based on half cell potential monitoring.

    PubMed

    Ko, Byung-hoon; Lee, Takhyung; Choi, Changmok; Kim, Youn-ho; Park, Gunguk; Kang, KyoungHo; Bae, Sang Kon; Shin, Kunsoo

    2012-01-01

    The electrocardiogram (ECG) is the main measurement parameter for effectively diagnosing chronic disease and guiding cardio-fitness therapy. ECGs contaminated by noise or artifacts disrupt the normal functioning of the automatic analysis algorithm. The objective of this study is to evaluate a method of measuring the HCP variation in motion artifacts through direct monitoring. The proposed wearable sensing device has two channels. One channel is used to measure the ECG through a differential amplifier. The other is for monitoring motion artifacts using the modified electrode and the same differential amplifier. Noise reduction was performed using adaptive filtering, based on a reference signal highly correlated with it. Direct measurement of HCP variations can eliminate the need for additional sensors. PMID:23366209

  7. Left ventricle motion modeling and analysis by adaptive-size physically based models

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Chen; Goldgof, Dmitry B.

    1992-06-01

    This paper presents a new physically based modeling method which employs adaptive-size meshes to model left ventricle (LV) shape and track its motion during cardiac cycle. The mesh size increases or decreases dynamically during surface reconstruction process to locate nodes near surface areas of interest and to minimize the fitting error. Further, presented with multiple 3-D data frames, the mesh size varies as the LV undergoes nonrigid motion. Simulation results illustrate the performance and accuracy of the proposed algorithm. Then, the algorithm is applied to the volumetric temporal cardiac data. The LV data was acquired by the 3-D computed tomography scanner. It was provided by Dr. Eric Hoffman at University of Pennsylvania Medical school and consists of 16 volumetric (128 by 128 by 118) images taken through the heart cycle.

  8. Neural adaptation in pSTS correlates with perceptual aftereffects to biological motion and with autistic traits.

    PubMed

    Thurman, Steven M; van Boxtel, Jeroen J A; Monti, Martin M; Chiang, Jeffrey N; Lu, Hongjing

    2016-08-01

    The adaptive nature of biological motion perception has been documented in behavioral studies, with research showing that prolonged viewing of an action can bias judgments of subsequent actions towards the opposite of its attributes. However, the neural mechanisms underlying action adaptation aftereffects remain unknown. We examined adaptation-induced changes in brain responses to an ambiguous action after adapting to walking or running actions within two bilateral regions of interest: 1) human middle temporal area (hMT+), a lower-level motion-sensitive region of cortex, and 2) posterior superior temporal sulcus (pSTS), a higher-level action-selective area. We found a significant correlation between neural adaptation strength in right pSTS and perceptual aftereffects to biological motion measured behaviorally, but not in hMT+. The magnitude of neural adaptation in right pSTS was also strongly correlated with individual differences in the degree of autistic traits. Participants with more autistic traits exhibited less adaptation-induced modulations of brain responses in right pSTS and correspondingly weaker perceptual aftereffects. These results suggest a direct link between perceptual aftereffects and adaptation of neural populations in right pSTS after prolonged viewing of a biological motion stimulus, and highlight the potential importance of this brain region for understanding differences in social-cognitive processing along the autistic spectrum. PMID:27164327

  9. Robust Matching Cost Function for Stereo Correspondence Using Matching by Tone Mapping and Adaptive Orthogonal Integral Image.

    PubMed

    Dinh, Vinh Quang; Nguyen, Vinh Dinh; Jeon, Jae Wook

    2015-12-01

    Real-world stereo images are inevitably affected by radiometric differences, including variations in exposure, vignetting, lighting, and noise. Stereo images with severe radiometric distortion can have large radiometric differences and include locally nonlinear changes. In this paper, we first introduce an adaptive orthogonal integral image, which is an improved version of an orthogonal integral image. After that, based on matching by tone mapping and the adaptive orthogonal integral image, we propose a robust and accurate matching cost function that can tolerate locally nonlinear intensity distortion. By using the adaptive orthogonal integral image, the proposed matching cost function can adaptively construct different support regions of arbitrary shapes and sizes for different pixels in the reference image, so it can operate robustly within object boundaries. Furthermore, we develop techniques to automatically estimate the values of the parameters of our proposed function. We conduct experiments using the proposed matching cost function and compare it with functions employing the census transform, supporting local binary pattern, and adaptive normalized cross correlation, as well as a mutual information-based matching cost function using different stereo data sets. By using the adaptive orthogonal integral image, the proposed matching cost function reduces the error from 21.51% to 15.73% in the Middlebury data set, and from 15.9% to 10.85% in the Kitti data set, as compared with using the orthogonal integral image. The experimental results indicate that the proposed matching cost function is superior to the state-of-the-art matching cost functions under radiometric variation. PMID:26415177

  10. ADAPTIVE CONTROL OF CENTER OF MASS (GLOBAL) MOTION AND ITS JOINT (LOCAL) ORIGIN IN GAIT

    PubMed Central

    Yang, Feng; Pai, Yi-Chung

    2014-01-01

    Dynamic gait stability can be quantified by the relationship of the motion state (i.e. the position and velocity) between the body center of mass (COM) and its base of support (BOS). Humans learn how to adaptively control stability by regulating the absolute COM motion state (i.e., its position and velocity) or by controlling the BOS (through stepping) in a predictable manner, or by doing both simultaneously following an external perturbation that disrupts their regular relationship. Post repeated-slip perturbation training, for instance, older adults learned to forward shift their COM position while walking with a reduced step length, hence reduced their likelihood of falls. How and to what extent each individual joint influences such adaptive alterations is mostly unknown. A three-dimensional individualized human kinematic model was established. Based on the human model, sensitivity analysis was used to systematically quantify the influence of each lower limb joint on the COM position relative to the BOS and the step length during gait. It was found that the leading foot had the greatest effect on regulating the COM position relative to the BOS; and both hips bear the most influence on the step length. These findings could guide cost-effective but efficient fall-reduction training paradigm among older population. PMID:24998991

  11. Adaptation of the S-5-S pendulum seismometer for measurement of rotational ground motion

    NASA Astrophysics Data System (ADS)

    Knejzlík, Jaromír; Kaláb, Zdeněk; Rambouský, Zdeněk

    2012-10-01

    The Russian electrodynamic seismometer model S-5-S has been adapted for the measurement of rotational ground motion. The mechanical system of the original S-5-S seismometer consists of electrodynamic sensing and damping transducer coils mounted on an asymmetrical double-arm pendulum. This pendulum is suspended on a footing using two pairs of crossed flat springs, which operate as the axis of rotation. The pendulum is stabilised by an additional spring. The S-5-S can be used either as a vertical or as a horizontal sensor. The adaptation of the S-5-S seismometer described below involves removal of the additional spring and installation of an additional mass on the damping arm. Strain gauge angle sensors are installed on one pair of the crossed flat springs. The main dynamic parameters of the rotational seismometer created in this way, i.e. the natural period and damping, are controlled electronically by feedback currents proportional to the angular displacement and angular velocity, both fed to the damping transducer coil. This new seismometer, named the S-5-SR, enables measurement of the rotational component of ground motion around the horizontal or the vertical axes. The output signal from this S-5-SR seismometer can be proportional either to rotational displacement or rotational velocity.

  12. Effectiveness of adaptive silverware on range of motion of the hand

    PubMed Central

    McDonald, Susan S.; Richards, Jim; Aguilar, Lauren

    2016-01-01

    Background. Hand function is essential to a person’s self-efficacy and greatly affects quality of life. Adapted utensils with handles of increased diameters have historically been used to assist individuals with arthritis or other hand disabilities for feeding, and other related activities of daily living. To date, minimal research has examined the biomechanical effects of modified handles, or quantified the differences in ranges of motion (ROM) when using a standard versus a modified handle. The aim of this study was to quantify the ranges of motion (ROM) required for a healthy hand to use different adaptive spoons with electrogoniometry for the purpose of understanding the physiologic advantages that adapted spoons may provide patients with limited ROM. Methods. Hand measurements included the distal interphalangeal joint (DIP), proximal interphalangeal joint (PIP), and metacarpophalangeal joint (MCP) for each finger and the interphalangeal (IP) and MCP joint for the thumb. Participants were 34 females age 18–30 (mean age 20.38 ± 1.67) with no previous hand injuries or abnormalities. Participants grasped spoons with standard handles, and spoons with handle diameters of 3.18 cm (1.25 inch), and 4.45 cm (1.75 inch). ROM measurements were obtained with an electrogoniometer to record the angle at each joint for each of the spoon handle sizes. Results. A 3 × 3 × 4 repeated measures ANOVA (Spoon handle size by Joint by Finger) found main effects on ROM of Joint (F(2, 33) = 318.68, Partial η2 = .95, p < .001), Spoon handle size (F(2, 33) = 598.73, Partial η2 = .97, p < .001), and Finger (F(3, 32) = 163.83, Partial η2 = .94, p < .001). As the spoon handle diameter size increased, the range of motion utilized to grasp the spoon handle decreased in all joints and all fingers (p < 0.01). Discussion. This study confirms the hypothesis that less range of motion is required to grip utensils with larger diameter handles, which in turn may reduce challenges for patients

  13. A decentralized adaptive fuzzy robust strategy for control of upright standing posture in paraplegia using functional electrical stimulation.

    PubMed

    Kobravi, Hamid-Reza; Erfanian, Abbas

    2012-01-01

    In this paper, we present a novel decentralized robust methodology for control of quiet upright posture during arm-free paraplegic standing using functional electrical stimulation (FES). Each muscle-joint complex is considered as a subsystem and individual controllers are designed for each one. Each controller operates solely on its associated subsystem, with no exchange of information between them, and the interaction between the subsystems are taken as external disturbances. In order to achieve robustness with respect to external disturbances, unmodeled dynamics, model uncertainty and time-varying properties of muscle-joint dynamics, a robust control framework is proposed. The method is based on the synergistic combination of an adaptive nonlinear compensator with sliding mode control (SMC). Fuzzy logic system is used to represent unknown system dynamics for implementing SMC and an adaptive updating law is designed for online estimating the system parameters such that the global stability and asymptotic convergence to zero of tracking errors is guaranteed. The proposed controller requires no prior knowledge about the dynamics of system to be controlled and no offline learning phase. The results of experiments on three paraplegic subjects show that the proposed control strategy is able to maintain the vertical standing posture using only FES control of ankle dorsiflexion and plantarflexion without using upper limbs for support and to compensate the effect of external disturbances and muscle fatigue. PMID:21764350

  14. Robust, integrated computational control of NMR experiments to achieve optimal assignment by ADAPT-NMR.

    PubMed

    Bahrami, Arash; Tonelli, Marco; Sahu, Sarata C; Singarapu, Kiran K; Eghbalnia, Hamid R; Markley, John L

    2012-01-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) represents a groundbreaking prototype for automated protein structure determination by nuclear magnetic resonance (NMR) spectroscopy. With a [(13)C,(15)N]-labeled protein sample loaded into the NMR spectrometer, ADAPT-NMR delivers complete backbone resonance assignments and secondary structure in an optimal fashion without human intervention. ADAPT-NMR achieves this by implementing a strategy in which the goal of optimal assignment in each step determines the subsequent step by analyzing the current sum of available data. ADAPT-NMR is the first iterative and fully automated approach designed specifically for the optimal assignment of proteins with fast data collection as a byproduct of this goal. ADAPT-NMR evaluates the current spectral information, and uses a goal-directed objective function to select the optimal next data collection step(s) and then directs the NMR spectrometer to collect the selected data set. ADAPT-NMR extracts peak positions from the newly collected data and uses this information in updating the analysis resonance assignments and secondary structure. The goal-directed objective function then defines the next data collection step. The procedure continues until the collected data support comprehensive peak identification, resonance assignments at the desired level of completeness, and protein secondary structure. We present test cases in which ADAPT-NMR achieved results in two days or less that would have taken two months or more by manual approaches. PMID:22427982

  15. Robust Wave-front Correction in a Small Scale Adaptive Optics System Using a Membrane Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.

    A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.

  16. Dominant-Limb Range-of-Motion and Humeral-Retrotorsion Adaptation in Collegiate Baseball and Softball Position Players

    PubMed Central

    Hibberd, Elizabeth E.; Oyama, Sakiko; Tatman, Justin; Myers, Joseph B.

    2014-01-01

    Context: Biomechanically, the motions used by baseball and softball pitchers differ greatly; however, the throwing motions of position players in both sports are strikingly similar. Although the adaptations to the dominant limb from overhead throwing have been well documented in baseball athletes, these adaptations have not been clearly identified in softball players. This information is important in order to develop and implement injury-prevention programs specific to decreasing the risk of upper extremity injury in softball athletes. Objective: To compare range-of-motion and humeral-retrotorsion characteristics of collegiate baseball and softball position players and of baseball and softball players to sex-matched controls. Design: Cross-sectional study. Setting: Research laboratories and athletic training rooms at the University of North Carolina at Chapel Hill. Patients or Other Participants: Fifty-three collegiate baseball players, 35 collegiate softball players, 25 male controls (nonoverhead athletes), and 19 female controls (nonoverhead athletes). Intervention(s): Range of motion and humeral retrotorsion were measured using a digital inclinometer and diagnostic ultrasound. Main Outcome Measure(s): Glenohumeral internal-rotation deficit, external-rotation gain, total glenohumeral range of motion, and humeral retrotorsion. Results: Baseball players had greater glenohumeral internal-rotation deficit, total–range-of-motion, and humeral-retrotorsion difference than softball players and male controls. There were no differences between glenohumeral internal-rotation deficit, total–range-of-motion, and humeral-retrotorsion difference in softball players and female controls. Conclusions: Few differences were evident between softball players and female control participants, although range-of-motion and humeral-retrotorsion adaptations were significantly different than baseball players. The throwing motions are similar between softball and baseball, but the

  17. Simple robust control laws for robot manipulators. Part 2: Adaptive case

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Wen, J. T.

    1987-01-01

    A new class of asymptotically stable adaptive control laws is introduced for application to the robotic manipulator. Unlike most applications of adaptive control theory to robotic manipulators, this analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and utilizes a parameterization based on physical (time-invariant) quantities. This approach is made possible by using energy-like Lyapunov functions which retain the nonlinear character and structure of the dynamics, rather than simple quadratic forms which are ubiquitous to the adaptive control literature, and which have bound the theory tightly to linear systems with unknown parameters. It is a unique feature of these results that the adaptive forms arise by straightforward certainty equivalence adaptation of their nonadaptive counterparts found in the companion to this paper (i.e., by replacing unknown quantities by their estimates) and that this simple approach leads to asymptotically stable closed-loop adaptive systems. Furthermore, it is emphasized that this approach does not require convergence of the parameter estimates (i.e., via persistent excitation), invertibility of the mass matrix estimate, or measurement of the joint accelerations.

  18. The tactile speed aftereffect depends on the speed of adapting motion across the skin rather than other spatiotemporal features.

    PubMed

    McIntyre, Sarah; Seizova-Cajic, Tatjana; Holcombe, Alex O

    2016-03-01

    After prolonged exposure to a surface moving across the skin, this felt movement appears slower, a phenomenon known as the tactile speed aftereffect (tSAE). We asked which feature of the adapting motion drives the tSAE: speed, the spacing between texture elements, or the frequency with which they cross the skin. After adapting to a ridged moving surface with one hand, participants compared the speed of test stimuli on adapted and unadapted hands. We used surfaces with different spatial periods (SPs; 3, 6, 12 mm) that produced adapting motion with different combinations of adapting speed (20, 40, 80 mm/s) and temporal frequency (TF; 3.4, 6.7, 13.4 ridges/s). The primary determinant of tSAE magnitude was speed of the adapting motion, not SP or TF. This suggests that adaptation occurs centrally, after speed has been computed from SP and TF, and/or that it reflects a speed cue independent of those features in the first place (e.g., indentation force). In a second experiment, we investigated the properties of the neural code for speed. Speed tuning predicts that adaptation should be greatest for speeds at or near the adapting speed. However, the tSAE was always stronger when the adapting stimulus was faster (242 mm/s) than the test (30-143 mm/s) compared with when the adapting and test speeds were matched. These results give no indication of speed tuning and instead suggest that adaptation occurs at a level where an intensive code dominates. In an intensive code, the faster the stimulus, the more the neurons fire. PMID:26631149

  19. A new class of energy based control laws for revolute robot arms - Tracking control, robustness enhancement and adaptive control

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz, Kenneth; Bayard, David S.

    1988-01-01

    A class of joint-level control laws for all-revolute robot arms is introduced. The analysis is similar to the recently proposed energy Liapunov function approach except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. By using energy Liapunov functions with the modified potential energy, a much simpler analysis can be used to show closed-loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness-enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted, and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the nonadaptive control laws by their estimates.

  20. A Robust and Scalable Software Library for Parallel Adaptive Refinement on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Lou, John Z.; Norton, Charles D.; Cwik, Thomas A.

    1999-01-01

    The design and implementation of Pyramid, a software library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is described. This software library can be easily used in a variety of unstructured parallel computational applications, including parallel finite element, parallel finite volume, and parallel visualization applications using triangular or tetrahedral meshes. The library contains a suite of well-designed and efficiently implemented modules that perform operations in a typical PAMR process. Among these are mesh quality control during successive parallel adaptive refinement (typically guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an interface to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is illustrated.

  1. Robust projective lag synchronization in drive-response dynamical networks via adaptive control

    NASA Astrophysics Data System (ADS)

    Al-mahbashi, G.; Noorani, M. S. Md; Bakar, S. A.; Al-sawalha, M. M.

    2016-02-01

    This paper investigates the problem of projective lag synchronization behavior in drive-response dynamical networks (DRDNs) with identical and non-identical nodes. An adaptive control method is designed to achieve projective lag synchronization with fully unknown parameters and unknown bounded disturbances. These parameters were estimated by adaptive laws obtained by Lyapunov stability theory. Furthermore, sufficient conditions for synchronization are derived analytically using the Lyapunov stability theory and adaptive control. In addition, the unknown bounded disturbances are also overcome by the proposed control. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Simulation results show the effectiveness of the proposed method.

  2. Visually induced self-motion sensation adapts rapidly to left-right reversal of vision

    NASA Technical Reports Server (NTRS)

    Oman, C. M.; Bock, O. L.

    1981-01-01

    Three experiments were conducted using 15 adult volunteers with no overt oculomotor or vestibular disorders. In all experiments, left-right vision reversal was achieved using prism goggles, which permitted a binocular field of vision subtending approximately 45 deg horizontally and 28 deg vertically. In all experiments, circularvection (CV) was tested before and immediately after a period of exposure to reversed vision. After one to three hours of active movement while wearing vision-reversing goggles, 10 of 15 (stationary) human subjects viewing a moving stripe display experienced a self-rotation illusion in the same direction as seen stripe motion, rather than in the opposite (normal) direction, demonstrating that the central neural pathways that process visual self-rotation cues can undergo rapid adaptive modification.

  3. Experimental Evaluation of a Braille-Reading-Inspired Finger Motion Adaptive Algorithm

    PubMed Central

    2016-01-01

    Braille reading is a complex process involving intricate finger-motion patterns and finger-rubbing actions across Braille letters for the stimulation of appropriate nerves. Although Braille reading is performed by smoothly moving the finger from left-to-right, research shows that even fluent reading requires right-to-left movements of the finger, known as “reversal”. Reversals are crucial as they not only enhance stimulation of nerves for correctly reading the letters, but they also show one to re-read the letters that were missed in the first pass. Moreover, it is known that reversals can be performed as often as in every sentence and can start at any location in a sentence. Here, we report experimental results on the feasibility of an algorithm that can render a machine to automatically adapt to reversal gestures of one’s finger. Through Braille-reading-analogous tasks, the algorithm is tested with thirty sighted subjects that volunteered in the study. We find that the finger motion adaptive algorithm (FMAA) is useful in achieving cooperation between human finger and the machine. In the presence of FMAA, subjects’ performance metrics associated with the tasks have significantly improved as supported by statistical analysis. In light of these encouraging results, preliminary experiments are carried out with five blind subjects with the aim to put the algorithm to test. Results obtained from carefully designed experiments showed that subjects’ Braille reading accuracy in the presence of FMAA was more favorable then when FMAA was turned off. Utilization of FMAA in future generation Braille reading devices thus holds strong promise. PMID:26849058

  4. Store-and-feedforward adaptive gaming system for hand-finger motion tracking in telerehabilitation.

    PubMed

    Lockery, Daniel; Peters, James F; Ramanna, Sheela; Shay, Barbara L; Szturm, Tony

    2011-05-01

    This paper presents a telerehabilitation system that encompasses a webcam and store-and-feedforward adaptive gaming system for tracking finger-hand movement of patients during local and remote therapy sessions. Gaming-event signals and webcam images are recorded as part of a gaming session and then forwarded to an online healthcare content management system (CMS) that separates incoming information into individual patient records. The CMS makes it possible for clinicians to log in remotely and review gathered data using online reports that are provided to help with signal and image analysis using various numerical measures and plotting functions. Signals from a 6 degree-of-freedom magnetic motion tracking system provide a basis for video-game sprite control. The MMT provides a path for motion signals between common objects manipulated by a patient and a computer game. During a therapy session, a webcam that captures images of the hand together with a number of performance metrics provides insight into the quality, efficiency, and skill of a patient. PMID:21536526

  5. Motion-vector-based adaptive quantization in MPEG-4 fine granular scalable coding

    NASA Astrophysics Data System (ADS)

    Yang, Shuping; Lin, Xinggang; Wang, Guijin

    2003-05-01

    Selective enhancement mechanism of Fine-Granular-Scalability (FGS) In MPEG-4 is able to enhance specific objects under bandwidth variation. A novel technique for self-adaptive enhancement of interested regions based on Motion Vectors (MVs) of the base layer is proposed, which is suitable for those video sequences having still background and what we are interested in is only the moving objects in the scene, such as news broadcasting, video surveillance, Internet education, etc. Motion vectors generated during base layer encoding are obtained and analyzed. A Gaussian model is introduced to describe non-moving macroblocks which may have non-zero MVs caused by random noise or luminance variation. MVs of these macroblocks are set to zero to prevent them from being enhanced. A segmentation algorithm, region growth, based on MV values is exploited to separate foreground from background. Post-process is needed to reduce the influence of burst noise so that only the interested moving regions are left. Applying the result in selective enhancement during enhancement layer encoding can significantly improves the visual quality of interested regions within an aforementioned video transmitted at different bit-rate in our experiments.

  6. Motion Adaptive Vertical Handoff in Cellular/WLAN Heterogeneous Wireless Network

    PubMed Central

    Ma, Lin; Xu, Yubin; Fu, Yunhai

    2014-01-01

    In heterogeneous wireless network, vertical handoff plays an important role for guaranteeing quality of service and overall performance of network. Conventional vertical handoff trigger schemes are mostly developed from horizontal handoff in homogeneous cellular network. Basically, they can be summarized as hysteresis-based and dwelling-timer-based algorithms, which are reliable on avoiding unnecessary handoff caused by the terminals dwelling at the edge of WLAN coverage. However, the coverage of WLAN is much smaller compared with cellular network, while the motion types of terminals can be various in a typical outdoor scenario. As a result, traditional algorithms are less effective in avoiding unnecessary handoff triggered by vehicle-borne terminals with various speeds. Besides that, hysteresis and dwelling-timer thresholds usually need to be modified to satisfy different channel environments. For solving this problem, a vertical handoff algorithm based on Q-learning is proposed in this paper. Q-learning can provide the decider with self-adaptive ability for handling the terminals' handoff requests with different motion types and channel conditions. Meanwhile, Neural Fuzzy Inference System (NFIS) is embedded to retain a continuous perception of the state space. Simulation results verify that the proposed algorithm can achieve lower unnecessary handoff probability compared with the other two conventional algorithms. PMID:24741347

  7. Motion adaptive vertical handoff in cellular/WLAN heterogeneous wireless network.

    PubMed

    Li, Limin; Ma, Lin; Xu, Yubin; Fu, Yunhai

    2014-01-01

    In heterogeneous wireless network, vertical handoff plays an important role for guaranteeing quality of service and overall performance of network. Conventional vertical handoff trigger schemes are mostly developed from horizontal handoff in homogeneous cellular network. Basically, they can be summarized as hysteresis-based and dwelling-timer-based algorithms, which are reliable on avoiding unnecessary handoff caused by the terminals dwelling at the edge of WLAN coverage. However, the coverage of WLAN is much smaller compared with cellular network, while the motion types of terminals can be various in a typical outdoor scenario. As a result, traditional algorithms are less effective in avoiding unnecessary handoff triggered by vehicle-borne terminals with various speeds. Besides that, hysteresis and dwelling-timer thresholds usually need to be modified to satisfy different channel environments. For solving this problem, a vertical handoff algorithm based on Q-learning is proposed in this paper. Q-learning can provide the decider with self-adaptive ability for handling the terminals' handoff requests with different motion types and channel conditions. Meanwhile, Neural Fuzzy Inference System (NFIS) is embedded to retain a continuous perception of the state space. Simulation results verify that the proposed algorithm can achieve lower unnecessary handoff probability compared with the other two conventional algorithms. PMID:24741347

  8. Adaptive robust control of cancer chemotherapy in the presence of parametric uncertainties: a comparison between three hypotheses.

    PubMed

    Moradi, Hamed; Sharifi, Mojtaba; Vossoughi, Gholamreza

    2015-01-01

    In this paper, an adaptive robust control strategy is developed for the manipulation of drug usage and consequently the tumor volume in cancer chemotherapy. Three nonlinear mathematical cell-kill models including log-kill hypothesis, Norton-Simon hypothesis and E(max) hypothesis are considered in the presence of uncertainties. The Lyapunov stability theorem is used to investigate the global stability and tracking convergence of the process response. For the first time, performance of the uncertain process is investigated and compared for three nonlinear models. In addition, the effects of treatment period, initial value of tumor volume (carrying capacity) and the uncertainty amount on dynamic system behaviour are studied. Through a comprehensive evaluation, results are presented and compared for three cell-kill models. According to the results, for a wide range of model uncertainties, the adaptive controller guarantees the robust performance. However, for a given treatment period, more variation in drug usage is required as the amount of model uncertainty increases. Moreover, for both the nominal and uncertain models, less drug usage is required as the treatment period increases. PMID:25464356

  9. Robust vibration suppression of an adaptive circular composite plate for satellite thrust vector control

    NASA Astrophysics Data System (ADS)

    Yan, Su; Ma, Kougen; Ghasemi-Nejhad, Mehrdad N.

    2008-03-01

    In this paper, a novel application of adaptive composite structures, a University of Hawaii at Manoa (UHM) smart composite platform, is developed for the Thrust Vector Control (TVC) of satellites. The device top plate of the UHM platform is an adaptive circular composite plate (ACCP) that utilizes integrated sensors/actuators and controllers to suppress low frequency vibrations during the thruster firing as well as to potentially isolate dynamic responses from the satellite structure bus. Since the disturbance due to the satellite thruster firing can be estimated, a combined strategy of an adaptive disturbance observer (DOB) and feed-forward control is proposed for vibration suppression of the ACCP with multi-sensors and multi-actuators. Meanwhile, the effects of the DOB cut-off frequency and the relative degree of the low-pass filter on the DOB performance are investigated. Simulations and experimental results show that higher relative degree of the low-pass filter with the required cut-off frequency will enhance the DOB performance for a high-order system control. Further, although the increase of the filter cut-off frequency can guarantee a sufficient stability margin, it may cause an undesirable increase of the control bandwidth. The effectiveness of the proposed adaptive DOB with feed-forward control strategy is verified through simulations and experiments using the ACCP system.

  10. Influence of environmental information in natural scenes and the effects of motion adaptation on a fly motion-sensitive neuron during simulated flight

    PubMed Central

    Ullrich, Thomas W.; Kern, Roland; Egelhaaf, Martin

    2015-01-01

    ABSTRACT Gaining information about the spatial layout of natural scenes is a challenging task that flies need to solve, especially when moving at high velocities. A group of motion sensitive cells in the lobula plate of flies is supposed to represent information about self-motion as well as the environment. Relevant environmental features might be the nearness of structures, influencing retinal velocity during translational self-motion, and the brightness contrast. We recorded the responses of the H1 cell, an individually identifiable lobula plate tangential cell, during stimulation with image sequences, simulating translational motion through natural sceneries with a variety of differing depth structures. A correlation was found between the average nearness of environmental structures within large parts of the cell's receptive field and its response across a variety of scenes, but no correlation was found between the brightness contrast of the stimuli and the cell response. As a consequence of motion adaptation resulting from repeated translation through the environment, the time-dependent response modulations induced by the spatial structure of the environment were increased relatively to the background activity of the cell. These results support the hypothesis that some lobula plate tangential cells do not only serve as sensors of self-motion, but also as a part of a neural system that processes information about the spatial layout of natural scenes. PMID:25505148

  11. Clinical Implementation of an Online Adaptive Plan-of-the-Day Protocol for Nonrigid Motion Management in Locally Advanced Cervical Cancer IMRT

    SciTech Connect

    Heijkoop, Sabrina T. Langerak, Thomas R.; Quint, Sandra; Bondar, Luiza; Mens, Jan Willem M.; Heijmen, Ben J.M.; Hoogeman, Mischa S.

    2014-11-01

    Purpose: To evaluate the clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid target motion management in locally advanced cervical cancer intensity modulated radiation therapy (IMRT). Methods and Materials: Each of the 64 patients had four markers implanted in the vaginal fornix to verify the position of the cervix during treatment. Full and empty bladder computed tomography (CT) scans were acquired prior to treatment to build a bladder volume-dependent cervix-uterus motion model for establishment of the plan library. In the first phase of clinical implementation, the library consisted of one IMRT plan based on a single model-predicted internal target volume (mpITV), covering the target for the whole pretreatment observed bladder volume range, and a 3D conformal radiation therapy (3DCRT) motion-robust backup plan based on the same mpITV. The planning target volume (PTV) combined the ITV and nodal clinical target volume (CTV), expanded with a 1-cm margin. In the second phase, for patients showing >2.5-cm bladder-induced cervix-uterus motion during planning, two IMRT plans were constructed, based on mpITVs for empty-to-half-full and half-full-to-full bladder. In both phases, a daily cone beam CT (CBCT) scan was acquired to first position the patient based on bony anatomy and nodal targets and then select the appropriate plan. Daily post-treatment CBCT was used to verify plan selection. Results: Twenty-four and 40 patients were included in the first and second phase, respectively. In the second phase, 11 patients had two IMRT plans. Overall, an IMRT plan was used in 82.4% of fractions. The main reasons for selecting the motion-robust backup plan were uterus outside the PTV (27.5%) and markers outside their margin (21.3%). In patients with two IMRT plans, the half-full-to-full bladder plan was selected on average in 45% of the first 12 fractions, which was reduced to 35% in the last treatment fractions. Conclusions: The implemented

  12. HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.

    PubMed

    Cornilescu, Gabriel; Bahrami, Arash; Tonelli, Marco; Markley, John L; Eghbalnia, Hamid R

    2007-08-01

    We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, "High-resolution Iterative Frequency Identification of Couplings" (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C' RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C' vector represents a realistic

  13. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  14. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  15. Adaptive sliding mode control on inner axis for high precision flight motion simulator

    NASA Astrophysics Data System (ADS)

    Fu, Yongling; Niu, Jianjun; Wang, Yan

    2008-10-01

    Discrete adaptive sliding mode control (ASMC) with exponential reaching law is proposed to alleviate the influence of the factors such as the periodical fluctuation torque of motor, nonlinear friction, and other disturbance which will deteriorate the tracking performance of a DC torque motor driven inner axis for a high precision flight motion simulator, considering the limited compensating ability of the ASMC for these uncertainty, an equivalent friction advance compensator based on Stribeck model is also presented for extra-low speed servo of the system. Firstly, the way direct using the available parts of the inner axis itself to ascertain the parameters for Stribeck model is listed. Secondly, adaptive approach is used to overcome the difficulty of choice the key parameter for exponential reaching law, and the stability of the algorithm is analyzed. Lastly, comparable experiments are carried out to verify the valid of the combined approach. The experiments results show with a stable 0.00006°/s speed response, 95% of time the tracking error is within 0.0002°, other servos such as sine wave tracking are also with high precision.

