Calculates Thermal Neutron Scattering Kernel.
1989-11-10
Version 00 THRUSH computes the thermal neutron scattering kernel by the phonon expansion method for both coherent and incoherent scattering processes. The calculation of the coherent part is suitable only for calculating the scattering kernel for heavy water.
NASA Astrophysics Data System (ADS)
Carlsson Tedgren, Åsa; Plamondon, Mathieu; Beaulieu, Luc
2015-07-01
/phantom for which low doses at phantom edges can be overestimated by 2-5 %. It would be possible to improve the situation by using a point kernel for multiple-scatter dose adapted to the patient/phantom dimensions at hand.
Tedgren, Åsa Carlsson; Plamondon, Mathieu; Beaulieu, Luc
2015-07-01
/phantom for which low doses at phantom edges can be overestimated by 2-5 %. It would be possible to improve the situation by using a point kernel for multiple-scatter dose adapted to the patient/phantom dimensions at hand. PMID:26108232
Adaptive wiener image restoration kernel
Yuan, Ding
2007-06-05
A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.
Asymmetric scatter kernels for software-based scatter correction of gridless mammography
NASA Astrophysics Data System (ADS)
Wang, Adam; Shapiro, Edward; Yoon, Sungwon; Ganguly, Arundhuti; Proano, Cesar; Colbeth, Rick; Lehto, Erkki; Star-Lack, Josh
2015-03-01
Scattered radiation remains one of the primary challenges for digital mammography, resulting in decreased image contrast and visualization of key features. While anti-scatter grids are commonly used to reduce scattered radiation in digital mammography, they are an incomplete solution that can add radiation dose, cost, and complexity. Instead, a software-based scatter correction method utilizing asymmetric scatter kernels is developed and evaluated in this work, which improves upon conventional symmetric kernels by adapting to local variations in object thickness and attenuation that result from the heterogeneous nature of breast tissue. This fast adaptive scatter kernel superposition (fASKS) method was applied to mammography by generating scatter kernels specific to the object size, x-ray energy, and system geometry of the projection data. The method was first validated with Monte Carlo simulation of a statistically-defined digital breast phantom, which was followed by initial validation on phantom studies conducted on a clinical mammography system. Results from the Monte Carlo simulation demonstrate excellent agreement between the estimated and true scatter signal, resulting in accurate scatter correction and recovery of 87% of the image contrast originally lost to scatter. Additionally, the asymmetric kernel provided more accurate scatter correction than the conventional symmetric kernel, especially at the edge of the breast. Results from the phantom studies on a clinical system further validate the ability of the asymmetric kernel correction method to accurately subtract the scatter signal and improve image quality. In conclusion, software-based scatter correction for mammography is a promising alternative to hardware-based approaches such as anti-scatter grids.
SCAP. Point Kernel Single or Albedo Scatter
Disney, R.K.; Bevan, S.E.
1982-08-05
SCAP solves for radiation transport in complex geometries using the single or albedo-scatter point kernel method. The program is designed to calculate the neutron or gamma-ray radiation level at detector points located within or outside a complex radiation scatter source geometry or a user-specified discrete scattering volume. The geometry is described by zones bounded by intersecting quadratic surfaces with an arbitrary maximum number of boundary surfaces per zone. The anisotropic point sources are described as point-wise energy dependent distributions of polar angles on a meridian; isotropic point sources may be specified also. The attenuation function for gamma rays is an exponential function on the primary source leg and the scatter leg with a buildup factor approximation to account for multiple scatter on the scatter leg. The neutron attenuation function is an exponential function using neutron removal cross sections on the primary source leg and scatter leg. Line or volumetric sources can be represented as distributions of isotropic point sources, with uncollided line-of-sight attenuation and buildup calculated between each source point and the detector point.
A locally adaptive kernel regression method for facies delineation
NASA Astrophysics Data System (ADS)
Fernàndez-Garcia, D.; Barahona-Palomo, M.; Henri, C. V.; Sanchez-Vila, X.
2015-12-01
Facies delineation is defined as the separation of geological units with distinct intrinsic characteristics (grain size, hydraulic conductivity, mineralogical composition). A major challenge in this area stems from the fact that only a few scattered pieces of hydrogeological information are available to delineate geological facies. Several methods to delineate facies are available in the literature, ranging from those based only on existing hard data, to those including secondary data or external knowledge about sedimentological patterns. This paper describes a methodology to use kernel regression methods as an effective tool for facies delineation. The method uses both the spatial and the actual sampled values to produce, for each individual hard data point, a locally adaptive steering kernel function, self-adjusting the principal directions of the local anisotropic kernels to the direction of highest local spatial correlation. The method is shown to outperform the nearest neighbor classification method in a number of synthetic aquifers whenever the available number of hard data is small and randomly distributed in space. In the case of exhaustive sampling, the steering kernel regression method converges to the true solution. Simulations ran in a suite of synthetic examples are used to explore the selection of kernel parameters in typical field settings. It is shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The performance of the method is demonstrated to significantly improve when external information regarding facies proportions is incorporated. Remarkably, the method allows for a reasonable reconstruction of the facies connectivity patterns, shown in terms of breakthrough curves performance.
Kernel Manifold Alignment for Domain Adaptation.
Tuia, Devis; Camps-Valls, Gustau
2016-01-01
The wealth of sensory data coming from different modalities has opened numerous opportunities for data analysis. The data are of increasing volume, complexity and dimensionality, thus calling for new methodological innovations towards multimodal data processing. However, multimodal architectures must rely on models able to adapt to changes in the data distribution. Differences in the density functions can be due to changes in acquisition conditions (pose, illumination), sensors characteristics (number of channels, resolution) or different views (e.g. street level vs. aerial views of a same building). We call these different acquisition modes domains, and refer to the adaptation problem as domain adaptation. In this paper, instead of adapting the trained models themselves, we alternatively focus on finding mappings of the data sources into a common, semantically meaningful, representation domain. This field of manifold alignment extends traditional techniques in statistics such as canonical correlation analysis (CCA) to deal with nonlinear adaptation and possibly non-corresponding data pairs between the domains. We introduce a kernel method for manifold alignment (KEMA) that can match an arbitrary number of data sources without needing corresponding pairs, just few labeled examples in all domains. KEMA has interesting properties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very different complexities, performing a discriminative alignment preserving each manifold inner structure, 3) it can define a domain-specific metric to cope with multimodal specificities, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear feature deformations, and 6) it is closed-form invertible, which allows transfer across-domains and data synthesis. To authors' knowledge this is the first method addressing all these important issues at once. We also present a reduced-rank version of KEMA for computational
Kernel Manifold Alignment for Domain Adaptation
Tuia, Devis; Camps-Valls, Gustau
2016-01-01
The wealth of sensory data coming from different modalities has opened numerous opportunities for data analysis. The data are of increasing volume, complexity and dimensionality, thus calling for new methodological innovations towards multimodal data processing. However, multimodal architectures must rely on models able to adapt to changes in the data distribution. Differences in the density functions can be due to changes in acquisition conditions (pose, illumination), sensors characteristics (number of channels, resolution) or different views (e.g. street level vs. aerial views of a same building). We call these different acquisition modes domains, and refer to the adaptation problem as domain adaptation. In this paper, instead of adapting the trained models themselves, we alternatively focus on finding mappings of the data sources into a common, semantically meaningful, representation domain. This field of manifold alignment extends traditional techniques in statistics such as canonical correlation analysis (CCA) to deal with nonlinear adaptation and possibly non-corresponding data pairs between the domains. We introduce a kernel method for manifold alignment (KEMA) that can match an arbitrary number of data sources without needing corresponding pairs, just few labeled examples in all domains. KEMA has interesting properties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very different complexities, performing a discriminative alignment preserving each manifold inner structure, 3) it can define a domain-specific metric to cope with multimodal specificities, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear feature deformations, and 6) it is closed-form invertible, which allows transfer across-domains and data synthesis. To authors’ knowledge this is the first method addressing all these important issues at once. We also present a reduced-rank version of KEMA for computational
Boundary conditions for gas flow problems from anisotropic scattering kernels
NASA Astrophysics Data System (ADS)
To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline
2015-10-01
The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.
Analog forecasting with dynamics-adapted kernels
NASA Astrophysics Data System (ADS)
Zhao, Zhizhen; Giannakis, Dimitrios
2016-09-01
Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens’ delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nyström method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.
Analytical scatter kernels for portal imaging at 6 MV.
Spies, L; Bortfeld, T
2001-04-01
X-ray photon scatter kernels for 6 MV electronic portal imaging are investigated using an analytical and a semi-analytical model. The models are tested on homogeneous phantoms for a range of uniform circular fields and scatterer-to-detector air gaps relevant for clinical use. It is found that a fully analytical model based on an exact treatment of photons undergoing a single Compton scatter event and an approximate treatment of second and higher order scatter events, assuming a multiple-scatter source at the center of the scatter volume, is accurate within 1% (i.e., the residual scatter signal is less than 1% of the primary signal) for field sizes up to 100 cm2 and air gaps over 30 cm, but shows significant discrepancies for larger field sizes. Monte Carlo results are presented showing that the effective multiple-scatter source is located toward the exit surface of the scatterer, rather than at its center. A second model is therefore investigated where second and higher-order scattering is instead modeled by fitting an analytical function describing a nonstationary isotropic point-scatter source to Monte Carlo generated data. This second model is shown to be accurate to within 1% for air gaps down to 20 cm, for field sizes up to 900 cm2 and phantom thicknesses up to 50 cm. PMID:11339752
The Kernel Adaptive Autoregressive-Moving-Average Algorithm.
Li, Kan; Príncipe, José C
2016-02-01
In this paper, we present a novel kernel adaptive recurrent filtering algorithm based on the autoregressive-moving-average (ARMA) model, which is trained with recurrent stochastic gradient descent in the reproducing kernel Hilbert spaces. This kernelized recurrent system, the kernel adaptive ARMA (KAARMA) algorithm, brings together the theories of adaptive signal processing and recurrent neural networks (RNNs), extending the current theory of kernel adaptive filtering (KAF) using the representer theorem to include feedback. Compared with classical feedforward KAF methods, the KAARMA algorithm provides general nonlinear solutions for complex dynamical systems in a state-space representation, with a deferred teacher signal, by propagating forward the hidden states. We demonstrate its capabilities to provide exact solutions with compact structures by solving a set of benchmark nondeterministic polynomial-complete problems involving grammatical inference. Simulation results show that the KAARMA algorithm outperforms equivalent input-space recurrent architectures using first- and second-order RNNs, demonstrating its potential as an effective learning solution for the identification and synthesis of deterministic finite automata. PMID:25935049
A kernel adaptive algorithm for quaternion-valued inputs.
Paul, Thomas K; Ogunfunmi, Tokunbo
2015-10-01
The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations. PMID:25594982
An information theoretic approach of designing sparse kernel adaptive filters.
Liu, Weifeng; Park, Il; Principe, José C
2009-12-01
This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented. PMID:19923047
Automated endmember determination and adaptive spectral mixture analysis using kernel methods
NASA Astrophysics Data System (ADS)
Rand, Robert S.; Banerjee, Amit; Broadwater, Joshua
2013-09-01
Various phenomena occur in geographic regions that cause pixels of a scene to contain spectrally mixed pixels. The mixtures may be linear or nonlinear. It could simply be that the pixel size of a sensor is too large so many pixels contain patches of different materials within them (linear), or there could be microscopic mixtures and multiple scattering occurring within pixels (non-linear). Often enough, scenes may contain cases of both linear and non-linear mixing on a pixel-by-pixel basis. Furthermore, appropriate endmembers in a scene are not always easy to determine. A reference spectral library of materials may or may not be available, yet, even if a library is available, using it directly for spectral unmixing may not always be fruitful. This study investigates a generalized kernel-based method for spectral unmixing that attempts to determine if each pixel in a scene is linear or non-linear, and adapts to compute a mixture model at each pixel accordingly. The effort also investigates a kernel-based support vector method for determining spectral endmembers in a scene. Two scenes of hyperspectral imagery calibrated to reflectance are used to validate the methods. We test the approaches using a HyMAP scene collected over the Waimanalo Bay region in Oahu, Hawaii, as well as an AVIRIS scene collected over the oil spill region in the Gulf of Mexico during the Deepwater Horizon oil incident.
Data consistency-driven scatter kernel optimization for x-ray cone-beam CT.
Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong
2015-08-01
Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation. PMID:26183058
Data consistency-driven scatter kernel optimization for x-ray cone-beam CT
NASA Astrophysics Data System (ADS)
Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong
2015-08-01
Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation.
Kernel Integration Code System--Multigroup Gamma-Ray Scattering.
1988-02-15
GGG (G3) is the generic designation for a series of computer programs that enable the user to estimate gamma-ray scattering from a point source to a series of point detectors. Program output includes detector response due to each source energy, as well as a grouping by scattered energy in addition to a simple, unscattered beam result. Although G3 is basically a single-scatter program, it also includes a correction for multiple scattering by applying a buildupmore » factor for the path segment between the point of scatter and the detector point. Results are recorded with and without the buildup factor. Surfaces, defined by quadratic equations, are used to provide for a full three-dimensional description of the physical geometry. G3 evaluates scattering effects in those situations where more exact techniques are not economical. G3 was revised by Bettis and the name was changed to indicate that it was no longer identical to the G3 program. The name S3 was chosen since the scattering calculation has three steps: calculation of the flux arriving at the scatterer from the point source, calculation of the differential scattering cross section, and calculation of the scattered flux arriving at the detector.« less
NASA Astrophysics Data System (ADS)
Fomin, Fedor V.
Preprocessing (data reduction or kernelization) as a strategy of coping with hard problems is universally used in almost every implementation. The history of preprocessing, like applying reduction rules simplifying truth functions, can be traced back to the 1950's [6]. A natural question in this regard is how to measure the quality of preprocessing rules proposed for a specific problem. For a long time the mathematical analysis of polynomial time preprocessing algorithms was neglected. The basic reason for this anomaly was that if we start with an instance I of an NP-hard problem and can show that in polynomial time we can replace this with an equivalent instance I' with |I'| < |I| then that would imply P=NP in classical complexity.
Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System
2016-01-01
This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165
Interpolations of nuclide-specific scattering kernels generated with Serpent
Scopatz, A.; Schneider, E.
2012-07-01
The neutron group-to-group scattering cross section is an essential input parameter for any multi-energy group physics model. However, if the analyst prefers to use Monte Carlo transport to generate group constants this data is difficult to obtain for a single species of a material. Here, the Monte Carlo code Serpent was modified to return the group transfer probabilities on a per-nuclide basis. This ability is demonstrated in conjunction with an essential physics reactor model where cross section perturbations are used to dynamically generate reactor state dependent group constants via interpolation from pre-computed libraries. The modified version of Serpent was therefore verified with three interpolation cases designed to test the resilience of the interpolation scheme to changes in intra-group fluxes. For most species, interpolation resulted in errors of less than 5% of transport-computed values. For important scatterers, such as {sup 1}H, errors less than 2% were observed. For nuclides with high errors ( > 10%), the scattering channel typically only had a small probability of occurring. (authors)
A simple method for computing the relativistic Compton scattering kernel for radiative transfer
NASA Technical Reports Server (NTRS)
Prasad, M. K.; Kershaw, D. S.; Beason, J. D.
1986-01-01
Correct computation of the Compton scattering kernel (CSK), defined to be the Klein-Nishina differential cross section averaged over a relativistic Maxwellian electron distribution, is reported. The CSK is analytically reduced to a single integral, which can then be rapidly evaluated using a power series expansion, asymptotic series, and rational approximation for sigma(s). The CSK calculation has application to production codes that aim at understanding certain astrophysical, laser fusion, and nuclear weapons effects phenomena.
MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods
Schmidt, Johannes F. M.; Santelli, Claudio; Kozerke, Sebastian
2016-01-01
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675
MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods.
Schmidt, Johannes F M; Santelli, Claudio; Kozerke, Sebastian
2016-01-01
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675
Two-pion exchange contributions to the relativistic NN kernel: Peripheral scattering
Cozma, M. D.; Scholten, O.; Timmermans, R. G. E.; Tjon, J. A.
2007-01-15
The relativistic one-boson-exchange model for NN scattering is extended by including two-pion exchange (TPE) contributions in the kernel. We develop the formalism for the evaluation of the TPE diagrams within the relativistic quasipotential approach. The peripheral partial waves in elastic NN scattering are studied within this model. The TPE interactions contain a strongly attractive isoscalar-scalar component which requires a low value of the cutoff parameter: {lambda}=650-800 MeV. With this prescription, the peripheral waves can be reasonably described.
NASA Astrophysics Data System (ADS)
Li, Heng; Mohan, Radhe; Zhu, X. Ronald
2008-12-01
The clinical applications of kilovoltage x-ray cone-beam computed tomography (CBCT) have been compromised by the limited quality of CBCT images, which typically is due to a substantial scatter component in the projection data. In this paper, we describe an experimental method of deriving the scatter kernel of a CBCT imaging system. The estimated scatter kernel can be used to remove the scatter component from the CBCT projection images, thus improving the quality of the reconstructed image. The scattered radiation was approximated as depth-dependent, pencil-beam kernels, which were derived using an edge-spread function (ESF) method. The ESF geometry was achieved with a half-beam block created by a 3 mm thick lead sheet placed on a stack of slab solid-water phantoms. Measurements for ten water-equivalent thicknesses (WET) ranging from 0 cm to 41 cm were taken with (half-blocked) and without (unblocked) the lead sheet, and corresponding pencil-beam scatter kernels or point-spread functions (PSFs) were then derived without assuming any empirical trial function. The derived scatter kernels were verified with phantom studies. Scatter correction was then incorporated into the reconstruction process to improve image quality. For a 32 cm diameter cylinder phantom, the flatness of the reconstructed image was improved from 22% to 5%. When the method was applied to CBCT images for patients undergoing image-guided therapy of the pelvis and lung, the variation in selected regions of interest (ROIs) was reduced from >300 HU to <100 HU. We conclude that the scatter reduction technique utilizing the scatter kernel effectively suppresses the artifact caused by scatter in CBCT.
NASA Astrophysics Data System (ADS)
Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Ji, Jin-Chao
2016-04-01
In this paper, we propose a novel learning algorithm, named SABC-MKELM, based on a kernel extreme learning machine (KELM) method for single-hidden-layer feedforward networks. In SABC-MKELM, the combination of Gaussian kernels is used as the activate function of KELM instead of simple fixed kernel learning, where the related parameters of kernels and the weights of kernels can be optimised by a novel self-adaptive artificial bee colony (SABC) approach simultaneously. SABC-MKELM outperforms six other state-of-the-art approaches in general, as it could effectively determine solution updating strategies and suitable parameters to produce a flexible kernel function involved in SABC. Simulations have demonstrated that the proposed algorithm not only self-adaptively determines suitable parameters and solution updating strategies learning from the previous experiences, but also achieves better generalisation performances than several related methods, and the results show good stability of the proposed algorithm.
Adaptive Optimal Kernel Smooth-Windowed Wigner-Ville Distribution for Digital Communication Signal
NASA Astrophysics Data System (ADS)
Tan, Jo Lynn; Sha'ameri, Ahmad Zuribin
2009-12-01
Time-frequency distributions (TFDs) are powerful tools to represent the energy content of time-varying signal in both time and frequency domains simultaneously but they suffer from interference due to cross-terms. Various methods have been described to remove these cross-terms and they are typically signal-dependent. Thus, there is no single TFD with a fixed window or kernel that can produce accurate time-frequency representation (TFR) for all types of signals. In this paper, a globally adaptive optimal kernel smooth-windowed Wigner-Ville distribution (AOK-SWWVD) is designed for digital modulation signals such as ASK, FSK, and M-ary FSK, where its separable kernel is determined automatically from the input signal, without prior knowledge of the signal. This optimum kernel is capable of removing the cross-terms and maintaining accurate time-frequency representation at SNR as low as 0 dB. It is shown that this system is comparable to the system with prior knowledge of the signal.
Monte Carlo-based adaptive EPID dose kernel accounting for different field size responses of imagers
Wang, Song; Gardner, Joseph K.; Gordon, John J.; Li, Weidong; Clews, Luke; Greer, Peter B.; Siebers, Jeffrey V.
2009-01-01
independent and are able to predict fields with varied incident energy spectra and a H&N IMRT patient field. The proposed adaptive EPID dose kernel method provides the necessary infrastructure to build reliable and accurate portal dosimetry systems. PMID:19746793
Scene sketch generation using mixture of gradient kernels and adaptive thresholding
NASA Astrophysics Data System (ADS)
Paheding, Sidike; Essa, Almabrok; Asari, Vijayan
2016-04-01
This paper presents a simple but eﬀective algorithm for scene sketch generation from input images. The proposed algorithm combines the edge magnitudes of directional Prewitt diﬀerential gradient kernels with Kirsch kernels at each pixel position, and then encodes them into an eight bit binary code which encompasses local edge and texture information. In this binary encoding step, relative variance is employed to determine the object shape in each local region. Using relative variance enables object sketch extraction totally adaptive to any shape structure. On the other hand, the proposed technique does not require any parameter to adjust output and it is robust to edge density and noise. Two standard databases are used to show the eﬀectiveness of the proposed framework.
Structured adaptive focusing through scattering media
NASA Astrophysics Data System (ADS)
Di Battista, Diego; Ancora, Daniele; Zhang, Haisu; Lemonaki, Krystalia; Avtzi, Stella; Tzortzakis, Stelios; Leonetti, Marco; Zacharakis, Giannis
2016-03-01
The combined use of a wavefront modulator and a scattering medium forms an "opaque lens" which forces the light to focus tightly. The adaptive focus has the same shape as the correlation function of the original speckle pattern and it can be generated at defined positions with resolution up to hundreds of nanometers. We have demonstrated that manipulating the speckle pattern spatial components can structure the shape of the focus. Exploiting selectively spatial-frequencies from the speckle components we realized opaque lenses able to produce sub-correlation foci and Bessel beams.
Multi-source adaptation joint kernel sparse representation for visual classification.
Tao, JianWen; Hu, Wenjun; Wen, Shiting
2016-04-01
Most of the existing domain adaptation learning (DAL) methods relies on a single source domain to learn a classifier with well-generalized performance for the target domain of interest, which may lead to the so-called negative transfer problem. To this end, many multi-source adaptation methods have been proposed. While the advantages of using multi-source domains of information for establishing an adaptation model have been widely recognized, how to boost the robustness of the computational model for multi-source adaptation learning has only recently received attention. To address this issue for achieving enhanced performance, we propose in this paper a novel algorithm called multi-source Adaptation Regularization Joint Kernel Sparse Representation (ARJKSR) for robust visual classification problems. Specifically, ARJKSR jointly represents target dataset by a sparse linear combination of training data of each source domain in some optimal Reproduced Kernel Hilbert Space (RKHS), recovered by simultaneously minimizing the inter-domain distribution discrepancy and maximizing the local consistency, whilst constraining the observations from both target and source domains to share their sparse representations. The optimization problem of ARJKSR can be solved using an efficient alternative direction method. Under the framework ARJKSR, we further learn a robust label prediction matrix for the unlabeled instances of target domain based on the classical graph-based semi-supervised learning (GSSL) diagram, into which multiple Laplacian graphs constructed with the ARJKSR are incorporated. The validity of our method is examined by several visual classification problems. Results demonstrate the superiority of our method in comparison to several state-of-the-arts. PMID:26894961
NASA Astrophysics Data System (ADS)
Margerin, Ludovic; Planès, Thomas; Mayor, Jessie; Calvet, Marie
2016-01-01
Coda-wave interferometry is a technique which exploits tiny waveform changes in the coda to detect temporal variations of seismic properties in evolving media. Observed waveform changes are of two kinds: traveltime perturbations and distortion of seismograms. In the last 10 yr, various theories have been published to relate either background velocity changes to traveltime perturbations, or changes in the scattering properties of the medium to waveform decorrelation. These theories have been limited by assumptions pertaining to the scattering process itself-in particular isotropic scattering, or to the propagation regime-single-scattering and/or diffusion. In this manuscript, we unify and extend previous results from the literature using a radiative transfer approach. This theory allows us to incorporate the effect of anisotropic scattering and to cover a broad range of propagation regimes, including the contribution of coherent, singly scattered and multiply scattered waves. Using basic physical reasoning, we show that two different sensitivity kernels are required to describe traveltime perturbations and waveform decorrelation, respectively, a distinction which has not been well appreciated so far. Previous results from the literature are recovered as limiting cases of our general approach. To evaluate numerically the sensitivity functions, we introduce an improved version of a spectral technique known as the method of `rotated coordinate frames', which allows global evaluation of the Green's function of the radiative transfer equation in a finite domain. The method is validated through direct pointwise comparison with Green's functions obtained by the Monte Carlo method. To illustrate the theory, we consider a series of scattering media displaying increasing levels of scattering anisotropy and discuss the impact on the traveltime and decorrelation kernels. We also consider the related problem of imaging variations of scattering properties based on intensity
Cen, Guanjun; Zeng, Xianru; Long, Xiuzhen; Wei, Dewei; Gao, Xuyuan; Zeng, Tao
2015-01-01
In insects, the frequency distribution of the measurements of sclerotized body parts is generally used to classify larval instars and is characterized by a multimodal overlap between instar stages. Nonparametric methods with fixed bandwidths, such as histograms, have significant limitations when used to fit this type of distribution, making it difficult to identify divisions between instars. Fixed bandwidths have also been chosen somewhat subjectively in the past, which is another problem. In this study, we describe an adaptive kernel smoothing method to differentiate instars based on discontinuities in the growth rates of sclerotized insect body parts. From Brooks’ rule, we derived a new standard for assessing the quality of instar classification and a bandwidth selector that more accurately reflects the distributed character of specific variables. We used this method to classify the larvae of Austrosimulium tillyardianum (Diptera: Simuliidae) based on five different measurements. Based on head capsule width and head capsule length, the larvae were separated into nine instars. Based on head capsule postoccipital width and mandible length, the larvae were separated into 8 instars and 10 instars, respectively. No reasonable solution was found for antennal segment 3 length. Separation of the larvae into nine instars using head capsule width or head capsule length was most robust and agreed with Crosby’s growth rule. By strengthening the distributed character of the separation variable through the use of variable bandwidths, the adaptive kernel smoothing method could identify divisions between instars more effectively and accurately than previous methods. PMID:26546689
NASA Astrophysics Data System (ADS)
Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad
2015-01-01
Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.
Kernel based model parametrization and adaptation with applications to battery management systems
NASA Astrophysics Data System (ADS)
Weng, Caihao
With the wide spread use of energy storage systems, battery state of health (SOH) monitoring has become one of the most crucial challenges in power and energy research, as SOH significantly affects the performance and life cycle of batteries as well as the systems they are interacting with. Identifying the SOH and adapting of the battery energy/power management system accordingly are thus two important challenges for applications such as electric vehicles, smart buildings and hybrid power systems. This dissertation focuses on the identification of lithium ion battery capacity fading, and proposes an on-board implementable model parametrization and adaptation framework for SOH monitoring. Both parametric and non-parametric approaches that are based on kernel functions are explored for the modeling of battery charging data and aging signature extraction. A unified parametric open circuit voltage model is first developed to improve the accuracy of battery state estimation. Several analytical and numerical methods are then investigated for the non-parametric modeling of battery data, among which the support vector regression (SVR) algorithm is shown to be the most robust and consistent approach with respect to data sizes and ranges. For data collected on LiFePO 4 cells, it is shown that the model developed with the SVR approach is able to predict the battery capacity fading with less than 2% error. Moreover, motivated by the initial success of applying kernel based modeling methods for battery SOH monitoring, this dissertation further exploits the parametric SVR representation for real-time battery characterization supported by test data. Through the study of the invariant properties of the support vectors, a kernel based model parametrization and adaptation framework is developed. The high dimensional optimization problem in the learning algorithm could be reformulated as a parameter estimation problem, that can be solved by standard estimation algorithms such as the
Yan, Shengye; Xu, Xinxing; Xu, Dong; Lin, Stephen; Li, Xuelong
2015-03-01
We present a framework for image classification that extends beyond the window sampling of fixed spatial pyramids and is supported by a new learning algorithm. Based on the observation that fixed spatial pyramids sample a rather limited subset of the possible image windows, we propose a method that accounts for a comprehensive set of windows densely sampled over location, size, and aspect ratio. A concise high-level image feature is derived to effectively deal with this large set of windows, and this higher level of abstraction offers both efficient handling of the dense samples and reduced sensitivity to misalignment. In addition to dense window sampling, we introduce generalized adaptive l(p)-norm multiple kernel learning (GA-MKL) to learn a robust classifier based on multiple base kernels constructed from the new image features and multiple sets of prelearned classifiers from other classes. With GA-MKL, multiple levels of image features are effectively fused, and information is shared among different classifiers. Extensive evaluation on benchmark datasets for object recognition (Caltech256 and Caltech101) and scene recognition (15Scenes) demonstrate that the proposed method outperforms the state-of-the-art under a broad range of settings. PMID:24968365
Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels
Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J.
2014-01-01
This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively “hiding” its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research. PMID:25505378
Hensen, Ulf; Grubmüller, Helmut; Lange, Oliver F
2009-07-01
The quasiharmonic approximation is the most widely used estimate for the configurational entropy of macromolecules from configurational ensembles generated from atomistic simulations. This method, however, rests on two assumptions that severely limit its applicability, (i) that a principal component analysis yields sufficiently uncorrelated modes and (ii) that configurational densities can be well approximated by Gaussian functions. In this paper we introduce a nonparametric density estimation method which rests on adaptive anisotropic kernels. It is shown that this method provides accurate configurational entropies for up to 45 dimensions thus improving on the quasiharmonic approximation. When embedded in the minimally coupled subspace framework, large macromolecules of biological interest become accessible, as demonstrated for the 67-residue coldshock protein. PMID:19658735
Azimi-Sadjadi, Mahmood R; Salazar, Jaime; Srinivasan, Saravanakumar
2009-07-01
This paper presents an adaptable content-based image retrieval (CBIR) system developed using regularization theory, kernel-based machines, and Fisher information measure. The system consists of a retrieval subsystem that carries out similarity matching using image-dependant information, multiple mapping subsystems that adaptively modify the similarity measures, and a relevance feedback mechanism that incorporates user information. The adaptation process drives the retrieval error to zero in order to exactly meet either an existing multiclass classification model or the user high-level concepts using reference-model or relevance feedback learning, respectively. To facilitate the selection of the most informative query images during relevance feedback learning a new method based upon the Fisher information is introduced. Model-reference and relevance feedback learning mechanisms are thoroughly tested on a domain-specific image database that encompasses a wide range of underwater objects captured using an electro-optical sensor. Benchmarking results with two other relevance feedback learning methods are also provided. PMID:19447718
Zuo, K; Bellanger, J J; Yang, C; Shu, H; Le Bouquin Jeannés, R
2013-01-01
This paper aims at estimating causal relationships between signals to detect flow propagation in autoregressive and physiological models. The main challenge of the ongoing work is to discover whether neural activity in a given structure of the brain influences activity in another area during epileptic seizures. This question refers to the concept of effective connectivity in neuroscience, i.e. to the identification of information flows and oriented propagation graphs. Past efforts to determine effective connectivity rooted to Wiener causality definition adapted in a practical form by Granger with autoregressive models. A number of studies argue against such a linear approach when nonlinear dynamics are suspected in the relationship between signals. Consequently, nonlinear nonparametric approaches, such as transfer entropy (TE), have been introduced to overcome linear methods limitations and promoted in many studies dealing with electrophysiological signals. Until now, even though many TE estimators have been developed, further improvement can be expected. In this paper, we investigate a new strategy by introducing an adaptive kernel density estimator to improve TE estimation. PMID:24110694
NASA Astrophysics Data System (ADS)
Zheng, Zhihui; Gao, Lei; Xiao, Liping; Zhou, Bin; Gao, Shibo
2015-12-01
Our purpose is to develop a detection algorithm capable of searching for generic interest objects in real time without large training sets and long-time training stages. Instead of the classical sliding window object detection paradigm, we employ an objectness measure to produce a small set of candidate windows efficiently using Binarized Normed Gradients and a Laplacian of Gaussian-like filter. We then extract Locally Adaptive Regression Kernels (LARKs) as descriptors both from a model image and the candidate windows which measure the likeness of a pixel to its surroundings. Using a matrix cosine similarity measure, the algorithm yields a scalar resemblance map, indicating the likelihood of similarity between the model and the candidate windows. By employing nonparametric significance tests and non-maxima suppression, we detect the presence of objects similar to the given model. Experiments show that the proposed detection paradigm can automatically detect the presence, the number, as well as location of similar objects to the given model. The high quality and efficiency of our method make it suitable for real time multi-category object detection applications.
Elazab, Ahmed; Wang, Changmiao; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao
2015-01-01
An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity. PMID:26793269
Wang, Changmiao; Jia, Fucang; Wu, Jianhuang; Li, Guanglin
2015-01-01
An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity. PMID:26793269
NASA Astrophysics Data System (ADS)
Nakahara, Hisashi; Emoto, Kentaro
2016-08-01
Recently, coda-wave interferometry has been used to monitor temporal changes in subsurface structures. Seismic velocity changes have been detected by coda-wave interferometry in association with large earthquakes and volcanic eruptions. To constrain the spatial extent of the velocity changes, spatial homogeneity is often assumed. However, it is important to locate the region of the velocity changes correctly to understand physical mechanisms causing them. In this paper, we are concerned with the sensitivity kernels relating travel times of coda waves to velocity changes. In previous studies, sensitivity kernels have been formulated for two-dimensional single scattering and multiple scattering, three-dimensional multiple scattering, and diffusion. In this paper, we formulate and derive analytical expressions of the sensitivity kernels for three-dimensional single-scattering case. These sensitivity kernels show two peaks at both source and receiver locations, which is similar to the previous studies using different scattering models. The two peaks are more pronounced for later lapse time. We validate our formulation by comparing it with finite-difference simulations of acoustic wave propagation. Our formulation enables us to evaluate the sensitivity kernels analytically, which is particularly useful for the analysis of body waves from deeper earthquakes.
NASA Astrophysics Data System (ADS)
Rand, Robert S.; Resmini, Ronald G.
2014-09-01
Spectral mixing can occur in a number of different ways, which may be linear or non-linear. Perhaps the pixel size of a sensor is just too large so many pixels contain patches of different materials within them resulting in linear mixing of the materials. However, there are more complex situations, such as scattering that occurs in mixtures of vegetation and soil, or intimate mixing of granular materials like soils. Such multiple scattering and microscopic mixtures within pixels have varying degrees of non-linearity. Often enough, scenes may contain cases of both linear and non-linear mixing on a pixel-by-pixel basis. This study compares two approaches for use as generalized methods for un-mixing pixels in a scene that may be linear or non-linear. The first is a kernel-based fully-constrained method for spectral unmixing, which uses a kernel that seeks to capture the linear behavior of albedo in non-linear mixtures of materials. The second method directly converts reflectance to single-scattering albedo (SSA) according to Hapke theory assuming bidirectional scattering at nadir look angles and uses a constrained linear model on the computed albedo values. Multiple scenes of hyperspectral imagery calibrated to reflectance are used to validate the methods. We test the approaches using a HyMAP scene collected over the Waimanalo Bay region in Oahu, Hawaii, as well as an AVIRIS scene collected over the oil spill region in the Gulf of Mexico during the Deepwater Horizon oil incident.
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4. PMID:23525188
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4. PMID:23525188
A 3D point-kernel multiple scatter model for parallel-beam SPECT based on a gamma-ray buildup factor
NASA Astrophysics Data System (ADS)
Marinkovic, Predrag; Ilic, Radovan; Spaic, Rajko
2007-09-01
A three-dimensional (3D) point-kernel multiple scatter model for point spread function (PSF) determination in parallel-beam single-photon emission computed tomography (SPECT), based on a dose gamma-ray buildup factor, is proposed. This model embraces nonuniform attenuation in a voxelized object of imaging (patient body) and multiple scattering that is treated as in the point-kernel integration gamma-ray shielding problems. First-order Compton scattering is done by means of the Klein-Nishina formula, but the multiple scattering is accounted for by making use of a dose buildup factor. An asset of the present model is the possibility of generating a complete two-dimensional (2D) PSF that can be used for 3D SPECT reconstruction by means of iterative algorithms. The proposed model is convenient in those situations where more exact techniques are not economical. For the proposed model's testing purpose calculations (for the point source in a nonuniform scattering object for parallel beam collimator geometry), the multiple-order scatter PSF generated by means of the proposed model matched well with those using Monte Carlo (MC) simulations. Discrepancies are observed only at the exponential tails mostly due to the high statistic uncertainty of MC simulations in this area, but not because of the inappropriateness of the model.
NASA Astrophysics Data System (ADS)
Liu, Jiaqi; Han, Jing; Zhang, Yi; Bai, Lianfa
2015-10-01
Locally adaptive regression kernels model can describe the edge shape of images accurately and graphic trend of images integrally, but it did not consider images' color information while the color is an important element of an image. Therefore, we present a novel method of target recognition based on 3-D-color-space locally adaptive regression kernels model. Different from the general additional color information, this method directly calculate the local similarity features of 3-D data from the color image. The proposed method uses a few examples of an object as a query to detect generic objects with incompact, complex and changeable shapes. Our method involves three phases: First, calculating the novel color-space descriptors from the RGB color space of query image which measure the likeness of a voxel to its surroundings. Salient features which include spatial- dimensional and color -dimensional information are extracted from said descriptors, and simplifying them to construct a non-similar local structure feature set of the object class by principal components analysis (PCA). Second, we compare the salient features with analogous features from the target image. This comparison is done using a matrix generalization of the cosine similarity measure. Then the similar structures in the target image are obtained using local similarity structure statistical matching. Finally, we use the method of non-maxima suppression in the similarity image to extract the object position and mark the object in the test image. Experimental results demonstrate that our approach is effective and accurate in improving the ability to identify targets.
Liu, Yi-Hung; Wu, Chien-Te; Kao, Yung-Hwa; Chen, Ya-Ting
2013-01-01
Single-trial electroencephalography (EEG)-based emotion recognition enables us to perform fast and direct assessments of human emotional states. However, previous works suggest that a great improvement on the classification accuracy of valence and arousal levels is still needed. To address this, we propose a novel emotional EEG feature extraction method: kernel Eigen-emotion pattern (KEEP). An adaptive SVM is also proposed to deal with the problem of learning from imbalanced emotional EEG data sets. In this study, a set of pictures from IAPS are used for emotion induction. Results based on seven participants show that KEEP gives much better classification results than the widely-used EEG frequency band power features. Also, the adaptive SVM greatly improves classification performance of commonly-adopted SVM classifier. Combined use of KEEP and adaptive SVM can achieve high average valence and arousal classification rates of 73.42% and 73.57%. The highest classification rates for valence and arousal are 80% and 79%, respectively. The results are very promising. PMID:24110685
NASA Astrophysics Data System (ADS)
García-Senz, Domingo; Cabezón, Rubén M.; Escartín, José A.; Ebinger, Kevin
2014-10-01
Context. The smoothed-particle hydrodynamics (SPH) technique is a numerical method for solving gas-dynamical problems. It has been applied to simulate the evolution of a wide variety of astrophysical systems. The method has a second-order accuracy, with a resolution that is usually much higher in the compressed regions than in the diluted zones of the fluid. Aims: We propose and check a method to balance and equalize the resolution of SPH between high- and low-density regions. This method relies on the versatility of a family of interpolators called sinc kernels, which allows increasing the interpolation quality by varying only a single parameter (the exponent of the sinc function). Methods: The proposed method was checked and validated through a number of numerical tests, from standard one-dimensional Riemann problems in shock tubes, to multidimensional simulations of explosions, hydrodynamic instabilities, and the collapse of a Sun-like polytrope. Results: The analysis of the hydrodynamical simulations suggests that the scheme devised to equalize the accuracy improves the treatment of the post-shock regions and, in general, of the rarefacted zones of fluids while causing no harm to the growth of hydrodynamic instabilities. The method is robust and easy to implement with a low computational overload. It conserves mass, energy, and momentum and reduces to the standard SPH scheme in regions of the fluid that have smooth density gradients.
Larsson, Joel; Båth, Magnus; Ledenius, Kerstin; Caisander, Håkan; Thilander-Klang, Anne
2016-06-01
The purpose of this study was to investigate the effect of different combinations of convolution kernel and the level of Adaptive Statistical iterative Reconstruction (ASiR™) on diagnostic image quality as well as visualisation of anatomical structures in paediatric abdominal computed tomography (CT) examinations. Thirty-five paediatric patients with abdominal pain with non-specified pathology undergoing abdominal CT were included in the study. Transaxial stacks of 5-mm-thick images were retrospectively reconstructed at various ASiR levels, in combination with three convolution kernels. Four paediatric radiologists rated the diagnostic image quality and the delineation of six anatomical structures in a blinded randomised visual grading study. Image quality at a given ASiR level was found to be dependent on the kernel, and a more edge-enhancing kernel benefitted from a higher ASiR level. An ASiR level of 70 % together with the Soft™ or Standard™ kernel was suggested to be the optimal combination for paediatric abdominal CT examinations. PMID:26922785
MC Kernel: Broadband Waveform Sensitivity Kernels for Seismic Tomography
NASA Astrophysics Data System (ADS)
Stähler, Simon C.; van Driel, Martin; Auer, Ludwig; Hosseini, Kasra; Sigloch, Karin; Nissen-Meyer, Tarje
2016-04-01
We present MC Kernel, a software implementation to calculate seismic sensitivity kernels on arbitrary tetrahedral or hexahedral grids across the whole observable seismic frequency band. Seismic sensitivity kernels are the basis for seismic tomography, since they map measurements to model perturbations. Their calculation over the whole frequency range was so far only possible with approximative methods (Dahlen et al. 2000). Fully numerical methods were restricted to the lower frequency range (usually below 0.05 Hz, Tromp et al. 2005). With our implementation, it's possible to compute accurate sensitivity kernels for global tomography across the observable seismic frequency band. These kernels rely on wavefield databases computed via AxiSEM (www.axisem.info), and thus on spherically symmetric models. The advantage is that frequencies up to 0.2 Hz and higher can be accessed. Since the usage of irregular, adapted grids is an integral part of regularisation in seismic tomography, MC Kernel works in a inversion-grid-centred fashion: A Monte-Carlo integration method is used to project the kernel onto each basis function, which allows to control the desired precision of the kernel estimation. Also, it means that the code concentrates calculation effort on regions of interest without prior assumptions on the kernel shape. The code makes extensive use of redundancies in calculating kernels for different receivers or frequency-pass-bands for one earthquake, to facilitate its usage in large-scale global seismic tomography.
Kernel Phase and Kernel Amplitude in Fizeau Imaging
NASA Astrophysics Data System (ADS)
Pope, Benjamin J. S.
2016-09-01
Kernel phase interferometry is an approach to high angular resolution imaging which enhances the performance of speckle imaging with adaptive optics. Kernel phases are self-calibrating observables that generalize the idea of closure phases from non-redundant arrays to telescopes with arbitrarily shaped pupils, by considering a matrix-based approximation to the diffraction problem. In this paper I discuss the recent fhistory of kernel phase, in particular in the matrix-based study of sparse arrays, and propose an analogous generalization of the closure amplitude to kernel amplitudes. This new approach can self-calibrate throughput and scintillation errors in optical imaging, which extends the power of kernel phase-like methods to symmetric targets where amplitude and not phase calibration can be a significant limitation, and will enable further developments in high angular resolution astronomy.
Bermejo, Guillermo A; Clore, G Marius; Schwieters, Charles D
2012-01-01
Statistical potentials that embody torsion angle probability densities in databases of high-quality X-ray protein structures supplement the incomplete structural information of experimental nuclear magnetic resonance (NMR) datasets. By biasing the conformational search during the course of structure calculation toward highly populated regions in the database, the resulting protein structures display better validation criteria and accuracy. Here, a new statistical torsion angle potential is developed using adaptive kernel density estimation to extract probability densities from a large database of more than 106 quality-filtered amino acid residues. Incorporated into the Xplor-NIH software package, the new implementation clearly outperforms an older potential, widely used in NMR structure elucidation, in that it exhibits simultaneously smoother and sharper energy surfaces, and results in protein structures with improved conformation, nonbonded atomic interactions, and accuracy. PMID:23011872
Ma, Cheng; Xu, Xiao; Liu, Yan; Wang, Lihong V.
2014-01-01
The ability to steer and focus light inside scattering media has long been sought for a multitude of applications. To form optical foci inside scattering media, the only feasible strategy at present is to guide photons by using either implanted1 or virtual2–4 guide stars, which can be inconvenient and limits potential applications. Here, we report a scheme for focusing light inside scattering media by employing intrinsic dynamics as guide stars. By time-reversing the perturbed component of the scattered light adaptively, we show that it is possible to focus light to the origin of the perturbation. Using the approach, we demonstrate non-invasive dynamic light focusing onto moving targets and imaging of a time-variant object obscured by highly scattering media. Anticipated applications include imaging and photoablation of angiogenic vessels in tumours as well as other biomedical uses. PMID:25530797
NASA Astrophysics Data System (ADS)
Shen, Yujie; Voronine, Dmitri V.; Sokolov, Alexei V.; Scully, Marlan O.
2015-08-01
We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.
Shen, Yujie; Voronine, Dmitri V.; Sokolov, Alexei V.; Scully, Marlan O.
2015-08-15
We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.
Dixon, Robert L.; Boone, John M.