  16. Adaptive dynamic inversion robust control for BTT missile based on wavelet neural network

    NASA Astrophysics Data System (ADS)

    Li, Chuanfeng; Wang, Yongji; Deng, Zhixiang; Wu, Hao

    2009-10-01

    A new nonlinear control strategy incorporated the dynamic inversion method with wavelet neural networks is presented for the nonlinear coupling system of Bank-to-Turn(BTT) missile in reentry phase. The basic control law is designed by using the dynamic inversion feedback linearization method, and the online learning wavelet neural network is used to compensate the inversion error due to aerodynamic parameter errors, modeling imprecise and external disturbance in view of the time-frequency localization properties of wavelet transform. Weights adjusting laws are derived according to Lyapunov stability theory, which can guarantee the boundedness of all signals in the whole system. Furthermore, robust stability of the closed-loop system under this tracking law is proved. Finally, the six degree-of-freedom(6DOF) simulation results have shown that the attitude angles can track the anticipant command precisely under the circumstances of existing external disturbance and in the presence of parameter uncertainty. It means that the dependence on model by dynamic inversion method is reduced and the robustness of control system is enhanced by using wavelet neural network(WNN) to reconstruct inversion error on-line.

  17. Robust Adaptive 3-D Segmentation of Vessel Laminae From Fluorescence Confocal Microscope Images and Parallel GPU Implementation

    PubMed Central

    Narayanaswamy, Arunachalam; Dwarakapuram, Saritha; Bjornsson, Christopher S.; Cutler, Barbara M.; Shain, William

    2010-01-01

    This paper presents robust 3-D algorithms to segment vasculature that is imaged by labeling laminae, rather than the lumenal volume. The signal is weak, sparse, noisy, nonuniform, low-contrast, and exhibits gaps and spectral artifacts, so adaptive thresholding and Hessian filtering based methods are not effective. The structure deviates from a tubular geometry, so tracing algorithms are not effective. We propose a four step approach. The first step detects candidate voxels using a robust hypothesis test based on a model that assumes Poisson noise and locally planar geometry. The second step performs an adaptive region growth to extract weakly labeled and fine vessels while rejecting spectral artifacts. To enable interactive visualization and estimation of features such as statistical confidence, local curvature, local thickness, and local normal, we perform the third step. In the third step, we construct an accurate mesh representation using marching tetrahedra, volume-preserving smoothing, and adaptive decimation algorithms. To enable topological analysis and efficient validation, we describe a method to estimate vessel centerlines using a ray casting and vote accumulation algorithm which forms the final step of our algorithm. Our algorithm lends itself to parallel processing, and yielded an 8× speedup on a graphics processor (GPU). On synthetic data, our meshes had average error per face (EPF) values of (0.1–1.6) voxels per mesh face for peak signal-to-noise ratios from (110–28 dB). Separately, the error from decimating the mesh to less than 1% of its original size, the EPF was less than 1 voxel/face. When validated on real datasets, the average recall and precision values were found to be 94.66% and 94.84%, respectively. PMID:20199906

  18. Multiobjective control design including performance robustness for gust alleviation of a wing with adaptive material actuators

    NASA Astrophysics Data System (ADS)

    Layton, Jeffrey B.

    1997-06-01

    The goal of this paper is to examine the use of covariance control to directly design reduced-order multi-objective controllers for gust alleviation using adaptive materials as the control effector. It will use piezoelectric actuators as control effectors in a finite element model of a full-size wing model. More precisely, the finite element model is of the F-16 Agile Falcon/Active Flexible Wing that is modified to use piezoelectric actuators as control effectors. The paper will also examine the interacting roles of important control design constraints and objectives for designing an aeroservoelastic system. The paper will also present some results of multiobjective control design for the model, illustrating the benefits and complexity of modern practical control design for aeroservoelastic systems that use adaptive materials for actuation.

  19. A robust face recognition algorithm under varying illumination using adaptive retina modeling

    NASA Astrophysics Data System (ADS)

    Cheong, Yuen Kiat; Yap, Vooi Voon; Nisar, Humaira

    2013-10-01

    Variation in illumination has a drastic effect on the appearance of a face image. This may hinder the automatic face recognition process. This paper presents a novel approach for face recognition under varying lighting conditions. The proposed algorithm uses adaptive retina modeling based illumination normalization. In the proposed approach, retina modeling is employed along with histogram remapping following normal distribution. Retina modeling is an approach that combines two adaptive nonlinear equations and a difference of Gaussians filter. Two databases: extended Yale B database and CMU PIE database are used to verify the proposed algorithm. For face recognition Gabor Kernel Fisher Analysis method is used. Experimental results show that the recognition rate for the face images with different illumination conditions has improved by the proposed approach. Average recognition rate for Extended Yale B database is 99.16%. Whereas, the recognition rate for CMU-PIE database is 99.64%.

  20. A robust method for suppressing motion-induced coil sensitivity variations during prospective correction of head motion in fMRI.

    PubMed

    Faraji-Dana, Zahra; Tam, Fred; Chen, J Jean; Graham, Simon J

    2016-10-01

    Prospective motion correction is a promising candidate solution to suppress the effects of head motion during fMRI, ideally allowing the imaging plane to remain fixed with respect to the moving head. Residual signal artifacts may remain, however, because head motion in relation to a fixed multi-channel receiver coil (with non-uniform sensitivity maps) can potentially introduce unwanted signal variations comparable to the weak fMRI BOLD signal (~1%-4% at 1.5-3.0T). The present work aimed to investigate the magnitude of these residual artifacts, and characterize the regime over which prospective motion correction benefits from adjusting sensitivity maps to reflect relative positional change between the head and the coil. Numerical simulations were used to inform human fMRI experiments. The simulations indicated that for axial imaging within a commonly used 12-channel head coil, 5° of head rotation in-plane produced artifact signal changes of ~3%. Subsequently, six young adults were imaged with and without overt head motions of approximately this extent, with and without prospective motion correction using the Prospective Acquisition CorrEction (PACE) method, and with and without sensitivity map adjustments. Sensitivity map adjustments combined with PACE strongly protected against the artifacts of interest, as indicated by comparing three metrics of data quality (number of activated voxels, Dice coefficient of activation overlap, temporal standard deviation of baseline fMRI timeseries data) across the different experimental conditions. It is concluded that head motion in relation to a fixed multi-channel coil can adversely affect fMRI with prospective motion correction, and that sensitivity map adjustment can mitigate this effect at 3.0T. PMID:27451407

  1. Robust Transmission of H.264/AVC Streams Using Adaptive Group Slicing and Unequal Error Protection

    NASA Astrophysics Data System (ADS)

    Thomos, Nikolaos; Argyropoulos, Savvas; Boulgouris, Nikolaos V.; Strintzis, Michael G.

    2006-12-01

    We present a novel scheme for the transmission of H.264/AVC video streams over lossy packet networks. The proposed scheme exploits the error-resilient features of H.264/AVC codec and employs Reed-Solomon codes to protect effectively the streams. A novel technique for adaptive classification of macroblocks into three slice groups is also proposed. The optimal classification of macroblocks and the optimal channel rate allocation are achieved by iterating two interdependent steps. Dynamic programming techniques are used for the channel rate allocation process in order to reduce complexity. Simulations clearly demonstrate the superiority of the proposed method over other recent algorithms for transmission of H.264/AVC streams.

  2. Experimental Investigation on Adaptive Robust Controller Designs Applied to Constrained Manipulators

    PubMed Central

    Nogueira, Samuel L.; Pazelli, Tatiana F. P. A. T.; Siqueira, Adriano A. G.; Terra, Marco H.

    2013-01-01

    In this paper, two interlaced studies are presented. The first is directed to the design and construction of a dynamic 3D force/moment sensor. The device is applied to provide a feedback signal of forces and moments exerted by the robotic end-effector. This development has become an alternative solution to the existing multi-axis load cell based on static force and moment sensors. The second one shows an experimental investigation on the performance of four different adaptive nonlinear ℋ∞ control methods applied to a constrained manipulator subject to uncertainties in the model and external disturbances. Coordinated position and force control is evaluated. Adaptive procedures are based on neural networks and fuzzy systems applied in two different modeling strategies. The first modeling strategy requires a well-known nominal model for the robot, so that the intelligent systems are applied only to estimate the effects of uncertainties, unmodeled dynamics and external disturbances. The second strategy considers that the robot model is completely unknown and, therefore, intelligent systems are used to estimate these dynamics. A comparative study is conducted based on experimental implementations performed with an actual planar manipulator and with the dynamic force sensor developed for this purpose. PMID:23598503

  3. Multivariable robust adaptive sliding mode control of an industrial boiler-turbine in the presence of modeling imprecisions and external disturbances: A comparison with type-I servo controller.

    PubMed

    Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza

    2015-09-01

    To guarantee the safety and efficient performance of the power plant, a robust controller for the boiler-turbine unit is needed. In this paper, a robust adaptive sliding mode controller (RASMC) is proposed to control a nonlinear multi-input multi-output (MIMO) model of industrial boiler-turbine unit, in the presence of unknown bounded uncertainties and external disturbances. To overcome the coupled nonlinearities and investigate the zero dynamics, input-output linearization is performed, and then the new decoupled inputs are derived. To tackle the uncertainties and external disturbances, appropriate adaption laws are introduced. For constructing the RASMC, suitable sliding surface is considered. To guarantee the sliding motion occurrence, appropriate control laws are constructed. Then the robustness and stability of the proposed RASMC is proved via Lyapunov stability theory. To compare the performance of the purposed RASMC with traditional control schemes, a type-I servo controller is designed. To evaluate the performance of the proposed control schemes, simulation studies on nonlinear MIMO dynamic system in the presence of high frequency bounded uncertainties and external disturbances are conducted and compared. Comparison of the results reveals the superiority of proposed RASMC over the traditional control schemes. RAMSC acts efficiently in disturbance rejection and keeping the system behavior in desirable tracking objectives, without the existence of unstable quasi-periodic solutions. PMID:25983065

  4. Robust adaptive integrated translation and rotation control of a rigid spacecraft with control saturation and actuator misalignment

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Duan, Guangren

    2013-05-01

    This paper handles the integrated translation and rotation tracking control problem of a rigid spacecraft with unknown mass property, actuator misalignment and control saturation. In view of the system natural coupling, the coupled translational and rotational dynamics of the spacecraft is developed, where a thruster configuration with installation misalignment is taken into account. By using anti-windup technique and backstepping philosophy, a robust adaptive integrated control scheme is proposed such that the spacecraft is able to track the command position and attitude signals in the presence of external disturbance, unknown mass property, thruster misalignment and control saturation. Within the Lyapunov framework, the uniformly ultimate boundedness of the system states is guaranteed. In particular, given the nominal case, the asymptotic convergence of the system states can be further ensured by the proposed control scheme. Finally, numerical simulation demonstrates the effect of the designed control strategy.

  5. Demonstration of a 17 cm robust carbon fiber deformable mirror for adaptive optics

    SciTech Connect

    Ammons, S M; Hart, M; Coughenour, B; Romeo, R; Martin, R; Rademacher, M

    2011-09-12

    Carbon-fiber reinforced polymer (CFRP) composite is an attractive material for fabrication of optics due to its high stiffness-to-weight ratio, robustness, zero coefficient of thermal expansion (CTE), and the ability to replicate multiple optics from the same mandrel. We use 8 and 17 cm prototype CFRP thin-shell deformable mirrors to show that residual CTE variation may be addressed with mounted actuators for a variety of mirror sizes. We present measurements of surface quality at a range of temperatures characteristic of mountaintop observatories. For the 8 cm piece, the figure error of the Al-coated reflective surface under best actuator correction is {approx}43 nm RMS. The 8 cm mirror has a low surface error internal to the outer ring of actuators (17 nm RMS at 20 C and 33 nm RMS at -5 C). Surface roughness is low (< 3 nm P-V) at a variety of temperatures. We present new figure quality measurements of the larger 17 cm mirror, showing that the intra-actuator figure error internal to the outer ring of actuators (38 nm RMS surface with one-third the actuator density of the 8 cm mirror) does not scale sharply with mirror diameter.

  6. Demonstration of 17 cm robust carbon fiber deformable mirror for adaptive optics

    NASA Astrophysics Data System (ADS)

    Ammons, S. Mark; Hart, Michael; Coughenour, Blake; Romeo, Robert; Martin, Robert; Rademacher, Matt

    2011-10-01

    Carbon-fiber reinforced polymer (CFRP) composite is an attractive material for fabrication of optics due to its high stiffness-to-weight ratio, robustness, zero coefficient of thermal expansion (CTE), and the ability to replicate multiple optics from the same mandrel. We use 8 and 17 cm prototype CFRP thin-shell deformable mirrors to show that residual CTE variation may be addressed with mounted actuators for a variety of mirror sizes. We present measurements of surface quality at a range of temperatures characteristic of mountaintop observatories. For the 8 cm piece, the figure error of the Al-coated reflective surface under best actuator correction is ~43 nm RMS. The 8 cm mirror has a low surface error internal to the outer ring of actuators (17 nm RMS at 20°C and 33 nm RMS at -5°C). Surface roughness is low (< 3 nm P-V) at a variety of temperatures. We present new figure quality measurements of the larger 17 cm mirror, showing that the intra-actuator figure error internal to the outer ring of actuators (38 nm RMS surface with one-third the actuator density of the 8 cm mirror) does not scale sharply with mirror diameter.

  7. Adaptive Changes In Postural Equilibrium And Motion Sickness Following Repeated Exposures To Virtual Environments

    NASA Technical Reports Server (NTRS)

    Harm, D. L.; Taylor, L. C.

    2006-01-01

    Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Changes in the environmental sensory stimulus conditions and the way we interact with the new stimuli may result in motion sickness, and perceptual, spatial orientation and sensorimotor disturbances. Initial interpretation of novel sensory information may be inappropriate and result in perceptual errors. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity, unilateral labyrinthectomy and experimentally produced stimulus rearrangements. Adaptation is revealed by aftereffects including perceptual disturbances and sensorimotor control disturbances. The purpose of the current study was to compare disturbances in postural control produced by dome and head-mounted virtual environment displays, and to examine the effects of exposure duration, and repeated exposures to VR systems. Forty-one subjects (21 men, 20 women) participated in the study with an age range of 21-49 years old. One training session was completed in order to achieve stable performance on the posture and VR tasks before participating in the experimental sessions. Three experimental sessions were performed each separated by one day. The subjects performed a navigation and pick and place task in either a dome or head-mounted display

  8. Biologically-inspired robust and adaptive multi-sensor fusion and active control

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.

  9. Adaptive detection method of infrared small target based on target-background separation via robust principal component analysis

    NASA Astrophysics Data System (ADS)

    Wang, Chuanyun; Qin, Shiyin

    2015-03-01

    Motivated by the robust principal component analysis, infrared small target image is regarded as low-rank background matrix corrupted by sparse target and noise matrices, thus a new target-background separation model is designed, subsequently, an adaptive detection method of infrared small target is presented. Firstly, multi-scale transform and patch transform are used to generate an image patch set for infrared small target detection; secondly, target-background separation of each patch is achieved by recovering the low-rank and sparse matrices using adaptive weighting parameter; thirdly, the image reconstruction and fusion are carried out to obtain the entire separated background and target images; finally, the infrared small target detection is realized by threshold segmentation of template matching similarity measurement. In order to validate the performance of the proposed method, three experiments: target-background separation, background clutter suppression and infrared small target detection, are performed over different clutter background with real infrared small targets in single-frame or sequence images. A series of experiment results demonstrate that the proposed method can not only suppress background clutter effectively even if with strong noise interference but also detect targets accurately with low false alarm rate.

  10. Robust fundamental frequency estimation in sustained vowels: Detailed algorithmic comparisons and information fusion with adaptive Kalman filtering

    PubMed Central

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.

    2014-01-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269

  11. Cultural adaptation and validation of the Health Literacy Questionnaire (HLQ): robust nine-dimension Danish language confirmatory factor model.

    PubMed

    Maindal, Helle Terkildsen; Kayser, Lars; Norgaard, Ole; Bo, Anne; Elsworth, Gerald R; Osborne, Richard H

    2016-01-01

    Health literacy is an important construct in population health and healthcare requiring rigorous measurement. The Health Literacy Questionnaire (HLQ), with nine scales, measures a broad perception of health literacy. This study aimed to adapt the HLQ to the Danish setting, and to examine the factor structure, homogeneity, reliability and discriminant validity. The HLQ was adapted using forward-backward translation, consensus conference and cognitive interviews (n = 15). Psychometric properties were examined based on data collected by face-to-face interview (n = 481). Tests included difficulty level, composite scale reliability and confirmatory factor analysis (CFA). Cognitive testing revealed that only minor re-wording was required. The easiest scale to respond to positively was 'Social support for health', and the hardest were 'Navigating the healthcare system' and 'Appraisal of health information'. CFA of the individual scales showed acceptably high loadings (range 0.49-0.93). CFA fit statistics after including correlated residuals were good for seven scales, acceptable for one. Composite reliability and Cronbach's α were >0.8 for all but one scale. A nine-factor CFA model was fitted to items with no cross-loadings or correlated residuals allowed. Given this restricted model, the fit was satisfactory. The HLQ appears robust for its intended application of assessing health literacy in a range of settings. Further work is required to demonstrate sensitivity to measure changes. PMID:27536516

  12. Robust fundamental frequency estimation in sustained vowels: detailed algorithmic comparisons and information fusion with adaptive Kalman filtering.

    PubMed

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A; Fox, Cynthia; Ramig, Lorraine O; Clifford, Gari D

    2014-05-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F(0)) of speech signals. This study examines ten F(0) estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F(0) in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F(0) estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F(0) estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F(0) estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F(0) estimation is required. PMID:24815269

  13. Adapting to a Changing Colorado River: Making Future Water Deliveries More Reliable Through Robust Management Strategies

    NASA Astrophysics Data System (ADS)

    Groves, D.; Bloom, E.; Fischbach, J. R.; Knopman, D.

    2013-12-01

    The U.S. Bureau of Reclamation and water management agencies representing the seven Colorado River Basin States initiated the Colorado River Basin Study in January 2010 to evaluate the resiliency of the Colorado River system over the next 50 years and compare different options for ensuring successful management of the river's resources. RAND was asked to join this Basin Study Team in January 2012 to help develop an analytic approach to identify key vulnerabilities in managing the Colorado River basin over the coming decades and to evaluate different options that could reduce this vulnerability. Using a quantitative approach for planning under uncertainty called Robust Decision Making (RDM), the RAND team assisted the Basin Study by: identifying future vulnerable conditions that could lead to imbalances that could cause the basin to be unable to meet its water delivery objectives; developing a computer-based tool to define 'portfolios' of management options reflecting different strategies for reducing basin imbalances; evaluating these portfolios across thousands of future scenarios to determine how much they could improve basin outcomes; and analyzing the results from the system simulations to identify key tradeoffs among the portfolios. This talk will describe RAND's contribution to the Basin Study, focusing on the methodologies used to to identify vulnerabilities for Upper Basin and Lower Basin water supply reliability and to compare portfolios of options. Several key findings emerged from the study. Future Streamflow and Climate Conditions Are Key: - Vulnerable conditions arise in a majority of scenarios where streamflows are lower than historical averages and where drought conditions persist for eight years or more. - Depending where the shortages occur, problems will arise for delivery obligations for the upper river basin and the lower river basin. The lower river basin is vulnerable to a broader range of plausible future conditions. Additional Investments in

  14. Adaptive and robust algorithms and tests for visual-based navigation of a space robotic manipulator

    NASA Astrophysics Data System (ADS)

    Sabatini, Marco; Monti, Riccardo; Gasbarri, Paolo; Palmerini, Giovanni B.

    2013-02-01

    novel approaches proposed, the experimental test campaign shows a remarkable increase in the robustness of the guidance, navigation and control systems.

  15. Adaptive Changes In Postural Equilibrium And Motion Sickness Following Repeated Exposures To Virtual Environments

    NASA Technical Reports Server (NTRS)

    Harm, D. L.; Taylor, L. C.

    2006-01-01

    Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Changes in the environmental sensory stimulus conditions and the way we interact with the new stimuli may result in motion sickness, and perceptual, spatial orientation and sensorimotor disturbances. Initial interpretation of novel sensory information may be inappropriate and result in perceptual errors. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity, unilateral labyrinthectomy and experimentally produced stimulus rearrangements. Adaptation is revealed by aftereffects including perceptual disturbances and sensorimotor control disturbances. The purpose of the current study was to compare disturbances in postural control produced by dome and head-mounted virtual environment displays, and to examine the effects of exposure duration, and repeated exposures to VR systems. Forty-one subjects (21 men, 20 women) participated in the study with an age range of 21-49 years old. One training session was completed in order to achieve stable performance on the posture and VR tasks before participating in the experimental sessions. Three experimental sessions were performed each separated by one day. The subjects performed a navigation and pick and place task in either a dome or head-mounted display

  16. Motion Aftereffects Transfer between Touch and Vision

    PubMed Central

    Konkle, Talia; Wang, Qi; Hayward, Vincent; Moore, Christopher I.

    2012-01-01

    Summary Current views on multisensory motion integration assume separate substrates where visual motion perceptually dominates tactile motion [1, 2]. However, recent neuroimaging findings demonstrate strong activation of visual motion processing areas by tactile stimuli [3–6], implying a potentially bidirectional relationship. To test the relationship between visual and tactile motion processing, we examined the transfer of motion aftereffects. In the well-known visual motion aftereffect, adapting to visual motion in one direction causes a subsequently presented stationary stimulus to be perceived as moving in the opposite direction [7, 8]. The existence of motion aftereffects in the tactile domain was debated [9–11], though robust tactile motion aftereffects have recently been demonstrated [12, 13]. By using a motion adaptation paradigm, we found that repeated exposure to visual motion in a given direction produced a tactile motion aftereffect, the illusion of motion in the opponent direction across the finger pad. We also observed that repeated exposure to tactile motion induces a visual motion aftereffect, biasing the perceived direction of counterphase gratings. These crossmodal aftereffects, operating both from vision to touch and from touch to vision, present strong behavioral evidence that the processing of visual and tactile motion rely on shared representations that dynamically impact modality-specific perception. PMID:19361996

  17. Science-society collaboration for robust adaptation planning in water management - The Maipo River Basin in Chile

    NASA Astrophysics Data System (ADS)

    Ocampo Melgar, Anahí; Vicuña, Sebastián; Gironás, Jorge

    2015-04-01

    The Metropolitan Region (M.R.) in Chile is populated by over 6 million people and supplied by the Maipo River and its large number of irrigation channels. Potential environmental alterations caused by global change will extremely affect managers and users of water resources in this semi-arid basin. These hydro-climatological impacts combined with demographic and economic changes will be particularly complex in the city of Santiago, due to the diverse, counterpoised and equally important existing activities and demands. These challenges and complexities request the implementation of flexible plans and actions to adapt policies, institutions, infrastructure and behaviors to a new future with climate change. Due to the inherent uncertainties in the future, a recent research project entitled MAPA (Maipo Adaptation Plan for its initials in Spanish) has formed a collaborative science-society platform to generate insights into the vulnerabilities, challenges and possible mitigation measures that would be necessary to deal with the potential changes in the M.R. This large stakeholder platform conformed by around 30 public, private and civil society organizations, both at the local and regional level and guided by a Robust Decision Making Framework (RDMF) has identified vulnerabilities, future scenarios, performance indicators and mitigation measures for the Maipo River basin. The RDMF used in this project is the XLRM framework (Lempert et al. 2006) that incorporates policy levers (L), exogenous uncertainties (X), measures of performance standards (M) and relationships (R) in an interlinked process. Both stakeholders' expertise and computational capabilities have been used to create hydrological models for the urban, rural and highland sectors supported also by the Water Evaluation and Planning system software (WEAP). The identification of uncertainties and land use transition trends was used to develop future development scenarios to explore possible water management

  18. Scan-pattern and signal processing for microvasculature visualization with complex SD-OCT: tissue-motion artifacts robustness and decorrelation time - blood vessel characteristics

    NASA Astrophysics Data System (ADS)

    Matveev, Lev A.; Zaitsev, Vladimir Y.; Gelikonov, Grigory V.; Matveyev, Alexandr L.; Moiseev, Alexander A.; Ksenofontov, Sergey Y.; Gelikonov, Valentin M.; Demidov, Valentin; Vitkin, Alex

    2015-03-01

    We propose a modification of OCT scanning pattern and corresponding signal processing for 3D visualizing blood microcirculation from complex-signal B-scans. We describe the scanning pattern modifications that increase the methods' robustness to bulk tissue motion artifacts, with speed up to several cm/s. Based on these modifications, OCT-based angiography becomes more realistic under practical measurement conditions. For these scan patterns, we apply novel signal processing to separate the blood vessels with different decorrelation times, by varying of effective temporal diversity of processed signals.

  19. Discrimination of Human Forearm Motions on the Basis of Myoelectric Signals by Using Adaptive Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Kiso, Atsushi; Seki, Hirokazu

    This paper describes a method for discriminating of the human forearm motions based on the myoelectric signals using an adaptive fuzzy inference system. In conventional studies, the neural network is often used to estimate motion intention by the myoelectric signals and realizes the high discrimination precision. On the other hand, this study uses the fuzzy inference for a human forearm motion discrimination based on the myoelectric signals. This study designs the membership function and the fuzzy rules using the average value and the standard deviation of the root mean square of the myoelectric potential for every channel of each motion. In addition, the characteristics of the myoelectric potential gradually change as a result of the muscle fatigue. Therefore, the motion discrimination should be performed by taking muscle fatigue into consideration. This study proposes a method to redesign the fuzzy inference system such that dynamic change of the myoelectric potential because of the muscle fatigue will be taken into account. Some experiments carried out using a myoelectric hand simulator show the effectiveness of the proposed motion discrimination method.

  20. Range of motion, neuromechanical, and architectural adaptations to plantar flexor stretch training in humans.

    PubMed

    Blazevich, A J; Cannavan, D; Waugh, C M; Miller, S C; Thorlund, J B; Aagaard, P; Kay, A D

    2014-09-01

    The neuromuscular adaptations in response to muscle stretch training have not been clearly described. In the present study, changes in muscle (at fascicular and whole muscle levels) and tendon mechanics, muscle activity, and spinal motoneuron excitability were examined during standardized plantar flexor stretches after 3 wk of twice daily stretch training (4 × 30 s). No changes were observed in a nonexercising control group (n = 9), however stretch training elicited a 19.9% increase in dorsiflexion range of motion (ROM) and a 28% increase in passive joint moment at end ROM (n = 12). Only a trend toward a decrease in passive plantar flexor moment during stretch (-9.9%; P = 0.15) was observed, and no changes in electromyographic amplitudes during ROM or at end ROM were detected. Decreases in H(max):M(max) (tibial nerve stimulation) were observed at plantar flexed (gastrocnemius medialis and soleus) and neutral (soleus only) joint angles, but not with the ankle dorsiflexed. Muscle and fascicle strain increased (12 vs. 23%) along with a decrease in muscle stiffness (-18%) during stretch to a constant target joint angle. Muscle length at end ROM increased (13%) without a change in fascicle length, fascicle rotation, tendon elongation, or tendon stiffness following training. A lack of change in maximum voluntary contraction moment and rate of force development at any joint angle was taken to indicate a lack of change in series compliance of the muscle-tendon unit. Thus, increases in end ROM were underpinned by increases in maximum tolerable passive joint moment (stretch tolerance) and both muscle and fascicle elongation rather than changes in volitional muscle activation or motoneuron pool excitability. PMID:24947023

  1. Reproduction of Linear Motion with Adaptation for Change in Environmental Position

    NASA Astrophysics Data System (ADS)

    Tsunashima, Noboru; Katsura, Seiichiro

    In recent years, a technology for the preservation and reproduction of human motion has been in demand in the fields of manufacturing and human support. An efficient method for this purpose is the use of a motion-copying system. This system deals not only with the trajectory but also with the strength of human motion. However, there are several problems associated with this system. One of them is that the saved motion is not reproduced completely when the environmental location in the motion-loading system is different from that in the motion-saving system. For real-world haptics, a reproduction method that considers the relationship between human motion and the environment is necessary. In this paper, a motion-copying system based on acceleration information is proposed. In the proposed method, human motion is treated as the acceleration information. As a result, motion reproduction is realized even when the environmental location is different, because the acceleration information does not depend on the initial position. The validity of the proposed method is confirmed by experiments.

  2. Perceived self-orientation and self-motion in microgravity, after landing and during preflight adaptation training

    NASA Technical Reports Server (NTRS)

    Harm, D. L.; Parker, D. E.

    1993-01-01

    The research described in this paper is intended to support development and evaluation of preflight adaptation training (PAT) apparatus and procedures. Successful training depends on appropriate manipulation of visual and inertial stimuli that control perception of self-motion and self-orientation. For one part of this process, astronauts are trained to report their self-motion and self-orientation experiences. Before their space mission, they are exposed to the altered sensory environments produced by the PAT trainers. During and after the mission, they report their motion and orientation experiences. Subsequently, they are again exposed to the PAT trainers and are asked to describe relationships between their experiences in microgravity and following entry and their experiences in the trainers.

  3. Adaptive Radiation Therapy for Postprostatectomy Patients Using Real-Time Electromagnetic Target Motion Tracking During External Beam Radiation Therapy

    SciTech Connect

    Zhu, Mingyao; Bharat, Shyam; Michalski, Jeff M.; Gay, Hiram A.; Hou, Wei-Hsien; Parikh, Parag J.

    2013-03-15

    Purpose: Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Methods and Materials: Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (D{sub min}) with the planned D{sub min} to the CTV. Treatments were considered adequate if the delivered CTV D{sub min} is at least 95% of the planned CTV D{sub min}. Results: Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: −0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Conclusion: Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery.

  4. Energetic consequences of using a prosthesis with adaptive ankle motion during slope walking in persons with a transtibial amputation

    PubMed Central

    Darter, Benjamin J; Wilken, Jason M

    2014-01-01

    Background Technological advances in prosthetic design include the use of microprocessors that adapt device performance based on user motion. The Proprio ankle unit prepositions the foot to adjust for walking on slopes and increases foot clearance during swing to minimize gait deviations. Study design Comparative analysis. Objectives To investigate the effect of a prosthesis with adaptive ankle motion on physiological gait performance during slope walking. Methods Six persons with a unilateral transtibial amputation completed treadmill walking tests at three slopes (−5°, 0°, and 5°). The participants were tested wearing a customary device, active Proprio (Pon), and an identical inactivated Proprio (Poff). Results Metabolic energy expenditure, energy cost for walking, and rating of walking difficulty were not statistically different between the Pon and Poff for all tested slopes. However, for slope descent, energy expenditure and energy cost for walking improved significantly by an average of 10%–14% for both the Pon and Poff compared to the customary limb. Rating of walking difficulty also showed an improvement with slope descent for both the Pon and Poff compared to the customary device. An improvement with slope ascent was found for Pon compared to the customary limb only. Conclusions Adaptive ankle motion provided no meaningful physiological benefit during slope walking. The Proprio was, however, less demanding than the customary device for slope descent. Differences in the mechanical properties of the prosthetic feet likely contributed to the changes. PMID:23525888

  5. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter

    NASA Astrophysics Data System (ADS)

    Xiong, Rui; Gong, Xianzhi; Mi, Chunting Chris; Sun, Fengchun

    2013-12-01

    This paper presents a novel data-driven based approach for the estimation of the state of charge (SoC) of multiple types of lithium ion battery (LiB) cells with adaptive extended Kalman filter (AEKF). A modified second-order RC network based battery model is employed for the state estimation. Based on the battery model and experimental data, the SoC variation per mV voltage for different types of battery chemistry is analyzed and the parameters are identified. The AEKF algorithm is then employed to achieve accurate data-driven based SoC estimation, and the multi-parameter, closed loop feedback system is used to achieve robustness. The accuracy and convergence of the proposed approach is analyzed for different types of LiB cells, including convergence behavior of the model with a large initial SoC error. The results show that the proposed approach has good accuracy for different types of LiB cells, especially for C/LFP LiB cell that has a flat open circuit voltage (OCV) curve. The experimental results show good agreement with the estimation results with maximum error being less than 3%.

  6. Image copy-move forgery detection based on sped-up robust features descriptor and adaptive minimal-maximal suppression

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Sun, Xingming; Xin, Xiangyang; Hu, Weifeng; Wu, Youxin

    2015-11-01

    Region duplication is a simple and effective operation to create digital image forgeries, where a continuous portion of pixels in an image is copied and pasted to a different location in the same image. Many prior copy-move forgery detection methods suffer from their inability to detect the duplicated region, which is subjected to various geometric transformations. A keypoint-based approach is proposed to detect the copy-move forgery in an image. Our method starts by extracting the keypoints through a fast Hessian detector. Then the adaptive minimal-maximal suppression (AMMS) strategy is developed for distributing the keypoints evenly throughout an image. By using AMMS and a sped-up robust feature descriptor, the proposed method is able to deal with the problem of insufficient keypoints in the almost uniform area. Finally, the geometric transformation performed in cloning is recovered by using the maximum likelihood estimation of the homography. Experimental results show the efficacy of this technique in detecting copy-move forgeries and estimating the geometric transformation parameters. Compared with the state of the art, our approach obtains a higher true positive rate and a lower false positive rate.

  7. Energy Landscape Reveals That the Budding Yeast Cell Cycle Is a Robust and Adaptive Multi-stage Process

    PubMed Central

    Lv, Cheng; Li, Xiaoguang; Li, Fangting; Li, Tiejun

    2015-01-01

    Quantitatively understanding the robustness, adaptivity and efficiency of cell cycle dynamics under the influence of noise is a fundamental but difficult question to answer for most eukaryotic organisms. Using a simplified budding yeast cell cycle model perturbed by intrinsic noise, we systematically explore these issues from an energy landscape point of view by constructing an energy landscape for the considered system based on large deviation theory. Analysis shows that the cell cycle trajectory is sharply confined by the ambient energy barrier, and the landscape along this trajectory exhibits a generally flat shape. We explain the evolution of the system on this flat path by incorporating its non-gradient nature. Furthermore, we illustrate how this global landscape changes in response to external signals, observing a nice transformation of the landscapes as the excitable system approaches a limit cycle system when nutrients are sufficient, as well as the formation of additional energy wells when the DNA replication checkpoint is activated. By taking into account the finite volume effect, we find additional pits along the flat cycle path in the landscape associated with the checkpoint mechanism of the cell cycle. The difference between the landscapes induced by intrinsic and extrinsic noise is also discussed. In our opinion, this meticulous structure of the energy landscape for our simplified model is of general interest to other cell cycle dynamics, and the proposed methods can be applied to study similar biological systems. PMID:25794282

  8. Observation-driven adaptive differential evolution and its application to accurate and smooth bronchoscope three-dimensional motion tracking.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-08-01

    This paper proposes an observation-driven adaptive differential evolution algorithm that fuses bronchoscopic video sequences, electromagnetic sensor measurements, and computed tomography images for accurate and smooth bronchoscope three-dimensional motion tracking. Currently an electromagnetic tracker with a position sensor fixed at the bronchoscope tip is commonly used to estimate bronchoscope movements. The large tracking error from directly using sensor measurements, which may be deteriorated heavily by patient respiratory motion and the magnetic field distortion of the tracker, limits clinical applications. How to effectively use sensor measurements for precise and stable bronchoscope electromagnetic tracking remains challenging. We here exploit an observation-driven adaptive differential evolution framework to address such a challenge and boost the tracking accuracy and smoothness. In our framework, two advantageous points are distinguished from other adaptive differential evolution methods: (1) the current observation including sensor measurements and bronchoscopic video images is used in the mutation equation and the fitness computation, respectively and (2) the mutation factor and the crossover rate are determined adaptively on the basis of the current image observation. The experimental results demonstrate that our framework provides much more accurate and smooth bronchoscope tracking than the state-of-the-art methods. Our approach reduces the tracking error from 3.96 to 2.89 mm, improves the tracking smoothness from 4.08 to 1.62 mm, and increases the visual quality from 0.707 to 0.741. PMID:25660001

  9. SU-E-J-57: First Development of Adapting to Intrafraction Relative Motion Between Prostate and Pelvic Lymph Nodes Targets

    SciTech Connect

    Ge, Y; Colvill, E; O’Brien, R; Keall, P; Booth, J

    2015-06-15

    Purpose Large intrafraction relative motion of multiple targets is common in advanced head and neck, lung, abdominal, gynaecological and urological cancer, jeopardizing the treatment outcomes. The objective of this study is to develop a real-time adaptation strategy, for the first time, to accurately correct for the relative motion of multiple targets by reshaping the treatment field using the multi-leaf collimator (MLC). Methods The principle of tracking the simultaneously treated but differentially moving tumor targets is to determine the new aperture shape that conforms to the shifted targets. Three dimensional volumes representing the individual targets are projected to the beam’s eye view. The leaf openings falling inside each 2D projection will be shifted according to the measured motion of each target to form the new aperture shape. Based on the updated beam shape, new leaf positions will be determined with optimized trade-off between the target underdose and healthy tissue overdose, and considerations of the physical constraints of the MLC. Taking a prostate cancer patient with pelvic lymph node involvement as an example, a preliminary dosimetric study was conducted to demonstrate the potential treatment improvement compared to the state-of- art adaptation technique which shifts the whole beam to track only one target. Results The world-first intrafraction adaptation system capable of reshaping the beam to correct for the relative motion of multiple targets has been developed. The dose in the static nodes and small bowel are closer to the planned distribution and the V45 of small bowel is decreased from 110cc to 75cc, corresponding to a 30% reduction by this technique compared to the state-of-art adaptation technique. Conclusion The developed adaptation system to correct for intrafraction relative motion of multiple targets will guarantee the tumour coverage and thus enable PTV margin reduction to minimize the high target dose to the adjacent organs

  10. Effects of visual reference on adaptation to motion sickness and subjective responses evoked by graded cross-coupled angular accelerations. [vestibular oculogravic effect in human acceleration adaptation

    NASA Technical Reports Server (NTRS)

    Reason, J. T.; Diaz, E.

    1973-01-01

    Three groups of 10 subjects each were exposed to stepwise increments of cross coupled angular accelerations in three visual modes: internal visual reference (IVR), external visual reference (EVR), and vision absent (VA). The subjects in the IVR condition required significantly greater amounts of stimulus exposure to neutralize their illusory subjective reactions. They also suffered a greater loss of well-being and a more marked incidence of motion sickness than did subjects in the EVR and VA conditions. The same 30 subjects were reexposed to the same graded cross coupled stimulation 1 week later. This time, however, all the subjects were tested under only the IVR condition. All three groups showed some positive transfer of adaptation, but only the IVR-IVR combination required significantly fewer head motions to achieve the same level of adaptation on the second occasion. Taken overall, however, the most efficient and least disturbing route to adaptation at the completion of the second test was via the VA-IVR combination.

  11. Robust fault detection of turbofan engines subject to adaptive controllers via a Total Measurable Fault Information Residual (ToMFIR) technique.

    PubMed

    Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping

    2014-09-01

    This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. PMID:24439843

  12. Insect-Inspired Self-Motion Estimation with Dense Flow Fields—An Adaptive Matched Filter Approach

    PubMed Central

    Strübbe, Simon; Stürzl, Wolfgang; Egelhaaf, Martin

    2015-01-01

    The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion. PMID:26308839

  13. Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization.

    PubMed

    Ohnishi, Takashi; Suzuki, Masahiko; Kobayashi, Tatsuya; Naomoto, Shinji; Sukegawa, Tomoyuki; Nawata, Atsushi; Haneishi, Hideaki

    2013-01-01

    Previously, we proposed a 2D/3D registration method that uses Powell's algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method starts from the optimum parameters of the previous frame for each frame except for the first one, and it searches for the next set of optimum parameters using Powell's algorithm. However, if the flexion motion of the knee joint is fast, it is likely that Powell's algorithm will provide a mismatch because the initial parameters are far from the correct ones. In this study, we applied a hybrid optimization algorithm (HPS) combining Powell's algorithm with the Nelder-Mead simplex (NM-simplex) algorithm to overcome this problem. The performance of the HPS was compared with the separate performances of Powell's algorithm and the NM-simplex algorithm, the Quasi-Newton algorithm and hybrid optimization algorithm with the Quasi-Newton and NM-simplex algorithms with five patient data sets in terms of the root-mean-square error (RMSE), target registration error (TRE), success rate, and processing time. The RMSE, TRE, and the success rate of the HPS were better than those of the other optimization algorithms, and the processing time was similar to that of Powell's algorithm alone. PMID:23138929

  14. Decentralized adaptive robust control based on sliding mode and nonlinear compensator for the control of ankle movement using functional electrical stimulation of agonist-antagonist muscles

    NASA Astrophysics Data System (ADS)

    Kobravi, Hamid-Reza; Erfanian, Abbas

    2009-08-01

    A decentralized control methodology is designed for the control of ankle dorsiflexion and plantarflexion in paraplegic subjects with electrical stimulation of tibialis anterior and calf muscles. Each muscle joint is considered as a subsystem and individual controllers are designed for each subsystem. Each controller operates solely on its associated subsystem, with no exchange of information between the subsystems. The interactions between the subsystems are taken as external disturbances for each isolated subsystem. In order to achieve robustness with respect to external disturbances, unmodeled dynamics, model uncertainty and time-varying properties of muscle-joint dynamics, a robust control framework is proposed which is based on the synergistic combination of an adaptive nonlinear compensator with a sliding mode control and is referred to as an adaptive robust control. Extensive simulations and experiments on healthy and paraplegic subjects were performed to demonstrate the robustness against the time-varying properties of muscle-joint dynamics, day-to-day variations, subject-to-subject variations, fast convergence, stability and tracking accuracy of the proposed method. The results indicate that the decentralized robust control provides excellent tracking control for different reference trajectories and can generate control signals to compensate the muscle fatigue and reject the external disturbance. Moreover, the controller is able to automatically regulate the interaction between agonist and antagonist muscles under different conditions of operating without any preprogrammed antagonist activities.

  15. Interaction of a laser with a qubit in thermal motion and its application to robust and efficient readout

    NASA Astrophysics Data System (ADS)

    Poschinger, U.; Walther, A.; Hettrich, M.; Ziesel, F.; Schmidt-Kaler, F.

    2012-06-01

    We present a detailed theoretical and experimental study on the optical control of a trapped-ion qubit subject to thermally induced fluctuations of the Rabi frequency. The coupling fluctuations are caused by thermal excitation on three harmonic oscillator modes. We develop an effective Maxwell-Boltzmann theory which leads to a replacement of several quantized oscillator modes by an effective continuous probability distribution function for the Rabi frequency. The model is experimentally verified for driving the quadrupole transition with resonant square pulses. This allows for the determination of the ion temperature with an accuracy of better than 2% of the temperature pertaining to the Doppler cooling limit T D over a range from 0.5 T D to 5 T D . The theory is then applied successfully to model experimental data for rapid adiabatic passage (RAP) pulses. We apply the model and the obtained experimental parameters to elucidate the robustness and efficiency of the RAP process by means of numerical simulations.

  16. Evaluating the need for integrated land use and land cover analysis for robust assessment of climate adaptation and mitigation strategies

    NASA Astrophysics Data System (ADS)

    Di Vittorio, Alan; Mao, Jiafu; Shi, Xiaoying

    2016-04-01

    LULCC scenarios in earth system simulations to provide robust historical and future projections of carbon and climate, especially when incorporating climate feedbacks on human and environmental systems. More accurate LULCC scenarios will also improve impact and resource sustainability analyses in the context of climate adaptation and mitigation strategies. These new scenarios will need to be developed and implemented as an integrated process with interdependent land use and land cover to adequately incorporate human and environmental drivers of LULCC.

  17. A Robust and Adaptable High Throughput Screening Method to Study Host-Microbiota Interactions in the Human Intestine

    PubMed Central

    de Wouters, Tomas; Ledue, Florence; Nepelska, Malgorzata; Doré, Joël; Blottière, Hervé M.; Lapaque, Nicolas

    2014-01-01

    The intestinal microbiota has many beneficial roles for its host. However, the precise mechanisms developed by the microbiota to influence the host intestinal cell responses are only partially known. The complexity of the ecosystem and our inability to culture most of these micro-organisms have led to the development of molecular approaches such as functional metagenomics, i.e. the heterologous expression of a metagenome in order to identify functions. This elegant strategy coupled to high throughput screening allowed to identify novel enzymes from different ecosystems where culture methods have not yet been adapted to isolate the candidate microorganisms. We have proposed to use this functional metagenomic approach in order to model the microbiota’s interaction with the host by combining this heterologous expression with intestinal reporter cell lines. The addition of the cellular component to this functional metagenomic approach introduced a second important source of variability resulting in a novel challenge for high throughput screening. First attempts of high throughput screening with various reporter cell-lines showed a high distribution of the response and consequent difficulties to reproduce the response, impairing an easy and clear identification of confirmed hits. In this study, we developed a robust and reproducible methodology to combine these two biological systems for high throughput application. We optimized experimental setups and completed them by appropriate statistical analysis tools allowing the use this innovative approach in a high throughput manner and on a broad range of reporter assays. We herewith present a methodology allowing a high throughput screening combining two biological systems. Therefore ideal conditions for homogeneity, sensitivity and reproducibility of both metagenomic clones as well as reporter cell lines have been identified and validated. We believe that this innovative method will allow the identification of new

  18. Ultra-Precision Measurement and Control of Angle Motion in Piezo-Based Platforms Using Strain Gauge Sensors and a Robust Composite Controller

    PubMed Central

    Liu, Lei; Bai, Yu-Guang; Zhang, Da-Li; Wu, Zhi-Gang

    2013-01-01

    The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS) and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS) error of 0.21 μrad, which is approximately equal to the noise level. PMID:23860316

  19. MagicPlate-512: A 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy

    SciTech Connect

    Petasecca, M. Newall, M. K.; Aldosari, A. H.; Fuduli, I.; Espinoza, A. A.; Porumb, C. S.; Guatelli, S.; Metcalfe, P.; Lerch, M. L. F.; Rosenfeld, A. B.; Booth, J. T.; Colvill, E.; Duncan, M.; Cammarano, D.; Carolan, M.; Oborn, B.; Perevertaylo, V.; Keall, P. J.

    2015-06-15

    Purpose: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named “MagicPlate-512” for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. Methods: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of small field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by GEANT4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Results: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion

  20. Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex.

    PubMed

    Bair, Wyeth; Movshon, J Anthony

    2004-08-18

    Direction-selective neurons in the primary visual cortex (V1) and the extrastriate motion area MT/V5 constitute a critical channel that links early cortical mechanisms of spatiotemporal integration to downstream signals that underlie motion perception. We studied how temporal integration in direction-selective cells depends on speed, spatial frequency (SF), and contrast using randomly moving sinusoidal gratings and spike-triggered average (STA) analysis. The window of temporal integration revealed by the STAs varied substantially with stimulus parameters, extending farther back in time for slow motion, high SF, and low contrast. At low speeds and high SF, STA peaks were larger, indicating that a single spike often conveyed more information about the stimulus under conditions in which the mean firing rate was very low. The observed trends were similar in V1 and MT and offer a physiological correlate for a large body of psychophysical data on temporal integration. We applied the same visual stimuli to a model of motion detection based on oriented linear filters (a motion energy model) that incorporated an integrate-and-fire mechanism and found that it did not account for the neuronal data. Our results show that cortical motion processing in V1 and in MT is highly nonlinear and stimulus dependent. They cast considerable doubt on the ability of simple oriented filter models to account for the output of direction-selective neurons in a general manner. Finally, they suggest that spike rate tuning functions may miss important aspects of the neural coding of motion for stimulus conditions that evoke low firing rates. PMID:15317857

  1. Real-time motion-adaptive delivery (MAD) using binary MLC: I. Static beam (topotherapy) delivery

    NASA Astrophysics Data System (ADS)

    Lu, Weiguo

    2008-11-01

    Intra-fraction target motion hits the fundamental basis of IMRT where precise target positions are assumed. Real-time motion compensation is necessary to ensure that the same dose is delivered as planned. Strategies for conventional IMRT delivery for moving targets by dynamic multi-leaf collimators (MLC) tracking are well published. Binary MLC-based IMRT, such as TomoTherapy®, requires synchronized motion of MLC, the couch and the gantry, which suggests a unique motion management strategy. Thanks to its ultra-fast leaf response and fast projection rate, real-time motion compensation for binary MLC-based IMRT is feasible. Topotherapy is a new IMRT delivery technique, which can be implemented in commercial helical TomoTherapy® machines using only fixed gantry positions. In this paper, we present a novel approach for TopoTherapy delivery that adjusts for moving targets without additional hardware and control requirement. This technique uses the planned leaf sequence but rearranges the projection and leaf indices. It does not involve time-consuming operations, such as reoptimization. Unlike gating or breath-hold-based methods, this technique can achieve nearly a 100% duty cycle with little breath control. Unlike dynamic MLC-based tracking methods, this technique requires neither the whole target motion trajectory nor the velocity of target motion. Instead, it only requires instantaneous target positions, which greatly simplifies the system implementation. Extensive simulations, including the worst-case scenarios, validated the presented technique to be applicable to relatively regular or mild irregular respirations. The delivered dose conforms well to the target, and significant margin reduction can be achieved provided that accurate, real-time tumor localization is available.

  2. Adaptive Momentum-Based Motion Detection Approach and Its Application on Handoff in Wireless Networks

    PubMed Central

    Chung, Tein-Yaw; Chen, Yung-Mu; Hsu, Chih-Hung

    2009-01-01

    Positioning and tracking technologies can detect the location and the movement of mobile nodes (MNs), such as cellular phone, vehicular and mobile sensor, to predict potential handoffs. However, most motion detection mechanisms require additional hardware (e.g., GPS and directed antenna), costs (e.g., power consumption and monetary cost) and supply systems (e.g., network fingerprint server). This paper proposes a Momentum of Received Signal Strength (MRSS) based motion detection method and its application on handoff. MRSS uses the exponentially weighted moving average filter with multiple moving average window size to analyze the received radio signal. With MRSS, an MN can predict its motion state and make a handoff trigger at the right time without any assistance from positioning systems. Moreover, a novel motion state dependent MRSS scheme called Dynamic MRSS (DMRSS) algorithm is proposed to adjust the motion detection sensitivity. In our simulation, the MRSS- and DMRSS-based handoff algorithms can reduce the number of unnecessary handoffs up to 44% and save battery power up to 75%. PMID:22346724

  3. Adaptive momentum-based motion detection approach and its application on handoff in wireless networks.

    PubMed

    Chung, Tein-Yaw; Chen, Yung-Mu; Hsu, Chih-Hung

    2009-01-01

    Positioning and tracking technologies can detect the location and the movement of mobile nodes (MNs), such as cellular phone, vehicular and mobile sensor, to predict potential handoffs. However, most motion detection mechanisms require additional hardware (e.g., GPS and directed antenna), costs (e.g., power consumption and monetary cost) and supply systems (e.g., network fingerprint server). This paper proposes a Momentum of Received Signal Strength (MRSS) based motion detection method and its application on handoff. MRSS uses the exponentially weighted moving average filter with multiple moving average window size to analyze the received radio signal. With MRSS, an MN can predict its motion state and make a handoff trigger at the right time without any assistance from positioning systems. Moreover, a novel motion state dependent MRSS scheme called Dynamic MRSS (DMRSS) algorithm is proposed to adjust the motion detection sensitivity. In our simulation, the MRSS- and DMRSS-based handoff algorithms can reduce the number of unnecessary handoffs up to 44% and save battery power up to 75%. PMID:22346724

  4. TH-A-BRF-12: Assessment of 4D-MRI for Robust Motion and Volume Characterization

    SciTech Connect

    Glide-Hurst, C; Kim, J; Wen, N; Chetty, I; Hu, Y; Mutic, S

    2014-06-15

    Purpose: Precise radiation therapy for abdominal lesions is complicated by respiratory motion and poor soft tissue contrast from 4DCT whereas 4DMRI provides superior tissue discrimination. We evaluated a novel 4D-MRI algorithm for MR-SIM motion management. Methods: Respiratory-triggered, T2-weighted single-shot Turbo Spin Echo 4D-MRI was evaluated for open high-field 1.0T MR-SIM. A programmable platform pulled objects on a trolley ∼2 cm superior-inferior (S-I) for “regular” (sinusoidal, (1-cos{sup 2}), 3-5 second periods) and “irregular” breathing patterns (exaggerated (1-cos{sup 2}) and patient curves), while a respiratory waveform was generated via a pressure sensor device. Coronal 4D-MRIs (2–12;10 phases, TE/TR/α = 35−61/6100 ms/90°, voxel=1×1×4 mm{sup 3}) were acquired for 54 unique phantom cases. Abdominal 4D−MRIs were evaluated for 5 healthy volunteers and 1 liver cancer patient (6–10 phases, TE/TR/α = 30−96/4500−6100 ms/90°, voxel=1×1×5–10 mm{sup 3}) on an IRB-approved protocol. Duty cycle, scan time, and excursion were evaluated between phase acquisitions and compared to coronal cine-MRI (∼1 frame/sec). Maximum intensity projections (MIPs) were analyzed. Results: In phantom, average duty cycle was 42.6 ± 11.4% (range: 23.6–69.1%). Regular, periodic breathing (sinusoidal, (1-cos{sup 2})) yielded higher duty cycles than irregular (48.5% and 35.9%, respectively, p<0.001) and fast periods had higher duty cycles than slow (50.4% for 3s and 39.4% for 5s, p<0.001). ∼4-fold acquisition time increase was measured for 10-phase versus 2-phase. MIP renderings revealed that SI object extent was underestimated a maximum of 4% (3mm) and 8% (6mm) for cine and 2-phase 4D-MRI, respectively, with respect to 10-phases. However, this was waveform dependent. A highly irregular breathing volunteer yielded lowest duty cycle (23%) and longest 10-phase scan time (∼14 minutes), although 6-phase acquisition for a liver cancer patient was

  5. Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning

    SciTech Connect

    Pin, Grancois G.

    2004-06-01

    Our overall objective is the development of a generalized methodology and code for the automated generation of the kinematics equations of robots and for the analytical solution of their motion planning equations subject to time-varying constraints, behavioral objectives, and modular configuration.

  6. Application of stakeholder-based and modelling approaches for supporting robust adaptation decision making under future climatic uncertainty and changing urban-agricultural water demand

    NASA Astrophysics Data System (ADS)

    Bhave, Ajay; Dessai, Suraje; Conway, Declan; Stainforth, David

    2016-04-01

    Deep uncertainty in future climate change and socio-economic conditions necessitates the use of assess-risk-of-policy approaches over predict-then-act approaches for adaptation decision making. Robust Decision Making (RDM) approaches embody this principle and help evaluate the ability of adaptation options to satisfy stakeholder preferences under wide-ranging future conditions. This study involves the simultaneous application of two RDM approaches; qualitative and quantitative, in the Cauvery River Basin in Karnataka (population ~23 million), India. The study aims to (a) determine robust water resources adaptation options for the 2030s and 2050s and (b) compare the usefulness of a qualitative stakeholder-driven approach with a quantitative modelling approach. For developing a large set of future scenarios a combination of climate narratives and socio-economic narratives was used. Using structured expert elicitation with a group of climate experts in the Indian Summer Monsoon, climatic narratives were developed. Socio-economic narratives were developed to reflect potential future urban and agricultural water demand. In the qualitative RDM approach, a stakeholder workshop helped elicit key vulnerabilities, water resources adaptation options and performance criteria for evaluating options. During a second workshop, stakeholders discussed and evaluated adaptation options against the performance criteria for a large number of scenarios of climatic and socio-economic change in the basin. In the quantitative RDM approach, a Water Evaluation And Planning (WEAP) model was forced by precipitation and evapotranspiration data, coherent with the climatic narratives, together with water demand data based on socio-economic narratives. We find that compared to business-as-usual conditions options addressing urban water demand satisfy performance criteria across scenarios and provide co-benefits like energy savings and reduction in groundwater depletion, while options reducing

  7. Quality Assurance Challenges for Motion-Adaptive Radiation Therapy: Gating, Breath Holding, and Four-Dimensional Computed Tomography

    SciTech Connect

    Jiang, Steve B. Wolfgang, John; Mageras, Gig S.

    2008-05-01

    Compared with conventional three-dimensional (3D) conformal radiation therapy and intensity-modulated radiation therapy treatments, quality assurance (QA) for motion-adaptive radiation therapy involves various challenges because of the added temporal dimension. Here we discuss those challenges for three specific techniques related to motion-adaptive therapy: namely respiratory gating, breath holding, and four-dimensional computed tomography. Similar to the introduction of any other new technologies in clinical practice, typical QA measures should be taken for these techniques also, including initial testing of equipment and clinical procedures, as well as frequent QA examinations during the early stage of implementation. Here, rather than covering every QA aspect in depth, we focus on some major QA challenges. The biggest QA challenge for gating and breath holding is how to ensure treatment accuracy when internal target position is predicted using external surrogates. Recommended QA measures for each component of treatment, including simulation, planning, patient positioning, and treatment delivery and verification, are discussed. For four-dimensional computed tomography, some major QA challenges have also been discussed.

  8. Complexity reduction in the H.264/AVC using highly adaptive fast mode decision based on macroblock motion activity

    NASA Astrophysics Data System (ADS)

    Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir

    2015-11-01

    The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.

  9. Space motion sickness preflight adaptation training Preliminary studies with prototype trainers

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Ouyang, L.; Rock, J. C.; Von Gierke, H. E.; Reschke, M. F.

    1985-01-01

    Based on the otolith tilt-translation reinterpretation hypothesis (Parker et al., 1985), preflight adaptation procedures and several preflight adaptation trainers (PATs) have been developed. Two PAT prototypes, the Miami University Seesaw (MUS) and the Dynamic Environmental Simulator (DES), include a physical room that is moved relative to the restrained subject. Results from the MUS and DES PAT experiments indicate that exposure to the produced sensory rearrangement can change eye movement reflexes. The changes persisted for a period longer than the training exposure period, indicating similarity with the eye-movement reflexes observed immediately postflight in weightlessness-adapted astronauts. It is concluded that the apparatus and procedures to preadapt astronauts to the sensory rearrangement of weightless space flight can be developed on the basis of the reported PATs and procedures. The third PAT prototype tested, which employs a computer-generated scene, failed to produce changes similar to those recorded in the MUS and DES experiments.

  10. Spiders in Motion: Demonstrating Adaptation, Structure-Function Relationships, and Trade-Offs in Invertebrates

    ERIC Educational Resources Information Center

    Bowlin, Melissa S.; McLeer, Dorothy F.; Danielson-Francois, Anne M.

    2014-01-01

    Evolutionary history and structural considerations constrain all aspects of animal physiology. Constraints on invertebrate locomotion are especially straightforward for students to observe and understand. In this exercise, students use spiders to investigate the concepts of adaptation, structure-function relationships, and trade-offs. Students…

  11. Visually induced self-motion sensation adapts rapidly to left-right visual reversal

    NASA Technical Reports Server (NTRS)

    Oman, C. M.; Bock, O. L.; Huang, J.-K.

    1980-01-01

    The experimental demonstration of a reversal of the circularvection (CV) phenomenon is reported. After one to three hours of active movement while wearing vision-reversing goggles, 9 of 12 stationary human subjects viewing a moving stripe display experienced a self-rotation illusion in the same direction as the seen stripe motion. In addition, the subjects showed a 17% reduction in vestibulo-ocular reflex slow phase gain over their brief exposure period. It is noted that whether a subject demonstrated reversed CV within the allowed exposure period appeared to be correlated with CV strength produced with a narrow field stimulus.

  12. A novel DVS guidance principle and robust adaptive path-following control for underactuated ships using low frequency gain-learning.

    PubMed

    Zhang, Guoqing; Zhang, Xianku

    2015-05-01

    Around the waypoint-based path-following control for marine ships, a novel dynamic virtual ship (DVS) guidance principle is developed to implement the assumption "the reference path is generated using a virtual ship", which is critical for applying the current theoretical studies in practice. Taking two steerable variables as control inputs, the robust adaptive scheme is proposed by virtue of the robust neural damping and dynamic surface control (DSC) techniques. The derived controller is with the advantages of concise structure and being easy-to-implement for its burdensome superiority. Furthermore, the low frequency learning method improves the applicability of the algorithm. Finally, the comparison experiments with the line-of-sight (LOS) based fuzzy scheme are presented to demonstrate the effectiveness of our results. PMID:25579375

  13. An optimized DSP implementation of adaptive filtering and ICA for motion artifact reduction in ambulatory ECG monitoring.

    PubMed

    Berset, Torfinn; Geng, Di; Romero, Iñaki

    2012-01-01

    Noise from motion artifacts is currently one of the main challenges in the field of ambulatory ECG recording. To address this problem, we propose the use of two different approaches. First, an adaptive filter with electrode-skin impedance as a reference signal is described. Secondly, a multi-channel ECG algorithm based on Independent Component Analysis is introduced. Both algorithms have been designed and further optimized for real-time work embedded in a dedicated Digital Signal Processor. We show that both algorithms improve the performance of a beat detection algorithm when applied in high noise conditions. In addition, an efficient way of choosing this methods is suggested with the aim of reduce the overall total system power consumption. PMID:23367417

  14. Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning

    SciTech Connect

    Pin, Francois G.

    2002-06-01

    Robotic tasks are typically defined in Task Space (e.g., the 3-D World), whereas robots are controlled in Joint Space (motors). The transformation from Task Space to Joint Space must consider the task objectives (e.g., high precision, strength optimization, torque optimization), the task constraints (e.g., obstacles, joint limits, non-holonomic constraints, contact or tool task constraints), and the robot kinematics configuration (e.g., tools, type of joints, mobile platform, manipulator, modular additions, locked joints). Commercially available robots are optimized for a specific set of tasks, objectives and constraints and, therefore, their control codes are extremely specific to a particular set of conditions. Thus, there exist a multiplicity of codes, each handling a particular set of conditions, but none suitable for use on robots with widely varying tasks, objectives, constraints, or environments. On the other hand, most DOE missions and tasks are typically ''batches of one''. Attempting to use commercial codes for such work requires significant personnel and schedule costs for re-programming or adding code to the robots whenever a change in task objective, robot configuration, number and type of constraint, etc. occurs. The objective of our project is to develop a ''generic code'' to implement this Task-space to Joint-Space transformation that would allow robot behavior adaptation, in real time (at loop rate), to changes in task objectives, number and type of constraints, modes of controls, kinematics configuration (e.g., new tools, added module). Our specific goal is to develop a single code for the general solution of under-specified systems of algebraic equations that is suitable for solving the inverse kinematics of robots, is useable for all types of robots (mobile robots, manipulators, mobile manipulators, etc.) with no limitation on the number of joints and the number of controlled Task-Space variables, can adapt to real time changes in number and

  15. Adaptive Changes in Sensorimotor Coordination and Motion Sickness Following Repeated Exposures to Virtual Environments

    NASA Technical Reports Server (NTRS)

    Harm, D. L.; Taylor, L. C.; Bloomberg, J. J.

    2007-01-01

    Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Initial interpretation of novel sensory information may be inappropriate and result in perceptual errors. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity, unilateral labyrinthectomy and experimentally produced stimulus rearrangements. The purpose of this research was to compare disturbances in sensorimotor coordination produced by dome and head-mounted virtual environment displays and to examine the effects of exposure duration, and repeated exposures to VR systems. The first study examined disturbances in balance control, and the second study examined disturbances in eye-head-hand (EHH) and eye-head coordination.

  16. Robust adaptive transient damping in power systems. Volume 1, System identification and decentralized adaptive control with applications to power systems: Final report

    SciTech Connect

    Pierre, D.A.; Sadighi, I.; Trudnowski, D.J.; Smith, J.R.; Nehrir, M.H.

    1992-09-01

    This Volume 1 of the final report on RP2665-1 contains two parts. part 1 consists of the following: (1) a literature review of real-time parameter identification algorithms which may be used in self-tuning adaptive control; (2) a description of mathematical discrete-time models that are linear in the parameters and that are useful for self-tuning adaptive control; (3) detailed descriptions of several variations of recursive-least-squares algorithms (RLS algorithms) and a unified representation of some of these algorithms; (4) a new variation of RLS called Corrector Least Squares (CLS); (5) a set of practical issues that need to be addressed in the implementation of RLS-based algorithms; (6) a set of simulation examples that illustrate properties of the identification methods; and (7) appendices With FORTRAN listings of several identification codes. Part 2 of this volume addresses the problem of damping electromechanical oscillations in power systems using advanced control theory. Two control strategies are developed. Controllers are then applied to a power system as power system stabilizer (PSS) units. The primary strategy is a decentralized indirect adaptive control scheme where multiple self-tuning adaptive controllers are coordinated. This adaptive scheme is presented in a general format and the stabilizing properties are demonstrated using examples. Both the adaptive and the conventional strategies are applied to a 17-machine computer-simulated power system. PSS units are applied to four generators in the system. Detailed simulation results are presented that show the feasibility and properties of both control schemes. FORTRAN codes for the control simulations are given in appendices of Part 2, as also are FORTRAN codes for the Prony identification method.

  17. Locally connected adaptive Gabor filter for real-time motion compensation

    NASA Astrophysics Data System (ADS)

    Li, Hau

    1994-07-01

    Software has been developed to implement the Gabor motion detection algorithm. This software consists of utility functions, algorithm modules, and test pattern generators for the experiments and verification of the spatial and temporal selectivity. Based on the theoretical analysis, the optical flow was computed for several artificially generated test patterns. These test patterns are designed to test the concept of spatial and orientation selectivity. The patterns were generated by using virtual reality technique based on three-dimensional computer graphics. In addition to the algorithm development and verification, we have also started work on the design and verification of the electronics basic building blocks for the VLSI implementation. This early start of the hardware design concurrent with the algorithm analysis and verification will further ensure the quality of the work in both hardware and software. In order to benchmark the VLSI chips, a hardware prototype board is under design and construction. This board will be used to compare the performance of digital approach vs. analog approach, analog approach based on the standard off-the-shelf components vs. analog customer-design VLSI approach.