2011-07-15
Purpose: Knowledge of the complete axial dose profile f(z), including its long scatter tails, provides the most complete (and flexible) description of the accumulated dose in CT scanning. The CTDI paradigm (including CTDI{sub vol}) requires shift-invariance along z (identical dose profiles spaced at equal intervals), and is therefore inapplicable to many of the new and complex shift-variant scan protocols, e.g., high dose perfusion studies using variable (or zero) pitch. In this work, a convolution-based beam model developed by Dixon et al.[Med. Phys. 32, 3712-3728, (2005)] updated with a scatter LSF kernel (or DSF) derived from a Monte Carlo simulation by Boone [Med. Phys. 36, 4547-4554 (2009)] is used to create an analytical equation for the axial dose profile f(z) in a cylindrical phantom. Using f(z), equations are derived which provide the analytical description of conventional (axial and helical) dose, demonstrating its physical underpinnings; and likewise for the peak axial dose f(0) appropriate to stationary phantom cone beam CT, (SCBCT). The methodology can also be applied to dose calculations in shift-variant scan protocols. This paper is an extension of our recent work Dixon and Boone [Med. Phys. 37, 2703-2718 (2010)], which dealt only with the properties of the peak dose f(0), its relationship to CTDI, and its appropriateness to SCBCT. Methods: The experimental beam profile data f(z) of Mori et al.[Med. Phys. 32, 1061-1069 (2005)] from a 256 channel prototype cone beam scanner for beam widths (apertures) ranging from a = 28 to 138 mm are used to corroborate the theoretical axial profiles in a 32 cm PMMA body phantom. Results: The theoretical functions f(z) closely-matched the central axis experimental profile data{sup 11} for all apertures (a = 28 -138 mm). Integration of f(z) likewise yields analytical equations for all the (CTDI-based) dosimetric quantities of conventional CT (including CTDI{sub L} itself) in addition to the peak dose f(0) relevant to
Park, Yang-Kyun; Sharp, Gregory C.; Phillips, Justin; Winey, Brian A.
2015-01-01
Purpose: To demonstrate the feasibility of proton dose calculation on scatter-corrected cone-beam computed tomographic (CBCT) images for the purpose of adaptive proton therapy. Methods: CBCT projection images were acquired from anthropomorphic phantoms and a prostate patient using an on-board imaging system of an Elekta infinity linear accelerator. Two previously introduced techniques were used to correct the scattered x-rays in the raw projection images: uniform scatter correction (CBCTus) and a priori CT-based scatter correction (CBCTap). CBCT images were reconstructed using a standard FDK algorithm and GPU-based reconstruction toolkit. Soft tissue ROI-based HU shifting was used to improve HU accuracy of the uncorrected CBCT images and CBCTus, while no HU change was applied to the CBCTap. The degree of equivalence of the corrected CBCT images with respect to the reference CT image (CTref) was evaluated by using angular profiles of water equivalent path length (WEPL) and passively scattered proton treatment plans. The CBCTap was further evaluated in more realistic scenarios such as rectal filling and weight loss to assess the effect of mismatched prior information on the corrected images. Results: The uncorrected CBCT and CBCTus images demonstrated substantial WEPL discrepancies (7.3 ± 5.3 mm and 11.1 ± 6.6 mm, respectively) with respect to the CTref, while the CBCTap images showed substantially reduced WEPL errors (2.4 ± 2.0 mm). Similarly, the CBCTap-based treatment plans demonstrated a high pass rate (96.0% ± 2.5% in 2 mm/2% criteria) in a 3D gamma analysis. Conclusions: A priori CT-based scatter correction technique was shown to be promising for adaptive proton therapy, as it achieved equivalent proton dose distributions and water equivalent path lengths compared to those of a reference CT in a selection of anthropomorphic phantoms. PMID:26233175
NASA Astrophysics Data System (ADS)
Ying, Ying-Zi; Ma, Li; Guo, Sheng-Ming
2011-05-01
In active sonar operation, the presence of background reverberation and the low signal-to-noise ratio hinder the detection of targets. This paper investigates the application of single-channel monostatic iterative time reversal to mitigate the difficulties by exploiting the resonances of the target. Theoretical analysis indicates that the iterative process will adaptively lead echoes to converge to a narrowband signal corresponding to a scattering object's dominant resonance mode, thus optimising the return level. The experiments in detection of targets in free field and near a planar interface have been performed. The results illustrate the feasibility of the method.
NASA Astrophysics Data System (ADS)
Altaç, Zekeriya; Tekkalmaz, Mesut
2013-11-01
In this study, a nodal method based on the synthetic kernel (SKN) approximation is developed for solving the radiative transfer equation (RTE) in one- and two-dimensional cartesian geometries. The RTE for a two-dimensional node is transformed to one-dimensional RTE, based on face-averaged radiation intensity. At the node interfaces, double P1 expansion is employed to the surface angular intensities with the isotropic transverse leakage assumption. The one-dimensional radiative integral transfer equation (RITE) is obtained in terms of the node-face-averaged incoming/outgoing incident energy and partial heat fluxes. The synthetic kernel approximation is employed to the transfer kernels and nodal-face contributions. The resulting SKN equations are solved analytically. One-dimensional interface-coupling nodal SK1 and SK2 equations (incoming/outgoing incident energy and net partial heat flux) are derived for the small nodal-mesh limit. These equations have simple algebraic and recursive forms which impose burden on neither the memory nor the computational time. The method was applied to one- and two-dimensional benchmark problems including hot/cold medium with transparent/emitting walls. The 2D results are free of ray effect and the results, for geometries of a few mean-free-paths or more, are in excellent agreement with the exact solutions.
Domain transfer multiple kernel learning.
Duan, Lixin; Tsang, Ivor W; Xu, Dong
2012-03-01
Cross-domain learning methods have shown promising results by leveraging labeled patterns from the auxiliary domain to learn a robust classifier for the target domain which has only a limited number of labeled samples. To cope with the considerable change between feature distributions of different domains, we propose a new cross-domain kernel learning framework into which many existing kernel methods can be readily incorporated. Our framework, referred to as Domain Transfer Multiple Kernel Learning (DTMKL), simultaneously learns a kernel function and a robust classifier by minimizing both the structural risk functional and the distribution mismatch between the labeled and unlabeled samples from the auxiliary and target domains. Under the DTMKL framework, we also propose two novel methods by using SVM and prelearned classifiers, respectively. Comprehensive experiments on three domain adaptation data sets (i.e., TRECVID, 20 Newsgroups, and email spam data sets) demonstrate that DTMKL-based methods outperform existing cross-domain learning and multiple kernel learning methods. PMID:21646679
Deb, M.K.; Kennon, S.R.
1998-04-01
A cooperative R&D effort between industry and the US government, this project, under the HPPP (High Performance Parallel Processing) initiative of the Dept. of Energy, started the investigations into parallel object-oriented (OO) numerics. The basic goal was to research and utilize the emerging technologies to create a physics-independent computational kernel for applications using adaptive finite element method. The industrial team included Computational Mechanics Co., Inc. (COMCO) of Austin, TX (as the primary contractor), Scientific Computing Associates, Inc. (SCA) of New Haven, CT, Texaco and CONVEX. Sandia National Laboratory (Albq., NM) was the technology partner from the government side. COMCO had the responsibility of the main kernel design and development, SCA had the lead in parallel solver technology and guidance on OO technologies was Sandia`s main expertise in this venture. CONVEX and Texaco supported the partnership by hardware resource and application knowledge, respectively. As such, a minimum of fifty-percent cost-sharing was provided by the industry partnership during this project. This report describes the R&D activities and provides some details about the prototype kernel and example applications.
Bruemmer, David J.
2009-11-17
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. PMID:25528318
Putting Priors in Mixture Density Mercer Kernels
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd
2004-01-01
This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. We describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using predefined kernels. These data adaptive kernels can en- code prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS). The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains template for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic- algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code. The results show that the Mixture Density Mercer-Kernel described here outperforms tree-based classification in distinguishing high-redshift galaxies from low- redshift galaxies by approximately 16% on test data, bagged trees by approximately 7%, and bagged trees built on a much larger sample of data by approximately 2%.
Fully automatic hp-adaptivity for acoustic and electromagnetic scattering in three dimensions
NASA Astrophysics Data System (ADS)
Kurtz, Jason Patrick
We present an algorithm for fully automatic hp-adaptivity for finite element approximations of elliptic and Maxwell boundary value problems in three dimensions. The algorithm automatically generates a sequence of coarse grids, and a corresponding sequence of fine grids, such that the energy norm of the error decreases exponentially with respect to the number of degrees of freedom in either sequence. At each step, we employ a discrete optimization algorithm to determine the refinements for the current coarse grid such that the projection-based interpolation error for the current fine grid solution decreases with an optimal rate with respect to the number of degrees of freedom added by the refinement. The refinements are restricted only by the requirement that the resulting mesh is at most 1-irregular, but they may be anisotropic in both element size h and order of approximation p. While we cannot prove that our method converges at all, we present numerical evidence of exponential convergence for a diverse suite of model problems from acoustic and electromagnetic scattering. In particular we show that our method is well suited to the automatic resolution of exterior problems truncated by the introduction of a perfectly matched layer. To enable and accelerate the solution of these problems on commodity hardware, we include a detailed account of three critical aspects of our implementation, namely an efficient implementation of sum factorization, several efficient interfaces to the direct multi-frontal solver MUMPS, and some fast direct solvers for the computation of a sequence of nested projections.
Direct Measurement of Wave Kernels in Time-Distance Helioseismology
NASA Technical Reports Server (NTRS)
Duvall, T. L., Jr.
2006-01-01
Solar f-mode waves are surface-gravity waves which propagate horizontally in a thin layer near the photosphere with a dispersion relation approximately that of deep water waves. At the power maximum near 3 mHz, the wavelength of 5 Mm is large enough for various wave scattering properties to be observable. Gizon and Birch (2002,ApJ,571,966)h ave calculated kernels, in the Born approximation, for the sensitivity of wave travel times to local changes in damping rate and source strength. In this work, using isolated small magnetic features as approximate point-sourc'e scatterers, such a kernel has been measured. The observed kernel contains similar features to a theoretical damping kernel but not for a source kernel. A full understanding of the effect of small magnetic features on the waves will require more detailed modeling.
Kernel simplex growing algorithm for hyperspectral endmember extraction
NASA Astrophysics Data System (ADS)
Zhao, Liaoying; Zheng, Junpeng; Li, Xiaorun; Wang, Lijiao
2014-01-01
In order to effectively extract endmembers for hyperspectral imagery where linear mixing model may not be appropriate due to multiple scattering effects, this paper extends the simplex growing algorithm (SGA) to its kernel version. A new simplex volume formula without dimension reduction is used in SGA to form a new simplex growing algorithm (NSGA). The original data are nonlinearly mapped into a high-dimensional space where the scatters can be ignored. To avoid determining complex nonlinear mapping, a kernel function is used to extend the NSGA to kernel NSGA (KNSGA). Experimental results of simulated and real data prove that the proposed KNSGA approach outperforms SGA and NSGA.
Melacci, Stefano; Gori, Marco
2013-11-01
Supervised examples and prior knowledge on regions of the input space have been profitably integrated in kernel machines to improve the performance of classifiers in different real-world contexts. The proposed solutions, which rely on the unified supervision of points and sets, have been mostly based on specific optimization schemes in which, as usual, the kernel function operates on points only. In this paper, arguments from variational calculus are used to support the choice of a special class of kernels, referred to as box kernels, which emerges directly from the choice of the kernel function associated with a regularization operator. It is proven that there is no need to search for kernels to incorporate the structure deriving from the supervision of regions of the input space, because the optimal kernel arises as a consequence of the chosen regularization operator. Although most of the given results hold for sets, we focus attention on boxes, whose labeling is associated with their propositional description. Based on different assumptions, some representer theorems are given that dictate the structure of the solution in terms of box kernel expansion. Successful results are given for problems of medical diagnosis, image, and text categorization. PMID:24051728
Melacci, Stefano; Gori, Marco
2013-04-12
Supervised examples and prior knowledge on regions of the input space have been profitably integrated in kernel machines to improve the performance of classifiers in different real-world contexts. The proposed solutions, which rely on the unified supervision of points and sets, have been mostly based on specific optimization schemes in which, as usual, the kernel function operates on points only. In this paper, arguments from variational calculus are used to support the choice of a special class of kernels, referred to as box kernels, which emerges directly from the choice of the kernel function associated with a regularization operator. It is proven that there is no need to search for kernels to incorporate the structure deriving from the supervision of regions of the input space, since the optimal kernel arises as a consequence of the chosen regularization operator. Although most of the given results hold for sets, we focus attention on boxes, whose labeling is associated with their propositional description. Based on different assumptions, some representer theorems are given which dictate the structure of the solution in terms of box kernel expansion. Successful results are given for problems of medical diagnosis, image, and text categorization. PMID:23589591
Sparse representation with kernels.
Gao, Shenghua; Tsang, Ivor Wai-Hung; Chia, Liang-Tien
2013-02-01
Recent research has shown the initial success of sparse coding (Sc) in solving many computer vision tasks. Motivated by the fact that kernel trick can capture the nonlinear similarity of features, which helps in finding a sparse representation of nonlinear features, we propose kernel sparse representation (KSR). Essentially, KSR is a sparse coding technique in a high dimensional feature space mapped by an implicit mapping function. We apply KSR to feature coding in image classification, face recognition, and kernel matrix approximation. More specifically, by incorporating KSR into spatial pyramid matching (SPM), we develop KSRSPM, which achieves a good performance for image classification. Moreover, KSR-based feature coding can be shown as a generalization of efficient match kernel and an extension of Sc-based SPM. We further show that our proposed KSR using a histogram intersection kernel (HIK) can be considered a soft assignment extension of HIK-based feature quantization in the feature coding process. Besides feature coding, comparing with sparse coding, KSR can learn more discriminative sparse codes and achieve higher accuracy for face recognition. Moreover, KSR can also be applied to kernel matrix approximation in large scale learning tasks, and it demonstrates its robustness to kernel matrix approximation, especially when a small fraction of the data is used. Extensive experimental results demonstrate promising results of KSR in image classification, face recognition, and kernel matrix approximation. All these applications prove the effectiveness of KSR in computer vision and machine learning tasks. PMID:23014744
Duff, I.
1994-12-31
This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.
Park, Y; Winey, B; Sharp, G
2014-06-01
Purpose: To demonstrate feasibility of proton dose calculation on scattercorrected CBCT images for the purpose of adaptive proton therapy. Methods: Two CBCT image sets were acquired from a prostate cancer patient and a thorax phantom using an on-board imaging system of an Elekta infinity linear accelerator. 2-D scatter maps were estimated using a previously introduced CT-based technique, and were subtracted from each raw projection image. A CBCT image set was then reconstructed with an open source reconstruction toolkit (RTK). Conversion from the CBCT number to HU was performed by soft tissue-based shifting with reference to the plan CT. Passively scattered proton plans were simulated on the plan CT and corrected/uncorrected CBCT images using the XiO treatment planning system. For quantitative evaluation, water equivalent path length (WEPL) was compared in those treatment plans. Results: The scatter correction method significantly improved image quality and HU accuracy in the prostate case where large scatter artifacts were obvious. However, the correction technique showed limited effects on the thorax case that was associated with fewer scatter artifacts. Mean absolute WEPL errors from the plans with the uncorrected and corrected images were 1.3 mm and 5.1 mm in the thorax case and 13.5 mm and 3.1 mm in the prostate case. The prostate plan dose distribution of the corrected image demonstrated better agreement with the reference one than that of the uncorrected image. Conclusion: A priori CT-based CBCT scatter correction can reduce the proton dose calculation error when large scatter artifacts are involved. If scatter artifacts are low, an uncorrected CBCT image is also promising for proton dose calculation when it is calibrated with the soft-tissue based shifting.
Online Sequential Extreme Learning Machine With Kernels.
Scardapane, Simone; Comminiello, Danilo; Scarpiniti, Michele; Uncini, Aurelio
2015-09-01
The extreme learning machine (ELM) was recently proposed as a unifying framework for different families of learning algorithms. The classical ELM model consists of a linear combination of a fixed number of nonlinear expansions of the input vector. Learning in ELM is hence equivalent to finding the optimal weights that minimize the error on a dataset. The update works in batch mode, either with explicit feature mappings or with implicit mappings defined by kernels. Although an online version has been proposed for the former, no work has been done up to this point for the latter, and whether an efficient learning algorithm for online kernel-based ELM exists remains an open problem. By explicating some connections between nonlinear adaptive filtering and ELM theory, in this brief, we present an algorithm for this task. In particular, we propose a straightforward extension of the well-known kernel recursive least-squares, belonging to the kernel adaptive filtering (KAF) family, to the ELM framework. We call the resulting algorithm the kernel online sequential ELM (KOS-ELM). Moreover, we consider two different criteria used in the KAF field to obtain sparse filters and extend them to our context. We show that KOS-ELM, with their integration, can result in a highly efficient algorithm, both in terms of obtained generalization error and training time. Empirical evaluations demonstrate interesting results on some benchmarking datasets. PMID:25561597
NASA Technical Reports Server (NTRS)
Eloranta, E. W.; Piironen, P. K.
1996-01-01
Quantitative lidar measurements of aerosol scattering are hampered by the need for calibrations and the problem of correcting observed backscatter profiles for the effects of attenuation. The University of Wisconsin High Spectral Resolution Lidar (HSRL) addresses these problems by separating molecular scattering contributions from the aerosol scattering; the molecular scattering is then used as a calibration target that is available at each point in the observed profiles. While the HSRl approach has intrinsic advantages over competing techniques, realization of these advantages requires implementation of a technically demanding system which is potentially very sensitive to changes in temperature and mechanical alignments. This paper describes a new implementation of the HSRL in an instrumented van which allows measurements during field experiments. The HSRL was modified to measure depolarization. In addition, both the signal amplitude and depolarization variations with receiver field of view are simultaneously measured. This allows for discrimination of ice clouds from water clouds and observation of multiple scattering contributions to the lidar return.
KERNEL PHASE IN FIZEAU INTERFEROMETRY
Martinache, Frantz
2010-11-20
The detection of high contrast companions at small angular separation appears feasible in conventional direct images using the self-calibration properties of interferometric observable quantities. The friendly notion of closure phase, which is key to the recent observational successes of non-redundant aperture masking interferometry used with adaptive optics, appears to be one example of a wide family of observable quantities that are not contaminated by phase noise. In the high-Strehl regime, soon to be available thanks to the coming generation of extreme adaptive optics systems on ground-based telescopes, and already available from space, closure phase like information can be extracted from any direct image, even taken with a redundant aperture. These new phase-noise immune observable quantities, called kernel phases, are determined a priori from the knowledge of the geometry of the pupil only. Re-analysis of archive data acquired with the Hubble Space Telescope NICMOS instrument using this new kernel-phase algorithm demonstrates the power of the method as it clearly detects and locates with milliarcsecond precision a known companion to a star at angular separation less than the diffraction limit.
Robotic Intelligence Kernel: Communications
Walton, Mike C.
2009-09-16
The INL Robotic Intelligence Kernel-Comms is the communication server that transmits information between one or more robots using the RIK and one or more user interfaces. It supports event handling and multiple hardware communication protocols.
Robotic Intelligence Kernel: Driver
2009-09-16
The INL Robotic Intelligence Kernel-Driver is built on top of the RIK-A and implements a dynamic autonomy structure. The RIK-D is used to orchestrate hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a single cognitive behavior kernel that provides intrinsic intelligence for a wide variety of unmanned ground vehicle systems.
NASA Astrophysics Data System (ADS)
Pope, Benjamin; Tuthill, Peter; Hinkley, Sasha; Ireland, Michael J.; Greenbaum, Alexandra; Latyshev, Alexey; Monnier, John D.; Martinache, Frantz
2016-01-01
At present, the principal limitation on the resolution and contrast of astronomical imaging instruments comes from aberrations in the optical path, which may be imposed by the Earth's turbulent atmosphere or by variations in the alignment and shape of the telescope optics. These errors can be corrected physically, with active and adaptive optics, and in post-processing of the resulting image. A recently developed adaptive optics post-processing technique, called kernel-phase interferometry, uses linear combinations of phases that are self-calibrating with respect to small errors, with the goal of constructing observables that are robust against the residual optical aberrations in otherwise well-corrected imaging systems. Here, we present a direct comparison between kernel phase and the more established competing techniques, aperture masking interferometry, point spread function (PSF) fitting and bispectral analysis. We resolve the α Ophiuchi binary system near periastron, using the Palomar 200-Inch Telescope. This is the first case in which kernel phase has been used with a full aperture to resolve a system close to the diffraction limit with ground-based extreme adaptive optics observations. Excellent agreement in astrometric quantities is found between kernel phase and masking, and kernel phase significantly outperforms PSF fitting and bispectral analysis, demonstrating its viability as an alternative to conventional non-redundant masking under appropriate conditions.
Linearized Kernel Dictionary Learning
NASA Astrophysics Data System (ADS)
Golts, Alona; Elad, Michael
2016-06-01
In this paper we present a new approach of incorporating kernels into dictionary learning. The kernel K-SVD algorithm (KKSVD), which has been introduced recently, shows an improvement in classification performance, with relation to its linear counterpart K-SVD. However, this algorithm requires the storage and handling of a very large kernel matrix, which leads to high computational cost, while also limiting its use to setups with small number of training examples. We address these problems by combining two ideas: first we approximate the kernel matrix using a cleverly sampled subset of its columns using the Nystr\\"{o}m method; secondly, as we wish to avoid using this matrix altogether, we decompose it by SVD to form new "virtual samples," on which any linear dictionary learning can be employed. Our method, termed "Linearized Kernel Dictionary Learning" (LKDL) can be seamlessly applied as a pre-processing stage on top of any efficient off-the-shelf dictionary learning scheme, effectively "kernelizing" it. We demonstrate the effectiveness of our method on several tasks of both supervised and unsupervised classification and show the efficiency of the proposed scheme, its easy integration and performance boosting properties.
Mie Light-Scattering Granulometer with an Adaptive Numerical Filtering Method. II. Experiments.
Hespel, L; Delfour, A; Guillame, B
2001-02-20
A nephelometer is presented that theoretically requires no absolute calibration. This instrument is used for determining the particle-size distribution of various scattering media (aerosols, fogs, rocket exhausts, engine plumes, and the like) from angular static light-scattering measurements. An inverse procedure is used, which consists of a least-squares method and a regularization scheme based on numerical filtering. To retrieve the distribution function one matches the experimental data with theoretical patterns derived from Mie theory. The main principles of the inverse method are briefly presented, and the nephelometer is then described with the associated partial calibration procedure. Finally, the whole granulometer system (inverse method and nephelometer) is validated by comparison of measurements of scattering media with calibrated monodisperse or known size distribution functions. PMID:18357082
Initial-state splitting kernels in cold nuclear matter
NASA Astrophysics Data System (ADS)
Ovanesyan, Grigory; Ringer, Felix; Vitev, Ivan
2016-09-01
We derive medium-induced splitting kernels for energetic partons that undergo interactions in dense QCD matter before a hard-scattering event at large momentum transfer Q2. Working in the framework of the effective theory SCETG, we compute the splitting kernels beyond the soft gluon approximation. We present numerical studies that compare our new results with previous findings. We expect the full medium-induced splitting kernels to be most relevant for the extension of initial-state cold nuclear matter energy loss phenomenology in both p+A and A+A collisions.
LeFebvre, W.
1994-08-01
For many years, the popular program top has aided system administrations in examination of process resource usage on their machines. Yet few are familiar with the techniques involved in obtaining this information. Most of what is displayed by top is available only in the dark recesses of kernel memory. Extracting this information requires familiarity not only with how bytes are read from the kernel, but also what data needs to be read. The wide variety of systems and variants of the Unix operating system in today`s marketplace makes writing such a program very challenging. This paper explores the tremendous diversity in kernel information across the many platforms and the solutions employed by top to achieve and maintain ease of portability in the presence of such divergent systems.
Zhang, Yan-jun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong
2015-10-01
According to the high precision extracting characteristics of scattering spectrum in Brillouin optical time domain reflection optical fiber sensing system, this paper proposes a new algorithm based on flies optimization algorithm with adaptive mutation and generalized regression neural network. The method takes advantages of the generalized regression neural network which has the ability of the approximation ability, learning speed and generalization of the model. Moreover, by using the strong search ability of flies optimization algorithm with adaptive mutation, it can enhance the learning ability of the neural network. Thus the fitting degree of Brillouin scattering spectrum and the extraction accuracy of frequency shift is improved. Model of actual Brillouin spectrum are constructed by Gaussian white noise on theoretical spectrum, whose center frequency is 11.213 GHz and the linewidths are 40-50, 30-60 and 20-70 MHz, respectively. Comparing the algorithm with the Levenberg-Marquardt fitting method based on finite element analysis, hybrid algorithm particle swarm optimization, Levenberg-Marquardt and the least square method, the maximum frequency shift error of the new algorithm is 0.4 MHz, the fitting degree is 0.991 2 and the root mean square error is 0.024 1. The simulation results show that the proposed algorithm has good fitting degree and minimum absolute error. Therefore, the algorithm can be used on distributed optical fiber sensing system based on Brillouin optical time domain reflection, which can improve the fitting of Brillouin scattering spectrum and the precision of frequency shift extraction effectively. PMID:26904844
NASA Technical Reports Server (NTRS)
Eloranta, E. W.; Piironen, P. K.
1992-01-01
A new implementation of the High Spectral Resolution Lidar (HSRL) in an instrument van which allows measurements during field experiments is described. The instrument was modified to provide measurements of depolarization. In addition, both the signal amplitude and depolarization variations with receiver field of view are simultaneously measured. These modifications allow discrimination of ice clouds from water clouds and observation of multiple scattering contributions to the lidar return.
Full Waveform Inversion Using Waveform Sensitivity Kernels
NASA Astrophysics Data System (ADS)
Schumacher, Florian; Friederich, Wolfgang
2013-04-01
We present a full waveform inversion concept for applications ranging from seismological to enineering contexts, in which the steps of forward simulation, computation of sensitivity kernels, and the actual inversion are kept separate of each other. We derive waveform sensitivity kernels from Born scattering theory, which for unit material perturbations are identical to the Born integrand for the considered path between source and receiver. The evaluation of such a kernel requires the calculation of Green functions and their strains for single forces at the receiver position, as well as displacement fields and strains originating at the seismic source. We compute these quantities in the frequency domain using the 3D spectral element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework. We developed and implemented the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion) to compute waveform sensitivity kernels from wavefields generated by any of the above methods (support for more methods is planned), where some examples will be shown. As the kernels can be computed independently from any data values, this approach allows to do a sensitivity and resolution analysis first without inverting any data. In the context of active seismic experiments, this property may be used to investigate optimal acquisition geometry and expectable resolution before actually collecting any data, assuming the background model is known sufficiently well. The actual inversion step then, can be repeated at relatively low costs with different (sub)sets of data, adding different smoothing conditions. Using the sensitivity kernels, we expect the waveform inversion to have better convergence properties compared with strategies that use gradients of a misfit function. Also the propagation of the forward wavefield and the backward propagation from the receiver
Robotic Intelligence Kernel: Architecture
2009-09-16
The INL Robotic Intelligence Kernel Architecture (RIK-A) is a multi-level architecture that supports a dynamic autonomy structure. The RIK-A is used to coalesce hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a framework that can be used to create behaviors for humans to interact with the robot.
NASA Technical Reports Server (NTRS)
Spafford, Eugene H.; Mckendry, Martin S.
1986-01-01
An overview of the internal structure of the Clouds kernel was presented. An indication of how these structures will interact in the prototype Clouds implementation is given. Many specific details have yet to be determined and await experimentation with an actual working system.
Robotic Intelligence Kernel: Visualization
2009-09-16
The INL Robotic Intelligence Kernel-Visualization is the software that supports the user interface. It uses the RIK-C software to communicate information to and from the robot. The RIK-V illustrates the data in a 3D display and provides an operating picture wherein the user can task the robot.
SEEDS ADAPTIVE OPTICS IMAGING OF THE ASYMMETRIC TRANSITION DISK OPH IRS 48 IN SCATTERED LIGHT
Follette, Katherine B.; Close, Laird M.; Grady, Carol A.; Swearingen, Jeremy R.; Sitko, Michael L.; Champney, Elizabeth H.; Van der Marel, Nienke; Maaskant, Koen; Min, Michiel; Takami, Michihiro; Kuchner, Marc J; McElwain, Michael W.; Muto, Takayuki; Mayama, Satoshi; Fukagawa, Misato; Russell, Ray W.; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; and others
2015-01-10
We present the first resolved near-infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric submillimeter flux distribution. H-band polarized intensity images show a ∼60 AU radius scattered light cavity with two pronounced arcs of emission, one from northeast to southeast and one smaller, fainter, and more distant arc in the northwest. K-band scattered light imagery reveals a similar morphology, but with a clear third arc along the southwestern rim of the disk cavity. This arc meets the northwestern arc at nearly a right angle, revealing the presence of a spiral arm or local surface brightness deficit in the disk, and explaining the east-west brightness asymmetry in the H-band data. We also present 0.8-5.4 μm IRTF SpeX spectra of this object, which allow us to constrain the spectral class to A0 ± 1 and measure a low mass accretion rate of 10{sup –8.5} M {sub ☉} yr{sup –1}, both consistent with previous estimates. We investigate a variety of reddening laws in order to fit the multiwavelength spectral energy distribution of Oph IRS 48 and find a best fit consistent with a younger, higher luminosity star than previous estimates.
SEEDS Adaptive Optics Imaging of the Asymmetric Transition Disk Oph IRS 48 in Scattered Light
NASA Astrophysics Data System (ADS)
Follette, Katherine B.; Grady, Carol A.; Swearingen, Jeremy R.; Sitko, Michael L.; Champney, Elizabeth H.; van der Marel, Nienke; Takami, Michihiro; Kuchner, Marc J.; Close, Laird M.; Muto, Takayuki; Mayama, Satoshi; McElwain, Michael W.; Fukagawa, Misato; Maaskant, Koen; Min, Michiel; Russell, Ray W.; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Feldt, Markus; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko; Henning, Thomas; Hodapp, Klaus; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John P.; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide
2015-01-01
We present the first resolved near-infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric submillimeter flux distribution. H-band polarized intensity images show a ~60 AU radius scattered light cavity with two pronounced arcs of emission, one from northeast to southeast and one smaller, fainter, and more distant arc in the northwest. K-band scattered light imagery reveals a similar morphology, but with a clear third arc along the southwestern rim of the disk cavity. This arc meets the northwestern arc at nearly a right angle, revealing the presence of a spiral arm or local surface brightness deficit in the disk, and explaining the east-west brightness asymmetry in the H-band data. We also present 0.8-5.4 μm IRTF SpeX spectra of this object, which allow us to constrain the spectral class to A0 ± 1 and measure a low mass accretion rate of 10-8.5 M ⊙ yr-1, both consistent with previous estimates. We investigate a variety of reddening laws in order to fit the multiwavelength spectral energy distribution of Oph IRS 48 and find a best fit consistent with a younger, higher luminosity star than previous estimates. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Kernel optimization in discriminant analysis.
You, Di; Hamsici, Onur C; Martinez, Aleix M
2011-03-01
Kernel mapping is one of the most used approaches to intrinsically derive nonlinear classifiers. The idea is to use a kernel function which maps the original nonlinearly separable problem to a space of intrinsically larger dimensionality where the classes are linearly separable. A major problem in the design of kernel methods is to find the kernel parameters that make the problem linear in the mapped representation. This paper derives the first criterion that specifically aims to find a kernel representation where the Bayes classifier becomes linear. We illustrate how this result can be successfully applied in several kernel discriminant analysis algorithms. Experimental results, using a large number of databases and classifiers, demonstrate the utility of the proposed approach. The paper also shows (theoretically and experimentally) that a kernel version of Subclass Discriminant Analysis yields the highest recognition rates. PMID:20820072
Adaptive Spatial Filtering of Interferometric Data Stack Oriented to Distributed Scatterers
NASA Astrophysics Data System (ADS)
Zhang, Y.; Xie, C.; Shao, Y.; Yuan, M.
2013-07-01
Standard interferometry poses a challenge in non-urban areas due to temporal and spatial decorrelation of the radar signal, where there is high signal noise. Techniques such as Small Baseline Subset Algorithm (SBAS) have been proposed to make use of multiple interferometric combinations to alleviate the problem. However, the interferograms used in SBAS are multilooked with a boxcar (rectangle) filter to reduce phase noise, resulting in a loss of resolution and signal superstition from different objects. In this paper, we proposed a modified adaptive spatial filtering algorithm for accurate estimation of interferogram and coherence without resolution loss even in rural areas, to better support the deformation monitoring with time series interferometric synthetic aperture radar (InSAR) technique. The implemented method identifies the statistically homogenous pixels in a neighbourhood based on the goodness-of-fit test, and then applies an adaptive spatial filtering of interferograms. Three statistical tests for the identification of distributed targets will be presented, applied to real data. PALSAR data of the yellow river delta in China is used for demonstrating the effectiveness of this algorithm in rural areas.
Lee, Myung Hee; Liu, Yufeng
2013-12-01
The continuum regression technique provides an appealing regression framework connecting ordinary least squares, partial least squares and principal component regression in one family. It offers some insight on the underlying regression model for a given application. Moreover, it helps to provide deep understanding of various regression techniques. Despite the useful framework, however, the current development on continuum regression is only for linear regression. In many applications, nonlinear regression is necessary. The extension of continuum regression from linear models to nonlinear models using kernel learning is considered. The proposed kernel continuum regression technique is quite general and can handle very flexible regression model estimation. An efficient algorithm is developed for fast implementation. Numerical examples have demonstrated the usefulness of the proposed technique. PMID:24058224
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
NASA Astrophysics Data System (ADS)
Afeyan, Bedros; Hüller, Stefan
2012-10-01
We will show the results of changing STUD pulse configurations in order to maintain strict control of parametric instabilities in high energy density plasmas (HEDP). Nonlinear optical processes (NLOP) in HEDP respond to changing plasma conditions which are unknown and not easily knowable by standard experimental procedures. Adapting to changing and unknown plasma conditions is one feature of STUD pulses which is absent in other beam conditioning techniques. We demonstrate this by simulating long enough that plasma conditions change, instability gains are altered and new STUD pulse configurations become necessary. Two such configurations are spliced together or run independently and compared. All available methods of changing STUD pulse characteristics are explored, such as duty cycle (20% vs 50%) and modulation period (cutting hot spots in half and into quarters) as well as phase scrambling and number of spikes before the spatial distribution of hot spots is randomized (1, 2, 3 and infinity).
Effects of sample size on KERNEL home range estimates
Seaman, D.E.; Millspaugh, J.J.; Kernohan, Brian J.; Brundige, Gary C.; Raedeke, Kenneth J.; Gitzen, Robert A.
1999-01-01
Kernel methods for estimating home range are being used increasingly in wildlife research, but the effect of sample size on their accuracy is not known. We used computer simulations of 10-200 points/home range and compared accuracy of home range estimates produced by fixed and adaptive kernels with the reference (REF) and least-squares cross-validation (LSCV) methods for determining the amount of smoothing. Simulated home ranges varied from simple to complex shapes created by mixing bivariate normal distributions. We used the size of the 95% home range area and the relative mean squared error of the surface fit to assess the accuracy of the kernel home range estimates. For both measures, the bias and variance approached an asymptote at about 50 observations/home range. The fixed kernel with smoothing selected by LSCV provided the least-biased estimates of the 95% home range area. All kernel methods produced similar surface fit for most simulations, but the fixed kernel with LSCV had the lowest frequency and magnitude of very poor estimates. We reviewed 101 papers published in The Journal of Wildlife Management (JWM) between 1980 and 1997 that estimated animal home ranges. A minority of these papers used nonparametric utilization distribution (UD) estimators, and most did not adequately report sample sizes. We recommend that home range studies using kernel estimates use LSCV to determine the amount of smoothing, obtain a minimum of 30 observations per animal (but preferably a?Y50), and report sample sizes in published results.
Sliding Window Generalized Kernel Affine Projection Algorithm Using Projection Mappings
NASA Astrophysics Data System (ADS)
Slavakis, Konstantinos; Theodoridis, Sergios
2008-12-01
Very recently, a solution to the kernel-based online classification problem has been given by the adaptive projected subgradient method (APSM). The developed algorithm can be considered as a generalization of a kernel affine projection algorithm (APA) and the kernel normalized least mean squares (NLMS). Furthermore, sparsification of the resulting kernel series expansion was achieved by imposing a closed ball (convex set) constraint on the norm of the classifiers. This paper presents another sparsification method for the APSM approach to the online classification task by generating a sequence of linear subspaces in a reproducing kernel Hilbert space (RKHS). To cope with the inherent memory limitations of online systems and to embed tracking capabilities to the design, an upper bound on the dimension of the linear subspaces is imposed. The underlying principle of the design is the notion of projection mappings. Classification is performed by metric projection mappings, sparsification is achieved by orthogonal projections, while the online system's memory requirements and tracking are attained by oblique projections. The resulting sparsification scheme shows strong similarities with the classical sliding window adaptive schemes. The proposed design is validated by the adaptive equalization problem of a nonlinear communication channel, and is compared with classical and recent stochastic gradient descent techniques, as well as with the APSM's solution where sparsification is performed by a closed ball constraint on the norm of the classifiers.
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
Gaudin, Karen; Baillet, Arlette; Chaminade, Pierre
2004-10-01
A commercially available evaporative light-scattering detection (ELSD) system was adapted for micro and capillary LC. Therefore the various parameters involved in the droplet formation during the nebulization step in the ELSD system were studied. It was shown that the velocity term in the Nukiyama Tanasawa equation remains constant, leading to droplets of the same order of magnitude for narrow bore and capillary columns. Consequently, the ELSD modification was performed by decreasing the internal diameter of the effluent capillary tube in the nebulizer nozzle and by keeping its external diameter constant. Next, response curves for a conventional and the developed micro and capillary LC were compared as to investigate why a linear ELSD response is often obtained when used in micro or capillary LC. By splitting the flow rate post column, we showed that the nebulization process was not at the origin of the phenomenon. For ceramide III and tripalmitin, the response curves were found to be non-linear. However the curvature was less significant when the columns internal diameter decreased. Calculated particle size profiles for micro or capillary LC suggest that the particle entering the detection chamber are bigger than under conventional LC conditions. Last, triethylamine and formic acid were used to increase the response of the detector. The response enhancement, expected from previous studies, was established for the two lipids involved in this study. PMID:15532554
Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart
2011-01-01
We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859
An Ensemble Approach to Building Mercer Kernels with Prior Information
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd
2005-01-01
This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly dimensional feature space. we describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using pre-defined kernels. These data adaptive kernels can encode prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. Specifically, we demonstrate the use of the algorithm in situations with extremely small samples of data. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS) and demonstrate the method's superior performance against standard methods. The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains templates for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic-algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code.
Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels.
Jayasumana, Sadeep; Hartley, Richard; Salzmann, Mathieu; Li, Hongdong; Harandi, Mehrtash
2015-12-01
In this paper, we develop an approach to exploiting kernel methods with manifold-valued data. In many computer vision problems, the data can be naturally represented as points on a Riemannian manifold. Due to the non-Euclidean geometry of Riemannian manifolds, usual Euclidean computer vision and machine learning algorithms yield inferior results on such data. In this paper, we define Gaussian radial basis function (RBF)-based positive definite kernels on manifolds that permit us to embed a given manifold with a corresponding metric in a high dimensional reproducing kernel Hilbert space. These kernels make it possible to utilize algorithms developed for linear spaces on nonlinear manifold-valued data. Since the Gaussian RBF defined with any given metric is not always positive definite, we present a unified framework for analyzing the positive definiteness of the Gaussian RBF on a generic metric space. We then use the proposed framework to identify positive definite kernels on two specific manifolds commonly encountered in computer vision: the Riemannian manifold of symmetric positive definite matrices and the Grassmann manifold, i.e., the Riemannian manifold of linear subspaces of a Euclidean space. We show that many popular algorithms designed for Euclidean spaces, such as support vector machines, discriminant analysis and principal component analysis can be generalized to Riemannian manifolds with the help of such positive definite Gaussian kernels. PMID:26539851
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 8 2011-01-01 2011-01-01 false Kernel weight. 981.9 Section 981.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 981.9 Kernel weight. Kernel weight means the weight of kernels,...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Kernel weight. 981.9 Section 981.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 981.9 Kernel weight. Kernel weight means the weight of kernels,...
Cusp Kernels for Velocity-Changing Collisions
NASA Astrophysics Data System (ADS)
McGuyer, B. H.; Marsland, R., III; Olsen, B. A.; Happer, W.
2012-05-01
We introduce an analytical kernel, the “cusp” kernel, to model the effects of velocity-changing collisions on optically pumped atoms in low-pressure buffer gases. Like the widely used Keilson-Storer kernel [J. Keilson and J. E. Storer, Q. Appl. Math. 10, 243 (1952)QAMAAY0033-569X], cusp kernels are characterized by a single parameter and preserve a Maxwellian velocity distribution. Cusp kernels and their superpositions are more useful than Keilson-Storer kernels, because they are more similar to real kernels inferred from measurements or theory and are easier to invert to find steady-state velocity distributions.
Removing blur kernel noise via a hybrid ℓp norm
NASA Astrophysics Data System (ADS)
Yu, Xin; Zhang, Shunli; Zhao, Xiaolin; Zhang, Li
2015-01-01
When estimating a sharp image from a blurred one, blur kernel noise often leads to inaccurate recovery. We develop an effective method to estimate a blur kernel which is able to remove kernel noise and prevent the production of an overly sparse kernel. Our method is based on an iterative framework which alternatingly recovers the sharp image and estimates the blur kernel. In the image recovery step, we utilize the total variation (TV) regularization to recover latent images. In solving TV regularization, we propose a new criterion which adaptively terminates the iterations before convergence. While improving the efficiency, the quality of the final results is not degraded. In the kernel estimation step, we develop a metric to measure the usefulness of image edges, by which we can reduce the ambiguity of kernel estimation caused by small-scale edges. We also propose a hybrid ℓp norm, which is composed of ℓ2 norm and ℓp norm with 0.7≤p<1, to construct a sparsity constraint. Using the hybrid ℓp norm, we reduce a wider range of kernel noise and recover a more accurate blur kernel. The experiments show that the proposed method achieves promising results on both synthetic and real images.
Bivariate discrete beta Kernel graduation of mortality data.
Mazza, Angelo; Punzo, Antonio
2015-07-01
Various parametric/nonparametric techniques have been proposed in literature to graduate mortality data as a function of age. Nonparametric approaches, as for example kernel smoothing regression, are often preferred because they do not assume any particular mortality law. Among the existing kernel smoothing approaches, the recently proposed (univariate) discrete beta kernel smoother has been shown to provide some benefits. Bivariate graduation, over age and calendar years or durations, is common practice in demography and actuarial sciences. In this paper, we generalize the discrete beta kernel smoother to the bivariate case, and we introduce an adaptive bandwidth variant that may provide additional benefits when data on exposures to the risk of death are available; furthermore, we outline a cross-validation procedure for bandwidths selection. Using simulations studies, we compare the bivariate approach proposed here with its corresponding univariate formulation and with two popular nonparametric bivariate graduation techniques, based on Epanechnikov kernels and on P-splines. To make simulations realistic, a bivariate dataset, based on probabilities of dying recorded for the US males, is used. Simulations have confirmed the gain in performance of the new bivariate approach with respect to both the univariate and the bivariate competitors. PMID:25084764
Modified kernel-based nonlinear feature extraction.
Ma, J.; Perkins, S. J.; Theiler, J. P.; Ahalt, S.
2002-01-01
Feature Extraction (FE) techniques are widely used in many applications to pre-process data in order to reduce the complexity of subsequent processes. A group of Kernel-based nonlinear FE ( H E ) algorithms has attracted much attention due to their high performance. However, a serious limitation that is inherent in these algorithms -- the maximal number of features extracted by them is limited by the number of classes involved -- dramatically degrades their flexibility. Here we propose a modified version of those KFE algorithms (MKFE), This algorithm is developed from a special form of scatter-matrix, whose rank is not determined by the number of classes involved, and thus breaks the inherent limitation in those KFE algorithms. Experimental results suggest that MKFE algorithm is .especially useful when the training set is small.
RTOS kernel in portable electrocardiograph
NASA Astrophysics Data System (ADS)
Centeno, C. A.; Voos, J. A.; Riva, G. G.; Zerbini, C.; Gonzalez, E. A.
2011-12-01
This paper presents the use of a Real Time Operating System (RTOS) on a portable electrocardiograph based on a microcontroller platform. All medical device digital functions are performed by the microcontroller. The electrocardiograph CPU is based on the 18F4550 microcontroller, in which an uCOS-II RTOS can be embedded. The decision associated with the kernel use is based on its benefits, the license for educational use and its intrinsic time control and peripherals management. The feasibility of its use on the electrocardiograph is evaluated based on the minimum memory requirements due to the kernel structure. The kernel's own tools were used for time estimation and evaluation of resources used by each process. After this feasibility analysis, the migration from cyclic code to a structure based on separate processes or tasks able to synchronize events is used; resulting in an electrocardiograph running on one Central Processing Unit (CPU) based on RTOS.
Technology Transfer Automated Retrieval System (TEKTRAN)
A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with ...
Density Estimation with Mercer Kernels
NASA Technical Reports Server (NTRS)
Macready, William G.
2003-01-01
We present a new method for density estimation based on Mercer kernels. The density estimate can be understood as the density induced on a data manifold by a mixture of Gaussians fit in a feature space. As is usual, the feature space and data manifold are defined with any suitable positive-definite kernel function. We modify the standard EM algorithm for mixtures of Gaussians to infer the parameters of the density. One benefit of the approach is it's conceptual simplicity, and uniform applicability over many different types of data. Preliminary results are presented for a number of simple problems.
Point-Kernel Shielding Code System.
1982-02-17
Version 00 QAD-BSA is a three-dimensional, point-kernel shielding code system based upon the CCC-48/QAD series. It is designed to calculate photon dose rates and heating rates using exponential attenuation and infinite medium buildup factors. Calculational provisions include estimates of fast neutron penetration using data computed by the moments method. Included geometry routines can describe complicated source and shield geometries. An internal library contains data for many frequently used structural and shielding materials, enabling the codemore » to solve most problems with only source strengths and problem geometry required as input. This code system adapts especially well to problems requiring multiple sources and sources with asymmetrical geometry. In addition to being edited separately, the total interaction rates from many sources may be edited at each detector point. Calculated photon interaction rates agree closely with those obtained using QAD-P5A.« less
Broadband Waveform Sensitivity Kernels for Large-Scale Seismic Tomography
NASA Astrophysics Data System (ADS)
Nissen-Meyer, T.; Stähler, S. C.; van Driel, M.; Hosseini, K.; Auer, L.; Sigloch, K.
2015-12-01
Seismic sensitivity kernels, i.e. the basis for mapping misfit functionals to structural parameters in seismic inversions, have received much attention in recent years. Their computation has been conducted via ray-theory based approaches (Dahlen et al., 2000) or fully numerical solutions based on the adjoint-state formulation (e.g. Tromp et al., 2005). The core problem is the exuberant computational cost due to the large number of source-receiver pairs, each of which require solutions to the forward problem. This is exacerbated in the high-frequency regime where numerical solutions become prohibitively expensive. We present a methodology to compute accurate sensitivity kernels for global tomography across the observable seismic frequency band. These kernels rely on wavefield databases computed via AxiSEM (abstract ID# 77891, www.axisem.info), and thus on spherically symmetric models. As a consequence of this method's numerical efficiency even in high-frequency regimes, kernels can be computed in a time- and frequency-dependent manner, thus providing the full generic mapping from perturbed waveform to perturbed structure. Such waveform kernels can then be used for a variety of misfit functions, structural parameters and refiltered into bandpasses without recomputing any wavefields. A core component of the kernel method presented here is the mapping from numerical wavefields to inversion meshes. This is achieved by a Monte-Carlo approach, allowing for convergent and controllable accuracy on arbitrarily shaped tetrahedral and hexahedral meshes. We test and validate this accuracy by comparing to reference traveltimes, show the projection onto various locally adaptive inversion meshes and discuss computational efficiency for ongoing tomographic applications in the range of millions of observed body-wave data between periods of 2-30s.
Technology Transfer Automated Retrieval System (TEKTRAN)
Oat (Avena sativa L.) kernels appear to contain much higher polar lipid concentrations than other plant tissues. We have extracted, identified, and quantified polar lipids from 18 oat genotypes grown in replicated plots in three environments in order to determine genotypic or environmental variation...
Accelerating the Original Profile Kernel
Hamp, Tobias; Goldberg, Tatyana; Rost, Burkhard
2013-01-01
One of the most accurate multi-class protein classification systems continues to be the profile-based SVM kernel introduced by the Leslie group. Unfortunately, its CPU requirements render it too slow for practical applications of large-scale classification tasks. Here, we introduce several software improvements that enable significant acceleration. Using various non-redundant data sets, we demonstrate that our new implementation reaches a maximal speed-up as high as 14-fold for calculating the same kernel matrix. Some predictions are over 200 times faster and render the kernel as possibly the top contender in a low ratio of speed/performance. Additionally, we explain how to parallelize various computations and provide an integrative program that reduces creating a production-quality classifier to a single program call. The new implementation is available as a Debian package under a free academic license and does not depend on commercial software. For non-Debian based distributions, the source package ships with a traditional Makefile-based installer. Download and installation instructions can be found at https://rostlab.org/owiki/index.php/Fast_Profile_Kernel. Bugs and other issues may be reported at https://rostlab.org/bugzilla3/enter_bug.cgi?product=fastprofkernel. PMID:23825697
Local Observed-Score Kernel Equating
ERIC Educational Resources Information Center
Wiberg, Marie; van der Linden, Wim J.; von Davier, Alina A.
2014-01-01
Three local observed-score kernel equating methods that integrate methods from the local equating and kernel equating frameworks are proposed. The new methods were compared with their earlier counterparts with respect to such measures as bias--as defined by Lord's criterion of equity--and percent relative error. The local kernel item response…
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... Standards for Shelled Almonds, or which has embedded dirt or other foreign material not easily removed...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... Standards for Shelled Almonds, or which has embedded dirt or other foreign material not easily removed...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... Standards for Shelled Almonds, or which has embedded dirt or other foreign material not easily removed...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... Standards for Shelled Almonds, or which has embedded dirt or other foreign material not easily removed...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... Standards for Shelled Almonds, or which has embedded dirt or other foreign material not easily removed...
Four-particle decay of the Bethe-Salpeter kernel in the high-temperature Ising model
NASA Astrophysics Data System (ADS)
Auil, F.
2002-12-01
In this article we study the four-particle decay of the Bethe-Salpeter (B-S) kernel for the high-temperature Ising model. We use the hyperplane decoupling method [T. Spencer, Commun. Math. Phys. 44, 143 (1975); R. S. Schor, Nucl. Phys. B 222, 71 (1983)] to prove exponential decay in a set of variables particularly adapted to the methods of Spencer and Zirilli [Commun. Math. Phys. 49, 1 (1976)] for the analysis of scattering and bound states in QFT, transcribed to lattice theories by Auil and Barata [Ann. Henri Poincare 2, 1065 (2001)]. We study arbitrary derivatives of the general n-point correlation functions with respect to the interpolating variables, and we are able to obtain, in some cases, information about the third derivatives of the B-S kernel. As a later consequence, we have two-body asymptotic completeness for the (massive) Euclidean lattice field theory implemented by this model. This allows us to analyze the Ornstein-Zernike behavior of four-point functions, related to the specific heat of the model.
Kernel Near Principal Component Analysis
MARTIN, SHAWN B.
2002-07-01
We propose a novel algorithm based on Principal Component Analysis (PCA). First, we present an interesting approximation of PCA using Gram-Schmidt orthonormalization. Next, we combine our approximation with the kernel functions from Support Vector Machines (SVMs) to provide a nonlinear generalization of PCA. After benchmarking our algorithm in the linear case, we explore its use in both the linear and nonlinear cases. We include applications to face data analysis, handwritten digit recognition, and fluid flow.
Derivation of aerodynamic kernel functions
NASA Technical Reports Server (NTRS)
Dowell, E. H.; Ventres, C. S.
1973-01-01
The method of Fourier transforms is used to determine the kernel function which relates the pressure on a lifting surface to the prescribed downwash within the framework of Dowell's (1971) shear flow model. This model is intended to improve upon the potential flow aerodynamic model by allowing for the aerodynamic boundary layer effects neglected in the potential flow model. For simplicity, incompressible, steady flow is considered. The proposed method is illustrated by deriving known results from potential flow theory.
Kernel CMAC with improved capability.
Horváth, Gábor; Szabó, Tamás
2007-02-01
The cerebellar model articulation controller (CMAC) has some attractive features, namely fast learning capability and the possibility of efficient digital hardware implementation. Although CMAC was proposed many years ago, several open questions have been left even for today. The most important ones are about its modeling and generalization capabilities. The limits of its modeling capability were addressed in the literature, and recently, certain questions of its generalization property were also investigated. This paper deals with both the modeling and the generalization properties of CMAC. First, a new interpolation model is introduced. Then, a detailed analysis of the generalization error is given, and an analytical expression of this error for some special cases is presented. It is shown that this generalization error can be rather significant, and a simple regularized training algorithm to reduce this error is proposed. The results related to the modeling capability show that there are differences between the one-dimensional (1-D) and the multidimensional versions of CMAC. This paper discusses the reasons of this difference and suggests a new kernel-based interpretation of CMAC. The kernel interpretation gives a unified framework. Applying this approach, both the 1-D and the multidimensional CMACs can be constructed with similar modeling capability. Finally, this paper shows that the regularized training algorithm can be applied for the kernel interpretations too, which results in a network with significantly improved approximation capabilities. PMID:17278566
RKRD: Runtime Kernel Rootkit Detection
NASA Astrophysics Data System (ADS)
Grover, Satyajit; Khosravi, Hormuzd; Kolar, Divya; Moffat, Samuel; Kounavis, Michael E.
In this paper we address the problem of protecting computer systems against stealth malware. The problem is important because the number of known types of stealth malware increases exponentially. Existing approaches have some advantages for ensuring system integrity but sophisticated techniques utilized by stealthy malware can thwart them. We propose Runtime Kernel Rootkit Detection (RKRD), a hardware-based, event-driven, secure and inclusionary approach to kernel integrity that addresses some of the limitations of the state of the art. Our solution is based on the principles of using virtualization hardware for isolation, verifying signatures coming from trusted code as opposed to malware for scalability and performing system checks driven by events. Our RKRD implementation is guided by our goals of strong isolation, no modifications to target guest OS kernels, easy deployment, minimal infra-structure impact, and minimal performance overhead. We developed a system prototype and conducted a number of experiments which show that the per-formance impact of our solution is negligible.
Kernel-based least squares policy iteration for reinforcement learning.
Xu, Xin; Hu, Dewen; Lu, Xicheng
2007-07-01
In this paper, we present a kernel-based least squares policy iteration (KLSPI) algorithm for reinforcement learning (RL) in large or continuous state spaces, which can be used to realize adaptive feedback control of uncertain dynamic systems. By using KLSPI, near-optimal control policies can be obtained without much a priori knowledge on dynamic models of control plants. In KLSPI, Mercer kernels are used in the policy evaluation of a policy iteration process, where a new kernel-based least squares temporal-difference algorithm called KLSTD-Q is proposed for efficient policy evaluation. To keep the sparsity and improve the generalization ability of KLSTD-Q solutions, a kernel sparsification procedure based on approximate linear dependency (ALD) is performed. Compared to the previous works on approximate RL methods, KLSPI makes two progresses to eliminate the main difficulties of existing results. One is the better convergence and (near) optimality guarantee by using the KLSTD-Q algorithm for policy evaluation with high precision. The other is the automatic feature selection using the ALD-based kernel sparsification. Therefore, the KLSPI algorithm provides a general RL method with generalization performance and convergence guarantee for large-scale Markov decision problems (MDPs). Experimental results on a typical RL task for a stochastic chain problem demonstrate that KLSPI can consistently achieve better learning efficiency and policy quality than the previous least squares policy iteration (LSPI) algorithm. Furthermore, the KLSPI method was also evaluated on two nonlinear feedback control problems, including a ship heading control problem and the swing up control of a double-link underactuated pendulum called acrobot. Simulation results illustrate that the proposed method can optimize controller performance using little a priori information of uncertain dynamic systems. It is also demonstrated that KLSPI can be applied to online learning control by incorporating
Visualizing and Interacting with Kernelized Data.
Barbosa, A; Paulovich, F V; Paiva, A; Goldenstein, S; Petronetto, F; Nonato, L G
2016-03-01
Kernel-based methods have experienced a substantial progress in the last years, tuning out an essential mechanism for data classification, clustering and pattern recognition. The effectiveness of kernel-based techniques, though, depends largely on the capability of the underlying kernel to properly embed data in the feature space associated to the kernel. However, visualizing how a kernel embeds the data in a feature space is not so straightforward, as the embedding map and the feature space are implicitly defined by the kernel. In this work, we present a novel technique to visualize the action of a kernel, that is, how the kernel embeds data into a high-dimensional feature space. The proposed methodology relies on a solid mathematical formulation to map kernelized data onto a visual space. Our approach is faster and more accurate than most existing methods while still allowing interactive manipulation of the projection layout, a game-changing trait that other kernel-based projection techniques do not have. PMID:26829242
On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo.
Filippi, Sarah; Barnes, Chris P; Cornebise, Julien; Stumpf, Michael P H
2013-03-01
Approximate Bayesian computation (ABC) has gained popularity over the past few years for the analysis of complex models arising in population genetics, epidemiology and system biology. Sequential Monte Carlo (SMC) approaches have become work-horses in ABC. Here we discuss how to construct the perturbation kernels that are required in ABC SMC approaches, in order to construct a sequence of distributions that start out from a suitably defined prior and converge towards the unknown posterior. We derive optimality criteria for different kernels, which are based on the Kullback-Leibler divergence between a distribution and the distribution of the perturbed particles. We will show that for many complicated posterior distributions, locally adapted kernels tend to show the best performance. We find that the added moderate cost of adapting kernel functions is easily regained in terms of the higher acceptance rate. We demonstrate the computational efficiency gains in a range of toy examples which illustrate some of the challenges faced in real-world applications of ABC, before turning to two demanding parameter inference problems in molecular biology, which highlight the huge increases in efficiency that can be gained from choice of optimal kernels. We conclude with a general discussion of the rational choice of perturbation kernels in ABC SMC settings. PMID:23502346
Nonlinear projection trick in kernel methods: an alternative to the kernel trick.
Kwak, Nojun
2013-12-01
In kernel methods such as kernel principal component analysis (PCA) and support vector machines, the so called kernel trick is used to avoid direct calculations in a high (virtually infinite) dimensional kernel space. In this brief, based on the fact that the effective dimensionality of a kernel space is less than the number of training samples, we propose an alternative to the kernel trick that explicitly maps the input data into a reduced dimensional kernel space. This is easily obtained by the eigenvalue decomposition of the kernel matrix. The proposed method is named as the nonlinear projection trick in contrast to the kernel trick. With this technique, the applicability of the kernel methods is widened to arbitrary algorithms that do not use the dot product. The equivalence between the kernel trick and the nonlinear projection trick is shown for several conventional kernel methods. In addition, we extend PCA-L1, which uses L1-norm instead of L2-norm (or dot product), into a kernel version and show the effectiveness of the proposed approach. PMID:24805227
Image texture analysis of crushed wheat kernels
NASA Astrophysics Data System (ADS)
Zayas, Inna Y.; Martin, C. R.; Steele, James L.; Dempster, Richard E.
1992-03-01
The development of new approaches for wheat hardness assessment may impact the grain industry in marketing, milling, and breeding. This study used image texture features for wheat hardness evaluation. Application of digital imaging to grain for grading purposes is principally based on morphometrical (shape and size) characteristics of the kernels. A composite sample of 320 kernels for 17 wheat varieties were collected after testing and crushing with a single kernel hardness characterization meter. Six wheat classes where represented: HRW, HRS, SRW, SWW, Durum, and Club. In this study, parameters which characterize texture or spatial distribution of gray levels of an image were determined and used to classify images of crushed wheat kernels. The texture parameters of crushed wheat kernel images were different depending on class, hardness and variety of the wheat. Image texture analysis of crushed wheat kernels showed promise for use in class, hardness, milling quality, and variety discrimination.
Molecular Hydrodynamics from Memory Kernels.
Lesnicki, Dominika; Vuilleumier, Rodolphe; Carof, Antoine; Rotenberg, Benjamin
2016-04-01
The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as t^{-3/2}. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, which is at odds with incompressible hydrodynamics predictions. Lastly, we discuss the various contributions to the friction, the associated time scales, and the crossover between the molecular and hydrodynamic regimes upon increasing the solute radius. PMID:27104730
Cross-person activity recognition using reduced kernel extreme learning machine.
Deng, Wan-Yu; Zheng, Qing-Hua; Wang, Zhong-Min
2014-05-01
Activity recognition based on mobile embedded accelerometer is very important for developing human-centric pervasive applications such as healthcare, personalized recommendation and so on. However, the distribution of accelerometer data is heavily affected by varying users. The performance will degrade when the model trained on one person is used to others. To solve this problem, we propose a fast and accurate cross-person activity recognition model, known as TransRKELM (Transfer learning Reduced Kernel Extreme Learning Machine) which uses RKELM (Reduced Kernel Extreme Learning Machine) to realize initial activity recognition model. In the online phase OS-RKELM (Online Sequential Reduced Kernel Extreme Learning Machine) is applied to update the initial model and adapt the recognition model to new device users based on recognition results with high confidence level efficiently. Experimental results show that, the proposed model can adapt the classifier to new device users quickly and obtain good recognition performance. PMID:24513850
Code of Federal Regulations, 2011 CFR
2011-01-01
... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than...
Corn kernel oil and corn fiber oil
Technology Transfer Automated Retrieval System (TEKTRAN)
Unlike most edible plant oils that are obtained directly from oil-rich seeds by either pressing or solvent extraction, corn seeds (kernels) have low levels of oil (4%) and commercial corn oil is obtained from the corn germ (embryo) which is an oil-rich portion of the kernel. Commercial corn oil cou...
Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology
Poon, Art F.Y.
2015-01-01
The shapes of phylogenetic trees relating virus populations are determined by the adaptation of viruses within each host, and by the transmission of viruses among hosts. Phylodynamic inference attempts to reverse this flow of information, estimating parameters of these processes from the shape of a virus phylogeny reconstructed from a sample of genetic sequences from the epidemic. A key challenge to phylodynamic inference is quantifying the similarity between two trees in an efficient and comprehensive way. In this study, I demonstrate that a new distance measure, based on a subset tree kernel function from computational linguistics, confers a significant improvement over previous measures of tree shape for classifying trees generated under different epidemiological scenarios. Next, I incorporate this kernel-based distance measure into an approximate Bayesian computation (ABC) framework for phylodynamic inference. ABC bypasses the need for an analytical solution of model likelihood, as it only requires the ability to simulate data from the model. I validate this “kernel-ABC” method for phylodynamic inference by estimating parameters from data simulated under a simple epidemiological model. Results indicate that kernel-ABC attained greater accuracy for parameters associated with virus transmission than leading software on the same data sets. Finally, I apply the kernel-ABC framework to study a recent outbreak of a recombinant HIV subtype in China. Kernel-ABC provides a versatile framework for phylodynamic inference because it can fit a broader range of models than methods that rely on the computation of exact likelihoods. PMID:26006189
Bayesian Kernel Mixtures for Counts
Canale, Antonio; Dunson, David B.
2011-01-01
Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online. PMID:22523437
Bayesian Kernel Mixtures for Counts.
Canale, Antonio; Dunson, David B
2011-12-01
Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online. PMID:22523437
LoCoH: Non-parameteric kernel methods for constructing home ranges and utilization distributions
Getz, Wayne M.; Fortmann-Roe, Scott; Cross, Paul C.; Lyons, Andrew J.; Ryan, Sadie J.; Wilmers, Christopher C.
2007-01-01
Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: ‘‘fixed sphere-of-influence,’’ or r -LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an ‘‘adaptive sphere-of-influence,’’ or a -LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a ), and compare them to the original ‘‘fixed-number-of-points,’’ or k -LoCoH (all kernels constructed from k -1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a -LoCoH is generally superior to k - and r -LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu).
LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges and Utilization Distributions
Getz, Wayne M.; Fortmann-Roe, Scott; Wilmers, Christopher C.
2007-01-01
Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: “fixed sphere-of-influence,” or r-LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an “adaptive sphere-of-influence,” or a-LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a), and compare them to the original “fixed-number-of-points,” or k-LoCoH (all kernels constructed from k-1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a-LoCoH is generally superior to k- and r-LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu). PMID:17299587
Cross-domain question classification in community question answering via kernel mapping
NASA Astrophysics Data System (ADS)
Su, Lei; Hu, Zuoliang; Yang, Bin; Li, Yiyang; Chen, Jun
2015-10-01
An increasingly popular method for retrieving information is via the community question answering (CQA) systems such as Yahoo! Answers and Baidu Knows. In CQA, question classification plays an important role to find the answers. However, the labeled training examples for statistical question classifier are fairly expensive to obtain, as they require the experienced human efforts. Meanwhile, unlabeled data are readily available. This paper employs the method of domain adaptation via kernel mapping to solve this problem. In detail, the kernel approach is utilized to map the target-domain data and the source-domain data into a common space, where the question classifiers are trained under the closer conditional probabilities. The kernel mapping function is constructed by domain knowledge. Therefore, domain knowledge could be transferred from the labeled examples in the source domain to the unlabeled ones in the targeted domain. The statistical training model can be improved by using a large number of unlabeled data. Meanwhile, the Hadoop Platform is used to construct the mapping mechanism to reduce the time complexity. Map/Reduce enable kernel mapping for domain adaptation in parallel in the Hadoop Platform. Experimental results show that the accuracy of question classification could be improved by the method of kernel mapping. Furthermore, the parallel method in the Hadoop Platform could effective schedule the computing resources to reduce the running time.
Huang, Lulu; Massa, Lou
2010-01-01
The Kernel Energy Method (KEM) provides a way to calculate the ab-initio energy of very large biological molecules. The results are accurate, and the computational time reduced. However, by use of a list of double kernel interactions a significant additional reduction of computational effort may be achieved, still retaining ab-initio accuracy. A numerical comparison of the indices that name the known double interactions in question, allow one to list higher order interactions having the property of topological continuity within the full molecule of interest. When, that list of interactions is unpacked, as a kernel expansion, which weights the relative importance of each kernel in an expression for the total molecular energy, high accuracy, and a further significant reduction in computational effort results. A KEM molecular energy calculation based upon the HF/STO3G chemical model, is applied to the protein insulin, as an illustration. PMID:21243065
Kernel map compression for speeding the execution of kernel-based methods.
Arif, Omar; Vela, Patricio A
2011-06-01
The use of Mercer kernel methods in statistical learning theory provides for strong learning capabilities, as seen in kernel principal component analysis and support vector machines. Unfortunately, after learning, the computational complexity of execution through a kernel is of the order of the size of the training set, which is quite large for many applications. This paper proposes a two-step procedure for arriving at a compact and computationally efficient execution procedure. After learning in the kernel space, the proposed extension exploits the universal approximation capabilities of generalized radial basis function neural networks to efficiently approximate and replace the projections onto the empirical kernel map used during execution. Sample applications demonstrate significant compression of the kernel representation with graceful performance loss. PMID:21550884
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... weight of delivery 10,000 10,000 2. Percent of edible kernel weight 53.0 84.0 3. Less weight loss in... 7 Agriculture 8 2013-01-01 2013-01-01 false Adjusted kernel weight. 981.401 Section 981.401... Administrative Rules and Regulations § 981.401 Adjusted kernel weight. (a) Definition. Adjusted kernel...
7 CFR 51.2296 - Three-fourths half kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Three-fourths half kernel. 51.2296 Section 51.2296... STANDARDS) United States Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2296 Three-fourths half kernel. Three-fourths half kernel means a portion of a half of a kernel which has more...
UPDATE OF GRAY KERNEL DISEASE OF MACADAMIA - 2006
Technology Transfer Automated Retrieval System (TEKTRAN)
Gray kernel is an important disease of macadamia that affects the quality of kernels with gray discoloration and a permeating, foul odor that can render entire batches of nuts unmarketable. We report on the successful production of gray kernel in raw macadamia kernels artificially inoculated with s...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2011 CFR
2011-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams;...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams;...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2014 CFR
2014-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams;...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2012 CFR
2012-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams;...
7 CFR 51.2125 - Split or broken kernels.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Split or broken kernels. 51.2125 Section 51.2125... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2125 Split or broken kernels. Split or broken kernels means seven-eighths or less of complete whole kernels but which will...
7 CFR 51.2125 - Split or broken kernels.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Split or broken kernels. 51.2125 Section 51.2125... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2125 Split or broken kernels. Split or broken kernels means seven-eighths or less of complete whole kernels but which will...
KITTEN Lightweight Kernel 0.1 Beta
2007-12-12
The Kitten Lightweight Kernel is a simplified OS (operating system) kernel that is intended to manage a compute node's hardware resources. It provides a set of mechanisms to user-level applications for utilizing hardware resources (e.g., allocating memory, creating processes, accessing the network). Kitten is much simpler than general-purpose OS kernels, such as Linux or Windows, but includes all of the esssential functionality needed to support HPC (high-performance computing) MPI, PGAS and OpenMP applications. Kitten providesmore » unique capabilities such as physically contiguous application memory, transparent large page support, and noise-free tick-less operation, which enable HPC applications to obtain greater efficiency and scalability than with general purpose OS kernels.« less
Biological sequence classification with multivariate string kernels.
Kuksa, Pavel P
2013-01-01
String kernel-based machine learning methods have yielded great success in practical tasks of structured/sequential data analysis. They often exhibit state-of-the-art performance on many practical tasks of sequence analysis such as biological sequence classification, remote homology detection, or protein superfamily and fold prediction. However, typical string kernel methods rely on the analysis of discrete 1D string data (e.g., DNA or amino acid sequences). In this paper, we address the multiclass biological sequence classification problems using multivariate representations in the form of sequences of features vectors (as in biological sequence profiles, or sequences of individual amino acid physicochemical descriptors) and a class of multivariate string kernels that exploit these representations. On three protein sequence classification tasks, the proposed multivariate representations and kernels show significant 15-20 percent improvements compared to existing state-of-the-art sequence classification methods. PMID:24384708
Biological Sequence Analysis with Multivariate String Kernels.
Kuksa, Pavel P
2013-03-01
String kernel-based machine learning methods have yielded great success in practical tasks of structured/sequential data analysis. They often exhibit state-of-the-art performance on many practical tasks of sequence analysis such as biological sequence classification, remote homology detection, or protein superfamily and fold prediction. However, typical string kernel methods rely on analysis of discrete one-dimensional (1D) string data (e.g., DNA or amino acid sequences). In this work we address the multi-class biological sequence classification problems using multivariate representations in the form of sequences of features vectors (as in biological sequence profiles, or sequences of individual amino acid physico-chemical descriptors) and a class of multivariate string kernels that exploit these representations. On a number of protein sequence classification tasks proposed multivariate representations and kernels show significant 15-20\\% improvements compared to existing state-of-the-art sequence classification methods. PMID:23509193
Variational Dirichlet Blur Kernel Estimation.
Zhou, Xu; Mateos, Javier; Zhou, Fugen; Molina, Rafael; Katsaggelos, Aggelos K
2015-12-01
Blind image deconvolution involves two key objectives: 1) latent image and 2) blur estimation. For latent image estimation, we propose a fast deconvolution algorithm, which uses an image prior of nondimensional Gaussianity measure to enforce sparsity and an undetermined boundary condition methodology to reduce boundary artifacts. For blur estimation, a linear inverse problem with normalization and nonnegative constraints must be solved. However, the normalization constraint is ignored in many blind image deblurring methods, mainly because it makes the problem less tractable. In this paper, we show that the normalization constraint can be very naturally incorporated into the estimation process by using a Dirichlet distribution to approximate the posterior distribution of the blur. Making use of variational Dirichlet approximation, we provide a blur posterior approximation that considers the uncertainty of the estimate and removes noise in the estimated kernel. Experiments with synthetic and real data demonstrate that the proposed method is very competitive to the state-of-the-art blind image restoration methods. PMID:26390458
Weighted Bergman Kernels and Quantization}
NASA Astrophysics Data System (ADS)
Engliš, Miroslav
Let Ω be a bounded pseudoconvex domain in CN, φ, ψ two positive functions on Ω such that - log ψ, - log φ are plurisubharmonic, and z∈Ω a point at which - log φ is smooth and strictly plurisubharmonic. We show that as k-->∞, the Bergman kernels with respect to the weights φkψ have an asymptotic expansion
TICK: Transparent Incremental Checkpointing at Kernel Level
2004-10-25
TICK is a software package implemented in Linux 2.6 that allows the save and restore of user processes, without any change to the user code or binary. With TICK a process can be suspended by the Linux kernel upon receiving an interrupt and saved in a file. This file can be later thawed in another computer running Linux (potentially the same computer). TICK is implemented as a Linux kernel module, in the Linux version 2.6.5
PET Image Reconstruction Using Kernel Method
Wang, Guobao; Qi, Jinyi
2014-01-01
Image reconstruction from low-count PET projection data is challenging because the inverse problem is ill-posed. Prior information can be used to improve image quality. Inspired by the kernel methods in machine learning, this paper proposes a kernel based method that models PET image intensity in each pixel as a function of a set of features obtained from prior information. The kernel-based image model is incorporated into the forward model of PET projection data and the coefficients can be readily estimated by the maximum likelihood (ML) or penalized likelihood image reconstruction. A kernelized expectation-maximization (EM) algorithm is presented to obtain the ML estimate. Computer simulations show that the proposed approach can achieve better bias versus variance trade-off and higher contrast recovery for dynamic PET image reconstruction than the conventional maximum likelihood method with and without post-reconstruction denoising. Compared with other regularization-based methods, the kernel method is easier to implement and provides better image quality for low-count data. Application of the proposed kernel method to a 4D dynamic PET patient dataset showed promising results. PMID:25095249
PET image reconstruction using kernel method.
Wang, Guobao; Qi, Jinyi
2015-01-01
Image reconstruction from low-count positron emission tomography (PET) projection data is challenging because the inverse problem is ill-posed. Prior information can be used to improve image quality. Inspired by the kernel methods in machine learning, this paper proposes a kernel based method that models PET image intensity in each pixel as a function of a set of features obtained from prior information. The kernel-based image model is incorporated into the forward model of PET projection data and the coefficients can be readily estimated by the maximum likelihood (ML) or penalized likelihood image reconstruction. A kernelized expectation-maximization algorithm is presented to obtain the ML estimate. Computer simulations show that the proposed approach can achieve better bias versus variance trade-off and higher contrast recovery for dynamic PET image reconstruction than the conventional maximum likelihood method with and without post-reconstruction denoising. Compared with other regularization-based methods, the kernel method is easier to implement and provides better image quality for low-count data. Application of the proposed kernel method to a 4-D dynamic PET patient dataset showed promising results. PMID:25095249
Xyloglucans from flaxseed kernel cell wall: Structural and conformational characterisation.
Ding, Huihuang H; Cui, Steve W; Goff, H Douglas; Chen, Jie; Guo, Qingbin; Wang, Qi
2016-10-20
The structure of ethanol precipitated fraction from 1M KOH extracted flaxseed kernel polysaccharides (KPI-EPF) was studied for better understanding the molecular structures of flaxseed kernel cell wall polysaccharides. Based on methylation/GC-MS, NMR spectroscopy, and MALDI-TOF-MS analysis, the dominate sugar residues of KPI-EPF fraction comprised of (1,4,6)-linked-β-d-glucopyranose (24.1mol%), terminal α-d-xylopyranose (16.2mol%), (1,2)-α-d-linked-xylopyranose (10.7mol%), (1,4)-β-d-linked-glucopyranose (10.7mol%), and terminal β-d-galactopyranose (8.5mol%). KPI-EPF was proposed as xyloglucans: The substitution rate of the backbone is 69.3%; R1 could be T-α-d-Xylp-(1→, or none; R2 could be T-α-d-Xylp-(1→, T-β-d-Galp-(1→2)-α-d-Xylp-(1→, or T-α-l-Araf-(1→2)-α-d-Xylp-(1→; R3 could be T-α-d-Xylp-(1→, T-β-d-Galp-(1→2)-α-d-Xylp-(1→, T-α-l-Fucp-(1→2)-β-d-Galp-(1→2)-α-d-Xylp-(1→, or none. The Mw of KPI-EPF was calculated to be 1506kDa by static light scattering (SLS). The structure-sensitive parameter (ρ) of KPI-EPF was calculated as 1.44, which confirmed the highly branched structure of extracted xyloglucans. This new findings on flaxseed kernel xyloglucans will be helpful for understanding its fermentation properties and potential applications. PMID:27474598
Evaluating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Wilton, Donald R.; Champagne, Nathan J.
2008-01-01
Recently, a formulation for evaluating the thin wire kernel was developed that employed a change of variable to smooth the kernel integrand, canceling the singularity in the integrand. Hence, the typical expansion of the wire kernel in a series for use in the potential integrals is avoided. The new expression for the kernel is exact and may be used directly to determine the gradient of the wire kernel, which consists of components that are parallel and radial to the wire axis.
Collision kernels from velocity-selective optical pumping with magnetic depolarization
NASA Astrophysics Data System (ADS)
Bhamre, T.; Marsland, R., III; Kominis, I. K.; McGuyer, B. H.; Happer, W.
2013-04-01
We experimentally demonstrate how magnetic depolarization of velocity-selective optical pumping can be used to single out the collisional cusp kernel best describing spin- and velocity-relaxing collisions between potassium atoms and low-pressure helium. The range of pressures and transverse fields used simulate the optical pumping regime pertinent to sodium guidestars employed in adaptive optics. We measure the precession of spin-velocity modes under the application of transverse magnetic fields, simulating the natural configuration of mesospheric sodium optical pumping in the geomagnetic field. We also provide a full theoretical account of the experimental data using the recently developed cusp kernels, which realistically quantify velocity damping collisions in this optical pumping regime. A single cusp kernel with a sharpness s=13±2 provides a global fit to the K-He data.
Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors
Woodard, Dawn B.; Crainiceanu, Ciprian; Ruppert, David
2013-01-01
We propose a new method for regression using a parsimonious and scientifically interpretable representation of functional predictors. Our approach is designed for data that exhibit features such as spikes, dips, and plateaus whose frequency, location, size, and shape varies stochastically across subjects. We propose Bayesian inference of the joint functional and exposure models, and give a method for efficient computation. We contrast our approach with existing state-of-the-art methods for regression with functional predictors, and show that our method is more effective and efficient for data that include features occurring at varying locations. We apply our methodology to a large and complex dataset from the Sleep Heart Health Study, to quantify the association between sleep characteristics and health outcomes. Software and technical appendices are provided in online supplemental materials. PMID:24293988
A Generalized Pyramid Matching Kernel for Human Action Recognition in Realistic Videos
Zhu, Jun; Zhou, Quan; Zou, Weijia; Zhang, Rui; Zhang, Wenjun
2013-01-01
Human action recognition is an increasingly important research topic in the fields of video sensing, analysis and understanding. Caused by unconstrained sensing conditions, there exist large intra-class variations and inter-class ambiguities in realistic videos, which hinder the improvement of recognition performance for recent vision-based action recognition systems. In this paper, we propose a generalized pyramid matching kernel (GPMK) for recognizing human actions in realistic videos, based on a multi-channel “bag of words” representation constructed from local spatial-temporal features of video clips. As an extension to the spatial-temporal pyramid matching (STPM) kernel, the GPMK leverages heterogeneous visual cues in multiple feature descriptor types and spatial-temporal grid granularity levels, to build a valid similarity metric between two video clips for kernel-based classification. Instead of the predefined and fixed weights used in STPM, we present a simple, yet effective, method to compute adaptive channel weights of GPMK based on the kernel target alignment from training data. It incorporates prior knowledge and the data-driven information of different channels in a principled way. The experimental results on three challenging video datasets (i.e., Hollywood2, Youtube and HMDB51) validate the superiority of our GPMK w.r.t. the traditional STPM kernel for realistic human action recognition and outperform the state-of-the-art results in the literature. PMID:24284771
NASA Astrophysics Data System (ADS)
Woolley, J. W.; Wilson, H. B.; Woodbury, K. A.
2008-11-01
Thermocouples or other measuring devices are often imbedded into a solid to provide data for an inverse calculation. It is well-documented that such installations will result in erroneous (biased) sensor readings, unless the thermal properties of the measurement wires and surrounding insulation can be carefully matched to those of the parent domain. Since this rarely can be done, or doing so is prohibitively expensive, an alternative is to include a sensor model in the solution of the inverse problem. In this paper we consider a technique in which a thermocouple model is used to generate a correction kernel for use in the inverse solver. The technique yields a kernel function with terms in the Laplace domain. The challenge of determining the values of the correction kernel function is the focus of this paper. An adaptation of the sequential function specification method[1] as well as numerical Laplace transform inversion techniques are considered for determination of the kernel function values. Each inversion method is evaluated with analytical test functions which provide simulated "measurements". Reconstruction of the undisturbed temperature from the "measured" temperature and the correction kernel is demonstrated.
A class of kernel based real-time elastography algorithms.
Kibria, Md Golam; Hasan, Md Kamrul
2015-08-01
In this paper, a novel real-time kernel-based and gradient-based Phase Root Seeking (PRS) algorithm for ultrasound elastography is proposed. The signal-to-noise ratio of the strain image resulting from this method is improved by minimizing the cross-correlation discrepancy between the pre- and post-compression radio frequency signals with an adaptive temporal stretching method and employing built-in smoothing through an exponentially weighted neighborhood kernel in the displacement calculation. Unlike conventional PRS algorithms, displacement due to tissue compression is estimated from the root of the weighted average of the zero-lag cross-correlation phases of the pair of corresponding analytic pre- and post-compression windows in the neighborhood kernel. In addition to the proposed one, the other time- and frequency-domain elastography algorithms (Ara et al., 2013; Hussain et al., 2012; Hasan et al., 2012) proposed by our group are also implemented in real-time using Java where the computations are serially executed or parallely executed in multiple processors with efficient memory management. Simulation results using finite element modeling simulation phantom show that the proposed method significantly improves the strain image quality in terms of elastographic signal-to-noise ratio (SNRe), elastographic contrast-to-noise ratio (CNRe) and mean structural similarity (MSSIM) for strains as high as 4% as compared to other reported techniques in the literature. Strain images obtained for the experimental phantom as well as in vivo breast data of malignant or benign masses also show the efficacy of our proposed method over the other reported techniques in the literature. PMID:25929595
Azimuthal decorrelation of forward jets in deep inelastic scattering
Sabio Vera, Agustin; Schwennsen, Florian
2008-01-01
We study the azimuthal angle decorrelation of forward jets in deep inelastic scattering. We make predictions for this observable at HERA describing the high energy limit of the relevant scattering amplitudes with quasi-multi-Regge kinematics together with a collinearly-improved evolution kernel for multiparton emissions.
NASA Astrophysics Data System (ADS)
Ulmer, W.
2013-02-01
Scatter processes of photons lead to blurring of images produced by CT (computed tomography) or CBCT (cone beam computed tomography). Multiple scatter is described by, at least, one Gaussian kernel. In various tasks, this approximation is crude; we need two/three Gaussian kernels to account for long-range tails (Landau tails), which appear in Molière scatter of protons, energy straggling and electron capture of charged particles passing through matter and Compton scatter. The ideal image (source function) is subjected to Gaussian convolution to yield a blurred image. The inverse problem is to obtain the source image from a detected image. Deconvolution methods of linear combinations of two/three Gaussian kernels with different parameters s0, s1, s2 can be derived via an inhomogeneous Fredholm integral equation of second kind (IFIE2) and Liouville - Neumann series (LNS) to provide the source function ρ. Scatter functions s0, s1, s2 are best determined by Monte-Carlo. An advantage of LNS is given, if the scatter functions s0, s1, s2 depend on coordinates. The convergence criterion can always be satisfied with regard to the above mentioned cases. A generalization is given by an analysis of the Dirac equation and Fermi-Dirac statistics leading to Landau tails applied to Bethe-Bloch equation (BBE) of charged particles and electron capture.
Nonparametric entropy estimation using kernel densities.
Lake, Douglas E
2009-01-01
The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation. PMID:19897106
Tile-Compressed FITS Kernel for IRAF
NASA Astrophysics Data System (ADS)
Seaman, R.
2011-07-01
The Flexible Image Transport System (FITS) is a ubiquitously supported standard of the astronomical community. Similarly, the Image Reduction and Analysis Facility (IRAF), developed by the National Optical Astronomy Observatory, is a widely used astronomical data reduction package. IRAF supplies compatibility with FITS format data through numerous tools and interfaces. The most integrated of these is IRAF's FITS image kernel that provides access to FITS from any IRAF task that uses the basic IMIO interface. The original FITS kernel is a complex interface of purpose-built procedures that presents growing maintenance issues and lacks recent FITS innovations. A new FITS kernel is being developed at NOAO that is layered on the CFITSIO library from the NASA Goddard Space Flight Center. The simplified interface will minimize maintenance headaches as well as add important new features such as support for the FITS tile-compressed (fpack) format.
Fast generation of sparse random kernel graphs
Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo
2015-09-10
The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in timemore » at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.« less
Fast generation of sparse random kernel graphs
Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo
2015-09-10
The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in time at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.
Fast Generation of Sparse Random Kernel Graphs
2015-01-01
The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in time at most 𝒪(n(logn)2). As a practical example we show how to generate samples of power-law degree distribution graphs with tunable assortativity. PMID:26356296
Experimental study of turbulent flame kernel propagation
Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve
2008-07-15
Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{sub j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)
Volatile compound formation during argan kernel roasting.
El Monfalouti, Hanae; Charrouf, Zoubida; Giordano, Manuela; Guillaume, Dominique; Kartah, Badreddine; Harhar, Hicham; Gharby, Saïd; Denhez, Clément; Zeppa, Giuseppe
2013-01-01
Virgin edible argan oil is prepared by cold-pressing argan kernels previously roasted at 110 degrees C for up to 25 minutes. The concentration of 40 volatile compounds in virgin edible argan oil was determined as a function of argan kernel roasting time. Most of the volatile compounds begin to be formed after 15 to 25 minutes of roasting. This suggests that a strictly controlled roasting time should allow the modulation of argan oil taste and thus satisfy different types of consumers. This could be of major importance considering the present booming use of edible argan oil. PMID:23472454
Modified wavelet kernel methods for hyperspectral image classification
NASA Astrophysics Data System (ADS)
Hsu, Pai-Hui; Huang, Xiu-Man
2015-10-01
Hyperspectral images have the capability of acquiring images of earth surface with several hundred of spectral bands. Providing such abundant spectral data should increase the abilities in classifying land use/cover type. However, due to the high dimensionality of hyperspectral data, traditional classification methods are not suitable for hyperspectral data classification. The common method to solve this problem is dimensionality reduction by using feature extraction before classification. Kernel methods such as support vector machine (SVM) and multiple kernel learning (MKL) have been successfully applied to hyperspectral images classification. In kernel methods applications, the selection of kernel function plays an important role. The wavelet kernel with multidimensional wavelet functions can find the optimal approximation of data in feature space for classification. The SVM with wavelet kernels (called WSVM) have been also applied to hyperspectral data and improve classification accuracy. In this study, wavelet kernel method combined multiple kernel learning algorithm and wavelet kernels was proposed for hyperspectral image classification. After the appropriate selection of a linear combination of kernel functions, the hyperspectral data will be transformed to the wavelet feature space, which should have the optimal data distribution for kernel learning and classification. Finally, the proposed methods were compared with the existing methods. A real hyperspectral data set was used to analyze the performance of wavelet kernel method. According to the results the proposed wavelet kernel methods in this study have well performance, and would be an appropriate tool for hyperspectral image classification.
Kernel abortion in maize. II. Distribution of /sup 14/C among kernel carboydrates
Hanft, J.M.; Jones, R.J.
1986-06-01
This study was designed to compare the uptake and distribution of /sup 14/C among fructose, glucose, sucrose, and starch in the cob, pedicel, and endosperm tissues of maize (Zea mays L.) kernels induced to abort by high temperature with those that develop normally. Kernels cultured in vitro at 309 and 35/sup 0/C were transferred to (/sup 14/C)sucrose media 10 days after pollination. Kernels cultured at 35/sup 0/C aborted prior to the onset of linear dry matter accumulation. Significant uptake into the cob, pedicel, and endosperm of radioactivity associated with the soluble and starch fractions of the tissues was detected after 24 hours in culture on atlageled media. After 8 days in culture on (/sup 14/C)sucrose media, 48 and 40% of the radioactivity associated with the cob carbohydrates was found in the reducing sugars at 30 and 35/sup 0/C, respectively. Of the total carbohydrates, a higher percentage of label was associated with sucrose and lower percentage with fructose and glucose in pedicel tissue of kernels cultured at 35/sup 0/C compared to kernels cultured at 30/sup 0/C. These results indicate that sucrose was not cleaved to fructose and glucose as rapidly during the unloading process in the pedicel of kernels induced to abort by high temperature. Kernels cultured at 35/sup 0/C had a much lower proportion of label associated with endosperm starch (29%) than did kernels cultured at 30/sup 0/C (89%). Kernels cultured at 35/sup 0/C had a correspondingly higher proportion of /sup 14/C in endosperm fructose, glucose, and sucrose.
Accuracy of Reduced and Extended Thin-Wire Kernels
Burke, G J
2008-11-24
Some results are presented comparing the accuracy of the reduced thin-wire kernel and an extended kernel with exact integration of the 1/R term of the Green's function and results are shown for simple wire structures.
Fabrication of Uranium Oxycarbide Kernels for HTR Fuel
Charles Barnes; CLay Richardson; Scott Nagley; John Hunn; Eric Shaber
2010-10-01
Babcock and Wilcox (B&W) has been producing high quality uranium oxycarbide (UCO) kernels for Advanced Gas Reactor (AGR) fuel tests at the Idaho National Laboratory. In 2005, 350-µm, 19.7% 235U-enriched UCO kernels were produced for the AGR-1 test fuel. Following coating of these kernels and forming the coated-particles into compacts, this fuel was irradiated in the Advanced Test Reactor (ATR) from December 2006 until November 2009. B&W produced 425-µm, 14% enriched UCO kernels in 2008, and these kernels were used to produce fuel for the AGR-2 experiment that was inserted in ATR in 2010. B&W also produced 500-µm, 9.6% enriched UO2 kernels for the AGR-2 experiments. Kernels of the same size and enrichment as AGR-1 were also produced for the AGR-3/4 experiment. In addition to fabricating enriched UCO and UO2 kernels, B&W has produced more than 100 kg of natural uranium UCO kernels which are being used in coating development tests. Successive lots of kernels have demonstrated consistent high quality and also allowed for fabrication process improvements. Improvements in kernel forming were made subsequent to AGR-1 kernel production. Following fabrication of AGR-2 kernels, incremental increases in sintering furnace charge size have been demonstrated. Recently small scale sintering tests using a small development furnace equipped with a residual gas analyzer (RGA) has increased understanding of how kernel sintering parameters affect sintered kernel properties. The steps taken to increase throughput and process knowledge have reduced kernel production costs. Studies have been performed of additional modifications toward the goal of increasing capacity of the current fabrication line to use for production of first core fuel for the Next Generation Nuclear Plant (NGNP) and providing a basis for the design of a full scale fuel fabrication facility.