  18. Robust motion correction and outlier rejection of in vivo functional MR images of the fetal brain and placenta during maternal hyperoxia

    NASA Astrophysics Data System (ADS)

    You, Wonsang; Serag, Ahmed; Evangelou, Iordanis E.; Andescavage, Nickie; Limperopoulos, Catherine

    2015-03-01

    Subject motion is a major challenge in functional magnetic resonance imaging studies (fMRI) of the fetal brain and placenta during maternal hyperoxia. We propose a motion correction and volume outlier rejection method for the correction of severe motion artifacts in both fetal brain and placenta. The method is optimized to the experimental design by processing different phases of acquisition separately. It also automatically excludes high-motion volumes and all the missing data are regressed from ROI-averaged signals. The results demonstrate that the proposed method is effective in enhancing motion correction in fetal fMRI without large data loss, compared to traditional motion correction methods.

  19. Echo motion imaging with adaptive clutter filter for assessment of cardiac blood flow

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2015-07-01

    Visualization of the vortex blood flow in the cardiac chamber is a potential diagnostic tool for the evaluation of cardiac function. In the present study, a method for automatic selection of the desirable cutoff frequency of a moving target indicator filter, namely, a clutter filter, was proposed in order to visualize complex blood flows by the ultrahigh-frame-rate imaging of echoes from blood particles while suppressing clutter echoes. In this method, the cutoff frequency was adaptively changed as a function of the velocity of the heart wall (clutter source) in each frame. The feasibility of the proposed method was examined through the measurement of a healthy volunteer using parallel receive beamforming with a single transmission of a non-steered diverging beam. Using the moving target indicator filter as above with the cutoff frequency determined by the proposed method, the vortex-like blood flow in the cardiac chamber was visualized as movements of echoes from blood particles at a very high frame rate of 6024 Hz while suppressing clutter echoes.

  20. An Adaptive Flow Solver for Air-Borne Vehicles Undergoing Time-Dependent Motions/Deformations

    NASA Technical Reports Server (NTRS)

    Singh, Jatinder; Taylor, Stephen

    1997-01-01

    This report describes a concurrent Euler flow solver for flows around complex 3-D bodies. The solver is based on a cell-centered finite volume methodology on 3-D unstructured tetrahedral grids. In this algorithm, spatial discretization for the inviscid convective term is accomplished using an upwind scheme. A localized reconstruction is done for flow variables which is second order accurate. Evolution in time is accomplished using an explicit three-stage Runge-Kutta method which has second order temporal accuracy. This is adapted for concurrent execution using another proven methodology based on concurrent graph abstraction. This solver operates on heterogeneous network architectures. These architectures may include a broad variety of UNIX workstations and PCs running Windows NT, symmetric multiprocessors and distributed-memory multi-computers. The unstructured grid is generated using commercial grid generation tools. The grid is automatically partitioned using a concurrent algorithm based on heat diffusion. This results in memory requirements that are inversely proportional to the number of processors. The solver uses automatic granularity control and resource management techniques both to balance load and communication requirements, and deal with differing memory constraints. These ideas are again based on heat diffusion. Results are subsequently combined for visualization and analysis using commercial CFD tools. Flow simulation results are demonstrated for a constant section wing at subsonic, transonic, and a supersonic case. These results are compared with experimental data and numerical results of other researchers. Performance results are under way for a variety of network topologies.

  1. Influence of self-adaptive hairy flaps on the stall delay of an airfoil in ramp-up motion

    NASA Astrophysics Data System (ADS)

    Brücker, Christoph; Weidner, Christoph

    2014-05-01

    It is known in the case of some birds that the coverts on the upper side of their wings pop-up under critical flight conditions such as the landing approach, thus acting like a brake on the spread of flow separation. Taking experimental investigations as its basis, this paper deals with the influence of various configurations of self-adaptable hairy flaplets located on the lower half of the wing and with chord-length c (dense rows of slender elastomeric flaps, L=0.05c, 0.1c, 0.2c) on the flow around an NACA0020 airfoil at low Reynolds number flow (Re=77×103). Flow evolution along the airfoil when in ramp-up motion (α0=0, αs=20°, reduced frequency k=0.12) was measured with and without hairy flaps, with growth in the chord-normal thickness of the separation region above the airfoil investigated in order to determine stall onset time Ts. Whereas small flaps with L=0.05c do not change the overall stall process, it was possible to use configurations with L=0.1c (double-row, triple-row configuration) to delay stall onset Ts by a factor of around 2-4 when compared with the clean airfoil. The motion of the flaps and the flow field were measured simultaneously at high temporal resolution using high-speed PIV. Correlation between flap motion and velocity distribution showed that backflow induced by vortex structures is indeed prevented by the hairy flaps. A significant difference was identified in the shear-layer roll-up process, which was almost regular and locked with the fundamental frequency on the covered airfoil with no signs of non-linear growth over longer periods. By way of contrast, in the case of the clean airfoil the early merging of the shear-layer vortices and a rapid increase in the thickness of the separation region were observed. It is therefore concluded that mode locking is achieved between flap rows with an interspacing of 0.15c-0.2c, while the fundamental shear-layer roll-up wavelength measured (λ0≈0.15c-0.2c) indicates the relevance of flap row

  2. Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics.

    PubMed

    Bagheri, Pedram; Sun, Qiao

    2016-07-01

    In this paper, a novel synthesis of Nussbaum-type functions, and an adaptive radial-basis function neural network is proposed to design controllers for variable-speed, variable-pitch wind turbines. Dynamic equations of the wind turbine are highly nonlinear, uncertain, and affected by unknown disturbance sources. Furthermore, the dynamic equations are non-affine with respect to the pitch angle, which is a control input. To address these problems, a Nussbaum-type function, along with a dynamic control law are adopted to resolve the non-affine nature of the equations. Moreover, an adaptive radial-basis function neural network is designed to approximate non-parametric uncertainties. Further, the closed-loop system is made robust to unknown disturbance sources, where no prior knowledge of disturbance bound is assumed in advance. Finally, the Lyapunov stability analysis is conducted to show the stability of the entire closed-loop system. In order to verify analytical results, a simulation is presented and the results are compared to both a PI and an existing adaptive controllers. PMID:27157849

  3. Noise-Robust Spectral Signature Classification in Non-resolved Object Detection using Feedback Controlled Adaptive Learning

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Key, G.

    2012-09-01

    Accurate spectral signature classification is key to reliable nonresolved detection and recognition of spaceborne objects. In classical signature-based recognition applications, classification accuracy has been shown to depend on accurate spectral endmember discrimination. Unfortunately, signatures are corrupted by noise and clutter that can be nonergodic in astronomical imaging practice. In previous work, we have shown that object class separation and classifier refinement results can be severely corrupted by input noise, leading to suboptimal classification. We have also shown that computed pattern recognition, like its human counterpart, can benefit from processes such as learning or forgetting, which in spectral signature classification can support adaptive tracking of input nonergodicities. In this paper, we model learning as the acquisition or insertion of a new pattern into a classifier's knowledge base. For example, in neural nets (NNs), this insertion process could correspond to the superposition of a new pattern onto the NN weight matrix. Similarly, we model forgetting as the deletion of a pattern currently stored in the classifier knowledge base, for example, as a pattern deletion operation on the NN weight matrix, which is a difficult goal with classical neural nets (CNNs). In particular, this paper discusses the implementation of feedback control for pattern insertion and deletion in lattice associative memories (LAMs) and dynamically adaptive statistical data fusion (DASDAF) paradigms, in support of signature classification. It is shown that adaptive classifiers based on LNN or DASDAF technology can achieve accurate signature classification in the presence of nonergodic Gaussian and non-Gaussian noise, at low signal-to-noise ratio (SNR). Demonstration involves classification of multiple closely spaced, noise corrupted signatures from a NASA database of space material signatures at SNR > 0.1:1.

  4. Robust DTC Based on Adaptive Fuzzy Control of Double Star Synchronous Machine Drive with Fixed Switching Frequency

    NASA Astrophysics Data System (ADS)

    Boudana, Djamel; Nezli, Lazhari; Tlemçani, Abdelhalim; Mahmoudi, Mohand Oulhadj; Tadjine, Mohamed

    2012-05-01

    The double star synchronous machine (DSSM) is widely used for high power traction drives. It possesses several advantages over the conventional three phase machine. To reduce the torque ripple the DSSM are supplied with source voltage inverter (VSI). The model of the system DSSM-VSI is high order, multivariable and nonlinear. Further, big harmonic currents are generated. The aim of this paper is to develop a new direct torque adaptive fuzzy logic control in order to control DSSM and minimize the harmonics currents. Simulations results are given to show the effectiveness of our approach.

  5. Higher-order ambulatory electrocardiogram identification and motion artifact suppression with adaptive second- and third-order Volterra filters

    NASA Astrophysics Data System (ADS)

    Sabry-Rizk, Madiha; Zgallai, Walid; El-Khafif, Sahar; Carson, Ewart; Grattan, Kenneth T. V.

    1998-10-01

    The objective of this paper is to demonstrate how, in a few seconds, a relatively simple ECG monitor, PC and advanced signal processing algorithms could pinpoint microvolts - late potentials - result from an infarct zone in the heart and is used as an indicator in identifying patients prone to ventricular tachycardia which, if left untreated, leads to ventricular fibrillation. We will characterize recorded ECG data obtained from the standard three vector electrodes during exercise in terms of their higher-order statistical features. Essentially we use adaptive LMS- and Kalman-based second- and third-order Volterra filters to model the non- linear low-frequency P and T waves and motion artifacts which might overlap with the QRS complex and lead to false positive QRS detection. We will illustrate the effectiveness of this new approach by mapping out bispectral regions with a strong bicoherence manifestation and showing their corresponding temporal/spatial origins. Furthermore, we will present a few examples of our own application of these non-invasive techniques to illustrate what we see as their promise for analysis of heart abnormality.

  6. Mechanisms for Robust Cognition.

    PubMed

    Walsh, Matthew M; Gluck, Kevin A

    2015-08-01

    To function well in an unpredictable environment using unreliable components, a system must have a high degree of robustness. Robustness is fundamental to biological systems and is an objective in the design of engineered systems such as airplane engines and buildings. Cognitive systems, like biological and engineered systems, exist within variable environments. This raises the question, how do cognitive systems achieve similarly high degrees of robustness? The aim of this study was to identify a set of mechanisms that enhance robustness in cognitive systems. We identify three mechanisms that enhance robustness in biological and engineered systems: system control, redundancy, and adaptability. After surveying the psychological literature for evidence of these mechanisms, we provide simulations illustrating how each contributes to robust cognition in a different psychological domain: psychomotor vigilance, semantic memory, and strategy selection. These simulations highlight features of a mathematical approach for quantifying robustness, and they provide concrete examples of mechanisms for robust cognition. PMID:25352094

  7. Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts

    PubMed Central

    Zawadzki, Robert J.; Capps, Arlie G.; Kim, Dae Yu; Panorgias, Athanasios; Stevenson, Scott B.; Hamann, Bernd; Werner, John S.

    2014-01-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the human retina. Here, we present a short review of progress on developing AO-OCT instruments. Despite significant progress in imaging speed and resolution, eye movements present during acquisition of a retinal image with OCT introduce motion artifacts into the image, complicating analysis and registration. This effect is especially pronounced in high-resolution datasets acquired with AO-OCT instruments. Several retinal tracking systems have been introduced to correct retinal motion during data acquisition. We present a method for correcting motion artifacts in AO-OCT volume data after acquisition using simultaneously captured adaptive optics-scanning laser ophthalmoscope (AO-SLO) images. We extract transverse eye motion data from the AO-SLO images, assign a motion adjustment vector to each AO-OCT A-scan, and re-sample from the scattered data back onto a regular grid. The corrected volume data improve the accuracy of quantitative analyses of microscopic structures. PMID:25544826

  8. Robustness and Strategies of Adaptation among Farmer Varieties of African Rice (Oryza glaberrima) and Asian Rice (Oryza sativa) across West Africa

    PubMed Central

    Maat, Harro; Richards, Paul; Struik, Paul C.

    2013-01-01

    This study offers evidence of the robustness of farmer rice varieties (Oryza glaberrima and O. sativa) in West Africa. Our experiments in five West African countries showed that farmer varieties were tolerant of sub-optimal conditions, but employed a range of strategies to cope with stress. Varieties belonging to the species Oryza glaberrima – solely the product of farmer agency – were the most successful in adapting to a range of adverse conditions. Some of the farmer selections from within the indica and japonica subspecies of O. sativa also performed well in a range of conditions, but other farmer selections from within these two subspecies were mainly limited to more specific niches. The results contradict the rather common belief that farmer varieties are only of local value. Farmer varieties should be considered by breeding programmes and used (alongside improved varieties) in dissemination projects for rural food security. PMID:23536754

  9. Sterile inflammation induced by Carbopol elicits robust adaptive immune responses in the absence of pathogen-associated molecular patterns.

    PubMed

    Gartlan, Kate H; Krashias, George; Wegmann, Frank; Hillson, William R; Scherer, Erin M; Greenberg, Philip D; Eisenbarth, Stephanie C; Moghaddam, Amin E; Sattentau, Quentin J

    2016-04-27

    Carbopol is a polyanionic carbomer used in man for topical application and drug delivery purposes. However parenteral administration of Carbopol in animal models results in systemic adjuvant activity including strong pro-inflammatory type-1 T-cell (Th1) polarization. Here we investigated potential pathways of immune activation by Carbopol by comparison with other well-characterized adjuvants. Carbopol administration triggered rapid and robust leukocyte recruitment, pro-inflammatory cytokine secretion and antigen capture largely by inflammatory monocytes. The induction of antigen specific Th1 cells by Carbopol was found to occur via a non-canonical pathway, independent of MyD88/TRIF signaling and in the absence of pattern-recognition-receptor (PRR) activation typically associated with Th1/Ig2a induction. Using multispectral fluorescence imaging (Imagestream) and electron microscopy we demonstrated that phagocytic uptake of Carbopol particles followed by entry into the phagosomal/lysosomal pathway elicited conformational changes to the polymer and reactive oxygen species (ROS) production. We therefore conclude that Carbopol may mediate its adjuvant activity via novel mechanisms of antigen presenting cell activation and Th1 induction, leading to enhanced IgG2a responses independent of microbial pattern recognition. PMID:27005810

  10. Sterile inflammation induced by Carbopol elicits robust adaptive immune responses in the absence of pathogen-associated molecular patterns

    PubMed Central

    Gartlan, Kate H.; Krashias, George; Wegmann, Frank; Hillson, William R.; Scherer, Erin M.; Greenberg, Philip D.; Eisenbarth, Stephanie C.; Moghaddam, Amin E.; Sattentau, Quentin J.

    2016-01-01

    Carbopol is a polyanionic carbomer used in man for topical application and drug delivery purposes. However parenteral administration of Carbopol in animal models results in systemic adjuvant activity including strong pro-inflammatory type-1 T-cell (Th1) polarization. Here we investigated potential pathways of immune activation by Carbopol by comparison with other well-characterized adjuvants. Carbopol administration triggered rapid and robust leukocyte recruitment, pro-inflammatory cytokine secretion and antigen capture largely by inflammatory monocytes. The induction of antigen specific Th1 cells by Carbopol was found to occur via a non-canonical pathway, independent of MyD88/TRIF signaling and in the absence of pattern-recognition-receptor (PRR) activation typically associated with Th1/Ig2a induction. Using multispectral fluorescence imaging (Imagestream) and electron microscopy we demonstrated that phagocytic uptake of Carbopol particles followed by entry into the phagosomal/lysosomal pathway elicited conformational changes to the polymer and reactive oxygen species (ROS) production. We therefore conclude that Carbopol may mediate its adjuvant activity via novel mechanisms of antigen presenting cell activation and Th1 induction, leading to enhanced IgG2a responses independent of microbial pattern recognition. PMID:27005810

  11. Robust rate-adaptive hybrid ARQ scheme for frequency-hopped spread-spectrum multiple-access communication systems

    NASA Astrophysics Data System (ADS)

    Bigloo, Amir M. Y.; Gulliver, T. Aaron; Wang, Q.; Bhargava, Vijay K.

    1994-06-01

    This paper considers the application of rate-adaptive coding (RAC) to a spread spectrum multiple access (SSMA) communication system. Specifically, RAC using a variable rate Reed-Solomon (RS) code with a single decoder is applied to frequency-hopped SSMA. We show that this combination can accommodate a larger number of users compared to that with conventional fixed-rate coding. This increase is a result of a reduction in the channel interference from other users. The penalty for this improvement in most cases is a slight increase in the delay (composed of propagation and decoding delay). The throughput and the undetected error probability for a Q-ary symmetric channel are analyzed, and performance results are presented.

  12. A robust data fusion scheme for integrated navigation systems employing fault detection methodology augmented with fuzzy adaptive filtering

    NASA Astrophysics Data System (ADS)

    Ushaq, Muhammad; Fang, Jiancheng

    2013-10-01

    Integrated navigation systems for various applications, generally employs the centralized Kalman filter (CKF) wherein all measured sensor data are communicated to a single central Kalman filter. The advantage of CKF is that there is a minimal loss of information and high precision under benign conditions. But CKF may suffer computational overloading, and poor fault tolerance. The alternative is the federated Kalman filter (FKF) wherein the local estimates can deliver optimal or suboptimal state estimate as per certain information fusion criterion. FKF has enhanced throughput and multiple level fault detection capability. The Standard CKF or FKF require that the system noise and the measurement noise are zero-mean and Gaussian. Moreover it is assumed that covariance of system and measurement noises remain constant. But if the theoretical and actual statistical features employed in Kalman filter are not compatible, the Kalman filter does not render satisfactory solutions and divergence problems also occur. To resolve such problems, in this paper, an adaptive Kalman filter scheme strengthened with fuzzy inference system (FIS) is employed to adapt the statistical features of contributing sensors, online, in the light of real system dynamics and varying measurement noises. The excessive faults are detected and isolated by employing Chi Square test method. As a case study, the presented scheme has been implemented on Strapdown Inertial Navigation System (SINS) integrated with the Celestial Navigation System (CNS), GPS and Doppler radar using FKF. Collectively the overall system can be termed as SINS/CNS/GPS/Doppler integrated navigation system. The simulation results have validated the effectiveness of the presented scheme with significantly enhanced precision, reliability and fault tolerance. Effectiveness of the scheme has been tested against simulated abnormal errors/noises during different time segments of flight. It is believed that the presented scheme can be

  13. Adaptive background model

    NASA Astrophysics Data System (ADS)

    Lu, Xiaochun; Xiao, Yijun; Chai, Zhi; Wang, Bangping

    2007-11-01

    An adaptive background model aiming at outdoor vehicle detection is presented in this paper. This model is an improved model of PICA (pixel intensity classification algorithm), it classifies pixels into K-distributions by color similarity, and then a hypothesis that the background pixel color appears in image sequence with a high frequency is used to evaluate all the distributions to determine which presents the current background color. As experiments show, the model presented in this paper is a robust, adaptive and flexible model, which can deal with situations like camera motions, lighting changes and so on.

  14. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  15. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification.

    PubMed

    Tian, S; Luo, X L; Yang, X S; Zhu, J Y

    2010-11-01

    This study reports an ethanol yield of 270L/ton wood from lodgepole pine pretreated with sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) using an adapted strain, Saccharomyces cerevisiae Y5, without detoxification. The enzymatic hydrolysate produced from pretreated cellulosic solids substrate was combined with pretreatment hydrolysate before fermentation. Detoxification of the pretreatment hydrolysate using overliming or XAD-4 resin before being combined with enzymatic hydrolysate improved ethanol productivity in the first 4h of fermentation and overall fermentation efficiency. However, detoxification did not improve final ethanol yield because of sugar losses. The Y5 strain showed excellent ethanol productivities of 2.0 and 0.8g/L/h averaged over a period of 4 and 24h, respectively, in the undetoxified run. The furan metabolization rates of the Y5 strain were significantly higher for the undetoxified run than those for the detoxidfied runs, suggesting it can tolerate even higher furan concentrations than those studied. Preliminary mass and energy balances were conducted. SPORL produced an excellent monomeric sugar recovery value of about 85% theoretical and a net energy output of 4.05GJ/ton wood with an ethanol energy production efficiency of 178% before distillation. PMID:20620049

  16. Robust model reference adaptive output feedback tracking for uncertain linear systems with actuator fault based on reinforced dead-zone modification.

    PubMed

    Bagherpoor, H M; Salmasi, Farzad R

    2015-07-01

    In this paper, robust model reference adaptive tracking controllers are considered for Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) linear systems containing modeling uncertainties, unknown additive disturbances and actuator fault. Two new lemmas are proposed for both SISO and MIMO, under which dead-zone modification rule is improved such that the tracking error for any reference signal tends to zero in such systems. In the conventional approach, adaption of the controller parameters is ceased inside the dead-zone region which results tracking error, while preserving the system stability. In the proposed scheme, control signal is reinforced with an additive term based on tracking error inside the dead-zone which results in full reference tracking. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed approach. Closed loop system stability and zero tracking error are proved by considering a suitable Lyapunov functions candidate. It is shown that the proposed control approach can assure that all the signals of the close loop system are bounded in faulty conditions. Finally, validity and performance of the new schemes have been illustrated through numerical simulations of SISO and MIMO systems in the presence of actuator faults, modeling uncertainty and output disturbance. PMID:25744053

  17. Simple adaptive tracking control for mobile robots

    NASA Astrophysics Data System (ADS)

    Bobtsov, Alexey; Faronov, Maxim; Kolyubin, Sergey; Pyrkin, Anton

    2014-12-01

    The problem of simple adaptive and robust control is studied for the case of parametric and dynamic dimension uncertainties: only the maximum possible relative degree of the plant model is known. The control approach "consecutive compensator" is investigated. To illustrate the efficiency of proposed approach an example with the mobile robot motion control using computer vision system is considered.

  18. An adaptable pentaloop defines a robust neomycin-B RNA aptamer with conditional ligand-bound structures

    PubMed Central

    Ilgu, Muslum; Fulton, D. Bruce; Yennamalli, Ragothaman M.; Lamm, Monica H.; Sen, Taner Z.; Nilsen-Hamilton, Marit

    2014-01-01

    Aptamers can be highly specific for their targets, which implies precise molecular recognition between aptamer and target. However, as small polymers, their structures are more subject to environmental conditions than the more constrained longer RNAs such as those that constitute the ribosome. To understand the balance between structural and environmental factors in establishing ligand specificity of aptamers, we examined the RNA aptamer (NEO1A) previously reported as specific for neomycin-B. We show that NEO1A can recognize other aminoglycosides with similar affinities as for neomycin-B and its aminoglycoside specificity is strongly influenced by ionic strength and buffer composition. NMR and 2-aminopurine (2AP) fluorescence studies of the aptamer identified a flexible pentaloop and a stable binding pocket. Consistent with a well-structured binding pocket, docking analysis results correlated with experimental measures of the binding energy for most ligands. Steady state fluorescence studies of 2AP-substituted aptamers confirmed that A16 moves to a more solvent accessible position upon ligand binding while A14 moves to a less solvent accessible position, which is most likely a base stack. Analysis of binding affinities of NEO1A sequence variants showed that the base in position 16 interacts differently with each ligand and the interaction is a function of the buffer constituents. Our results show that the pentaloop provides NEO1A with the ability to adapt to external influences on its structure, with the critical base at position 16 adjusting to incorporate each ligand into a stable pocket by hydrophobic interactions and/or hydrogen bonds depending on the ligand and the ionic environment. PMID:24757168

  19. Development of a Synthetic Adaptive Neuro-Fuzzy Prediction Model for Tumor Motion Tracking in External Radiotherapy by Evaluating Various Data Clustering Algorithms.

    PubMed

    Ghorbanzadeh, Leila; Torshabi, Ahmad Esmaili; Nabipour, Jamshid Soltani; Arbatan, Moslem Ahmadi

    2016-04-01

    In image guided radiotherapy, in order to reach a prescribed uniform dose in dynamic tumors at thorax region while minimizing the amount of additional dose received by the surrounding healthy tissues, tumor motion must be tracked in real-time. Several correlation models have been proposed in recent years to provide tumor position information as a function of time in radiotherapy with external surrogates. However, developing an accurate correlation model is still a challenge. In this study, we proposed an adaptive neuro-fuzzy based correlation model that employs several data clustering algorithms for antecedent parameters construction to avoid over-fitting and to achieve an appropriate performance in tumor motion tracking compared with the conventional models. To begin, a comparative assessment is done between seven nuero-fuzzy correlation models each constructed using a unique data clustering algorithm. Then, each of the constructed models are combined within an adaptive sevenfold synthetic model since our tumor motion database has high degrees of variability and that each model has its intrinsic properties at motion tracking. In the proposed sevenfold synthetic model, best model is selected adaptively at pre-treatment. The model also updates the steps for each patient using an automatic model selectivity subroutine. We tested the efficacy of the proposed synthetic model on twenty patients (divided equally into two control and worst groups) treated with CyberKnife synchrony system. Compared to Cyberknife model, the proposed synthetic model resulted in 61.2% and 49.3% reduction in tumor tracking error in worst and control group, respectively. These results suggest that the proposed model selection program in our synthetic neuro-fuzzy model can significantly reduce tumor tracking errors. Numerical assessments confirmed that the proposed synthetic model is able to track tumor motion in real time with high accuracy during treatment. PMID:25765021

  20. The AFIT gross motion control project

    NASA Technical Reports Server (NTRS)

    Leahy, M. B., Jr.

    1991-01-01

    The objective of the Gross Motion Control project is to study alternative control approaches that will provide payload invariant high speed trajectory tracking for nonrepetitive motions in free space. The research has concentrated on modifications to the model-based control structure. Development and evaluation is being actively pursued of both adaptive primary (inner loop) and robust secondary (output loop) controllers. In-house developments are compared and contrasted to the techniques proposed by other researchers. The case study for the evaluation is the first three links of a PUMA-560. Incorporating the principals of multiple model adaptive estimation, artificial neural networks, and Lyapunov theory into the model based paradigm has shown the potential for enhanced tracking. Secondary controllers based on Quantitative Feedback Theory, or augmented with auxiliary inputs, significantly improve the robustness to payload variations and unmodeled drive system dynamics. An overview is presented of the different concepts under investigation and a sample is provided of the latest experimental results.

  1. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  2. A vision-based system for measuring the displacements of large structures: Simultaneous adaptive calibration and full motion estimation

    NASA Astrophysics Data System (ADS)

    Santos, C. Almeida; Costa, C. Oliveira; Batista, J.

    2016-05-01

    The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.

  3. TU-F-17A-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - An Automatic Toolkit for Efficient and Robust Analysis of 4D Respiratory Motion

    SciTech Connect

    Wei, J; Yuan, A; Li, G

    2014-06-15

    Purpose: To provide an automatic image analysis toolkit to process thoracic 4-dimensional computed tomography (4DCT) and extract patient-specific motion information to facilitate investigational or clinical use of 4DCT. Methods: We developed an automatic toolkit in MATLAB to overcome the extra workload from the time dimension in 4DCT. This toolkit employs image/signal processing, computer vision, and machine learning methods to visualize, segment, register, and characterize lung 4DCT automatically or interactively. A fully-automated 3D lung segmentation algorithm was designed and 4D lung segmentation was achieved in batch mode. Voxel counting was used to calculate volume variations of the torso, lung and its air component, and local volume changes at the diaphragm and chest wall to characterize breathing pattern. Segmented lung volumes in 12 patients are compared with those from a treatment planning system (TPS). Voxel conversion was introduced from CT# to other physical parameters, such as gravity-induced pressure, to create a secondary 4D image. A demon algorithm was applied in deformable image registration and motion trajectories were extracted automatically. Calculated motion parameters were plotted with various templates. Machine learning algorithms, such as Naive Bayes and random forests, were implemented to study respiratory motion. This toolkit is complementary to and will be integrated with the Computational Environment for Radiotherapy Research (CERR). Results: The automatic 4D image/data processing toolkit provides a platform for analysis of 4D images and datasets. It processes 4D data automatically in batch mode and provides interactive visual verification for manual adjustments. The discrepancy in lung volume calculation between this and the TPS is <±2% and the time saving is by 1–2 orders of magnitude. Conclusion: A framework of 4D toolkit has been developed to analyze thoracic 4DCT automatically or interactively, facilitating both investigational

  4. Multiple Model Adaptive Two-Step Filter and Motion Tracking Sliding-Mode Guidance for Missiles with Time Lag in Acceleration

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Zhang, Yong-An; Duan, Guang-Ren

    The two-step filter has been combined with a modified Sage-Husa time-varying measurement noise statistical estimator, which is able to estimate the covariance of measurement noise on line, to generate an adaptive two-step filter. In many practical applications such as the bearings-only guidance, some model parameters and the process noise covariance are also unknown a priori. Based on the adaptive two-step filter, we utilize multiple models in the first-step filtering as well as in the time update of the second-step filtering to handle the uncertainties of model parameters and process noise covariance. In each timestep of the multiple model filtering, probabilistic weights punishing the estimates of first-step state from different models, and their associated covariance matrices are acquired according to Bayes’ rule. The weighted sum of the estimates of first-step state and that of the associated covariance matrices are extracted as the ultimate estimate and covariance of the first-step state, and are used as measurement information for the measurement update of the second-step state. Thus there is still only one iteration process and no apparent enhancement of computation burden. A motion tracking sliding-mode guidance law is presented for missiles with non-negligible delays in actual acceleration. This guidance law guarantees guidance accuracy and is able to enhance observability in bearings-only tracking. In bearings-only cases, the multiple model adaptive two-step filter is applied to the motion tracking sliding-mode guidance law, supplying relative range, relative velocity, and target acceleration information. In simulation experiments satisfactory filtering and guidance results are obtained, even if the filter runs into unknown target maneuvers and unknown time-varying measurement noise covariance, and the guidance law has to deal with a large time lag in acceleration.

  5. Robust control of accelerators

    SciTech Connect

    Johnson, W.J.D. ); Abdallah, C.T. )

    1990-01-01

    The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. Because of the modeling uncertainty, one has to design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued in this research. In contrast, the robust control methods leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new robust rf power feedback system. In this paper, we report on our research progress. In section one, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section two, the results of our proof-of-principle experiments are presented. In section three, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf without demodulating, compensating, and then remodulating.

  6. Robust control of accelerators

    NASA Astrophysics Data System (ADS)

    Joel, W.; Johnson, D.; Chaouki, Abdallah T.

    1991-07-01

    The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. Because of the modelling uncertainty, one has to design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued in this research. In contrast, the robust control method leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new robust rf power feedback system. In this article, we report on our research progress. In section 1, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section 2, the results of our proof-of-principle experiments are presented. In section 3, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf. without demodulating, compensating, and then remodulating.

  7. Ambiguous Tilt and Translation Motion Cues after Space Flight and Otolith Assessment during Post-Flight Re-Adaptation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Clarke, A. H.; Harm, D. L.; Rupert, A. H.; Clement, G. R.

    2009-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation and perceptual illusions following Gtransitions. These studies are designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short duration space flights.

  8. MO-C-17A-06: Online Adaptive Re-Planning to Account for Independent Motions Between Multiple Targets During Radiotherapy of Lung Cancer

    SciTech Connect

    Liu, F; Tai, A; Ahunbay, E; Gore, E; Johnstone, C; Li, X

    2014-06-15

    Purpose: To quantify interfractional independent motions between multiple targets in radiotherapy (RT) of lung cancer, and to study the dosimetric benefits of an online adaptive replanning method to account for these variations. Methods: Ninety five diagnostic-quality daily CTs acquired for 9 lung cancer patients treated with IGRT using an in-room CT (CTVision, Siemens) were analyzed. On each daily CT set, contours of the targets (GTV, CTV, or involved nodes) and organs at risk were generated by populating the planning contours using an auto-segmentation tool (ABAS, Elekta) with manual editing. For each patient, an IMRT plan was generated based on the planning CT with a prescription dose of 60 Gy in 2Gy fractions. Three plans were generated and compared for each daily CT set: an IGRT (repositioning) plan by copying the original plan with the required shifts, an online adaptive plan by rapidly modifying the aperture shapes and segment weights of the original plan to conform to the daily anatomy, and a new fully re-optimized plan based on the daily CT using a planning system (Panther, Prowess). Results: The daily deviations of the distance between centers of masses of the targets from the plans varied daily from -10 to 8 mm with an average −0.9±4.1 mm (one standard deviation). The average CTV V100 are 99.0±0.7%, 97.9±2.8%, 99.0±0.6%, and 99.1±0.6%, and the lung V20 Gy 928±332 cc, 944±315 cc, 917±300 cc, and 891±295 cc for the original, repositioning, adaptive, and re-optimized plans, respectively. Wilcoxon signed-rank tests show that the adaptive plans are statistically significantly better than the repositioning plans and comparable with the reoptimized plans. Conclusion: There exist unpredictable, interfractional, relative volume changes and independent motions between multiple targets during lung cancer RT which cannot be accounted for by the current IGRT repositioning but can be corrected by the online adaptive replanning method.