Kernel Partial Least Squares for Nonlinear Regression and Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.
Kernel Temporal Differences for Neural Decoding
Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.
2015-01-01
We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504
Kernel method and linear recurrence system
NASA Astrophysics Data System (ADS)
Hou, Qing-Hu; Mansour, Toufik
2008-06-01
Based on the kernel method, we present systematic methods to solve equation systems on generating functions of two variables. Using these methods, we get the generating functions for the number of permutations which avoid 1234 and 12k(k-1)...3 and permutations which avoid 1243 and 12...k.
7 CFR 981.8 - Inedible kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or brown spot, as defined in the United States Standards for Shelled Almonds, or which has embedded...
7 CFR 981.8 - Inedible kernel.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or brown spot, as defined in the United States Standards for Shelled Almonds, or which has embedded...
7 CFR 981.8 - Inedible kernel.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or brown spot, as defined in the United States Standards for Shelled Almonds, or which has embedded...
7 CFR 981.8 - Inedible kernel.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or brown spot, as defined in the United States Standards for Shelled Almonds, or which has embedded...
7 CFR 981.8 - Inedible kernel.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or brown spot, as defined in the United States Standards for Shelled Almonds, or which has embedded...
INTACT OR UNIT-KERNEL SWEET CORN
This report evaluates process and product modifications in canned and frozen sweet corn manufacture with the objective of reducing the total effluent produced in processing. In particular it evaluates the proposed replacement of process steps that yield cut or whole kernel corn w...
Arbitrary-resolution global sensitivity kernels
NASA Astrophysics Data System (ADS)
Nissen-Meyer, T.; Fournier, A.; Dahlen, F.
2007-12-01
Extracting observables out of any part of a seismogram (e.g. including diffracted phases such as Pdiff) necessitates the knowledge of 3-D time-space wavefields for the Green functions that form the backbone of Fréchet sensitivity kernels. While known for a while, this idea is still computationally intractable in 3-D, facing major simulation and storage issues when high-frequency wavefields are considered at the global scale. We recently developed a new "collapsed-dimension" spectral-element method that solves the 3-D system of elastodynamic equations in a 2-D space, based on exploring symmetry considerations of the seismic-wave radiation patterns. We will present the technical background on the computation of waveform kernels, various examples of time- and frequency-dependent sensitivity kernels and subsequently extracted time-window kernels (e.g. banana- doughnuts). Given the computationally light-weighted 2-D nature, we will explore some crucial parameters such as excitation type, source time functions, frequency, azimuth, discontinuity locations, and phase type, i.e. an a priori view into how, when, and where seismograms carry 3-D Earth signature. A once-and-for-all database of 2-D waveforms for various source depths shall then serve as a complete set of global time-space sensitivity for a given spherically symmetric background model, thereby allowing for tomographic inversions with arbitrary frequencies, observables, and phases.
Application of the matrix exponential kernel
NASA Technical Reports Server (NTRS)
Rohach, A. F.
1972-01-01
A point matrix kernel for radiation transport, developed by the transmission matrix method, has been used to develop buildup factors and energy spectra through slab layers of different materials for a point isotropic source. Combinations of lead-water slabs were chosen for examples because of the extreme differences in shielding properties of these two materials.
7 CFR 868.254 - Broken kernels determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Broken kernels determination. 868.254 Section 868.254 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Governing Application of Standards § 868.254 Broken kernels determination. Broken kernels shall...
7 CFR 868.304 - Broken kernels determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the...
Applying Single Kernel Sorting Technology to Developing Scab Resistant Lines
Technology Transfer Automated Retrieval System (TEKTRAN)
We are using automated single-kernel near-infrared (SKNIR) spectroscopy instrumentation to sort fusarium head blight (FHB) infected kernels from healthy kernels, and to sort segregating populations by hardness to enhance the development of scab resistant hard and soft wheat varieties. We sorted 3 r...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tamarind seed kernel powder. 176.350 Section...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tamarind seed kernel powder. 176.350 Section 176...) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tamarind seed kernel powder. 176.350 Section...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in...
Thermomechanical property of rice kernels studied by DMA
Technology Transfer Automated Retrieval System (TEKTRAN)
The thermomechanical property of the rice kernels was investigated using a dynamic mechanical analyzer (DMA). The length change of rice kernel with a loaded constant force along the major axis direction was detected during temperature scanning. The thermomechanical transition occurred in rice kernel...
7 CFR 51.2125 - Split or broken kernels.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Split or broken kernels. 51.2125 Section 51.2125 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.2125 Split or broken kernels. Split or broken kernels means seven-eighths or less of...
7 CFR 51.2125 - Split or broken kernels.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Split or broken kernels. 51.2125 Section 51.2125 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.2125 Split or broken kernels. Split or broken kernels means seven-eighths or less of...
7 CFR 868.304 - Broken kernels determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 7 2011-01-01 2011-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the...
7 CFR 868.304 - Broken kernels determination.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 7 2014-01-01 2014-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the...
7 CFR 868.254 - Broken kernels determination.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 7 2014-01-01 2014-01-01 false Broken kernels determination. 868.254 Section 868.254 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Governing Application of Standards § 868.254 Broken kernels determination. Broken kernels shall...
7 CFR 868.254 - Broken kernels determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 7 2011-01-01 2011-01-01 false Broken kernels determination. 868.254 Section 868.254 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Governing Application of Standards § 868.254 Broken kernels determination. Broken kernels shall...
7 CFR 868.304 - Broken kernels determination.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 7 2012-01-01 2012-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the...
7 CFR 868.254 - Broken kernels determination.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 7 2012-01-01 2012-01-01 false Broken kernels determination. 868.254 Section 868.254 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Governing Application of Standards § 868.254 Broken kernels determination. Broken kernels shall...
ERIC Educational Resources Information Center
Young, Andrew T.
1982-01-01
The correct usage of such terminology as "Rayleigh scattering,""Rayleigh lines,""Raman lines," and "Tyndall scattering" is resolved during an historical excursion through the physics of light-scattering by gas molecules. (Author/JN)
Kernel weights optimization for error diffusion halftoning method
NASA Astrophysics Data System (ADS)
Fedoseev, Victor
2015-02-01
This paper describes a study to find the best error diffusion kernel for digital halftoning under various restrictions on the number of non-zero kernel coefficients and their set of values. As an objective measure of quality, WSNR was used. The problem of multidimensional optimization was solved numerically using several well-known algorithms: Nelder- Mead, BFGS, and others. The study found a kernel function that provides a quality gain of about 5% in comparison with the best of the commonly used kernel introduced by Floyd and Steinberg. Other kernels obtained allow to significantly reduce the computational complexity of the halftoning process without reducing its quality.
Chare kernel; A runtime support system for parallel computations
Shu, W. ); Kale, L.V. )
1991-03-01
This paper presents the chare kernel system, which supports parallel computations with irregular structure. The chare kernel is a collection of primitive functions that manage chares, manipulative messages, invoke atomic computations, and coordinate concurrent activities. Programs written in the chare kernel language can be executed on different parallel machines without change. Users writing such programs concern themselves with the creation of parallel actions but not with assigning them to specific processors. The authors describe the design and implementation of the chare kernel. Performance of chare kernel programs on two hypercube machines, the Intel iPSC/2 and the NCUBE, is also given.
Calculation Of The Nanbu-Trubnikov Kernel: Implications For Numerical Modeling Of Coulomb Collisions
Dimits, A; Cohen, B I; Wang, C; Caflisch, R; Huang, Y
2009-07-02
We investigate the accuracy of and assumptions underlying the numerical binary Monte-Carlo collision operator due to Nanbu [K. Nanbu, Phys. Rev. E 55 (1997)]. The numerical experiments that resulted in Nanbu's parameterized collision kernel are approximate realizations of the Coulomb-Lorentz pitch-angle scattering process, for which an analytical solution is available. It is demonstrated empirically that Nanbu's collision operator quite accurately recovers the effects of Coulomb-Lorentz pitch-angle collisions, or processes that approximate these even for very large values of the collisional time step. An investigation of the analytical solution shows that Nanbu's parameterized kernel is highly accurate for small values of the normalized collision time step, but loses some of its accuracy for larger values of the time step. Finally, a practical collision algorithm is proposed that for small-mass-ratio Coulomb collisions improves on the accuracy of Nanbu's algorithm.
Difference image analysis: automatic kernel design using information criteria
NASA Astrophysics Data System (ADS)
Bramich, D. M.; Horne, Keith; Alsubai, K. A.; Bachelet, E.; Mislis, D.; Parley, N.
2016-03-01
We present a selection of methods for automatically constructing an optimal kernel model for difference image analysis which require very few external parameters to control the kernel design. Each method consists of two components; namely, a kernel design algorithm to generate a set of candidate kernel models, and a model selection criterion to select the simplest kernel model from the candidate models that provides a sufficiently good fit to the target image. We restricted our attention to the case of solving for a spatially invariant convolution kernel composed of delta basis functions, and we considered 19 different kernel solution methods including six employing kernel regularization. We tested these kernel solution methods by performing a comprehensive set of image simulations and investigating how their performance in terms of model error, fit quality, and photometric accuracy depends on the properties of the reference and target images. We find that the irregular kernel design algorithm employing unregularized delta basis functions, combined with either the Akaike or Takeuchi information criterion, is the best kernel solution method in terms of photometric accuracy. Our results are validated by tests performed on two independent sets of real data. Finally, we provide some important recommendations for software implementations of difference image analysis.
A meshfree unification: reproducing kernel peridynamics
NASA Astrophysics Data System (ADS)
Bessa, M. A.; Foster, J. T.; Belytschko, T.; Liu, Wing Kam
2014-06-01
This paper is the first investigation establishing the link between the meshfree state-based peridynamics method and other meshfree methods, in particular with the moving least squares reproducing kernel particle method (RKPM). It is concluded that the discretization of state-based peridynamics leads directly to an approximation of the derivatives that can be obtained from RKPM. However, state-based peridynamics obtains the same result at a significantly lower computational cost which motivates its use in large-scale computations. In light of the findings of this study, an update to the method is proposed such that the limitations regarding application of boundary conditions and the use of non-uniform grids are corrected by using the reproducing kernel approximation.
Wilson Dslash Kernel From Lattice QCD Optimization
Joo, Balint; Smelyanskiy, Mikhail; Kalamkar, Dhiraj D.; Vaidyanathan, Karthikeyan
2015-07-01
Lattice Quantum Chromodynamics (LQCD) is a numerical technique used for calculations in Theoretical Nuclear and High Energy Physics. LQCD is traditionally one of the first applications ported to many new high performance computing architectures and indeed LQCD practitioners have been known to design and build custom LQCD computers. Lattice QCD kernels are frequently used as benchmarks (e.g. 168.wupwise in the SPEC suite) and are generally well understood, and as such are ideal to illustrate several optimization techniques. In this chapter we will detail our work in optimizing the Wilson-Dslash kernels for Intel Xeon Phi, however, as we will show the technique gives excellent performance on regular Xeon Architecture as well.
Searching and Indexing Genomic Databases via Kernelization
Gagie, Travis; Puglisi, Simon J.
2015-01-01
The rapid advance of DNA sequencing technologies has yielded databases of thousands of genomes. To search and index these databases effectively, it is important that we take advantage of the similarity between those genomes. Several authors have recently suggested searching or indexing only one reference genome and the parts of the other genomes where they differ. In this paper, we survey the 20-year history of this idea and discuss its relation to kernelization in parameterized complexity. PMID:25710001
Kernel-based machine learning techniques for infrasound signal classification
NASA Astrophysics Data System (ADS)
Tuma, Matthias; Igel, Christian; Mialle, Pierrick
2014-05-01
Infrasound monitoring is one of four remote sensing technologies continuously employed by the CTBTO Preparatory Commission. The CTBTO's infrasound network is designed to monitor the Earth for potential evidence of atmospheric or shallow underground nuclear explosions. Upon completion, it will comprise 60 infrasound array stations distributed around the globe, of which 47 were certified in January 2014. Three stages can be identified in CTBTO infrasound data processing: automated processing at the level of single array stations, automated processing at the level of the overall global network, and interactive review by human analysts. At station level, the cross correlation-based PMCC algorithm is used for initial detection of coherent wavefronts. It produces estimates for trace velocity and azimuth of incoming wavefronts, as well as other descriptive features characterizing a signal. Detected arrivals are then categorized into potentially treaty-relevant versus noise-type signals by a rule-based expert system. This corresponds to a binary classification task at the level of station processing. In addition, incoming signals may be grouped according to their travel path in the atmosphere. The present work investigates automatic classification of infrasound arrivals by kernel-based pattern recognition methods. It aims to explore the potential of state-of-the-art machine learning methods vis-a-vis the current rule-based and task-tailored expert system. To this purpose, we first address the compilation of a representative, labeled reference benchmark dataset as a prerequisite for both classifier training and evaluation. Data representation is based on features extracted by the CTBTO's PMCC algorithm. As classifiers, we employ support vector machines (SVMs) in a supervised learning setting. Different SVM kernel functions are used and adapted through different hyperparameter optimization routines. The resulting performance is compared to several baseline classifiers. All
Multiple kernel learning for dimensionality reduction.
Lin, Yen-Yu; Liu, Tyng-Luh; Fuh, Chiou-Shann
2011-06-01
In solving complex visual learning tasks, adopting multiple descriptors to more precisely characterize the data has been a feasible way for improving performance. The resulting data representations are typically high-dimensional and assume diverse forms. Hence, finding a way of transforming them into a unified space of lower dimension generally facilitates the underlying tasks such as object recognition or clustering. To this end, the proposed approach (termed MKL-DR) generalizes the framework of multiple kernel learning for dimensionality reduction, and distinguishes itself with the following three main contributions: first, our method provides the convenience of using diverse image descriptors to describe useful characteristics of various aspects about the underlying data. Second, it extends a broad set of existing dimensionality reduction techniques to consider multiple kernel learning, and consequently improves their effectiveness. Third, by focusing on the techniques pertaining to dimensionality reduction, the formulation introduces a new class of applications with the multiple kernel learning framework to address not only the supervised learning problems but also the unsupervised and semi-supervised ones. PMID:20921580
A Fast Reduced Kernel Extreme Learning Machine.
Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua
2016-04-01
In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred. PMID:26829605
A Kernel Classification Framework for Metric Learning.
Wang, Faqiang; Zuo, Wangmeng; Zhang, Lei; Meng, Deyu; Zhang, David
2015-09-01
Learning a distance metric from the given training samples plays a crucial role in many machine learning tasks, and various models and optimization algorithms have been proposed in the past decade. In this paper, we generalize several state-of-the-art metric learning methods, such as large margin nearest neighbor (LMNN) and information theoretic metric learning (ITML), into a kernel classification framework. First, doublets and triplets are constructed from the training samples, and a family of degree-2 polynomial kernel functions is proposed for pairs of doublets or triplets. Then, a kernel classification framework is established to generalize many popular metric learning methods such as LMNN and ITML. The proposed framework can also suggest new metric learning methods, which can be efficiently implemented, interestingly, using the standard support vector machine (SVM) solvers. Two novel metric learning methods, namely, doublet-SVM and triplet-SVM, are then developed under the proposed framework. Experimental results show that doublet-SVM and triplet-SVM achieve competitive classification accuracies with state-of-the-art metric learning methods but with significantly less training time. PMID:25347887
Semi-Supervised Kernel Mean Shift Clustering.
Anand, Saket; Mittal, Sushil; Tuzel, Oncel; Meer, Peter
2014-06-01
Mean shift clustering is a powerful nonparametric technique that does not require prior knowledge of the number of clusters and does not constrain the shape of the clusters. However, being completely unsupervised, its performance suffers when the original distance metric fails to capture the underlying cluster structure. Despite recent advances in semi-supervised clustering methods, there has been little effort towards incorporating supervision into mean shift. We propose a semi-supervised framework for kernel mean shift clustering (SKMS) that uses only pairwise constraints to guide the clustering procedure. The points are first mapped to a high-dimensional kernel space where the constraints are imposed by a linear transformation of the mapped points. This is achieved by modifying the initial kernel matrix by minimizing a log det divergence-based objective function. We show the advantages of SKMS by evaluating its performance on various synthetic and real datasets while comparing with state-of-the-art semi-supervised clustering algorithms. PMID:26353281
SU-E-J-135: Feasibility of Using Quantitative Cone Beam CT for Proton Adaptive Planning
Jingqian, W; Wang, Q; Zhang, X; Wen, Z; Zhu, X; Frank, S; Li, H; Tsui, T; Zhu, L; Wei, J
2015-06-15
Purpose: To investigate the feasibility of using scatter corrected cone beam CT (CBCT) for proton adaptive planning. Methods: Phantom study was used to evaluate the CT number difference between the planning CT (pCT), quantitative CBCT (qCBCT) with scatter correction and calibrated Hounsfield units using adaptive scatter kernel superposition (ASKS) technique, and raw CBCT (rCBCT). After confirming the CT number accuracy, prostate patients, each with a pCT and several sets of weekly CBCT, were investigated for this study. Spot scanning proton treatment plans were independently generated on pCT, qCBCT and rCBCT. The treatment plans were then recalculated on all images. Dose-volume-histogram (DVH) parameters and gamma analysis were used to compare between dose distributions. Results: Phantom study suggested that Hounsfield unit accuracy for different materials are within 20 HU for qCBCT and over 250 HU for rCBCT. For prostate patients, proton dose could be calculated accurately on qCBCT but not on rCBCT. When the original plan was recalculated on qCBCT, tumor coverage was maintained when anatomy was consistent with pCT. However, large dose variance was observed when patient anatomy change. Adaptive plan using qCBCT was able to recover tumor coverage and reduce dose to normal tissue. Conclusion: It is feasible to use qu antitative CBCT (qCBCT) with scatter correction and calibrated Hounsfield units for proton dose calculation and adaptive planning in proton therapy. Partly supported by Varian Medical Systems.
How bandwidth selection algorithms impact exploratory data analysis using kernel density estimation.
Harpole, Jared K; Woods, Carol M; Rodebaugh, Thomas L; Levinson, Cheri A; Lenze, Eric J
2014-09-01
Exploratory data analysis (EDA) can reveal important features of underlying distributions, and these features often have an impact on inferences and conclusions drawn from data. Graphical analysis is central to EDA, and graphical representations of distributions often benefit from smoothing. A viable method of estimating and graphing the underlying density in EDA is kernel density estimation (KDE). This article provides an introduction to KDE and examines alternative methods for specifying the smoothing bandwidth in terms of their ability to recover the true density. We also illustrate the comparison and use of KDE methods with 2 empirical examples. Simulations were carried out in which we compared 8 bandwidth selection methods (Sheather-Jones plug-in [SJDP], normal rule of thumb, Silverman's rule of thumb, least squares cross-validation, biased cross-validation, and 3 adaptive kernel estimators) using 5 true density shapes (standard normal, positively skewed, bimodal, skewed bimodal, and standard lognormal) and 9 sample sizes (15, 25, 50, 75, 100, 250, 500, 1,000, 2,000). Results indicate that, overall, SJDP outperformed all methods. However, for smaller sample sizes (25 to 100) either biased cross-validation or Silverman's rule of thumb was recommended, and for larger sample sizes the adaptive kernel estimator with SJDP was recommended. Information is provided about implementing the recommendations in the R computing language. PMID:24885339
Protein interaction sentence detection using multiple semantic kernels
2011-01-01
Background Detection of sentences that describe protein-protein interactions (PPIs) in biomedical publications is a challenging and unresolved pattern recognition problem. Many state-of-the-art approaches for this task employ kernel classification methods, in particular support vector machines (SVMs). In this work we propose a novel data integration approach that utilises semantic kernels and a kernel classification method that is a probabilistic analogue to SVMs. Semantic kernels are created from statistical information gathered from large amounts of unlabelled text using lexical semantic models. Several semantic kernels are then fused into an overall composite classification space. In this initial study, we use simple features in order to examine whether the use of combinations of kernels constructed using word-based semantic models can improve PPI sentence detection. Results We show that combinations of semantic kernels lead to statistically significant improvements in recognition rates and receiver operating characteristic (ROC) scores over the plain Gaussian kernel, when applied to a well-known labelled collection of abstracts. The proposed kernel composition method also allows us to automatically infer the most discriminative kernels. Conclusions The results from this paper indicate that using semantic information from unlabelled text, and combinations of such information, can be valuable for classification of short texts such as PPI sentences. This study, however, is only a first step in evaluation of semantic kernels and probabilistic multiple kernel learning in the context of PPI detection. The method described herein is modular, and can be applied with a variety of feature types, kernels, and semantic models, in order to facilitate full extraction of interacting proteins. PMID:21569604
Multiple kernel learning for sparse representation-based classification.
Shrivastava, Ashish; Patel, Vishal M; Chellappa, Rama
2014-07-01
In this paper, we propose a multiple kernel learning (MKL) algorithm that is based on the sparse representation-based classification (SRC) method. Taking advantage of the nonlinear kernel SRC in efficiently representing the nonlinearities in the high-dimensional feature space, we propose an MKL method based on the kernel alignment criteria. Our method uses a two step training method to learn the kernel weights and sparse codes. At each iteration, the sparse codes are updated first while fixing the kernel mixing coefficients, and then the kernel mixing coefficients are updated while fixing the sparse codes. These two steps are repeated until a stopping criteria is met. The effectiveness of the proposed method is demonstrated using several publicly available image classification databases and it is shown that this method can perform significantly better than many competitive image classification algorithms. PMID:24835226
Small convolution kernels for high-fidelity image restoration
NASA Technical Reports Server (NTRS)
Reichenbach, Stephen E.; Park, Stephen K.
1991-01-01
An algorithm is developed for computing the mean-square-optimal values for small, image-restoration kernels. The algorithm is based on a comprehensive, end-to-end imaging system model that accounts for the important components of the imaging process: the statistics of the scene, the point-spread function of the image-gathering device, sampling effects, noise, and display reconstruction. Subject to constraints on the spatial support of the kernel, the algorithm generates the kernel values that restore the image with maximum fidelity, that is, the kernel minimizes the expected mean-square restoration error. The algorithm is consistent with the derivation of the spatially unconstrained Wiener filter, but leads to a small, spatially constrained kernel that, unlike the unconstrained filter, can be efficiently implemented by convolution. Simulation experiments demonstrate that for a wide range of imaging systems these small kernels can restore images with fidelity comparable to images restored with the unconstrained Wiener filter.
A new method by steering kernel-based Richardson-Lucy algorithm for neutron imaging restoration
NASA Astrophysics Data System (ADS)
Qiao, Shuang; Wang, Qiao; Sun, Jia-ning; Huang, Ji-peng
2014-01-01
Motivated by industrial applications, neutron radiography has become a powerful tool for non-destructive investigation techniques. However, resulted from a combined effect of neutron flux, collimated beam, limited spatial resolution of detector and scattering, etc., the images made with neutrons are degraded severely by blur and noise. For dealing with it, by integrating steering kernel regression into Richardson-Lucy approach, we present a novel restoration method in this paper, which is capable of suppressing noise while restoring details of the blurred imaging result efficiently. Experimental results show that compared with the other methods, the proposed method can improve the restoration quality both visually and quantitatively.
Monte Carlo Code System for Electron (Positron) Dose Kernel Calculations.
CHIBANI, OMAR
1999-05-12
Version 00 KERNEL performs dose kernel calculations for an electron (positron) isotropic point source in an infinite homogeneous medium. First, the auxiliary code PRELIM is used to prepare cross section data for the considered medium. Then the KERNEL code simulates the transport of electrons and bremsstrahlung photons through the medium until all particles reach their cutoff energies. The deposited energy is scored in concentric spherical shells at a radial distance ranging from zero to twice the source particle range.
Scale-invariant Lipatov kernels from t-channel unitarity
Coriano, C.; White, A.R.
1994-11-14
The Lipatov equation can be regarded as a reggeon Bethe-Salpeter equation in which higher-order reggeon interactions give higher-order kernels. Infra-red singular contributions in a general kernel are produced by t-channel nonsense states and the allowed kinematic forms are determined by unitarity. Ward identity and infra-red finiteness gauge invariance constraints then determine the corresponding scale-invariant part of a general higher-order kernel.
Robust kernel collaborative representation for face recognition
NASA Astrophysics Data System (ADS)
Huang, Wei; Wang, Xiaohui; Ma, Yanbo; Jiang, Yuzheng; Zhu, Yinghui; Jin, Zhong
2015-05-01
One of the greatest challenges of representation-based face recognition is that the training samples are usually insufficient. In other words, the training set usually does not include enough samples to show varieties of high-dimensional face images caused by illuminations, facial expressions, and postures. When the test sample is significantly different from the training samples of the same subject, the recognition performance will be sharply reduced. We propose a robust kernel collaborative representation based on virtual samples for face recognition. We think that the virtual training set conveys some reasonable and possible variations of the original training samples. Hence, we design a new object function to more closely match the representation coefficients generated from the original and virtual training sets. In order to further improve the robustness, we implement the corresponding representation-based face recognition in kernel space. It is noteworthy that any kind of virtual training samples can be used in our method. We use noised face images to obtain virtual face samples. The noise can be approximately viewed as a reflection of the varieties of illuminations, facial expressions, and postures. Our work is a simple and feasible way to obtain virtual face samples to impose Gaussian noise (and other types of noise) specifically to the original training samples to obtain possible variations of the original samples. Experimental results on the FERET, Georgia Tech, and ORL face databases show that the proposed method is more robust than two state-of-the-art face recognition methods, such as CRC and Kernel CRC.
Influence of wheat kernel physical properties on the pulverizing process.
Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula
2014-10-01
The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel. PMID:25328207
A short- time beltrami kernel for smoothing images and manifolds.
Spira, Alon; Kimmel, Ron; Sochen, Nir
2007-06-01
We introduce a short-time kernel for the Beltrami image enhancing flow. The flow is implemented by "convolving" the image with a space dependent kernel in a similar fashion to the solution of the heat equation by a convolution with a Gaussian kernel. The kernel is appropriate for smoothing regular (flat) 2-D images, for smoothing images painted on manifolds, and for simultaneously smoothing images and the manifolds they are painted on. The kernel combines the geometry of the image and that of the manifold into one metric tensor, thus enabling a natural unified approach for the manipulation of both. Additionally, the derivation of the kernel gives a better geometrical understanding of the Beltrami flow and shows that the bilateral filter is a Euclidean approximation of it. On a practical level, the use of the kernel allows arbitrarily large time steps as opposed to the existing explicit numerical schemes for the Beltrami flow. In addition, the kernel works with equal ease on regular 2-D images and on images painted on parametric or triangulated manifolds. We demonstrate the denoising properties of the kernel by applying it to various types of images and manifolds. PMID:17547140
Isolation of bacterial endophytes from germinated maize kernels.
Rijavec, Tomaz; Lapanje, Ales; Dermastia, Marina; Rupnik, Maja
2007-06-01
The germination of surface-sterilized maize kernels under aseptic conditions proved to be a suitable method for isolation of kernel-associated bacterial endophytes. Bacterial strains identified by partial 16S rRNA gene sequencing as Pantoea sp., Microbacterium sp., Frigoribacterium sp., Bacillus sp., Paenibacillus sp., and Sphingomonas sp. were isolated from kernels of 4 different maize cultivars. Genus Pantoea was associated with a specific maize cultivar. The kernels of this cultivar were often overgrown with the fungus Lecanicillium aphanocladii; however, those exhibiting Pantoea growth were never colonized with it. Furthermore, the isolated bacterium strain inhibited fungal growth in vitro. PMID:17668041
A Kernel-based Account of Bibliometric Measures
NASA Astrophysics Data System (ADS)
Ito, Takahiko; Shimbo, Masashi; Kudo, Taku; Matsumoto, Yuji
The application of kernel methods to citation analysis is explored. We show that a family of kernels on graphs provides a unified perspective on the three bibliometric measures that have been discussed independently: relatedness between documents, global importance of individual documents, and importance of documents relative to one or more (root) documents (relative importance). The framework provided by the kernels establishes relative importance as an intermediate between relatedness and global importance, in which the degree of `relativity,' or the bias between relatedness and importance, is naturally controlled by a parameter characterizing individual kernels in the family.
Dimits, A M; Wang, C; Caflisch, R; Cohen, B I; Huang, Y
2008-08-06
We investigate the accuracy of and assumptions underlying the numerical binary Monte-Carlo collision operator due to Nanbu [K. Nanbu, Phys. Rev. E 55 (1997)]. The numerical experiments that resulted in the parameterization of the collision kernel used in Nanbu's operator are argued to be an approximate realization of the Coulomb-Lorentz pitch-angle scattering process, for which an analytical solution for the collision kernel is available. It is demonstrated empirically that Nanbu's collision operator quite accurately recovers the effects of Coulomb-Lorentz pitch-angle collisions, or processes that approximate these (such interspecies Coulomb collisions with very small mass ratio) even for very large values of the collisional time step. An investigation of the analytical solution shows that Nanbu's parameterized kernel is highly accurate for small values of the normalized collision time step, but loses some of its accuracy for larger values of the time step. Careful numerical and analytical investigations are presented, which show that the time dependence of the relaxation of a temperature anisotropy by Coulomb-Lorentz collisions has a richer structure than previously thought, and is not accurately represented by an exponential decay with a single decay rate. Finally, a practical collision algorithm is proposed that for small-mass-ratio interspecies Coulomb collisions improves on the accuracy of Nanbu's algorithm.
Optimized Derivative Kernels for Gamma Ray Spectroscopy
Vlachos, D. S.; Kosmas, O. T.; Simos, T. E.
2007-12-26
In gamma ray spectroscopy, the photon detectors measure the number of photons with energy that lies in an interval which is called a channel. This accumulation of counts produce a measuring function that its deviation from the ideal one may produce high noise in the unfolded spectrum. In order to deal with this problem, the ideal accumulation function is interpolated with the use of special designed derivative kernels. Simulation results are presented which show that this approach is very effective even in spectra with low statistics.
Oil point pressure of Indian almond kernels
NASA Astrophysics Data System (ADS)
Aregbesola, O.; Olatunde, G.; Esuola, S.; Owolarafe, O.
2012-07-01
The effect of preprocessing conditions such as moisture content, heating temperature, heating time and particle size on oil point pressure of Indian almond kernel was investigated. Results showed that oil point pressure was significantly (P < 0.05) affected by above mentioned parameters. It was also observed that oil point pressure reduced with increase in heating temperature and heating time for both coarse and fine particles. Furthermore, an increase in moisture content resulted in increased oil point pressure for coarse particles while there was a reduction in oil point pressure with increase in moisture content for fine particles.
Verification of Chare-kernel programs
Bhansali, S.; Kale, L.V. )
1989-01-01
Experience with concurrent programming has shown that concurrent programs can conceal bugs even after extensive testing. Thus, there is a need for practical techniques which can establish the correctness of parallel programs. This paper proposes a method for showing how to prove the partial correctness of programs written in the Chare-kernel language, which is a language designed to support the parallel execution of computation with irregular structures. The proof is based on the lattice proof technique and is divided into two parts. The first part is concerned with the program behavior within a single chare instance, whereas the second part captures the inter-chare interaction.
Prediction of kernel density of corn using single-kernel near infrared spectroscopy
Technology Transfer Automated Retrieval System (TEKTRAN)
Corn hardness as is an important property for dry and wet-millers, food processors and corn breeders developing hybrids for specific markets. Of the several methods used to measure hardness, kernel density measurements are one of the more repeatable methods to quantify hardness. Near infrared spec...
NASA Astrophysics Data System (ADS)
Bremner, P. M.; Panning, M. P.
2012-12-01
We present the calibration of an automated scheme to properly window the fundamental surface wave mode of an event record. Multi-taper fundamental mode phase delay measurements were made on a synthetic dataset. Measurement errors are reduced when minimal over tone energy is included in the window. The time window is calibrated by simply varying the minimum and maximum surface wave velocities used to determine the beginning and ending window times with source-receiver distance, as opposed to constant velocities. We compare phase delay measurements with and without calibration against measurements made manually. Manual window setting of a small representative subset of event seismograms are used to adjust these minimum and maximum surface wave velocities. The orthogonal 2.5π-prolate spheroidal wave function eigentapers (Slepian tapers) used in multi-taper methods reduce noise biasing, and can provide error estimates in phase delay measurements. Additionally, we examine the effects of excluding near-field terms in the calculation of 3-D finite-frequency waveform kernels for Rayleigh and Love waves on a synthetic dataset. Two methods of kernel calculation based on the single scatterer Born approximation are compared, that of Panning and Nolet (2008) and Zhao and Chevrot (2011). The Panning and Nolet (2008) method calculates the strain Green's tensors for the source-scatterer and scatterer-receiver paths by the summation of asymptotic surface wave modes, which is an inherently far-field approximation. Waveform kernels are then found by convolution (in the time domain) of these strain Green's tensors. The kernels are formulated based on a hexagonal symmetry with an arbitrary orientation. The Zhao and Chevrot (2011) method creates a database of the set of strain Green's tensors for the source-scatterer (two-sided strain Green's tensor) and scatterer-receiver (one-sided strain Green's tensor) paths, and is calculated by normal mode summation. The full-wave waveform
Hirayama, S; Takayanagi, T; Fujii, Y; Fujimoto, R; Fujitaka, S; Umezawa, M; Nagamine, Y; Hosaka, M; Yasui, K; Toshito, T
2014-06-15
Purpose: To present the validity of our beam modeling with double and triple Gaussian dose kernels for spot scanning proton beams in Nagoya Proton Therapy Center. This study investigates the conformance between the measurements and calculation results in absolute dose with two types of beam kernel. Methods: A dose kernel is one of the important input data required for the treatment planning software. The dose kernel is the 3D dose distribution of an infinitesimal pencil beam of protons in water and consists of integral depth doses and lateral distributions. We have adopted double and triple Gaussian model as lateral distribution in order to take account of the large angle scattering due to nuclear reaction by fitting simulated inwater lateral dose profile for needle proton beam at various depths. The fitted parameters were interpolated as a function of depth in water and were stored as a separate look-up table for the each beam energy. The process of beam modeling is based on the method of MDACC [X.R.Zhu 2013]. Results: From the comparison results between the absolute doses calculated by double Gaussian model and those measured at the center of SOBP, the difference is increased up to 3.5% in the high-energy region because the large angle scattering due to nuclear reaction is not sufficiently considered at intermediate depths in the double Gaussian model. In case of employing triple Gaussian dose kernels, the measured absolute dose at the center of SOBP agrees with calculation within ±1% regardless of the SOBP width and maximum range. Conclusion: We have demonstrated the beam modeling results of dose distribution employing double and triple Gaussian dose kernel. Treatment planning system with the triple Gaussian dose kernel has been successfully verified and applied to the patient treatment with a spot scanning technique in Nagoya Proton Therapy Center.
Linear and kernel methods for multi- and hypervariate change detection
NASA Astrophysics Data System (ADS)
Nielsen, Allan A.; Canty, Morton J.
2010-10-01
The iteratively re-weighted multivariate alteration detection (IR-MAD) algorithm may be used both for unsuper- vised change detection in multi- and hyperspectral remote sensing imagery as well as for automatic radiometric normalization of multi- or hypervariate multitemporal image sequences. Principal component analysis (PCA) as well as maximum autocorrelation factor (MAF) and minimum noise fraction (MNF) analyses of IR-MAD images, both linear and kernel-based (which are nonlinear), may further enhance change signals relative to no-change background. The kernel versions are based on a dual formulation, also termed Q-mode analysis, in which the data enter into the analysis via inner products in the Gram matrix only. In the kernel version the inner products of the original data are replaced by inner products between nonlinear mappings into higher dimensional feature space. Via kernel substitution, also known as the kernel trick, these inner products between the mappings are in turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of the kernel function. This means that we need not know the nonlinear mappings explicitly. Kernel principal component analysis (PCA), kernel MAF and kernel MNF analyses handle nonlinearities by implicitly transforming data into high (even innite) dimensional feature space via the kernel function and then performing a linear analysis in that space. In image analysis the Gram matrix is often prohibitively large (its size is the number of pixels in the image squared). In this case we may sub-sample the image and carry out the kernel eigenvalue analysis on a set of training data samples only. To obtain a transformed version of the entire image we then project all pixels, which we call the test data, mapped nonlinearly onto the primal eigenvectors. IDL (Interactive Data Language) implementations of IR-MAD, automatic radiometric normalization and kernel PCA/MAF/MNF transformations have been written
Scientific Computing Kernels on the Cell Processor
Williams, Samuel W.; Shalf, John; Oliker, Leonid; Kamil, Shoaib; Husbands, Parry; Yelick, Katherine
2007-04-04
The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. As a result, the high performance computing community is examining alternative architectures that address the limitations of modern cache-based designs. In this work, we examine the potential of using the recently-released STI Cell processor as a building block for future high-end computing systems. Our work contains several novel contributions. First, we introduce a performance model for Cell and apply it to several key scientific computing kernels: dense matrix multiply, sparse matrix vector multiply, stencil computations, and 1D/2D FFTs. The difficulty of programming Cell, which requires assembly level intrinsics for the best performance, makes this model useful as an initial step in algorithm design and evaluation. Next, we validate the accuracy of our model by comparing results against published hardware results, as well as our own implementations on a 3.2GHz Cell blade. Additionally, we compare Cell performance to benchmarks run on leading superscalar (AMD Opteron), VLIW (Intel Itanium2), and vector (Cray X1E) architectures. Our work also explores several different mappings of the kernels and demonstrates a simple and effective programming model for Cell's unique architecture. Finally, we propose modest microarchitectural modifications that could significantly increase the efficiency of double-precision calculations. Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency.
Stable Local Volatility Calibration Using Kernel Splines
NASA Astrophysics Data System (ADS)
Coleman, Thomas F.; Li, Yuying; Wang, Cheng
2010-09-01
We propose an optimization formulation using L1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances the calibration accuracy with the model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a kernel function generating splines and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of the support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates.
Transcriptome analysis of Ginkgo biloba kernels
He, Bing; Gu, Yincong; Xu, Meng; Wang, Jianwen; Cao, Fuliang; Xu, Li-an
2015-01-01
Ginkgo biloba is a dioecious species native to China with medicinally and phylogenetically important characteristics; however, genomic resources for this species are limited. In this study, we performed the first transcriptome sequencing for Ginkgo kernels at five time points using Illumina paired-end sequencing. Approximately 25.08-Gb clean reads were obtained, and 68,547 unigenes with an average length of 870 bp were generated by de novo assembly. Of these unigenes, 29,987 (43.74%) were annotated in publicly available plant protein database. A total of 3,869 genes were identified as significantly differentially expressed, and enrichment analysis was conducted at different time points. Furthermore, metabolic pathway analysis revealed that 66 unigenes were responsible for terpenoid backbone biosynthesis, with up to 12 up-regulated unigenes involved in the biosynthesis of ginkgolide and bilobalide. Differential gene expression analysis together with real-time PCR experiments indicated that the synthesis of bilobalide may have interfered with the ginkgolide synthesis process in the kernel. These data can remarkably expand the existing transcriptome resources of Ginkgo, and provide a valuable platform to reveal more on developmental and metabolic mechanisms of this species. PMID:26500663
Delimiting Areas of Endemism through Kernel Interpolation
Oliveira, Ubirajara; Brescovit, Antonio D.; Santos, Adalberto J.
2015-01-01
We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE), based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units. PMID:25611971
Aligning Biomolecular Networks Using Modular Graph Kernels
NASA Astrophysics Data System (ADS)
Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant
Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.
Technology Transfer Automated Retrieval System (TEKTRAN)
Maize kernel density impacts milling quality of the grain due to kernel hardness. Harder kernels are correlated with higher test weight and are more resistant to breakage during harvest and transport. Softer kernels, in addition to being susceptible to mechanical damage, are also prone to pathogen ...
Scale Space Graph Representation and Kernel Matching for Non Rigid and Textured 3D Shape Retrieval.
Garro, Valeria; Giachetti, Andrea
2016-06-01
In this paper we introduce a novel framework for 3D object retrieval that relies on tree-based shape representations (TreeSha) derived from the analysis of the scale-space of the Auto Diffusion Function (ADF) and on specialized graph kernels designed for their comparison. By coupling maxima of the Auto Diffusion Function with the related basins of attraction, we can link the information at different scales encoding spatial relationships in a graph description that is isometry invariant and can easily incorporate texture and additional geometrical information as node and edge features. Using custom graph kernels it is then possible to estimate shape dissimilarities adapted to different specific tasks and on different categories of models, making the procedure a powerful and flexible tool for shape recognition and retrieval. Experimental results demonstrate that the method can provide retrieval scores similar or better than state-of-the-art on textured and non textured shape retrieval benchmarks and give interesting insights on effectiveness of different shape descriptors and graph kernels. PMID:26372206
Spatiotemporal Domain Decomposition for Massive Parallel Computation of Space-Time Kernel Density
NASA Astrophysics Data System (ADS)
Hohl, A.; Delmelle, E. M.; Tang, W.
2015-07-01
Accelerated processing capabilities are deemed critical when conducting analysis on spatiotemporal datasets of increasing size, diversity and availability. High-performance parallel computing offers the capacity to solve computationally demanding problems in a limited timeframe, but likewise poses the challenge of preventing processing inefficiency due to workload imbalance between computing resources. Therefore, when designing new algorithms capable of implementing parallel strategies, careful spatiotemporal domain decomposition is necessary to account for heterogeneity in the data. In this study, we perform octtree-based adaptive decomposition of the spatiotemporal domain for parallel computation of space-time kernel density. In order to avoid edge effects near subdomain boundaries, we establish spatiotemporal buffers to include adjacent data-points that are within the spatial and temporal kernel bandwidths. Then, we quantify computational intensity of each subdomain to balance workloads among processors. We illustrate the benefits of our methodology using a space-time epidemiological dataset of Dengue fever, an infectious vector-borne disease that poses a severe threat to communities in tropical climates. Our parallel implementation of kernel density reaches substantial speedup compared to sequential processing, and achieves high levels of workload balance among processors due to great accuracy in quantifying computational intensity. Our approach is portable of other space-time analytical tests.
Requirements Baseline for Integrated Modular Avionics for Space Separation Kernel Qualification
NASA Astrophysics Data System (ADS)
Hann, Mark; Deredempt, Marie Helene; Cortier, Alexandre; De Ferluc, Regis; Galizzi, Julien
2015-09-01
In order to address the increasing complexity of spacecraft avionics, ESA have explored technological solutions adopted by the aeronautical domain for this purpose: Integrated Modular Avionics (IMA) and time and space partitioning (TSP). Over the past few years, a number of studies launched by ESA have explored how the solutions from the aeronautical domain could be adopted in the space domain. The technical solutions from the aeronautical domain have been adapted to the requirements of space missions, and an approach named IMA for Space (IMA-SP for short) has been introduced providing an IMA-SP Platform. The IMA-SP platform is dedicated to supporting the time and space partitioning of the spacecraft applications. The core software component is called the System Executive Platform software (SEP). The SEP contains a separation kernel that schedules the execution of partitions and provides the partitioning mechanisms. A small number of separation kernels already exist and have been demonstrated in previous studies [1]. These existing separation kernels must first be qualified before they are used in flight software.
Introduction to Kernel Methods: Classification of Multivariate Data
NASA Astrophysics Data System (ADS)
Fauvel, M.
2016-05-01
In this chapter, kernel methods are presented for the classification of multivariate data. An introduction example is given to enlighten the main idea of kernel methods. Then emphasis is done on the Support Vector Machine. Structural risk minimization is presented, and linear and non-linear SVM are described. Finally, a full example of SVM classification is given on simulated hyperspectral data.
Comparison of Kernel Equating and Item Response Theory Equating Methods
ERIC Educational Resources Information Center
Meng, Yu
2012-01-01
The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…
High speed sorting of Fusarium-damaged wheat kernels
Technology Transfer Automated Retrieval System (TEKTRAN)
Recent studies have found that resistance to Fusarium fungal infection can be inherited in wheat from one generation to another. However, there is not yet available a cost effective method to separate Fusarium-damaged wheat kernels from undamaged kernels so that wheat breeders can take advantage of...
Covariant Perturbation Expansion of Off-Diagonal Heat Kernel
NASA Astrophysics Data System (ADS)
Gou, Yu-Zi; Li, Wen-Du; Zhang, Ping; Dai, Wu-Sheng
2016-07-01
Covariant perturbation expansion is an important method in quantum field theory. In this paper an expansion up to arbitrary order for off-diagonal heat kernels in flat space based on the covariant perturbation expansion is given. In literature, only diagonal heat kernels are calculated based on the covariant perturbation expansion.
Evidence-Based Kernels: Fundamental Units of Behavioral Influence
ERIC Educational Resources Information Center
Embry, Dennis D.; Biglan, Anthony
2008-01-01
This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior-influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of…
7 CFR 981.60 - Determination of kernel weight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.60 Determination of kernel weight. (a) Almonds for which settlement is made on kernel weight. All lots of almonds, whether shelled or unshelled, for which...
7 CFR 981.60 - Determination of kernel weight.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.60 Determination of kernel weight. (a) Almonds for which settlement is made on kernel weight. All lots of almonds, whether shelled or unshelled, for which...