  9. The Zigbee wireless ECG measurement system design with a motion artifact remove algorithm by using adaptive filter and moving weighted factor

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.

    2012-04-01

    The Electrocardiogram(ECG) signal is one of the bio-signals to check body status. Traditionally, the ECG signal was checked in the hospital. In these days, as the number of people who is interesting with periodic their health check increase, the requirement of self-diagnosis system development is being increased as well. Ubiquitous concept is one of the solutions of the self-diagnosis system. Zigbee wireless sensor network concept is a suitable technology to satisfy the ubiquitous concept. In measuring ECG signal, there are several kinds of methods in attaching electrode on the body called as Lead I, II, III, etc. In addition, several noise components occurred by different measurement situation such as experimenter's respiration, sensor's contact point movement, and the wire movement attached on sensor are included in pure ECG signal. Therefore, this paper is based on the two kinds of development concept. The first is the Zibee wireless communication technology, which can provide convenience and simpleness, and the second is motion artifact remove algorithm, which can detect clear ECG signal from measurement subject. The motion artifact created by measurement subject's movement or even respiration action influences to distort ECG signal, and the frequency distribution of the noises is around from 0.2Hz to even 30Hz. The frequencies are duplicated in actual ECG signal frequency, so it is impossible to remove the artifact without any distortion of ECG signal just by using low-pass filter or high-pass filter. The suggested algorithm in this paper has two kinds of main parts to extract clear ECG signal from measured original signal through an electrode. The first part is to extract motion noise signal from measured signal, and the second part is to extract clear ECG by using extracted motion noise signal and measured original signal. The paper suggests several techniques in order to extract motion noise signal such as predictability estimation theory, low pass filter

  10. Polar motion as boundary condition in an adaptive Kalman filter approach for the determination of period and damping of the Chandler oscillation

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Kirschner, S.; Neubersch, D.

    2012-12-01

    Earth rotation has been monitored using space geodetic techniques since many decades. The geophysical interpretation of observed time series of Earth rotation parameters (ERP) polar motion and length-of-day is commonly based on numerical models that describe and balance variations of angular momentum in various subsystems of the Earth. Naturally, models are dependent on geometrical, rheological and physical parameters. Many of these are weakly determined from other models or observations. In our study we present an adaptive Kalman filter approach for the improvement of parameters of the dynamic Earth system model DyMEG which acts as a simulator of ERP. In particular we focus on the improvement of the pole tide Love number k2. In the frame of a sensitivity analysis k2 has been identified as one of the most crucial parameters of DyMEG since it directly influences the modeled Chandler oscillation. At the same time k2 is one of the most uncertain parameters in the model. Our simulations with DyMEG cover a period of 60 years after which a steady state of k2 is reached. The estimate for k2, accounting for the anelastic response of the Earth's mantle and the ocean, is 0.3531 + 0.0030i. We demonstrate that the application of the improved parameter k2 in DyMEG leads to significantly better results for polar motion than the original value taken from the Conventions of the International Earth Rotation and Reference Systems Service (IERS).

  11. Engineering robust intelligent robots

    NASA Astrophysics Data System (ADS)

    Hall, E. L.; Ali, S. M. Alhaj; Ghaffari, M.; Liao, X.; Cao, M.

    2010-01-01

    The purpose of this paper is to discuss the challenge of engineering robust intelligent robots. Robust intelligent robots may be considered as ones that not only work in one environment but rather in all types of situations and conditions. Our past work has described sensors for intelligent robots that permit adaptation to changes in the environment. We have also described the combination of these sensors with a "creative controller" that permits adaptive critic, neural network learning, and a dynamic database that permits task selection and criteria adjustment. However, the emphasis of this paper is on engineering solutions which are designed for robust operations and worst case situations such as day night cameras or rain and snow solutions. This ideal model may be compared to various approaches that have been implemented on "production vehicles and equipment" using Ethernet, CAN Bus and JAUS architectures and to modern, embedded, mobile computing architectures. Many prototype intelligent robots have been developed and demonstrated in terms of scientific feasibility but few have reached the stage of a robust engineering solution. Continual innovation and improvement are still required. The significance of this comparison is that it provides some insights that may be useful in designing future robots for various manufacturing, medical, and defense applications where robust and reliable performance is essential.

  12. Approaches to robustness

    NASA Astrophysics Data System (ADS)

    Cox, Henry; Heaney, Kevin D.

    2003-04-01

    The term robustness in signal processing applications usually refers to approaches that are not degraded significantly when the assumptions that were invoked in defining the processing algorithm are no longer valid. Highly tuned algorithms that fall apart in real-world conditions are useless. The classic example is super-directive arrays of closely spaced elements. The very narrow beams and high directivity could be predicted under ideal conditions, could not be achieved under realistic conditions of amplitude, phase and position errors. The robust design tries to take into account the real environment as part of the optimization problem. This problem led to the introduction of the white noise gain constraint and diagonal loading in adaptive beam forming. Multiple linear constraints have been introduced in pursuit of robustness. Sonar systems such as towed arrays operate in less than ideal conditions, making robustness a concern. A special problem in sonar systems is failed array elements. This leads to severe degradation in beam patterns and bearing response patterns. Another robustness issue arises in matched field processing that uses an acoustic propagation model in the beamforming. Knowledge of the environmental parameters is usually limited. This paper reviews the various approaches to achieving robustness in sonar systems.

  13. From acoustic observatories to robust passive sonar

    NASA Astrophysics Data System (ADS)

    Baggeroer, Arthur B.

    2003-04-01

    The evolution of the DARPA Robust Passive Sonar (RPS) as well as the ONR Shallow Water Acoustic Testbed (SWAT) programs can be traced from concept of an acoustic observatory posed by Munk in 1980 through several assessment and feasibility studies to their current implementations. During this, the thinking on several key hypotheses matured. (i) Are noise fields directional enough to sustain high array gains? (ii) What are the tradeoffs among nonstationarity caused by ship motion, array configuration (geometry and the number of sensors), and ``snapshots'' needed for stable adaptive processing? (iii) What is the interaction between gains from vertical and horizontal apertures? (iv) How much signal gain degradation is acceptable? (v) What methods of post-processing can be done for normalization, tracking, and 3-D localization? This presentation will give a brief summary of the history of RPS and SWAT and pose the question of how well we can answer some of hypotheses which motivated them.

  14. Control of joint motion simulators for biomechanical research

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.

    1992-01-01

    The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.

  15. Determination of the Earth's pole tide Love number k2 from observations of polar motion using an adaptive Kalman filter approach

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Kirschner, S.; Neubersch, D.

    2012-09-01

    The geophysical interpretation of observed time series of Earth rotation parameters (ERP) is commonly based on numerical models that describe and balance variations of angular momentum in various subsystems of the Earth. Naturally, models are dependent on geometrical, rheological and physical parameters. Many of these are weakly determined from other models or observations. In our study we present an adaptive Kalman filter approach for the improvement of parameters of the dynamic Earth system model DyMEG which acts as a simulator of ERP. In particular we focus on the improvement of the pole tide Love number k2. In the frame of a sensitivity analysis k2 has been identified as one of the most crucial parameters of DyMEG since it directly influences the modeled Chandler oscillation. At the same time k2 is one of the most uncertain parameters in the model. Our simulations with DyMEG cover a period of 60 years after which a steady state of k2 is reached. The estimate for k2, accounting for the anelastic response of the Earth's mantle and the ocean, is 0.3531 + 0.0030i. We demonstrate that the application of the improved parameter k2 in DyMEG leads to significantly better results for polar motion than the original value taken from the Conventions of the International Earth Rotation and Reference Systems Service (IERS).

  16. Mechanisms of mutational robustness in transcriptional regulation

    PubMed Central

    Payne, Joshua L.; Wagner, Andreas

    2015-01-01

    Robustness is the invariance of a phenotype in the face of environmental or genetic change. The phenotypes produced by transcriptional regulatory circuits are gene expression patterns that are to some extent robust to mutations. Here we review several causes of this robustness. They include robustness of individual transcription factor binding sites, homotypic clusters of such sites, redundant enhancers, transcription factors, redundant transcription factors, and the wiring of transcriptional regulatory circuits. Such robustness can either be an adaptation by itself, a byproduct of other adaptations, or the result of biophysical principles and non-adaptive forces of genome evolution. The potential consequences of such robustness include complex regulatory network topologies that arise through neutral evolution, as well as cryptic variation, i.e., genotypic divergence without phenotypic divergence. On the longest evolutionary timescales, the robustness of transcriptional regulation has helped shape life as we know it, by facilitating evolutionary innovations that helped organisms such as flowering plants and vertebrates diversify. PMID:26579194

  17. PROPER MOTIONS OF THE ARCHES CLUSTER WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS: THE FIRST KINEMATIC MASS MEASUREMENT OF THE ARCHES

    SciTech Connect

    Clarkson, W. I.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Lu, J. R.; Stolte, A.; McCrady, N.; Do, T.

    2012-06-01

    We report the first detection of the intrinsic velocity dispersion of the Arches cluster-a young ({approx}2 Myr), massive (10{sup 4} M{sub Sun }) starburst cluster located only 26 pc in projection from the Galactic center. This was accomplished using proper motion measurements within the central 10'' Multiplication-Sign 10'' of the cluster, obtained with the laser guide star adaptive optics system at Keck Observatory over a three-year time baseline (2006-2009). This uniform data set results in proper motion measurements that are improved by a factor {approx}5 over previous measurements from heterogeneous instruments. By careful, simultaneous accounting of the cluster and field contaminant distributions as well as the possible sources of measurement uncertainties, we estimate the internal velocity dispersion to be 0.15 {+-} 0.01 mas yr{sup -1}, which corresponds to 5.4 {+-} 0.4 km s{sup -1} at a distance of 8.4 kpc. Projecting a simple model for the cluster onto the sky to compare with our proper motion data set, in conjunction with surface density data, we estimate the total present-day mass of the cluster to be M(r < 1.0 pc) = 1.5{sup +0.74}{sub -0.60} Multiplication-Sign 10{sup 4} M{sub Sun }. The mass in stars observed within a cylinder of radius R (for comparison to photometric estimates) is found to be M(R < 0.4 pc) = 0.90{sup +0.40}{sub -0.35} Multiplication-Sign 10{sup 4} M{sub Sun} at formal 3{sigma} confidence. This mass measurement is free from assumptions about the mass function of the cluster, and thus may be used to check mass estimates from photometry and simulation. Photometric mass estimates assuming an initially Salpeter mass function ({Gamma}{sub 0} = 1.35, or {Gamma} {approx} 1.0 at present, where dN/d(log M){proportional_to}M{sup {Gamma}}) suggest a total cluster mass M{sub cl} {approx} (4-6) Multiplication-Sign 10{sup 4} M{sub Sun} and projected mass ({approx} 2 {<=} M(R < 0.4 pc) {<=} 3) Multiplication-Sign 10{sup 4} M{sub Sun }. Photometric

  18. Robust Regression.

    PubMed

    Huang, Dong; Cabral, Ricardo; De la Torre, Fernando

    2016-02-01

    Discriminative methods (e.g., kernel regression, SVM) have been extensively used to solve problems such as object recognition, image alignment and pose estimation from images. These methods typically map image features ( X) to continuous (e.g., pose) or discrete (e.g., object category) values. A major drawback of existing discriminative methods is that samples are directly projected onto a subspace and hence fail to account for outliers common in realistic training sets due to occlusion, specular reflections or noise. It is important to notice that existing discriminative approaches assume the input variables X to be noise free. Thus, discriminative methods experience significant performance degradation when gross outliers are present. Despite its obvious importance, the problem of robust discriminative learning has been relatively unexplored in computer vision. This paper develops the theory of robust regression (RR) and presents an effective convex approach that uses recent advances on rank minimization. The framework applies to a variety of problems in computer vision including robust linear discriminant analysis, regression with missing data, and multi-label classification. Several synthetic and real examples with applications to head pose estimation from images, image and video classification and facial attribute classification with missing data are used to illustrate the benefits of RR. PMID:26761740

  19. Objects tracking with adaptive correlation filters and Kalman filtering

    NASA Astrophysics Data System (ADS)

    Ontiveros-Gallardo, Sergio E.; Kober, Vitaly

    2015-09-01

    Object tracking is commonly used for applications such as video surveillance, motion based recognition, and vehicle navigation. In this work, a tracking system using adaptive correlation filters and robust Kalman prediction of target locations is proposed. Tracking is performed by means of multiple object detections in reduced frame areas. A bank of filters is designed from multiple views of a target using synthetic discriminant functions. An adaptive approach is used to improve discrimination capability of the synthesized filters adapting them to multiple types of backgrounds. With the help of computer simulation, the performance of the proposed algorithm is evaluated in terms of detection efficiency and accuracy of object tracking.

  20. Pixel-level robust digital image correlation.

    PubMed

    Cofaru, Corneliu; Philips, Wilfried; Van Paepegem, Wim

    2013-12-01

    Digital Image Correlation (DIC) is a well-established non-contact optical metrology method. It employs digital image analysis to extract the full-field displacements and strains that occur in objects subjected to external stresses. Despite recent DIC progress, many problematic areas which greatly affect accuracy and that can seldomly be avoided, received very little attention. Problems posed by the presence of sharp displacement discontinuities, reflections, object borders or edges can be linked to the analysed object's properties and deformation. Other problematic areas, such as image noise, localized reflections or shadows are related more to the image acquisition process. This paper proposes a new subset-based pixel-level robust DIC method for in-plane displacement measurement which addresses all of these problems in a straightforward and unified approach, significantly improving DIC measurement accuracy compared to classic approaches. The proposed approach minimizes a robust energy functional which adaptively weighs pixel differences in the motion estimation process. The aim is to limit the negative influence of pixels that present erroneous or inconsistent motions by enforcing local motion consistency. The proposed method is compared to the classic Newton-Raphson DIC method in terms of displacement accuracy in three experiments. The first experiment is numerical and presents three combined problems: sharp displacement discontinuities, missing image information and image noise. The second experiment is a real experiment in which a plastic specimen is developing a lateral crack due to the application of uniaxial stress. The region around the crack presents both reflections that saturate the image intensity levels leading to missing image information, as well as sharp motion discontinuities due to the plastic film rupturing. The third experiment compares the proposed and classic DIC approaches with generic computer vision optical flow methods using images from

  1. Pixel-wise Motion Detection in Persistent Aerial Video Surveillance

    SciTech Connect

    Vesom, G

    2012-03-23

    In ground stabilized WAMI, stable objects with depth appear to have precessive motion due to sensor movement alongside objects undergoing true, independent motion in the scene. Computational objective is to disambiguate independent and structural motion in WAMI efficiently and robustly.

  2. Optimal Throughput and Self-adaptability of Robust Real-Time IEEE 802.15.4 MAC for AMI Mesh Network

    NASA Astrophysics Data System (ADS)

    Shabani, Hikma; Mohamud Ahmed, Musse; Khan, Sheroz; Hameed, Shahab Ahmed; Hadi Habaebi, Mohamed

    2013-12-01

    A smart grid refers to a modernization of the electricity system that brings intelligence, reliability, efficiency and optimality to the power grid. To provide an automated and widely distributed energy delivery, the smart grid will be branded by a two-way flow of electricity and information system between energy suppliers and their customers. Thus, the smart grid is a power grid that integrates data communication networks which provide the collected and analysed data at all levels in real time. Therefore, the performance of communication systems is so vital for the success of smart grid. Merit to the ZigBee/IEEE802.15.4std low cost, low power, low data rate, short range, simplicity and free licensed spectrum that makes wireless sensor networks (WSNs) the most suitable wireless technology for smart grid applications. Unfortunately, almost all ZigBee channels overlap with wireless local area network (WLAN) channels, resulting in severe performance degradation due to interference. In order to improve the performance of communication systems, this paper proposes an optimal throughput and self-adaptability of ZigBee/IEEE802.15.4std for smart grid.

  3. How robust is a robust policy? A comparative analysis of alternative robustness metrics for supporting robust decision analysis.

    NASA Astrophysics Data System (ADS)

    Kwakkel, Jan; Haasnoot, Marjolijn

    2015-04-01

    In response to climate and socio-economic change, in various policy domains there is increasingly a call for robust plans or policies. That is, plans or policies that performs well in a very large range of plausible futures. In the literature, a wide range of alternative robustness metrics can be found. The relative merit of these alternative conceptualizations of robustness has, however, received less attention. Evidently, different robustness metrics can result in different plans or policies being adopted. This paper investigates the consequences of several robustness metrics on decision making, illustrated here by the design of a flood risk management plan. A fictitious case, inspired by a river reach in the Netherlands is used. The performance of this system in terms of casualties, damages, and costs for flood and damage mitigation actions is explored using a time horizon of 100 years, and accounting for uncertainties pertaining to climate change and land use change. A set of candidate policy options is specified up front. This set of options includes dike raising, dike strengthening, creating more space for the river, and flood proof building and evacuation options. The overarching aim is to design an effective flood risk mitigation strategy that is designed from the outset to be adapted over time in response to how the future actually unfolds. To this end, the plan will be based on the dynamic adaptive policy pathway approach (Haasnoot, Kwakkel et al. 2013) being used in the Dutch Delta Program. The policy problem is formulated as a multi-objective robust optimization problem (Kwakkel, Haasnoot et al. 2014). We solve the multi-objective robust optimization problem using several alternative robustness metrics, including both satisficing robustness metrics and regret based robustness metrics. Satisficing robustness metrics focus on the performance of candidate plans across a large ensemble of plausible futures. Regret based robustness metrics compare the

  4. On Motion Planning and Control of Multi-Link Lightweight Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Cetinkunt, Sabri

    1987-01-01

    A general gross and fine motion planning and control strategy is needed for lightweight robotic manipulator applications such as painting, welding, material handling, surface finishing, and spacecraft servicing. The control problem of lightweight manipulators is to perform fast, accurate, and robust motions despite the payload variations, structural flexibility, and other environmental disturbances. Performance of the rigid manipulator model based computed torque and decoupled joint control methods are determined and simulated for the counterpart flexible manipulators. A counterpart flexible manipulator is defined as a manipulator which has structural flexibility, in addition to having the same inertial, geometric, and actuation properties of a given rigid manipulator. An adaptive model following control (AMFC) algorithm is developed to improve the performance in speed, accuracy, and robustness. It is found that the AMFC improves the speed performance by a factor of two over the conventional non-adaptive control methods for given accuracy requirements while proving to be more robust with respect to payload variations. Yet there are clear limitations on the performance of AMFC alone as well, which are imposed by the arm flexibility. In the search to further improve speed performance while providing a desired accuracy and robustness, a combined control strategy is developed. Furthermore, the problem of switching from one control structure to another during the motion and implementation aspects of combined control are discussed.

  5. Development of a frameless stereotactic radiosurgery system based on real-time 6D position monitoring and adaptive head motion compensation

    NASA Astrophysics Data System (ADS)

    Wiersma, Rodney D.; Wen, Zhifei; Sadinski, Meredith; Farrey, Karl; Yenice, Kamil M.

    2010-01-01

    Stereotactic radiosurgery delivers radiation with great spatial accuracy. To achieve sub-millimeter accuracy for intracranial SRS, a head ring is rigidly fixated to the skull to create a fixed reference. For some patients, the invasiveness of the ring can be highly uncomfortable and not well tolerated. In addition, placing and removing the ring requires special expertise from a neurosurgeon, and patient setup time for SRS can often be long. To reduce the invasiveness, hardware limitations and setup time, we are developing a system for performing accurate head positioning without the use of a head ring. The proposed method uses real-time 6D optical position feedback for turning on and off the treatment beam (gating) and guiding a motor-controlled 3D head motion compensation stage. The setup consists of a central control computer, an optical patient motion tracking system and a 3D motion compensation stage attached to the front of the LINAC couch. A styrofoam head cast was custom-built for patient support and was mounted on the compensation stage. The motion feedback of the markers was processed by the control computer, and the resulting motion of the target was calculated using a rigid body model. If the target deviated beyond a preset position of 0.2 mm, an automatic position correction was performed with stepper motors to adjust the head position via the couch mount motion platform. In the event the target deviated more than 1 mm, a safety relay switch was activated and the treatment beam was turned off. The feasibility of the concept was tested using five healthy volunteers. Head motion data were acquired with and without the use of motion compensation over treatment times of 15 min. On average, test subjects exceeded the 0.5 mm tolerance 86% of the time and the 1.0 mm tolerance 45% of the time without motion correction. With correction, this percentage was reduced to 5% and 2% for the 0.5 mm and 1.0 mm tolerances, respectively.

  6. Robust automated knowledge capture.

    SciTech Connect

    Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

    2011-10-01

    This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

  7. Computational Motion Phantoms and Statistical Models of Respiratory Motion

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Klinder, Tobias; Lorenz, Cristian

    Breathing motion is not a robust and 100 % reproducible process, and inter- and intra-fractional motion variations form an important problem in radiotherapy of the thorax and upper abdomen. A widespread consensus nowadays exists that it would be useful to use prior knowledge about respiratory organ motion and its variability to improve radiotherapy planning and treatment delivery. This chapter discusses two different approaches to model the variability of respiratory motion. In the first part, we review computational motion phantoms, i.e. computerized anatomical and physiological models. Computational phantoms are excellent tools to simulate and investigate the effects of organ motion in radiation therapy and to gain insight into methods for motion management. The second part of this chapter discusses statistical modeling techniques to describe the breathing motion and its variability in a population of 4D images. Population-based models can be generated from repeatedly acquired 4D images of the same patient (intra-patient models) and from 4D images of different patients (inter-patient models). The generation of those models is explained and possible applications of those models for motion prediction in radiotherapy are exemplified. Computational models of respiratory motion and motion variability have numerous applications in radiation therapy, e.g. to understand motion effects in simulation studies, to develop and evaluate treatment strategies or to introduce prior knowledge into the patient-specific treatment planning.

  8. Multimodal Interaction: Intuitive, Robust, and Preferred?

    NASA Astrophysics Data System (ADS)

    Naumann, Anja B.; Wechsung, Ina; Hurtienne, Jörn

    We investigated if and under which conditions multimodal interfaces (touch, speech, motion control) fulfil the expectation of being superior to unimodal interfaces. The results show that the possibility of multimodal interaction with a handheld mobile device turned out to be more intuitive, more robust, and more preferred than the interaction with the individual modalities speech and motion control. However, it was not clearly superior to touch.

  9. How do long-offset oceanic transforms adapt to plate motion changes? The example of the Western Pacific-Antarctic plate boundary

    NASA Astrophysics Data System (ADS)

    Lodolo, Emanuele; Coren, Franco; Ben-Avraham, Zvi

    2013-03-01

    Oceanic transform faults respond to changes in the direction of relative plate motion. Studies have shown that short-offset transforms generally adjust with slight bends near the ridge axis, while long-offset ones have a remarkably different behavior. The western Pacific-Antarctic plate boundary highlights these differences. A set of previously unpublished seismic profiles, in combination with magnetic anomaly identifications, shows how across a former, ~1250 km long transform (the Emerald Fracture Zone), plate motion changes have produced a complex geometric readjustment. Three distinct sections are recognized along this plate boundary: an eastern section, characterized by parallel, multiple fault strand lineaments; a central section, shallower than the rest of the ridge system, overprinted by a mantle plume track; and a western section, organized in a cascade of short spreading axes/transform lineaments. This configuration was produced by changes that occurred since 30 Ma in the Australia-Pacific relative plate motion, combined with a gradual clockwise change in Pacific-Antarctic plate motion. These events caused extension along the former Emerald Fracture Zone, originally linking the Pacific-Antarctic spreading ridge system with the Southeast Indian ridge. Then an intra-transform propagating ridge started to develop in response to a ~6 Ma change in the Pacific-Antarctic spreading direction. The close proximity of the Euler poles of rotation amplified the effects of the geometric readjustments that occurred along the transform system. This analysis shows that when a long-offset transform older than 20 Ma is pulled apart by changes in spreading velocity vectors, it responds with the development of multiple discrete, parallel fault strands, whereas in younger lithosphere, locally modified by thermal anisotropies, tensional stresses generate an array of spreading axes offset by closely spaced transforms.

  10. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  11. Space motion sickness

    NASA Technical Reports Server (NTRS)

    Homick, J. L.

    1979-01-01

    Research on the etiology, prediction, treatment and prevention of space motion sickness, designed to minimize the impact of this syndrome which was experienced frequently and with severity by individuals on the Skylab missions, on Space Shuttle crews is reviewed. Theories of the cause of space motion sickness currently under investigation by NASA include sensory conflict, which argues that motion sickness symptoms result from a mismatch between the total pattern of information from the spatial senses and that stored from previous experiences, and fluid shift, based upon the redistribution of bodily fluids that occurs upon continued exposure to weightlessness. Attempts are underway to correlate space motion sickness susceptibility to different provocative environments, vestibular and nonvestibular responses, and the rate of acquisition and length of retention of sensory adaptation. Space motion sickness countermeasures under investigation include various drug combinations, of which the equal combination of promethazine and ephedrine has been found to be as effective as the scopolomine and dexedrine combination, and vestibular adaptation and biofeedback training and autogenic therapy.

  12. Environmental change makes robust ecological networks fragile

    USGS Publications Warehouse

    Strona, Giovanni; Lafferty, Kevin D.

    2016-01-01

    Complex ecological networks appear robust to primary extinctions, possibly due to consumers’ tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems.

  13. Environmental change makes robust ecological networks fragile

    PubMed Central

    Strona, Giovanni; Lafferty, Kevin D.

    2016-01-01

    Complex ecological networks appear robust to primary extinctions, possibly due to consumers' tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems. PMID:27511722

  14. Environmental change makes robust ecological networks fragile.

    PubMed

    Strona, Giovanni; Lafferty, Kevin D

    2016-01-01

    Complex ecological networks appear robust to primary extinctions, possibly due to consumers' tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host-parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems. PMID:27511722

  15. Robust parametric estimation over optimal support of fluid flow structure in multispectral image sequences

    NASA Astrophysics Data System (ADS)

    Rougon, Nicolas F.; Brossard-Pailleux, M. A.; Preteux, Francoise J.

    2000-10-01

    This article presents a methodology for analyzing the Lagrangian structure of fluid flows generated by the evolution of cloud systems in meteorological multispectral image sequences. The correlation between the orientation of cloud texture and the underlying motion field Lagrangian component allows to adopt a static strategy. Following a scale-space approach, we therefore first construct a non-local robust estimator for the locally dominant orientation field in an image. This estimator, which is derived from the image structure tensor, is relevant in both mono- and multisprectral contexts. In a second step, the Lagrangian component of the flow is estimated over some bounded image region by robustly fitting a hierarchical vector parametric model to the dominant orientation field. Here, a recurrent problem deals with adaptating the geometry of the model support to obtain unbiased estimates. To tackle this classic issue, we introduce a novel variational, semi-parametric approach which allows the joint optimization of model parameters and support. This approach is generic and, in particular, can be readily applied to motion estimation yielding robust measurement of the Eulerian structure of the flow. Finally, a structural characterization of the reflecting vector field is derived by means of classic differential geometry techniques. This methodology is applied to the analysis of temperated latitude depressions in Meteosat images.

  16. Biological robustness: paradigms, mechanisms, and systems principles.

    PubMed

    Whitacre, James Michael

    2012-01-01

    Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g., mutational, environmental) are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior. PMID:22593762

  17. Robust Multiobjective Controllability of Complex Neuronal Networks.

    PubMed

    Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen

    2016-01-01

    This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc. PMID:26441452

  18. Biological Robustness: Paradigms, Mechanisms, and Systems Principles

    PubMed Central

    Whitacre, James Michael

    2012-01-01

    Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g., mutational, environmental) are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior. PMID:22593762

  19. Robust flight control of rotorcraft

    NASA Astrophysics Data System (ADS)

    Pechner, Adam Daniel

    With recent design improvement in fixed wing aircraft, there has been a considerable interest in the design of robust flight control systems to compensate for the inherent instability necessary to achieve desired performance. Such systems are designed for maximum available retention of stability and performance in the presence of significant vehicle damage or system failure. The rotorcraft industry has shown similar interest in adopting these reconfigurable flight control schemes specifically because of their ability to reject disturbance inputs and provide a significant amount of robustness for all but the most catastrophic of situations. The research summarized herein focuses on the extension of the pseudo-sliding mode control design procedure interpreted in the frequency domain. Application of the technique is employed and simulated on two well known helicopters, a simplified model of a hovering Sikorsky S-61 and the military's Black Hawk UH-60A also produced by Sikorsky. The Sikorsky helicopter model details are readily available and was chosen because it can be limited to pitch and roll motion reducing the number of degrees of freedom and yet contains two degrees of freedom, which is the minimum requirement in proving the validity of the pseudo-sliding control technique. The full order model of a hovering Black Hawk system was included both as a comparison to the S-61 helicopter design system and as a means to demonstrate the scaleability and effectiveness of the control technique on sophisticated systems where design robustness is of critical concern.

  20. Robust Software Architecture for Robots

    NASA Technical Reports Server (NTRS)

    Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael

    2009-01-01

    Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.

  1. Adaptive Environmental Source Localization and Tracking with Unknown Permittivity and Path Loss Coefficients †

    PubMed Central

    Fidan, Barış; Umay, Ilknur

    2015-01-01

    Accurate signal-source and signal-reflector target localization tasks via mobile sensory units and wireless sensor networks (WSNs), including those for environmental monitoring via sensory UAVs, require precise knowledge of specific signal propagation properties of the environment, which are permittivity and path loss coefficients for the electromagnetic signal case. Thus, accurate estimation of these coefficients has significant importance for the accuracy of location estimates. In this paper, we propose a geometric cooperative technique to instantaneously estimate such coefficients, with details provided for received signal strength (RSS) and time-of-flight (TOF)-based range sensors. The proposed technique is integrated to a recursive least squares (RLS)-based adaptive localization scheme and an adaptive motion control law, to construct adaptive target localization and adaptive target tracking algorithms, respectively, that are robust to uncertainties in aforementioned environmental signal propagation coefficients. The efficiency of the proposed adaptive localization and tracking techniques are both mathematically analysed and verified via simulation experiments. PMID:26690441

  2. Adaptive Environmental Source Localization and Tracking with Unknown Permittivity and Path Loss Coefficients.

    PubMed

    Fidan, Barış; Umay, Ilknur

    2015-01-01

    Accurate signal-source and signal-reflector target localization tasks via mobile sensory units and wireless sensor networks (WSNs), including those for environmental monitoring via sensory UAVs, require precise knowledge of specific signal propagation properties of the environment, which are permittivity and path loss coefficients for the electromagnetic signal case. Thus, accurate estimation of these coefficients has significant importance for the accuracy of location estimates. In this paper, we propose a geometric cooperative technique to instantaneously estimate such coefficients, with details provided for received signal strength (RSS) and time-of-flight (TOF)-based range sensors. The proposed technique is integrated to a recursive least squares (RLS)-based adaptive localization scheme and an adaptive motion control law, to construct adaptive target localization and adaptive target tracking algorithms, respectively, that are robust to uncertainties in aforementioned environmental signal propagation coefficients. The efficiency of the proposed adaptive localization and tracking techniques are both mathematically analysed and verified via simulation experiments. PMID:26690441

  3. Suppressive mechanisms in visual motion processing: From perception to intelligence.

    PubMed

    Tadin, Duje

    2015-10-01

    Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and individuals with schizophrenia-a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. PMID:26299386

  4. Motion Pattern Encapsulation for Data-Driven Constraint-Based Motion Editing

    NASA Astrophysics Data System (ADS)

    Carvalho, Schubert R.; Boulic, Ronan; Thalmann, Daniel

    The growth of motion capture systems have contributed to the proliferation of human motion database, mainly because human motion is important in many applications, ranging from games entertainment and films to sports and medicine. However, the captured motions normally attend specific needs. As an effort for adapting and reusing captured human motions in new tasks and environments and improving the animator's work, we present and discuss a new data-driven constraint-based animation system for interactive human motion editing. This method offers the compelling advantage that it provides faster deformations and more natural-looking motion results compared to goal-directed constraint-based methods found in the literature.