7 CFR 981.60 - Determination of kernel weight.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.60 Determination of kernel weight. (a) Almonds for which settlement is made on kernel weight. All lots of almonds, whether shelled or unshelled, for which...
7 CFR 981.60 - Determination of kernel weight.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.60 Determination of kernel weight. (a) Almonds for which settlement is made on kernel weight. All lots of almonds, whether shelled or unshelled, for which...
7 CFR 981.60 - Determination of kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.60 Determination of kernel weight. (a) Almonds for which settlement is made on kernel weight. All lots of almonds, whether shelled or unshelled, for which...
Integrating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Champagne, Nathan J.; Wilton, Donald R.
2008-01-01
A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form
Polynomial Kernels for Hard Problems on Disk Graphs
NASA Astrophysics Data System (ADS)
Jansen, Bart
Kernelization is a powerful tool to obtain fixed-parameter tractable algorithms. Recent breakthroughs show that many graph problems admit small polynomial kernels when restricted to sparse graph classes such as planar graphs, bounded-genus graphs or H-minor-free graphs. We consider the intersection graphs of (unit) disks in the plane, which can be arbitrarily dense but do exhibit some geometric structure. We give the first kernelization results on these dense graph classes. Connected Vertex Cover has a kernel with 12k vertices on unit-disk graphs and with 3k 2 + 7k vertices on disk graphs with arbitrary radii. Red-Blue Dominating Set parameterized by the size of the smallest color class has a linear-vertex kernel on planar graphs, a quadratic-vertex kernel on unit-disk graphs and a quartic-vertex kernel on disk graphs. Finally we prove that H -Matching on unit-disk graphs has a linear-vertex kernel for every fixed graph H.
Optimal Bandwidth Selection in Observed-Score Kernel Equating
ERIC Educational Resources Information Center
Häggström, Jenny; Wiberg, Marie
2014-01-01
The selection of bandwidth in kernel equating is important because it has a direct impact on the equated test scores. The aim of this article is to examine the use of double smoothing when selecting bandwidths in kernel equating and to compare double smoothing with the commonly used penalty method. This comparison was made using both an equivalent…
Evidence-based Kernels: Fundamental Units of Behavioral Influence
Biglan, Anthony
2008-01-01
This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior. PMID:18712600
Sugar uptake into kernels of tunicate tassel-seed maize
Thomas, P.A.; Felker, F.C.; Crawford, C.G. )
1990-05-01
A maize (Zea mays L.) strain expressing both the tassel-seed (Ts-5) and tunicate (Tu) characters was developed which produces glume-covered kernels on the tassel, often born on 7-10 mm pedicels. Vigorous plants produce up to 100 such kernels interspersed with additional sessile kernels. This floral unit provides a potentially valuable experimental system for studying sugar uptake into developing maize seeds. When detached kernels (with glumes and pedicel intact) are placed in incubation solution, fluid flows up the pedicel and into the glumes, entering the pedicel apoplast near the kernel base. The unusual anatomical features of this maize strain permit experimental access to the pedicel apoplast with much less possibility of kernel base tissue damage than with kernels excised from the cob. ({sup 14}C)Fructose incorporation into soluble and insoluble fractions of endosperm increased for 8 days. Endosperm uptake of sucrose, fructose, and D-glucose was significantly greater than that of L-glucose. Fructose uptake was significantly inhibited by CCCP, DNP, and PCMBS. These results suggest the presence of an active, non-diffusion component of sugar transport in maize kernels.
A new orientation-adaptive interpolation method.
Wang, Qing; Ward, Rabab Kreidieh
2007-04-01
We propose an isophote-oriented, orientation-adaptive interpolation method. The proposed method employs an interpolation kernel that adapts to the local orientation of isophotes, and the pixel values are obtained through an oriented, bilinear interpolation. We show that, by doing so, the curvature of the interpolated isophotes is reduced, and, thus, zigzagging artifacts are largely suppressed. Analysis and experiments show that images interpolated using the proposed method are visually pleasing and almost artifact free. PMID:17405424
Kernel regression estimation of fiber orientation mixtures in diffusion MRI.
Cabeen, Ryan P; Bastin, Mark E; Laidlaw, David H
2016-02-15
We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume fractions for diffusion MR tractography and population-based atlas construction in clinical imaging studies of brain white matter. This is a model-based image processing technique in which representative fiber models are estimated from collections of component fiber models in model-valued image data. This extends prior work in nonparametric image processing and multi-compartment processing to provide computational tools for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on multi-compartment processing, this approach is based on directional measures of divergence and includes data-adaptive extensions for model selection and bilateral filtering. This is useful for reconstructing complex anatomical features in clinical datasets analyzed with the ball-and-sticks model, and our framework's data-adaptive extensions are potentially useful for general multi-compartment image processing. We experimentally evaluate our approach with both synthetic data from computational phantoms and in vivo clinical data from human subjects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation, volume fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first show improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean length, volume, streamline count, and mean volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from a population of 80 human subjects. In comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known fiber bundles and includes reconstructions of the lateral projections of the corpus callosum and complex fronto-parietal connections of the superior longitudinal fasciculus I, II, and III. PMID:26691524
A Robustness Testing Campaign for IMA-SP Partitioning Kernels
NASA Astrophysics Data System (ADS)
Grixti, Stephen; Lopez Trecastro, Jorge; Sammut, Nicholas; Zammit-Mangion, David
2015-09-01
With time and space partitioned architectures becoming increasingly appealing to the European space sector, the dependability of partitioning kernel technology is a key factor to its applicability in European Space Agency projects. This paper explores the potential of the data type fault model, which injects faults through the Application Program Interface, in partitioning kernel robustness testing. This fault injection methodology has been tailored to investigate its relevance in uncovering vulnerabilities within partitioning kernels and potentially contributing towards fault removal campaigns within this domain. This is demonstrated through a robustness testing case study of the XtratuM partitioning kernel for SPARC LEON3 processors. The robustness campaign exposed a number of vulnerabilities in XtratuM, exhibiting the potential benefits of using such a methodology for the robustness assessment of partitioning kernels.
OSKI: A Library of Automatically Tuned Sparse Matrix Kernels
Vuduc, R; Demmel, J W; Yelick, K A
2005-07-19
The Optimized Sparse Kernel Interface (OSKI) is a collection of low-level primitives that provide automatically tuned computational kernels on sparse matrices, for use by solver libraries and applications. These kernels include sparse matrix-vector multiply and sparse triangular solve, among others. The primary aim of this interface is to hide the complex decision-making process needed to tune the performance of a kernel implementation for a particular user's sparse matrix and machine, while also exposing the steps and potentially non-trivial costs of tuning at run-time. This paper provides an overview of OSKI, which is based on our research on automatically tuned sparse kernels for modern cache-based superscalar machines.
Zero energy scattering calculation in Euclidean space
NASA Astrophysics Data System (ADS)
Carbonell, J.; Karmanov, V. A.
2016-03-01
We show that the Bethe-Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe-Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe-Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.
Technology Transfer Automated Retrieval System (TEKTRAN)
The current US corn grading system accounts for the portion of damaged kernels, which is measured by time-consuming and inaccurate visual inspection. Near infrared spectroscopy (NIRS), a non-destructive and fast analytical method, was tested as a tool for discriminating corn kernels with heat and f...
Technology Transfer Automated Retrieval System (TEKTRAN)
The objective of this study was to examine the relationship between fluorescence emissions of corn kernels inoculated with Aspergillus flavus and aflatoxin contamination levels within the kernels. The choice of methodology was based on the principle that many biological materials exhibit fluorescenc...
Privacy preserving RBF kernel support vector machine.
Li, Haoran; Xiong, Li; Ohno-Machado, Lucila; Jiang, Xiaoqian
2014-01-01
Data sharing is challenging but important for healthcare research. Methods for privacy-preserving data dissemination based on the rigorous differential privacy standard have been developed but they did not consider the characteristics of biomedical data and make full use of the available information. This often results in too much noise in the final outputs. We hypothesized that this situation can be alleviated by leveraging a small portion of open-consented data to improve utility without sacrificing privacy. We developed a hybrid privacy-preserving differentially private support vector machine (SVM) model that uses public data and private data together. Our model leverages the RBF kernel and can handle nonlinearly separable cases. Experiments showed that this approach outperforms two baselines: (1) SVMs that only use public data, and (2) differentially private SVMs that are built from private data. Our method demonstrated very close performance metrics compared to nonprivate SVMs trained on the private data. PMID:25013805
Kernel density estimation using graphical processing unit
NASA Astrophysics Data System (ADS)
Sunarko, Su'ud, Zaki
2015-09-01
Kernel density estimation for particles distributed over a 2-dimensional space is calculated using a single graphical processing unit (GTX 660Ti GPU) and CUDA-C language. Parallel calculations are done for particles having bivariate normal distribution and by assigning calculations for equally-spaced node points to each scalar processor in the GPU. The number of particles, blocks and threads are varied to identify favorable configuration. Comparisons are obtained by performing the same calculation using 1, 2 and 4 processors on a 3.0 GHz CPU using MPICH 2.0 routines. Speedups attained with the GPU are in the range of 88 to 349 times compared the multiprocessor CPU. Blocks of 128 threads are found to be the optimum configuration for this case.
Labeled Graph Kernel for Behavior Analysis.
Zhao, Ruiqi; Martinez, Aleix M
2016-08-01
Automatic behavior analysis from video is a major topic in many areas of research, including computer vision, multimedia, robotics, biology, cognitive science, social psychology, psychiatry, and linguistics. Two major problems are of interest when analyzing behavior. First, we wish to automatically categorize observed behaviors into a discrete set of classes (i.e., classification). For example, to determine word production from video sequences in sign language. Second, we wish to understand the relevance of each behavioral feature in achieving this classification (i.e., decoding). For instance, to know which behavior variables are used to discriminate between the words apple and onion in American Sign Language (ASL). The present paper proposes to model behavior using a labeled graph, where the nodes define behavioral features and the edges are labels specifying their order (e.g., before, overlaps, start). In this approach, classification reduces to a simple labeled graph matching. Unfortunately, the complexity of labeled graph matching grows exponentially with the number of categories we wish to represent. Here, we derive a graph kernel to quickly and accurately compute this graph similarity. This approach is very general and can be plugged into any kernel-based classifier. Specifically, we derive a Labeled Graph Support Vector Machine (LGSVM) and a Labeled Graph Logistic Regressor (LGLR) that can be readily employed to discriminate between many actions (e.g., sign language concepts). The derived approach can be readily used for decoding too, yielding invaluable information for the understanding of a problem (e.g., to know how to teach a sign language). The derived algorithms allow us to achieve higher accuracy results than those of state-of-the-art algorithms in a fraction of the time. We show experimental results on a variety of problems and datasets, including multimodal data. PMID:26415154
The flare kernel in the impulsive phase
NASA Technical Reports Server (NTRS)
Dejager, C.
1986-01-01
The impulsive phase of a flare is characterized by impulsive bursts of X-ray and microwave radiation, related to impulsive footpoint heating up to 50 or 60 MK, by upward gas velocities (150 to 400 km/sec) and by a gradual increase of the flare's thermal energy content. These phenomena, as well as non-thermal effects, are all related to the impulsive energy injection into the flare. The available observations are also quantitatively consistent with a model in which energy is injected into the flare by beams of energetic electrons, causing ablation of chromospheric gas, followed by convective rise of gas. Thus, a hole is burned into the chromosphere; at the end of impulsive phase of an average flare the lower part of that hole is situated about 1800 km above the photosphere. H alpha and other optical and UV line emission is radiated by a thin layer (approx. 20 km) at the bottom of the flare kernel. The upward rising and outward streaming gas cools down by conduction in about 45 s. The non-thermal effects in the initial phase are due to curtailing of the energy distribution function by escape of energetic electrons. The single flux tube model of a flare does not fit with these observations; instead we propose the spaghetti-bundle model. Microwave and gamma-ray observations suggest the occurrence of dense flare knots of approx. 800 km diameter, and of high temperature. Future observations should concentrate on locating the microwave/gamma-ray sources, and on determining the kernel's fine structure and the related multi-loop structure of the flaring area.
Ruehrnschopf and, Ernst-Peter; Klingenbeck, Klaus
2011-09-15
The main components of scatter correction procedures are scatter estimation and a scatter compensation algorithm. This paper completes a previous paper where a general framework for scatter compensation was presented under the prerequisite that a scatter estimation method is already available. In the current paper, the authors give a systematic review of the variety of scatter estimation approaches. Scatter estimation methods are based on measurements, mathematical-physical models, or combinations of both. For completeness they present an overview of measurement-based methods, but the main topic is the theoretically more demanding models, as analytical, Monte-Carlo, and hybrid models. Further classifications are 3D image-based and 2D projection-based approaches. The authors present a system-theoretic framework, which allows to proceed top-down from a general 3D formulation, by successive approximations, to efficient 2D approaches. A widely useful method is the beam-scatter-kernel superposition approach. Together with the review of standard methods, the authors discuss their limitations and how to take into account the issues of object dependency, spatial variance, deformation of scatter kernels, external and internal absorbers. Open questions for further investigations are indicated. Finally, the authors refer on some special issues and applications, such as bow-tie filter, offset detector, truncated data, and dual-source CT.
A comparison of Monte Carlo and analytic first scatter dose spread arrays.
McGary, J E; Boyer, A L; Mackie, T R
1999-05-01
We compare first scattered point dose spread arrays generated by Monte Carlo and an analytic method. The analytic method models energy deposition using Klein-Nishina cross sections for Compton scatter and approximations for electron transport. Assumptions in the analytic method are shown to be valid within a region of the point dose spread kernel in which meaningful comparisons can be made. Differences between the models are less than 10% for the forward scatter directions for radii greater than the electron range associated with the first scattered Compton photon. Differences in the backscatter region are discussed and indicate that the analytic model is useful for identifying large errors that might be present in numerically generated first scatter point dose spread arrays. The analytic method is simple and useful for validating first scatter kernels. PMID:10360537
Gaussian kernel width optimization for sparse Bayesian learning.
Mohsenzadeh, Yalda; Sheikhzadeh, Hamid
2015-04-01
Sparse kernel methods have been widely used in regression and classification applications. The performance and the sparsity of these methods are dependent on the appropriate choice of the corresponding kernel functions and their parameters. Typically, the kernel parameters are selected using a cross-validation approach. In this paper, a learning method that is an extension of the relevance vector machine (RVM) is presented. The proposed method can find the optimal values of the kernel parameters during the training procedure. This algorithm uses an expectation-maximization approach for updating kernel parameters as well as other model parameters; therefore, the speed of convergence and computational complexity of the proposed method are the same as the standard RVM. To control the convergence of this fully parameterized model, the optimization with respect to the kernel parameters is performed using a constraint on these parameters. The proposed method is compared with the typical RVM and other competing methods to analyze the performance. The experimental results on the commonly used synthetic data, as well as benchmark data sets, demonstrate the effectiveness of the proposed method in reducing the performance dependency on the initial choice of the kernel parameters. PMID:25794377
Classification of maize kernels using NIR hyperspectral imaging.
Williams, Paul J; Kucheryavskiy, Sergey
2016-10-15
NIR hyperspectral imaging was evaluated to classify maize kernels of three hardness categories: hard, medium and soft. Two approaches, pixel-wise and object-wise, were investigated to group kernels according to hardness. The pixel-wise classification assigned a class to every pixel from individual kernels and did not give acceptable results because of high misclassification. However by using a predefined threshold and classifying entire kernels based on the number of correctly predicted pixels, improved results were achieved (sensitivity and specificity of 0.75 and 0.97). Object-wise classification was performed using two methods for feature extraction - score histograms and mean spectra. The model based on score histograms performed better for hard kernel classification (sensitivity and specificity of 0.93 and 0.97), while that of mean spectra gave better results for medium kernels (sensitivity and specificity of 0.95 and 0.93). Both feature extraction methods can be recommended for classification of maize kernels on production scale. PMID:27173544
NASA Astrophysics Data System (ADS)
Wen, Junhai; Lu, Hongbing; Li, Tianfang; Liang, Zhengrong
2003-05-01
In the past decades, analytical (non-iterative) methods have been extensively investigated and developed for the reconstruction of three-dimensional (3D) single-photon emission computed tomography (SPECT). However, it becomes possible only recently when the exact analytic non-uniform attenuation reconstruction algorithm was derived. Based on the explicit inversion formula for the attenuated Radon transform discovered by Novikov (2000), we extended the previous researches of inverting the attenuated Radon transform of parallel-beam collimation geometry to fan-beam and variable focal-length fan-beam (VFF) collimators and proposed an efficient, analytical solution to 3D SPECT reconstruction with VFF collimators, which compensates simultaneously for non-uniform attenuation, scatter, and spatially-variant or distance-dependent resolution variation (DDRV), as well as suppression of signal-dependent non-stationary Poisson noise. In this procedure, to avoid the reconstructed images being corrupted by the presence of severe noise, we apply a Karhune-Loève (K-L) domain adaptive Wiener filter, which accurately treats the non-stationary Poisson noise. The scatter is then removed by our scatter estimation method, which is based on the energy spectrum and modified from the triple-energy-window acquisition protocol. For the correction of DDRV, a distance-dependent deconvolution is adapted to provide a solution that realistically characterizes the resolution kernel in a real SPECT system. Finally image is reconstructed using our VFF non-uniform attenuation inversion formula.
Machine learning algorithms for damage detection: Kernel-based approaches
NASA Astrophysics Data System (ADS)
Santos, Adam; Figueiredo, Eloi; Silva, M. F. M.; Sales, C. S.; Costa, J. C. W. A.
2016-02-01
This paper presents four kernel-based algorithms for damage detection under varying operational and environmental conditions, namely based on one-class support vector machine, support vector data description, kernel principal component analysis and greedy kernel principal component analysis. Acceleration time-series from an array of accelerometers were obtained from a laboratory structure and used for performance comparison. The main contribution of this study is the applicability of the proposed algorithms for damage detection as well as the comparison of the classification performance between these algorithms and other four ones already considered as reliable approaches in the literature. All proposed algorithms revealed to have better classification performance than the previous ones.
Monte Carlo Code System for Electron (Positron) Dose Kernel Calculations.
1999-05-12
Version 00 KERNEL performs dose kernel calculations for an electron (positron) isotropic point source in an infinite homogeneous medium. First, the auxiliary code PRELIM is used to prepare cross section data for the considered medium. Then the KERNEL code simulates the transport of electrons and bremsstrahlung photons through the medium until all particles reach their cutoff energies. The deposited energy is scored in concentric spherical shells at a radial distance ranging from zero to twicemore » the source particle range.« less
Bridging the gap between the KERNEL and RT-11
Hendra, R.G.
1981-06-01
A software package is proposed to allow users of the PL-11 language, and the LSI-11 KERNEL in general, to use their PL-11 programs under RT-11. Further, some general purpose extensions to the KERNEL are proposed that facilitate some number conversions and strong manipulations. A Floating Point Package of procedures to allow full use of the hardware floating point capability of the LSI-11 computers is proposed. Extensions to the KERNEL that allow a user to read, write and delete disc files in the manner of RT-11 is also proposed. A device directory listing routine is also included.
Manley, Marena; du Toit, Gerida; Geladi, Paul
2011-02-01
The combination of near infrared (NIR) hyperspectral imaging and chemometrics was used to follow the diffusion of conditioning water over time in wheat kernels of different hardnesses. Conditioning was attempted with deionised water (dH(2)O) and deuterium oxide (D(2)O). The images were recorded at different conditioning times (0-36 h) from 1000 to 2498 nm with a line scan imaging system. After multivariate cleaning and spectral pre-processing (either multiplicative scatter correction or standard normal variate and Savitzky-Golay smoothing) six principal components (PCs) were calculated. These were studied visually interactively as score images and score plots. As no clear clusters were present in the score plots, changes in the score plots were investigated by means of classification gradients made within the respective PCs. Classes were selected in the direction of a PC (from positive to negative or negative to positive score values) in almost equal segments. Subsequently loading line plots were used to provide a spectroscopic explanation of the classification gradients. It was shown that the first PC explained kernel curvature. PC3 was shown to be related to a moisture-starch contrast and could explain the progress of water uptake. The positive influence of protein was also observed. The behaviour of soft, hard and very hard kernels was different in this respect, with the uptake of water observed much earlier in the soft kernels than in the harder ones. The harder kernels also showed a stronger influence of protein in the loading line plots. Difference spectra showed interpretable changes over time for water but not for D(2)O which had a too low signal in the wavelength range used. NIR hyperspectral imaging together with exploratory chemometrics, as detailed in this paper, may have wider applications than merely conditioning studies. PMID:21237309
NASA Astrophysics Data System (ADS)
Huang, Fengzhen; Li, Jingzhen; Cao, Jun
2015-02-01
Temporally and Spatially Modulated Fourier Transform Imaging Spectrometer (TSMFTIS) is a new imaging spectrometer without moving mirrors and slits. As applied in remote sensing, TSMFTIS needs to rely on push-broom of the flying platform to obtain the interferogram of the target detected, and if the moving state of the flying platform changed during the imaging process, the target interferogram picked up from the remote sensing image sequence will deviate from the ideal interferogram, then the target spectrum recovered shall not reflect the real characteristic of the ground target object. Therefore, in order to achieve a high precision spectrum recovery of the target detected, the geometry position of the target point on the TSMFTIS image surface can be calculated in accordance with the sub-pixel image registration method, and the real point interferogram of the target can be obtained with image interpolation method. The core idea of the interpolation methods (nearest, bilinear and cubic etc) are to obtain the grey value of the point to be interpolated by weighting the grey value of the pixel around and with the kernel function constructed by the distance between the pixel around and the point to be interpolated. This paper adopts the gauss-based kernel regression mode, present a kernel function that consists of the grey information making use of the relative deviation and the distance information, then the kernel function is controlled by the deviation degree between the grey value of the pixel around and the means value so as to adjust weights self adaptively. The simulation adopts the partial spectrum data obtained by the pushbroom hyperspectral imager (PHI) as the spectrum of the target, obtains the successively push broomed motion error image in combination with the related parameter of the actual aviation platform; then obtains the interferogram of the target point with the above interpolation method; finally, recovers spectrogram with the nonuniform fast
Bilinear analysis for kernel selection and nonlinear feature extraction.
Yang, Shu; Yan, Shuicheng; Zhang, Chao; Tang, Xiaoou
2007-09-01
This paper presents a unified criterion, Fisher + kernel criterion (FKC), for feature extraction and recognition. This new criterion is intended to extract the most discriminant features in different nonlinear spaces, and then, fuse these features under a unified measurement. Thus, FKC can simultaneously achieve nonlinear discriminant analysis and kernel selection. In addition, we present an efficient algorithm Fisher + kernel analysis (FKA), which utilizes the bilinear analysis, to optimize the new criterion. This FKA algorithm can alleviate the ill-posed problem existed in traditional kernel discriminant analysis (KDA), and usually, has no singularity problem. The effectiveness of our proposed algorithm is validated by a series of face-recognition experiments on several different databases. PMID:18220192
Inheritance of Kernel Color in Corn: Explanations and Investigations.
ERIC Educational Resources Information Center
Ford, Rosemary H.
2000-01-01
Offers a new perspective on traditional problems in genetics on kernel color in corn, including information about genetic regulation, metabolic pathways, and evolution of genes. (Contains 15 references.) (ASK)
Intelligent classification methods of grain kernels using computer vision analysis
NASA Astrophysics Data System (ADS)
Lee, Choon Young; Yan, Lei; Wang, Tianfeng; Lee, Sang Ryong; Park, Cheol Woo
2011-06-01
In this paper, a digital image analysis method was developed to classify seven kinds of individual grain kernels (common rice, glutinous rice, rough rice, brown rice, buckwheat, common barley and glutinous barley) widely planted in Korea. A total of 2800 color images of individual grain kernels were acquired as a data set. Seven color and ten morphological features were extracted and processed by linear discriminant analysis to improve the efficiency of the identification process. The output features from linear discriminant analysis were used as input to the four-layer back-propagation network to classify different grain kernel varieties. The data set was divided into three groups: 70% for training, 20% for validation, and 10% for testing the network. The classification experimental results show that the proposed method is able to classify the grain kernel varieties efficiently.
Kernel-based Linux emulation for Plan 9.
Minnich, Ronald G.
2010-09-01
CNKemu is a kernel-based system for the 9k variant of the Plan 9 kernel. It is designed to provide transparent binary support for programs compiled for IBM's Compute Node Kernel (CNK) on the Blue Gene series of supercomputers. This support allows users to build applications with the standard Blue Gene toolchain, including C++ and Fortran compilers. While the CNK is not Linux, IBM designed the CNK so that the user interface has much in common with the Linux 2.0 system call interface. The Plan 9 CNK emulator hence provides the foundation of kernel-based Linux system call support on Plan 9. In this paper we discuss cnkemu's implementation and some of its more interesting features, such as the ability to easily intermix Plan 9 and Linux system calls.
Constructing Bayesian formulations of sparse kernel learning methods.
Cawley, Gavin C; Talbot, Nicola L C
2005-01-01
We present here a simple technique that simplifies the construction of Bayesian treatments of a variety of sparse kernel learning algorithms. An incomplete Cholesky factorisation is employed to modify the dual parameter space, such that the Gaussian prior over the dual model parameters is whitened. The regularisation term then corresponds to the usual weight-decay regulariser, allowing the Bayesian analysis to proceed via the evidence framework of MacKay. There is in addition a useful by-product associated with the incomplete Cholesky factorisation algorithm, it also identifies a subset of the training data forming an approximate basis for the entire dataset in the kernel-induced feature space, resulting in a sparse model. Bayesian treatments of the kernel ridge regression (KRR) algorithm, with both constant and heteroscedastic (input dependent) variance structures, and kernel logistic regression (KLR) are provided as illustrative examples of the proposed method, which we hope will be more widely applicable. PMID:16085387
Effect of spatial behavior of scatter on 3D PET
NASA Astrophysics Data System (ADS)
Jan, Meei-Ling; Pei, Cheng-Chih
1997-05-01
In 3D positron emission tomography (PET), all the coincidence events can be collected to increase the sensitivity of signal detection. However, the sensitivity increase results in the enlargement of scatter fraction which degrades image quality. For improving the accuracy of PET images, an effective scatter correction technique is necessary. In this paper, Monte Carlo simulations were done according to the system configuration of the animal PET design at the Institute of Nuclear Energy Research. From the simulation data we could understand what the scatter effect of our planned system will be. The convolution-subtraction method was chosen to correct for the scatter. A new approach to determine the scatter kernel function which could do better job on scatter correction will be presented.
Modeling reactive transport with particle tracking and kernel estimators
NASA Astrophysics Data System (ADS)
Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier
2015-04-01
Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.
Hairpin Vortex Dynamics in a Kernel Experiment
NASA Astrophysics Data System (ADS)
Meng, H.; Yang, W.; Sheng, J.
1998-11-01
A surface-mounted trapezoidal tab is known to shed hairpin-like vortices and generate a pair of counter-rotating vortices in its wake. Such a flow serves as a kernel experiment for studying the dynamics of these vortex structures. Created by and scaled with the tab, the vortex structures are more orderly and larger than those in the natural wall turbulence and thus suitable for measurement by Particle Image Velocimetry (PIV) and visualization by Planar Laser Induced Fluorescence (PLIF). Time-series PIV provides insight into the evolution, self-enhancement, regeneration, and interaction of hairpin vortices, as well as interactions of the hairpins with the pressure-induced counter-rotating vortex pair (CVP). The topology of the wake structure indicates that the hairpin "heads" are formed from lifted shear-layer instability and "legs" from stretching by the CVP, which passes the energy to the hairpins. The CVP diminishes after one tab height, while the hairpins persist until 10 20 tab heights downstream. It is concluded that the lift-up of the near-surface viscous fluids is the key to hairpin vortex dynamics. Whether from the pumping action of the CVP or the ejection by an existing hairpin, the 3D lift-up of near-surface vorticity contributes to the increase of hairpin vortex strength and creation of secondary hairpins. http://www.mne.ksu.edu/ meng/labhome.html
Kernel MAD Algorithm for Relative Radiometric Normalization
NASA Astrophysics Data System (ADS)
Bai, Yang; Tang, Ping; Hu, Changmiao
2016-06-01
The multivariate alteration detection (MAD) algorithm is commonly used in relative radiometric normalization. This algorithm is based on linear canonical correlation analysis (CCA) which can analyze only linear relationships among bands. Therefore, we first introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis (KCCA). The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of Landsat-8 data of Beijing, China, and Gaofen-1(GF-1) data derived from South China. Finally, we analyze the difference between the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a KCCA-based MAD algorithm to relative radiometric normalization.
Kernel spectral clustering with memory effect
NASA Astrophysics Data System (ADS)
Langone, Rocco; Alzate, Carlos; Suykens, Johan A. K.
2013-05-01
Evolving graphs describe many natural phenomena changing over time, such as social relationships, trade markets, metabolic networks etc. In this framework, performing community detection and analyzing the cluster evolution represents a critical task. Here we propose a new model for this purpose, where the smoothness of the clustering results over time can be considered as a valid prior knowledge. It is based on a constrained optimization formulation typical of Least Squares Support Vector Machines (LS-SVM), where the objective function is designed to explicitly incorporate temporal smoothness. The latter allows the model to cluster the current data well and to be consistent with the recent history. We also propose new model selection criteria in order to carefully choose the hyper-parameters of our model, which is a crucial issue to achieve good performances. We successfully test the model on four toy problems and on a real world network. We also compare our model with Evolutionary Spectral Clustering, which is a state-of-the-art algorithm for community detection of evolving networks, illustrating that the kernel spectral clustering with memory effect can achieve better or equal performances.
Local Kernel for Brains Classification in Schizophrenia
NASA Astrophysics Data System (ADS)
Castellani, U.; Rossato, E.; Murino, V.; Bellani, M.; Rambaldelli, G.; Tansella, M.; Brambilla, P.
In this paper a novel framework for brain classification is proposed in the context of mental health research. A learning by example method is introduced by combining local measurements with non linear Support Vector Machine. Instead of considering a voxel-by-voxel comparison between patients and controls, we focus on landmark points which are characterized by local region descriptors, namely Scale Invariance Feature Transform (SIFT). Then, matching is obtained by introducing the local kernel for which the samples are represented by unordered set of features. Moreover, a new weighting approach is proposed to take into account the discriminative relevance of the detected groups of features. Experiments have been performed including a set of 54 patients with schizophrenia and 54 normal controls on which region of interest (ROI) have been manually traced by experts. Preliminary results on Dorso-lateral PreFrontal Cortex (DLPFC) region are promising since up to 75% of successful classification rate has been obtained with this technique and the performance has improved up to 85% when the subjects have been stratified by sex.
Temporal-kernel recurrent neural networks.
Sutskever, Ilya; Hinton, Geoffrey
2010-03-01
A Recurrent Neural Network (RNN) is a powerful connectionist model that can be applied to many challenging sequential problems, including problems that naturally arise in language and speech. However, RNNs are extremely hard to train on problems that have long-term dependencies, where it is necessary to remember events for many timesteps before using them to make a prediction. In this paper we consider the problem of training RNNs to predict sequences that exhibit significant long-term dependencies, focusing on a serial recall task where the RNN needs to remember a sequence of characters for a large number of steps before reconstructing it. We introduce the Temporal-Kernel Recurrent Neural Network (TKRNN), which is a variant of the RNN that can cope with long-term dependencies much more easily than a standard RNN, and show that the TKRNN develops short-term memory that successfully solves the serial recall task by representing the input string with a stable state of its hidden units. PMID:19932002
Phoneme recognition with kernel learning algorithms
NASA Astrophysics Data System (ADS)
Namarvar, Hassan H.; Berger, Theodore W.
2004-10-01
An isolated phoneme recognition system is proposed using time-frequency domain analysis and support vector machines (SVMs). The TIMIT corpus which contains a total of 6300 sentences, ten sentences spoken by each of 630 speakers from eight major dialect regions of the United States, was used in this experiment. Provided time-aligned phonetic transcription was used to extract phonemes from speech samples. A 55-output classifier system was designed corresponding to 55 classes of phonemes and trained with the kernel learning algorithms. The training dataset was extracted from clean training samples. A portion of the database, i.e., 65338 samples of training dataset, was used to train the system. The performance of the system on the training dataset was 76.4%. The whole test dataset of the TIMIT corpus was used to test the generalization of the system. All samples, i.e., 55655 samples of the test dataset, were used to test the system. The performance of the system on the test dataset was 45.3%. This approach is currently under development to extend the algorithm for continuous phoneme recognition. [Work supported in part by grants from DARPA, NASA, and ONR.
Nonlinear stochastic system identification of skin using volterra kernels.
Chen, Yi; Hunter, Ian W
2013-04-01
Volterra kernel stochastic system identification is a technique that can be used to capture and model nonlinear dynamics in biological systems, including the nonlinear properties of skin during indentation. A high bandwidth and high stroke Lorentz force linear actuator system was developed and used to test the mechanical properties of bulk skin and underlying tissue in vivo using a non-white input force and measuring an output position. These short tests (5 s) were conducted in an indentation configuration normal to the skin surface and in an extension configuration tangent to the skin surface. Volterra kernel solution methods were used including a fast least squares procedure and an orthogonalization solution method. The practical modifications, such as frequency domain filtering, necessary for working with low-pass filtered inputs are also described. A simple linear stochastic system identification technique had a variance accounted for (VAF) of less than 75%. Representations using the first and second Volterra kernels had a much higher VAF (90-97%) as well as a lower Akaike information criteria (AICc) indicating that the Volterra kernel models were more efficient. The experimental second Volterra kernel matches well with results from a dynamic-parameter nonlinearity model with fixed mass as a function of depth as well as stiffness and damping that increase with depth into the skin. A study with 16 subjects showed that the kernel peak values have mean coefficients of variation (CV) that ranged from 3 to 8% and showed that the kernel principal components were correlated with location on the body, subject mass, body mass index (BMI), and gender. These fast and robust methods for Volterra kernel stochastic system identification can be applied to the characterization of biological tissues, diagnosis of skin diseases, and determination of consumer product efficacy. PMID:23264003
The Weighted Super Bergman Kernels Over the Supermatrix Spaces
NASA Astrophysics Data System (ADS)
Feng, Zhiming
2015-12-01
The purpose of this paper is threefold. Firstly, using Howe duality for , we obtain integral formulas of the super Schur functions with respect to the super standard Gaussian distributions. Secondly, we give explicit expressions of the super Szegö kernels and the weighted super Bergman kernels for the Cartan superdomains of type I. Thirdly, combining these results, we obtain duality relations of integrals over the unitary groups and the Cartan superdomains, and the marginal distributions of the weighted measure.
Simple randomized algorithms for online learning with kernels.
He, Wenwu; Kwok, James T
2014-12-01
In online learning with kernels, it is vital to control the size (budget) of the support set because of the curse of kernelization. In this paper, we propose two simple and effective stochastic strategies for controlling the budget. Both algorithms have an expected regret that is sublinear in the horizon. Experimental results on a number of benchmark data sets demonstrate encouraging performance in terms of both efficacy and efficiency. PMID:25108150
Resummed memory kernels in generalized system-bath master equations
Mavros, Michael G.; Van Voorhis, Troy
2014-08-07
Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics.
Resummed memory kernels in generalized system-bath master equations
NASA Astrophysics Data System (ADS)
Mavros, Michael G.; Van Voorhis, Troy
2014-08-01
Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the "Landau-Zener resummation" of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics.
Resummed memory kernels in generalized system-bath master equations.
Mavros, Michael G; Van Voorhis, Troy
2014-08-01
Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the "Landau-Zener resummation" of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics. PMID:25106575
Sparse kernel learning with LASSO and Bayesian inference algorithm.
Gao, Junbin; Kwan, Paul W; Shi, Daming
2010-03-01
Kernelized LASSO (Least Absolute Selection and Shrinkage Operator) has been investigated in two separate recent papers [Gao, J., Antolovich, M., & Kwan, P. H. (2008). L1 LASSO and its Bayesian inference. In W. Wobcke, & M. Zhang (Eds.), Lecture notes in computer science: Vol. 5360 (pp. 318-324); Wang, G., Yeung, D. Y., & Lochovsky, F. (2007). The kernel path in kernelized LASSO. In International conference on artificial intelligence and statistics (pp. 580-587). San Juan, Puerto Rico: MIT Press]. This paper is concerned with learning kernels under the LASSO formulation via adopting a generative Bayesian learning and inference approach. A new robust learning algorithm is proposed which produces a sparse kernel model with the capability of learning regularized parameters and kernel hyperparameters. A comparison with state-of-the-art methods for constructing sparse regression models such as the relevance vector machine (RVM) and the local regularization assisted orthogonal least squares regression (LROLS) is given. The new algorithm is also demonstrated to possess considerable computational advantages. PMID:19604671
Enzymatic treatment of peanut kernels to reduce allergen levels.
Yu, Jianmei; Ahmedna, Mohamed; Goktepe, Ipek; Cheng, Hsiaopo; Maleki, Soheila
2011-08-01
This study investigated the use of enzymatic treatment to reduce peanut allergens in peanut kernels as affected by processing conditions. Two major peanut allergens, Ara h 1 and Ara h 2, were used as indicators of process effectiveness. Enzymatic treatment effectively reduced Ara h 1 and Ara h 2 in roasted peanut kernels by up to 100% under optimal conditions. For instance, treatment of roasted peanut kernels with α-chymotrypsin and trypsin for 1-3h significantly increased the solubility of peanut protein while reducing Ara h 1 and Ara h 2 in peanut kernel extracts by 100% and 98%, respectively, based on ELISA readings. Ara h 1 and Ara h 2 levels in peanut protein extracts were inversely correlated with protein solubility in roasted peanut. Blanching of kernels enhanced the effectiveness of enzyme treatment in roasted peanuts but not in raw peanuts. The optimal concentration of enzyme was determined by response surface to be in the range of 0.1-0.2%. No consistent results were obtained for raw peanut kernels since Ara h 1 and Ara h 2 increased in peanut protein extracts under some treatment conditions and decreased in others. PMID:25214091
Integrodifference equations in patchy landscapes : I. Dispersal Kernels.
Musgrave, Jeffrey; Lutscher, Frithjof
2014-09-01
What is the effect of individual movement behavior in patchy landscapes on redistribution kernels? To answer this question, we derive a number of redistribution kernels from a random walk model with patch dependent diffusion, settling, and mortality rates. At the interface of two patch types, we integrate recent results on individual behavior at the interface. In general, these interface conditions result in the probability density function of the random walker being discontinuous at an interface. We show that the dispersal kernel can be characterized as the Green's function of a second-order differential operator. Using this characterization, we illustrate the kind of (discontinuous) dispersal kernels that result from our approach, using three scenarios. First, we assume that dispersal distance is small compared to patch size, so that a typical disperser crosses at most one interface during the dispersal phase. Then we consider a single bounded patch and generate kernels that will be useful to study the critical patch size problem in our sequel paper. Finally, we explore dispersal kernels in a periodic landscape and study the dependence of certain dispersal characteristics on model parameters. PMID:23907527
Fast O1 bilateral filtering using trigonometric range kernels.
Chaudhury, Kunal Narayan; Sage, Daniel; Unser, Michael
2011-12-01
It is well known that spatial averaging can be realized (in space or frequency domain) using algorithms whose complexity does not scale with the size or shape of the filter. These fast algorithms are generally referred to as constant-time or O(1) algorithms in the image-processing literature. Along with the spatial filter, the edge-preserving bilateral filter involves an additional range kernel. This is used to restrict the averaging to those neighborhood pixels whose intensity are similar or close to that of the pixel of interest. The range kernel operates by acting on the pixel intensities. This makes the averaging process nonlinear and computationally intensive, particularly when the spatial filter is large. In this paper, we show how the O(1) averaging algorithms can be leveraged for realizing the bilateral filter in constant time, by using trigonometric range kernels. This is done by generalizing the idea presented by Porikli, i.e., using polynomial kernels. The class of trigonometric kernels turns out to be sufficiently rich, allowing for the approximation of the standard Gaussian bilateral filter. The attractive feature of our approach is that, for a fixed number of terms, the quality of approximation achieved using trigonometric kernels is much superior to that obtained by Porikli using polynomials. PMID:21659022
Kernelized Elastic Net Regularization: Generalization Bounds, and Sparse Recovery.
Feng, Yunlong; Lv, Shao-Gao; Hang, Hanyuan; Suykens, Johan A K
2016-03-01
Kernelized elastic net regularization (KENReg) is a kernelization of the well-known elastic net regularization (Zou & Hastie, 2005 ). The kernel in KENReg is not required to be a Mercer kernel since it learns from a kernelized dictionary in the coefficient space. Feng, Yang, Zhao, Lv, and Suykens ( 2014 ) showed that KENReg has some nice properties including stability, sparseness, and generalization. In this letter, we continue our study on KENReg by conducting a refined learning theory analysis. This letter makes the following three main contributions. First, we present refined error analysis on the generalization performance of KENReg. The main difficulty of analyzing the generalization error of KENReg lies in characterizing the population version of its empirical target function. We overcome this by introducing a weighted Banach space associated with the elastic net regularization. We are then able to conduct elaborated learning theory analysis and obtain fast convergence rates under proper complexity and regularity assumptions. Second, we study the sparse recovery problem in KENReg with fixed design and show that the kernelization may improve the sparse recovery ability compared to the classical elastic net regularization. Finally, we discuss the interplay among different properties of KENReg that include sparseness, stability, and generalization. We show that the stability of KENReg leads to generalization, and its sparseness confidence can be derived from generalization. Moreover, KENReg is stable and can be simultaneously sparse, which makes it attractive theoretically and practically. PMID:26735744
Fast discontinuous Galerkin lattice-Boltzmann simulations on GPUs via maximal kernel fusion
NASA Astrophysics Data System (ADS)
Mazzeo, Marco D.
2013-03-01
A GPU implementation of the discontinuous Galerkin lattice-Boltzmann method with square spectral elements, and highly optimised for speed and precision of calculations is presented. An extensive analysis of the numerous variants of the fluid solver unveils that best performance is obtained by maximising CUDA kernel fusion and by arranging the resulting kernel tasks so as to trigger memory coherent and scattered loads in a specific manner, albeit at the cost of introducing cross-thread load unbalancing. Surprisingly, any attempt to vanish this, to maximise thread occupancy and to adopt conventional work tiling or distinct custom kernels highly tuned via ad hoc data and computation layouts invariably deteriorate performance. As such, this work sheds light into the possibility to hide fetch latencies of workloads involving heterogeneous loads in a way that is more effective than what is achieved with frequently suggested techniques. When simulating the lid-driven cavity on a NVIDIA GeForce GTX 480 via a 5-stage 4th-order Runge-Kutta (RK) scheme, the first four digits of the obtained centreline velocity values, or more, converge to those of the state-of-the-art literature data at a simulation speed of 7.0G primitive variable updates per second during the collision stage and 4.4G ones during each RK step of the advection by employing double-precision arithmetic (DPA) and a computational grid of 642 4×4-point elements only. The new programming engine leads to about 2× performance w.r.t. the best programming guidelines in the field. The new fluid solver on the above GPU is also 20-30 times faster than a highly optimised version running on a single core of a Intel Xeon X5650 2.66 GHz.
Fouss, François; Francoisse, Kevin; Yen, Luh; Pirotte, Alain; Saerens, Marco
2012-07-01
This paper presents a survey as well as an empirical comparison and evaluation of seven kernels on graphs and two related similarity matrices, that we globally refer to as "kernels on graphs" for simplicity. They are the exponential diffusion kernel, the Laplacian exponential diffusion kernel, the von Neumann diffusion kernel, the regularized Laplacian kernel, the commute-time (or resistance-distance) kernel, the random-walk-with-restart similarity matrix, and finally, a kernel first introduced in this paper (the regularized commute-time kernel) and two kernels defined in some of our previous work and further investigated in this paper (the Markov diffusion kernel and the relative-entropy diffusion matrix). The kernel-on-graphs approach is simple and intuitive. It is illustrated by applying the nine kernels to a collaborative-recommendation task, viewed as a link prediction problem, and to a semisupervised classification task, both on several databases. The methods compute proximity measures between nodes that help study the structure of the graph. Our comparisons suggest that the regularized commute-time and the Markov diffusion kernels perform best on the investigated tasks, closely followed by the regularized Laplacian kernel. PMID:22497802
Enzyme Activities of Starch and Sucrose Pathways and Growth of Apical and Basal Maize Kernels 1
Ou-Lee, Tsai-Mei; Setter, Tim Lloyd
1985-01-01
Apical kernels of maize (Zea mays L.) ears have smaller size and lower growth rates than basal kernels. To improve our understanding of this difference, the developmental patterns of starch-synthesis-pathway enzyme activities and accumulation of sugars and starch was determined in apical- and basal-kernel endosperm of greenhouse-grown maize (cultivar Cornell 175) plants. Plants were synchronously pollinated, kernels were sampled from apical and basal ear positions throughout kernel development, and enzyme activities were measured in crude preparations. Several factors were correlated with the higher dry matter accumulation rate and larger mature kernel size of basal-kernel endosperm. During the period of cell expansion (7 to 19 days after pollination), the activity of insoluble (acid) invertase and sucose concentration in endosperm of basal kernels exceeded that in apical kernels. Soluble (alkaline) invertase was also high during this stage but was the same in endosperm of basal and apical kernels, while glucose concentration was higher in apical-kernel endosperm. During the period of maximal starch synthesis, the activities of sucrose synthase, ADP-Glc-pyrophosphorylase, and insoluble (granule-bound) ADP-Glc-starch synthase were higher in endosperm of basal than apical kernels. Soluble ADP-Glc-starch synthase, which was maximal during the early stage before starch accumulated, was the same in endosperm from apical and basal kernels. It appeared that differences in metabolic potential between apical and basal kernels were established at an early stage in kernel development. PMID:16664503
Wilson loops and QCD/string scattering amplitudes
Makeenko, Yuri; Olesen, Poul
2009-07-15
We generalize modern ideas about the duality between Wilson loops and scattering amplitudes in N=4 super Yang-Mills theory to large N QCD by deriving a general relation between QCD meson scattering amplitudes and Wilson loops. We then investigate properties of the open-string disk amplitude integrated over reparametrizations. When the Wilson-loop is approximated by the area behavior, we find that the QCD scattering amplitude is a convolution of the standard Koba-Nielsen integrand and a kernel. As usual poles originate from the first factor, whereas no (momentum-dependent) poles can arise from the kernel. We show that the kernel becomes a constant when the number of external particles becomes large. The usual Veneziano amplitude then emerges in the kinematical regime, where the Wilson loop can be reliably approximated by the area behavior. In this case, we obtain a direct duality between Wilson loops and scattering amplitudes when spatial variables and momenta are interchanged, in analogy with the N=4 super Yang-Mills theory case.