  5. Circular motion

    NASA Astrophysics Data System (ADS)

    Newton, Isaac; Henry, Richard Conn

    2000-07-01

    An extraordinarily simple and transparent derivation of the formula for the acceleration that occurs in uniform circular motion is presented, and is advocated for use in high school and college freshman physics textbooks.

  6. Magnetic Control of Atomic Motion

    NASA Astrophysics Data System (ADS)

    Mazur, Tom; Bannerman, Travis; Chavez, Isaac; Clark, Rob; Libson, Adam; Raizen, Mark

    2010-03-01

    Using a sequence of pulsed electromagnetic coils, known as the atomic coilgun, we slowed supersonic beams of atomic neon and molecular oxygen. We report our progress toward adapting the atomic coilgun for magnetically trapping hydrogen isotopes. This work has motivated us to investigate other methods for magnetic control of atomic motion. We describe these techniques, and present calculations suggesting their utility in controlling atomic motion. We then outline our plans for using these methods in certain applications.

  7. Polar motion

    NASA Technical Reports Server (NTRS)

    Kolenkiewicz, R.

    1973-01-01

    Tracking of the Beacon Explorer-C satellite by a precision laser system was used to measure the polar motion and solid earth tide. The tidal perturbation of satellite latitude is plotted as variation in maximum latitude in seconds of arc on earth's surface as a function of the date, and polar motion is shown by plotting the variation in latitude of the laser in seconds of arc along the earth's surface as a function of date

  8. Habituation of visual adaptation

    PubMed Central

    Dong, Xue; Gao, Yi; Lv, Lili; Bao, Min

    2016-01-01

    Our sensory system adjusts its function driven by both shorter-term (e.g. adaptation) and longer-term (e.g. learning) experiences. Most past adaptation literature focuses on short-term adaptation. Only recently researchers have begun to investigate how adaptation changes over a span of days. This question is important, since in real life many environmental changes stretch over multiple days or longer. However, the answer to the question remains largely unclear. Here we addressed this issue by tracking perceptual bias (also known as aftereffect) induced by motion or contrast adaptation across multiple daily adaptation sessions. Aftereffects were measured every day after adaptation, which corresponded to the degree of adaptation on each day. For passively viewed adapters, repeated adaptation attenuated aftereffects. Once adapters were presented with an attentional task, aftereffects could either reduce for easy tasks, or initially show an increase followed by a later decrease for demanding tasks. Quantitative analysis of the decay rates in contrast adaptation showed that repeated exposure of the adapter appeared to be equivalent to adaptation to a weaker stimulus. These results suggest that both attention and a non-attentional habituation-like mechanism jointly determine how adaptation develops across multiple daily sessions. PMID:26739917

  9. Habituation of visual adaptation.

    PubMed

    Dong, Xue; Gao, Yi; Lv, Lili; Bao, Min

    2016-01-01

    Our sensory system adjusts its function driven by both shorter-term (e.g. adaptation) and longer-term (e.g. learning) experiences. Most past adaptation literature focuses on short-term adaptation. Only recently researchers have begun to investigate how adaptation changes over a span of days. This question is important, since in real life many environmental changes stretch over multiple days or longer. However, the answer to the question remains largely unclear. Here we addressed this issue by tracking perceptual bias (also known as aftereffect) induced by motion or contrast adaptation across multiple daily adaptation sessions. Aftereffects were measured every day after adaptation, which corresponded to the degree of adaptation on each day. For passively viewed adapters, repeated adaptation attenuated aftereffects. Once adapters were presented with an attentional task, aftereffects could either reduce for easy tasks, or initially show an increase followed by a later decrease for demanding tasks. Quantitative analysis of the decay rates in contrast adaptation showed that repeated exposure of the adapter appeared to be equivalent to adaptation to a weaker stimulus. These results suggest that both attention and a non-attentional habituation-like mechanism jointly determine how adaptation develops across multiple daily sessions. PMID:26739917

  10. ROBUST ESTIMATES OF THE ED50

    EPA Science Inventory

    To explore the possibility that robust estimators of location can be adapted to the problem of estimating the ED50 in binary-response bioassay, 10 estimators are compared. A Monte Carlo study is conducted to determine the mean squared errors (MSE) of the estimators. Taking into a...

  11. Heart motion uncertainty compensation prediction method for robot assisted beating heart surgery - Master-slave Kalman Filters approach.

    PubMed

    Liang, Fan; Yu, Yang; Cui, Shigang; Zhao, Li; Wu, Xingli

    2014-05-01

    Robot Assisted Coronary Artery Bypass Graft (CABG) allows the heart keep beating in the surgery by actively eliminating the relative motion between point of interest (POI) on the heart surface and surgical tool. The inherited nonlinear and diverse nature of beating heart motion gives a huge obstacle for the robot to meet the demanding tracking control requirements. In this paper, we novelty propose a Master-slave Kalman Filter based on beating heart motion Nonlinear Adaptive Prediction (NAP) algorithm. In the study, we describe the beating heart motion as the combination of nonlinearity relating mathematics part and uncertainty relating non-mathematics part. Specifically, first, we model the nonlinearity of the heart motion via quadratic modulated sinusoids and estimate it by a Master Kalman Filter. Second, we involve the uncertainty heart motion by adaptively change the covariance of the process noise through the slave Kalman Filter. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The results indicate that the new approach reduces prediction errors by at least 30 μm. Moreover, the new approach performs well in robustness test, in which two kinds of arrhythmia datasets from MIT-BIH arrhythmia database are assessed. PMID:24788450

  12. Robust models for optic flow coding in natural scenes inspired by insect biology.

    PubMed

    Brinkworth, Russell S A; O'Carroll, David C

    2009-11-01

    The extraction of accurate self-motion information from the visual world is a difficult problem that has been solved very efficiently by biological organisms utilizing non-linear processing. Previous bio-inspired models for motion detection based on a correlation mechanism have been dogged by issues that arise from their sensitivity to undesired properties of the image, such as contrast, which vary widely between images. Here we present a model with multiple levels of non-linear dynamic adaptive components based directly on the known or suspected responses of neurons within the visual motion pathway of the fly brain. By testing the model under realistic high-dynamic range conditions we show that the addition of these elements makes the motion detection model robust across a large variety of images, velocities and accelerations. Furthermore the performance of the entire system is more than the incremental improvements offered by the individual components, indicating beneficial non-linear interactions between processing stages. The algorithms underlying the model can be implemented in either digital or analog hardware, including neuromorphic analog VLSI, but defy an analytical solution due to their dynamic non-linear operation. The successful application of this algorithm has applications in the development of miniature autonomous systems in defense and civilian roles, including robotics, miniature unmanned aerial vehicles and collision avoidance sensors. PMID:19893631

  13. Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology

    PubMed Central

    Brinkworth, Russell S. A.; O'Carroll, David C.

    2009-01-01

    The extraction of accurate self-motion information from the visual world is a difficult problem that has been solved very efficiently by biological organisms utilizing non-linear processing. Previous bio-inspired models for motion detection based on a correlation mechanism have been dogged by issues that arise from their sensitivity to undesired properties of the image, such as contrast, which vary widely between images. Here we present a model with multiple levels of non-linear dynamic adaptive components based directly on the known or suspected responses of neurons within the visual motion pathway of the fly brain. By testing the model under realistic high-dynamic range conditions we show that the addition of these elements makes the motion detection model robust across a large variety of images, velocities and accelerations. Furthermore the performance of the entire system is more than the incremental improvements offered by the individual components, indicating beneficial non-linear interactions between processing stages. The algorithms underlying the model can be implemented in either digital or analog hardware, including neuromorphic analog VLSI, but defy an analytical solution due to their dynamic non-linear operation. The successful application of this algorithm has applications in the development of miniature autonomous systems in defense and civilian roles, including robotics, miniature unmanned aerial vehicles and collision avoidance sensors. PMID:19893631

  14. Space motion sickness status report

    NASA Technical Reports Server (NTRS)

    Kutyna, Frank

    1986-01-01

    The space motion sickness (SMS) component of the multifactor space adaptation syndrome is anticipated to be a major problem in the spaceflight and habitation conditions that will be encountered in NASA Space Station tours and Mars voyages. The minimization of maladaptive physiological responses while enhancing those mechanisms that can best cope with the gravitoinertial conditions of space flight will require an intimate knowledge of the physiology of adaptive processes. The homeostatic mechanisms involved in SMS are inherent in human physiology.

  15. Mechanisms for Robust Cognition

    ERIC Educational Resources Information Center

    Walsh, Matthew M.; Gluck, Kevin A.

    2015-01-01

    To function well in an unpredictable environment using unreliable components, a system must have a high degree of robustness. Robustness is fundamental to biological systems and is an objective in the design of engineered systems such as airplane engines and buildings. Cognitive systems, like biological and engineered systems, exist within…

  16. A dynamic human motion: coordination analysis.

    PubMed

    Pchelkin, Stepan; Shiriaev, Anton S; Freidovich, Leonid B; Mettin, Uwe; Gusev, Sergei V; Kwon, Woong; Paramonov, Leonid

    2015-02-01

    This article is concerned with the generic structure of the motion coordination system resulting from the application of the method of virtual holonomic constraints (VHCs) to the problem of the generation and robust execution of a dynamic humanlike motion by a humanoid robot. The motion coordination developed using VHCs is based on a motion generator equation, which is a scalar nonlinear differential equation of second order. It can be considered equivalent in function to a central pattern generator in living organisms. The relative time evolution of the degrees of freedom of a humanoid robot during a typical motion are specified by a set of coordination functions that uniquely define the overall pattern of the motion. This is comparable to a hypothesis on the existence of motion patterns in biomechanics. A robust control is derived based on a transverse linearization along the configuration manifold defined by the coordination functions. It is shown that the derived coordination and control architecture possesses excellent robustness properties. The analysis is performed on an example of a real human motion recorded in test experiments. PMID:25158624

  17. Asteroid Motions

    NASA Astrophysics Data System (ADS)

    Sykes, Mary V.; Moynihan, P. Daniel

    1996-12-01

    Equations are derived which describe the apparent motion of an asteroid traveling on an elliptical orbit in geocentric ecliptic coordinates. At opposition, the equations are identical to those derived by Bowellet al. (Bowell, E., B. Skiff, and L. Wasserman 1990. InAsteroids, Comets, Meteors III(C.-I. Lagerkvist, M. Rickman, B. A. Lindblad, and M. Lindgren, Eds.), pp. 19-24. Uppsala Universitet, Uppsala, Sweden). These equations can be an important component in the optimization of search strategies for specific asteroid populations based on their apparent motions relative to other populations when observed away from opposition.

  18. Physiologic adaptation to space - Space adaptation syndrome

    NASA Technical Reports Server (NTRS)

    Vanderploeg, J. M.

    1985-01-01

    The adaptive changes of the neurovestibular system to microgravity, which result in space motion sickness (SMS), are studied. A list of symptoms, which range from vomiting to drowsiness, is provided. The two patterns of symptom development, rapid and gradual, and the duration of the symptoms are described. The concept of sensory conflict and rearrangements to explain SMS is being investigated.

  19. Respiratory Motion Prediction in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Vedam, Sastry

    Active respiratory motion management has received increasing attention in the past decade as a means to reduce the internal margin (IM) component of the clinical target volume (CTV)—planning target volume (PTV) margin typically added around the gross tumor volume (GTV) during radiation therapy of thoracic and abdominal tumors. Engineering and technical developments in linear accelerator design and respiratory motion monitoring respectively have made the delivery of motion adaptive radiation therapy possible through real-time control of either dynamic multileaf collimator (MLC) motion (gantry based linear accelerator design) or robotic arm motion (robotic arm mounted linear accelerator design).

  20. Motion restraining device

    NASA Technical Reports Server (NTRS)

    Ford, A. G. (Inventor)

    1977-01-01

    A motion-restraining device for dissipating at a controlled rate the force of a moving body is discussed. The device is characterized by a drive shaft adapted to be driven in rotation by a moving body connected to a tape wound about a reel mounted on the drive shaft, and an elongated pitman link having one end pivotally connected to the crankshaft and the opposite end thereof connected with the mass through an energy dissipating linkage. A shuttle is disposed within a slot and guided by rectilinear motion between a pair of spaced impact surfaces. Reaction forces applied at impact of the shuttle with the impact surfaces include oppositely projected force components angularly related to the direction of the applied impact forces.

  1. What's Motion Sickness?

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes What's Motion Sickness? KidsHealth > For Kids > What's Motion Sickness? Print ... motion sickness might get even worse. continue Avoiding Motion Sickness To avoid motion sickness: Put your best ...

  2. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  3. Motion correction in MRI of the brain

    NASA Astrophysics Data System (ADS)

    Godenschweger, F.; Kägebein, U.; Stucht, D.; Yarach, U.; Sciarra, A.; Yakupov, R.; Lüsebrink, F.; Schulze, P.; Speck, O.

    2016-03-01

    Subject motion in MRI is a relevant problem in the daily clinical routine as well as in scientific studies. Since the beginning of clinical use of MRI, many research groups have developed methods to suppress or correct motion artefacts. This review focuses on rigid body motion correction of head and brain MRI and its application in diagnosis and research. It explains the sources and types of motion and related artefacts, classifies and describes existing techniques for motion detection, compensation and correction and lists established and experimental approaches. Retrospective motion correction modifies the MR image data during the reconstruction, while prospective motion correction performs an adaptive update of the data acquisition. Differences, benefits and drawbacks of different motion correction methods are discussed.

  4. Space motion sickness

    NASA Technical Reports Server (NTRS)

    Vanderploeg, J. M.; Stewart, D. F.; Davis, J. R.

    1986-01-01

    Space motion sickness clinical characteristics, time course, prediction of susceptibility, and effectiveness of countermeasures were evaluated. Although there is wide individual variability, there appear to be typical patterns of symptom development. The duration of symptoms ranges from several hours to four days with the majority of individuals being symptom free by the end of third day. The etiology of this malady remains uncertain but evidence points to reinterpretation of otolith inputs as being a key factor in the response of the neurovestibular system. Prediction of susceptibility and severity remains unsatisfactory. Countermeasures tried include medications, preflight adaptation, and autogenic feedback training. No countermeasure is entirely successful in eliminating or alleviating symptoms.

  5. Endocrine correlates of susceptibility to motion sickness

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.

    1985-01-01

    Motion sickness releases ACTH, epinerphrine, and norepinephrine. The endocrine responses to motion sickness, adaptive responses leading to the resolution of the syndrome, and the way in which antimotion-sickness drugs influence the endocrine responses were studied. Susceptible or insusceptible subjects were administered antimotion-sickness drugs prior to stressful stimulation. Insusceptible subjects displayed more pronounced elevations of ACTH, epinephrine, and norepinephrine after stressful motion. Predrug levels of ACTH were higher in insusceptible subjects (p less than 0.01). Acute blockade of hormone responses to stressful motion or alteration of levels of ACTH by drugs were not correlated with individual susceptibility. No correlation was apparent between epinephrine and ACTH release. These endocrine differences may represent neurochemical markers for susceptibility to motion, stress, or general adaptability, and it may be that the chronic modulation of their levels might be more effective in preventing motion sickness than the acute blockage or stimulation of specific receptors.

  6. Motion Detection in Diffusion MRI via Online ODF Estimation

    PubMed Central

    Caruyer, Emmanuel; Aganj, Iman; Lenglet, Christophe; Sapiro, Guillermo; Deriche, Rachid

    2013-01-01

    The acquisition of high angular resolution diffusion MRI is particularly long and subject motion can become an issue. The orientation distribution function (ODF) can be reconstructed online incrementally from diffusion-weighted MRI with a Kalman filtering framework. This online reconstruction provides real-time feedback throughout the acquisition process. In this article, the Kalman filter is first adapted to the reconstruction of the ODF in constant solid angle. Then, a method called STAR (STatistical Analysis of Residuals) is presented and applied to the online detection of motion in high angular resolution diffusion images. Compared to existing techniques, this method is image based and is built on top of a Kalman filter. Therefore, it introduces no additional scan time and does not require additional hardware. The performance of STAR is tested on simulated and real data and compared to the classical generalized likelihood ratio test. Successful detection of small motion is reported (rotation under 2°) with no delay and robustness to noise. PMID:23509445

  7. Robustness of airline alliance route networks

    NASA Astrophysics Data System (ADS)

    Lordan, Oriol; Sallan, Jose M.; Simo, Pep; Gonzalez-Prieto, David

    2015-05-01

    The aim of this study is to analyze the robustness of the three major airline alliances' (i.e., Star Alliance, oneworld and SkyTeam) route networks. Firstly, the normalization of a multi-scale measure of vulnerability is proposed in order to perform the analysis in networks with different sizes, i.e., number of nodes. An alternative node selection criterion is also proposed in order to study robustness and vulnerability of such complex networks, based on network efficiency. And lastly, a new procedure - the inverted adaptive strategy - is presented to sort the nodes in order to anticipate network breakdown. Finally, the robustness of the three alliance networks are analyzed with (1) a normalized multi-scale measure of vulnerability, (2) an adaptive strategy based on four different criteria and (3) an inverted adaptive strategy based on the efficiency criterion. The results show that Star Alliance has the most resilient route network, followed by SkyTeam and then oneworld. It was also shown that the inverted adaptive strategy based on the efficiency criterion - inverted efficiency - shows a great success in quickly breaking networks similar to that found with betweenness criterion but with even better results.

  8. Ruggedness and robustness testing.

    PubMed

    Dejaegher, Bieke; Heyden, Yvan Vander

    2007-07-27

    Due to the strict regulatory requirements, especially in pharmaceutical analysis, analysis results with an acceptable quality should be reported. Thus, a proper validation of the measurement method is required. In this context, ruggedness and robustness testing becomes increasingly more important. In this review, the definitions of ruggedness and robustness are given, followed by a short explanation of the different approaches applied to examine the ruggedness or the robustness of an analytical method. Then, case studies, describing ruggedness or robustness tests of high-performance liquid chromatographic (HPLC), capillary electrophoretic (CE), gas chromatographic (GC), supercritical fluid chromatographic (SFC), and ultra-performance liquid chromatographic (UPLC) assay methods, are critically reviewed and discussed. Mainly publications of the last 10 years are considered. PMID:17379230

  9. Object tracking by combining detection, motion estimation, and verification

    NASA Astrophysics Data System (ADS)

    Sidla, Oliver

    2010-01-01

    Object detection and tracking play an increasing role in modern surveillance systems. Vision research is still confronted with many challenges when it comes to robust tracking in realistic imaging scenarios. We describe a tracking framework which is aimed at the detection and tracking of objects in real-world situations (e.g. from surveillance cameras) and in real-time. Although the current system is used for pedestrian tracking only, it can easily be adapted to other detector types and object classes. The proposed tracker combines i) a simple background model to speed up all following computations, ii)1 a fast object detector realized with a cascaded HOG detector, iii) motion estimation with a KLT Tracker iv) object verification based on texture/color analysis by means of DCT coefficients and , v) dynamic trajectory and object management. The tracker has been successfully applied in indoor and outdoor scenarios it a public transportation hub in the City of Graz, Austria.

  10. Particle filter based visual tracking with multi-cue adaptive fusion

    NASA Astrophysics Data System (ADS)

    Li, Anping; Jing, Zhongliang; Hu, Shiqiang

    2005-06-01

    To improve the robustness of visual tracking in complex environments such as: cluttered backgrounds, partial occlusions, similar distraction and pose variations, a novel tracking method based on adaptive fusion and particle filter is proposed in this paper. In this method, the image color and shape cues are adaptively fused to represent the target observation; fuzzy logic is applied to dynamically adjust each cue weight according to its associated reliability in the past frame; particle filter is adopted to deal with non-linear and non-Gaussian problems in visual tracking. The method is demonstrated to be robust to illumination changes, pose variations, partial occlusions, cluttered backgrounds and camera motion for a test image sequence.

  11. Efficient infill sampling for unconstrained robust optimization problems

    NASA Astrophysics Data System (ADS)

    Rehman, Samee Ur; Langelaar, Matthijs

    2016-08-01

    A novel infill sampling criterion is proposed for efficient estimation of the global robust optimum of expensive computer simulation based problems. The algorithm is especially geared towards addressing problems that are affected by uncertainties in design variables and problem parameters. The method is based on constructing metamodels using Kriging and adaptively sampling the response surface via a principle of expected improvement adapted for robust optimization. Several numerical examples and an engineering case study are used to demonstrate the ability of the algorithm to estimate the global robust optimum using a limited number of expensive function evaluations.

  12. Motion robust PPG-imaging through color channel mapping.

    PubMed

    Moço, Andreia V; Stuijk, Sander; de Haan, Gerard

    2016-05-01

    Photoplethysmography (PPG)-imaging is an emerging noninvasive technique that maps spatial blood-volume variations in living tissue with a video camera. In this paper, we clarify how cardiac-related (i.e., ballistocardiographic; BCG) artifacts occur in this imaging modality and address these using algorithms from the remote-PPG literature. Performance is assessed under stationary conditions at the immobilized hand. Our proposal outperforms the state-of-the-art, blood pulsation imaging [Biomed. Opt. Express5, 3123 (2014). ], even in our best attempt to create diffused illumination. BCG-artifacts are suppressed to an order of magnitude below PPG-signal strength, which is sufficient to prevent interpretation errors. PMID:27231618

  13. Motion robust PPG-imaging through color channel mapping

    PubMed Central

    Moço, Andreia V.; Stuijk, Sander; de Haan, Gerard

    2016-01-01

    Photoplethysmography (PPG)-imaging is an emerging noninvasive technique that maps spatial blood-volume variations in living tissue with a video camera. In this paper, we clarify how cardiac-related (i.e., ballistocardiographic; BCG) artifacts occur in this imaging modality and address these using algorithms from the remote-PPG literature. Performance is assessed under stationary conditions at the immobilized hand. Our proposal outperforms the state-of-the-art, blood pulsation imaging [Biomed. Opt. Express 5, 3123 (2014)25401026. ], even in our best attempt to create diffused illumination. BCG-artifacts are suppressed to an order of magnitude below PPG-signal strength, which is sufficient to prevent interpretation errors. PMID:27231618

  14. Parallel Anisotropic Tetrahedral Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  15. Station-keeping control for a stratospheric airship platform via fuzzy adaptive backstepping approach

    NASA Astrophysics Data System (ADS)

    Yang, Yueneng; Wu, Jie; Zheng, Wei

    2013-04-01

    This paper presents a novel approach for station-keeping control of a stratospheric airship platform in the presence of parametric uncertainty and external disturbance. First, conceptual design of the stratospheric airship platform is introduced, including the target mission, configuration, energy sources, propeller and payload. Second, the dynamics model of the airship platform is presented, and the mathematical model of its horizontal motion is derived. Third, a fuzzy adaptive backstepping control approach is proposed to develop the station-keeping control system for the simplified horizontal motion. The backstepping controller is designed assuming that the airship model is accurately known, and a fuzzy adaptive algorithm is used to approximate the uncertainty of the airship model. The stability of the closed-loop control system is proven via the Lyapunov theorem. Finally, simulation results illustrate the effectiveness and robustness of the proposed control approach.

  16. Muscle synergies for reliable classification of arm motions using myoelectric interface.

    PubMed

    Antuvan, Chris Wilson; Bisio, Federica; Cambria, Erik; Masia, Lorenzo

    2015-08-01

    Synergistic activation of muscles are considered to be the phenomenon by which the central nervous system simplifies its control strategy. Muscle synergies are neurally encoded and considered robust to be able to adapt for various external dynamics. This paper presents a myoelectric-based interface to identify and classify motions of the upper arm involving the shoulder and elbow. We contrast performance of the decoder while using time domain and synergy features. The decoder is trained using extreme learning machine algorithm, and online testing is performed in a virtual environment. Better classification accuracy for online control is obtained while using muscle synergy features. The results indicate better online performance compared to offline performance while using synergy features to classify movements, indicating generalization to dynamic situations and robustness of control. PMID:26736466

  17. Adaptive feature annotation for large video sensor networks

    NASA Astrophysics Data System (ADS)

    Cai, Yang; Bunn, Andrew; Liang, Peter; Yang, Bing

    2013-10-01

    We present an adaptive feature extraction and annotation algorithm for articulating traffic events from surveillance cameras. We use approximate median filter for moving object detection, motion energy image and convex hull for lane detection, and adaptive proportion models for vehicle classification. It is found that our approach outperforms three-dimensional modeling and scale-independent feature transformation algorithms in terms of robustness. The multiresolution-based video codec algorithm enables a quality-of-service-aware video streaming according to the data traffic. Furthermore, our empirical data shows that it is feasible to use the metadata to facilitate the real-time communication between an infrastructure and a vehicle for safer and more efficient traffic control.

  18. Collective Motion of Spherical Bacteria

    PubMed Central

    Rabani, Amit; Ariel, Gil; Be'er, Avraham

    2013-01-01

    A large variety of motile bacterial species exhibit collective motions while inhabiting liquids or colonizing surfaces. These collective motions are often characterized by coherent dynamic clusters, where hundreds of cells move in correlated whirls and jets. Previously, all species that were known to form such motion had a rod-shaped structure, which enhances the order through steric and hydrodynamic interactions. Here we show that the spherical motile bacteria Serratia marcescens exhibit robust collective dynamics and correlated coherent motion while grown in suspensions. As cells migrate to the upper surface of a drop, they form a monolayer, and move collectively in whirls and jets. At all concentrations, the distribution of the bacterial speed was approximately Rayleigh with an average that depends on concentration in a non-monotonic way. Other dynamical parameters such as vorticity and correlation functions are also analyzed and compared to rod-shaped bacteria from the same strain. Our results demonstrate that self-propelled spherical objects do form complex ordered collective motion. This opens a door for a new perspective on the role of cell aspect ratio and alignment of cells with regards to collective motion in nature. PMID:24376741

  19. Cooperative phenomena in the perception of motion direction.

    PubMed

    Williams, D; Phillips, G

    1987-05-01

    A percept of global coherent motion can result from the combination of many different localized motion vectors. We report here evidence of hysteresis in the perception of this global motion, obtained with random-dot cinematograms. The hysteresis characteristics are relatively robust with respect to changes in dot density, display area, and location. Changing the directional content of the stimulus, however, did alter the hysteresis profile in a manner consistent with a model incorporating cooperative interactions among direction-selective motion mechanisms. Our results lend further support to a cooperative interpretation of motion results lend further support to a cooperative interpretation of motion perception in random-dot cinematograms. PMID:3598741

  20. FPGA implementation of robust Capon beamformer

    NASA Astrophysics Data System (ADS)

    Guan, Xin; Zmuda, Henry; Li, Jian; Du, Lin; Sheplak, Mark

    2012-03-01

    The Capon Beamforming algorithm is an optimal spatial filtering algorithm used in various signal processing applications where excellent interference rejection performance is required, such as Radar and Sonar systems, Smart Antenna systems for wireless communications. Its lack of robustness, however, means that it is vulnerable to array calibration errors and other model errors. To overcome this problem, numerous robust Capon Beamforming algorithms have been proposed, which are much more promising for practical applications. In this paper, an FPGA implementation of a robust Capon Beamforming algorithm is investigated and presented. This realization takes an array output with 4 channels, computes the complex-valued adaptive weight vectors for beamforming with an 18 bit fixed-point representation and runs at a 100 MHz clock on Xilinx V4 FPGA. This work will be applied in our medical imaging project for breast cancer detection.

  1. Automatic and robust single-camera specular highlight removal in cardiac images.

    PubMed

    Alsaleh, Samar M; Aviles, Angelica I; Sobrevilla, Pilar; Casals, Alicia; Hahn, James K

    2015-08-01

    In computer-assisted beating heart surgeries, accurate tracking of the heart's motion is of huge importance and there is a continuous need to eliminate any source of error that might disturb the tracking process. One source of error is the specular reflection that appears on the glossy surface of the heart. In this paper, we propose a robust solution for the detection and removal of specular highlights. A hybrid color attributes and wavelet based edge projection approach is applied to accurately identify the affected regions. These regions are then recovered using a dynamic search-based inpainting with adaptive windowing. Experimental results demonstrate the precision and efficiency of the proposed method. Moreover, it has a real-time performance and can be generalized to various other applications. PMID:26736352

  2. The effect of genetic robustness on evolvability in digital organisms

    PubMed Central

    2008-01-01

    Background Recent work has revealed that many biological systems keep functioning in the face of mutations and therefore can be considered genetically robust. However, several issues related to robustness remain poorly understood, such as its implications for evolvability (the ability to produce adaptive evolutionary innovations). Results Here, we use the Avida digital evolution platform to explore the effects of genetic robustness on evolvability. First, we obtained digital organisms with varying levels of robustness by evolving them under combinations of mutation rates and population sizes previously shown to select for different levels of robustness. Then, we assessed the ability of these organisms to adapt to novel environments in a variety of experimental conditions. The data consistently support that, for simple environments, genetic robustness fosters long-term evolvability, whereas, in the short-term, robustness is not beneficial for evolvability but may even be a counterproductive trait. For more complex environments, however, results are less conclusive. Conclusion The finding that the effect of robustness on evolvability is time-dependent is compatible with previous results obtained using RNA folding algorithms and transcriptional regulation models. A likely scenario is that, in the short-term, genetic robustness hampers evolvability because it reduces the intensity of selection, but that, in the long-term, relaxed selection facilitates the accumulation of genetic diversity and thus, promotes evolutionary innovation. PMID:18854018

  3. Robustness of spatial micronetworks

    NASA Astrophysics Data System (ADS)

    McAndrew, Thomas C.; Danforth, Christopher M.; Bagrow, James P.

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.

  4. Robustness of spatial micronetworks.

    PubMed

    McAndrew, Thomas C; Danforth, Christopher M; Bagrow, James P

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure. PMID:25974553

  5. Motion Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  6. Adaptation of the modified Bouc–Wen model to compensate for hysteresis in respiratory motion for the list-mode binning of cardiac SPECT and PET acquisitions: Testing using MRI

    PubMed Central

    Dasari, Paul K. R.; Shazeeb, Mohammed Salman; Könik, Arda; Lindsay, Clifford; Mukherjee, Joyeeta M.; Johnson, Karen L.; King, Michael A.

    2014-01-01

    Purpose: Binning list-mode acquisitions as a function of a surrogate signal related to respiration has been employed to reduce the impact of respiratory motion on image quality in cardiac emission tomography (SPECT and PET). Inherent in amplitude binning is the assumption that there is a monotonic relationship between the amplitude of the surrogate signal and respiratory motion of the heart. This assumption is not valid in the presence of hysteresis when heart motion exhibits a different relationship with the surrogate during inspiration and expiration. The purpose of this study was to investigate the novel approach of using the Bouc–Wen (BW) model to provide a signal accounting for hysteresis when binning list-mode data with the goal of thereby improving motion correction. The study is based on the authors’ previous observations that hysteresis between chest and abdomen markers was indicative of hysteresis between abdomen markers and the internal motion of the heart. Methods: In 19 healthy volunteers, they determined the internal motion of the heart and diaphragm in the superior–inferior direction during free breathing using MRI navigators. A visual tracking system (vts) synchronized with MRI acquisition tracked the anterior–posterior motions of external markers placed on the chest and abdomen. These data were employed to develop and test the Bouc–Wen model by inputting the vts derived chest and abdomen motions into it and using the resulting output signals as surrogates for cardiac motion. The data of the volunteers were divided into training and testing sets. The training set was used to obtain initial values for the model parameters for all of the volunteers in the set, and for set members based on whether they were or were not classified as exhibiting hysteresis using a metric derived from the markers. These initial parameters were then employed with the testing set to estimate output signals. Pearson’s linear correlation coefficient between the

  7. Adaptation of the modified Bouc–Wen model to compensate for hysteresis in respiratory motion for the list-mode binning of cardiac SPECT and PET acquisitions: Testing using MRI

    SciTech Connect

    Dasari, Paul K. R.; Shazeeb, Mohammed Salman; Könik, Arda; Lindsay, Clifford; Mukherjee, Joyeeta M.; Johnson, Karen L.; King, Michael A.