Kar, Arindam; Bhattacharjee, Debotosh; Basu, Dipak Kumar; Nasipuri, Mita; Kundu, Mahantapas
2012-01-01
In this paper a nonlinear Gabor Wavelet Transform (GWT) discriminant feature extraction approach for enhanced face recognition is proposed. Firstly, the low-energized blocks from Gabor wavelet transformed images are extracted. Secondly, the nonlinear discriminating features are analyzed and extracted from the selected low-energized blocks by the generalized Kernel Discriminative Common Vector (KDCV) method. The KDCV method is extended to include cosine kernel function in the discriminating method. The KDCV with the cosine kernels is then applied on the extracted low-energized discriminating feature vectors to obtain the real component of a complex quantity for face recognition. In order to derive positive kernel discriminative vectors, we apply only those kernel discriminative eigenvectors that are associated with nonzero eigenvalues. The feasibility of the low-energized Gabor-block-based generalized KDCV method with cosine kernel function models has been successfully tested for classification using the L(1), L(2) distance measures; and the cosine similarity measure on both frontal and pose-angled face recognition. Experimental results on the FRAV2D and the FERET database demonstrate the effectiveness of this new approach. PMID:23365559
Volcano clustering determination: Bivariate Gauss vs. Fisher kernels
NASA Astrophysics Data System (ADS)
Cañón-Tapia, Edgardo
2013-05-01
Underlying many studies of volcano clustering is the implicit assumption that vent distribution can be studied by using kernels originally devised for distribution in plane surfaces. Nevertheless, an important change in topology in the volcanic context is related to the distortion that is introduced when attempting to represent features found on the surface of a sphere that are being projected into a plane. This work explores the extent to which different topologies of the kernel used to study the spatial distribution of vents can introduce significant changes in the obtained density functions. To this end, a planar (Gauss) and a spherical (Fisher) kernels are mutually compared. The role of the smoothing factor in these two kernels is also explored with some detail. The results indicate that the topology of the kernel is not extremely influential, and that either type of kernel can be used to characterize a plane or a spherical distribution with exactly the same detail (provided that a suitable smoothing factor is selected in each case). It is also shown that there is a limitation on the resolution of the Fisher kernel relative to the typical separation between data that can be accurately described, because data sets with separations lower than 500 km are considered as a single cluster using this method. In contrast, the Gauss kernel can provide adequate resolutions for vent distributions at a wider range of separations. In addition, this study also shows that the numerical value of the smoothing factor (or bandwidth) of both the Gauss and Fisher kernels has no unique nor direct relationship with the relevant separation among data. In order to establish the relevant distance, it is necessary to take into consideration the value of the respective smoothing factor together with a level of statistical significance at which the contributions to the probability density function will be analyzed. Based on such reference level, it is possible to create a hierarchy of
A Distributed Learning Method for ℓ 1 -Regularized Kernel Machine over Wireless Sensor Networks.
Ji, Xinrong; Hou, Cuiqin; Hou, Yibin; Gao, Fang; Wang, Shulong
2016-01-01
In wireless sensor networks, centralized learning methods have very high communication costs and energy consumption. These are caused by the need to transmit scattered training examples from various sensor nodes to the central fusion center where a classifier or a regression machine is trained. To reduce the communication cost, a distributed learning method for a kernel machine that incorporates ℓ 1 norm regularization ( ℓ 1 -regularized) is investigated, and a novel distributed learning algorithm for the ℓ 1 -regularized kernel minimum mean squared error (KMSE) machine is proposed. The proposed algorithm relies on in-network processing and a collaboration that transmits the sparse model only between single-hop neighboring nodes. This paper evaluates the proposed algorithm with respect to the prediction accuracy, the sparse rate of model, the communication cost and the number of iterations on synthetic and real datasets. The simulation results show that the proposed algorithm can obtain approximately the same prediction accuracy as that obtained by the batch learning method. Moreover, it is significantly superior in terms of the sparse rate of model and communication cost, and it can converge with fewer iterations. Finally, an experiment conducted on a wireless sensor network (WSN) test platform further shows the advantages of the proposed algorithm with respect to communication cost. PMID:27376298
A Distributed Learning Method for ℓ1-Regularized Kernel Machine over Wireless Sensor Networks
Ji, Xinrong; Hou, Cuiqin; Hou, Yibin; Gao, Fang; Wang, Shulong
2016-01-01
In wireless sensor networks, centralized learning methods have very high communication costs and energy consumption. These are caused by the need to transmit scattered training examples from various sensor nodes to the central fusion center where a classifier or a regression machine is trained. To reduce the communication cost, a distributed learning method for a kernel machine that incorporates ℓ1 norm regularization (ℓ1-regularized) is investigated, and a novel distributed learning algorithm for the ℓ1-regularized kernel minimum mean squared error (KMSE) machine is proposed. The proposed algorithm relies on in-network processing and a collaboration that transmits the sparse model only between single-hop neighboring nodes. This paper evaluates the proposed algorithm with respect to the prediction accuracy, the sparse rate of model, the communication cost and the number of iterations on synthetic and real datasets. The simulation results show that the proposed algorithm can obtain approximately the same prediction accuracy as that obtained by the batch learning method. Moreover, it is significantly superior in terms of the sparse rate of model and communication cost, and it can converge with fewer iterations. Finally, an experiment conducted on a wireless sensor network (WSN) test platform further shows the advantages of the proposed algorithm with respect to communication cost. PMID:27376298
Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H
2016-05-01
The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel. PMID:27250181
Gabor-based kernel PCA with fractional power polynomial models for face recognition.
Liu, Chengjun
2004-05-01
This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power
Local coding based matching kernel method for image classification.
Song, Yan; McLoughlin, Ian Vince; Dai, Li-Rong
2014-01-01
This paper mainly focuses on how to effectively and efficiently measure visual similarity for local feature based representation. Among existing methods, metrics based on Bag of Visual Word (BoV) techniques are efficient and conceptually simple, at the expense of effectiveness. By contrast, kernel based metrics are more effective, but at the cost of greater computational complexity and increased storage requirements. We show that a unified visual matching framework can be developed to encompass both BoV and kernel based metrics, in which local kernel plays an important role between feature pairs or between features and their reconstruction. Generally, local kernels are defined using Euclidean distance or its derivatives, based either explicitly or implicitly on an assumption of Gaussian noise. However, local features such as SIFT and HoG often follow a heavy-tailed distribution which tends to undermine the motivation behind Euclidean metrics. Motivated by recent advances in feature coding techniques, a novel efficient local coding based matching kernel (LCMK) method is proposed. This exploits the manifold structures in Hilbert space derived from local kernels. The proposed method combines advantages of both BoV and kernel based metrics, and achieves a linear computational complexity. This enables efficient and scalable visual matching to be performed on large scale image sets. To evaluate the effectiveness of the proposed LCMK method, we conduct extensive experiments with widely used benchmark datasets, including 15-Scenes, Caltech101/256, PASCAL VOC 2007 and 2011 datasets. Experimental results confirm the effectiveness of the relatively efficient LCMK method. PMID:25119982
Thermal-to-visible face recognition using multiple kernel learning
NASA Astrophysics Data System (ADS)
Hu, Shuowen; Gurram, Prudhvi; Kwon, Heesung; Chan, Alex L.
2014-06-01
Recognizing faces acquired in the thermal spectrum from a gallery of visible face images is a desired capability for the military and homeland security, especially for nighttime surveillance and intelligence gathering. However, thermal-tovisible face recognition is a highly challenging problem, due to the large modality gap between thermal and visible imaging. In this paper, we propose a thermal-to-visible face recognition approach based on multiple kernel learning (MKL) with support vector machines (SVMs). We first subdivide the face into non-overlapping spatial regions or blocks using a method based on coalitional game theory. For comparison purposes, we also investigate uniform spatial subdivisions. Following this subdivision, histogram of oriented gradients (HOG) features are extracted from each block and utilized to compute a kernel for each region. We apply sparse multiple kernel learning (SMKL), which is a MKLbased approach that learns a set of sparse kernel weights, as well as the decision function of a one-vs-all SVM classifier for each of the subjects in the gallery. We also apply equal kernel weights (non-sparse) and obtain one-vs-all SVM models for the same subjects in the gallery. Only visible images of each subject are used for MKL training, while thermal images are used as probe images during testing. With subdivision generated by game theory, we achieved Rank-1 identification rate of 50.7% for SMKL and 93.6% for equal kernel weighting using a multimodal dataset of 65 subjects. With uniform subdivisions, we achieved a Rank-1 identification rate of 88.3% for SMKL, but 92.7% for equal kernel weighting.
Kernel Machine Testing for Risk Prediction with Stratified Case Cohort Studies
Payne, Rebecca; Neykov, Matey; Jensen, Majken Karoline; Cai, Tianxi
2015-01-01
Summary Large assembled cohorts with banked biospecimens offer valuable opportunities to identify novel markers for risk prediction. When the outcome of interest is rare, an effective strategy to conserve limited biological resources while maintaining reasonable statistical power is the case cohort (CCH) sampling design, in which expensive markers are measured on a subset of cases and controls. However, the CCH design introduces significant analytical complexity due to outcome-dependent, finite-population sampling. Current methods for analyzing CCH studies focus primarily on the estimation of simple survival models with linear effects; testing and estimation procedures that can efficiently capture complex non-linear marker effects for CCH data remain elusive. In this paper, we propose inverse probability weighted (IPW) variance component type tests for identifying important marker sets through a Cox proportional hazards kernel machine (CoxKM) regression framework previously considered for full cohort studies (Cai et al., 2011). The optimal choice of kernel, while vitally important to attain high power, is typically unknown for a given dataset. Thus we also develop robust testing procedures that adaptively combine information from multiple kernels. The proposed IPW test statistics have complex null distributions that cannot easily be approximated explicitly. Furthermore, due to the correlation induced by CCH sampling, standard resampling methods such as the bootstrap fail to approximate the distribution correctly. We therefore propose a novel perturbation resampling scheme that can effectively recover the induced correlation structure. Results from extensive simulation studies suggest that the proposed IPW CoxKM testing procedures work well in finite samples. The proposed methods are further illustrated by application to a Danish CCH study of Apolipoprotein C-III markers on the risk of coronary heart disease. PMID:26692376
Kernel machine testing for risk prediction with stratified case cohort studies.
Payne, Rebecca; Neykov, Matey; Jensen, Majken Karoline; Cai, Tianxi
2016-06-01
Large assembled cohorts with banked biospecimens offer valuable opportunities to identify novel markers for risk prediction. When the outcome of interest is rare, an effective strategy to conserve limited biological resources while maintaining reasonable statistical power is the case cohort (CCH) sampling design, in which expensive markers are measured on a subset of cases and controls. However, the CCH design introduces significant analytical complexity due to outcome-dependent, finite-population sampling. Current methods for analyzing CCH studies focus primarily on the estimation of simple survival models with linear effects; testing and estimation procedures that can efficiently capture complex non-linear marker effects for CCH data remain elusive. In this article, we propose inverse probability weighted (IPW) variance component type tests for identifying important marker sets through a Cox proportional hazards kernel machine (CoxKM) regression framework previously considered for full cohort studies (Cai et al., 2011). The optimal choice of kernel, while vitally important to attain high power, is typically unknown for a given dataset. Thus, we also develop robust testing procedures that adaptively combine information from multiple kernels. The proposed IPW test statistics have complex null distributions that cannot easily be approximated explicitly. Furthermore, due to the correlation induced by CCH sampling, standard resampling methods such as the bootstrap fail to approximate the distribution correctly. We, therefore, propose a novel perturbation resampling scheme that can effectively recover the induced correlation structure. Results from extensive simulation studies suggest that the proposed IPW CoxKM testing procedures work well in finite samples. The proposed methods are further illustrated by application to a Danish CCH study of Apolipoprotein C-III markers on the risk of coronary heart disease. PMID:26692376
Three-dimensional photodissociation in strong laser fields: Memory-kernel effective-mode expansion
Li Xuan; Thanopulos, Ioannis; Shapiro, Moshe
2011-03-15
We introduce a method for the efficient computation of non-Markovian quantum dynamics for strong (and time-dependent) system-bath interactions. The past history of the system dynamics is incorporated by expanding the memory kernel in exponential functions thereby transforming in an exact fashion the non-Markovian integrodifferential equations into a (larger) set of ''effective modes'' differential equations (EMDE). We have devised a method which easily diagonalizes the EMDE, thereby allowing for the efficient construction of an adiabatic basis and the fast propagation of the EMDE in time. We have applied this method to three-dimensional photodissociation of the H{sub 2}{sup +} molecule by strong laser fields. Our calculations properly include resonance-Raman scattering via the continuum, resulting in extensive rotational and vibrational excitations. The calculated final kinetic and angular distribution of the photofragments are in overall excellent agreement with experiments, both when transform-limited pulses and when chirped pulses are used.
The Scattering of Light III. External Scattering from a Finite Molecular Fluid
NASA Astrophysics Data System (ADS)
Hynne, F.; Bullough, R. K.
1990-03-01
We calculate the external incoherent scattering from a finite molecular fluid exposed to a weak, external, coherent electromagnetic field. The scattered field is detected outside the fluid and the system models a real scattering experiment in all its aspects. The analysis is based on a classical all order many-body theory developed in two previous papers. The theory is microscopic, i.e. is developed ab initio and in detail in terms of individual scattering processes in vacuo at a strictly molecular level. But it is shown that the collective action of these generates all of the macroscopic features expected in the external scattering: for example, the refractive index, as it was calculated previously from the many-body theory, plays much of its expected macroscopic role. These macroscopic results are reached by showing that the complete scattering process (from a wave incident in vacuo on the fluid to a wave in vacuo scattered from the fluid) separates into three independent collective processes compactly described by a particular quadrilinear form quadratic in a field E induced in the fluid by any coherent external field, and quadratic in a `weight' field ɛ describing the scattered field in the fluid. The internal fields E and ɛ couple separately to the external incoming field and to one representing the external scattered field respectively. In each case they account for all collective surface effects. The kernel of the quadrilinear form accounts for all of the internal scattering processes in the fluid. The weight field ɛ and the equations associated with it describe refraction and (multiple) internal reflection of the scattered light at the surface of the medium in all details: these collective surface effects are managed in a very effective way through a new reciprocity principle derived from the microscopic theory and containing a new form of optical extinction theorem for external scattering. The kernel of the quadrilinear form for internal scattering has
Adaptive Gaussian pattern classification. Final report
Priebe, C.E.; Marchette, D.J.
1988-08-01
A massively parallel architecture for pattern classification is described. The architecture is based on the field of density estimation. It makes use of a variant of the adaptive-kernel estimator to approximate the distributions of the classes as a sum of Gaussian distributions. These Gaussians are learned using a moved-mean, moving-covariance learning scheme. A temporal ordering scheme is implemented using decay at the input level, allowing the network to learn to recognize sequences. The learning scheme requires a single pass through the data, giving the architecture the capability of real-time learning. The first part of the paper develops the adaptive-kernel estimator. The parallel architecture is then described, and issues relevant to implementation are discussed. Finally, applications to robotic sensor fusion, intended word recognition, and vision are described.
Modeling Reconsolidation in Kernel Associative Memory
Nowicki, Dimitri; Verga, Patrick; Siegelmann, Hava
2013-01-01
Memory reconsolidation is a central process enabling adaptive memory and the perception of a constantly changing reality. It causes memories to be strengthened, weakened or changed following their recall. A computational model of memory reconsolidation is presented. Unlike Hopfield-type memory models, our model introduces an unbounded number of attractors that are updatable and can process real-valued, large, realistic stimuli. Our model replicates three characteristic effects of the reconsolidation process on human memory: increased association, extinction of fear memories, and the ability to track and follow gradually changing objects. In addition to this behavioral validation, a continuous time version of the reconsolidation model is introduced. This version extends average rate dynamic models of brain circuits exhibiting persistent activity to include adaptivity and an unbounded number of attractors. PMID:23936300
Input space versus feature space in kernel-based methods.
Schölkopf, B; Mika, S; Burges, C C; Knirsch, P; Müller, K R; Rätsch, G; Smola, A J
1999-01-01
This paper collects some ideas targeted at advancing our understanding of the feature spaces associated with support vector (SV) kernel functions. We first discuss the geometry of feature space. In particular, we review what is known about the shape of the image of input space under the feature space map, and how this influences the capacity of SV methods. Following this, we describe how the metric governing the intrinsic geometry of the mapped surface can be computed in terms of the kernel, using the example of the class of inhomogeneous polynomial kernels, which are often used in SV pattern recognition. We then discuss the connection between feature space and input space by dealing with the question of how one can, given some vector in feature space, find a preimage (exact or approximate) in input space. We describe algorithms to tackle this issue, and show their utility in two applications of kernel methods. First, we use it to reduce the computational complexity of SV decision functions; second, we combine it with the Kernel PCA algorithm, thereby constructing a nonlinear statistical denoising technique which is shown to perform well on real-world data. PMID:18252603
Phase discontinuity predictions using a machine-learning trained kernel.
Sawaf, Firas; Groves, Roger M
2014-08-20
Phase unwrapping is one of the key steps of interferogram analysis, and its accuracy relies primarily on the correct identification of phase discontinuities. This can be especially challenging for inherently noisy phase fields, such as those produced through shearography and other speckle-based interferometry techniques. We showed in a recent work how a relatively small 10×10 pixel kernel was trained, through machine learning methods, for predicting the locations of phase discontinuities within noisy wrapped phase maps. We describe here how this kernel can be applied in a sliding-window fashion, such that each pixel undergoes 100 phase-discontinuity examinations--one test for each of its possible positions relative to its neighbors within the kernel's extent. We explore how the resulting predictions can be accumulated, and aggregated through a voting system, and demonstrate that the reliability of this method outperforms processing the image by segmenting it into more conventional 10×10 nonoverlapping tiles. When used in this way, we demonstrate that our 10×10 pixel kernel is large enough for effective processing of full-field interferograms. Avoiding, thus, the need for substantially more formidable computational resources which otherwise would have been necessary for training a kernel of a significantly larger size. PMID:25321117
Multiple kernel sparse representations for supervised and unsupervised learning.
Thiagarajan, Jayaraman J; Ramamurthy, Karthikeyan Natesan; Spanias, Andreas
2014-07-01
In complex visual recognition tasks, it is typical to adopt multiple descriptors, which describe different aspects of the images, for obtaining an improved recognition performance. Descriptors that have diverse forms can be fused into a unified feature space in a principled manner using kernel methods. Sparse models that generalize well to the test data can be learned in the unified kernel space, and appropriate constraints can be incorporated for application in supervised and unsupervised learning. In this paper, we propose to perform sparse coding and dictionary learning in the multiple kernel space, where the weights of the ensemble kernel are tuned based on graph-embedding principles such that class discrimination is maximized. In our proposed algorithm, dictionaries are inferred using multiple levels of 1D subspace clustering in the kernel space, and the sparse codes are obtained using a simple levelwise pursuit scheme. Empirical results for object recognition and image clustering show that our algorithm outperforms existing sparse coding based approaches, and compares favorably to other state-of-the-art methods. PMID:24833593
[Utilizable value of wild economic plant resource--acron kernel].
He, R; Wang, K; Wang, Y; Xiong, T
2000-04-01
Peking whites breeding hens were selected. Using true metabolizable energy method (TME) to evaluate the available nutritive value of acorn kernel, while maize and rice were used as control. The results showed that the contents of gross energy (GE), apparent metabolizable energy (AME), true metabolizable energy (TME) and crude protein (CP) in the acorn kernel were 16.53 mg/kg-1, 11.13 mg.kg-1, 11.66 mg.kg-1 and 10.63%, respectively. The apparent availability and true availability of crude protein were 45.55% and 49.83%. The gross content of 17 amino acids, essential amino acids and semiessential amino acids were 9.23% and 4.84%. The true availability of amino acid and the content of true available amino acid were 60.85% and 6.09%. The contents of tannin and hydrocyanic acid were 4.55% and 0.98% in acorn kernel. The available nutritive value of acorn kernel is similar to maize or slightly lower, but slightly higher than that of rice. Acorn kernel is a wild economic plant resource to exploit and utilize but it contains higher tannin and hydrocyanic acid. PMID:11767593
Scatter of X-rays on polished surfaces
NASA Technical Reports Server (NTRS)
Hasinger, G.
1981-01-01
In investigating the dispersion properties of telescope mirrors used in X-ray astronomy, the slight scattering characteristics of X-ray radiation by statistically rough surfaces were examined. The mathematics and geometry of scattering theory are described. The measurement test assembly is described and results of measurements on samples of plane mirrors are given. Measurement results are evaluated. The direct beam, the convolution of the direct beam and the scattering halo, curve fitting by the method of least squares, various autocorrelation functions, results of the fitting procedure for small scattering, and deviations in the kernel of the scattering distribution are presented. A procedure for quality testing of mirror systems through diagnosis of rough surfaces is described.
Anisotropic Elastic Resonance Scattering model for the Neutron Transport equation
Mohamed Ouisloumen; Abderrafi M. Ougouag; Shadi Z. Ghrayeb
2014-11-24
The resonance scattering transfer cross-section has been reformulated to account for anisotropic scattering in the center-of-mass of the neutron-nucleus system. The main innovation over previous implementations is the relaxation of the ubiquitous assumption of isotropic scattering in the center-of-mass and the actual effective use of scattering angle distributions from evaluated nuclear data files in the computation of the angular moments of the resonant scattering kernels. The formulas for the high order anisotropic moments in the laboratory system are also derived. A multi-group numerical formulation is derived and implemented into a module incorporated within the NJOY nuclear data processing code. An ultra-fine energy mesh cross section library was generated using these new theoretical models and then was used for fuel assembly calculations with the PARAGON lattice physics code. The results obtained indicate a strong effect of this new model on reactivity, multi-group fluxes and isotopic inventory during depletion.
NASA Astrophysics Data System (ADS)
Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel
2015-04-01
We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity
NASA Astrophysics Data System (ADS)
Chen, Jeng-Tzong; Lee, Jia-Wei
2013-09-01
In this paper, we focus on the water wave scattering by an array of four elliptical cylinders. The null-field boundary integral equation method (BIEM) is used in conjunction with degenerate kernels and eigenfunctions expansion. The closed-form fundamental solution is expressed in terms of the degenerate kernel containing the Mathieu and the modified Mathieu functions in the elliptical coordinates. Boundary densities are represented by using the eigenfunction expansion. To avoid using the addition theorem to translate the Mathieu functions, the present approach can solve the water wave problem containing multiple elliptical cylinders in a semi-analytical manner by introducing the adaptive observer system. Regarding water wave problems, the phenomena of numerical instability of fictitious frequencies may appear when the BIEM/boundary element method (BEM) is used. Besides, the near-trapped mode for an array of four identical elliptical cylinders is observed in a special layout. Both physical (near-trapped mode) and mathematical (fictitious frequency) resonances simultaneously appear in the present paper for a water wave problem by an array of four identical elliptical cylinders. Two regularization techniques, the combined Helmholtz interior integral equation formulation (CHIEF) method and the Burton and Miller approach, are adopted to alleviate the numerical resonance due to fictitious frequency.
Evolutionary Metabolomics Reveals Domestication-Associated Changes in Tetraploid Wheat Kernels
Beleggia, Romina; Rau, Domenico; Laidò, Giovanni; Platani, Cristiano; Nigro, Franca; Fragasso, Mariagiovanna; De Vita, Pasquale; Scossa, Federico; Fernie, Alisdair R.; Nikoloski, Zoran; Papa, Roberto
2016-01-01
Domestication and breeding have influenced the genetic structure of plant populations due to selection for adaptation from natural habitats to agro-ecosystems. Here, we investigate the effects of selection on the contents of 51 primary kernel metabolites and their relationships in three Triticum turgidum L. subspecies (i.e., wild emmer, emmer, durum wheat) that represent the major steps of tetraploid wheat domestication. We present a methodological pipeline to identify the signature of selection for molecular phenotypic traits (e.g., metabolites and transcripts). Following the approach, we show that a reduction in unsaturated fatty acids was associated with selection during domestication of emmer (primary domestication). We also show that changes in the amino acid content due to selection mark the domestication of durum wheat (secondary domestication). These effects were found to be partially independent of the associations that unsaturated fatty acids and amino acids have with other domestication-related kernel traits. Changes in contents of metabolites were also highlighted by alterations in the metabolic correlation networks, indicating wide metabolic restructuring due to domestication. Finally, evidence is provided that wild and exotic germplasm can have a relevant role for improvement of wheat quality and nutritional traits. PMID:27189559
Evolutionary Metabolomics Reveals Domestication-Associated Changes in Tetraploid Wheat Kernels.
Beleggia, Romina; Rau, Domenico; Laidò, Giovanni; Platani, Cristiano; Nigro, Franca; Fragasso, Mariagiovanna; De Vita, Pasquale; Scossa, Federico; Fernie, Alisdair R; Nikoloski, Zoran; Papa, Roberto
2016-07-01
Domestication and breeding have influenced the genetic structure of plant populations due to selection for adaptation from natural habitats to agro-ecosystems. Here, we investigate the effects of selection on the contents of 51 primary kernel metabolites and their relationships in three Triticum turgidum L. subspecies (i.e., wild emmer, emmer, durum wheat) that represent the major steps of tetraploid wheat domestication. We present a methodological pipeline to identify the signature of selection for molecular phenotypic traits (e.g., metabolites and transcripts). Following the approach, we show that a reduction in unsaturated fatty acids was associated with selection during domestication of emmer (primary domestication). We also show that changes in the amino acid content due to selection mark the domestication of durum wheat (secondary domestication). These effects were found to be partially independent of the associations that unsaturated fatty acids and amino acids have with other domestication-related kernel traits. Changes in contents of metabolites were also highlighted by alterations in the metabolic correlation networks, indicating wide metabolic restructuring due to domestication. Finally, evidence is provided that wild and exotic germplasm can have a relevant role for improvement of wheat quality and nutritional traits. PMID:27189559
Improved Online Support Vector Machines Spam Filtering Using String Kernels
NASA Astrophysics Data System (ADS)
Amayri, Ola; Bouguila, Nizar
A major bottleneck in electronic communications is the enormous dissemination of spam emails. Developing of suitable filters that can adequately capture those emails and achieve high performance rate become a main concern. Support vector machines (SVMs) have made a large contribution to the development of spam email filtering. Based on SVMs, the crucial problems in email classification are feature mapping of input emails and the choice of the kernels. In this paper, we present thorough investigation of several distance-based kernels and propose the use of string kernels and prove its efficiency in blocking spam emails. We detail a feature mapping variants in text classification (TC) that yield improved performance for the standard SVMs in filtering task. Furthermore, to cope for realtime scenarios we propose an online active framework for spam filtering.
Recurrent kernel machines: computing with infinite echo state networks.
Hermans, Michiel; Schrauwen, Benjamin
2012-01-01
Echo state networks (ESNs) are large, random recurrent neural networks with a single trained linear readout layer. Despite the untrained nature of the recurrent weights, they are capable of performing universal computations on temporal input data, which makes them interesting for both theoretical research and practical applications. The key to their success lies in the fact that the network computes a broad set of nonlinear, spatiotemporal mappings of the input data, on which linear regression or classification can easily be performed. One could consider the reservoir as a spatiotemporal kernel, in which the mapping to a high-dimensional space is computed explicitly. In this letter, we build on this idea and extend the concept of ESNs to infinite-sized recurrent neural networks, which can be considered recursive kernels that subsequently can be used to create recursive support vector machines. We present the theoretical framework, provide several practical examples of recursive kernels, and apply them to typical temporal tasks. PMID:21851278
Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing
Li, Shuang; Liu, Bing; Zhang, Chen
2016-01-01
Traditional multiple kernel dimensionality reduction models are generally based on graph embedding and manifold assumption. But such assumption might be invalid for some high-dimensional or sparse data due to the curse of dimensionality, which has a negative influence on the performance of multiple kernel learning. In addition, some models might be ill-posed if the rank of matrices in their objective functions was not high enough. To address these issues, we extend the traditional graph embedding framework and propose a novel regularized embedded multiple kernel dimensionality reduction method. Different from the conventional convex relaxation technique, the proposed algorithm directly takes advantage of a binary search and an alternative optimization scheme to obtain optimal solutions efficiently. The experimental results demonstrate the effectiveness of the proposed method for supervised, unsupervised, and semisupervised scenarios. PMID:27247562
Kernel weighted joint collaborative representation for hyperspectral image classification
NASA Astrophysics Data System (ADS)
Du, Qian; Li, Wei
2015-05-01
Collaborative representation classifier (CRC) has been applied to hyperspectral image classification, which intends to use all the atoms in a dictionary to represent a testing pixel for label assignment. However, some atoms that are very dissimilar to the testing pixel should not participate in the representation, or their contribution should be very little. The regularized version of CRC imposes strong penalty to prevent dissimilar atoms with having large representation coefficients. To utilize spatial information, the weighted sum of local spatial neighbors is considered as a joint spatial-spectral feature, which is actually for regularized CRC-based classification. This paper proposes its kernel version to further improve classification accuracy, which can be higher than those from the traditional support vector machine with composite kernel and the kernel version of sparse representation classifier.
A method of smoothed particle hydrodynamics using spheroidal kernels
NASA Technical Reports Server (NTRS)
Fulbright, Michael S.; Benz, Willy; Davies, Melvyn B.
1995-01-01
We present a new method of three-dimensional smoothed particle hydrodynamics (SPH) designed to model systems dominated by deformation along a preferential axis. These systems cause severe problems for SPH codes using spherical kernels, which are best suited for modeling systems which retain rough spherical symmetry. Our method allows the smoothing length in the direction of the deformation to evolve independently of the smoothing length in the perpendicular plane, resulting in a kernel with a spheroidal shape. As a result the spatial resolution in the direction of deformation is significantly improved. As a test case we present the one-dimensional homologous collapse of a zero-temperature, uniform-density cloud, which serves to demonstrate the advantages of spheroidal kernels. We also present new results on the problem of the tidal disruption of a star by a massive black hole.
Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing.
Li, Shuang; Liu, Bing; Zhang, Chen
2016-01-01
Traditional multiple kernel dimensionality reduction models are generally based on graph embedding and manifold assumption. But such assumption might be invalid for some high-dimensional or sparse data due to the curse of dimensionality, which has a negative influence on the performance of multiple kernel learning. In addition, some models might be ill-posed if the rank of matrices in their objective functions was not high enough. To address these issues, we extend the traditional graph embedding framework and propose a novel regularized embedded multiple kernel dimensionality reduction method. Different from the conventional convex relaxation technique, the proposed algorithm directly takes advantage of a binary search and an alternative optimization scheme to obtain optimal solutions efficiently. The experimental results demonstrate the effectiveness of the proposed method for supervised, unsupervised, and semisupervised scenarios. PMID:27247562
NASA Astrophysics Data System (ADS)
Schumacher, F.; Friederich, W.
2015-12-01
We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full
Unified connected theory of few-body reaction mechanisms in N-body scattering theory
NASA Technical Reports Server (NTRS)
Polyzou, W. N.; Redish, E. F.
1978-01-01
A unified treatment of different reaction mechanisms in nonrelativistic N-body scattering is presented. The theory is based on connected kernel integral equations that are expected to become compact for reasonable constraints on the potentials. The operators T/sub +-//sup ab/(A) are approximate transition operators that describe the scattering proceeding through an arbitrary reaction mechanism A. These operators are uniquely determined by a connected kernel equation and satisfy an optical theorem consistent with the choice of reaction mechanism. Connected kernel equations relating T/sub +-//sup ab/(A) to the full T/sub +-//sup ab/ allow correction of the approximate solutions for any ignored process to any order. This theory gives a unified treatment of all few-body reaction mechanisms with the same dynamic simplicity of a model calculation, but can include complicated reaction mechanisms involving overlapping configurations where it is difficult to formulate models.
Kernel approximate Bayesian computation in population genetic inferences.
Nakagome, Shigeki; Fukumizu, Kenji; Mano, Shuhei
2013-12-01
Approximate Bayesian computation (ABC) is a likelihood-free approach for Bayesian inferences based on a rejection algorithm method that applies a tolerance of dissimilarity between summary statistics from observed and simulated data. Although several improvements to the algorithm have been proposed, none of these improvements avoid the following two sources of approximation: 1) lack of sufficient statistics: sampling is not from the true posterior density given data but from an approximate posterior density given summary statistics; and 2) non-zero tolerance: sampling from the posterior density given summary statistics is achieved only in the limit of zero tolerance. The first source of approximation can be improved by adding a summary statistic, but an increase in the number of summary statistics could introduce additional variance caused by the low acceptance rate. Consequently, many researchers have attempted to develop techniques to choose informative summary statistics. The present study evaluated the utility of a kernel-based ABC method [Fukumizu, K., L. Song and A. Gretton (2010): "Kernel Bayes' rule: Bayesian inference with positive definite kernels," arXiv, 1009.5736 and Fukumizu, K., L. Song and A. Gretton (2011): "Kernel Bayes' rule. Advances in Neural Information Processing Systems 24." In: J. Shawe-Taylor and R. S. Zemel and P. Bartlett and F. Pereira and K. Q. Weinberger, (Eds.), pp. 1549-1557., NIPS 24: 1549-1557] for complex problems that demand many summary statistics. Specifically, kernel ABC was applied to population genetic inference. We demonstrate that, in contrast to conventional ABCs, kernel ABC can incorporate a large number of summary statistics while maintaining high performance of the inference. PMID:24150124
Single aflatoxin contaminated corn kernel analysis with fluorescence hyperspectral image
NASA Astrophysics Data System (ADS)
Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Cleveland, Thomas E.
2010-04-01
Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin levels in food and feed are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food and 100 ppb in feed for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests including thin-layer chromatography (TCL) and high performance liquid chromatography (HPLC). These analytical tests require the destruction of samples, and are costly and time consuming. Thus, the ability to detect aflatoxin in a rapid, nondestructive way is crucial to the grain industry, particularly to corn industry. Hyperspectral imaging technology offers a non-invasive approach toward screening for food safety inspection and quality control based on its spectral signature. The focus of this paper is to classify aflatoxin contaminated single corn kernels using fluorescence hyperspectral imagery. Field inoculated corn kernels were used in the study. Contaminated and control kernels under long wavelength ultraviolet excitation were imaged using a visible near-infrared (VNIR) hyperspectral camera. The imaged kernels were chemically analyzed to provide reference information for image analysis. This paper describes a procedure to process corn kernels located in different images for statistical training and classification. Two classification algorithms, Maximum Likelihood and Binary Encoding, were used to classify each corn kernel into "control" or "contaminated" through pixel classification. The Binary Encoding approach had a slightly better performance with accuracy equals to 87% or 88% when 20 ppb or 100 ppb was used as classification threshold, respectively.
A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896
Source identity and kernel functions for Inozemtsev-type systems
Langmann, Edwin; Takemura, Kouichi
2012-08-15
The Inozemtsev Hamiltonian is an elliptic generalization of the differential operator defining the BC{sub N} trigonometric quantum Calogero-Sutherland model, and its eigenvalue equation is a natural many-variable generalization of the Heun differential equation. We present kernel functions for Inozemtsev Hamiltonians and Chalykh-Feigin-Veselov-Sergeev-type deformations thereof. Our main result is a solution of a heat-type equation for a generalized Inozemtsev Hamiltonian which is the source of all these kernel functions. Applications are given, including a derivation of simple exact eigenfunctions and eigenvalues of the Inozemtsev Hamiltonian.
FUV Continuum in Flare Kernels Observed by IRIS
NASA Astrophysics Data System (ADS)
Daw, Adrian N.; Kowalski, Adam; Allred, Joel C.; Cauzzi, Gianna
2016-05-01
Fits to Interface Region Imaging Spectrograph (IRIS) spectra observed from bright kernels during the impulsive phase of solar flares are providing long-sought constraints on the UV/white-light continuum emission. Results of fits of continua plus numerous atomic and molecular emission lines to IRIS far ultraviolet (FUV) spectra of bright kernels are presented. Constraints on beam energy and cross sectional area are provided by cotemporaneous RHESSI, FERMI, ROSA/DST, IRIS slit-jaw and SDO/AIA observations, allowing for comparison of the observed IRIS continuum to calculations of non-thermal electron beam heating using the RADYN radiative-hydrodynamic loop model.
Iris Image Blur Detection with Multiple Kernel Learning
NASA Astrophysics Data System (ADS)
Pan, Lili; Xie, Mei; Mao, Ling
In this letter, we analyze the influence of motion and out-of-focus blur on both frequency spectrum and cepstrum of an iris image. Based on their characteristics, we define two new discriminative blur features represented by Energy Spectral Density Distribution (ESDD) and Singular Cepstrum Histogram (SCH). To merge the two features for blur detection, a merging kernel which is a linear combination of two kernels is proposed when employing Support Vector Machine. Extensive experiments demonstrate the validity of our method by showing the improved blur detection performance on both synthetic and real datasets.
Source identity and kernel functions for Inozemtsev-type systems
NASA Astrophysics Data System (ADS)
Langmann, Edwin; Takemura, Kouichi
2012-08-01
The Inozemtsev Hamiltonian is an elliptic generalization of the differential operator defining the BCN trigonometric quantum Calogero-Sutherland model, and its eigenvalue equation is a natural many-variable generalization of the Heun differential equation. We present kernel functions for Inozemtsev Hamiltonians and Chalykh-Feigin-Veselov-Sergeev-type deformations thereof. Our main result is a solution of a heat-type equation for a generalized Inozemtsev Hamiltonian which is the source of all these kernel functions. Applications are given, including a derivation of simple exact eigenfunctions and eigenvalues of the Inozemtsev Hamiltonian.
Fast GPU-based calculations in few-body quantum scattering
NASA Astrophysics Data System (ADS)
Pomerantsev, V. N.; Kukulin, V. I.; Rubtsova, O. A.; Sakhiev, S. K.
2016-07-01
A principally novel approach towards solving the few-particle (many-dimensional) quantum scattering problems is described. The approach is based on a complete discretization of few-particle continuum and usage of massively parallel computations of integral kernels for scattering equations by means of GPU. The discretization for continuous spectrum of few-particle Hamiltonian is realized with a projection of all scattering operators and wave functions onto the stationary wave-packet basis. Such projection procedure leads to a replacement of singular multidimensional integral equations with linear matrix ones having finite matrix elements. Different aspects of the employment of multithread GPU computing for fast calculation of the matrix kernel of the equation are studied in detail. As a result, the fully realistic three-body scattering problem above the break-up threshold is solved on an ordinary desktop PC with GPU for a rather small computational time.
Smith, Kevin W; Cain, Fred W; Talbot, Geoff
2004-08-25
Palm kernel stearin and hydrogenated palm kernel stearin can be used to prepare compound chocolate bars or coatings. The objective of this study was to characterize the chemical composition, polymorphism, and melting behavior of the bloom that develops on bars of compound chocolate prepared using these fats. Bars were stored for 1 year at 15, 20, or 25 degrees C. At 15 and 20 degrees C the bloom was enriched in cocoa butter triacylglycerols, with respect to the main fat phase, whereas at 25 degrees C the enrichment was with palm kernel triacylglycerols. The bloom consisted principally of solid fat and was sharper melting than was the fat in the chocolate. Polymorphic transitions from the initial beta' phase to the beta phase accompanied the formation of bloom at all temperatures. PMID:15315397
Ding, Yongsheng; Cheng, Lijun; Pedrycz, Witold; Hao, Kuangrong
2015-10-01
A new global nonlinear predictor with a particle swarm-optimized interval support vector regression (PSO-ISVR) is proposed to address three issues (viz., kernel selection, model optimization, kernel method speed) encountered when applying SVR in the presence of large data sets. The novel prediction model can reduce the SVR computing overhead by dividing input space and adaptively selecting the optimized kernel functions to obtain optimal SVR parameter by PSO. To quantify the quality of the predictor, its generalization performance and execution speed are investigated based on statistical learning theory. In addition, experiments using synthetic data as well as the stock volume weighted average price are reported to demonstrate the effectiveness of the developed models. The experimental results show that the proposed PSO-ISVR predictor can improve the computational efficiency and the overall prediction accuracy compared with the results produced by the SVR and other regression methods. The proposed PSO-ISVR provides an important tool for nonlinear regression analysis of big data. PMID:25974954
Stimulated Brillouin Scattering Microscopic Imaging
NASA Astrophysics Data System (ADS)
Ballmann, Charles W.; Thompson, Jonathan V.; Traverso, Andrew J.; Meng, Zhaokai; Scully, Marlan O.; Yakovlev, Vladislav V.
2015-12-01
Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue.
Stimulated Brillouin Scattering Microscopic Imaging.
Ballmann, Charles W; Thompson, Jonathan V; Traverso, Andrew J; Meng, Zhaokai; Scully, Marlan O; Yakovlev, Vladislav V
2015-01-01
Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue. PMID:26691398
Stimulated Brillouin Scattering Microscopic Imaging
Ballmann, Charles W.; Thompson, Jonathan V.; Traverso, Andrew J.; Meng, Zhaokai; Scully, Marlan O.; Yakovlev, Vladislav V.
2015-01-01
Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue. PMID:26691398
Nucleon-nucleon scattering within a multiple subtractive renormalization approach
Timoteo, V. S.; Frederico, T.; Delfino, A.; Tomio, Lauro
2011-06-15
We present a methodology to renormalize the nucleon-nucleon interaction in momentum space, using a recursive multiple subtraction approach that prescinds from a cutoff regularization, to construct the kernel of the scattering equation. The subtracted scattering equation is solved with the next-leading-order and next-to-next-leading-order interactions. The results are presented for all partial waves up to j=2, fitted to low-energy experimental data. In this renormalization group invariant approach, the subtraction energy emerges as a renormalization scale and the momentum associated with it comes to be about the QCD scale ({Lambda}{sub QCD}), irrespectively to the partial wave.
Estimation of scattered radiation in digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Diaz, O.; Dance, D. R.; Young, K. C.; Elangovan, P.; Bakic, P. R.; Wells, K.
2014-08-01
Digital breast tomosynthesis (DBT) is a promising technique to overcome the tissue superposition limitations found in planar 2D x-ray mammography. However, as most DBT systems do not employ an anti-scatter grid, the levels of scattered radiation recorded within the image receptor are significantly higher than that observed in planar 2D x-ray mammography. Knowledge of this field is necessary as part of any correction scheme and for computer modelling and optimisation of this examination. Monte Carlo (MC) simulations are often used for this purpose, however they are computationally expensive and a more rapid method of calculation is desirable. This issue is addressed in this work by the development of a fast kernel-based methodology for scatter field estimation using a detailed realistic DBT geometry. Thickness-dependent scatter kernels, which were validated against the literature with a maximum discrepancy of 4% for an idealised geometry, have been calculated and a new physical parameter (air gap distance) was used to estimate more accurately the distribution of scattered radiation for a series of anthropomorphic breast phantom models. The proposed methodology considers, for the first time, the effects of scattered radiation from the compression paddle and breast support plate, which can represent more than 30% of the total scattered radiation recorded within the image receptor. The results show that the scatter field estimator can calculate scattered radiation images in an average of 80 min for projection angles up to 25° with equal to or less than a 10% error across most of the breast area when compared with direct MC simulations.
Sub-second pencil beam dose calculation on GPU for adaptive proton therapy
NASA Astrophysics Data System (ADS)
da Silva, Joakim; Ansorge, Richard; Jena, Rajesh
2015-06-01
Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.
Sub-second pencil beam dose calculation on GPU for adaptive proton therapy.
da Silva, Joakim; Ansorge, Richard; Jena, Rajesh
2015-06-21
Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system. PMID:26040956
Logarithmic radiative effect of water vapor and spectral kernels
NASA Astrophysics Data System (ADS)
Bani Shahabadi, Maziar; Huang, Yi
2014-05-01
Radiative kernels have become a useful tool in climate analysis. A set of spectral kernels is calculated using a moderate resolution atmospheric transmission code MODTRAN and implemented in diagnosing spectrally decomposed global outgoing longwave radiation (OLR) changes. It is found that the effect of water vapor on the OLR is in proportion to the logarithm of its concentration. Spectral analysis discloses that this logarithmic dependency mainly results from water vapor absorption bands (0-560 cm-1 and 1250-1850 cm-1), while in the window region (800-1250 cm-1), the effect scales more linearly to its concentration. The logarithmic and linear effects in the respective spectral regions are validated by the calculations of a benchmark line-by-line radiative transfer model LBLRTM. The analysis based on LBLRTM-calculated second-order kernels shows that the nonlinear (logarithmic) effect results from the damping of the OLR sensitivity to layer-wise water vapor perturbation by both intra- and inter-layer effects. Given that different scaling approaches suit different spectral regions, it is advisable to apply the kernels in a hybrid manner in diagnosing the water vapor radiative effect. Applying logarithmic scaling in the water vapor absorption bands where absorption is strong and linear scaling in the window region where absorption is weak can generally constrain the error to within 10% of the overall OLR change for up to eightfold water vapor perturbations.