    2014-11-01

    Purpose: Binning list-mode acquisitions as a function of a surrogate signal related to respiration has been employed to reduce the impact of respiratory motion on image quality in cardiac emission tomography (SPECT and PET). Inherent in amplitude binning is the assumption that there is a monotonic relationship between the amplitude of the surrogate signal and respiratory motion of the heart. This assumption is not valid in the presence of hysteresis when heart motion exhibits a different relationship with the surrogate during inspiration and expiration. The purpose of this study was to investigate the novel approach of using the Bouc–Wen (BW) model to provide a signal accounting for hysteresis when binning list-mode data with the goal of thereby improving motion correction. The study is based on the authors’ previous observations that hysteresis between chest and abdomen markers was indicative of hysteresis between abdomen markers and the internal motion of the heart. Methods: In 19 healthy volunteers, they determined the internal motion of the heart and diaphragm in the superior–inferior direction during free breathing using MRI navigators. A visual tracking system (VTS) synchronized with MRI acquisition tracked the anterior–posterior motions of external markers placed on the chest and abdomen. These data were employed to develop and test the Bouc–Wen model by inputting the VTS derived chest and abdomen motions into it and using the resulting output signals as surrogates for cardiac motion. The data of the volunteers were divided into training and testing sets. The training set was used to obtain initial values for the model parameters for all of the volunteers in the set, and for set members based on whether they were or were not classified as exhibiting hysteresis using a metric derived from the markers. These initial parameters were then employed with the testing set to estimate output signals. Pearson’s linear correlation coefficient between the

  8. Robust atomic force microscopy using multiple sensors.

    PubMed

    Baranwal, Mayank; Gorugantu, Ram S; Salapaka, Srinivasa M

    2016-08-01

    Atomic force microscopy typically relies on high-resolution high-bandwidth cantilever deflection measurements based control for imaging and estimating sample topography and properties. More precisely, in amplitude-modulation atomic force microscopy (AM-AFM), the control effort that regulates deflection amplitude is used as an estimate of sample topography; similarly, contact-mode AFM uses regulation of deflection signal to generate sample topography. In this article, a control design scheme based on an additional feedback mechanism that uses vertical z-piezo motion sensor, which augments the deflection based control scheme, is proposed and evaluated. The proposed scheme exploits the fact that the piezo motion sensor, though inferior to the cantilever deflection signal in terms of resolution and bandwidth, provides information on piezo actuator dynamics that is not easily retrievable from the deflection signal. The augmented design results in significant improvements in imaging bandwidth and robustness, especially in AM-AFM, where the complicated underlying nonlinear dynamics inhibits estimating piezo motions from deflection signals. In AM-AFM experiments, the two-sensor based design demonstrates a substantial improvement in robustness to modeling uncertainties by practically eliminating the peak in the sensitivity plot without affecting the closed-loop bandwidth when compared to a design that does not use the piezo-position sensor based feedback. The contact-mode imaging results, which use proportional-integral controllers for cantilever-deflection regulation, demonstrate improvements in bandwidth and robustness to modeling uncertainties, respectively, by over 30% and 20%. The piezo-sensor based feedback is developed using H∞ control framework. PMID:27587128

  9. Music can elicit a visual motion aftereffect.

    PubMed

    Hedger, Stephen C; Nusbaum, Howard C; Lescop, Olivier; Wallisch, Pascal; Hoeckner, Berthold

    2013-07-01

    Motion aftereffects (MAEs) are thought to result from the adaptation of both subcortical and cortical systems involved in the processing of visual motion. Recently, it has been reported that the implied motion of static images in combination with linguistic descriptions of motion is sufficient to elicit an MAE, although neither factor alone is thought to directly activate visual motion areas in the brain. Given that the monotonic change of musical pitch is widely recognized in music as a metaphor for vertical motion, we investigated whether prolonged exposure to ascending or descending musical scales can also produce a visual motion aftereffect. After listening to ascending or descending musical scales, participants made decisions about the direction of visual motion in random-dot kinematogram stimuli. Metaphoric motion in the musical stimuli did affect the visual direction judgments, in that repeated exposure to rising or falling musical scales shifted participants' sensitivity to visual motion in the opposite direction. The finding that music can induce an MAE suggests that the subjective interpretation of monotonic pitch change as motion may have a perceptual foundation. PMID:23456973

  10. Ultrasound image-based respiratory motion tracking

    NASA Astrophysics Data System (ADS)

    Hwang, Youngkyoo; Kim, Jung-Bae; Kim, Yong Sun; Bang, Won-Chul; Kim, James D. K.; Kim, ChangYeong

    2012-03-01

    Respiratory motion tracking has been issues for MR/CT imaging and noninvasive surgery such as HIFU and radiotherapy treatment when we apply these imaging or therapy technologies to moving organs such as liver, kidney or pancreas. Currently, some bulky and burdensome devices are placed externally on skin to estimate respiratory motion of an organ. It estimates organ motion indirectly using skin motion, not directly using organ itself. In this paper, we propose a system that measures directly the motion of organ itself only using ultrasound image. Our system has automatically selected a window in image sequences, called feature window, which is able to measure respiratory motion robustly even to noisy ultrasound images. The organ's displacement on each ultrasound image has been directly calculated through the feature window. It is very convenient to use since it exploits a conventional ultrasound probe. In this paper, we show that our proposed method can robustly extract respiratory motion signal with regardless of reference frame. It is superior to other image based method such as Mutual Information (MI) or Correlation Coefficient (CC). They are sensitive to what the reference frame is selected. Furthermore, our proposed method gives us clear information of the phase of respiratory cycle such as during inspiration or expiration and so on since it calculate not similarity measurement like MI or CC but actual organ's displacement.

  11. Robust stability of second-order systems

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.

    1994-01-01

    This progress report gives current progress of the research in nonlinear robust control using positive real concept. The progress is documented in a draft paper. In the paper, the manipulator dynamics is reformulated differently from the existing equations of motion for free base robots. This new formulation gives a compact form of the dynamic equations for easy computation. The nonlinear terms are now considered. The results show that for an additional nonlinear friction term, the feedback controller designed using passivity concept works quite well. Although design of such a controller requires simulation of the dynamics for the example shown in the following draft, this design procedure is feasible.

  12. Toward robust nanogenerators using aluminum substrate.

    PubMed

    Lee, Sangmin; Hong, Jung-Il; Xu, Chen; Lee, Minbaek; Kim, Dongseob; Lin, Long; Hwang, Woonbong; Wang, Zhong Lin

    2012-08-22

    Nanogenerators (NG) have been developed to harvest mechanical energy from environmental sources such as vibration, human motion, or movement of automobiles. We demonstrate a robust and large-area NG based on a cost-effective Al substrate with the capability to be easily integrated in series and parallel for high-output performance. The output voltage and current density of the three-dimensionally integrated NG device reaches up to 3 V and 195 nA under human walking conditions. PMID:22753239

  13. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators.

    PubMed

    Chen, Jun; Yang, Jin; Guo, Hengyu; Li, Zhaoling; Zheng, Li; Su, Yuanjie; Wen, Zhen; Fan, Xing; Wang, Zhong Lin

    2015-12-22

    Although the triboelectric nanogenerator (TENG) has been proven to be a renewable and effective route for ambient energy harvesting, its robustness remains a great challenge due to the requirement of surface friction for a decent output, especially for the in-plane sliding mode TENG. Here, we present a rationally designed TENG for achieving a high output performance without compromising the device robustness by, first, converting the in-plane sliding electrification into a contact separation working mode and, second, creating an automatic transition between a contact working state and a noncontact working state. The magnet-assisted automatic transition triboelectric nanogenerator (AT-TENG) was demonstrated to effectively harness various ambient rotational motions to generate electricity with greatly improved device robustness. At a wind speed of 6.5 m/s or a water flow rate of 5.5 L/min, the harvested energy was capable of lighting up 24 spot lights (0.6 W each) simultaneously and charging a capacitor to greater than 120 V in 60 s. Furthermore, due to the rational structural design and unique output characteristics, the AT-TENG was not only capable of harvesting energy from natural bicycling and car motion but also acting as a self-powered speedometer with ultrahigh accuracy. Given such features as structural simplicity, easy fabrication, low cost, wide applicability even in a harsh environment, and high output performance with superior device robustness, the AT-TENG renders an effective and practical approach for ambient mechanical energy harvesting as well as self-powered active sensing. PMID:26529374

  14. Survival and innovation: The role of mutational robustness in evolution.

    PubMed

    Fares, Mario A

    2015-12-01

    Biological systems are resistant to perturbations caused by the environment and by the intrinsic noise of the system. Robustness to mutations is a particular aspect of robustness in which the phenotype is resistant to genotypic variation. Mutational robustness has been linked to the ability of the system to generate heritable genetic variation (a property known as evolvability). It is known that greater robustness leads to increased evolvability. Therefore, mechanisms that increase mutational robustness fuel evolvability. Two such mechanisms, molecular chaperones and gene duplication, have been credited with enormous importance in generating functional diversity through the increase of system's robustness to mutational insults. However, the way in which such mechanisms regulate robustness remains largely uncharacterized. In this review, I provide evidence in support of the role of molecular chaperones and gene duplication in innovation. Specifically, I present evidence that these mechanisms regulate robustness allowing unstable systems to survive long periods of time, and thus they provide opportunity for other mutations to compensate the destabilizing effects of functionally innovative mutations. The findings reported in this study set new questions with regards to the synergy between robustness mechanisms and how this synergy can alter the adaptive landscape of proteins. The ideas proposed in this article set the ground for future research in the understanding of the role of robustness in evolution. PMID:25447135

  15. Motion sickness: more than nausea and vomiting.

    PubMed

    Lackner, James R

    2014-08-01

    Motion sickness is a complex syndrome that includes many features besides nausea and vomiting. This review describes some of these factors and points out that under normal circumstances, many cases of motion sickness go unrecognized. Motion sickness can occur during exposure to physical motion, visual motion, and virtual motion, and only those without a functioning vestibular system are fully immune. The range of vulnerability in the normal population varies about 10,000 to 1. Sleep deprivation can also enhance susceptibility. Systematic studies conducted in parabolic flight have identified velocity storage of semicircular canal signals-velocity integration-as being a key factor in both space motion sickness and terrestrial motion sickness. Adaptation procedures that have been developed to increase resistance to motion sickness reduce this time constant. A fully adequate theory of motion sickness is not presently available. Limitations of two popular theories, the evolutionary and the ecological, are described. A sensory conflict theory can explain many but not all aspects of motion sickness elicitation. However, extending the theory to include conflicts related to visceral afferent feedback elicited by voluntary and passive body motion greatly expands its explanatory range. Future goals should include determining why some conflicts are provocative and others are not but instead lead to perceptual reinterpretations of ongoing body motion. The contribution of visceral afferents in relation to vestibular and cerebellar signals in evoking sickness also deserves further exploration. Substantial progress is being made in identifying the physiological mechanisms underlying the evocation of nausea, vomiting, and anxiety, and a comprehensive understanding of motion sickness may soon be attainable. Adequate anti-motion sickness drugs without adverse side effects are not yet available. PMID:24961738

  16. Doubly robust survival trees.

    PubMed

    Steingrimsson, Jon Arni; Diao, Liqun; Molinaro, Annette M; Strawderman, Robert L

    2016-09-10

    Estimating a patient's mortality risk is important in making treatment decisions. Survival trees are a useful tool and employ recursive partitioning to separate patients into different risk groups. Existing 'loss based' recursive partitioning procedures that would be used in the absence of censoring have previously been extended to the setting of right censored outcomes using inverse probability censoring weighted estimators of loss functions. In this paper, we propose new 'doubly robust' extensions of these loss estimators motivated by semiparametric efficiency theory for missing data that better utilize available data. Simulations and a data analysis demonstrate strong performance of the doubly robust survival trees compared with previously used methods. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27037609

  17. Robust verification analysis

    NASA Astrophysics Data System (ADS)

    Rider, William; Witkowski, Walt; Kamm, James R.; Wildey, Tim

    2016-02-01

    We introduce a new methodology for inferring the accuracy of computational simulations through the practice of solution verification. We demonstrate this methodology on examples from computational heat transfer, fluid dynamics and radiation transport. Our methodology is suited to both well- and ill-behaved sequences of simulations. Our approach to the analysis of these sequences of simulations incorporates expert judgment into the process directly via a flexible optimization framework, and the application of robust statistics. The expert judgment is systematically applied as constraints to the analysis, and together with the robust statistics guards against over-emphasis on anomalous analysis results. We have named our methodology Robust Verification. Our methodology is based on utilizing multiple constrained optimization problems to solve the verification model in a manner that varies the analysis' underlying assumptions. Constraints applied in the analysis can include expert judgment regarding convergence rates (bounds and expectations) as well as bounding values for physical quantities (e.g., positivity of energy or density). This approach then produces a number of error models, which are then analyzed through robust statistical techniques (median instead of mean statistics). This provides self-contained, data and expert informed error estimation including uncertainties for both the solution itself and order of convergence. Our method produces high quality results for the well-behaved cases relatively consistent with existing practice. The methodology can also produce reliable results for ill-behaved circumstances predicated on appropriate expert judgment. We demonstrate the method and compare the results with standard approaches used for both code and solution verification on well-behaved and ill-behaved simulations.

  18. Robust Collaborative Recommendation

    NASA Astrophysics Data System (ADS)

    Burke, Robin; O'Mahony, Michael P.; Hurley, Neil J.

    Collaborative recommender systems are vulnerable to malicious users who seek to bias their output, causing them to recommend (or not recommend) particular items. This problem has been an active research topic since 2002. Researchers have found that the most widely-studied memory-based algorithms have significant vulnerabilities to attacks that can be fairly easily mounted. This chapter discusses these findings and the responses that have been investigated, especially detection of attack profiles and the implementation of robust recommendation algorithms.

  19. Biological Motion Cues Trigger Reflexive Attentional Orienting

    ERIC Educational Resources Information Center

    Shi, Jinfu; Weng, Xuchu; He, Sheng; Jiang, Yi

    2010-01-01

    The human visual system is extremely sensitive to biological signals around us. In the current study, we demonstrate that biological motion walking direction can induce robust reflexive attentional orienting. Following a brief presentation of a central point-light walker walking towards either the left or right direction, observers' performance…

  20. Robust quantitative scratch assay

    PubMed Central

    Vargas, Andrea; Angeli, Marc; Pastrello, Chiara; McQuaid, Rosanne; Li, Han; Jurisicova, Andrea; Jurisica, Igor

    2016-01-01

    The wound healing assay (or scratch assay) is a technique frequently used to quantify the dependence of cell motility—a central process in tissue repair and evolution of disease—subject to various treatments conditions. However processing the resulting data is a laborious task due its high throughput and variability across images. This Robust Quantitative Scratch Assay algorithm introduced statistical outputs where migration rates are estimated, cellular behaviour is distinguished and outliers are identified among groups of unique experimental conditions. Furthermore, the RQSA decreased measurement errors and increased accuracy in the wound boundary at comparable processing times compared to previously developed method (TScratch). Availability and implementation: The RQSA is freely available at: http://ophid.utoronto.ca/RQSA/RQSA_Scripts.zip. The image sets used for training and validation and results are available at: (http://ophid.utoronto.ca/RQSA/trainingSet.zip, http://ophid.utoronto.ca/RQSA/validationSet.zip, http://ophid.utoronto.ca/RQSA/ValidationSetResults.zip, http://ophid.utoronto.ca/RQSA/ValidationSet_H1975.zip, http://ophid.utoronto.ca/RQSA/ValidationSet_H1975Results.zip, http://ophid.utoronto.ca/RQSA/RobustnessSet.zip, http://ophid.utoronto.ca/RQSA/RobustnessSet.zip). Supplementary Material is provided for detailed description of the development of the RQSA. Contact: juris@ai.utoronto.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26722119

  1. Robustness of metabolic networks

    NASA Astrophysics Data System (ADS)

    Jeong, Hawoong

    2009-03-01

    We investigated the robustness of cellular metabolism by simulating the system-level computational models, and also performed the corresponding experiments to validate our predictions. We address the cellular robustness from the ``metabolite''-framework by using the novel concept of ``flux-sum,'' which is the sum of all incoming or outgoing fluxes (they are the same under the pseudo-steady state assumption). By estimating the changes of the flux-sum under various genetic and environmental perturbations, we were able to clearly decipher the metabolic robustness; the flux-sum around an essential metabolite does not change much under various perturbations. We also identified the list of the metabolites essential to cell survival, and then ``acclimator'' metabolites that can control the cell growth were discovered. Furthermore, this concept of ``metabolite essentiality'' should be useful in developing new metabolic engineering strategies for improved production of various bioproducts and designing new drugs that can fight against multi-antibiotic resistant superbacteria by knocking-down the enzyme activities around an essential metabolite. Finally, we combined a regulatory network with the metabolic network to investigate its effect on dynamic properties of cellular metabolism.

  2. Robust impedance shaping telemanipulation

    SciTech Connect

    Colgate, J.E.

    1993-08-01

    When a human operator performs a task via a bilateral manipulator, the feel of the task is embodied in the mechanical impedance of the manipulator. Traditionally, a bilateral manipulator is designed for transparency; i.e., so that the impedance reflected through the manipulator closely approximates that of the task. Impedance shaping bilateral control, introduced here, differs in that it treats the bilateral manipulator as a means of constructively altering the impedance of a task. This concept is particularly valuable if the characteristic dimensions (e.g., force, length, time) of the task impedance are very different from those of the human limb. It is shown that a general form of impedance shaping control consists of a conventional power-scaling bilateral controller augmented with a real-time interactive task simulation (i.e., a virtual environment). An approach to impedance shaping based on kinematic similarity between tasks of different scale is introduced and illustrated with an example. It is shown that an important consideration in impedance shaping controller design is robustness; i.e., guaranteeing the stability of the operator/manipulator/task system. A general condition for the robustness of a bilateral manipulator is derived. This condition is based on the structured singular value ({mu}). An example of robust impedance shaping bilateral control is presented and discussed.

  3. Robustness of Interdependent Networks

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo

    2011-03-01

    In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This may happen recursively and can lead to a cascade of failures. In fact, a failure of a very small fraction of nodes in one network may lead to the complete fragmentation of a system of many interdependent networks. We will present a framework for understanding the robustness of interacting networks subject to such cascading failures and provide a basic analytic approach that may be useful in future studies. We present exact analytical solutions for the critical fraction of nodes that upon removal will lead to a failure cascade and to a complete fragmentation of two interdependent networks in a first order transition. Surprisingly, analyzing complex systems as a set of interdependent networks may alter a basic assumption that network theory has relied on: while for a single network a broader degree distribution of the network nodes results in the network being more robust to random failures, for interdependent networks, the broader the distribution is, the more vulnerable the networks become to random failure. We also show that reducing the coupling between the networks leads to a change from a first order percolation phase transition to a second order percolation transition at a critical point. These findings pose a significant challenge to the future design of robust networks that need to consider the unique properties of interdependent networks.

  4. On the Robustness Properties of M-MRAC

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram

    2012-01-01

    The paper presents performance and robustness analysis of the modified reference model MRAC (model reference adaptive control) or M-MRAC in short, which differs from the conventional MRAC systems by feeding back the tracking error to the reference model. The tracking error feedback gain in concert with the adaptation rate provides an additional capability to regulate not only the transient performance of the tracking error, but also the transient performance of the control signal. This differs from the conventional MRAC systems, in which we have only the adaptation rate as a tool to regulate just the transient performance of the tracking error. It is shown that the selection of the feedback gain and the adaptation rate resolves the tradeoff between the robustness and performance in the sense that the increase in the feedback gain improves the behavior of the adaptive control signal, hence improves the systems robustness to time delays (or unmodeled dynamics), while increasing the adaptation rate improves the tracking performance or systems robustness to parametric uncertainties and external disturbances.

  5. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana; Charles P.

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  6. The tactile motion aftereffect suggests an intensive code for speed in neurons sensitive to both speed and direction of motion.

    PubMed

    McIntyre, S; Birznieks, I; Vickery, R M; Holcombe, A O; Seizova-Cajic, T

    2016-03-01

    Neurophysiological studies in primates have found that direction-sensitive neurons in the primary somatosensory cortex (SI) generally increase their response rate with increasing speed of object motion across the skin and show little evidence of speed tuning. We employed psychophysics to determine whether human perception of motion direction could be explained by features of such neurons and whether evidence can be found for a speed-tuned process. After adaptation to motion across the skin, a subsequently presented dynamic test stimulus yields an impression of motion in the opposite direction. We measured the strength of this tactile motion aftereffect (tMAE) induced with different combinations of adapting and test speeds. Distal-to-proximal or proximal-to-distal adapting motion was applied to participants' index fingers using a tactile array, after which participants reported the perceived direction of a bidirectional test stimulus. An intensive code for speed, like that observed in SI neurons, predicts greater adaptation (and a stronger tMAE) the faster the adapting speed, regardless of the test speed. In contrast, speed tuning of direction-sensitive neurons predicts the greatest tMAE when the adapting and test stimuli have matching speeds. We found that the strength of the tMAE increased monotonically with adapting speed, regardless of the test speed, showing no evidence of speed tuning. Our data are consistent with neurophysiological findings that suggest an intensive code for speed along the motion processing pathways comprising neurons sensitive both to speed and direction of motion. PMID:26823511

  7. Collective motion

    NASA Astrophysics Data System (ADS)

    Vicsek, Tamás; Zafeiris, Anna

    2012-08-01

    We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.

  8. Perceptual shrinkage of a one-way motion path with high-speed motion

    PubMed Central

    Nakajima, Yutaka; Sakaguchi, Yutaka

    2016-01-01

    Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4–100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation. PMID:27464844

  9. Perceptual shrinkage of a one-way motion path with high-speed motion.

    PubMed

    Nakajima, Yutaka; Sakaguchi, Yutaka

    2016-01-01

    Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4-100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation. PMID:27464844

  10. Active vibration control of Flexible Joint Manipulator using Input Shaping and Adaptive Parameter Auto Disturbance Rejection Controller

    NASA Astrophysics Data System (ADS)

    Li, W. P.; Luo, B.; Huang, H.

    2016-02-01

    This paper presents a vibration control strategy for a two-link Flexible Joint Manipulator (FJM) with a Hexapod Active Manipulator (HAM). A dynamic model of the multi-body, rigid-flexible system composed of an FJM, a HAM and a spacecraft was built. A hybrid controller was proposed by combining the Input Shaping (IS) technique with an Adaptive-Parameter Auto Disturbance Rejection Controller (APADRC). The controller was used to suppress the vibration caused by external disturbances and input motions. Parameters of the APADRC were adaptively adjusted to ensure the characteristic of the closed loop system to be a given reference system, even if the configuration of the manipulator significantly changes during motion. Because precise parameters of the flexible manipulator are not required in the IS system, the operation of the controller was sufficiently robust to accommodate uncertainties in system parameters. Simulations results verified the effectiveness of the HAM scheme and controller in the vibration suppression of FJM during operation.

  11. Higher-order motion sensitivity in fly visual circuits.

    PubMed

    Lee, Yu-Jen; Nordström, Karin

    2012-05-29

    In higher-order motion stimuli, the direction of object motion does not follow the direction of luminance change. Such stimuli could be generated by the wing movements of a flying butterfly and further complicated by its motion in and out of shadows. Human subjects readily perceive the direction of higher-order motion, although this stands in stark contrast to prevailing motion vision models. Flies and humans compute motion in similar ways, and because flies behaviorally track bars containing higher-order motion cues, they become an attractive model system for investigating the neurophysiology underlying higher-order motion sensitivity. We here use intracellular electrophysiology of motion-vision-sensitive neurons in the hoverfly lobula plate to quantify responses to stimuli containing higher-order motion. We show that motion sensitivity can be broken down into two separate streams, directionally coding for elementary motion and figure motion, respectively, and that responses to Fourier and theta motion can be predicted from these. The sensitivity is affected both by the stimulus' time course and by the neuron's underlying receptive field. Responses to preferred-direction theta motion are sexually dimorphic and particularly robust along the visual midline. PMID:22586123

  12. Higher-order motion sensitivity in fly visual circuits

    PubMed Central

    Lee, Yu-Jen; Nordström, Karin

    2012-01-01

    In higher-order motion stimuli, the direction of object motion does not follow the direction of luminance change. Such stimuli could be generated by the wing movements of a flying butterfly and further complicated by its motion in and out of shadows. Human subjects readily perceive the direction of higher-order motion, although this stands in stark contrast to prevailing motion vision models. Flies and humans compute motion in similar ways, and because flies behaviorally track bars containing higher-order motion cues, they become an attractive model system for investigating the neurophysiology underlying higher-order motion sensitivity. We here use intracellular electrophysiology of motion-vision–sensitive neurons in the hoverfly lobula plate to quantify responses to stimuli containing higher-order motion. We show that motion sensitivity can be broken down into two separate streams, directionally coding for elementary motion and figure motion, respectively, and that responses to Fourier and theta motion can be predicted from these. The sensitivity is affected both by the stimulus’ time course and by the neuron’s underlying receptive field. Responses to preferred-direction theta motion are sexually dimorphic and particularly robust along the visual midline. PMID:22586123

  13. Robust speech coding using microphone arrays

    NASA Astrophysics Data System (ADS)

    Li, Zhao

    1998-09-01

    To achieve robustness and efficiency for voice communication in noise, the noise suppression and bandwidth compression processes are combined to form a joint process using input from an array of microphones. An adaptive beamforming technique with a set of robust linear constraints and a single quadratic inequality constraint is used to preserve desired signal and to cancel directional plus ambient noise in a small room environment. This robustly constrained array processor is found to be effective in limiting signal cancelation over a wide range of input SNRs (-10 dB to +10 dB). The resulting intelligibility gains (8-10 dB) provide significant improvement to subsequent CELP coding. In addition, the desired speech activity is detected by estimating Target-to-Jammer Ratios (TJR) using subband correlations between different microphone inputs or using signals within the Generalized Sidelobe Canceler directly. These two novel techniques of speech activity detection for coding are studied thoroughly in this dissertation. Each is subsequently incorporated with the adaptive array and a 4.8 kbps CELP coder to form a Variable Bit Kate (VBR) coder with noise canceling and Spatial Voice Activity Detection (SVAD) capabilities. This joint noise suppression and bandwidth compression system demonstrates large improvements in desired speech quality after coding, accurate desired speech activity detection in various types of interference, and a reduction in the information bits required to code the speech.

  14. Auditory motion affects visual biological motion processing.

    PubMed

    Brooks, A; van der Zwan, R; Billard, A; Petreska, B; Clarke, S; Blanke, O

    2007-02-01

    The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of

  15. Frame rate up conversion via Bayesian motion estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Ma, Siwei; Gao, Wen

    2010-07-01

    In this paper, a novel block-based motion compensated frame interpolation (MCI) algorithm is proposed to enhance the temporal resolution of video sequences. We formulated motion estimation into MAP framework, and solved it via Bayesian belief propagation. By effectively incorporating a priori knowledge of the motion field and optimizing the whole motion field synchronously, it could derive more accurate motion vectors than traditional methods. Finally, adaptive overlapped block motion compensation (OBMC) is used to reduce blocking artifacts. Experimental results show that the proposed method outperforms other methods in both objective and subjective quality.

  16. Measure of robustness for complex networks

    NASA Astrophysics Data System (ADS)

    Youssef, Mina Nabil

    to the spread of susceptible/infected/recovered (SIR) epidemics. To compute VCSIR, we propose a novel individual-based approach to model the spread of SIR epidemics in networks, which captures the infection size for a given effective infection rate. Thus, VCSIR quantitatively integrates the infection strength with the corresponding infection size. To optimize the VCSIR metric, a new mitigation strategy is proposed, based on a temporary reduction of contacts in social networks. The social contact network is modeled as a weighted graph that describes the frequency of contacts among the individuals. Thus, we consider the spread of an epidemic as a dynamical system, and the total number of infection cases as the state of the system, while the weight reduction in the social network is the controller variable leading to slow/reduce the spread of epidemics. Using optimal control theory, the obtained solution represents an optimal adaptive weighted network defined over a finite time interval. Moreover, given the high complexity of the optimization problem, we propose two heuristics to find the near optimal solutions by reducing the contacts among the individuals in a decentralized way. Finally, the cascading failures that can take place in power grids and have recently caused several blackouts are studied. We propose a new metric to assess the robustness of the power grid with respect to the cascading failures. The power grid topology is modeled as a network, which consists of nodes and links representing power substations and transmission lines, respectively. We also propose an optimal islanding strategy to protect the power grid when a cascading failure event takes place in the grid. The robustness metrics are numerically evaluated using real and synthetic networks to quantify their robustness with respect to disturbing dynamics. We show that the proposed metrics outperform the classical metrics in quantifying the robustness of networks and the efficiency of the mitigation

  17. Life in motion, in motion!

    NASA Technical Reports Server (NTRS)

    Kovalenko, Y. A.

    1983-01-01

    A 120 day limited mobility experiment with young male rats and its results, including retarded growth and degenerative changes in the cardiac muscle, are described. A 120 day strict bedrest experiment with 10 human volunteers and its results are described and discussed. Early subjective complaints, subsequent adaptation and eventual progressive changes in excitability and reactivity, reduction in functional capability of the cerebral cortex, and disturbances in water-salt, protein and fat metabolism, including development of precursors of atherosclerosis, as well as poor results of the orthostatic test after 4 months, are presented. These results are explained as applied to sedentary workers and recommendations are given for such persons to exercise in the morning, at work and in the evening in order to prevent hypokinesis and its physical, mental and physiological effects.

  18. Robust Photon Locking

    SciTech Connect

    Bayer, T.; Wollenhaupt, M.; Sarpe-Tudoran, C.; Baumert, T.

    2009-01-16

    We experimentally demonstrate a strong-field coherent control mechanism that combines the advantages of photon locking (PL) and rapid adiabatic passage (RAP). Unlike earlier implementations of PL and RAP by pulse sequences or chirped pulses, we use shaped pulses generated by phase modulation of the spectrum of a femtosecond laser pulse with a generalized phase discontinuity. The novel control scenario is characterized by a high degree of robustness achieved via adiabatic preparation of a state of maximum coherence. Subsequent phase control allows for efficient switching among different target states. We investigate both properties by photoelectron spectroscopy on potassium atoms interacting with the intense shaped light field.

  19. Complexity and robustness

    PubMed Central

    Carlson, J. M.; Doyle, John

    2002-01-01

    Highly optimized tolerance (HOT) was recently introduced as a conceptual framework to study fundamental aspects of complexity. HOT is motivated primarily by systems from biology and engineering and emphasizes, (i) highly structured, nongeneric, self-dissimilar internal configurations, and (ii) robust yet fragile external behavior. HOT claims these are the most important features of complexity and not accidents of evolution or artifices of engineering design but are inevitably intertwined and mutually reinforcing. In the spirit of this collection, our paper contrasts HOT with alternative perspectives on complexity, drawing on real-world examples and also model systems, particularly those from self-organized criticality. PMID:11875207

  20. Robust Systems Test Framework

    SciTech Connect

    Ballance, Robert A.

    2003-01-01

    The Robust Systems Test Framework (RSTF) provides a means of specifying and running test programs on various computation platforms. RSTF provides a level of specification above standard scripting languages. During a set of runs, standard timing information is collected. The RSTF specification can also gather job-specific information, and can include ways to classify test outcomes. All results and scripts can be stored into and retrieved from an SQL database for later data analysis. RSTF also provides operations for managing the script and result files, and for compiling applications and gathering compilation information such as optimization flags.

  1. Robust quantum spatial search

    NASA Astrophysics Data System (ADS)

    Tulsi, Avatar

    2016-07-01

    Quantum spatial search has been widely studied with most of the study focusing on quantum walk algorithms. We show that quantum walk algorithms are extremely sensitive to systematic errors. We present a recursive algorithm which offers significant robustness to certain systematic errors. To search N items, our recursive algorithm can tolerate errors of size O(1{/}√{ln N}) which is exponentially better than quantum walk algorithms for which tolerable error size is only O(ln N{/}√{N}). Also, our algorithm does not need any ancilla qubit. Thus our algorithm is much easier to implement experimentally compared to quantum walk algorithms.

  2. Robust Systems Test Framework

    2003-01-01

    The Robust Systems Test Framework (RSTF) provides a means of specifying and running test programs on various computation platforms. RSTF provides a level of specification above standard scripting languages. During a set of runs, standard timing information is collected. The RSTF specification can also gather job-specific information, and can include ways to classify test outcomes. All results and scripts can be stored into and retrieved from an SQL database for later data analysis. RSTF alsomore » provides operations for managing the script and result files, and for compiling applications and gathering compilation information such as optimization flags.« less

  3. Robust quantum spatial search

    NASA Astrophysics Data System (ADS)

    Tulsi, Avatar

    2016-04-01

    Quantum spatial search has been widely studied with most of the study focusing on quantum walk algorithms. We show that quantum walk algorithms are extremely sensitive to systematic errors. We present a recursive algorithm which offers significant robustness to certain systematic errors. To search N items, our recursive algorithm can tolerate errors of size O(1{/}√{N}) which is exponentially better than quantum walk algorithms for which tolerable error size is only O(ln N{/}√{N}) . Also, our algorithm does not need any ancilla qubit. Thus our algorithm is much easier to implement experimentally compared to quantum walk algorithms.

  4. Robust Kriged Kalman Filtering

    SciTech Connect

    Baingana, Brian; Dall'Anese, Emiliano; Mateos, Gonzalo; Giannakis, Georgios B.