PERI - Auto-tuning Memory Intensive Kernels for Multicore
Bailey, David H; Williams, Samuel; Datta, Kaushik; Carter, Jonathan; Oliker, Leonid; Shalf, John; Yelick, Katherine; Bailey, David H
2008-06-24
We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to Sparse Matrix Vector Multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we develop a code generator for each kernel that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4X improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications.
Multiobjective optimization for model selection in kernel methods in regression.
You, Di; Benitez-Quiroz, Carlos Fabian; Martinez, Aleix M
2014-10-01
Regression plays a major role in many scientific and engineering problems. The goal of regression is to learn the unknown underlying function from a set of sample vectors with known outcomes. In recent years, kernel methods in regression have facilitated the estimation of nonlinear functions. However, two major (interconnected) problems remain open. The first problem is given by the bias-versus-variance tradeoff. If the model used to estimate the underlying function is too flexible (i.e., high model complexity), the variance will be very large. If the model is fixed (i.e., low complexity), the bias will be large. The second problem is to define an approach for selecting the appropriate parameters of the kernel function. To address these two problems, this paper derives a new smoothing kernel criterion, which measures the roughness of the estimated function as a measure of model complexity. Then, we use multiobjective optimization to derive a criterion for selecting the parameters of that kernel. The goal of this criterion is to find a tradeoff between the bias and the variance of the learned function. That is, the goal is to increase the model fit while keeping the model complexity in check. We provide extensive experimental evaluations using a variety of problems in machine learning, pattern recognition, and computer vision. The results demonstrate that the proposed approach yields smaller estimation errors as compared with methods in the state of the art. PMID:25291740
Wheat kernel black point and fumonisin contamination by Fusarium proliferatum
Technology Transfer Automated Retrieval System (TEKTRAN)
Fusarium proliferatum is a major cause of maize ear rot and fumonisin contamination and also can cause wheat kernel black point disease. The primary objective of this study was to characterize nine F. proliferatum strains from wheat from Nepal for ability to cause black point and fumonisin contamin...
Enzymatic treatment of peanut kernels to reduce allergen levels
Technology Transfer Automated Retrieval System (TEKTRAN)
This study investigated the use of enzymatic treatment to reduce peanut allergens in peanut kernel by processing conditions, such as, pretreatment with heat and proteolysis at different enzyme concentrations and treatment times. Two major peanut allergens, Ara h 1 and Ara h 2, were used as indicator...
Notes on a storage manager for the Clouds kernel
NASA Technical Reports Server (NTRS)
Pitts, David V.; Spafford, Eugene H.
1986-01-01
The Clouds project is research directed towards producing a reliable distributed computing system. The initial goal is to produce a kernel which provides a reliable environment with which a distributed operating system can be built. The Clouds kernal consists of a set of replicated subkernels, each of which runs on a machine in the Clouds system. Each subkernel is responsible for the management of resources on its machine; the subkernal components communicate to provide the cooperation necessary to meld the various machines into one kernel. The implementation of a kernel-level storage manager that supports reliability is documented. The storage manager is a part of each subkernel and maintains the secondary storage residing at each machine in the distributed system. In addition to providing the usual data transfer services, the storage manager ensures that data being stored survives machine and system crashes, and that the secondary storage of a failed machine is recovered (made consistent) automatically when the machine is restarted. Since the storage manager is part of the Clouds kernel, efficiency of operation is also a concern.
Microwave moisture meter for in-shell peanut kernels
Technology Transfer Automated Retrieval System (TEKTRAN)
. A microwave moisture meter built with off-the-shelf components was developed, calibrated and tested in the laboratory and in the field for nondestructive and instantaneous in-shell peanut kernel moisture content determination from dielectric measurements on unshelled peanut pod samples. The meter ...
Matrix kernels for MEG and EEG source localization and imaging
Mosher, J.C.; Lewis, P.S.; Leahy, R.M.
1994-12-31
The most widely used model for electroencephalography (EEG) and magnetoencephalography (MEG) assumes a quasi-static approximation of Maxwell`s equations and a piecewise homogeneous conductor model. Both models contain an incremental field element that linearly relates an incremental source element (current dipole) to the field or voltage at a distant point. The explicit form of the field element is dependent on the head modeling assumptions and sensor configuration. Proper characterization of this incremental element is crucial to the inverse problem. The field element can be partitioned into the product of a vector dependent on sensor characteristics and a matrix kernel dependent only on head modeling assumptions. We present here the matrix kernels for the general boundary element model (BEM) and for MEG spherical models. We show how these kernels are easily interchanged in a linear algebraic framework that includes sensor specifics such as orientation and gradiometer configuration. We then describe how this kernel is easily applied to ``gain`` or ``transfer`` matrices used in multiple dipole and source imaging models.
Classification of oat and groat kernels using NIR hyperspectral imaging.
Serranti, Silvia; Cesare, Daniela; Marini, Federico; Bonifazi, Giuseppe
2013-01-15
An innovative procedure to classify oat and groat kernels based on coupling hyperspectral imaging (HSI) in the near infrared (NIR) range (1006-1650 nm) and chemometrics was designed, developed and validated. According to market requirements, the amount of groat, that is the hull-less oat kernels, is one of the most important quality characteristics of oats. Hyperspectral images of oat and groat samples have been acquired by using a NIR spectral camera (Specim, Finland) and the resulting data hypercubes were analyzed applying Principal Component Analysis (PCA) for exploratory purposes and Partial Least Squares-Discriminant Analysis (PLS-DA) to build the classification models to discriminate the two kernel typologies. Results showed that it is possible to accurately recognize oat and groat single kernels by HSI (prediction accuracy was almost 100%). The study demonstrated also that good classification results could be obtained using only three wavelengths (1132, 1195 and 1608 nm), selected by means of a bootstrap-VIP procedure, allowing to speed up the classification processing for industrial applications. The developed objective and non-destructive method based on HSI can be utilized for quality control purposes and/or for the definition of innovative sorting logics of oat grains. PMID:23200388
7 CFR 868.254 - Broken kernels determination.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 7 2013-01-01 2013-01-01 false Broken kernels determination. 868.254 Section 868.254 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS AND STANDARDS FOR CERTAIN...
Estimating Filtering Errors Using the Peano Kernel Theorem
Jerome Blair
2009-02-20
The Peano Kernel Theorem is introduced and a frequency domain derivation is given. It is demonstrated that the application of this theorem yields simple and accurate formulas for estimating the error introduced into a signal by filtering it to reduce noise.
Estimating Filtering Errors Using the Peano Kernel Theorem
Jerome Blair
2008-03-01
The Peano Kernel Theorem is introduced and a frequency domain derivation is given. It is demonstrated that the application of this theorem yields simple and accurate formulas for estimating the error introduced into a signal by filtering it to reduce noise.
Stereotype Measurement and the "Kernel of Truth" Hypothesis.
ERIC Educational Resources Information Center
Gordon, Randall A.
1989-01-01
Describes a stereotype measurement suitable for classroom demonstration. Illustrates C. McCauley and C. L. Stitt's diagnostic ratio measure and examines the validity of the "kernel of truth" hypothesis. Uses this as a starting point for class discussion. Reports results and gives suggestions for discussion of related concepts. (Author/NL)
Popping the Kernel Modeling the States of Matter
ERIC Educational Resources Information Center
Hitt, Austin; White, Orvil; Hanson, Debbie
2005-01-01
This article discusses how to use popcorn to engage students in model building and to teach them about the nature of matter. Popping kernels is a simple and effective method to connect the concepts of heat, motion, and volume with the different phases of matter. Before proceeding with the activity the class should discuss the nature of scientific…
7 CFR 868.304 - Broken kernels determination.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 7 2013-01-01 2013-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS AND STANDARDS FOR CERTAIN...
7 CFR 981.61 - Redetermination of kernel weight.
Code of Federal Regulations, 2014 CFR
2014-01-01
... SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS... weight. The Board, on the basis of reports by handlers, shall redetermine the kernel weight of almonds... for almonds on which the obligation has been assumed by another handler. The redetermined...
7 CFR 981.61 - Redetermination of kernel weight.
Code of Federal Regulations, 2012 CFR
2012-01-01
... SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS... weight. The Board, on the basis of reports by handlers, shall redetermine the kernel weight of almonds... for almonds on which the obligation has been assumed by another handler. The redetermined...
7 CFR 981.61 - Redetermination of kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS... weight. The Board, on the basis of reports by handlers, shall redetermine the kernel weight of almonds... for almonds on which the obligation has been assumed by another handler. The redetermined...
7 CFR 981.61 - Redetermination of kernel weight.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS... weight. The Board, on the basis of reports by handlers, shall redetermine the kernel weight of almonds... for almonds on which the obligation has been assumed by another handler. The redetermined...
7 CFR 981.61 - Redetermination of kernel weight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS... weight. The Board, on the basis of reports by handlers, shall redetermine the kernel weight of almonds... for almonds on which the obligation has been assumed by another handler. The redetermined...
Music emotion detection using hierarchical sparse kernel machines.
Chin, Yu-Hao; Lin, Chang-Hong; Siahaan, Ernestasia; Wang, Jia-Ching
2014-01-01
For music emotion detection, this paper presents a music emotion verification system based on hierarchical sparse kernel machines. With the proposed system, we intend to verify if a music clip possesses happiness emotion or not. There are two levels in the hierarchical sparse kernel machines. In the first level, a set of acoustical features are extracted, and principle component analysis (PCA) is implemented to reduce the dimension. The acoustical features are utilized to generate the first-level decision vector, which is a vector with each element being a significant value of an emotion. The significant values of eight main emotional classes are utilized in this paper. To calculate the significant value of an emotion, we construct its 2-class SVM with calm emotion as the global (non-target) side of the SVM. The probability distributions of the adopted acoustical features are calculated and the probability product kernel is applied in the first-level SVMs to obtain first-level decision vector feature. In the second level of the hierarchical system, we merely construct a 2-class relevance vector machine (RVM) with happiness as the target side and other emotions as the background side of the RVM. The first-level decision vector is used as the feature with conventional radial basis function kernel. The happiness verification threshold is built on the probability value. In the experimental results, the detection error tradeoff (DET) curve shows that the proposed system has a good performance on verifying if a music clip reveals happiness emotion. PMID:24729748
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Kernel color classification. 51.1403 Section 51.1403 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Kernel color classification. 51.1403 Section 51.1403 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Kernel color classification. 51.1403 Section 51.1403 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Kernel color classification. 51.1403 Section 51.1403 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Kernel color classification. 51.1403 Section 51.1403 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE...
Online multiple kernel similarity learning for visual search.
Xia, Hao; Hoi, Steven C H; Jin, Rong; Zhao, Peilin
2014-03-01
Recent years have witnessed a number of studies on distance metric learning to improve visual similarity search in content-based image retrieval (CBIR). Despite their successes, most existing methods on distance metric learning are limited in two aspects. First, they usually assume the target proximity function follows the family of Mahalanobis distances, which limits their capacity of measuring similarity of complex patterns in real applications. Second, they often cannot effectively handle the similarity measure of multimodal data that may originate from multiple resources. To overcome these limitations, this paper investigates an online kernel similarity learning framework for learning kernel-based proximity functions which goes beyond the conventional linear distance metric learning approaches. Based on the framework, we propose a novel online multiple kernel similarity (OMKS) learning method which learns a flexible nonlinear proximity function with multiple kernels to improve visual similarity search in CBIR. We evaluate the proposed technique for CBIR on a variety of image data sets in which encouraging results show that OMKS outperforms the state-of-the-art techniques significantly. PMID:24457509
PERI - auto-tuning memory-intensive kernels for multicore
NASA Astrophysics Data System (ADS)
Williams, S.; Datta, K.; Carter, J.; Oliker, L.; Shalf, J.; Yelick, K.; Bailey, D.
2008-07-01
We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to sparse matrix vector multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the high-performance computing literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we develop a code generator for each kernel that allows us identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4× improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications.
High-Speed Tracking with Kernelized Correlation Filters.
Henriques, João F; Caseiro, Rui; Martins, Pedro; Batista, Jorge
2015-03-01
The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches. Such sets of samples are riddled with redundancies-any overlapping pixels are constrained to be the same. Based on this simple observation, we propose an analytic model for datasets of thousands of translated patches. By showing that the resulting data matrix is circulant, we can diagonalize it with the discrete Fourier transform, reducing both storage and computation by several orders of magnitude. Interestingly, for linear regression our formulation is equivalent to a correlation filter, used by some of the fastest competitive trackers. For kernel regression, however, we derive a new kernelized correlation filter (KCF), that unlike other kernel algorithms has the exact same complexity as its linear counterpart. Building on it, we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call dual correlation filter (DCF). Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code (Algorithm 1). To encourage further developments, our tracking framework was made open-source. PMID:26353263
Multiobjective Optimization for Model Selection in Kernel Methods in Regression
You, Di; Benitez-Quiroz, C. Fabian; Martinez, Aleix M.
2016-01-01
Regression plays a major role in many scientific and engineering problems. The goal of regression is to learn the unknown underlying function from a set of sample vectors with known outcomes. In recent years, kernel methods in regression have facilitated the estimation of nonlinear functions. However, two major (interconnected) problems remain open. The first problem is given by the bias-vs-variance trade-off. If the model used to estimate the underlying function is too flexible (i.e., high model complexity), the variance will be very large. If the model is fixed (i.e., low complexity), the bias will be large. The second problem is to define an approach for selecting the appropriate parameters of the kernel function. To address these two problems, this paper derives a new smoothing kernel criterion, which measures the roughness of the estimated function as a measure of model complexity. Then, we use multiobjective optimization to derive a criterion for selecting the parameters of that kernel. The goal of this criterion is to find a trade-off between the bias and the variance of the learned function. That is, the goal is to increase the model fit while keeping the model complexity in check. We provide extensive experimental evaluations using a variety of problems in machine learning, pattern recognition and computer vision. The results demonstrate that the proposed approach yields smaller estimation errors as compared to methods in the state of the art. PMID:25291740
Prediction: Design of experiments based on approximating covariance kernels
Fedorov, V.
1998-11-01
Using Mercer`s expansion to approximate the covariance kernel of an observed random function the authors transform the prediction problem to the regression problem with random parameters. The latter one is considered in the framework of convex design theory. First they formulate results in terms of the regression model with random parameters, then present the same results in terms of the original problem.
Chebyshev moment problems: Maximum entropy and kernel polynomial methods
Silver, R.N.; Roeder, H.; Voter, A.F.; Kress, J.D.
1995-12-31
Two Chebyshev recursion methods are presented for calculations with very large sparse Hamiltonians, the kernel polynomial method (KPM) and the maximum entropy method (MEM). They are applicable to physical properties involving large numbers of eigenstates such as densities of states, spectral functions, thermodynamics, total energies for Monte Carlo simulations and forces for tight binding molecular dynamics. this paper emphasizes efficient algorithms.
Acetolactate Synthase Activity in Developing Maize (Zea mays L.) Kernels
Muhitch, Michael J.
1988-01-01
Acetolactate synthase (EC 4.1.3.18) activity was examined in maize (Zea mays L.) endosperm and embryos as a function of kernel development. When assayed using unpurified homogenates, embryo acetolactate synthase activity appeared less sensitive to inhibition by leucine + valine and by the imidazolinone herbicide imazapyr than endosperm acetolactate synthase activity. Evidence is presented to show that pyruvate decarboxylase contributes to apparent acetolactate synthase activity in crude embryo extracts and a modification of the acetolactate synthase assay is proposed to correct for the presence of pyruvate decarboxylase in unpurified plant homogenates. Endosperm acetolactate synthase activity increased rapidly during early kernel development, reaching a maximum of 3 micromoles acetoin per hour per endosperm at 25 days after pollination. In contrast, embryo activity was low in young kernels and steadily increased throughout development to a maximum activity of 0.24 micromole per hour per embryo by 45 days after pollination. The sensitivity of both endosperm and embryo acetolactate synthase activities to feedback inhibition by leucine + valine did not change during kernel development. The results are compared to those found for other enzymes of nitrogen metabolism and discussed with respect to the potential roles of the embryo and endosperm in providing amino acids for storage protein synthesis. PMID:16665871
7 CFR 51.2125 - Split or broken kernels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Split or broken kernels. 51.2125 Section 51.2125... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2125 Split or broken... pass through a round opening 8/64 of an inch (3.2 mm) in diameter....
Metabolite identification through multiple kernel learning on fragmentation trees
Shen, Huibin; Dührkop, Kai; Böcker, Sebastian; Rousu, Juho
2014-01-01
Motivation: Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Results: Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list. Contact: huibin.shen@aalto.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24931979
Classification of Microarray Data Using Kernel Fuzzy Inference System
Kumar Rath, Santanu
2014-01-01
The DNA microarray classification technique has gained more popularity in both research and practice. In real data analysis, such as microarray data, the dataset contains a huge number of insignificant and irrelevant features that tend to lose useful information. Classes with high relevance and feature sets with high significance are generally referred for the selected features, which determine the samples classification into their respective classes. In this paper, kernel fuzzy inference system (K-FIS) algorithm is applied to classify the microarray data (leukemia) using t-test as a feature selection method. Kernel functions are used to map original data points into a higher-dimensional (possibly infinite-dimensional) feature space defined by a (usually nonlinear) function ϕ through a mathematical process called the kernel trick. This paper also presents a comparative study for classification using K-FIS along with support vector machine (SVM) for different set of features (genes). Performance parameters available in the literature such as precision, recall, specificity, F-measure, ROC curve, and accuracy are considered to analyze the efficiency of the classification model. From the proposed approach, it is apparent that K-FIS model obtains similar results when compared with SVM model. This is an indication that the proposed approach relies on kernel function.
Low Cost Real-Time Sorting of in Shell Pistachio Nuts from Kernels
Technology Transfer Automated Retrieval System (TEKTRAN)
A high speed sorter for separating pistachio nuts with (in shell) and without (kernels) shells is reported. Testing indicates 95% accuracy in removing kernels from the in shell stream with no false positive results out of 1000 kernels tested. Testing with 1000 each of in shell, shell halves, and ker...
Technology Transfer Automated Retrieval System (TEKTRAN)
An automated NIR system was used over a two-month storage period to detect single wheat kernels that contained live or dead internal rice weevils at various stages of growth. Correct classification of sound kernels and kernels containing live pupae, large larvae, medium-sized larvae, and small larv...
Size distributions of different orders of kernels within the oat spikelet
Technology Transfer Automated Retrieval System (TEKTRAN)
Oat kernel size uniformity is of interest to the oat milling industry because of the importance of kernel size in the dehulling process. Previous studies have indicated that oat kernel size distributions fit a bimodal better than a normal distribution. Here we have demonstrated by spikelet dissectio...
Technology Transfer Automated Retrieval System (TEKTRAN)
The Perten Single Kernel Characterization System (SKCS) is the current reference method to determine single wheat kernel texture. However, the SKCS calibration method is based on bulk samples, and there is no method to determine the measurement error on single kernel hardness. The objective of thi...
Automated Single-Kernel Sorting to Select for Quality Traits in Wheat Breeding Lines
Technology Transfer Automated Retrieval System (TEKTRAN)
An automated single kernel near-infrared system was used to select kernels to enhance the end-use quality of hard red wheat breeder samples. Twenty breeding populations and advanced lines were sorted for hardness index, protein content, and kernel color. To determine if the phenotypic sorting was b...
Genome Mapping of Kernel Characteristics in Hard Red Spring Wheat Breeding Lines
Technology Transfer Automated Retrieval System (TEKTRAN)
Kernel characteristics, particularly kernel weight, kernel size, and grain protein content, are important components of grain yield and quality in wheat. Development of high performing wheat cultivars, with high grain yield and quality, is a major focus in wheat breeding programs worldwide. Here, we...
Increasing accuracy of dispersal kernels in grid-based population models
Slone, D.H.
2011-01-01
Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.
Single-kernel NIR analysis for evaluating wheat samples for fusarium head blight resistance
Technology Transfer Automated Retrieval System (TEKTRAN)
A method to estimate bulk deoxynivalenol (DON) content of wheat grain samples using single kernel DON levels estimated by a single kernel near infrared (SKNIR) system combined with single kernel weights is described. This method estimated bulk DON levels in 90% of 160 grain samples within 6.7 ppm DO...
FFBSKAT: fast family-based sequence kernel association test.
Svishcheva, Gulnara R; Belonogova, Nadezhda M; Axenovich, Tatiana I
2014-01-01
The kernel machine-based regression is an efficient approach to region-based association analysis aimed at identification of rare genetic variants. However, this method is computationally complex. The running time of kernel-based association analysis becomes especially long for samples with genetic (sub) structures, thus increasing the need to develop new and effective methods, algorithms, and software packages. We have developed a new R-package called fast family-based sequence kernel association test (FFBSKAT) for analysis of quantitative traits in samples of related individuals. This software implements a score-based variance component test to assess the association of a given set of single nucleotide polymorphisms with a continuous phenotype. We compared the performance of our software with that of two existing software for family-based sequence kernel association testing, namely, ASKAT and famSKAT, using the Genetic Analysis Workshop 17 family sample. Results demonstrate that FFBSKAT is several times faster than other available programs. In addition, the calculations of the three-compared software were similarly accurate. With respect to the available analysis modes, we combined the advantages of both ASKAT and famSKAT and added new options to empower FFBSKAT users. The FFBSKAT package is fast, user-friendly, and provides an easy-to-use method to perform whole-exome kernel machine-based regression association analysis of quantitative traits in samples of related individuals. The FFBSKAT package, along with its manual, is available for free download at http://mga.bionet.nsc.ru/soft/FFBSKAT/. PMID:24905468
Chung, Moo K.; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K.
2014-01-01
We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface. PMID:25791435
Chung, Moo K; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K
2015-05-01
We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template. PMID:25791435
Fast calculation of object infrared spectral scattering based on CUDA
NASA Astrophysics Data System (ADS)
Li, Liang-chao; Niu, Wu-bin; Wu, Zhen-sen
2010-11-01
Computational unified device architecture (CUDA) is used for paralleling the spectral scattering calculation from non-Lambertian object of sky and earth background irradiation. The bidirectional reflectance distribution function (BRDF) of five parameter model is utilized in object surface element scattering calculation. The calculation process is partitioned into many threads running in GPU kernel and each thread computes a visible surface element infrared spectral scattering intensity in a specific incident direction, all visible surface elements' intensity are weighted and averaged to obtain the object surface scattering intensity. The comparison of results of the CPU calculation and CUDA parallel calculation of a cylinder shows that the CUDA parallel calculation speed improves more than two hundred times in meeting the accuracy, with a high engineering value.
Elastic scattering by finitely many point-like obstacles
NASA Astrophysics Data System (ADS)
Hu, Guanghui; Sini, Mourad
2013-04-01
This paper is concerned with the time-harmonic elastic scattering by a finite number N of point-like obstacles in {{R}}^n (n = 2, 3). We analyze the N-point interactions model in elasticity and derive the associated Green's tensor (integral kernel) in terms of the point positions and the scattering coefficients attached to them, following the approach in quantum mechanics for modeling N-particle interactions. In particular, explicit expressions are given for the scattered near and far fields corresponding to elastic plane waves or point-source incidences. As a result, we rigorously justify the Foldy method for modeling the multiple scattering by finitely many point-like obstacles for the Lamé model. The arguments are based on the Fourier analysis and the Weinstein-Aronszajn inversion formula of the resolvent for the finite rank perturbations of closed operators in Hilbert spaces.
The weighted curvature approximation in scattering from sea surfaces
NASA Astrophysics Data System (ADS)
Guérin, Charles-Antoine; Soriano, Gabriel; Chapron, Bertrand
2010-07-01
A family of unified models in scattering from rough surfaces is based on local corrections of the tangent plane approximation through higher-order derivatives of the surface. We revisit these methods in a common framework when the correction is limited to the curvature, that is essentially the second-order derivative. The resulting expression is formally identical to the weighted curvature approximation, with several admissible kernels, however. For sea surfaces under the Gaussian assumption, we show that the weighted curvature approximation reduces to a universal and simple expression for the off-specular normalized radar cross-section (NRCS), regardless of the chosen kernel. The formula involves merely the sum of the NRCS in the classical Kirchhoff approximation and the NRCS in the small perturbation method, except that the Bragg kernel in the latter has to be replaced by the difference of a Bragg and a Kirchhoff kernel. This result is consistently compared with the resonant curvature approximation. Some numerical comparisons with the method of moments and other classical approximate methods are performed at various bands and sea states. For the copolarized components, the weighted curvature approximation is found numerically very close to the cut-off invariant two-scale model, while bringing substantial improvement to both the Kirchhoff and small-slope approximation. However, the model is unable to predict cross-polarization in the plane of incidence. The simplicity of the formulation opens new perspectives in sea state inversion from remote sensing data.
Effects of Amygdaline from Apricot Kernel on Transplanted Tumors in Mice.
Yamshanov, V A; Kovan'ko, E G; Pustovalov, Yu I
2016-03-01
The effects of amygdaline from apricot kernel added to fodder on the growth of transplanted LYO-1 and Ehrlich carcinoma were studied in mice. Apricot kernels inhibited the growth of both tumors. Apricot kernels, raw and after thermal processing, given 2 days before transplantation produced a pronounced antitumor effect. Heat-processed apricot kernels given in 3 days after transplantation modified the tumor growth and prolonged animal lifespan. Thermal treatment did not considerably reduce the antitumor effect of apricot kernels. It was hypothesized that the antitumor effect of amygdaline on Ehrlich carcinoma and LYO-1 lymphosarcoma was associated with the presence of bacterial genome in the tumor. PMID:27021084
NASA Astrophysics Data System (ADS)
Kolomiets, Sergey; Gorelik, Andrey
This report is devoted to a discussion of applicability limits of Rayleigh’s scattering model. Implicitly, Rayleigh’s ideas are being used in a wide range of remote sensing applications. To begin with it must be noted that most techniques which have been developed to date for measurements by means of active instruments for remote sensing in case of the target is a set of distributed moving scatters are only hopes, to say so, on measurements per se. The problem is that almost all of such techniques use a priori information about the microstructure of the object of interest during whole measurement session. As one can find in the literature, this approach may happily be applied to systems with identical particles. However, it is not the case with respect to scattering targets that consist of particles of different kind or having a particle size distribution. It must be especially noted that the microstructure of most of such targets changes significantly with time and/or space. Therefore, the true measurement techniques designed to be applicable in such conditions must be not only adaptable in order to take into account a variety of models of an echo interpretation, but also have a well-developed set of clear-cut criteria of applicability and exact means of accuracy estimation. So such techniques will require much more parameters to be measured. In spite of the fact that there is still room for some improvements within classical models and approaches, it is multiwavelength approach that may be seen as the most promising way of development towards obtaining an adequate set of the measured parameters required for true measurement techniques. At the same time, Rayleigh’s scattering is an invariant in regard to a change of the wavelength as it follows from the point of view dominating nowadays. In the light of such an idea, the synergy between multivawelength measurements may be achieved - to a certain extent - by means of the synchronous usage of Rayleigh’s and
Patient-specific scatter correction for flat-panel detector-based cone-beam CT imaging
NASA Astrophysics Data System (ADS)
Zhao, Wei; Brunner, Stephen; Niu, Kai; Schafer, Sebastian; Royalty, Kevin; Chen, Guang-Hong
2015-02-01
A patient-specific scatter correction algorithm is proposed to mitigate scatter artefacts in cone-beam CT (CBCT). The approach belongs to the category of convolution-based methods in which a scatter potential function is convolved with a convolution kernel to estimate the scatter profile. A key step in this method is to determine the free parameters introduced in both scatter potential and convolution kernel using a so-called calibration process, which is to seek for the optimal parameters such that the models for both scatter potential and convolution kernel is able to optimally fit the previously known coarse estimates of scatter profiles of the image object. Both direct measurements and Monte Carlo (MC) simulations have been proposed by other investigators to achieve the aforementioned rough estimates. In the present paper, a novel method has been proposed and validated to generate the needed coarse scatter profile for parameter calibration in the convolution method. The method is based upon an image segmentation of the scatter contaminated CBCT image volume, followed by a reprojection of the segmented image volume using a given x-ray spectrum. The reprojected data is subtracted from the scatter contaminated projection data to generate a coarse estimate of the needed scatter profile used in parameter calibration. The method was qualitatively and quantitatively evaluated using numerical simulations and experimental CBCT data acquired on a clinical CBCT imaging system. Results show that the proposed algorithm can significantly reduce scatter artefacts and recover the correct CT number. Numerical simulation results show the method is patient specific, can accurately estimate the scatter, and is robust with respect to segmentation procedure. For experimental and in vivo human data, the results show the CT number can be successfully recovered and anatomical structure visibility can be significantly improved.
Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive managem...
NASA Astrophysics Data System (ADS)
Rand, Robert S.; Resmini, Ronald G.; Allen, David W.
2015-09-01
Linear mixtures of materials in a scene often occur because the pixel size of a sensor is relatively large and consequently they contain patches of different materials within them. This type of mixing can be thought of as areal mixing and modeled by a linear mixture model with certain constraints on the abundances. The solution to these models has received a lot of attention. However, there are more complex situations, such as scattering that occurs in mixtures of vegetation and soil, or intimate mixing of granular materials like soils. Such multiple scattering and microscopic mixtures within pixels have varying degrees of non-linearity. In such cases, a linear model is not sufficient. Furthermore, often enough, scenes may contain cases of both linear and non-linear mixing on a pixel-by-pixel basis. This study considers two approaches for use as generalized methods for un-mixing pixels in a scene that may be linear (areal mixed) or non-linear (intimately mixed). The first method is based on earlier studies that indicate non-linear mixtures in reflectance space are approximately linear in albedo space. The method converts reflectance to singlescattering albedo (SSA) according to Hapke theory assuming bidirectional scattering at nadir look angles and uses a constrained linear model on the computed albedo values. The second method is motivated by the same idea, but uses a kernel that seeks to capture the linear behavior of albedo in non-linear mixtures of materials. The behavior of the kernel method is dependent on the value of a parameter, gamma. Furthermore, both methods are dependent on the choice of endmembers, and also on RMSE (root mean square error) as a performance metric. This study compares the two approaches and pays particular attention to these dependencies. Both laboratory and aerial collections of hyperspectral imagery are used to validate the methods.
Technology Transfer Automated Retrieval System (TEKTRAN)
Gray kernel is an important disease of macadamia that affects the quality of kernels, causing gray discoloration and a permeating, foul odor. Gray kernel symptoms were produced in raw, in-shell kernels of three cultivars of macadamia that were inoculated with strains of Enterobacter cloacae. Koch’...
FRIT characterized hierarchical kernel memory arrangement for multiband palmprint recognition
NASA Astrophysics Data System (ADS)
Kisku, Dakshina R.; Gupta, Phalguni; Sing, Jamuna K.
2015-10-01
In this paper, we present a hierarchical kernel associative memory (H-KAM) based computational model with Finite Ridgelet Transform (FRIT) representation for multispectral palmprint recognition. To characterize a multispectral palmprint image, the Finite Ridgelet Transform is used to achieve a very compact and distinctive representation of linear singularities while it also captures the singularities along lines and edges. The proposed system makes use of Finite Ridgelet Transform to represent multispectral palmprint image and it is then modeled by Kernel Associative Memories. Finally, the recognition scheme is thoroughly tested with a benchmarking multispectral palmprint database CASIA. For recognition purpose a Bayesian classifier is used. The experimental results exhibit robustness of the proposed system under different wavelengths of palm image.
Effective face recognition using bag of features with additive kernels
NASA Astrophysics Data System (ADS)
Yang, Shicai; Bebis, George; Chu, Yongjie; Zhao, Lindu
2016-01-01
In past decades, many techniques have been used to improve face recognition performance. The most common and well-studied ways are to use the whole face image to build a subspace based on the reduction of dimensionality. Differing from methods above, we consider face recognition as an image classification problem. The face images of the same person are considered to fall into the same category. Each category and each face image could be both represented by a simple pyramid histogram. Spatial dense scale-invariant feature transform features and bag of features method are used to build categories and face representations. In an effort to make the method more efficient, a linear support vector machine solver, Pegasos, is used for the classification in the kernel space with additive kernels instead of nonlinear SVMs. Our experimental results demonstrate that the proposed method can achieve very high recognition accuracy on the ORL, YALE, and FERET databases.
Some physical properties of ginkgo nuts and kernels
NASA Astrophysics Data System (ADS)
Ch'ng, P. E.; Abdullah, M. H. R. O.; Mathai, E. J.; Yunus, N. A.
2013-12-01
Some data of the physical properties of ginkgo nuts at a moisture content of 45.53% (±2.07) (wet basis) and of their kernels at 60.13% (± 2.00) (wet basis) are presented in this paper. It consists of the estimation of the mean length, width, thickness, the geometric mean diameter, sphericity, aspect ratio, unit mass, surface area, volume, true density, bulk density, and porosity measures. The coefficient of static friction for nuts and kernels was determined by using plywood, glass, rubber, and galvanized steel sheet. The data are essential in the field of food engineering especially dealing with design and development of machines, and equipment for processing and handling agriculture products.
Analyzing Sparse Dictionaries for Online Learning With Kernels
NASA Astrophysics Data System (ADS)
Honeine, Paul
2015-12-01
Many signal processing and machine learning methods share essentially the same linear-in-the-parameter model, with as many parameters as available samples as in kernel-based machines. Sparse approximation is essential in many disciplines, with new challenges emerging in online learning with kernels. To this end, several sparsity measures have been proposed in the literature to quantify sparse dictionaries and constructing relevant ones, the most prolific ones being the distance, the approximation, the coherence and the Babel measures. In this paper, we analyze sparse dictionaries based on these measures. By conducting an eigenvalue analysis, we show that these sparsity measures share many properties, including the linear independence condition and inducing a well-posed optimization problem. Furthermore, we prove that there exists a quasi-isometry between the parameter (i.e., dual) space and the dictionary's induced feature space.
Semi-supervised kernel learning based optical image recognition
NASA Astrophysics Data System (ADS)
Li, Jun-Bao; Yang, Zhi-Ming; Yu, Yang; Sun, Zhen
2012-08-01
This paper is to propose semi-supervised kernel learning based optical image recognition, called Semi-supervised Graph-based Global and Local Preserving Projection (SGGLPP) through integrating graph construction with the specific DR process into one unified framework. SGGLPP preserves not only the positive and negative constraints but also the local and global structure of the data in the low dimensional space. In SGGLPP, the intrinsic and cost graphs are constructed using the positive and negative constraints from side-information and k nearest neighbor criterion from unlabeled samples. Moreover, kernel trick is applied to extend SGGLPP called KSGGLPP by on the performance of nonlinear feature extraction. Experiments are implemented on UCI database and two real image databases to testify the feasibility and performance of the proposed algorithm.
Heat kernel for flat generalized Laplacians with anisotropic scaling
NASA Astrophysics Data System (ADS)
Mamiya, A.; Pinzul, A.
2014-06-01
We calculate the closed analytic form of the solution of heat kernel equation for the anisotropic generalizations of flat Laplacian. We consider a UV as well as UV/IR interpolating generalizations. In all cases, the result can be expressed in terms of Fox-Wright psi-functions. We perform different consistency checks, analytically reproducing some of the previous numerical or qualitative results, such as spectral dimension flow. Our study should be considered as a first step towards the construction of a heat kernel for curved Hořava-Lifshitz geometries, which is an essential ingredient in the spectral action approach to the construction of the Hořava-Lifshitz gravity.
Born Sensitivity Kernels in Spherical Geometry for Meridional Flows
NASA Astrophysics Data System (ADS)
Jackiewicz, Jason; Boening, Vincent; Roth, Markus; Kholikov, Shukur
2016-05-01
Measuring meridional flows deep in the solar convection zone is challenging because of their small amplitudes compared to other background signals. Typically such inferences are made using a ray theory that is best suited for slowly-varying flows. The implementation of finite-frequency Born theory has been shown to be more accurate for modeling flows of complex spatial structure in the near-surface region. Only until recently were such functions available in spherical geometry, which is necessary for applications to meridional flows. Here we compare these sensitivity kernels with corresponding ray kernels in a forward and inverse problem using numerical simulations. We show that they are suitable for inverting travel-time measurements and are more sensitive to small-scale variations of deep circulations.
Undersampled dynamic magnetic resonance imaging using kernel principal component analysis.
Wang, Yanhua; Ying, Leslie
2014-01-01
Compressed sensing (CS) is a promising approach to accelerate dynamic magnetic resonance imaging (MRI). Most existing CS methods employ linear sparsifying transforms. The recent developments in non-linear or kernel-based sparse representations have been shown to outperform the linear transforms. In this paper, we present an iterative non-linear CS dynamic MRI reconstruction framework that uses the kernel principal component analysis (KPCA) to exploit the sparseness of the dynamic image sequence in the feature space. Specifically, we apply KPCA to represent the temporal profiles of each spatial location and reconstruct the images through a modified pre-image problem. The underlying optimization algorithm is based on variable splitting and fixed-point iteration method. Simulation results show that the proposed method outperforms conventional CS method in terms of aliasing artifact reduction and kinetic information preservation. PMID:25570262
Polynomial Kernels for 3-Leaf Power Graph Modification Problems
NASA Astrophysics Data System (ADS)
Bessy, Stéphane; Paul, Christophe; Perez, Anthony
A graph G = (V,E) is a 3-leaf power iff there exists a tree T the leaf set of which is V and such that (u,v) ∈ E iff u and v are at distance at most 3 in T. The 3-leaf power edge modification problems, i.e. edition (also known as the CLOSEST 3-LEAF POWER), completion and edge-deletion are FPT when parameterized by the size of the edge set modification. However, a polynomial kernel was known for none of these three problems. For each of them, we provide a kernel with O(k 3) vertices that can be computed in linear time. We thereby answer an open question first mentioned by Dom, Guo, Hüffner and Niedermeier [9].
Heat kernel expansion in the background field formalism
NASA Astrophysics Data System (ADS)
Barvinsky, Andrei O.
2015-06-01
Heat kernel expansion and background field formalism represent the combination of two calculational methods within the functional approach to quantum field theory. This approach implies construction of generating functionals for matrix elements and expectation values of physical observables. These are functionals of arbitrary external sources or the mean field of a generic configuration -- the background field. Exact calculation of quantum effects on a generic background is impossible. However, a special integral (proper time) representation for the Green's function of the wave operator -- the propagator of the theory -- and its expansion in the ultraviolet and infrared limits of respectively short and late proper time parameter allow one to construct approximations which are valid on generic background fields. Current progress of quantum field theory, its renormalization properties, model building in unification of fundamental physical interactions and QFT applications in high energy physics, gravitation and cosmology critically rely on efficiency of the heat kernel expansion and background field formalism.
SIFT fusion of kernel eigenfaces for face recognition
NASA Astrophysics Data System (ADS)
Kisku, Dakshina R.; Tistarelli, Massimo; Gupta, Phalguni; Sing, Jamuna K.
2015-10-01
In this paper, we investigate an application that integrates holistic appearance based method and feature based method for face recognition. The automatic face recognition system makes use of multiscale Kernel PCA (Principal Component Analysis) characterized approximated face images and reduced the number of invariant SIFT (Scale Invariant Feature Transform) keypoints extracted from face projected feature space. To achieve higher variance in the inter-class face images, we compute principal components in higher-dimensional feature space to project a face image onto some approximated kernel eigenfaces. As long as feature spaces retain their distinctive characteristics, reduced number of SIFT points are detected for a number of principal components and keypoints are then fused using user-dependent weighting scheme and form a feature vector. The proposed method is tested on ORL face database, and the efficacy of the system is proved by the test results computed using the proposed algorithm.
Improved Rotating Kernel Transformation Based Contourlet Domain Image Denoising Framework
Guo, Qing; Dong, Fangmin; Ren, Xuhong; Feng, Shiyu; Gao, Bruce Zhi
2016-01-01
A contourlet domain image denoising framework based on a novel Improved Rotating Kernel Transformation is proposed, where the difference of subbands in contourlet domain is taken into account. In detail: (1). A novel Improved Rotating Kernel Transformation (IRKT) is proposed to calculate the direction statistic of the image; The validity of the IRKT is verified by the corresponding extracted edge information comparing with the state-of-the-art edge detection algorithm. (2). The direction statistic represents the difference between subbands and is introduced to the threshold function based contourlet domain denoising approaches in the form of weights to get the novel framework. The proposed framework is utilized to improve the contourlet soft-thresholding (CTSoft) and contourlet bivariate-thresholding (CTB) algorithms. The denoising results on the conventional testing images and the Optical Coherence Tomography (OCT) medical images show that the proposed methods improve the existing contourlet based thresholding denoising algorithm, especially for the medical images. PMID:27148597
Kernel Feature Cross-Correlation for Unsupervised Quantification of Damage from Windthrow in Forests
NASA Astrophysics Data System (ADS)
Pirotti, F.; Travaglini, D.; Giannetti, F.; Kutchartt, E.; Bottalico, F.; Chirici, G.
2016-06-01
In this study estimation of tree damage from a windthrow event using feature detection on RGB high resolution imagery is assessed. An accurate quantitative assessment of the damage in terms of volume is important and can be done by ground sampling, which is notably expensive and time-consuming, or by manual interpretation and analyses of aerial images. This latter manual method also requires an expert operator investing time to manually detect damaged trees and apply relation functions between measures and volume which are also error-prone. In the proposed method RGB images with 0.2 m ground sample distance are analysed using an adaptive template matching method. Ten images corresponding to ten separate study areas are tested. A 13x13 pixels kernel with a simplified linear-feature representation of a cylinder is applied at different rotation angles (from 0° to 170° at 10° steps). The higher values of the normalized cross-correlation (NCC) of all angles are recorded for each pixel for each image. Several features are tested: percentiles (75, 80, 85, 90, 95, 99, max) and sum and number of pixels with NCC above 0.55. Three regression methods are tested, multiple regression (mr), support vector machines (svm) with linear kernel and random forests. The first two methods gave the best results. The ground-truth was acquired by ground sampling, and total volumes of damaged trees are estimated for each of the 10 areas. Damaged volumes in the ten areas range from ~1.8 x102 m3 to ~1.2x104 m3. Regression results show that smv regression method over the sum gives an R-squared of 0.92, a mean of absolute errors (MAE) of 255 m3 and a relative absolute error (RAE) of 34% using leave-one-out cross validation from the 10 observations. These initial results are encouraging and support further investigations on more finely tuned kernel template metrics to define an unsupervised image analysis process to automatically assess forest damage from windthrow.
Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications
Jones, Terry R
2011-01-01
This paper describes a kernel scheduling algorithm that is based on co-scheduling principles and that is intended for parallel applications running on 1000 cores or more where inter-node scalability is key. Experimental results for a Linux implementation on a Cray XT5 machine are presented.1 The results indicate that Linux is a suitable operating system for this new scheduling scheme, and that this design provides a dramatic improvement in scaling performance for synchronizing collective operations at scale.
Cassane diterpenes from the seed kernels of Caesalpinia sappan.
Nguyen, Hai Xuan; Nguyen, Nhan Trung; Dang, Phu Hoang; Thi Ho, Phuoc; Nguyen, Mai Thanh Thi; Van Can, Mao; Dibwe, Dya Fita; Ueda, Jun-Ya; Awale, Suresh
2016-02-01
Eight structurally diverse cassane diterpenes named tomocins A-H were isolated from the seed kernels of Vietnamese Caesalpinia sappan Linn. Their structures were determined by extensive NMR and CD spectroscopic analysis. Among the isolated compounds, tomocin A, phanginin A, F, and H exhibited mild preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrition-deprived condition without causing toxicity in normal nutrient-rich conditions. PMID:26769396
Realistic dispersion kernels applied to cohabitation reaction dispersion equations
NASA Astrophysics Data System (ADS)
Isern, Neus; Fort, Joaquim; Pérez-Losada, Joaquim
2008-10-01
We develop front spreading models for several jump distance probability distributions (dispersion kernels). We derive expressions for a cohabitation model (cohabitation of parents and children) and a non-cohabitation model, and apply them to the Neolithic using data from real human populations. The speeds that we obtain are consistent with observations of the Neolithic transition. The correction due to the cohabitation effect is up to 38%.
Instantaneous Bethe-Salpeter kernel for the lightest pseudoscalar mesons
NASA Astrophysics Data System (ADS)
Lucha, Wolfgang; Schöberl, Franz F.
2016-05-01
Starting from a phenomenologically successful, numerical solution of the Dyson-Schwinger equation that governs the quark propagator, we reconstruct in detail the interaction kernel that has to enter the instantaneous approximation to the Bethe-Salpeter equation to allow us to describe the lightest pseudoscalar mesons as quark-antiquark bound states exhibiting the (almost) masslessness necessary for them to be interpretable as the (pseudo) Goldstone bosons related to the spontaneous chiral symmetry breaking of quantum chromodynamics.
Deproteinated palm kernel cake-derived oligosaccharides: A preliminary study
NASA Astrophysics Data System (ADS)
Fan, Suet Pin; Chia, Chin Hua; Fang, Zhen; Zakaria, Sarani; Chee, Kah Leong
2014-09-01
Preliminary study on microwave-assisted hydrolysis of deproteinated palm kernel cake (DPKC) to produce oligosaccharides using succinic acid was performed. Three important factors, i.e., temperature, acid concentration and reaction time, were selected to carry out the hydrolysis processes. Results showed that the highest yield of DPKC-derived oligosaccharides can be obtained at a parameter 170 °C, 0.2 N SA and 20 min of reaction time.