    2015-11-11

    Although the kriged Kalman filter (KKF) has well-documented merits for prediction of spatial-temporal processes, its performance degrades in the presence of outliers due to anomalous events, or measurement equipment failures. This paper proposes a robust KKF model that explicitly accounts for presence of measurement outliers. Exploiting outlier sparsity, a novel l1-regularized estimator that jointly predicts the spatial-temporal process at unmonitored locations, while identifying measurement outliers is put forth. Numerical tests are conducted on a synthetic Internet protocol (IP) network, and real transformer load data. Test results corroborate the effectiveness of the novel estimator in joint spatial prediction and outlier identification.

  5. Robust control for uncertain structures

    NASA Technical Reports Server (NTRS)

    Douglas, Joel; Athans, Michael

    1991-01-01

    Viewgraphs on robust control for uncertain structures are presented. Topics covered include: robust linear quadratic regulator (RLQR) formulas; mismatched LQR design; RLQR design; interpretations of RLQR design; disturbance rejection; and performance comparisons: RLQR vs. mismatched LQR.

  6. Robust design optimization with an uncertain model of a nonlinear vibro-impact electro-mechanical system

    NASA Astrophysics Data System (ADS)

    Lima, Roberta; Soize, Christian; Sampaio, Rubens

    2015-06-01

    In this paper, the robust design with an uncertain model of a vibro-impact electro-mechanical system is done. The electro-mechanical system is composed of a cart, whose motion is excited by a DC motor (motor with continuous current), and an embarked hammer into this cart. The hammer is connected to the cart by a nonlinear spring component and by a linear damper, so that a relative motion exists between them. A linear flexible barrier, placed outside of the cart, constrains the hammer movements. Due to the relative movement between the hammer and the barrier, impacts can occur between these two elements. The developed model of the system takes into account the influence of the DC motor in the dynamic behavior of the system. Some system parameters are uncertain, such as the stiffness and the damping coefficients of the flexible barrier. The objective of the paper is to perform an optimization of this electro-mechanical system with respect to design parameters (spring component, and barrier g) in order to maximize the impact power under the constraint that the electric power consumed by the DC motor is lower than a maximum value. This optimization is formulated in the framework of robust design due to the presence of uncertainties in the model. The set of nonlinear equations are presented, and an adapted time domain solver is developed. The stochastic nonlinear constrained design optimization problem is solved for different levels of uncertainties, and also for the deterministic case.

  7. Limited range of motion

    MedlinePlus

    Limited range of motion is a term meaning that a joint or body part cannot move through its normal range of motion. ... Motion may be limited because of a problem within the joint, swelling of tissue around the joint, ...

  8. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  9. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Zheng H.

    2016-05-01

    This paper presents a real-time, vision-based algorithm for the pose and motion estimation of non-cooperative targets and its application in visual servo robotic manipulator to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter and photogrammetry is developed for the real-time pose and motion estimation of non-cooperative targets. Based on the pose and motion estimates, the desired pose and trajectory of end-effector is defined and the corresponding desired joint angles of the robotic manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is then developed for the robotic manipulator to track, approach and capture the target. Validating experiments are designed and performed on a custom-built six degrees of freedom robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the feasibility, effectiveness and robustness of the proposed adaptive extended Kalman filter enabled pose and motion estimation and visual servo strategy.

  10. Robustness and modeling error characterization

    NASA Technical Reports Server (NTRS)

    Lehtomaki, N. A.; Castanon, D. A.; Sandell, N. R., Jr.; Levy, B. C.; Athans, M.; Stein, G.

    1984-01-01

    The results on robustness theory presented here are extensions of those given in Lehtomaki et al., (1981). The basic innovation in these new results is that they utilize minimal additional information about the structure of the modeling error, as well as its magnitude, to assess the robustness of feedback systems for which robustness tests based on the magnitude of modeling error alone are inconclusive.

  11. Transformational adaptation when incremental adaptations to climate change are insufficient

    PubMed Central

    Kates, Robert W.; Travis, William R.; Wilbanks, Thomas J.

    2012-01-01

    All human–environment systems adapt to climate and its natural variation. Adaptation to human-induced change in climate has largely been envisioned as increments of these adaptations intended to avoid disruptions of systems at their current locations. In some places, for some systems, however, vulnerabilities and risks may be so sizeable that they require transformational rather than incremental adaptations. Three classes of transformational adaptations are those that are adopted at a much larger scale, that are truly new to a particular region or resource system, and that transform places and shift locations. We illustrate these with examples drawn from Africa, Europe, and North America. Two conditions set the stage for transformational adaptation to climate change: large vulnerability in certain regions, populations, or resource systems; and severe climate change that overwhelms even robust human use systems. However, anticipatory transformational adaptation may be difficult to implement because of uncertainties about climate change risks and adaptation benefits, the high costs of transformational actions, and institutional and behavioral actions that tend to maintain existing resource systems and policies. Implementing transformational adaptation requires effort to initiate it and then to sustain the effort over time. In initiating transformational adaptation focusing events and multiple stresses are important, combined with local leadership. In sustaining transformational adaptation, it seems likely that supportive social contexts and the availability of acceptable options and resources for actions are key enabling factors. Early steps would include incorporating transformation adaptation into risk management and initiating research to expand the menu of innovative transformational adaptations. PMID:22509036

  12. Robustness in multicellular systems

    NASA Astrophysics Data System (ADS)

    Xavier, Joao

    2011-03-01

    Cells and organisms cope with the task of maintaining their phenotypes in the face of numerous challenges. Much attention has recently been paid to questions of how cells control molecular processes to ensure robustness. However, many biological functions are multicellular and depend on interactions, both physical and chemical, between cells. We use a combination of mathematical modeling and molecular biology experiments to investigate the features that convey robustness to multicellular systems. Cell populations must react to external perturbations by sensing environmental cues and acting coordinately in response. At the same time, they face a major challenge: the emergence of conflict from within. Multicellular traits are prone to cells with exploitative phenotypes that do not contribute to shared resources yet benefit from them. This is true in populations of single-cell organisms that have social lifestyles, where conflict can lead to the emergence of social ``cheaters,'' as well as in multicellular organisms, where conflict can lead to the evolution of cancer. I will describe features that diverse multicellular systems can have to eliminate potential conflicts as well as external perturbations.

  13. Robust omniphobic surfaces

    PubMed Central

    Tuteja, Anish; Choi, Wonjae; Mabry, Joseph M.; McKinley, Gareth H.; Cohen, Robert E.

    2008-01-01

    Superhydrophobic surfaces display water contact angles greater than 150° in conjunction with low contact angle hysteresis. Microscopic pockets of air trapped beneath the water droplets placed on these surfaces lead to a composite solid-liquid-air interface in thermodynamic equilibrium. Previous experimental and theoretical studies suggest that it may not be possible to form similar fully-equilibrated, composite interfaces with drops of liquids, such as alkanes or alcohols, that possess significantly lower surface tension than water (γlv = 72.1 mN/m). In this work we develop surfaces possessing re-entrant texture that can support strongly metastable composite solid-liquid-air interfaces, even with very low surface tension liquids such as pentane (γlv = 15.7 mN/m). Furthermore, we propose four design parameters that predict the measured contact angles for a liquid droplet on a textured surface, as well as the robustness of the composite interface, based on the properties of the solid surface and the contacting liquid. These design parameters allow us to produce two different families of re-entrant surfaces— randomly-deposited electrospun fiber mats and precisely fabricated microhoodoo surfaces—that can each support a robust composite interface with essentially any liquid. These omniphobic surfaces display contact angles greater than 150° and low contact angle hysteresis with both polar and nonpolar liquids possessing a wide range of surface tensions. PMID:19001270

  14. Fooled by local robustness.

    PubMed

    Sniedovich, Moshe

    2012-10-01

    One would have expected the considerable public debate created by Nassim Taleb's two best selling books on uncertainty, Fooled by Randomness and The Black Swan, to inspire greater caution to the fundamental difficulties posed by severe uncertainty. Yet, methodologies exhibiting an incautious approach to uncertainty have been proposed recently in a range of publications. So, the objective of this short note is to call attention to a prime example of an incautious approach to severe uncertainty that is manifested in the proposition to use the concept radius of stability as a measure of robustness against severe uncertainty. The central proposition of this approach, which is exemplified in info-gap decision theory, is this: use a simple radius of stability model to analyze and manage a severe uncertainty that is characterized by a vast uncertainty space, a poor point estimate, and a likelihood-free quantification of uncertainty. This short discussion serves then as a reminder that the generic radius of stability model is a model of local robustness. It is, therefore, utterly unsuitable for the treatment of severe uncertainty when the latter is characterized by a poor estimate of the parameter of interest, a vast uncertainty space, and a likelihood-free quantification of uncertainty. PMID:22384828

  15. Robust efficient video fingerprinting

    NASA Astrophysics Data System (ADS)

    Puri, Manika; Lubin, Jeffrey

    2009-02-01

    We have developed a video fingerprinting system with robustness and efficiency as the primary and secondary design criteria. In extensive testing, the system has shown robustness to cropping, letter-boxing, sub-titling, blur, drastic compression, frame rate changes, size changes and color changes, as well as to the geometric distortions often associated with camcorder capture in cinema settings. Efficiency is afforded by a novel two-stage detection process in which a fast matching process first computes a number of likely candidates, which are then passed to a second slower process that computes the overall best match with minimal false alarm probability. One key component of the algorithm is a maximally stable volume computation - a three-dimensional generalization of maximally stable extremal regions - that provides a content-centric coordinate system for subsequent hash function computation, independent of any affine transformation or extensive cropping. Other key features include an efficient bin-based polling strategy for initial candidate selection, and a final SIFT feature-based computation for final verification. We describe the algorithm and its performance, and then discuss additional modifications that can provide further improvement to efficiency and accuracy.

  16. Lost-motion valve actuator

    SciTech Connect

    Burris, W.J. III; Ringgenberg, P.D.

    1987-04-07

    A lost-motion valve actuator is described for a bore closure valve employed in a well bore, comprising: operating connector means adapted to move the bore closure valve between open and closed positions through longitudinal movement of the operating connector means. The operating connector means comprises an operating connector and a connector insert defining a recess therebetween; locking dog means comprising at least one locking dog received in the recess and spring biasing means adapted to urge at least one locking dog radially inwardly; and mandrel means slidably received within the operating connector means and including dog slot means associated therewith. The dog slot means comprises an annular slot on the exterior of the mandrel means adapted to lockingly receive at least one inwardly biased locking dog when proximate thereto, whereby longitudinal movement of the mandrel means is transmitted to the operating connector means.

  17. Self-Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  18. Robust high-performance control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1989-01-01

    A robust control scheme to accomplish accurate trajectory tracking for an integrated system of manipulator-plus-actuators is proposed. The control scheme comprises a feedforward and a feedback controller. The feedforward controller contains any known part of the manipulator dynamics that can be used for online control. The feedback controller consists of adaptive position and velocity feedback gains and an auxiliary signal which is simply generated by a fixed-gain proportional/integral/derivative controller. The feedback controller is updated by very simple adaptation laws which contain both proportional and integral adaptation terms. By introduction of a simple sigma modification to the adaptation laws, robustness is guaranteed in the presence of unmodeled dynamics and disturbances.

  19. Motion analysis and removal in intensity variation based OCT angiography.

    PubMed

    Liu, Xuan; Kirby, Mitchell; Zhao, Feng

    2014-11-01

    In this work, we investigated how bulk motion degraded the quality of optical coherence tomography (OCT) angiography that was obtained through calculating interframe signal variation, i.e., interframe signal variation based optical coherence angiography (isvOCA). We demonstrated theoretically and experimentally that the spatial average of isvOCA signal had an explicit functional dependency on bulk motion. Our result suggested that the bulk motion could lead to an increased background in angiography image. Based on our motion analysis, we proposed to reduce image artifact induced by transient bulk motion in isvOCA through adaptive thresholding. The motion artifact reduced angiography was demonstrated in a 1.3μm spectral domain OCT system. We implemented signal processing using graphic processing unit for real-time imaging and conducted in vivo microvasculature imaging on human skin. Our results clearly showed that the adaptive thresholding method was highly effective in the motion artifact removal for OCT angiography. PMID:25426314

  20. A robust and real-time vascular intervention simulation based on Kirchhoff elastic rod.

    PubMed

    Luo, Maisheng; Xie, Hongzhi; Xie, Le; Cai, Ping; Gu, Lixu

    2014-12-01

    A virtual reality (VR) based vascular intervention simulation system is introduced in this paper, which helps trainees develop surgical skills and experience complications in safety remote from patients. The system simulates interventional radiology procedures, in which flexible tipped guidewires are employed to advance diagnostic or therapeutic catheters into vascular anatomy of a patient. A real-time physically-based modeling approach ground on Kirchhoff elastic rod is proposed to simulate complicated behaviors of guidewires and catheters. The slender body of guidewire and catheter is modeled using more efficient special case of naturally straight, isotropic Kirchhoff rods, and the shorter flexible tip composed of straight or angled design is modeled using more complex generalized Kirchhoff rods. The motion equations for guidewire and catheter were derived with continuous elastic energy, followed by a discretization using a linear implicit scheme that guarantees stability and robustness. In addition, we used a fast-projection method to enforce the inextensibility of guidewire and catheter. An adaptive sampling algorithm was also implemented to improve the simulation efficiency without decrease of accuracy. Experimental results revealed that our system is both robust and efficient in a real-time performance. PMID:25223506

  1. Neurohumoral mechanism of space motion sickness

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. I.; Egorov, A. D.; Nichiporuk, I. A.

    This paper reviews existing hypotheses concerning the mechanisms of adaptation of the vestibular apparatus and related somatosensory systems to microgravity with reference to the flight data. Having in view theoretical concepts and experimental data accumulated in space flights, a conceptual model of the development of a functional system responsible for the termination of vestibular dysfunction and space motion sickness manifestations is presented. It is also shown that changes in the hormonal status during motion sickness induced by vestibular stimulation give evidence that endocrine regulation of certain functions can be involved in adaptive responses.

  2. Evolving Robust Gene Regulatory Networks

    PubMed Central

    Noman, Nasimul; Monjo, Taku; Moscato, Pablo; Iba, Hitoshi

    2015-01-01

    Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of ‘parts’ and ‘devices’. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems. PMID:25616055

  3. Robust reflective pupil slicing technology

    NASA Astrophysics Data System (ADS)

    Meade, Jeffrey T.; Behr, Bradford B.; Cenko, Andrew T.; Hajian, Arsen R.

    2014-07-01

    Tornado Spectral Systems (TSS) has developed the High Throughput Virtual Slit (HTVSTM), robust all-reflective pupil slicing technology capable of replacing the slit in research-, commercial- and MIL-SPEC-grade spectrometer systems. In the simplest configuration, the HTVS allows optical designers to remove the lossy slit from pointsource spectrometers and widen the input slit of long-slit spectrometers, greatly increasing throughput without loss of spectral resolution or cross-dispersion information. The HTVS works by transferring etendue between image plane axes but operating in the pupil domain rather than at a focal plane. While useful for other technologies, this is especially relevant for spectroscopic applications by performing the same spectral narrowing as a slit without throwing away light on the slit aperture. HTVS can be implemented in all-reflective designs and only requires a small number of reflections for significant spectral resolution enhancement-HTVS systems can be efficiently implemented in most wavelength regions. The etendueshifting operation also provides smooth scaling with input spot/image size without requiring reconfiguration for different targets (such as different seeing disk diameters or different fiber core sizes). Like most slicing technologies, HTVS provides throughput increases of several times without resolution loss over equivalent slitbased designs. HTVS technology enables robust slit replacement in point-source spectrometer systems. By virtue of pupilspace operation this technology has several advantages over comparable image-space slicer technology, including the ability to adapt gracefully and linearly to changing source size and better vertical packing of the flux distribution. Additionally, this technology can be implemented with large slicing factors in both fast and slow beams and can easily scale from large, room-sized spectrometers through to small, telescope-mounted devices. Finally, this same technology is directly

  4. Robustness in Digital Hardware

    NASA Astrophysics Data System (ADS)

    Woods, Roger; Lightbody, Gaye

    The growth in electronics has probably been the equivalent of the Industrial Revolution in the past century in terms of how much it has transformed our daily lives. There is a great dependency on technology whether it is in the devices that control travel (e.g., in aircraft or cars), our entertainment and communication systems, or our interaction with money, which has been empowered by the onset of Internet shopping and banking. Despite this reliance, there is still a danger that at some stage devices will fail within the equipment's lifetime. The purpose of this chapter is to look at the factors causing failure and address possible measures to improve robustness in digital hardware technology and specifically chip technology, giving a long-term forecast that will not reassure the reader!

  5. Robust snapshot interferometric spectropolarimetry.

    PubMed

    Kim, Daesuk; Seo, Yoonho; Yoon, Yonghee; Dembele, Vamara; Yoon, Jae Woong; Lee, Kyu Jin; Magnusson, Robert

    2016-05-15

    This Letter describes a Stokes vector measurement method based on a snapshot interferometric common-path spectropolarimeter. The proposed scheme, which employs an interferometric polarization-modulation module, can extract the spectral polarimetric parameters Ψ(k) and Δ(k) of a transmissive anisotropic object by which an accurate Stokes vector can be calculated in the spectral domain. It is inherently strongly robust to the object 3D pose variation, since it is designed distinctly so that the measured object can be placed outside of the interferometric module. Experiments are conducted to verify the feasibility of the proposed system. The proposed snapshot scheme enables us to extract the spectral Stokes vector of a transmissive anisotropic object within tens of msec with high accuracy. PMID:27176992

  6. Robust springback compensation

    NASA Astrophysics Data System (ADS)

    Carleer, Bart; Grimm, Peter

    2013-12-01

    Springback simulation and springback compensation are more and more applied in productive use of die engineering. In order to successfully compensate a tool accurate springback results are needed as well as an effective compensation approach. In this paper a methodology has been introduce in order to effectively compensate tools. First step is the full process simulation meaning that not only the drawing operation will be simulated but also all secondary operations like trimming and flanging. Second will be the verification whether the process is robust meaning that it obtains repeatable results. In order to effectively compensate a minimum clamping concept will be defined. Once these preconditions are fulfilled the tools can be compensated effectively.

  7. Robust Rocket Engine Concept

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1995-01-01

    The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.

  8. Robust Vertex Classification.

    PubMed

    Chen, Li; Shen, Cencheng; Vogelstein, Joshua T; Priebe, Carey E

    2016-03-01

    For random graphs distributed according to stochastic blockmodels, a special case of latent position graphs, adjacency spectral embedding followed by appropriate vertex classification is asymptotically Bayes optimal; but this approach requires knowledge of and critically depends on the model dimension. In this paper, we propose a sparse representation vertex classifier which does not require information about the model dimension. This classifier represents a test vertex as a sparse combination of the vertices in the training set and uses the recovered coefficients to classify the test vertex. We prove consistency of our proposed classifier for stochastic blockmodels, and demonstrate that the sparse representation classifier can predict vertex labels with higher accuracy than adjacency spectral embedding approaches via both simulation studies and real data experiments. Our results demonstrate the robustness and effectiveness of our proposed vertex classifier when the model dimension is unknown. PMID:26340770

  9. Susceptibility to motion sickness among Skylab astronauts

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Miller, E. F., II; Homick, J. L.

    1974-01-01

    The mechanisms causing susceptibility to motion sickness in zero gravity are not well understood. Preflight and postflight motion sickness susceptibility tests conducted on the three Skylab crews are described. Under operational conditions, the first Skylab crew experienced no motion sickness, while the other two crews did. Susceptibility was greater in the Skylab workshop than in the command module. Weightlessness in itself is a unique motion environment. Changes occur in nonrigid body parts and in the response of macular receptors in the otolith organs. Tests in parabolic flight, where zero gravity is the only significant factor in motion sickness susceptibility, indicate that some people need to adapt to weightlessness and others do not. A comparison of all US and Soviet manned missions indicates that a headward shift of fluid on transition to zero gravity is not a predisposing factor in motion sickness. Under certain conditions after adaptation susceptibility was lower in the Skylab workshop than on the ground. The anti-motion sickness drugs used in Skylab are judged effective for prevention and treatment.

  10. A robust mean-shift tracking through occlusion and scale based on object trajectory for surveillance camera

    NASA Astrophysics Data System (ADS)

    Labidi, Hocine; Luo, Sen-Lin; Boubekeur, Mohamed Bachir

    2015-03-01

    Object tracking is an important part in surveillance systems, One of the algorithms used for this task is the meanshift algorithm due to the robustness, computational efficiency and implementation ease. However the traditional meanshift cannot effectively track the moving object when the scale changes, because of the fixed size of the tracking window, and can lose the target while an occlusion, In this study a method based on the trajectory direction of the moving object is presented to deal with the problem of scale change. Furthermore a histogram similarity metric is used to detect when target occlusion occurs, and a method based on multi kernel is proposed, to estimate which part is not in occlusion and this part will be used to extrapolate the motion of the object and gives an estimation of its position, Experimental results show that the improved methods have a good adaptability to the scale and occlusion of the target.

  11. Perceived causality influences brain activity evoked by biological motion.

    PubMed

    Morris, James P; Pelphrey, Kevin A; McCarthy, Gregory

    2008-01-01

    Using functional magnetic resonance imaging (fMRI), we investigated brain activity in an observer who watched the hand and arm motions of an individual when that individual was, or was not, the cause of the motion. Subjects viewed a realistic animated 3D character who sat at a table containing four pistons. On Intended Motion trials, the character raised his hand and arm upwards. On Unintended Motion trials, the piston under one of the character's hands pushed the hand and arm upward with the same motion. Finally, during Non-Biological Motion control trials, a piston pushed a coffee mug upward in the same smooth motion. Hand and arm motions, regardless of intention, evoked significantly more activity than control trials in a bilateral region that extended ventrally from the posterior superior temporal sulcus (pSTS) region and which was more spatially extensive in the right hemisphere. The left pSTS near the temporal-parietal junction, robustly differentiated between the Intended Motion and Unintended Motion conditions. Here, strong activity was observed for Intended Motion trials, while Unintended Motion trials evoked similar activity as the coffee mug trials. Our results demonstrate a strong hemispheric bias in the role of the pSTS in the perception of causality of biological motion. PMID:18633843

  12. An improved robust hand-eye calibration for endoscopy navigation system

    NASA Astrophysics Data System (ADS)

    He, Wei; Kang, Kumsok; Li, Yanfang; Shi, Weili; Miao, Yu; He, Fei; Yan, Fei; Yang, Huamin; Zhang, Huimao; Mori, Kensaku; Jiang, Zhengang

    2016-03-01

    Endoscopy is widely used in clinical application, and surgical navigation system is an extremely important way to enhance the safety of endoscopy. The key to improve the accuracy of the navigation system is to solve the positional relationship between camera and tracking marker precisely. The problem can be solved by the hand-eye calibration method based on dual quaternions. However, because of the tracking error and the limited motion of the endoscope, the sample motions may contain some incomplete motion samples. Those motions will cause the algorithm unstable and inaccurate. An advanced selection rule for sample motions is proposed in this paper to improve the stability and accuracy of the methods based on dual quaternion. By setting the motion filter to filter out the incomplete motion samples, finally, high precision and robust result is achieved. The experimental results show that the accuracy and stability of camera registration have been effectively improved by selecting sample motion data automatically.

  13. A novel scheme for DVL-aided SINS in-motion alignment using UKF techniques.

    PubMed

    Li, Wanli; Wang, Jinling; Lu, Liangqing; Wu, Wenqi

    2013-01-01

    In-motion alignment of Strapdown Inertial Navigation Systems (SINS) without any geodetic-frame observations is one of the toughest challenges for Autonomous Underwater Vehicles (AUV). This paper presents a novel scheme for Doppler Velocity Log (DVL) aided SINS alignment using Unscented Kalman Filter (UKF) which allows large initial misalignments. With the proposed mechanism, a nonlinear SINS error model is presented and the measurement model is derived under the assumption that large misalignments may exist. Since a priori knowledge of the measurement noise covariance is of great importance to robustness of the UKF, the covariance-matching methods widely used in the Adaptive KF (AKF) are extended for use in Adaptive UKF (AUKF). Experimental results show that the proposed DVL-aided alignment model is effective with any initial heading errors. The performances of the adaptive filtering methods are evaluated with regards to their parameter estimation stability. Furthermore, it is clearly shown that the measurement noise covariance can be estimated reliably by the adaptive UKF methods and hence improve the performance of the alignment. PMID:23322105

  14. Multivariate respiratory motion prediction

    NASA Astrophysics Data System (ADS)

    Dürichen, R.; Wissel, T.; Ernst, F.; Schlaefer, A.; Schweikard, A.

    2014-10-01

    In extracranial robotic radiotherapy, tumour motion is compensated by tracking external and internal surrogates. To compensate system specific time delays, time series prediction of the external optical surrogates is used. We investigate whether the prediction accuracy can be increased by expanding the current clinical setup by an accelerometer, a strain belt and a flow sensor. Four previously published prediction algorithms are adapted to multivariate inputs—normalized least mean squares (nLMS), wavelet-based least mean squares (wLMS), support vector regression (SVR) and relevance vector machines (RVM)—and evaluated for three different prediction horizons. The measurement involves 18 subjects and consists of two phases, focusing on long term trends (M1) and breathing artefacts (M2). To select the most relevant and least redundant sensors, a sequential forward selection (SFS) method is proposed. Using a multivariate setting, the results show that the clinically used nLMS algorithm is susceptible to large outliers. In the case of irregular breathing (M2), the mean root mean square error (RMSE) of a univariate nLMS algorithm is 0.66 mm and can be decreased to 0.46 mm by a multivariate RVM model (best algorithm on average). To investigate the full potential of this approach, the optimal sensor combination was also estimated on the complete test set. The results indicate that a further decrease in RMSE is possible for RVM (to 0.42 mm). This motivates further research about sensor selection methods. Besides the optical surrogates, the sensors most frequently selected by the algorithms are the accelerometer and the strain belt. These sensors could be easily integrated in the current clinical setup and would allow a more precise motion compensation.

  15. Managing space motion sickness.

    PubMed

    Jennings, R T

    1998-01-01

    Space motion sickness is a well-recognized problem for space flight and affects 73% of crewmembers on the first 2 or 3 days of their initial flight. Illness severity is variable, but over half of cases are categorized as moderate to severe. Management has included elimination of provocative activities and delay of critical performance-related procedures such as extra-vehicular activity (EVA) or Shuttle landing during the first three days of missions. Pharmacological treatment strategies have had variable results, but intramuscular promethazine has been the most effective to date with a 90% initial response rate and important reduction in residual symptoms the next flight day. Oral prophylactic treatment of crewmembers with difficulty on prior flights has had mixed results. In order to accommodate more aggressive pharmacologic management, crew medical officers receive additional training in parenteral administration of medications. Preflight medication testing is accomplished to reduce the risk of unexpected performance decrements or idiosyncratic reactions. When possible, treatment is offered in the presleep period to mask potential treatment-related drowsiness. Another phenomenon noted by crewmembers and physicians as flights have lengthened is readaptation difficulty or motion sickness on return to Earth. These problems have included nausea, vomiting, and difficulty with locomotion or coordination upon early exposure to gravity. Since landing and egress are principal concerns during this portion of the flight, these deficits are of operational concern. Postflight therapy has been directed at nausea and vomiting, and meclizine and promethazine are the principal agents used. There has been no official attempt at prophylactic treatment prior to entry. Since there is considerable individual variation in postflight deficit and since adaptation from prior flights seems to persist, it has been recommended that commanders with prior shuttle landing experience be named to

  16. From transcriptional landscapes to the identification of biomarkers for robustness

    PubMed Central

    2011-01-01

    The ability of microorganisms to adapt to changing environments and gain cell robustness, challenges the prediction of their history-dependent behaviour. Using our model organism Bacillus cereus, a notorious Gram-positive food spoilage and pathogenic spore-forming bacterium, a strategy will be described that allows for identification of biomarkers for robustness. First an overview will be presented of its two-component systems that generally include a transmembrane sensor histidine kinase and its cognate response regulator, allowing rapid and robust responses to fluctuations in the environment. The role of the multisensor hybrid kinase RsbK and the PP2C-type phosphatase RsbY system in activation of the general stress sigma factor σB is highlighted. An extensive comparative analysis of transcriptional landscapes derived from B. cereus exposed to mild stress conditions such as heat, acid, salt and oxidative stress, revealed that, amongst others σB regulated genes were induced in most conditions tested. The information derived from the transcriptome data was subsequently implemented in a framework for identifying and selecting cellular biomarkers at their mRNA, protein and/or activity level, for mild stressinduced microbial robustness towards lethal stresses. Exposure of unstressed and mild stress-adapted cells to subsequent lethal stress conditions (heat, acid and oxidative stress) allowed for quantification of the robustness advantage provided by mild stress pretreatment using the plate-count method. The induction levels of the selected candidate-biomarkers, σB protein, catalase activity and transcripts of certain proteases upon mild stress treatment, were significantly correlated to mild stress-induced enhanced robustness towards lethal thermal, oxidative and acid stresses, and were therefore suitable to predict these adaptive traits. Cellular biomarkers that are quantitatively correlated to adaptive behavior will facilitate our ability to predict the impact of

  17. From transcriptional landscapes to the identification of biomarkers for robustness.

    PubMed

    Abee, Tjakko; Wels, Michiel; de Been, Mark; den Besten, Heidy

    2011-08-30

    The ability of microorganisms to adapt to changing environments and gain cell robustness, challenges the prediction of their history-dependent behaviour. Using our model organism Bacillus cereus, a notorious Gram-positive food spoilage and pathogenic spore-forming bacterium, a strategy will be described that allows for identification of biomarkers for robustness. First an overview will be presented of its two-component systems that generally include a transmembrane sensor histidine kinase and its cognate response regulator, allowing rapid and robust responses to fluctuations in the environment. The role of the multisensor hybrid kinase RsbK and the PP2C-type phosphatase RsbY system in activation of the general stress sigma factor σB is highlighted. An extensive comparative analysis of transcriptional landscapes derived from B. cereus exposed to mild stress conditions such as heat, acid, salt and oxidative stress, revealed that, amongst others σB regulated genes were induced in most conditions tested. The information derived from the transcriptome data was subsequently implemented in a framework for identifying and selecting cellular biomarkers at their mRNA, protein and/or activity level, for mild stressinduced microbial robustness towards lethal stresses. Exposure of unstressed and mild stress-adapted cells to subsequent lethal stress conditions (heat, acid and oxidative stress) allowed for quantification of the robustness advantage provided by mild stress pretreatment using the plate-count method. The induction levels of the selected candidate-biomarkers, σB protein, catalase activity and transcripts of certain proteases upon mild stress treatment, were significantly correlated to mild stress-induced enhanced robustness towards lethal thermal, oxidative and acid stresses, and were therefore suitable to predict these adaptive traits. Cellular biomarkers that are quantitatively correlated to adaptive behavior will facilitate our ability to predict the impact of

  18. Automated Grid Disruption Response System: Robust Adaptive Topology Control (RATC)

    SciTech Connect

    2012-03-01

    GENI Project: The RATC research team is using topology control as a mechanism to improve system operations and manage disruptions within the electric grid. The grid is subject to interruption from cascading faults caused by extreme operating conditions, malicious external attacks, and intermittent electricity generation from renewable energy sources. The RATC system is capable of detecting, classifying, and responding to grid disturbances by reconfiguring the grid in order to maintain economically efficient operations while guaranteeing reliability. The RATC system would help prevent future power outages, which account for roughly $80 billion in losses for businesses and consumers each year. Minimizing the time it takes for the grid to respond to expensive interruptions will also make it easier to integrate intermittent renewable energy sources into the grid.

  19. Robust Nonlinear Neural Codes

    NASA Astrophysics Data System (ADS)

    Yang, Qianli; Pitkow, Xaq

    2015-03-01

    Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.

  20. Robust H∞ Control for Spacecraft Rendezvous with a Noncooperative Target

    PubMed Central

    Wu, Shu-Nan; Zhou, Wen-Ya; Tan, Shu-Jun; Wu, Guo-Qiang

    2013-01-01

    The robust H∞ control for spacecraft rendezvous with a noncooperative target is addressed in this paper. The relative motion of chaser and noncooperative target is firstly modeled as the uncertain system, which contains uncertain orbit parameter and mass. Then the H∞ performance and finite time performance are proposed, and a robust H∞ controller is developed to drive the chaser to rendezvous with the non-cooperative target in the presence of control input saturation, measurement error, and thrust error. The linear matrix inequality technology is used to derive the sufficient condition of the proposed controller. An illustrative example is finally provided to demonstrate the effectiveness of the controller. PMID:24027446