Benchmarking NWP Kernels on Multi- and Many-core Processors
NASA Astrophysics Data System (ADS)
Michalakes, J.; Vachharajani, M.
2008-12-01
Increased computing power for weather, climate, and atmospheric science has provided direct benefits for defense, agriculture, the economy, the environment, and public welfare and convenience. Today, very large clusters with many thousands of processors are allowing scientists to move forward with simulations of unprecedented size. But time-critical applications such as real-time forecasting or climate prediction need strong scaling: faster nodes and processors, not more of them. Moreover, the need for good cost- performance has never been greater, both in terms of performance per watt and per dollar. For these reasons, the new generations of multi- and many-core processors being mass produced for commercial IT and "graphical computing" (video games) are being scrutinized for their ability to exploit the abundant fine- grain parallelism in atmospheric models. We present results of our work to date identifying key computational kernels within the dynamics and physics of a large community NWP model, the Weather Research and Forecast (WRF) model. We benchmark and optimize these kernels on several different multi- and many-core processors. The goals are to (1) characterize and model performance of the kernels in terms of computational intensity, data parallelism, memory bandwidth pressure, memory footprint, etc. (2) enumerate and classify effective strategies for coding and optimizing for these new processors, (3) assess difficulties and opportunities for tool or higher-level language support, and (4) establish a continuing set of kernel benchmarks that can be used to measure and compare effectiveness of current and future designs of multi- and many-core processors for weather and climate applications.
Equilibrium studies of copper ion adsorption onto palm kernel fibre.
Ofomaja, Augustine E
2010-07-01
The equilibrium sorption of copper ions from aqueous solution using a new adsorbent, palm kernel fibre, has been studied. Palm kernel fibre is obtained in large amounts as a waste product of palm oil production. Batch equilibrium studies were carried out and system variables such as solution pH, sorbent dose, and sorption temperature were varied. The equilibrium sorption data was then analyzed using the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherms. The fit of these isotherm models to the equilibrium sorption data was determined, using the linear coefficient of determination, r(2), and the non-linear Chi-square, chi(2) error analysis. The results revealed that sorption was pH dependent and increased with increasing solution pH above the pH(PZC) of the palm kernel fibre with an optimum dose of 10g/dm(3). The equilibrium data were found to fit the Langmuir isotherm model best, with a monolayer capacity of 3.17 x 10(-4)mol/g at 339K. The sorption equilibrium constant, K(a), increased with increasing temperature, indicating that bond strength between sorbate and sorbent increased with temperature and sorption was endothermic. This was confirmed by the increase in the values of the Temkin isotherm constant, B(1), with increasing temperature. The Dubinin-Radushkevich (D-R) isotherm parameter, free energy, E, was in the range of 15.7-16.7kJ/mol suggesting that the sorption mechanism was ion exchange. Desorption studies showed that a high percentage of the copper was desorbed from the adsorbent using acid solutions (HCl, HNO(3) and CH(3)COOH) and the desorption percentage increased with acid concentration. The thermodynamics of the copper ions/palm kernel fibre system indicate that the process is spontaneous and endothermic. PMID:20346574
Linux Kernel Co-Scheduling and Bulk Synchronous Parallelism
Jones, Terry R
2012-01-01
This paper describes a kernel scheduling algorithm that is based on coscheduling principles and that is intended for parallel applications running on 1000 cores or more. Experimental results for a Linux implementation on a Cray XT5 machine are presented. The results indicate that Linux is a suitable operating system for this new scheduling scheme, and that this design provides a dramatic improvement in scaling performance for synchronizing collective operations at scale.
Initial Kernel Timing Using a Simple PIM Performance Model
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Block, Gary L.; Springer, Paul L.; Sterling, Thomas; Brockman, Jay B.; Callahan, David
2005-01-01
This presentation will describe some initial results of paper-and-pencil studies of 4 or 5 application kernels applied to a processor-in-memory (PIM) system roughly similar to the Cascade Lightweight Processor (LWP). The application kernels are: * Linked list traversal * Sun of leaf nodes on a tree * Bitonic sort * Vector sum * Gaussian elimination The intent of this work is to guide and validate work on the Cascade project in the areas of compilers, simulators, and languages. We will first discuss the generic PIM structure. Then, we will explain the concepts needed to program a parallel PIM system (locality, threads, parcels). Next, we will present a simple PIM performance model that will be used in the remainder of the presentation. For each kernel, we will then present a set of codes, including codes for a single PIM node, and codes for multiple PIM nodes that move data to threads and move threads to data. These codes are written at a fairly low level, between assembly and C, but much closer to C than to assembly. For each code, we will present some hand-drafted timing forecasts, based on the simple PIM performance model. Finally, we will conclude by discussing what we have learned from this work, including what programming styles seem to work best, from the point-of-view of both expressiveness and performance.
Fast metabolite identification with Input Output Kernel Regression
Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho
2016-01-01
Motivation: An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. Results: We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. Availability and implementation: Contact: celine.brouard@aalto.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307628
Noise Level Estimation for Model Selection in Kernel PCA Denoising.
Varon, Carolina; Alzate, Carlos; Suykens, Johan A K
2015-11-01
One of the main challenges in unsupervised learning is to find suitable values for the model parameters. In kernel principal component analysis (kPCA), for example, these are the number of components, the kernel, and its parameters. This paper presents a model selection criterion based on distance distributions (MDDs). This criterion can be used to find the number of components and the σ(2) parameter of radial basis function kernels by means of spectral comparison between information and noise. The noise content is estimated from the statistical moments of the distribution of distances in the original dataset. This allows for a type of randomization of the dataset, without actually having to permute the data points or generate artificial datasets. After comparing the eigenvalues computed from the estimated noise with the ones from the input dataset, information is retained and maximized by a set of model parameters. In addition to the model selection criterion, this paper proposes a modification to the fixed-size method and uses the incomplete Cholesky factorization, both of which are used to solve kPCA in large-scale applications. These two approaches, together with the model selection MDD, were tested in toy examples and real life applications, and it is shown that they outperform other known algorithms. PMID:25608316
Hyperspectral-imaging-based techniques applied to wheat kernels characterization
NASA Astrophysics Data System (ADS)
Serranti, Silvia; Cesare, Daniela; Bonifazi, Giuseppe
2012-05-01
Single kernels of durum wheat have been analyzed by hyperspectral imaging (HSI). Such an approach is based on the utilization of an integrated hardware and software architecture able to digitally capture and handle spectra as an image sequence, as they results along a pre-defined alignment on a surface sample properly energized. The study was addressed to investigate the possibility to apply HSI techniques for classification of different types of wheat kernels: vitreous, yellow berry and fusarium-damaged. Reflectance spectra of selected wheat kernels of the three typologies have been acquired by a laboratory device equipped with an HSI system working in near infrared field (1000-1700 nm). The hypercubes were analyzed applying principal component analysis (PCA) to reduce the high dimensionality of data and for selecting some effective wavelengths. Partial least squares discriminant analysis (PLS-DA) was applied for classification of the three wheat typologies. The study demonstrated that good classification results were obtained not only considering the entire investigated wavelength range, but also selecting only four optimal wavelengths (1104, 1384, 1454 and 1650 nm) out of 121. The developed procedures based on HSI can be utilized for quality control purposes or for the definition of innovative sorting logics of wheat.
KNBD: A Remote Kernel Block Server for Linux
NASA Technical Reports Server (NTRS)
Becker, Jeff
1999-01-01
I am developing a prototype of a Linux remote disk block server whose purpose is to serve as a lower level component of a parallel file system. Parallel file systems are an important component of high performance supercomputers and clusters. Although supercomputer vendors such as SGI and IBM have their own custom solutions, there has been a void and hence a demand for such a system on Beowulf-type PC Clusters. Recently, the Parallel Virtual File System (PVFS) project at Clemson University has begun to address this need (1). Although their system provides much of the functionality of (and indeed was inspired by) the equivalent file systems in the commercial supercomputer market, their system is all in user-space. Migrating their 10 services to the kernel could provide a performance boost, by obviating the need for expensive system calls. Thanks to Pavel Machek, the Linux kernel has provided the network block device (2) with kernels 2.1.101 and later. You can configure this block device to redirect reads and writes to a remote machine's disk. This can be used as a building block for constructing a striped file system across several nodes.
Predicting activity approach based on new atoms similarity kernel function.
Abu El-Atta, Ahmed H; Moussa, M I; Hassanien, Aboul Ella
2015-07-01
Drug design is a high cost and long term process. To reduce time and costs for drugs discoveries, new techniques are needed. Chemoinformatics field implements the informational techniques and computer science like machine learning and graph theory to discover the chemical compounds properties, such as toxicity or biological activity. This is done through analyzing their molecular structure (molecular graph). To overcome this problem there is an increasing need for algorithms to analyze and classify graph data to predict the activity of molecules. Kernels methods provide a powerful framework which combines machine learning with graph theory techniques. These kernels methods have led to impressive performance results in many several chemoinformatics problems like biological activity prediction. This paper presents a new approach based on kernel functions to solve activity prediction problem for chemical compounds. First we encode all atoms depending on their neighbors then we use these codes to find a relationship between those atoms each other. Then we use relation between different atoms to find similarity between chemical compounds. The proposed approach was compared with many other classification methods and the results show competitive accuracy with these methods. PMID:26117822
Reproducing Kernels in Harmonic Spaces and Their Numerical Implementation
NASA Astrophysics Data System (ADS)
Nesvadba, Otakar
2010-05-01
In harmonic analysis such as the modelling of the Earth's gravity field, the importance of Hilbert's space of harmonic functions with the reproducing kernel is often discussed. Moreover, in case of an unbounded domain given by the exterior of the sphere or an ellipsoid, the reproducing kernel K(x,y) can be expressed analytically by means of closed formulas or by infinite series. Nevertheless, the straightforward numerical implementation of these formulas leads to dozen of problems, which are mostly connected with the floating-point arithmetic and a number representation. The contribution discusses numerical instabilities in K(x,y) and gradK(x,y) that can be overcome by employing elementary functions, in particular expm1 and log1p. Suggested evaluation scheme for reproducing kernels offers uniform formulas within the whole solution domain as well as superior speed and near-perfect accuracy (10-16 for IEC 60559 double-precision numbers) when compared with the straightforward formulas. The formulas can be easily implemented on the majority of computer platforms, especially when C standard library ISO/IEC 9899:1999 is available.
Biodiesel from Siberian apricot (Prunus sibirica L.) seed kernel oil.
Wang, Libing; Yu, Haiyan
2012-05-01
In this paper, Siberian apricot (Prunus sibirica L.) seed kernel oil was investigated for the first time as a promising non-conventional feedstock for preparation of biodiesel. Siberian apricot seed kernel has high oil content (50.18 ± 3.92%), and the oil has low acid value (0.46 mg g(-1)) and low water content (0.17%). The fatty acid composition of the Siberian apricot seed kernel oil includes a high percentage of oleic acid (65.23 ± 4.97%) and linoleic acid (28.92 ± 4.62%). The measured fuel properties of the Siberian apricot biodiesel, except cetane number and oxidative stability, were conformed to EN 14214-08, ASTM D6751-10 and GB/T 20828-07 standards, especially the cold flow properties were excellent (Cold filter plugging point -14°C). The addition of 500 ppm tert-butylhydroquinone (TBHQ) resulted in a higher induction period (7.7h) compliant with all the three biodiesel standards. PMID:22440572
Kernel Averaged Predictors for Spatio-Temporal Regression Models.
Heaton, Matthew J; Gelfand, Alan E
2012-12-01
In applications where covariates and responses are observed across space and time, a common goal is to quantify the effect of a change in the covariates on the response while adequately accounting for the spatio-temporal structure of the observations. The most common approach for building such a model is to confine the relationship between a covariate and response variable to a single spatio-temporal location. However, oftentimes the relationship between the response and predictors may extend across space and time. In other words, the response may be affected by levels of predictors in spatio-temporal proximity to the response location. Here, a flexible modeling framework is proposed to capture such spatial and temporal lagged effects between a predictor and a response. Specifically, kernel functions are used to weight a spatio-temporal covariate surface in a regression model for the response. The kernels are assumed to be parametric and non-stationary with the data informing the parameter values of the kernel. The methodology is illustrated on simulated data as well as a physical data set of ozone concentrations to be explained by temperature. PMID:24010051
Knowledge Driven Image Mining with Mixture Density Mercer Kernels
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Oza, Nikunj
2004-01-01
This paper presents a new methodology for automatic knowledge driven image mining based on the theory of Mercer Kernels; which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. In that high dimensional feature space, linear clustering, prediction, and classification algorithms can be applied and the results can be mapped back down to the original image space. Thus, highly nonlinear structure in the image can be recovered through the use of well-known linear mathematics in the feature space. This process has a number of advantages over traditional methods in that it allows for nonlinear interactions to be modelled with only a marginal increase in computational costs. In this paper, we present the theory of Mercer Kernels, describe its use in image mining, discuss a new method to generate Mercer Kernels directly from data, and compare the results with existing algorithms on data from the MODIS (Moderate Resolution Spectral Radiometer) instrument taken over the Arctic region. We also discuss the potential application of these methods on the Intelligent Archive, a NASA initiative for developing a tagged image data warehouse for the Earth Sciences.
Organizing for ontological change: The kernel of an AIDS research infrastructure
Polk, Jessica Beth
2015-01-01
Is it possible to prepare and plan for emergent and changing objects of research? Members of the Multicenter AIDS Cohort Study have been investigating AIDS for over 30 years, and in that time, the disease has been repeatedly transformed. Over the years and across many changes, members have continued to study HIV disease while in the process regenerating an adaptable research organization. The key to sustaining this technoscientific flexibility has been what we call the kernel of a research infrastructure: ongoing efforts to maintain the availability of resources and services that may be brought to bear in the investigation of new objects. In the case of the Multicenter AIDS Cohort Study, these resources are as follows: specimens and data, calibrated instruments, heterogeneous experts, and participating cohorts of gay and bisexual men. We track three ontological transformations, examining how members prepared for and responded to changes: the discovery of a novel retroviral agent (HIV), the ability to test for that agent, and the transition of the disease from fatal to chronic through pharmaceutical intervention. Respectively, we call the work, ‘technologies’, and techniques of adapting to these changes, ‘repurposing’, ‘elaborating’, and ‘extending the kernel’. PMID:26477206
Manley, Marena; Williams, Paul; Nilsson, David; Geladi, Paul
2009-10-14
Near infrared hyperspectral images (HSI) were recorded for whole yellow maize kernels (commercial hybrids) defined as either hard, intermediate, or soft by experienced maize breeders. The images were acquired with a linescan (pushbroom) instrument using a HgCdTe detector. The final image size was 570 x 219 pixels in 239 wavelength bands from 1000 to 2498 nm in steps of approximately 6.5 nm. Multivariate image cleaning was used to remove background and optical errors, in which about two-thirds of all pixels were removed. The cleaned image was used to calculate a principal component analysis (PCA) model after multiplicative scatter correction (MSC) and mean-centering were applied. It was possible to find clusters representing vitreous and floury endosperm (different types of endosperm present in varying ratios in hard and soft kernels) as well as a third type of endosperm by interactively delineating polygon based clusters in the score plot of the second and fourth principal components and projecting the results on the image space. Chemical interpretation of the loading line plots shows the effect of starch density and the protein matrix. The vitreous and floury endosperm clusters were used to make a partial least-squares discriminant analysis (PLS-DA) model, using four components, with a coefficient of determination (R(2)) for the y data (kernel hardness category) for the training set of over 85%. This PLS-DA model could be used for prediction in a test set. We show how the prediction images can be interpreted, thus confirming the validity of the PCA classification. The technique presented here is very powerful for laboratory studies of small cereal samples in order to produce localized information. PMID:19728712
Q-branch Raman scattering and modern kinetic thoery
Monchick, L.
1993-12-01
The program is an extension of previous APL work whose general aim was to calculate line shapes of nearly resonant isolated line transitions with solutions of a popular quantum kinetic equation-the Waldmann-Snider equation-using well known advanced solution techniques developed for the classical Boltzmann equation. The advanced techniques explored have been a BGK type approximation, which is termed the Generalized Hess Method (GHM), and conversion of the collision operator to a block diagonal matrix of symmetric collision kernels which then can be approximated by discrete ordinate methods. The latter method, which is termed the Collision Kernel method (CC), is capable of the highest accuracy and has been used quite successfully for Q-branch Raman scattering. The GHM method, not quite as accurate, is applicable over a wider range of pressures and has proven quite useful.
NASA Astrophysics Data System (ADS)
Zhu, Fengle; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert; Bhatnagar, Deepak; Cleveland, Thomas
2015-05-01
Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive. This study employed fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images to classify aflatoxin contaminated corn kernels rapidly and non-destructively. Corn ears were artificially inoculated in the field with toxigenic A. flavus spores at the early dough stage of kernel development. After harvest, a total of 300 kernels were collected from the inoculated ears. Fluorescence hyperspectral imagery with UV excitation and reflectance hyperspectral imagery with halogen illumination were acquired on both endosperm and germ sides of kernels. All kernels were then subjected to chemical analysis individually to determine aflatoxin concentrations. A region of interest (ROI) was created for each kernel to extract averaged spectra. Compared with healthy kernels, fluorescence spectral peaks for contaminated kernels shifted to longer wavelengths with lower intensity, and reflectance values for contaminated kernels were lower with a different spectral shape in 700-800 nm region. Principal component analysis was applied for data compression before classifying kernels into contaminated and healthy based on a 20 ppb threshold utilizing the K-nearest neighbors algorithm. The best overall accuracy achieved was 92.67% for germ side in the fluorescence data analysis. The germ side generally performed better than endosperm side. Fluorescence and reflectance image data achieved similar accuracy.
Hedstrom, C S; Shearer, P W; Miller, J C; Walton, V M
2014-10-01
Halyomorpha halys Stål, the brown marmorated stink bug (Hemiptera: Pentatomidae), is an invasive pest with established populations in Oregon. The generalist feeding habits of H. halys suggest it has the potential to be a pest of many specialty crops grown in Oregon, including hazelnuts, Corylus avellana L. The objectives of this study were to: 1) characterize the damage to developing hazelnut kernels resulting from feeding by H. halys adults, 2) determine how the timing of feeding during kernel development influences damage to kernels, and 3) determine if hazelnut shell thickness has an effect on feeding frequency on kernels. Adult brown marmorated stink bugs were allowed to feed on developing nuts for 1-wk periods from initial kernel development (spring) until harvest (fall). Developing nuts not exposed to feeding by H. halys served as a control treatment. The degree of damage and diagnostic symptoms corresponded with the hazelnut kernels' physiological development. Our results demonstrated that when H. halys fed on hazelnuts before kernel expansion, development of the kernels could cease, resulting in empty shells. When stink bugs fed during kernel expansion, kernels appeared malformed. When stink bugs fed on mature nuts the kernels exhibited corky, necrotic areas. Although significant differences in shell thickness were observed among the cultivars, no significant differences occurred in the proportions of damaged kernels based on field tests and laboratory choice tests. The results of these studies demonstrated that commercial hazelnuts are susceptible to damage caused by the feeding of H. halys throughout the entire period of kernel development. PMID:26309276
Translation correlations in anisotropically scattering media
NASA Astrophysics Data System (ADS)
Judkewitz, Benjamin; Horstmeyer, Roarke; Vellekoop, Ivo M.; Papadopoulos, Ioannis N.; Yang, Changhuei
2015-08-01
Controlling light propagation across scattering media by wavefront shaping holds great promise for a wide range of communications and imaging applications. But, finding the right shape for the wavefront is a challenge when the mapping between input and output scattered wavefronts (that is, the transmission matrix) is not known. Correlations in transmission matrices, especially the so-called memory effect, have been exploited to address this limitation. However, the traditional memory effect applies to thin scattering layers at a distance from the target, which precludes its use within thick scattering media, such as fog and biological tissue. Here, we theoretically predict and experimentally verify new transmission matrix correlations within thick anisotropically scattering media, with important implications for biomedical imaging and adaptive optics.
Barrett, Harrison H.; Furenlid, Lars R.; Freed, Melanie; Hesterman, Jacob Y.; Kupinski, Matthew A.; Clarkson, Eric; Whitaker, Meredith K.
2008-01-01
Adaptive imaging systems alter their data-acquisition configuration or protocol in response to the image information received. An adaptive pinhole single-photon emission computed tomography (SPECT) system might acquire an initial scout image to obtain preliminary information about the radiotracer distribution and then adjust the configuration or sizes of the pinholes, the magnifications, or the projection angles in order to improve performance. This paper briefly describes two small-animal SPECT systems that allow this flexibility and then presents a framework for evaluating adaptive systems in general, and adaptive SPECT systems in particular. The evaluation is in terms of the performance of linear observers on detection or estimation tasks. Expressions are derived for the ideal linear (Hotelling) observer and the ideal linear (Wiener) estimator with adaptive imaging. Detailed expressions for the performance figures of merit are given, and possible adaptation rules are discussed. PMID:18541485
Design of a multiple kernel learning algorithm for LS-SVM by convex programming.
Jian, Ling; Xia, Zhonghang; Liang, Xijun; Gao, Chuanhou
2011-06-01
As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed. PMID:21441012
Tracking flame base movement and interaction with ignition kernels using topological methods
NASA Astrophysics Data System (ADS)
Mascarenhas, A.; Grout, R. W.; Yoo, C. S.; Chen, J. H.
2009-07-01
We segment the stabilization region in a simulation of a lifted jet flame based on its topology induced by the YOH field. Our segmentation method yields regions that correspond to the flame base and to potential auto-ignition kernels. We apply a region overlap based tracking method to follow the flame-base and the kernels over time, to study the evolution of kernels, and to detect when the kernels merge with the flame. The combination of our segmentation and tracking methods allow us observe flame stabilization via merging between the flame base and kernels; we also obtain YCH2O histories inside the kernels and detect a distinct decrease in radical concentration during transition to a developed flame.
Kernel-Correlated Levy Field Driven Forward Rate and Application to Derivative Pricing
Bo Lijun; Wang Yongjin; Yang Xuewei
2013-08-01
We propose a term structure of forward rates driven by a kernel-correlated Levy random field under the HJM framework. The kernel-correlated Levy random field is composed of a kernel-correlated Gaussian random field and a centered Poisson random measure. We shall give a criterion to preclude arbitrage under the risk-neutral pricing measure. As applications, an interest rate derivative with general payoff functional is priced under this pricing measure.
A framework for optimal kernel-based manifold embedding of medical image data.
Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma
2015-04-01
Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. PMID:25008538
Kernel density estimation-based real-time prediction for respiratory motion
NASA Astrophysics Data System (ADS)
Ruan, Dan
2010-03-01
Effective delivery of adaptive radiotherapy requires locating the target with high precision in real time. System latency caused by data acquisition, streaming, processing and delivery control necessitates prediction. Prediction is particularly challenging for highly mobile targets such as thoracic and abdominal tumors undergoing respiration-induced motion. The complexity of the respiratory motion makes it difficult to build and justify explicit models. In this study, we honor the intrinsic uncertainties in respiratory motion and propose a statistical treatment of the prediction problem. Instead of asking for a deterministic covariate-response map and a unique estimate value for future target position, we aim to obtain a distribution of the future target position (response variable) conditioned on the observed historical sample values (covariate variable). The key idea is to estimate the joint probability distribution (pdf) of the covariate and response variables using an efficient kernel density estimation method. Then, the problem of identifying the distribution of the future target position reduces to identifying the section in the joint pdf based on the observed covariate. Subsequently, estimators are derived based on this estimated conditional distribution. This probabilistic perspective has some distinctive advantages over existing deterministic schemes: (1) it is compatible with potentially inconsistent training samples, i.e., when close covariate variables correspond to dramatically different response values; (2) it is not restricted by any prior structural assumption on the map between the covariate and the response; (3) the two-stage setup allows much freedom in choosing statistical estimates and provides a full nonparametric description of the uncertainty for the resulting estimate. We evaluated the prediction performance on ten patient RPM traces, using the root mean squared difference between the prediction and the observed value normalized by the
A Testbed of Parallel Kernels for Computer Science Research
Bailey, David; Demmel, James; Ibrahim, Khaled; Kaiser, Alex; Koniges, Alice; Madduri, Kamesh; Shalf, John; Strohmaier, Erich; Williams, Samuel
2010-04-30
initial result of the more modern study was the seven dwarfs, which was subsequently extended to 13 motifs. These motifs have already been useful in defining classes of applications for architecture-software studies. However, these broad-brush problem statements often miss the nuance seen in individual kernels. For example, the computational requirements of particle methods vary greatly between the naive (but more accurate) direct calculations and the particle-mesh and particle-tree codes. Thus we commenced our study with an enumeration of problems, but then proceeded by providing not only reference implementations for each problem, but more importantly a mathematical definition that allows one to escape iterative approaches to software/hardware optimization. To ensure long term value, we have augmented each of our reference implementations with both a scalable problem generator and a verification scheme. In a paper we have prepared that documents our efforts, we describe in detail this process of problem definition, scalable input creation, verification, and implementation of reference codes for the scientific computing domain. Table 1 enumerates and describes the level of support we've developed for each kernel. We group these important kernels using the Berkeley dwarfs/motifs taxonomy using a red box in the appropriate column. As kernels become progressively complex, they build upon other, simpler computational methods. We note this dependency via orange boxes. After enumeration of the important numerical problems, we created a domain-appropriate high-level definition of each problem. To ensure future endeavors are not tainted by existing implementations, we specified the problem definition to be independent of both computer architecture and existing programming languages, models, and data types. Then, to provide context as to how such kernels productively map to existing architectures, languages and programming models, we produced reference implementations for most of
An adaptive SPH method for strong shocks
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; López, Hender; Trujillo, Leonardo
2009-09-01
We propose an alternative SPH scheme to usual SPH Godunov-type methods for simulating supersonic compressible flows with sharp discontinuities. The method relies on an adaptive density kernel estimation (ADKE) algorithm, which allows the width of the kernel interpolant to vary locally in space and time so that the minimum necessary smoothing is applied in regions of low density. We have performed a von Neumann stability analysis of the SPH equations for an ideal gas and derived the corresponding dispersion relation in terms of the local width of the kernel. Solution of the dispersion relation in the short wavelength limit shows that stability is achieved for a wide range of the ADKE parameters. Application of the method to high Mach number shocks confirms the predictions of the linear analysis. Examples of the resolving power of the method are given for a set of difficult problems, involving the collision of two strong shocks, the strong shock-tube test, and the interaction of two blast waves.
Influence of argan kernel roasting-time on virgin argan oil composition and oxidative stability.
Harhar, Hicham; Gharby, Saïd; Kartah, Bader; El Monfalouti, Hanae; Guillaume, Dom; Charrouf, Zoubida
2011-06-01
Virgin argan oil, which is harvested from argan fruit kernels, constitutes an alimentary source of substances of nutraceutical value. Chemical composition and oxidative stability of argan oil prepared from argan kernels roasted for different times were evaluated and compared with those of beauty argan oil that is prepared from unroasted kernels. Prolonged roasting time induced colour development and increased phosphorous content whereas fatty acid composition and tocopherol levels did not change. Oxidative stability data indicate that kernel roasting for 15 to 30 min at 110 °C is optimum to preserve virgin argan oil nutritive properties. PMID:21442181
Random Variables and Positive Definite Kernels Associated with the Schroedinger Algebra
Accardi, Luigi; Boukas, Andreas
2010-06-17
We show that the Feinsilver-Kocik-Schott (FKS) kernel for the Schroedinger algebra is not positive definite. We show how the FKS Schroedinger kernel can be reduced to a positive definite one through a restriction of the defining parameters of the exponential vectors. We define the Fock space associated with the reduced FKS Schroedinger kernel. We compute the characteristic functions of quantum random variables naturally associated with the FKS Schroedinger kernel and expressed in terms of the renormalized higher powers of white noise (or RHPWN) Lie algebra generators.
Felker, F.C. )
1990-05-01
Maize (Zea mays L.) kernels cultured in vitro while still attached to cob pieces have been used as a model system to study the physiology of kernel development. In this study, the role of the cob tissue in uptake of medium components into kernels was examined. Cob tissue was essential for in vitro kernel growth, and better growth occurred with larger cob/kernel ratios. A symplastically transported fluorescent dye readily permeated the endosperm when supplied in the medium, while an apoplastic dye did not. Slicing the cob tissue to disrupt vascular connections, but not apoplastic continuity, greatly reduced ({sup 14}C)sucrose uptake into kernels. ({sup 14}C)Sucrose uptake by cob and kernel tissue was reduced 31% and 68%, respectively, by 5 mM PCMBS. L-({sup 14}C)glucose was absorbed much more slowly than D-({sup 14}C)glucose. These and other results indicate that phloem loading of sugars occurs in the cob tissue. Passage of medium components through the symplast cob tissue may be a prerequisite for uptake into the kernel. Simple diffusion from the medium to the kernels is unlikely. Therefore, the ability of substances to be transported into cob tissue cells should be considered in formulating culture medium.
Zhang, Zhanhui; Wu, Xiangyuan; Shi, Chaonan; Wang, Rongna; Li, Shengfei; Wang, Zhaohui; Liu, Zonghua; Xue, Yadong; Tang, Guiliang; Tang, Jihua
2016-02-01
Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection. PMID:26420507
Kernel regression estimates of time delays between gravitationally lensed fluxes
NASA Astrophysics Data System (ADS)
AL Otaibi, Sultanah; Tiňo, Peter; Cuevas-Tello, Juan C.; Mandel, Ilya; Raychaudhury, Somak
2016-06-01
Strongly lensed variable quasars can serve as precise cosmological probes, provided that time delays between the image fluxes can be accurately measured. A number of methods have been proposed to address this problem. In this paper, we explore in detail a new approach based on kernel regression estimates, which is able to estimate a single time delay given several data sets for the same quasar. We develop realistic artificial data sets in order to carry out controlled experiments to test the performance of this new approach. We also test our method on real data from strongly lensed quasar Q0957+561 and compare our estimates against existing results.
Anytime query-tuned kernel machine classifiers via Cholesky factorization
NASA Technical Reports Server (NTRS)
DeCoste, D.
2002-01-01
We recently demonstrated 2 to 64-fold query-time speedups of Support Vector Machine and Kernel Fisher classifiers via a new computational geometry method for anytime output bounds (DeCoste,2002). This new paper refines our approach in two key ways. First, we introduce a simple linear algebra formulation based on Cholesky factorization, yielding simpler equations and lower computational overhead. Second, this new formulation suggests new methods for achieving additional speedups, including tuning on query samples. We demonstrate effectiveness on benchmark datasets.
Partial Kernelization for Rank Aggregation: Theory and Experiments
NASA Astrophysics Data System (ADS)
Betzler, Nadja; Bredereck, Robert; Niedermeier, Rolf
Rank Aggregation is important in many areas ranging from web search over databases to bioinformatics. The underlying decision problem Kemeny Score is NP-complete even in case of four input rankings to be aggregated into a "median ranking". We study efficient polynomial-time data reduction rules that allow us to find optimal median rankings. On the theoretical side, we improve a result for a "partial problem kernel" from quadratic to linear size. On the practical side, we provide encouraging experimental results with data based on web search and sport competitions, e.g., computing optimal median rankings for real-world instances with more than 100 candidates within milliseconds.
Kernel PLS-SVC for Linear and Nonlinear Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Matthews, Bryan
2003-01-01
A new methodology for discrimination is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by support vector machines for classification. Close connection of orthonormalized PLS and Fisher's approach to linear discrimination or equivalently with canonical correlation analysis is described. This gives preference to use orthonormalized PLS over principal component analysis. Good behavior of the proposed method is demonstrated on 13 different benchmark data sets and on the real world problem of the classification finger movement periods versus non-movement periods based on electroencephalogram.
On the solution of integral equations with strongly singular kernels
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1986-01-01
Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m ,m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup -m , terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.
Non-separable pairing interaction kernels applied to superconducting cuprates
NASA Astrophysics Data System (ADS)
Haley, Stephen B.; Fink, Herman J.
2014-05-01
A pairing Hamiltonian H(Γ) with a non-separable interaction kernel Γ produces HTS for relatively weak interactions. The doping and temperature dependence of Γ(x,T) and the chemical potential μ(x) is determined by a probabilistic filling of the electronic states in the cuprate unit cell. A diverse set of HTS and normal state properties is examined, including the SC phase transition boundary TC(x), SC gap Δ(x,T), entropy S(x,T), specific heat C(x,T), and spin susceptibility χs(x,T). Detailed x,T agreement with cuprate experiment is obtained for all properties.
A rainfall spatial interpolation algorithm based on inhomogeneous kernels
NASA Astrophysics Data System (ADS)
Campo, Lorenzo; Fiori, Elisabetta; Molini, Luca
2015-04-01
Rainfall fields constitute the main input of hydrological distributed models, both for long period water balance and for short period flood forecast and monitoring. The importance of an accurate reconstruction of the spatial pattern of rainfall is, thus, well recognized in several fields of application: agricultural planning, water balance at watershed scale, water management, flood monitoring. The latter case is particularly critical, due to the strong effect of the combination of the soil moisture pattern and of the rainfall pattern on the intensity peak of the flood. Despite the importance of the spatial characterization of the rainfall height, this variable still presents several difficulties when an interpolation is required. Rainfall fields present spatial and temporal alternance of large zero-values areas (no-rainfall) and complex pattern of non zero heights (rainfall events). Furthermore, the spatial patterns strongly depend on the type and the origin of rain event (convective, stratiform, orographic) and on the spatial scale. Different kind of rainfall measures and estimates (rainfall gauges, satellite estimates, meteo radar) are available, as well as large amount of literature for the spatial interpolation: from Thiessen polygons to Inverse Distance Weight (IDW) to different variants of kriging, neural network and other deterministic or geostatistic methods. In this work a kernel-based method for interpolation of point measures (raingauges) is proposed, in which spatially inhomogeneous kernel are used. For each gauge a particular kernel is fitted following the particular correlation structures between the rainfall time series of the given gauge and those of its neighbors. In this way the local features of the field are considered following the observed dependence spatial pattern. The kernel are assumed to be Gaussian, whose covariance matrices are fitted basing on the values of the correlation of the time series and the location. A similar approach is
Kernel methods for large-scale genomic data analysis
Xing, Eric P.; Schaid, Daniel J.
2015-01-01
Machine learning, particularly kernel methods, has been demonstrated as a promising new tool to tackle the challenges imposed by today’s explosive data growth in genomics. They provide a practical and principled approach to learning how a large number of genetic variants are associated with complex phenotypes, to help reveal the complexity in the relationship between the genetic markers and the outcome of interest. In this review, we highlight the potential key role it will have in modern genomic data processing, especially with regard to integration with classical methods for gene prioritizing, prediction and data fusion. PMID:25053743
On the solution of integral equations with strongly singular kernels
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1987-01-01
Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.
Multiphonon scattering from surfaces
NASA Astrophysics Data System (ADS)
Manson, J. R.; Celli, V.; Himes, D.
1994-01-01
We consider the relationship between several different formalisms for treating the multiphonon inelastic scattering of atomic projectiles from surfaces. Starting from general principles of formal scattering theory, the trajectory approximation to the scattering intensity is obtained. From the trajectory approximation, the conditions leading to the fast-collision approximation for multiquantum inelastic scattering are systematically derived.
Unified theory of near-field analysis and measurement - Scattering and inverse scattering
NASA Astrophysics Data System (ADS)
Wacker, P. F.
1981-03-01
The scanning procedures of unified theory of near-field analysis and measurement are adapted to the determination of scattering patterns of electromagnetic and scalar systems from measurements made in the near, intermediate, or far field, with emphasis on high accuracy and efficient data processing. The scanning procedures include spherical, improved plane polar, and many types of plane rectangular, plane radial, and circular cylindrical scanning. Application of group representation to inverse scattering analysis is discussed.
Iqbal, Abdullah; Valous, Nektarios A; Sun, Da-Wen; Allen, Paul
2011-02-01
Lacunarity is about quantifying the degree of spatial heterogeneity in the visual texture of imagery through the identification of the relationships between patterns and their spatial configurations in a two-dimensional setting. The computed lacunarity data can designate a mathematical index of spatial heterogeneity, therefore the corresponding feature vectors should possess the necessary inter-class statistical properties that would enable them to be used for pattern recognition purposes. The objectives of this study is to construct a supervised parsimonious classification model of binary lacunarity data-computed by Valous et al. (2009)-from pork ham slice surface images, with the aid of kernel principal component analysis (KPCA) and artificial neural networks (ANNs), using a portion of informative salient features. At first, the dimension of the initial space (510 features) was reduced by 90% in order to avoid any noise effects in the subsequent classification. Then, using KPCA, the first nineteen kernel principal components (99.04% of total variance) were extracted from the reduced feature space, and were used as input in the ANN. An adaptive feedforward multilayer perceptron (MLP) classifier was employed to obtain a suitable mapping from the input dataset. The correct classification percentages for the training, test and validation sets were 86.7%, 86.7%, and 85.0%, respectively. The results confirm that the classification performance was satisfactory. The binary lacunarity spatial metric captured relevant information that provided a good level of differentiation among pork ham slice images. PMID:21062668
Kotova, S P; Maiorov, I V; Maiorova, A M
2007-01-31
We analyse the possibilities of simultaneous measuring three optical parameters of scattering media, namely, the scattering and absorption coefficients and the scattering anisotropy parameter by the intensity profile of backscattered radiation by using the neural network inversion method and the method of adaptive-network-based fuzzy inference system. The measurement errors of the absorption and scattering coefficients and the scattering anisotropy parameter are 20%, 5%, and 10%, respectively. (special issue devoted to multiple radiation scattering in random media)
Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong
2014-01-01
Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods. PMID:25061837
Boltzmann Solver with Adaptive Mesh in Velocity Space
Kolobov, Vladimir I.; Arslanbekov, Robert R.; Frolova, Anna A.
2011-05-20
We describe the implementation of direct Boltzmann solver with Adaptive Mesh in Velocity Space (AMVS) using quad/octree data structure. The benefits of the AMVS technique are demonstrated for the charged particle transport in weakly ionized plasmas where the collision integral is linear. We also describe the implementation of AMVS for the nonlinear Boltzmann collision integral. Test computations demonstrate both advantages and deficiencies of the current method for calculations of narrow-kernel distributions.
Jones, Roger W.; Reinot, Tonu; Frei, Ursula K.; Tseng, Yichia; Lübberstedt, Thomas; McClelland, John F.
2012-04-01
Samples of haploid and hybrid seed from three different maize donor genotypes after maternal haploid induction were used to test the capability of automated near-infrared transmission spectroscopy to individually differentiate haploid from hybrid seeds. Using a two-step chemometric analysis in which the seeds were first classified according to genotype and then the haploid or hybrid status was determined proved to be the most successful approach. This approach allowed 11 of 13 haploid and 25 of 25 hybrid kernels to be correctly identified from a mixture that included seeds of all the genotypes.
Multi-scale Heat Kernel based Volumetric Morphology Signature
Wang, Gang; Wang, Yalin
2015-01-01
Here we introduce a novel multi-scale heat kernel based regional shape statistical approach that may improve statistical power on the structural analysis. The mechanism of this analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral mesh. In order to capture profound volumetric changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between two boundary surfaces by computing the streamline in the tetrahedral mesh. Secondly, we propose a multi-scale volumetric morphology signature to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the volumetric morphology signatures and generate the internal structure features. The multi-scale and physics based internal structure features may bring stronger statistical power than other traditional methods for volumetric morphology analysis. To validate our method, we apply support vector machine to classify synthetic data and brain MR images. In our experiments, the proposed work outperformed FreeSurfer thickness features in Alzheimer's disease patient and normal control subject classification analysis. PMID:26550613
TORCH Computational Reference Kernels - A Testbed for Computer Science Research
Kaiser, Alex; Williams, Samuel Webb; Madduri, Kamesh; Ibrahim, Khaled; Bailey, David H.; Demmel, James W.; Strohmaier, Erich
2010-12-02
For decades, computer scientists have sought guidance on how to evolve architectures, languages, and programming models in order to improve application performance, efficiency, and productivity. Unfortunately, without overarching advice about future directions in these areas, individual guidance is inferred from the existing software/hardware ecosystem, and each discipline often conducts their research independently assuming all other technologies remain fixed. In today's rapidly evolving world of on-chip parallelism, isolated and iterative improvements to performance may miss superior solutions in the same way gradient descent optimization techniques may get stuck in local minima. To combat this, we present TORCH: A Testbed for Optimization ResearCH. These computational reference kernels define the core problems of interest in scientific computing without mandating a specific language, algorithm, programming model, or implementation. To compliment the kernel (problem) definitions, we provide a set of algorithmically-expressed verification tests that can be used to verify a hardware/software co-designed solution produces an acceptable answer. Finally, to provide some illumination as to how researchers have implemented solutions to these problems in the past, we provide a set of reference implementations in C and MATLAB.
Seismic hazard of the Iberian Peninsula: evaluation with kernel functions
NASA Astrophysics Data System (ADS)
Crespo, M. J.; Martínez, F.; Martí, J.
2014-05-01
The seismic hazard of the Iberian Peninsula is analysed using a nonparametric methodology based on statistical kernel functions; the activity rate is derived from the catalogue data, both its spatial dependence (without a seismogenic zonation) and its magnitude dependence (without using Gutenberg-Richter's relationship). The catalogue is that of the Instituto Geográfico Nacional, supplemented with other catalogues around the periphery; the quantification of events has been homogenised and spatially or temporally interrelated events have been suppressed to assume a Poisson process. The activity rate is determined by the kernel function, the bandwidth and the effective periods. The resulting rate is compared with that produced using Gutenberg-Richter statistics and a zoned approach. Three attenuation relationships have been employed, one for deep sources and two for shallower events, depending on whether their magnitude was above or below 5. The results are presented as seismic hazard maps for different spectral frequencies and for return periods of 475 and 2475 yr, which allows constructing uniform hazard spectra.
Seismic hazards of the Iberian Peninsula - evaluation with kernel functions
NASA Astrophysics Data System (ADS)
Crespo, M. J.; Martínez, F.; Martí, J.
2013-08-01
The seismic hazard of the Iberian Peninsula is analysed using a nonparametric methodology based on statistical kernel functions; the activity rate is derived from the catalogue data, both its spatial dependence (without a seismogenetic zonation) and its magnitude dependence (without using Gutenberg-Richter's law). The catalogue is that of the Instituto Geográfico Nacional, supplemented with other catalogues around the periphery; the quantification of events has been homogenised and spatially or temporally interrelated events have been suppressed to assume a Poisson process. The activity rate is determined by the kernel function, the bandwidth and the effective periods. The resulting rate is compared with that produced using Gutenberg-Richter statistics and a zoned approach. Three attenuation laws have been employed, one for deep sources and two for shallower events, depending on whether their magnitude was above or below 5. The results are presented as seismic hazard maps for different spectral frequencies and for return periods of 475 and 2475 yr, which allows constructing uniform hazard spectra.
Association mapping for kernel phytosterol content in almond
Font i Forcada, Carolina; Velasco, Leonardo; Socias i Company, Rafel; Fernández i Martí, Ángel
2015-01-01
Almond kernels are a rich source of phytosterols, which are important compounds for human nutrition. The genetic control of phytosterol content has not yet been documented in almond. Association mapping (AM), also known as linkage disequilibrium (LD), was applied to an almond germplasm collection in order to provide new insight into the genetic control of total and individual sterol contents in kernels. Population structure analysis grouped the accessions into two principal groups, the Mediterranean and the non-Mediterranean. There was a strong subpopulation structure with LD decaying with increasing genetic distance, resulting in lower levels of LD between more distant markers. A significant impact of population structure on LD in the almond cultivar groups was observed. The mean r2-value for all intra-chromosomal loci pairs was 0.040, whereas, the r2 for the inter-chromosomal loci pairs was 0.036. For analysis of association between the markers and phenotypic traits five models were tested. The mixed linear model (MLM) approach using co-ancestry values from population structure and kinship estimates (K model) as covariates identified a maximum of 13 significant associations. Most of the associations found appeared to map within the interval where many candidate genes involved in the sterol biosynthesis pathway are predicted in the peach genome. These findings provide a valuable foundation for quality gene identification and molecular marker assisted breeding in almond. PMID:26217374
Spectrotemporal Contrast Kernels for Neurons in Primary Auditory Cortex
Rabinowitz, Neil C.; Willmore, Ben D.B.; Schnupp, Jan W.H.; King, Andrew J.
2012-01-01
Auditory neurons are often described in terms of their spectrotemporal receptive fields (STRFs). These map the relationship between features of the sound spectrogram and neurons’ firing rates. Recently we showed that neurons in the primary fields of the ferret auditory cortex are also subject to gain control: when sounds undergo smaller fluctuations in their level over time, the neurons become more sensitive to small level changes (Rabinowitz et al., 2011). Just as STRFs measure the spectrotemporal features of a sound that lead to changes in neurons’ firing rates, in this study we sought to estimate the spectrotemporal regions in which sound statistics lead to changes in neurons’ gain. We designed a set of stimuli with complex contrast profiles to characterize these regions. This allowed us to estimate cortical neurons’ STRFs alongside a set of spectrotemporal contrast kernels. We find that these two sets of integration windows match up: the extent to which a stimulus feature causes a neuron’s firing rate to change is strongly correlated with the extent to which that feature’s contrast modulates the neuron’s gain. Adding contrast kernels to STRF models also yields considerable improvements in the ability to capture and predict how auditory cortical neurons respond to statistically complex sounds. PMID:22895711